2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
137 #include "net-sysfs.h"
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
213 static inline void rps_lock(struct softnet_data *sd)
216 spin_lock(&sd->input_pkt_queue.lock);
220 static inline void rps_unlock(struct softnet_data *sd)
223 spin_unlock(&sd->input_pkt_queue.lock);
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
230 struct net *net = dev_net(dev);
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
246 static void unlist_netdevice(struct net_device *dev)
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
262 static RAW_NOTIFIER_HEAD(netdev_chain);
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 #ifdef CONFIG_LOCKDEP
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
356 /*******************************************************************************
358 Protocol management and registration routines
360 *******************************************************************************/
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
380 if (pt->type == htons(ETH_P_ALL))
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
399 void dev_add_pack(struct packet_type *pt)
401 struct list_head *head = ptype_head(pt);
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
407 EXPORT_SYMBOL(dev_add_pack);
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
422 void __dev_remove_pack(struct packet_type *pt)
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
427 spin_lock(&ptype_lock);
429 list_for_each_entry(pt1, head, list) {
431 list_del_rcu(&pt->list);
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
438 spin_unlock(&ptype_lock);
440 EXPORT_SYMBOL(__dev_remove_pack);
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
451 * This call sleeps to guarantee that no CPU is looking at the packet
454 void dev_remove_pack(struct packet_type *pt)
456 __dev_remove_pack(pt);
460 EXPORT_SYMBOL(dev_remove_pack);
462 /******************************************************************************
464 Device Boot-time Settings Routines
466 *******************************************************************************/
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
482 struct netdev_boot_setup *s;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
507 int netdev_boot_setup_check(struct net_device *dev)
509 struct netdev_boot_setup *s = dev_boot_setup;
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
524 EXPORT_SYMBOL(netdev_boot_setup_check);
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
537 unsigned long netdev_boot_base(const char *prefix, int unit)
539 const struct netdev_boot_setup *s = dev_boot_setup;
543 sprintf(name, "%s%d", prefix, unit);
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
549 if (__dev_get_by_name(&init_net, name))
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
559 * Saves at boot time configured settings for any netdevice.
561 int __init netdev_boot_setup(char *str)
566 str = get_options(str, ARRAY_SIZE(ints), ints);
571 memset(&map, 0, sizeof(map));
575 map.base_addr = ints[2];
577 map.mem_start = ints[3];
579 map.mem_end = ints[4];
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
585 __setup("netdev=", netdev_boot_setup);
587 /*******************************************************************************
589 Device Interface Subroutines
591 *******************************************************************************/
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
617 EXPORT_SYMBOL(__dev_get_by_name);
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
659 struct net_device *dev;
662 dev = dev_get_by_name_rcu(net, name);
668 EXPORT_SYMBOL(dev_get_by_name);
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
694 EXPORT_SYMBOL(__dev_get_by_index);
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
735 struct net_device *dev;
738 dev = dev_get_by_index_rcu(net, ifindex);
744 EXPORT_SYMBOL(dev_get_by_index);
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
763 struct net_device *dev;
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
776 struct net_device *dev;
779 for_each_netdev(net, dev)
780 if (dev->type == type)
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
789 struct net_device *dev, *ret = NULL;
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
817 struct net_device *dev, *ret;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
831 * dev_valid_name - check if name is okay for network device
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
838 int dev_valid_name(const char *name)
842 if (strlen(name) >= IFNAMSIZ)
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
848 if (*name == '/' || isspace(*name))
854 EXPORT_SYMBOL(dev_valid_name);
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
879 p = strnchr(name, IFNAMSIZ-1, '%');
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
886 if (p[1] != 'd' || strchr(p + 2, '%'))
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
897 if (i < 0 || i >= max_netdevices)
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
923 * dev_alloc_name - allocate a name for a device
925 * @name: name format string
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
936 int dev_alloc_name(struct net_device *dev, const char *name)
942 BUG_ON(!dev_net(dev));
944 ret = __dev_alloc_name(net, name, buf);
946 strlcpy(dev->name, buf, IFNAMSIZ);
949 EXPORT_SYMBOL(dev_alloc_name);
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
955 BUG_ON(!dev_net(dev));
958 if (!dev_valid_name(name))
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
972 * dev_change_name - change name of a device
974 * @newname: name (or format string) must be at least IFNAMSIZ
976 * Change name of a device, can pass format strings "eth%d".
979 int dev_change_name(struct net_device *dev, const char *newname)
981 char oldname[IFNAMSIZ];
987 BUG_ON(!dev_net(dev));
990 if (dev->flags & IFF_UP)
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 memcpy(oldname, dev->name, IFNAMSIZ);
998 err = dev_get_valid_name(dev, newname, 1);
1003 ret = device_rename(&dev->dev, dev->name);
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1030 "%s: name change rollback failed: %d.\n",
1039 * dev_set_alias - change ifalias of a device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1044 * Set ifalias for a device,
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1050 if (len >= IFALIASZ)
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1065 strlcpy(dev->ifalias, alias, len+1);
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1074 * Called to indicate a device has changed features.
1076 void netdev_features_change(struct net_device *dev)
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1080 EXPORT_SYMBOL(netdev_features_change);
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1090 void netdev_state_change(struct net_device *dev)
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1097 EXPORT_SYMBOL(netdev_state_change);
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1101 return call_netdevice_notifiers(event, dev);
1103 EXPORT_SYMBOL(netdev_bonding_change);
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1115 void dev_load(struct net *net, const char *name)
1117 struct net_device *dev;
1121 dev = dev_get_by_name_rcu(net, name);
1125 if (no_module && capable(CAP_NET_ADMIN))
1126 no_module = request_module("netdev-%s", name);
1127 if (no_module && capable(CAP_SYS_MODULE)) {
1128 if (!request_module("%s", name))
1129 pr_err("Loading kernel module for a network device "
1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1134 EXPORT_SYMBOL(dev_load);
1136 static int __dev_open(struct net_device *dev)
1138 const struct net_device_ops *ops = dev->netdev_ops;
1143 if (!netif_device_present(dev))
1146 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1147 ret = notifier_to_errno(ret);
1151 set_bit(__LINK_STATE_START, &dev->state);
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1160 clear_bit(__LINK_STATE_START, &dev->state);
1162 dev->flags |= IFF_UP;
1163 net_dmaengine_get();
1164 dev_set_rx_mode(dev);
1172 * dev_open - prepare an interface for use.
1173 * @dev: device to open
1175 * Takes a device from down to up state. The device's private open
1176 * function is invoked and then the multicast lists are loaded. Finally
1177 * the device is moved into the up state and a %NETDEV_UP message is
1178 * sent to the netdev notifier chain.
1180 * Calling this function on an active interface is a nop. On a failure
1181 * a negative errno code is returned.
