1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid1.c : Multiple Devices driver for Linux
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
9 * RAID-1 management functions.
17 * bitmapped intelligence in resync:
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
34 #include <trace/events/block.h>
38 #include "md-bitmap.h"
40 #define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
49 #define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
75 raid1_rb_insert(si, &serial->serial_rb);
77 spin_unlock_irqrestore(&serial->serial_lock, flags);
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
89 if (WARN_ON(!mddev->serial_info_pool))
91 si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
98 struct serial_info *si;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 si; si = raid1_rb_iter_next(si, lo, hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(si, &serial->serial_rb);
110 mempool_free(si, mddev->serial_info_pool);
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(&serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
127 return get_resync_pages(bio)->raid_bio;
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, gfp_flags);
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
153 struct resync_pages *rps;
155 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
159 rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
165 * Allocate bios : 1 for reading, n-1 for writing
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
171 r1_bio->bios[j] = bio;
174 * Allocate RESYNC_PAGES data pages and attach them to
176 * If this is a user-requested check/repair, allocate
177 * RESYNC_PAGES for each bio.
179 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 need_pages = pi->raid_disks;
183 for (j = 0; j < pi->raid_disks; j++) {
184 struct resync_pages *rp = &rps[j];
186 bio = r1_bio->bios[j];
188 if (j < need_pages) {
189 if (resync_alloc_pages(rp, gfp_flags))
192 memcpy(rp, &rps[0], sizeof(*rp));
193 resync_get_all_pages(rp);
196 rp->raid_bio = r1_bio;
197 bio->bi_private = rp;
200 r1_bio->master_bio = NULL;
206 resync_free_pages(&rps[j]);
209 while (++j < pi->raid_disks)
210 bio_put(r1_bio->bios[j]);
214 rbio_pool_free(r1_bio, data);
218 static void r1buf_pool_free(void *__r1_bio, void *data)
220 struct pool_info *pi = data;
222 struct r1bio *r1bio = __r1_bio;
223 struct resync_pages *rp = NULL;
225 for (i = pi->raid_disks; i--; ) {
226 rp = get_resync_pages(r1bio->bios[i]);
227 resync_free_pages(rp);
228 bio_put(r1bio->bios[i]);
231 /* resync pages array stored in the 1st bio's .bi_private */
234 rbio_pool_free(r1bio, data);
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
241 for (i = 0; i < conf->raid_disks * 2; i++) {
242 struct bio **bio = r1_bio->bios + i;
243 if (!BIO_SPECIAL(*bio))
249 static void free_r1bio(struct r1bio *r1_bio)
251 struct r1conf *conf = r1_bio->mddev->private;
253 put_all_bios(conf, r1_bio);
254 mempool_free(r1_bio, &conf->r1bio_pool);
257 static void put_buf(struct r1bio *r1_bio)
259 struct r1conf *conf = r1_bio->mddev->private;
260 sector_t sect = r1_bio->sector;
263 for (i = 0; i < conf->raid_disks * 2; i++) {
264 struct bio *bio = r1_bio->bios[i];
266 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
269 mempool_free(r1_bio, &conf->r1buf_pool);
271 lower_barrier(conf, sect);
274 static void reschedule_retry(struct r1bio *r1_bio)
277 struct mddev *mddev = r1_bio->mddev;
278 struct r1conf *conf = mddev->private;
281 idx = sector_to_idx(r1_bio->sector);
282 spin_lock_irqsave(&conf->device_lock, flags);
283 list_add(&r1_bio->retry_list, &conf->retry_list);
284 atomic_inc(&conf->nr_queued[idx]);
285 spin_unlock_irqrestore(&conf->device_lock, flags);
287 wake_up(&conf->wait_barrier);
288 md_wakeup_thread(mddev->thread);
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
296 static void call_bio_endio(struct r1bio *r1_bio)
298 struct bio *bio = r1_bio->master_bio;
300 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 bio->bi_status = BLK_STS_IOERR;
303 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
304 bio_end_io_acct(bio, r1_bio->start_time);
308 static void raid_end_bio_io(struct r1bio *r1_bio)
310 struct bio *bio = r1_bio->master_bio;
311 struct r1conf *conf = r1_bio->mddev->private;
313 /* if nobody has done the final endio yet, do it now */
314 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
315 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
316 (bio_data_dir(bio) == WRITE) ? "write" : "read",
317 (unsigned long long) bio->bi_iter.bi_sector,
318 (unsigned long long) bio_end_sector(bio) - 1);
320 call_bio_endio(r1_bio);
323 * Wake up any possible resync thread that waits for the device
324 * to go idle. All I/Os, even write-behind writes, are done.
326 allow_barrier(conf, r1_bio->sector);
332 * Update disk head position estimator based on IRQ completion info.
334 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
336 struct r1conf *conf = r1_bio->mddev->private;
338 conf->mirrors[disk].head_position =
339 r1_bio->sector + (r1_bio->sectors);
343 * Find the disk number which triggered given bio
345 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
348 struct r1conf *conf = r1_bio->mddev->private;
349 int raid_disks = conf->raid_disks;
351 for (mirror = 0; mirror < raid_disks * 2; mirror++)
352 if (r1_bio->bios[mirror] == bio)
355 BUG_ON(mirror == raid_disks * 2);
356 update_head_pos(mirror, r1_bio);
361 static void raid1_end_read_request(struct bio *bio)
363 int uptodate = !bio->bi_status;
364 struct r1bio *r1_bio = bio->bi_private;
365 struct r1conf *conf = r1_bio->mddev->private;
366 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
369 * this branch is our 'one mirror IO has finished' event handler:
371 update_head_pos(r1_bio->read_disk, r1_bio);
374 set_bit(R1BIO_Uptodate, &r1_bio->state);
375 else if (test_bit(FailFast, &rdev->flags) &&
376 test_bit(R1BIO_FailFast, &r1_bio->state))
377 /* This was a fail-fast read so we definitely
381 /* If all other devices have failed, we want to return
382 * the error upwards rather than fail the last device.
383 * Here we redefine "uptodate" to mean "Don't want to retry"
386 spin_lock_irqsave(&conf->device_lock, flags);
387 if (r1_bio->mddev->degraded == conf->raid_disks ||
388 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
389 test_bit(In_sync, &rdev->flags)))
391 spin_unlock_irqrestore(&conf->device_lock, flags);
395 raid_end_bio_io(r1_bio);
396 rdev_dec_pending(rdev, conf->mddev);
401 char b[BDEVNAME_SIZE];
402 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
404 bdevname(rdev->bdev, b),
405 (unsigned long long)r1_bio->sector);
406 set_bit(R1BIO_ReadError, &r1_bio->state);
407 reschedule_retry(r1_bio);
408 /* don't drop the reference on read_disk yet */
412 static void close_write(struct r1bio *r1_bio)
414 /* it really is the end of this request */
415 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
416 bio_free_pages(r1_bio->behind_master_bio);
417 bio_put(r1_bio->behind_master_bio);
418 r1_bio->behind_master_bio = NULL;
420 /* clear the bitmap if all writes complete successfully */
421 md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
423 !test_bit(R1BIO_Degraded, &r1_bio->state),
424 test_bit(R1BIO_BehindIO, &r1_bio->state));
425 md_write_end(r1_bio->mddev);
428 static void r1_bio_write_done(struct r1bio *r1_bio)
430 if (!atomic_dec_and_test(&r1_bio->remaining))
433 if (test_bit(R1BIO_WriteError, &r1_bio->state))
434 reschedule_retry(r1_bio);
437 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
438 reschedule_retry(r1_bio);
440 raid_end_bio_io(r1_bio);
444 static void raid1_end_write_request(struct bio *bio)
446 struct r1bio *r1_bio = bio->bi_private;
447 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
448 struct r1conf *conf = r1_bio->mddev->private;
449 struct bio *to_put = NULL;
450 int mirror = find_bio_disk(r1_bio, bio);
451 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
453 sector_t lo = r1_bio->sector;
454 sector_t hi = r1_bio->sector + r1_bio->sectors;
456 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459 * 'one mirror IO has finished' event handler:
461 if (bio->bi_status && !discard_error) {
462 set_bit(WriteErrorSeen, &rdev->flags);
463 if (!test_and_set_bit(WantReplacement, &rdev->flags))
464 set_bit(MD_RECOVERY_NEEDED, &
465 conf->mddev->recovery);
467 if (test_bit(FailFast, &rdev->flags) &&
468 (bio->bi_opf & MD_FAILFAST) &&
469 /* We never try FailFast to WriteMostly devices */
470 !test_bit(WriteMostly, &rdev->flags)) {
471 md_error(r1_bio->mddev, rdev);
475 * When the device is faulty, it is not necessary to
476 * handle write error.
477 * For failfast, this is the only remaining device,
478 * We need to retry the write without FailFast.
480 if (!test_bit(Faulty, &rdev->flags))
481 set_bit(R1BIO_WriteError, &r1_bio->state);
483 /* Fail the request */
484 set_bit(R1BIO_Degraded, &r1_bio->state);
485 /* Finished with this branch */
486 r1_bio->bios[mirror] = NULL;
491 * Set R1BIO_Uptodate in our master bio, so that we
492 * will return a good error code for to the higher
493 * levels even if IO on some other mirrored buffer
496 * The 'master' represents the composite IO operation
497 * to user-side. So if something waits for IO, then it
498 * will wait for the 'master' bio.
503 r1_bio->bios[mirror] = NULL;
506 * Do not set R1BIO_Uptodate if the current device is
507 * rebuilding or Faulty. This is because we cannot use
508 * such device for properly reading the data back (we could
509 * potentially use it, if the current write would have felt
510 * before rdev->recovery_offset, but for simplicity we don't
513 if (test_bit(In_sync, &rdev->flags) &&
514 !test_bit(Faulty, &rdev->flags))
515 set_bit(R1BIO_Uptodate, &r1_bio->state);
517 /* Maybe we can clear some bad blocks. */
518 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
519 &first_bad, &bad_sectors) && !discard_error) {
520 r1_bio->bios[mirror] = IO_MADE_GOOD;
521 set_bit(R1BIO_MadeGood, &r1_bio->state);
526 if (test_bit(CollisionCheck, &rdev->flags))
527 remove_serial(rdev, lo, hi);
528 if (test_bit(WriteMostly, &rdev->flags))
529 atomic_dec(&r1_bio->behind_remaining);
532 * In behind mode, we ACK the master bio once the I/O
533 * has safely reached all non-writemostly
534 * disks. Setting the Returned bit ensures that this
535 * gets done only once -- we don't ever want to return
536 * -EIO here, instead we'll wait
538 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
539 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
540 /* Maybe we can return now */
541 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
542 struct bio *mbio = r1_bio->master_bio;
543 pr_debug("raid1: behind end write sectors"
545 (unsigned long long) mbio->bi_iter.bi_sector,
546 (unsigned long long) bio_end_sector(mbio) - 1);
547 call_bio_endio(r1_bio);
550 } else if (rdev->mddev->serialize_policy)
551 remove_serial(rdev, lo, hi);
552 if (r1_bio->bios[mirror] == NULL)
553 rdev_dec_pending(rdev, conf->mddev);
556 * Let's see if all mirrored write operations have finished
559 r1_bio_write_done(r1_bio);
565 static sector_t align_to_barrier_unit_end(sector_t start_sector,
570 WARN_ON(sectors == 0);
572 * len is the number of sectors from start_sector to end of the
573 * barrier unit which start_sector belongs to.