1183 int dev_open(struct net_device *dev)
1187 if (dev->flags & IFF_UP)
1190 ret = __dev_open(dev);
1194 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1195 call_netdevice_notifiers(NETDEV_UP, dev);
1199 EXPORT_SYMBOL(dev_open);
1201 static int __dev_close_many(struct list_head *head)
1203 struct net_device *dev;
1208 list_for_each_entry(dev, head, unreg_list) {
1209 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1211 clear_bit(__LINK_STATE_START, &dev->state);
1213 /* Synchronize to scheduled poll. We cannot touch poll list, it
1214 * can be even on different cpu. So just clear netif_running().
1216 * dev->stop() will invoke napi_disable() on all of it's
1217 * napi_struct instances on this device.
1219 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1222 dev_deactivate_many(head);
1224 list_for_each_entry(dev, head, unreg_list) {
1225 const struct net_device_ops *ops = dev->netdev_ops;
1228 * Call the device specific close. This cannot fail.
1229 * Only if device is UP
1231 * We allow it to be called even after a DETACH hot-plug
1237 dev->flags &= ~IFF_UP;
1238 net_dmaengine_put();
1244 static int __dev_close(struct net_device *dev)
1249 list_add(&dev->unreg_list, &single);
1250 retval = __dev_close_many(&single);
1255 static int dev_close_many(struct list_head *head)
1257 struct net_device *dev, *tmp;
1258 LIST_HEAD(tmp_list);
1260 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1261 if (!(dev->flags & IFF_UP))
1262 list_move(&dev->unreg_list, &tmp_list);
1264 __dev_close_many(head);
1266 list_for_each_entry(dev, head, unreg_list) {
1267 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1268 call_netdevice_notifiers(NETDEV_DOWN, dev);
1271 /* rollback_registered_many needs the complete original list */
1272 list_splice(&tmp_list, head);
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1285 int dev_close(struct net_device *dev)
1289 list_add(&dev->unreg_list, &single);
1290 dev_close_many(&single);
1294 EXPORT_SYMBOL(dev_close);
1298 * dev_disable_lro - disable Large Receive Offload on a device
1301 * Disable Large Receive Offload (LRO) on a net device. Must be
1302 * called under RTNL. This is needed if received packets may be
1303 * forwarded to another interface.
1305 void dev_disable_lro(struct net_device *dev)
1309 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1310 flags = dev->ethtool_ops->get_flags(dev);
1312 flags = ethtool_op_get_flags(dev);
1314 if (!(flags & ETH_FLAG_LRO))
1317 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1318 WARN_ON(dev->features & NETIF_F_LRO);
1320 EXPORT_SYMBOL(dev_disable_lro);
1323 static int dev_boot_phase = 1;
1326 * register_netdevice_notifier - register a network notifier block
1329 * Register a notifier to be called when network device events occur.
1330 * The notifier passed is linked into the kernel structures and must
1331 * not be reused until it has been unregistered. A negative errno code
1332 * is returned on a failure.
1334 * When registered all registration and up events are replayed
1335 * to the new notifier to allow device to have a race free
1336 * view of the network device list.
1339 int register_netdevice_notifier(struct notifier_block *nb)
1341 struct net_device *dev;
1342 struct net_device *last;
1347 err = raw_notifier_chain_register(&netdev_chain, nb);
1353 for_each_netdev(net, dev) {
1354 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1355 err = notifier_to_errno(err);
1359 if (!(dev->flags & IFF_UP))
1362 nb->notifier_call(nb, NETDEV_UP, dev);
1373 for_each_netdev(net, dev) {
1377 if (dev->flags & IFF_UP) {
1378 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1379 nb->notifier_call(nb, NETDEV_DOWN, dev);
1381 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1382 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1386 raw_notifier_chain_unregister(&netdev_chain, nb);
1389 EXPORT_SYMBOL(register_netdevice_notifier);
1392 * unregister_netdevice_notifier - unregister a network notifier block
1395 * Unregister a notifier previously registered by
1396 * register_netdevice_notifier(). The notifier is unlinked into the
1397 * kernel structures and may then be reused. A negative errno code
1398 * is returned on a failure.
1401 int unregister_netdevice_notifier(struct notifier_block *nb)
1406 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1410 EXPORT_SYMBOL(unregister_netdevice_notifier);
1413 * call_netdevice_notifiers - call all network notifier blocks
1414 * @val: value passed unmodified to notifier function
1415 * @dev: net_device pointer passed unmodified to notifier function
1417 * Call all network notifier blocks. Parameters and return value
1418 * are as for raw_notifier_call_chain().
1421 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1424 return raw_notifier_call_chain(&netdev_chain, val, dev);
1426 EXPORT_SYMBOL(call_netdevice_notifiers);
1428 /* When > 0 there are consumers of rx skb time stamps */
1429 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1431 void net_enable_timestamp(void)
1433 atomic_inc(&netstamp_needed);
1435 EXPORT_SYMBOL(net_enable_timestamp);
1437 void net_disable_timestamp(void)
1439 atomic_dec(&netstamp_needed);
1441 EXPORT_SYMBOL(net_disable_timestamp);
1443 static inline void net_timestamp_set(struct sk_buff *skb)
1445 if (atomic_read(&netstamp_needed))
1446 __net_timestamp(skb);
1448 skb->tstamp.tv64 = 0;
1451 static inline void net_timestamp_check(struct sk_buff *skb)
1453 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1454 __net_timestamp(skb);
1457 static inline bool is_skb_forwardable(struct net_device *dev,
1458 struct sk_buff *skb)
1462 if (!(dev->flags & IFF_UP))
1465 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1466 if (skb->len <= len)
1469 /* if TSO is enabled, we don't care about the length as the packet
1470 * could be forwarded without being segmented before
1472 if (skb_is_gso(skb))
1479 * dev_forward_skb - loopback an skb to another netif
1481 * @dev: destination network device
1482 * @skb: buffer to forward
1485 * NET_RX_SUCCESS (no congestion)
1486 * NET_RX_DROP (packet was dropped, but freed)
1488 * dev_forward_skb can be used for injecting an skb from the
1489 * start_xmit function of one device into the receive queue
1490 * of another device.
1492 * The receiving device may be in another namespace, so
1493 * we have to clear all information in the skb that could
1494 * impact namespace isolation.
1496 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1501 if (unlikely(!is_skb_forwardable(dev, skb))) {
1502 atomic_long_inc(&dev->rx_dropped);
1506 skb_set_dev(skb, dev);
1507 skb->tstamp.tv64 = 0;
1508 skb->pkt_type = PACKET_HOST;
1509 skb->protocol = eth_type_trans(skb, dev);
1510 return netif_rx(skb);
1512 EXPORT_SYMBOL_GPL(dev_forward_skb);
1514 static inline int deliver_skb(struct sk_buff *skb,
1515 struct packet_type *pt_prev,
1516 struct net_device *orig_dev)
1518 atomic_inc(&skb->users);
1519 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1523 * Support routine. Sends outgoing frames to any network
1524 * taps currently in use.
1527 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1529 struct packet_type *ptype;
1530 struct sk_buff *skb2 = NULL;
1531 struct packet_type *pt_prev = NULL;
1534 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1535 /* Never send packets back to the socket
1538 if ((ptype->dev == dev || !ptype->dev) &&
1539 (ptype->af_packet_priv == NULL ||
1540 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1542 deliver_skb(skb2, pt_prev, skb->dev);
1547 skb2 = skb_clone(skb, GFP_ATOMIC);
1551 net_timestamp_set(skb2);
1553 /* skb->nh should be correctly
1554 set by sender, so that the second statement is
1555 just protection against buggy protocols.
1557 skb_reset_mac_header(skb2);
1559 if (skb_network_header(skb2) < skb2->data ||
1560 skb2->network_header > skb2->tail) {
1561 if (net_ratelimit())
1562 printk(KERN_CRIT "protocol %04x is "
1564 ntohs(skb2->protocol),
1566 skb_reset_network_header(skb2);
1569 skb2->transport_header = skb2->network_header;
1570 skb2->pkt_type = PACKET_OUTGOING;
1575 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1579 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1580 * @dev: Network device
1581 * @txq: number of queues available
1583 * If real_num_tx_queues is changed the tc mappings may no longer be
1584 * valid. To resolve this verify the tc mapping remains valid and if
1585 * not NULL the mapping. With no priorities mapping to this
1586 * offset/count pair it will no longer be used. In the worst case TC0
1587 * is invalid nothing can be done so disable priority mappings. If is
1588 * expected that drivers will fix this mapping if they can before
1589 * calling netif_set_real_num_tx_queues.
1591 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1594 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1596 /* If TC0 is invalidated disable TC mapping */
1597 if (tc->offset + tc->count > txq) {
1598 pr_warning("Number of in use tx queues changed "
1599 "invalidating tc mappings. Priority "
1600 "traffic classification disabled!\n");
1605 /* Invalidated prio to tc mappings set to TC0 */
1606 for (i = 1; i < TC_BITMASK + 1; i++) {
1607 int q = netdev_get_prio_tc_map(dev, i);
1609 tc = &dev->tc_to_txq[q];
1610 if (tc->offset + tc->count > txq) {
1611 pr_warning("Number of in use tx queues "
1612 "changed. Priority %i to tc "
1613 "mapping %i is no longer valid "
1614 "setting map to 0\n",
1616 netdev_set_prio_tc_map(dev, i, 0);
1622 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1623 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1625 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1629 if (txq < 1 || txq > dev->num_tx_queues)
1632 if (dev->reg_state == NETREG_REGISTERED ||
1633 dev->reg_state == NETREG_UNREGISTERING) {
1636 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1642 netif_setup_tc(dev, txq);
1644 if (txq < dev->real_num_tx_queues)
1645 qdisc_reset_all_tx_gt(dev, txq);
1648 dev->real_num_tx_queues = txq;
1651 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1655 * netif_set_real_num_rx_queues - set actual number of RX queues used
1656 * @dev: Network device
1657 * @rxq: Actual number of RX queues
1659 * This must be called either with the rtnl_lock held or before
1660 * registration of the net device. Returns 0 on success, or a
1661 * negative error code. If called before registration, it always
1664 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1668 if (rxq < 1 || rxq > dev->num_rx_queues)
1671 if (dev->reg_state == NETREG_REGISTERED) {
1674 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1680 dev->real_num_rx_queues = rxq;
1683 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1686 static inline void __netif_reschedule(struct Qdisc *q)
1688 struct softnet_data *sd;
1689 unsigned long flags;
1691 local_irq_save(flags);
1692 sd = &__get_cpu_var(softnet_data);
1693 q->next_sched = NULL;
1694 *sd->output_queue_tailp = q;
1695 sd->output_queue_tailp = &q->next_sched;
1696 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1697 local_irq_restore(flags);
1700 void __netif_schedule(struct Qdisc *q)
1702 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1703 __netif_reschedule(q);
1705 EXPORT_SYMBOL(__netif_schedule);
1707 void dev_kfree_skb_irq(struct sk_buff *skb)
1709 if (atomic_dec_and_test(&skb->users)) {
1710 struct softnet_data *sd;
1711 unsigned long flags;
1713 local_irq_save(flags);
1714 sd = &__get_cpu_var(softnet_data);
1715 skb->next = sd->completion_queue;
1716 sd->completion_queue = skb;
1717 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1718 local_irq_restore(flags);
1721 EXPORT_SYMBOL(dev_kfree_skb_irq);
1723 void dev_kfree_skb_any(struct sk_buff *skb)
1725 if (in_irq() || irqs_disabled())
1726 dev_kfree_skb_irq(skb);
1730 EXPORT_SYMBOL(dev_kfree_skb_any);
1734 * netif_device_detach - mark device as removed
1735 * @dev: network device
1737 * Mark device as removed from system and therefore no longer available.
1739 void netif_device_detach(struct net_device *dev)
1741 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1742 netif_running(dev)) {
1743 netif_tx_stop_all_queues(dev);
1746 EXPORT_SYMBOL(netif_device_detach);
1749 * netif_device_attach - mark device as attached
1750 * @dev: network device
1752 * Mark device as attached from system and restart if needed.
1754 void netif_device_attach(struct net_device *dev)
1756 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1757 netif_running(dev)) {
1758 netif_tx_wake_all_queues(dev);
1759 __netdev_watchdog_up(dev);
1762 EXPORT_SYMBOL(netif_device_attach);
1765 * skb_dev_set -- assign a new device to a buffer
1766 * @skb: buffer for the new device
1767 * @dev: network device
1769 * If an skb is owned by a device already, we have to reset
1770 * all data private to the namespace a device belongs to
1771 * before assigning it a new device.
1773 #ifdef CONFIG_NET_NS
1774 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1777 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1780 skb_init_secmark(skb);
1784 skb->ipvs_property = 0;
1785 #ifdef CONFIG_NET_SCHED
1791 EXPORT_SYMBOL(skb_set_dev);
1792 #endif /* CONFIG_NET_NS */
1795 * Invalidate hardware checksum when packet is to be mangled, and
1796 * complete checksum manually on outgoing path.
1798 int skb_checksum_help(struct sk_buff *skb)
1801 int ret = 0, offset;
1803 if (skb->ip_summed == CHECKSUM_COMPLETE)
1804 goto out_set_summed;
1806 if (unlikely(skb_shinfo(skb)->gso_size)) {
1807 /* Let GSO fix up the checksum. */
1808 goto out_set_summed;
1811 offset = skb_checksum_start_offset(skb);
1812 BUG_ON(offset >= skb_headlen(skb));
1813 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1815 offset += skb->csum_offset;
1816 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1818 if (skb_cloned(skb) &&
1819 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1820 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1825 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1827 skb->ip_summed = CHECKSUM_NONE;
1831 EXPORT_SYMBOL(skb_checksum_help);
1834 * skb_gso_segment - Perform segmentation on skb.
1835 * @skb: buffer to segment
1836 * @features: features for the output path (see dev->features)
1838 * This function segments the given skb and returns a list of segments.
1840 * It may return NULL if the skb requires no segmentation. This is
1841 * only possible when GSO is used for verifying header integrity.