575 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
585 * This routine returns the disk from which the requested read should
586 * be done. There is a per-array 'next expected sequential IO' sector
587 * number - if this matches on the next IO then we use the last disk.
588 * There is also a per-disk 'last know head position' sector that is
589 * maintained from IRQ contexts, both the normal and the resync IO
590 * completion handlers update this position correctly. If there is no
591 * perfect sequential match then we pick the disk whose head is closest.
593 * If there are 2 mirrors in the same 2 devices, performance degrades
594 * because position is mirror, not device based.
596 * The rdev for the device selected will have nr_pending incremented.
598 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
600 const sector_t this_sector = r1_bio->sector;
602 int best_good_sectors;
603 int best_disk, best_dist_disk, best_pending_disk;
607 unsigned int min_pending;
608 struct md_rdev *rdev;
610 int choose_next_idle;
614 * Check if we can balance. We can balance on the whole
615 * device if no resync is going on, or below the resync window.
616 * We take the first readable disk when above the resync window.
619 sectors = r1_bio->sectors;
622 best_dist = MaxSector;
623 best_pending_disk = -1;
624 min_pending = UINT_MAX;
625 best_good_sectors = 0;
627 choose_next_idle = 0;
628 clear_bit(R1BIO_FailFast, &r1_bio->state);
630 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
631 (mddev_is_clustered(conf->mddev) &&
632 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
633 this_sector + sectors)))
638 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
642 unsigned int pending;
645 rdev = rcu_dereference(conf->mirrors[disk].rdev);
646 if (r1_bio->bios[disk] == IO_BLOCKED
648 || test_bit(Faulty, &rdev->flags))
650 if (!test_bit(In_sync, &rdev->flags) &&
651 rdev->recovery_offset < this_sector + sectors)
653 if (test_bit(WriteMostly, &rdev->flags)) {
654 /* Don't balance among write-mostly, just
655 * use the first as a last resort */
656 if (best_dist_disk < 0) {
657 if (is_badblock(rdev, this_sector, sectors,
658 &first_bad, &bad_sectors)) {
659 if (first_bad <= this_sector)
660 /* Cannot use this */
662 best_good_sectors = first_bad - this_sector;
664 best_good_sectors = sectors;
665 best_dist_disk = disk;
666 best_pending_disk = disk;
670 /* This is a reasonable device to use. It might
673 if (is_badblock(rdev, this_sector, sectors,
674 &first_bad, &bad_sectors)) {
675 if (best_dist < MaxSector)
676 /* already have a better device */
678 if (first_bad <= this_sector) {
679 /* cannot read here. If this is the 'primary'
680 * device, then we must not read beyond
681 * bad_sectors from another device..
683 bad_sectors -= (this_sector - first_bad);
684 if (choose_first && sectors > bad_sectors)
685 sectors = bad_sectors;
686 if (best_good_sectors > sectors)
687 best_good_sectors = sectors;
690 sector_t good_sectors = first_bad - this_sector;
691 if (good_sectors > best_good_sectors) {
692 best_good_sectors = good_sectors;
700 if ((sectors > best_good_sectors) && (best_disk >= 0))
702 best_good_sectors = sectors;
706 /* At least two disks to choose from so failfast is OK */
707 set_bit(R1BIO_FailFast, &r1_bio->state);
709 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
710 has_nonrot_disk |= nonrot;
711 pending = atomic_read(&rdev->nr_pending);
712 dist = abs(this_sector - conf->mirrors[disk].head_position);
717 /* Don't change to another disk for sequential reads */
718 if (conf->mirrors[disk].next_seq_sect == this_sector
720 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
721 struct raid1_info *mirror = &conf->mirrors[disk];
725 * If buffered sequential IO size exceeds optimal
726 * iosize, check if there is idle disk. If yes, choose
727 * the idle disk. read_balance could already choose an
728 * idle disk before noticing it's a sequential IO in
729 * this disk. This doesn't matter because this disk
730 * will idle, next time it will be utilized after the
731 * first disk has IO size exceeds optimal iosize. In
732 * this way, iosize of the first disk will be optimal
733 * iosize at least. iosize of the second disk might be
734 * small, but not a big deal since when the second disk
735 * starts IO, the first disk is likely still busy.
737 if (nonrot && opt_iosize > 0 &&
738 mirror->seq_start != MaxSector &&
739 mirror->next_seq_sect > opt_iosize &&
740 mirror->next_seq_sect - opt_iosize >=
742 choose_next_idle = 1;
748 if (choose_next_idle)
751 if (min_pending > pending) {
752 min_pending = pending;
753 best_pending_disk = disk;
756 if (dist < best_dist) {
758 best_dist_disk = disk;
763 * If all disks are rotational, choose the closest disk. If any disk is
764 * non-rotational, choose the disk with less pending request even the
765 * disk is rotational, which might/might not be optimal for raids with
766 * mixed ratation/non-rotational disks depending on workload.
768 if (best_disk == -1) {
769 if (has_nonrot_disk || min_pending == 0)
770 best_disk = best_pending_disk;
772 best_disk = best_dist_disk;
775 if (best_disk >= 0) {
776 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
779 atomic_inc(&rdev->nr_pending);
780 sectors = best_good_sectors;
782 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
783 conf->mirrors[best_disk].seq_start = this_sector;
785 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
788 *max_sectors = sectors;
793 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
795 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
796 md_bitmap_unplug(conf->mddev->bitmap);
797 wake_up(&conf->wait_barrier);
799 while (bio) { /* submit pending writes */
800 struct bio *next = bio->bi_next;
801 struct md_rdev *rdev = (void *)bio->bi_bdev;
803 bio_set_dev(bio, rdev->bdev);
804 if (test_bit(Faulty, &rdev->flags)) {
806 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
807 !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
811 submit_bio_noacct(bio);
817 static void flush_pending_writes(struct r1conf *conf)
819 /* Any writes that have been queued but are awaiting
820 * bitmap updates get flushed here.
822 spin_lock_irq(&conf->device_lock);
824 if (conf->pending_bio_list.head) {
825 struct blk_plug plug;
828 bio = bio_list_get(&conf->pending_bio_list);
829 conf->pending_count = 0;
830 spin_unlock_irq(&conf->device_lock);
833 * As this is called in a wait_event() loop (see freeze_array),
834 * current->state might be TASK_UNINTERRUPTIBLE which will
835 * cause a warning when we prepare to wait again. As it is
836 * rare that this path is taken, it is perfectly safe to force
837 * us to go around the wait_event() loop again, so the warning
838 * is a false-positive. Silence the warning by resetting
841 __set_current_state(TASK_RUNNING);
842 blk_start_plug(&plug);
843 flush_bio_list(conf, bio);
844 blk_finish_plug(&plug);
846 spin_unlock_irq(&conf->device_lock);
850 * Sometimes we need to suspend IO while we do something else,
851 * either some resync/recovery, or reconfigure the array.
852 * To do this we raise a 'barrier'.
853 * The 'barrier' is a counter that can be raised multiple times
854 * to count how many activities are happening which preclude
856 * We can only raise the barrier if there is no pending IO.
857 * i.e. if nr_pending == 0.
858 * We choose only to raise the barrier if no-one is waiting for the
859 * barrier to go down. This means that as soon as an IO request
860 * is ready, no other operations which require a barrier will start
861 * until the IO request has had a chance.
863 * So: regular IO calls 'wait_barrier'. When that returns there
864 * is no backgroup IO happening, It must arrange to call
865 * allow_barrier when it has finished its IO.
866 * backgroup IO calls must call raise_barrier. Once that returns
867 * there is no normal IO happeing. It must arrange to call
868 * lower_barrier when the particular background IO completes.
870 * If resync/recovery is interrupted, returns -EINTR;
871 * Otherwise, returns 0.
873 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
875 int idx = sector_to_idx(sector_nr);
877 spin_lock_irq(&conf->resync_lock);
879 /* Wait until no block IO is waiting */
880 wait_event_lock_irq(conf->wait_barrier,
881 !atomic_read(&conf->nr_waiting[idx]),
884 /* block any new IO from starting */
885 atomic_inc(&conf->barrier[idx]);
887 * In raise_barrier() we firstly increase conf->barrier[idx] then
888 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
889 * increase conf->nr_pending[idx] then check conf->barrier[idx].
890 * A memory barrier here to make sure conf->nr_pending[idx] won't
891 * be fetched before conf->barrier[idx] is increased. Otherwise
892 * there will be a race between raise_barrier() and _wait_barrier().
894 smp_mb__after_atomic();
896 /* For these conditions we must wait:
897 * A: while the array is in frozen state
898 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
899 * existing in corresponding I/O barrier bucket.
900 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
901 * max resync count which allowed on current I/O barrier bucket.
903 wait_event_lock_irq(conf->wait_barrier,
904 (!conf->array_frozen &&
905 !atomic_read(&conf->nr_pending[idx]) &&
906 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
907 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
910 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
911 atomic_dec(&conf->barrier[idx]);
912 spin_unlock_irq(&conf->resync_lock);
913 wake_up(&conf->wait_barrier);
917 atomic_inc(&conf->nr_sync_pending);
918 spin_unlock_irq(&conf->resync_lock);
923 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
925 int idx = sector_to_idx(sector_nr);
927 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
929 atomic_dec(&conf->barrier[idx]);
930 atomic_dec(&conf->nr_sync_pending);
931 wake_up(&conf->wait_barrier);
934 static void _wait_barrier(struct r1conf *conf, int idx)
937 * We need to increase conf->nr_pending[idx] very early here,
938 * then raise_barrier() can be blocked when it waits for
939 * conf->nr_pending[idx] to be 0. Then we can avoid holding
940 * conf->resync_lock when there is no barrier raised in same
941 * barrier unit bucket. Also if the array is frozen, I/O
942 * should be blocked until array is unfrozen.