1843 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1845 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1846 struct packet_type *ptype;
1847 __be16 type = skb->protocol;
1848 int vlan_depth = ETH_HLEN;
1851 while (type == htons(ETH_P_8021Q)) {
1852 struct vlan_hdr *vh;
1854 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1855 return ERR_PTR(-EINVAL);
1857 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1858 type = vh->h_vlan_encapsulated_proto;
1859 vlan_depth += VLAN_HLEN;
1862 skb_reset_mac_header(skb);
1863 skb->mac_len = skb->network_header - skb->mac_header;
1864 __skb_pull(skb, skb->mac_len);
1866 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1867 struct net_device *dev = skb->dev;
1868 struct ethtool_drvinfo info = {};
1870 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1871 dev->ethtool_ops->get_drvinfo(dev, &info);
1873 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1874 info.driver, dev ? dev->features : 0L,
1875 skb->sk ? skb->sk->sk_route_caps : 0L,
1876 skb->len, skb->data_len, skb->ip_summed);
1878 if (skb_header_cloned(skb) &&
1879 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1880 return ERR_PTR(err);
1884 list_for_each_entry_rcu(ptype,
1885 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1886 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1887 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1888 err = ptype->gso_send_check(skb);
1889 segs = ERR_PTR(err);
1890 if (err || skb_gso_ok(skb, features))
1892 __skb_push(skb, (skb->data -
1893 skb_network_header(skb)));
1895 segs = ptype->gso_segment(skb, features);
1901 __skb_push(skb, skb->data - skb_mac_header(skb));
1905 EXPORT_SYMBOL(skb_gso_segment);
1907 /* Take action when hardware reception checksum errors are detected. */
1909 void netdev_rx_csum_fault(struct net_device *dev)
1911 if (net_ratelimit()) {
1912 printk(KERN_ERR "%s: hw csum failure.\n",
1913 dev ? dev->name : "<unknown>");
1917 EXPORT_SYMBOL(netdev_rx_csum_fault);
1920 /* Actually, we should eliminate this check as soon as we know, that:
1921 * 1. IOMMU is present and allows to map all the memory.
1922 * 2. No high memory really exists on this machine.
1925 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1927 #ifdef CONFIG_HIGHMEM
1929 if (!(dev->features & NETIF_F_HIGHDMA)) {
1930 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1931 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1935 if (PCI_DMA_BUS_IS_PHYS) {
1936 struct device *pdev = dev->dev.parent;
1940 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1941 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1942 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1951 void (*destructor)(struct sk_buff *skb);
1954 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1956 static void dev_gso_skb_destructor(struct sk_buff *skb)
1958 struct dev_gso_cb *cb;
1961 struct sk_buff *nskb = skb->next;
1963 skb->next = nskb->next;
1966 } while (skb->next);
1968 cb = DEV_GSO_CB(skb);
1970 cb->destructor(skb);
1974 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1975 * @skb: buffer to segment
1976 * @features: device features as applicable to this skb
1978 * This function segments the given skb and stores the list of segments
1981 static int dev_gso_segment(struct sk_buff *skb, int features)
1983 struct sk_buff *segs;
1985 segs = skb_gso_segment(skb, features);
1987 /* Verifying header integrity only. */
1992 return PTR_ERR(segs);
1995 DEV_GSO_CB(skb)->destructor = skb->destructor;
1996 skb->destructor = dev_gso_skb_destructor;
2002 * Try to orphan skb early, right before transmission by the device.
2003 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2004 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2006 static inline void skb_orphan_try(struct sk_buff *skb)
2008 struct sock *sk = skb->sk;
2010 if (sk && !skb_shinfo(skb)->tx_flags) {
2011 /* skb_tx_hash() wont be able to get sk.
2012 * We copy sk_hash into skb->rxhash
2015 skb->rxhash = sk->sk_hash;
2020 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2022 return ((features & NETIF_F_GEN_CSUM) ||
2023 ((features & NETIF_F_V4_CSUM) &&
2024 protocol == htons(ETH_P_IP)) ||
2025 ((features & NETIF_F_V6_CSUM) &&
2026 protocol == htons(ETH_P_IPV6)) ||
2027 ((features & NETIF_F_FCOE_CRC) &&
2028 protocol == htons(ETH_P_FCOE)));
2031 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2033 if (!can_checksum_protocol(features, protocol)) {
2034 features &= ~NETIF_F_ALL_CSUM;
2035 features &= ~NETIF_F_SG;
2036 } else if (illegal_highdma(skb->dev, skb)) {
2037 features &= ~NETIF_F_SG;
2043 u32 netif_skb_features(struct sk_buff *skb)
2045 __be16 protocol = skb->protocol;
2046 u32 features = skb->dev->features;
2048 if (protocol == htons(ETH_P_8021Q)) {
2049 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2050 protocol = veh->h_vlan_encapsulated_proto;
2051 } else if (!vlan_tx_tag_present(skb)) {
2052 return harmonize_features(skb, protocol, features);
2055 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2057 if (protocol != htons(ETH_P_8021Q)) {
2058 return harmonize_features(skb, protocol, features);
2060 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2061 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2062 return harmonize_features(skb, protocol, features);
2065 EXPORT_SYMBOL(netif_skb_features);
2068 * Returns true if either:
2069 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2070 * 2. skb is fragmented and the device does not support SG, or if
2071 * at least one of fragments is in highmem and device does not
2072 * support DMA from it.
2074 static inline int skb_needs_linearize(struct sk_buff *skb,
2077 return skb_is_nonlinear(skb) &&
2078 ((skb_has_frag_list(skb) &&
2079 !(features & NETIF_F_FRAGLIST)) ||
2080 (skb_shinfo(skb)->nr_frags &&
2081 !(features & NETIF_F_SG)));
2084 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2085 struct netdev_queue *txq)
2087 const struct net_device_ops *ops = dev->netdev_ops;
2088 int rc = NETDEV_TX_OK;
2090 if (likely(!skb->next)) {
2094 * If device doesn't need skb->dst, release it right now while
2095 * its hot in this cpu cache
2097 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2100 if (!list_empty(&ptype_all))
2101 dev_queue_xmit_nit(skb, dev);
2103 skb_orphan_try(skb);
2105 features = netif_skb_features(skb);
2107 if (vlan_tx_tag_present(skb) &&
2108 !(features & NETIF_F_HW_VLAN_TX)) {
2109 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2116 if (netif_needs_gso(skb, features)) {
2117 if (unlikely(dev_gso_segment(skb, features)))
2122 if (skb_needs_linearize(skb, features) &&
2123 __skb_linearize(skb))
2126 /* If packet is not checksummed and device does not
2127 * support checksumming for this protocol, complete
2128 * checksumming here.