944 atomic_inc(&conf->nr_pending[idx]);
946 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
947 * check conf->barrier[idx]. In raise_barrier() we firstly increase
948 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
949 * barrier is necessary here to make sure conf->barrier[idx] won't be
950 * fetched before conf->nr_pending[idx] is increased. Otherwise there
951 * will be a race between _wait_barrier() and raise_barrier().
953 smp_mb__after_atomic();
956 * Don't worry about checking two atomic_t variables at same time
957 * here. If during we check conf->barrier[idx], the array is
958 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
959 * 0, it is safe to return and make the I/O continue. Because the
960 * array is frozen, all I/O returned here will eventually complete
961 * or be queued, no race will happen. See code comment in
964 if (!READ_ONCE(conf->array_frozen) &&
965 !atomic_read(&conf->barrier[idx]))
969 * After holding conf->resync_lock, conf->nr_pending[idx]
970 * should be decreased before waiting for barrier to drop.
971 * Otherwise, we may encounter a race condition because
972 * raise_barrer() might be waiting for conf->nr_pending[idx]
973 * to be 0 at same time.
975 spin_lock_irq(&conf->resync_lock);
976 atomic_inc(&conf->nr_waiting[idx]);
977 atomic_dec(&conf->nr_pending[idx]);
979 * In case freeze_array() is waiting for
980 * get_unqueued_pending() == extra
982 wake_up(&conf->wait_barrier);
983 /* Wait for the barrier in same barrier unit bucket to drop. */
984 wait_event_lock_irq(conf->wait_barrier,
985 !conf->array_frozen &&
986 !atomic_read(&conf->barrier[idx]),
988 atomic_inc(&conf->nr_pending[idx]);
989 atomic_dec(&conf->nr_waiting[idx]);
990 spin_unlock_irq(&conf->resync_lock);
993 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
995 int idx = sector_to_idx(sector_nr);
998 * Very similar to _wait_barrier(). The difference is, for read
999 * I/O we don't need wait for sync I/O, but if the whole array
1000 * is frozen, the read I/O still has to wait until the array is
1001 * unfrozen. Since there is no ordering requirement with
1002 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1004 atomic_inc(&conf->nr_pending[idx]);
1006 if (!READ_ONCE(conf->array_frozen))
1009 spin_lock_irq(&conf->resync_lock);
1010 atomic_inc(&conf->nr_waiting[idx]);
1011 atomic_dec(&conf->nr_pending[idx]);
1013 * In case freeze_array() is waiting for
1014 * get_unqueued_pending() == extra
1016 wake_up(&conf->wait_barrier);
1017 /* Wait for array to be unfrozen */
1018 wait_event_lock_irq(conf->wait_barrier,
1019 !conf->array_frozen,
1021 atomic_inc(&conf->nr_pending[idx]);
1022 atomic_dec(&conf->nr_waiting[idx]);
1023 spin_unlock_irq(&conf->resync_lock);
1026 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1028 int idx = sector_to_idx(sector_nr);
1030 _wait_barrier(conf, idx);
1033 static void _allow_barrier(struct r1conf *conf, int idx)
1035 atomic_dec(&conf->nr_pending[idx]);
1036 wake_up(&conf->wait_barrier);
1039 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1041 int idx = sector_to_idx(sector_nr);
1043 _allow_barrier(conf, idx);
1046 /* conf->resync_lock should be held */
1047 static int get_unqueued_pending(struct r1conf *conf)
1051 ret = atomic_read(&conf->nr_sync_pending);
1052 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1053 ret += atomic_read(&conf->nr_pending[idx]) -
1054 atomic_read(&conf->nr_queued[idx]);
1059 static void freeze_array(struct r1conf *conf, int extra)
1061 /* Stop sync I/O and normal I/O and wait for everything to
1063 * This is called in two situations:
1064 * 1) management command handlers (reshape, remove disk, quiesce).
1065 * 2) one normal I/O request failed.
1067 * After array_frozen is set to 1, new sync IO will be blocked at
1068 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1069 * or wait_read_barrier(). The flying I/Os will either complete or be
1070 * queued. When everything goes quite, there are only queued I/Os left.
1072 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1073 * barrier bucket index which this I/O request hits. When all sync and
1074 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1075 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1076 * in handle_read_error(), we may call freeze_array() before trying to
1077 * fix the read error. In this case, the error read I/O is not queued,
1078 * so get_unqueued_pending() == 1.
1080 * Therefore before this function returns, we need to wait until
1081 * get_unqueued_pendings(conf) gets equal to extra. For
1082 * normal I/O context, extra is 1, in rested situations extra is 0.
1084 spin_lock_irq(&conf->resync_lock);
1085 conf->array_frozen = 1;
1086 raid1_log(conf->mddev, "wait freeze");
1087 wait_event_lock_irq_cmd(
1089 get_unqueued_pending(conf) == extra,
1091 flush_pending_writes(conf));
1092 spin_unlock_irq(&conf->resync_lock);
1094 static void unfreeze_array(struct r1conf *conf)
1096 /* reverse the effect of the freeze */
1097 spin_lock_irq(&conf->resync_lock);
1098 conf->array_frozen = 0;
1099 spin_unlock_irq(&conf->resync_lock);
1100 wake_up(&conf->wait_barrier);
1103 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1106 int size = bio->bi_iter.bi_size;
1107 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1109 struct bio *behind_bio = NULL;
1111 behind_bio = bio_alloc_bioset(GFP_NOIO, vcnt, &r1_bio->mddev->bio_set);
1115 /* discard op, we don't support writezero/writesame yet */
1116 if (!bio_has_data(bio)) {
1117 behind_bio->bi_iter.bi_size = size;
1121 behind_bio->bi_write_hint = bio->bi_write_hint;
1123 while (i < vcnt && size) {
1125 int len = min_t(int, PAGE_SIZE, size);
1127 page = alloc_page(GFP_NOIO);
1128 if (unlikely(!page))
1131 bio_add_page(behind_bio, page, len, 0);
1137 bio_copy_data(behind_bio, bio);
1139 r1_bio->behind_master_bio = behind_bio;
1140 set_bit(R1BIO_BehindIO, &r1_bio->state);
1145 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1146 bio->bi_iter.bi_size);
1147 bio_free_pages(behind_bio);
1148 bio_put(behind_bio);
1151 struct raid1_plug_cb {
1152 struct blk_plug_cb cb;
1153 struct bio_list pending;
1157 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1159 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1161 struct mddev *mddev = plug->cb.data;
1162 struct r1conf *conf = mddev->private;
1165 if (from_schedule || current->bio_list) {
1166 spin_lock_irq(&conf->device_lock);
1167 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1168 conf->pending_count += plug->pending_cnt;
1169 spin_unlock_irq(&conf->device_lock);
1170 wake_up(&conf->wait_barrier);
1171 md_wakeup_thread(mddev->thread);
1176 /* we aren't scheduling, so we can do the write-out directly. */
1177 bio = bio_list_get(&plug->pending);
1178 flush_bio_list(conf, bio);
1182 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1184 r1_bio->master_bio = bio;
1185 r1_bio->sectors = bio_sectors(bio);
1187 r1_bio->mddev = mddev;
1188 r1_bio->sector = bio->bi_iter.bi_sector;
1191 static inline struct r1bio *
1192 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1194 struct r1conf *conf = mddev->private;
1195 struct r1bio *r1_bio;
1197 r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1198 /* Ensure no bio records IO_BLOCKED */
1199 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1200 init_r1bio(r1_bio, mddev, bio);
1204 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1205 int max_read_sectors, struct r1bio *r1_bio)
1207 struct r1conf *conf = mddev->private;
1208 struct raid1_info *mirror;
1209 struct bio *read_bio;
1210 struct bitmap *bitmap = mddev->bitmap;
1211 const int op = bio_op(bio);
1212 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1215 bool r1bio_existed = !!r1_bio;
1216 char b[BDEVNAME_SIZE];
1219 * If r1_bio is set, we are blocking the raid1d thread
1220 * so there is a tiny risk of deadlock. So ask for
1221 * emergency memory if needed.
1223 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1225 if (r1bio_existed) {
1226 /* Need to get the block device name carefully */
1227 struct md_rdev *rdev;
1229 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1231 bdevname(rdev->bdev, b);
1238 * Still need barrier for READ in case that whole
1241 wait_read_barrier(conf, bio->bi_iter.bi_sector);
1244 r1_bio = alloc_r1bio(mddev, bio);
1246 init_r1bio(r1_bio, mddev, bio);
1247 r1_bio->sectors = max_read_sectors;
1250 * make_request() can abort the operation when read-ahead is being
1251 * used and no empty request is available.
1253 rdisk = read_balance(conf, r1_bio, &max_sectors);
1256 /* couldn't find anywhere to read from */
1257 if (r1bio_existed) {
1258 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1261 (unsigned long long)r1_bio->sector);
1263 raid_end_bio_io(r1_bio);
1266 mirror = conf->mirrors + rdisk;
1269 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1271 (unsigned long long)r1_bio->sector,
1272 bdevname(mirror->rdev->bdev, b));
1274 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1277 * Reading from a write-mostly device must take care not to
1278 * over-take any writes that are 'behind'
1280 raid1_log(mddev, "wait behind writes");
1281 wait_event(bitmap->behind_wait,
1282 atomic_read(&bitmap->behind_writes) == 0);
1285 if (max_sectors < bio_sectors(bio)) {
1286 struct bio *split = bio_split(bio, max_sectors,
1287 gfp, &conf->bio_split);
1288 bio_chain(split, bio);
1289 submit_bio_noacct(bio);
1291 r1_bio->master_bio = bio;
1292 r1_bio->sectors = max_sectors;
1295 r1_bio->read_disk = rdisk;
1297 if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1298 r1_bio->start_time = bio_start_io_acct(bio);
1300 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1302 r1_bio->bios[rdisk] = read_bio;
1304 read_bio->bi_iter.bi_sector = r1_bio->sector +
1305 mirror->rdev->data_offset;
1306 bio_set_dev(read_bio, mirror->rdev->bdev);
1307 read_bio->bi_end_io = raid1_end_read_request;
1308 bio_set_op_attrs(read_bio, op, do_sync);
1309 if (test_bit(FailFast, &mirror->rdev->flags) &&
1310 test_bit(R1BIO_FailFast, &r1_bio->state))
1311 read_bio->bi_opf |= MD_FAILFAST;
1312 read_bio->bi_private = r1_bio;
1315 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1318 submit_bio_noacct(read_bio);
1321 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1322 int max_write_sectors)
1324 struct r1conf *conf = mddev->private;
1325 struct r1bio *r1_bio;
1327 struct bitmap *bitmap = mddev->bitmap;
1328 unsigned long flags;
1329 struct md_rdev *blocked_rdev;
1330 struct blk_plug_cb *cb;
1331 struct raid1_plug_cb *plug = NULL;
1335 if (mddev_is_clustered(mddev) &&
1336 md_cluster_ops->area_resyncing(mddev, WRITE,
1337 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1341 prepare_to_wait(&conf->wait_barrier,
1343 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1344 bio->bi_iter.bi_sector,
1345 bio_end_sector(bio)))
1349 finish_wait(&conf->wait_barrier, &w);
1353 * Register the new request and wait if the reconstruction
1354 * thread has put up a bar for new requests.