2130 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2131 skb_set_transport_header(skb,
2132 skb_checksum_start_offset(skb));
2133 if (!(features & NETIF_F_ALL_CSUM) &&
2134 skb_checksum_help(skb))
2139 rc = ops->ndo_start_xmit(skb, dev);
2140 trace_net_dev_xmit(skb, rc);
2141 if (rc == NETDEV_TX_OK)
2142 txq_trans_update(txq);
2148 struct sk_buff *nskb = skb->next;
2150 skb->next = nskb->next;
2154 * If device doesn't need nskb->dst, release it right now while
2155 * its hot in this cpu cache
2157 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2160 rc = ops->ndo_start_xmit(nskb, dev);
2161 trace_net_dev_xmit(nskb, rc);
2162 if (unlikely(rc != NETDEV_TX_OK)) {
2163 if (rc & ~NETDEV_TX_MASK)
2164 goto out_kfree_gso_skb;
2165 nskb->next = skb->next;
2169 txq_trans_update(txq);
2170 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2171 return NETDEV_TX_BUSY;
2172 } while (skb->next);
2175 if (likely(skb->next == NULL))
2176 skb->destructor = DEV_GSO_CB(skb)->destructor;
2183 static u32 hashrnd __read_mostly;
2186 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2187 * to be used as a distribution range.
2189 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2190 unsigned int num_tx_queues)
2194 u16 qcount = num_tx_queues;
2196 if (skb_rx_queue_recorded(skb)) {
2197 hash = skb_get_rx_queue(skb);
2198 while (unlikely(hash >= num_tx_queues))
2199 hash -= num_tx_queues;
2204 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2205 qoffset = dev->tc_to_txq[tc].offset;
2206 qcount = dev->tc_to_txq[tc].count;
2209 if (skb->sk && skb->sk->sk_hash)
2210 hash = skb->sk->sk_hash;
2212 hash = (__force u16) skb->protocol ^ skb->rxhash;
2213 hash = jhash_1word(hash, hashrnd);
2215 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2217 EXPORT_SYMBOL(__skb_tx_hash);
2219 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2221 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2222 if (net_ratelimit()) {
2223 pr_warning("%s selects TX queue %d, but "
2224 "real number of TX queues is %d\n",
2225 dev->name, queue_index, dev->real_num_tx_queues);
2232 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2235 struct xps_dev_maps *dev_maps;
2236 struct xps_map *map;
2237 int queue_index = -1;
2240 dev_maps = rcu_dereference(dev->xps_maps);
2242 map = rcu_dereference(
2243 dev_maps->cpu_map[raw_smp_processor_id()]);
2246 queue_index = map->queues[0];
2249 if (skb->sk && skb->sk->sk_hash)
2250 hash = skb->sk->sk_hash;
2252 hash = (__force u16) skb->protocol ^
2254 hash = jhash_1word(hash, hashrnd);
2255 queue_index = map->queues[
2256 ((u64)hash * map->len) >> 32];
2258 if (unlikely(queue_index >= dev->real_num_tx_queues))
2270 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2271 struct sk_buff *skb)
2274 const struct net_device_ops *ops = dev->netdev_ops;
2276 if (dev->real_num_tx_queues == 1)
2278 else if (ops->ndo_select_queue) {
2279 queue_index = ops->ndo_select_queue(dev, skb);
2280 queue_index = dev_cap_txqueue(dev, queue_index);
2282 struct sock *sk = skb->sk;
2283 queue_index = sk_tx_queue_get(sk);
2285 if (queue_index < 0 || skb->ooo_okay ||
2286 queue_index >= dev->real_num_tx_queues) {
2287 int old_index = queue_index;
2289 queue_index = get_xps_queue(dev, skb);
2290 if (queue_index < 0)
2291 queue_index = skb_tx_hash(dev, skb);
2293 if (queue_index != old_index && sk) {
2294 struct dst_entry *dst =
2295 rcu_dereference_check(sk->sk_dst_cache, 1);
2297 if (dst && skb_dst(skb) == dst)
2298 sk_tx_queue_set(sk, queue_index);
2303 skb_set_queue_mapping(skb, queue_index);
2304 return netdev_get_tx_queue(dev, queue_index);
2307 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2308 struct net_device *dev,
2309 struct netdev_queue *txq)
2311 spinlock_t *root_lock = qdisc_lock(q);
2315 qdisc_skb_cb(skb)->pkt_len = skb->len;
2316 qdisc_calculate_pkt_len(skb, q);
2318 * Heuristic to force contended enqueues to serialize on a
2319 * separate lock before trying to get qdisc main lock.
2320 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2321 * and dequeue packets faster.
2323 contended = qdisc_is_running(q);
2324 if (unlikely(contended))
2325 spin_lock(&q->busylock);
2327 spin_lock(root_lock);
2328 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2331 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2332 qdisc_run_begin(q)) {
2334 * This is a work-conserving queue; there are no old skbs
2335 * waiting to be sent out; and the qdisc is not running -
2336 * xmit the skb directly.
2338 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2341 qdisc_bstats_update(q, skb);
2343 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2344 if (unlikely(contended)) {
2345 spin_unlock(&q->busylock);
2352 rc = NET_XMIT_SUCCESS;
2355 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2356 if (qdisc_run_begin(q)) {
2357 if (unlikely(contended)) {
2358 spin_unlock(&q->busylock);
2364 spin_unlock(root_lock);
2365 if (unlikely(contended))
2366 spin_unlock(&q->busylock);
2370 static DEFINE_PER_CPU(int, xmit_recursion);
2371 #define RECURSION_LIMIT 10
2374 * dev_queue_xmit - transmit a buffer
2375 * @skb: buffer to transmit
2377 * Queue a buffer for transmission to a network device. The caller must
2378 * have set the device and priority and built the buffer before calling
2379 * this function. The function can be called from an interrupt.
2381 * A negative errno code is returned on a failure. A success does not
2382 * guarantee the frame will be transmitted as it may be dropped due
2383 * to congestion or traffic shaping.
2385 * -----------------------------------------------------------------------------------
2386 * I notice this method can also return errors from the queue disciplines,
2387 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2390 * Regardless of the return value, the skb is consumed, so it is currently
2391 * difficult to retry a send to this method. (You can bump the ref count
2392 * before sending to hold a reference for retry if you are careful.)
2394 * When calling this method, interrupts MUST be enabled. This is because
2395 * the BH enable code must have IRQs enabled so that it will not deadlock.
2398 int dev_queue_xmit(struct sk_buff *skb)
2400 struct net_device *dev = skb->dev;
2401 struct netdev_queue *txq;
2405 /* Disable soft irqs for various locks below. Also
2406 * stops preemption for RCU.
2410 txq = dev_pick_tx(dev, skb);
2411 q = rcu_dereference_bh(txq->qdisc);
2413 #ifdef CONFIG_NET_CLS_ACT
2414 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2416 trace_net_dev_queue(skb);
2418 rc = __dev_xmit_skb(skb, q, dev, txq);
2422 /* The device has no queue. Common case for software devices:
2423 loopback, all the sorts of tunnels...
2425 Really, it is unlikely that netif_tx_lock protection is necessary
2426 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2428 However, it is possible, that they rely on protection
2431 Check this and shot the lock. It is not prone from deadlocks.
2432 Either shot noqueue qdisc, it is even simpler 8)
2434 if (dev->flags & IFF_UP) {
2435 int cpu = smp_processor_id(); /* ok because BHs are off */
2437 if (txq->xmit_lock_owner != cpu) {
2439 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2440 goto recursion_alert;
2442 HARD_TX_LOCK(dev, txq, cpu);
2444 if (!netif_tx_queue_stopped(txq)) {
2445 __this_cpu_inc(xmit_recursion);
2446 rc = dev_hard_start_xmit(skb, dev, txq);
2447 __this_cpu_dec(xmit_recursion);
2448 if (dev_xmit_complete(rc)) {
2449 HARD_TX_UNLOCK(dev, txq);
2453 HARD_TX_UNLOCK(dev, txq);
2454 if (net_ratelimit())
2455 printk(KERN_CRIT "Virtual device %s asks to "
2456 "queue packet!\n", dev->name);
2458 /* Recursion is detected! It is possible,
2462 if (net_ratelimit())
2463 printk(KERN_CRIT "Dead loop on virtual device "
2464 "%s, fix it urgently!\n", dev->name);
2469 rcu_read_unlock_bh();
2474 rcu_read_unlock_bh();
2477 EXPORT_SYMBOL(dev_queue_xmit);
2480 /*=======================================================================
2482 =======================================================================*/
2484 int netdev_max_backlog __read_mostly = 1000;
2485 int netdev_tstamp_prequeue __read_mostly = 1;
2486 int netdev_budget __read_mostly = 300;
2487 int weight_p __read_mostly = 64; /* old backlog weight */
2489 /* Called with irq disabled */
2490 static inline void ____napi_schedule(struct softnet_data *sd,
2491 struct napi_struct *napi)
2493 list_add_tail(&napi->poll_list, &sd->poll_list);
2494 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2498 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2499 * and src/dst port numbers. Returns a non-zero hash number on success
2502 __u32 __skb_get_rxhash(struct sk_buff *skb)
2504 int nhoff, hash = 0, poff;
2505 struct ipv6hdr *ip6;
2508 u32 addr1, addr2, ihl;
2514 nhoff = skb_network_offset(skb);
2516 switch (skb->protocol) {
2517 case __constant_htons(ETH_P_IP):
2518 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2521 ip = (struct iphdr *) (skb->data + nhoff);
2522 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2525 ip_proto = ip->protocol;
2526 addr1 = (__force u32) ip->saddr;
2527 addr2 = (__force u32) ip->daddr;
2530 case __constant_htons(ETH_P_IPV6):
2531 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2534 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2535 ip_proto = ip6->nexthdr;
2536 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2537 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2545 poff = proto_ports_offset(ip_proto);
2547 nhoff += ihl * 4 + poff;
2548 if (pskb_may_pull(skb, nhoff + 4)) {
2549 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2550 if (ports.v16[1] < ports.v16[0])
2551 swap(ports.v16[0], ports.v16[1]);
2555 /* get a consistent hash (same value on both flow directions) */
2559 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2566 EXPORT_SYMBOL(__skb_get_rxhash);
2570 /* One global table that all flow-based protocols share. */
2571 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2572 EXPORT_SYMBOL(rps_sock_flow_table);
2574 static struct rps_dev_flow *
2575 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2576 struct rps_dev_flow *rflow, u16 next_cpu)
2580 tcpu = rflow->cpu = next_cpu;
2581 if (tcpu != RPS_NO_CPU) {
2582 #ifdef CONFIG_RFS_ACCEL
2583 struct netdev_rx_queue *rxqueue;
2584 struct rps_dev_flow_table *flow_table;
2585 struct rps_dev_flow *old_rflow;
2590 /* Should we steer this flow to a different hardware queue? */
2591 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2592 !(dev->features & NETIF_F_NTUPLE))
2594 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2595 if (rxq_index == skb_get_rx_queue(skb))
2598 rxqueue = dev->_rx + rxq_index;
2599 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2602 flow_id = skb->rxhash & flow_table->mask;
2603 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2604 rxq_index, flow_id);
2608 rflow = &flow_table->flows[flow_id];
2609 rflow->cpu = next_cpu;
2611 if (old_rflow->filter == rflow->filter)
2612 old_rflow->filter = RPS_NO_FILTER;
2616 per_cpu(softnet_data, tcpu).input_queue_head;
2623 * get_rps_cpu is called from netif_receive_skb and returns the target
2624 * CPU from the RPS map of the receiving queue for a given skb.
2625 * rcu_read_lock must be held on entry.
2627 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2628 struct rps_dev_flow **rflowp)
2630 struct netdev_rx_queue *rxqueue;
2631 struct rps_map *map;
2632 struct rps_dev_flow_table *flow_table;
2633 struct rps_sock_flow_table *sock_flow_table;
2637 if (skb_rx_queue_recorded(skb)) {
2638 u16 index = skb_get_rx_queue(skb);
2639 if (unlikely(index >= dev->real_num_rx_queues)) {
2640 WARN_ONCE(dev->real_num_rx_queues > 1,
2641 "%s received packet on queue %u, but number "
2642 "of RX queues is %u\n",
2643 dev->name, index, dev->real_num_rx_queues);
2646 rxqueue = dev->_rx + index;
2650 map = rcu_dereference(rxqueue->rps_map);
2652 if (map->len == 1 &&
2653 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2654 tcpu = map->cpus[0];
2655 if (cpu_online(tcpu))
2659 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2663 skb_reset_network_header(skb);
2664 if (!skb_get_rxhash(skb))
2667 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2668 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2669 if (flow_table && sock_flow_table) {
2671 struct rps_dev_flow *rflow;
2673 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2676 next_cpu = sock_flow_table->ents[skb->rxhash &
2677 sock_flow_table->mask];
2680 * If the desired CPU (where last recvmsg was done) is
2681 * different from current CPU (one in the rx-queue flow
2682 * table entry), switch if one of the following holds:
2683 * - Current CPU is unset (equal to RPS_NO_CPU).
2684 * - Current CPU is offline.
2685 * - The current CPU's queue tail has advanced beyond the
2686 * last packet that was enqueued using this table entry.
2687 * This guarantees that all previous packets for the flow
2688 * have been dequeued, thus preserving in order delivery.
2690 if (unlikely(tcpu != next_cpu) &&
2691 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2692 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2693 rflow->last_qtail)) >= 0))
2694 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2696 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2704 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2706 if (cpu_online(tcpu)) {
2716 #ifdef CONFIG_RFS_ACCEL
2719 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2720 * @dev: Device on which the filter was set
2721 * @rxq_index: RX queue index
2722 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2723 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2725 * Drivers that implement ndo_rx_flow_steer() should periodically call
2726 * this function for each installed filter and remove the filters for
2727 * which it returns %true.