1355 * Continue immediately if no resync is active currently.
1357 wait_barrier(conf, bio->bi_iter.bi_sector);
1359 r1_bio = alloc_r1bio(mddev, bio);
1360 r1_bio->sectors = max_write_sectors;
1362 if (conf->pending_count >= max_queued_requests) {
1363 md_wakeup_thread(mddev->thread);
1364 raid1_log(mddev, "wait queued");
1365 wait_event(conf->wait_barrier,
1366 conf->pending_count < max_queued_requests);
1368 /* first select target devices under rcu_lock and
1369 * inc refcount on their rdev. Record them by setting
1371 * If there are known/acknowledged bad blocks on any device on
1372 * which we have seen a write error, we want to avoid writing those
1374 * This potentially requires several writes to write around
1375 * the bad blocks. Each set of writes gets it's own r1bio
1376 * with a set of bios attached.
1379 disks = conf->raid_disks * 2;
1381 blocked_rdev = NULL;
1383 max_sectors = r1_bio->sectors;
1384 for (i = 0; i < disks; i++) {
1385 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1386 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1387 atomic_inc(&rdev->nr_pending);
1388 blocked_rdev = rdev;
1391 r1_bio->bios[i] = NULL;
1392 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1393 if (i < conf->raid_disks)
1394 set_bit(R1BIO_Degraded, &r1_bio->state);
1398 atomic_inc(&rdev->nr_pending);
1399 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1404 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1405 &first_bad, &bad_sectors);
1407 /* mustn't write here until the bad block is
1409 set_bit(BlockedBadBlocks, &rdev->flags);
1410 blocked_rdev = rdev;
1413 if (is_bad && first_bad <= r1_bio->sector) {
1414 /* Cannot write here at all */
1415 bad_sectors -= (r1_bio->sector - first_bad);
1416 if (bad_sectors < max_sectors)
1417 /* mustn't write more than bad_sectors
1418 * to other devices yet
1420 max_sectors = bad_sectors;
1421 rdev_dec_pending(rdev, mddev);
1422 /* We don't set R1BIO_Degraded as that
1423 * only applies if the disk is
1424 * missing, so it might be re-added,
1425 * and we want to know to recover this
1427 * In this case the device is here,
1428 * and the fact that this chunk is not
1429 * in-sync is recorded in the bad
1435 int good_sectors = first_bad - r1_bio->sector;
1436 if (good_sectors < max_sectors)
1437 max_sectors = good_sectors;
1440 r1_bio->bios[i] = bio;
1444 if (unlikely(blocked_rdev)) {
1445 /* Wait for this device to become unblocked */
1448 for (j = 0; j < i; j++)
1449 if (r1_bio->bios[j])
1450 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1452 allow_barrier(conf, bio->bi_iter.bi_sector);
1453 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1454 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1455 wait_barrier(conf, bio->bi_iter.bi_sector);
1459 if (max_sectors < bio_sectors(bio)) {
1460 struct bio *split = bio_split(bio, max_sectors,
1461 GFP_NOIO, &conf->bio_split);
1462 bio_chain(split, bio);
1463 submit_bio_noacct(bio);
1465 r1_bio->master_bio = bio;
1466 r1_bio->sectors = max_sectors;
1469 if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1470 r1_bio->start_time = bio_start_io_acct(bio);
1471 atomic_set(&r1_bio->remaining, 1);
1472 atomic_set(&r1_bio->behind_remaining, 0);
1476 for (i = 0; i < disks; i++) {
1477 struct bio *mbio = NULL;
1478 struct md_rdev *rdev = conf->mirrors[i].rdev;
1479 if (!r1_bio->bios[i])
1484 * Not if there are too many, or cannot
1485 * allocate memory, or a reader on WriteMostly
1486 * is waiting for behind writes to flush */
1488 (atomic_read(&bitmap->behind_writes)
1489 < mddev->bitmap_info.max_write_behind) &&
1490 !waitqueue_active(&bitmap->behind_wait)) {
1491 alloc_behind_master_bio(r1_bio, bio);
1494 md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1495 test_bit(R1BIO_BehindIO, &r1_bio->state));
1499 if (r1_bio->behind_master_bio)
1500 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1501 GFP_NOIO, &mddev->bio_set);
1503 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1505 if (r1_bio->behind_master_bio) {
1506 if (test_bit(CollisionCheck, &rdev->flags))
1507 wait_for_serialization(rdev, r1_bio);
1508 if (test_bit(WriteMostly, &rdev->flags))
1509 atomic_inc(&r1_bio->behind_remaining);
1510 } else if (mddev->serialize_policy)
1511 wait_for_serialization(rdev, r1_bio);
1513 r1_bio->bios[i] = mbio;
1515 mbio->bi_iter.bi_sector = (r1_bio->sector +
1516 conf->mirrors[i].rdev->data_offset);
1517 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1518 mbio->bi_end_io = raid1_end_write_request;
1519 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1520 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1521 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1522 conf->raid_disks - mddev->degraded > 1)
1523 mbio->bi_opf |= MD_FAILFAST;
1524 mbio->bi_private = r1_bio;
1526 atomic_inc(&r1_bio->remaining);
1529 trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
1531 /* flush_pending_writes() needs access to the rdev so...*/
1532 mbio->bi_bdev = (void *)conf->mirrors[i].rdev;
1534 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1536 plug = container_of(cb, struct raid1_plug_cb, cb);
1540 bio_list_add(&plug->pending, mbio);
1541 plug->pending_cnt++;
1543 spin_lock_irqsave(&conf->device_lock, flags);
1544 bio_list_add(&conf->pending_bio_list, mbio);
1545 conf->pending_count++;
1546 spin_unlock_irqrestore(&conf->device_lock, flags);
1547 md_wakeup_thread(mddev->thread);
1551 r1_bio_write_done(r1_bio);
1553 /* In case raid1d snuck in to freeze_array */
1554 wake_up(&conf->wait_barrier);
1557 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1561 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1562 && md_flush_request(mddev, bio))
1566 * There is a limit to the maximum size, but
1567 * the read/write handler might find a lower limit
1568 * due to bad blocks. To avoid multiple splits,
1569 * we pass the maximum number of sectors down
1570 * and let the lower level perform the split.
1572 sectors = align_to_barrier_unit_end(
1573 bio->bi_iter.bi_sector, bio_sectors(bio));
1575 if (bio_data_dir(bio) == READ)
1576 raid1_read_request(mddev, bio, sectors, NULL);
1578 if (!md_write_start(mddev,bio))
1580 raid1_write_request(mddev, bio, sectors);
1585 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1587 struct r1conf *conf = mddev->private;
1590 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1591 conf->raid_disks - mddev->degraded);
1593 for (i = 0; i < conf->raid_disks; i++) {
1594 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1595 seq_printf(seq, "%s",
1596 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1599 seq_printf(seq, "]");
1602 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1604 char b[BDEVNAME_SIZE];
1605 struct r1conf *conf = mddev->private;
1606 unsigned long flags;
1609 * If it is not operational, then we have already marked it as dead
1610 * else if it is the last working disks with "fail_last_dev == false",
1611 * ignore the error, let the next level up know.
1612 * else mark the drive as failed
1614 spin_lock_irqsave(&conf->device_lock, flags);
1615 if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1616 && (conf->raid_disks - mddev->degraded) == 1) {
1618 * Don't fail the drive, act as though we were just a
1619 * normal single drive.
1620 * However don't try a recovery from this drive as
1621 * it is very likely to fail.
1623 conf->recovery_disabled = mddev->recovery_disabled;
1624 spin_unlock_irqrestore(&conf->device_lock, flags);
1627 set_bit(Blocked, &rdev->flags);
1628 if (test_and_clear_bit(In_sync, &rdev->flags))
1630 set_bit(Faulty, &rdev->flags);
1631 spin_unlock_irqrestore(&conf->device_lock, flags);
1633 * if recovery is running, make sure it aborts.
1635 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636 set_mask_bits(&mddev->sb_flags, 0,
1637 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1638 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1639 "md/raid1:%s: Operation continuing on %d devices.\n",
1640 mdname(mddev), bdevname(rdev->bdev, b),
1641 mdname(mddev), conf->raid_disks - mddev->degraded);
1644 static void print_conf(struct r1conf *conf)
1648 pr_debug("RAID1 conf printout:\n");
1650 pr_debug("(!conf)\n");
1653 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1657 for (i = 0; i < conf->raid_disks; i++) {
1658 char b[BDEVNAME_SIZE];
1659 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1661 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1662 i, !test_bit(In_sync, &rdev->flags),
1663 !test_bit(Faulty, &rdev->flags),
1664 bdevname(rdev->bdev,b));
1669 static void close_sync(struct r1conf *conf)
1673 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1674 _wait_barrier(conf, idx);
1675 _allow_barrier(conf, idx);
1678 mempool_exit(&conf->r1buf_pool);
1681 static int raid1_spare_active(struct mddev *mddev)
1684 struct r1conf *conf = mddev->private;
1686 unsigned long flags;
1689 * Find all failed disks within the RAID1 configuration
1690 * and mark them readable.
1691 * Called under mddev lock, so rcu protection not needed.
1692 * device_lock used to avoid races with raid1_end_read_request
1693 * which expects 'In_sync' flags and ->degraded to be consistent.
1695 spin_lock_irqsave(&conf->device_lock, flags);
1696 for (i = 0; i < conf->raid_disks; i++) {
1697 struct md_rdev *rdev = conf->mirrors[i].rdev;
1698 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1700 && !test_bit(Candidate, &repl->flags)
1701 && repl->recovery_offset == MaxSector
1702 && !test_bit(Faulty, &repl->flags)
1703 && !test_and_set_bit(In_sync, &repl->flags)) {
1704 /* replacement has just become active */
1706 !test_and_clear_bit(In_sync, &rdev->flags))
1709 /* Replaced device not technically
1710 * faulty, but we need to be sure
1711 * it gets removed and never re-added
1713 set_bit(Faulty, &rdev->flags);
1714 sysfs_notify_dirent_safe(
1719 && rdev->recovery_offset == MaxSector
1720 && !test_bit(Faulty, &rdev->flags)
1721 && !test_and_set_bit(In_sync, &rdev->flags)) {
1723 sysfs_notify_dirent_safe(rdev->sysfs_state);
1726 mddev->degraded -= count;
1727 spin_unlock_irqrestore(&conf->device_lock, flags);
1733 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1735 struct r1conf *conf = mddev->private;
1738 struct raid1_info *p;
1740 int last = conf->raid_disks - 1;
1742 if (mddev->recovery_disabled == conf->recovery_disabled)
1745 if (md_integrity_add_rdev(rdev, mddev))
1748 if (rdev->raid_disk >= 0)
1749 first = last = rdev->raid_disk;
1752 * find the disk ... but prefer rdev->saved_raid_disk
1755 if (rdev->saved_raid_disk >= 0 &&
1756 rdev->saved_raid_disk >= first &&
1757 rdev->saved_raid_disk < conf->raid_disks &&
1758 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1759 first = last = rdev->saved_raid_disk;
1761 for (mirror = first; mirror <= last; mirror++) {
1762 p = conf->mirrors + mirror;
1765 disk_stack_limits(mddev->gendisk, rdev->bdev,
1766 rdev->data_offset << 9);
1768 p->head_position = 0;
1769 rdev->raid_disk = mirror;
1771 /* As all devices are equivalent, we don't need a full recovery
1772 * if this was recently any drive of the array
1774 if (rdev->saved_raid_disk < 0)
1776 rcu_assign_pointer(p->rdev, rdev);
1779 if (test_bit(WantReplacement, &p->rdev->flags) &&
1780 p[conf->raid_disks].rdev == NULL) {
1781 /* Add this device as a replacement */
1782 clear_bit(In_sync, &rdev->flags);
1783 set_bit(Replacement, &rdev->flags);
1784 rdev->raid_disk = mirror;
1787 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1791 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1792 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1797 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1799 struct r1conf *conf = mddev->private;
1801 int number = rdev->raid_disk;
1802 struct raid1_info *p = conf->mirrors + number;
1804 if (rdev != p->rdev)
1805 p = conf->mirrors + conf->raid_disks + number;
1808 if (rdev == p->rdev) {
1809 if (test_bit(In_sync, &rdev->flags) ||
1810 atomic_read(&rdev->nr_pending)) {
1814 /* Only remove non-faulty devices if recovery
1817 if (!test_bit(Faulty, &rdev->flags) &&
1818 mddev->recovery_disabled != conf->recovery_disabled &&
1819 mddev->degraded < conf->raid_disks) {
1824 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1826 if (atomic_read(&rdev->nr_pending)) {
1827 /* lost the race, try later */
1833 if (conf->mirrors[conf->raid_disks + number].rdev) {
1834 /* We just removed a device that is being replaced.
1835 * Move down the replacement. We drain all IO before
1836 * doing this to avoid confusion.
1838 struct md_rdev *repl =
1839 conf->mirrors[conf->raid_disks + number].rdev;
1840 freeze_array(conf, 0);
1841 if (atomic_read(&repl->nr_pending)) {
1842 /* It means that some queued IO of retry_list
1843 * hold repl. Thus, we cannot set replacement
1844 * as NULL, avoiding rdev NULL pointer
1845 * dereference in sync_request_write and
1846 * handle_write_finished.
1849 unfreeze_array(conf);
1852 clear_bit(Replacement, &repl->flags);
1854 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1855 unfreeze_array(conf);
1858 clear_bit(WantReplacement, &rdev->flags);
1859 err = md_integrity_register(mddev);
1867 static void end_sync_read(struct bio *bio)
1869 struct r1bio *r1_bio = get_resync_r1bio(bio);
1871 update_head_pos(r1_bio->read_disk, r1_bio);
1874 * we have read a block, now it needs to be re-written,
1875 * or re-read if the read failed.
1876 * We don't do much here, just schedule handling by raid1d
1878 if (!bio->bi_status)
1879 set_bit(R1BIO_Uptodate, &r1_bio->state);
1881 if (atomic_dec_and_test(&r1_bio->remaining))
1882 reschedule_retry(r1_bio);
1885 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1887 sector_t sync_blocks = 0;
1888 sector_t s = r1_bio->sector;
1889 long sectors_to_go = r1_bio->sectors;
1891 /* make sure these bits don't get cleared. */
1893 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1895 sectors_to_go -= sync_blocks;
1896 } while (sectors_to_go > 0);
1899 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1901 if (atomic_dec_and_test(&r1_bio->remaining)) {
1902 struct mddev *mddev = r1_bio->mddev;
1903 int s = r1_bio->sectors;
1905 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1906 test_bit(R1BIO_WriteError, &r1_bio->state))
1907 reschedule_retry(r1_bio);
1910 md_done_sync(mddev, s, uptodate);
1915 static void end_sync_write(struct bio *bio)
1917 int uptodate = !bio->bi_status;
1918 struct r1bio *r1_bio = get_resync_r1bio(bio);
1919 struct mddev *mddev = r1_bio->mddev;
1920 struct r1conf *conf = mddev->private;
1923 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1926 abort_sync_write(mddev, r1_bio);
1927 set_bit(WriteErrorSeen, &rdev->flags);
1928 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1929 set_bit(MD_RECOVERY_NEEDED, &
1931 set_bit(R1BIO_WriteError, &r1_bio->state);
1932 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1933 &first_bad, &bad_sectors) &&
1934 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1937 &first_bad, &bad_sectors)
1939 set_bit(R1BIO_MadeGood, &r1_bio->state);
1941 put_sync_write_buf(r1_bio, uptodate);
1944 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1945 int sectors, struct page *page, int rw)
1947 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1951 set_bit(WriteErrorSeen, &rdev->flags);
1952 if (!test_and_set_bit(WantReplacement,
1954 set_bit(MD_RECOVERY_NEEDED, &
1955 rdev->mddev->recovery);
1957 /* need to record an error - either for the block or the device */
1958 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1959 md_error(rdev->mddev, rdev);
1963 static int fix_sync_read_error(struct r1bio *r1_bio)
1965 /* Try some synchronous reads of other devices to get
1966 * good data, much like with normal read errors. Only
1967 * read into the pages we already have so we don't
1968 * need to re-issue the read request.
1969 * We don't need to freeze the array, because being in an
1970 * active sync request, there is no normal IO, and
1971 * no overlapping syncs.
1972 * We don't need to check is_badblock() again as we
1973 * made sure that anything with a bad block in range
1974 * will have bi_end_io clear.
1976 struct mddev *mddev = r1_bio->mddev;
1977 struct r1conf *conf = mddev->private;
1978 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1979 struct page **pages = get_resync_pages(bio)->pages;
1980 sector_t sect = r1_bio->sector;
1981 int sectors = r1_bio->sectors;
1983 struct md_rdev *rdev;
1985 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1986 if (test_bit(FailFast, &rdev->flags)) {
1987 /* Don't try recovering from here - just fail it
1988 * ... unless it is the last working device of course */
1989 md_error(mddev, rdev);
1990 if (test_bit(Faulty, &rdev->flags))
1991 /* Don't try to read from here, but make sure
1992 * put_buf does it's thing
1994 bio->bi_end_io = end_sync_write;
1999 int d = r1_bio->read_disk;
2003 if (s > (PAGE_SIZE>>9))
2006 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2007 /* No rcu protection needed here devices
2008 * can only be removed when no resync is
2009 * active, and resync is currently active
2011 rdev = conf->mirrors[d].rdev;
2012 if (sync_page_io(rdev, sect, s<<9,
2014 REQ_OP_READ, 0, false)) {
2020 if (d == conf->raid_disks * 2)
2022 } while (!success && d != r1_bio->read_disk);
2025 char b[BDEVNAME_SIZE];
2027 /* Cannot read from anywhere, this block is lost.
2028 * Record a bad block on each device. If that doesn't
2029 * work just disable and interrupt the recovery.
2030 * Don't fail devices as that won't really help.
2032 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2033 mdname(mddev), bio_devname(bio, b),
2034 (unsigned long long)r1_bio->sector);
2035 for (d = 0; d < conf->raid_disks * 2; d++) {
2036 rdev = conf->mirrors[d].rdev;
2037 if (!rdev || test_bit(Faulty, &rdev->flags))
2039 if (!rdev_set_badblocks(rdev, sect, s, 0))
2043 conf->recovery_disabled =
2044 mddev->recovery_disabled;
2045 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2046 md_done_sync(mddev, r1_bio->sectors, 0);
2058 /* write it back and re-read */
2059 while (d != r1_bio->read_disk) {
2061 d = conf->raid_disks * 2;
2063 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2065 rdev = conf->mirrors[d].rdev;
2066 if (r1_sync_page_io(rdev, sect, s,
2069 r1_bio->bios[d]->bi_end_io = NULL;
2070 rdev_dec_pending(rdev, mddev);
2074 while (d != r1_bio->read_disk) {
2076 d = conf->raid_disks * 2;
2078 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2080 rdev = conf->mirrors[d].rdev;
2081 if (r1_sync_page_io(rdev, sect, s,
2084 atomic_add(s, &rdev->corrected_errors);
2090 set_bit(R1BIO_Uptodate, &r1_bio->state);
2095 static void process_checks(struct r1bio *r1_bio)
2097 /* We have read all readable devices. If we haven't
2098 * got the block, then there is no hope left.
2099 * If we have, then we want to do a comparison
2100 * and skip the write if everything is the same.