2729 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2730 u32 flow_id, u16 filter_id)
2732 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2733 struct rps_dev_flow_table *flow_table;
2734 struct rps_dev_flow *rflow;
2739 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2740 if (flow_table && flow_id <= flow_table->mask) {
2741 rflow = &flow_table->flows[flow_id];
2742 cpu = ACCESS_ONCE(rflow->cpu);
2743 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2744 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2745 rflow->last_qtail) <
2746 (int)(10 * flow_table->mask)))
2752 EXPORT_SYMBOL(rps_may_expire_flow);
2754 #endif /* CONFIG_RFS_ACCEL */
2756 /* Called from hardirq (IPI) context */
2757 static void rps_trigger_softirq(void *data)
2759 struct softnet_data *sd = data;
2761 ____napi_schedule(sd, &sd->backlog);
2765 #endif /* CONFIG_RPS */
2768 * Check if this softnet_data structure is another cpu one
2769 * If yes, queue it to our IPI list and return 1
2772 static int rps_ipi_queued(struct softnet_data *sd)
2775 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2778 sd->rps_ipi_next = mysd->rps_ipi_list;
2779 mysd->rps_ipi_list = sd;
2781 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2784 #endif /* CONFIG_RPS */
2789 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2790 * queue (may be a remote CPU queue).
2792 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2793 unsigned int *qtail)
2795 struct softnet_data *sd;
2796 unsigned long flags;
2798 sd = &per_cpu(softnet_data, cpu);
2800 local_irq_save(flags);
2803 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2804 if (skb_queue_len(&sd->input_pkt_queue)) {
2806 __skb_queue_tail(&sd->input_pkt_queue, skb);
2807 input_queue_tail_incr_save(sd, qtail);
2809 local_irq_restore(flags);
2810 return NET_RX_SUCCESS;
2813 /* Schedule NAPI for backlog device
2814 * We can use non atomic operation since we own the queue lock
2816 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2817 if (!rps_ipi_queued(sd))
2818 ____napi_schedule(sd, &sd->backlog);
2826 local_irq_restore(flags);
2828 atomic_long_inc(&skb->dev->rx_dropped);
2834 * netif_rx - post buffer to the network code
2835 * @skb: buffer to post
2837 * This function receives a packet from a device driver and queues it for
2838 * the upper (protocol) levels to process. It always succeeds. The buffer
2839 * may be dropped during processing for congestion control or by the
2843 * NET_RX_SUCCESS (no congestion)
2844 * NET_RX_DROP (packet was dropped)
2848 int netif_rx(struct sk_buff *skb)
2852 /* if netpoll wants it, pretend we never saw it */
2853 if (netpoll_rx(skb))
2856 if (netdev_tstamp_prequeue)
2857 net_timestamp_check(skb);
2859 trace_netif_rx(skb);
2862 struct rps_dev_flow voidflow, *rflow = &voidflow;
2868 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2870 cpu = smp_processor_id();
2872 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2880 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2886 EXPORT_SYMBOL(netif_rx);
2888 int netif_rx_ni(struct sk_buff *skb)
2893 err = netif_rx(skb);
2894 if (local_softirq_pending())
2900 EXPORT_SYMBOL(netif_rx_ni);
2902 static void net_tx_action(struct softirq_action *h)
2904 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2906 if (sd->completion_queue) {
2907 struct sk_buff *clist;
2909 local_irq_disable();
2910 clist = sd->completion_queue;
2911 sd->completion_queue = NULL;
2915 struct sk_buff *skb = clist;
2916 clist = clist->next;
2918 WARN_ON(atomic_read(&skb->users));
2919 trace_kfree_skb(skb, net_tx_action);
2924 if (sd->output_queue) {
2927 local_irq_disable();
2928 head = sd->output_queue;
2929 sd->output_queue = NULL;
2930 sd->output_queue_tailp = &sd->output_queue;
2934 struct Qdisc *q = head;
2935 spinlock_t *root_lock;
2937 head = head->next_sched;
2939 root_lock = qdisc_lock(q);
2940 if (spin_trylock(root_lock)) {
2941 smp_mb__before_clear_bit();
2942 clear_bit(__QDISC_STATE_SCHED,
2945 spin_unlock(root_lock);
2947 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2949 __netif_reschedule(q);
2951 smp_mb__before_clear_bit();
2952 clear_bit(__QDISC_STATE_SCHED,
2960 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2961 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2962 /* This hook is defined here for ATM LANE */
2963 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2964 unsigned char *addr) __read_mostly;
2965 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2968 #ifdef CONFIG_NET_CLS_ACT
2969 /* TODO: Maybe we should just force sch_ingress to be compiled in
2970 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2971 * a compare and 2 stores extra right now if we dont have it on
2972 * but have CONFIG_NET_CLS_ACT
2973 * NOTE: This doesn't stop any functionality; if you dont have
2974 * the ingress scheduler, you just can't add policies on ingress.
2977 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2979 struct net_device *dev = skb->dev;
2980 u32 ttl = G_TC_RTTL(skb->tc_verd);
2981 int result = TC_ACT_OK;
2984 if (unlikely(MAX_RED_LOOP < ttl++)) {
2985 if (net_ratelimit())
2986 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2987 skb->skb_iif, dev->ifindex);
2991 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2992 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2995 if (q != &noop_qdisc) {
2996 spin_lock(qdisc_lock(q));
2997 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2998 result = qdisc_enqueue_root(skb, q);
2999 spin_unlock(qdisc_lock(q));
3005 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3006 struct packet_type **pt_prev,
3007 int *ret, struct net_device *orig_dev)
3009 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3011 if (!rxq || rxq->qdisc == &noop_qdisc)
3015 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3019 switch (ing_filter(skb, rxq)) {
3033 * netdev_rx_handler_register - register receive handler
3034 * @dev: device to register a handler for
3035 * @rx_handler: receive handler to register
3036 * @rx_handler_data: data pointer that is used by rx handler
3038 * Register a receive hander for a device. This handler will then be
3039 * called from __netif_receive_skb. A negative errno code is returned
3042 * The caller must hold the rtnl_mutex.
3044 * For a general description of rx_handler, see enum rx_handler_result.
3046 int netdev_rx_handler_register(struct net_device *dev,
3047 rx_handler_func_t *rx_handler,
3048 void *rx_handler_data)
3052 if (dev->rx_handler)
3055 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3056 rcu_assign_pointer(dev->rx_handler, rx_handler);
3060 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3063 * netdev_rx_handler_unregister - unregister receive handler
3064 * @dev: device to unregister a handler from
3066 * Unregister a receive hander from a device.
3068 * The caller must hold the rtnl_mutex.
3070 void netdev_rx_handler_unregister(struct net_device *dev)
3074 rcu_assign_pointer(dev->rx_handler, NULL);
3075 rcu_assign_pointer(dev->rx_handler_data, NULL);
3077 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3079 static void vlan_on_bond_hook(struct sk_buff *skb)
3082 * Make sure ARP frames received on VLAN interfaces stacked on
3083 * bonding interfaces still make their way to any base bonding
3084 * device that may have registered for a specific ptype.