2101 * If any blocks failed to read, then we need to
2102 * attempt an over-write
2104 struct mddev *mddev = r1_bio->mddev;
2105 struct r1conf *conf = mddev->private;
2110 /* Fix variable parts of all bios */
2111 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2112 for (i = 0; i < conf->raid_disks * 2; i++) {
2113 blk_status_t status;
2114 struct bio *b = r1_bio->bios[i];
2115 struct resync_pages *rp = get_resync_pages(b);
2116 if (b->bi_end_io != end_sync_read)
2118 /* fixup the bio for reuse, but preserve errno */
2119 status = b->bi_status;
2121 b->bi_status = status;
2122 b->bi_iter.bi_sector = r1_bio->sector +
2123 conf->mirrors[i].rdev->data_offset;
2124 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2125 b->bi_end_io = end_sync_read;
2126 rp->raid_bio = r1_bio;
2129 /* initialize bvec table again */
2130 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2132 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2133 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2134 !r1_bio->bios[primary]->bi_status) {
2135 r1_bio->bios[primary]->bi_end_io = NULL;
2136 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2139 r1_bio->read_disk = primary;
2140 for (i = 0; i < conf->raid_disks * 2; i++) {
2142 struct bio *pbio = r1_bio->bios[primary];
2143 struct bio *sbio = r1_bio->bios[i];
2144 blk_status_t status = sbio->bi_status;
2145 struct page **ppages = get_resync_pages(pbio)->pages;
2146 struct page **spages = get_resync_pages(sbio)->pages;
2148 int page_len[RESYNC_PAGES] = { 0 };
2149 struct bvec_iter_all iter_all;
2151 if (sbio->bi_end_io != end_sync_read)
2153 /* Now we can 'fixup' the error value */
2154 sbio->bi_status = 0;
2156 bio_for_each_segment_all(bi, sbio, iter_all)
2157 page_len[j++] = bi->bv_len;
2160 for (j = vcnt; j-- ; ) {
2161 if (memcmp(page_address(ppages[j]),
2162 page_address(spages[j]),
2169 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2170 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2172 /* No need to write to this device. */
2173 sbio->bi_end_io = NULL;
2174 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2178 bio_copy_data(sbio, pbio);
2182 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2184 struct r1conf *conf = mddev->private;
2186 int disks = conf->raid_disks * 2;
2189 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2190 /* ouch - failed to read all of that. */
2191 if (!fix_sync_read_error(r1_bio))
2194 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2195 process_checks(r1_bio);
2200 atomic_set(&r1_bio->remaining, 1);
2201 for (i = 0; i < disks ; i++) {
2202 wbio = r1_bio->bios[i];
2203 if (wbio->bi_end_io == NULL ||
2204 (wbio->bi_end_io == end_sync_read &&
2205 (i == r1_bio->read_disk ||
2206 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2208 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2209 abort_sync_write(mddev, r1_bio);
2213 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2214 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2215 wbio->bi_opf |= MD_FAILFAST;
2217 wbio->bi_end_io = end_sync_write;
2218 atomic_inc(&r1_bio->remaining);
2219 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2221 submit_bio_noacct(wbio);
2224 put_sync_write_buf(r1_bio, 1);
2228 * This is a kernel thread which:
2230 * 1. Retries failed read operations on working mirrors.
2231 * 2. Updates the raid superblock when problems encounter.
2232 * 3. Performs writes following reads for array synchronising.
2235 static void fix_read_error(struct r1conf *conf, int read_disk,
2236 sector_t sect, int sectors)
2238 struct mddev *mddev = conf->mddev;
2244 struct md_rdev *rdev;
2246 if (s > (PAGE_SIZE>>9))
2254 rdev = rcu_dereference(conf->mirrors[d].rdev);
2256 (test_bit(In_sync, &rdev->flags) ||
2257 (!test_bit(Faulty, &rdev->flags) &&
2258 rdev->recovery_offset >= sect + s)) &&
2259 is_badblock(rdev, sect, s,
2260 &first_bad, &bad_sectors) == 0) {
2261 atomic_inc(&rdev->nr_pending);
2263 if (sync_page_io(rdev, sect, s<<9,
2264 conf->tmppage, REQ_OP_READ, 0, false))
2266 rdev_dec_pending(rdev, mddev);
2272 if (d == conf->raid_disks * 2)
2274 } while (!success && d != read_disk);
2277 /* Cannot read from anywhere - mark it bad */
2278 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2279 if (!rdev_set_badblocks(rdev, sect, s, 0))
2280 md_error(mddev, rdev);
2283 /* write it back and re-read */
2285 while (d != read_disk) {
2287 d = conf->raid_disks * 2;
2290 rdev = rcu_dereference(conf->mirrors[d].rdev);
2292 !test_bit(Faulty, &rdev->flags)) {
2293 atomic_inc(&rdev->nr_pending);
2295 r1_sync_page_io(rdev, sect, s,
2296 conf->tmppage, WRITE);
2297 rdev_dec_pending(rdev, mddev);
2302 while (d != read_disk) {
2303 char b[BDEVNAME_SIZE];
2305 d = conf->raid_disks * 2;
2308 rdev = rcu_dereference(conf->mirrors[d].rdev);
2310 !test_bit(Faulty, &rdev->flags)) {
2311 atomic_inc(&rdev->nr_pending);
2313 if (r1_sync_page_io(rdev, sect, s,
2314 conf->tmppage, READ)) {
2315 atomic_add(s, &rdev->corrected_errors);
2316 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2318 (unsigned long long)(sect +
2320 bdevname(rdev->bdev, b));
2322 rdev_dec_pending(rdev, mddev);
2331 static int narrow_write_error(struct r1bio *r1_bio, int i)
2333 struct mddev *mddev = r1_bio->mddev;
2334 struct r1conf *conf = mddev->private;
2335 struct md_rdev *rdev = conf->mirrors[i].rdev;
2337 /* bio has the data to be written to device 'i' where
2338 * we just recently had a write error.
2339 * We repeatedly clone the bio and trim down to one block,
2340 * then try the write. Where the write fails we record
2342 * It is conceivable that the bio doesn't exactly align with
2343 * blocks. We must handle this somehow.
2345 * We currently own a reference on the rdev.
2351 int sect_to_write = r1_bio->sectors;
2354 if (rdev->badblocks.shift < 0)
2357 block_sectors = roundup(1 << rdev->badblocks.shift,
2358 bdev_logical_block_size(rdev->bdev) >> 9);
2359 sector = r1_bio->sector;
2360 sectors = ((sector + block_sectors)
2361 & ~(sector_t)(block_sectors - 1))
2364 while (sect_to_write) {
2366 if (sectors > sect_to_write)
2367 sectors = sect_to_write;
2368 /* Write at 'sector' for 'sectors'*/
2370 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2371 wbio = bio_clone_fast(r1_bio->behind_master_bio,
2375 wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2379 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2380 wbio->bi_iter.bi_sector = r1_bio->sector;
2381 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2383 bio_trim(wbio, sector - r1_bio->sector, sectors);
2384 wbio->bi_iter.bi_sector += rdev->data_offset;
2385 bio_set_dev(wbio, rdev->bdev);
2387 if (submit_bio_wait(wbio) < 0)
2389 ok = rdev_set_badblocks(rdev, sector,
2394 sect_to_write -= sectors;
2396 sectors = block_sectors;
2401 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2404 int s = r1_bio->sectors;
2405 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2406 struct md_rdev *rdev = conf->mirrors[m].rdev;
2407 struct bio *bio = r1_bio->bios[m];
2408 if (bio->bi_end_io == NULL)
2410 if (!bio->bi_status &&
2411 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2412 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2414 if (bio->bi_status &&
2415 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2416 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2417 md_error(conf->mddev, rdev);
2421 md_done_sync(conf->mddev, s, 1);
2424 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2429 for (m = 0; m < conf->raid_disks * 2 ; m++)
2430 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2431 struct md_rdev *rdev = conf->mirrors[m].rdev;
2432 rdev_clear_badblocks(rdev,
2434 r1_bio->sectors, 0);
2435 rdev_dec_pending(rdev, conf->mddev);
2436 } else if (r1_bio->bios[m] != NULL) {
2437 /* This drive got a write error. We need to
2438 * narrow down and record precise write
2442 if (!narrow_write_error(r1_bio, m)) {
2443 md_error(conf->mddev,
2444 conf->mirrors[m].rdev);
2445 /* an I/O failed, we can't clear the bitmap */
2446 set_bit(R1BIO_Degraded, &r1_bio->state);
2448 rdev_dec_pending(conf->mirrors[m].rdev,
2452 spin_lock_irq(&conf->device_lock);
2453 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2454 idx = sector_to_idx(r1_bio->sector);
2455 atomic_inc(&conf->nr_queued[idx]);
2456 spin_unlock_irq(&conf->device_lock);
2458 * In case freeze_array() is waiting for condition
2459 * get_unqueued_pending() == extra to be true.
2461 wake_up(&conf->wait_barrier);
2462 md_wakeup_thread(conf->mddev->thread);
2464 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2465 close_write(r1_bio);
2466 raid_end_bio_io(r1_bio);
2470 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2472 struct mddev *mddev = conf->mddev;
2474 struct md_rdev *rdev;
2476 clear_bit(R1BIO_ReadError, &r1_bio->state);
2477 /* we got a read error. Maybe the drive is bad. Maybe just
2478 * the block and we can fix it.
2479 * We freeze all other IO, and try reading the block from
2480 * other devices. When we find one, we re-write
2481 * and check it that fixes the read error.
2482 * This is all done synchronously while the array is
2486 bio = r1_bio->bios[r1_bio->read_disk];
2488 r1_bio->bios[r1_bio->read_disk] = NULL;
2490 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2492 && !test_bit(FailFast, &rdev->flags)) {
2493 freeze_array(conf, 1);
2494 fix_read_error(conf, r1_bio->read_disk,
2495 r1_bio->sector, r1_bio->sectors);
2496 unfreeze_array(conf);
2497 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2498 md_error(mddev, rdev);
2500 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2503 rdev_dec_pending(rdev, conf->mddev);
2504 allow_barrier(conf, r1_bio->sector);
2505 bio = r1_bio->master_bio;
2507 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2509 raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2512 static void raid1d(struct md_thread *thread)
2514 struct mddev *mddev = thread->mddev;
2515 struct r1bio *r1_bio;
2516 unsigned long flags;
2517 struct r1conf *conf = mddev->private;
2518 struct list_head *head = &conf->retry_list;
2519 struct blk_plug plug;
2522 md_check_recovery(mddev);
2524 if (!list_empty_careful(&conf->bio_end_io_list) &&
2525 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2527 spin_lock_irqsave(&conf->device_lock, flags);
2528 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2529 list_splice_init(&conf->bio_end_io_list, &tmp);
2530 spin_unlock_irqrestore(&conf->device_lock, flags);
2531 while (!list_empty(&tmp)) {
2532 r1_bio = list_first_entry(&tmp, struct r1bio,
2534 list_del(&r1_bio->retry_list);
2535 idx = sector_to_idx(r1_bio->sector);
2536 atomic_dec(&conf->nr_queued[idx]);
2537 if (mddev->degraded)
2538 set_bit(R1BIO_Degraded, &r1_bio->state);
2539 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2540 close_write(r1_bio);
2541 raid_end_bio_io(r1_bio);
2545 blk_start_plug(&plug);
2548 flush_pending_writes(conf);
2550 spin_lock_irqsave(&conf->device_lock, flags);
2551 if (list_empty(head)) {
2552 spin_unlock_irqrestore(&conf->device_lock, flags);
2555 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2556 list_del(head->prev);
2557 idx = sector_to_idx(r1_bio->sector);
2558 atomic_dec(&conf->nr_queued[idx]);
2559 spin_unlock_irqrestore(&conf->device_lock, flags);
2561 mddev = r1_bio->mddev;
2562 conf = mddev->private;
2563 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2564 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2565 test_bit(R1BIO_WriteError, &r1_bio->state))
2566 handle_sync_write_finished(conf, r1_bio);
2568 sync_request_write(mddev, r1_bio);
2569 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2570 test_bit(R1BIO_WriteError, &r1_bio->state))
2571 handle_write_finished(conf, r1_bio);
2572 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2573 handle_read_error(conf, r1_bio);
2578 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2579 md_check_recovery(mddev);
2581 blk_finish_plug(&plug);
2584 static int init_resync(struct r1conf *conf)
2588 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2589 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2591 return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2592 r1buf_pool_free, conf->poolinfo);
2595 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2597 struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2598 struct resync_pages *rps;
2602 for (i = conf->poolinfo->raid_disks; i--; ) {
2603 bio = r1bio->bios[i];
2604 rps = bio->bi_private;
2606 bio->bi_private = rps;
2608 r1bio->master_bio = NULL;
2613 * perform a "sync" on one "block"
2615 * We need to make sure that no normal I/O request - particularly write
2616 * requests - conflict with active sync requests.
2618 * This is achieved by tracking pending requests and a 'barrier' concept
2619 * that can be installed to exclude normal IO requests.
2622 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2625 struct r1conf *conf = mddev->private;
2626 struct r1bio *r1_bio;
2628 sector_t max_sector, nr_sectors;
2632 int write_targets = 0, read_targets = 0;
2633 sector_t sync_blocks;
2634 int still_degraded = 0;
2635 int good_sectors = RESYNC_SECTORS;
2636 int min_bad = 0; /* number of sectors that are bad in all devices */
2637 int idx = sector_to_idx(sector_nr);
2640 if (!mempool_initialized(&conf->r1buf_pool))
2641 if (init_resync(conf))
2644 max_sector = mddev->dev_sectors;
2645 if (sector_nr >= max_sector) {
2646 /* If we aborted, we need to abort the
2647 * sync on the 'current' bitmap chunk (there will
2648 * only be one in raid1 resync.
2649 * We can find the current addess in mddev->curr_resync
2651 if (mddev->curr_resync < max_sector) /* aborted */
2652 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2654 else /* completed sync */
2657 md_bitmap_close_sync(mddev->bitmap);
2660 if (mddev_is_clustered(mddev)) {
2661 conf->cluster_sync_low = 0;
2662 conf->cluster_sync_high = 0;
2667 if (mddev->bitmap == NULL &&
2668 mddev->recovery_cp == MaxSector &&
2669 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2670 conf->fullsync == 0) {
2672 return max_sector - sector_nr;
2674 /* before building a request, check if we can skip these blocks..
2675 * This call the bitmap_start_sync doesn't actually record anything
2677 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2678 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2679 /* We can skip this block, and probably several more */
2685 * If there is non-resync activity waiting for a turn, then let it
2686 * though before starting on this new sync request.
2688 if (atomic_read(&conf->nr_waiting[idx]))
2689 schedule_timeout_uninterruptible(1);
2691 /* we are incrementing sector_nr below. To be safe, we check against
2692 * sector_nr + two times RESYNC_SECTORS
2695 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2696 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2699 if (raise_barrier(conf, sector_nr))
2702 r1_bio = raid1_alloc_init_r1buf(conf);
2706 * If we get a correctably read error during resync or recovery,
2707 * we might want to read from a different device. So we
2708 * flag all drives that could conceivably be read from for READ,
2709 * and any others (which will be non-In_sync devices) for WRITE.
2710 * If a read fails, we try reading from something else for which READ
2714 r1_bio->mddev = mddev;
2715 r1_bio->sector = sector_nr;
2717 set_bit(R1BIO_IsSync, &r1_bio->state);
2718 /* make sure good_sectors won't go across barrier unit boundary */
2719 good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2721 for (i = 0; i < conf->raid_disks * 2; i++) {
2722 struct md_rdev *rdev;
2723 bio = r1_bio->bios[i];
2725 rdev = rcu_dereference(conf->mirrors[i].rdev);
2727 test_bit(Faulty, &rdev->flags)) {
2728 if (i < conf->raid_disks)
2730 } else if (!test_bit(In_sync, &rdev->flags)) {
2731 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2732 bio->bi_end_io = end_sync_write;
2735 /* may need to read from here */
2736 sector_t first_bad = MaxSector;
2739 if (is_badblock(rdev, sector_nr, good_sectors,
2740 &first_bad, &bad_sectors)) {
2741 if (first_bad > sector_nr)
2742 good_sectors = first_bad - sector_nr;
2744 bad_sectors -= (sector_nr - first_bad);
2746 min_bad > bad_sectors)
2747 min_bad = bad_sectors;
2750 if (sector_nr < first_bad) {
2751 if (test_bit(WriteMostly, &rdev->flags)) {
2758 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2759 bio->bi_end_io = end_sync_read;
2761 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2762 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2763 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2765 * The device is suitable for reading (InSync),
2766 * but has bad block(s) here. Let's try to correct them,
2767 * if we are doing resync or repair. Otherwise, leave
2768 * this device alone for this sync request.
2770 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2771 bio->bi_end_io = end_sync_write;
2775 if (rdev && bio->bi_end_io) {
2776 atomic_inc(&rdev->nr_pending);
2777 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2778 bio_set_dev(bio, rdev->bdev);
2779 if (test_bit(FailFast, &rdev->flags))
2780 bio->bi_opf |= MD_FAILFAST;
2786 r1_bio->read_disk = disk;
2788 if (read_targets == 0 && min_bad > 0) {
2789 /* These sectors are bad on all InSync devices, so we
2790 * need to mark them bad on all write targets
2793 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2794 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2795 struct md_rdev *rdev = conf->mirrors[i].rdev;
2796 ok = rdev_set_badblocks(rdev, sector_nr,
2800 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2805 /* Cannot record the badblocks, so need to
2807 * If there are multiple read targets, could just
2808 * fail the really bad ones ???
2810 conf->recovery_disabled = mddev->recovery_disabled;
2811 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2817 if (min_bad > 0 && min_bad < good_sectors) {
2818 /* only resync enough to reach the next bad->good
2820 good_sectors = min_bad;
2823 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2824 /* extra read targets are also write targets */
2825 write_targets += read_targets-1;
2827 if (write_targets == 0 || read_targets == 0) {
2828 /* There is nowhere to write, so all non-sync
2829 * drives must be failed - so we are finished
2833 max_sector = sector_nr + min_bad;
2834 rv = max_sector - sector_nr;
2840 if (max_sector > mddev->resync_max)
2841 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2842 if (max_sector > sector_nr + good_sectors)
2843 max_sector = sector_nr + good_sectors;
2848 int len = PAGE_SIZE;
2849 if (sector_nr + (len>>9) > max_sector)
2850 len = (max_sector - sector_nr) << 9;
2853 if (sync_blocks == 0) {
2854 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2855 &sync_blocks, still_degraded) &&
2857 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2859 if ((len >> 9) > sync_blocks)
2860 len = sync_blocks<<9;
2863 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2864 struct resync_pages *rp;
2866 bio = r1_bio->bios[i];
2867 rp = get_resync_pages(bio);
2868 if (bio->bi_end_io) {
2869 page = resync_fetch_page(rp, page_idx);
2872 * won't fail because the vec table is big
2873 * enough to hold all these pages
2875 bio_add_page(bio, page, len, 0);
2878 nr_sectors += len>>9;
2879 sector_nr += len>>9;
2880 sync_blocks -= (len>>9);
2881 } while (++page_idx < RESYNC_PAGES);
2883 r1_bio->sectors = nr_sectors;
2885 if (mddev_is_clustered(mddev) &&
2886 conf->cluster_sync_high < sector_nr + nr_sectors) {
2887 conf->cluster_sync_low = mddev->curr_resync_completed;
2888 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2889 /* Send resync message */
2890 md_cluster_ops->resync_info_update(mddev,
2891 conf->cluster_sync_low,
2892 conf->cluster_sync_high);
2895 /* For a user-requested sync, we read all readable devices and do a
2898 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2899 atomic_set(&r1_bio->remaining, read_targets);
2900 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2901 bio = r1_bio->bios[i];
2902 if (bio->bi_end_io == end_sync_read) {
2904 md_sync_acct_bio(bio, nr_sectors);
2905 if (read_targets == 1)
2906 bio->bi_opf &= ~MD_FAILFAST;
2907 submit_bio_noacct(bio);
2911 atomic_set(&r1_bio->remaining, 1);
2912 bio = r1_bio->bios[r1_bio->read_disk];
2913 md_sync_acct_bio(bio, nr_sectors);
2914 if (read_targets == 1)
2915 bio->bi_opf &= ~MD_FAILFAST;
2916 submit_bio_noacct(bio);
2921 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2926 return mddev->dev_sectors;
2929 static struct r1conf *setup_conf(struct mddev *mddev)
2931 struct r1conf *conf;
2933 struct raid1_info *disk;
2934 struct md_rdev *rdev;
2937 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2941 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2942 sizeof(atomic_t), GFP_KERNEL);
2943 if (!conf->nr_pending)
2946 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2947 sizeof(atomic_t), GFP_KERNEL);
2948 if (!conf->nr_waiting)
2951 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2952 sizeof(atomic_t), GFP_KERNEL);
2953 if (!conf->nr_queued)
2956 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2957 sizeof(atomic_t), GFP_KERNEL);
2961 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2962 mddev->raid_disks, 2),
2967 conf->tmppage = alloc_page(GFP_KERNEL);
2971 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2972 if (!conf->poolinfo)
2974 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2975 err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2976 rbio_pool_free, conf->poolinfo);
2980 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2984 conf->poolinfo->mddev = mddev;
2987 spin_lock_init(&conf->device_lock);
2988 rdev_for_each(rdev, mddev) {
2989 int disk_idx = rdev->raid_disk;
2990 if (disk_idx >= mddev->raid_disks
2993 if (test_bit(Replacement, &rdev->flags))
2994 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2996 disk = conf->mirrors + disk_idx;
3001 disk->head_position = 0;
3002 disk->seq_start = MaxSector;
3004 conf->raid_disks = mddev->raid_disks;
3005 conf->mddev = mddev;
3006 INIT_LIST_HEAD(&conf->retry_list);
3007 INIT_LIST_HEAD(&conf->bio_end_io_list);
3009 spin_lock_init(&conf->resync_lock);
3010 init_waitqueue_head(&conf->wait_barrier);
3012 bio_list_init(&conf->pending_bio_list);
3013 conf->pending_count = 0;
3014 conf->recovery_disabled = mddev->recovery_disabled - 1;
3017 for (i = 0; i < conf->raid_disks * 2; i++) {
3019 disk = conf->mirrors + i;
3021 if (i < conf->raid_disks &&
3022 disk[conf->raid_disks].rdev) {
3023 /* This slot has a replacement. */
3025 /* No original, just make the replacement
3026 * a recovering spare
3029 disk[conf->raid_disks].rdev;
3030 disk[conf->raid_disks].rdev = NULL;
3031 } else if (!test_bit(In_sync, &disk->rdev->flags))
3032 /* Original is not in_sync - bad */
3037 !test_bit(In_sync, &disk->rdev->flags)) {
3038 disk->head_position = 0;
3040 (disk->rdev->saved_raid_disk < 0))
3046 conf->thread = md_register_thread(raid1d, mddev, "raid1");
3054 mempool_exit(&conf->r1bio_pool);
3055 kfree(conf->mirrors);
3056 safe_put_page(conf->tmppage);
3057 kfree(conf->poolinfo);
3058 kfree(conf->nr_pending);
3059 kfree(conf->nr_waiting);
3060 kfree(conf->nr_queued);
3061 kfree(conf->barrier);
3062 bioset_exit(&conf->bio_split);
3065 return ERR_PTR(err);
3068 static void raid1_free(struct mddev *mddev, void *priv);
3069 static int raid1_run(struct mddev *mddev)
3071 struct r1conf *conf;
3073 struct md_rdev *rdev;
3075 bool discard_supported = false;
3077 if (mddev->level != 1) {
3078 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3079 mdname(mddev), mddev->level);
3082 if (mddev->reshape_position != MaxSector) {
3083 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3087 if (mddev_init_writes_pending(mddev) < 0)
3090 * copy the already verified devices into our private RAID1
3091 * bookkeeping area. [whatever we allocate in run(),
3092 * should be freed in raid1_free()]
3094 if (mddev->private == NULL)
3095 conf = setup_conf(mddev);
3097 conf = mddev->private;
3100 return PTR_ERR(conf);
3103 blk_queue_max_write_same_sectors(mddev->queue, 0);
3104 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3107 rdev_for_each(rdev, mddev) {
3108 if (!mddev->gendisk)
3110 disk_stack_limits(mddev->gendisk, rdev->bdev,
3111 rdev->data_offset << 9);
3112 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3113 discard_supported = true;
3116 mddev->degraded = 0;
3117 for (i = 0; i < conf->raid_disks; i++)
3118 if (conf->mirrors[i].rdev == NULL ||
3119 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3120 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3123 * RAID1 needs at least one disk in active
3125 if (conf->raid_disks - mddev->degraded < 1) {
3130 if (conf->raid_disks - mddev->degraded == 1)
3131 mddev->recovery_cp = MaxSector;
3133 if (mddev->recovery_cp != MaxSector)
3134 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3136 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3137 mdname(mddev), mddev->raid_disks - mddev->degraded,
3141 * Ok, everything is just fine now
3143 mddev->thread = conf->thread;
3144 conf->thread = NULL;
3145 mddev->private = conf;
3146 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3148 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3151 if (discard_supported)
3152 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3155 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3159 ret = md_integrity_register(mddev);
3161 md_unregister_thread(&mddev->thread);
3167 raid1_free(mddev, conf);
3171 static void raid1_free(struct mddev *mddev, void *priv)
3173 struct r1conf *conf = priv;
3175 mempool_exit(&conf->r1bio_pool);
3176 kfree(conf->mirrors);
3177 safe_put_page(conf->tmppage);
3178 kfree(conf->poolinfo);
3179 kfree(conf->nr_pending);
3180 kfree(conf->nr_waiting);
3181 kfree(conf->nr_queued);
3182 kfree(conf->barrier);
3183 bioset_exit(&conf->bio_split);
3187 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3189 /* no resync is happening, and there is enough space
3190 * on all devices, so we can resize.
3191 * We need to make sure resync covers any new space.
3192 * If the array is shrinking we should possibly wait until
3193 * any io in the removed space completes, but it hardly seems
3196 sector_t newsize = raid1_size(mddev, sectors, 0);
3197 if (mddev->external_size &&
3198 mddev->array_sectors > newsize)
3200 if (mddev->bitmap) {
3201 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3205 md_set_array_sectors(mddev, newsize);
3206 if (sectors > mddev->dev_sectors &&
3207 mddev->recovery_cp > mddev->dev_sectors) {
3208 mddev->recovery_cp = mddev->dev_sectors;
3209 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3211 mddev->dev_sectors = sectors;
3212 mddev->resync_max_sectors = sectors;
3216 static int raid1_reshape(struct mddev *mddev)
3219 * 1/ resize the r1bio_pool
3220 * 2/ resize conf->mirrors
3222 * We allocate a new r1bio_pool if we can.
3223 * Then raise a device barrier and wait until all IO stops.
3224 * Then resize conf->mirrors and swap in the new r1bio pool.
3226 * At the same time, we "pack" the devices so that all the missing
3227 * devices have the higher raid_disk numbers.
3229 mempool_t newpool, oldpool;
3230 struct pool_info *newpoolinfo;
3231 struct raid1_info *newmirrors;
3232 struct r1conf *conf = mddev->private;
3233 int cnt, raid_disks;
3234 unsigned long flags;
3238 memset(&newpool, 0, sizeof(newpool));
3239 memset(&oldpool, 0, sizeof(oldpool));
3241 /* Cannot change chunk_size, layout, or level */
3242 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3243 mddev->layout != mddev->new_layout ||
3244 mddev->level != mddev->new_level) {
3245 mddev->new_chunk_sectors = mddev->chunk_sectors;
3246 mddev->new_layout = mddev->layout;
3247 mddev->new_level = mddev->level;
3251 if (!mddev_is_clustered(mddev))
3252 md_allow_write(mddev);
3254 raid_disks = mddev->raid_disks + mddev->delta_disks;
3256 if (raid_disks < conf->raid_disks) {
3258 for (d= 0; d < conf->raid_disks; d++)
3259 if (conf->mirrors[d].rdev)
3261 if (cnt > raid_disks)
3265 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3268 newpoolinfo->mddev = mddev;
3269 newpoolinfo->raid_disks = raid_disks * 2;
3271 ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3272 rbio_pool_free, newpoolinfo);
3277 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3282 mempool_exit(&newpool);
3286 freeze_array(conf, 0);
3288 /* ok, everything is stopped */
3289 oldpool = conf->r1bio_pool;
3290 conf->r1bio_pool = newpool;
3292 for (d = d2 = 0; d < conf->raid_disks; d++) {
3293 struct md_rdev *rdev = conf->mirrors[d].rdev;
3294 if (rdev && rdev->raid_disk != d2) {
3295 sysfs_unlink_rdev(mddev, rdev);
3296 rdev->raid_disk = d2;
3297 sysfs_unlink_rdev(mddev, rdev);
3298 if (sysfs_link_rdev(mddev, rdev))
3299 pr_warn("md/raid1:%s: cannot register rd%d\n",
3300 mdname(mddev), rdev->raid_disk);
3303 newmirrors[d2++].rdev = rdev;
3305 kfree(conf->mirrors);
3306 conf->mirrors = newmirrors;
3307 kfree(conf->poolinfo);
3308 conf->poolinfo = newpoolinfo;
3310 spin_lock_irqsave(&conf->device_lock, flags);
3311 mddev->degraded += (raid_disks - conf->raid_disks);
3312 spin_unlock_irqrestore(&conf->device_lock, flags);
3313 conf->raid_disks = mddev->raid_disks = raid_disks;
3314 mddev->delta_disks = 0;
3316 unfreeze_array(conf);
3318 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3319 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3320 md_wakeup_thread(mddev->thread);
3322 mempool_exit(&oldpool);
3326 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3328 struct r1conf *conf = mddev->private;
3331 freeze_array(conf, 0);
3333 unfreeze_array(conf);
3336 static void *raid1_takeover(struct mddev *mddev)
3338 /* raid1 can take over:
3339 * raid5 with 2 devices, any layout or chunk size
3341 if (mddev->level == 5 && mddev->raid_disks == 2) {
3342 struct r1conf *conf;
3343 mddev->new_level = 1;
3344 mddev->new_layout = 0;
3345 mddev->new_chunk_sectors = 0;
3346 conf = setup_conf(mddev);
3347 if (!IS_ERR(conf)) {
3348 /* Array must appear to be quiesced */
3349 conf->array_frozen = 1;
3350 mddev_clear_unsupported_flags(mddev,
3351 UNSUPPORTED_MDDEV_FLAGS);
3355 return ERR_PTR(-EINVAL);
3358 static struct md_personality raid1_personality =
3362 .owner = THIS_MODULE,
3363 .make_request = raid1_make_request,
3366 .status = raid1_status,
3367 .error_handler = raid1_error,
3368 .hot_add_disk = raid1_add_disk,
3369 .hot_remove_disk= raid1_remove_disk,
3370 .spare_active = raid1_spare_active,
3371 .sync_request = raid1_sync_request,
3372 .resize = raid1_resize,
3374 .check_reshape = raid1_reshape,
3375 .quiesce = raid1_quiesce,
3376 .takeover = raid1_takeover,
3379 static int __init raid_init(void)
3381 return register_md_personality(&raid1_personality);
3384 static void raid_exit(void)
3386 unregister_md_personality(&raid1_personality);
3389 module_init(raid_init);
3390 module_exit(raid_exit);
3391 MODULE_LICENSE("GPL");
3392 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3393 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3394 MODULE_ALIAS("md-raid1");
3395 MODULE_ALIAS("md-level-1");
3397 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);