3086 if (skb->dev->priv_flags & IFF_802_1Q_VLAN &&
3087 vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING &&
3088 skb->protocol == htons(ETH_P_ARP)) {
3089 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
3093 skb2->dev = vlan_dev_real_dev(skb->dev);
3098 static int __netif_receive_skb(struct sk_buff *skb)
3100 struct packet_type *ptype, *pt_prev;
3101 rx_handler_func_t *rx_handler;
3102 struct net_device *orig_dev;
3103 struct net_device *null_or_dev;
3104 bool deliver_exact = false;
3105 int ret = NET_RX_DROP;
3108 if (!netdev_tstamp_prequeue)
3109 net_timestamp_check(skb);
3111 trace_netif_receive_skb(skb);
3113 /* if we've gotten here through NAPI, check netpoll */
3114 if (netpoll_receive_skb(skb))
3118 skb->skb_iif = skb->dev->ifindex;
3119 orig_dev = skb->dev;
3121 skb_reset_network_header(skb);
3122 skb_reset_transport_header(skb);
3123 skb->mac_len = skb->network_header - skb->mac_header;
3131 __this_cpu_inc(softnet_data.processed);
3133 #ifdef CONFIG_NET_CLS_ACT
3134 if (skb->tc_verd & TC_NCLS) {
3135 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3140 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3141 if (!ptype->dev || ptype->dev == skb->dev) {
3143 ret = deliver_skb(skb, pt_prev, orig_dev);
3148 #ifdef CONFIG_NET_CLS_ACT
3149 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3155 rx_handler = rcu_dereference(skb->dev->rx_handler);
3158 ret = deliver_skb(skb, pt_prev, orig_dev);
3161 switch (rx_handler(&skb)) {
3162 case RX_HANDLER_CONSUMED:
3164 case RX_HANDLER_ANOTHER:
3166 case RX_HANDLER_EXACT:
3167 deliver_exact = true;
3168 case RX_HANDLER_PASS:
3175 if (vlan_tx_tag_present(skb)) {
3177 ret = deliver_skb(skb, pt_prev, orig_dev);
3180 if (vlan_hwaccel_do_receive(&skb)) {
3181 ret = __netif_receive_skb(skb);
3183 } else if (unlikely(!skb))
3187 vlan_on_bond_hook(skb);
3189 /* deliver only exact match when indicated */
3190 null_or_dev = deliver_exact ? skb->dev : NULL;
3192 type = skb->protocol;
3193 list_for_each_entry_rcu(ptype,
3194 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3195 if (ptype->type == type &&
3196 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3197 ptype->dev == orig_dev)) {
3199 ret = deliver_skb(skb, pt_prev, orig_dev);
3205 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3207 atomic_long_inc(&skb->dev->rx_dropped);
3209 /* Jamal, now you will not able to escape explaining
3210 * me how you were going to use this. :-)
3221 * netif_receive_skb - process receive buffer from network
3222 * @skb: buffer to process
3224 * netif_receive_skb() is the main receive data processing function.
3225 * It always succeeds. The buffer may be dropped during processing
3226 * for congestion control or by the protocol layers.
3228 * This function may only be called from softirq context and interrupts
3229 * should be enabled.
3231 * Return values (usually ignored):
3232 * NET_RX_SUCCESS: no congestion
3233 * NET_RX_DROP: packet was dropped
3235 int netif_receive_skb(struct sk_buff *skb)
3237 if (netdev_tstamp_prequeue)
3238 net_timestamp_check(skb);
3240 if (skb_defer_rx_timestamp(skb))
3241 return NET_RX_SUCCESS;
3245 struct rps_dev_flow voidflow, *rflow = &voidflow;
3250 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3253 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3257 ret = __netif_receive_skb(skb);
3263 return __netif_receive_skb(skb);
3266 EXPORT_SYMBOL(netif_receive_skb);
3268 /* Network device is going away, flush any packets still pending
3269 * Called with irqs disabled.
3271 static void flush_backlog(void *arg)
3273 struct net_device *dev = arg;
3274 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3275 struct sk_buff *skb, *tmp;
3278 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3279 if (skb->dev == dev) {
3280 __skb_unlink(skb, &sd->input_pkt_queue);
3282 input_queue_head_incr(sd);
3287 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3288 if (skb->dev == dev) {
3289 __skb_unlink(skb, &sd->process_queue);
3291 input_queue_head_incr(sd);
3296 static int napi_gro_complete(struct sk_buff *skb)
3298 struct packet_type *ptype;
3299 __be16 type = skb->protocol;
3300 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3303 if (NAPI_GRO_CB(skb)->count == 1) {
3304 skb_shinfo(skb)->gso_size = 0;
3309 list_for_each_entry_rcu(ptype, head, list) {
3310 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3313 err = ptype->gro_complete(skb);
3319 WARN_ON(&ptype->list == head);
3321 return NET_RX_SUCCESS;
3325 return netif_receive_skb(skb);
3328 inline void napi_gro_flush(struct napi_struct *napi)
3330 struct sk_buff *skb, *next;
3332 for (skb = napi->gro_list; skb; skb = next) {
3335 napi_gro_complete(skb);
3338 napi->gro_count = 0;
3339 napi->gro_list = NULL;
3341 EXPORT_SYMBOL(napi_gro_flush);
3343 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3345 struct sk_buff **pp = NULL;
3346 struct packet_type *ptype;
3347 __be16 type = skb->protocol;
3348 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3351 enum gro_result ret;
3353 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3356 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3360 list_for_each_entry_rcu(ptype, head, list) {
3361 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3364 skb_set_network_header(skb, skb_gro_offset(skb));
3365 mac_len = skb->network_header - skb->mac_header;
3366 skb->mac_len = mac_len;
3367 NAPI_GRO_CB(skb)->same_flow = 0;
3368 NAPI_GRO_CB(skb)->flush = 0;
3369 NAPI_GRO_CB(skb)->free = 0;
3371 pp = ptype->gro_receive(&napi->gro_list, skb);
3376 if (&ptype->list == head)
3379 same_flow = NAPI_GRO_CB(skb)->same_flow;
3380 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3383 struct sk_buff *nskb = *pp;
3387 napi_gro_complete(nskb);
3394 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3398 NAPI_GRO_CB(skb)->count = 1;
3399 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3400 skb->next = napi->gro_list;
3401 napi->gro_list = skb;
3405 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3406 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3408 BUG_ON(skb->end - skb->tail < grow);
3410 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3413 skb->data_len -= grow;
3415 skb_shinfo(skb)->frags[0].page_offset += grow;
3416 skb_shinfo(skb)->frags[0].size -= grow;
3418 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3419 put_page(skb_shinfo(skb)->frags[0].page);
3420 memmove(skb_shinfo(skb)->frags,
3421 skb_shinfo(skb)->frags + 1,
3422 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3433 EXPORT_SYMBOL(dev_gro_receive);
3435 static inline gro_result_t
3436 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3440 for (p = napi->gro_list; p; p = p->next) {
3441 unsigned long diffs;
3443 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3444 diffs |= p->vlan_tci ^ skb->vlan_tci;
3445 diffs |= compare_ether_header(skb_mac_header(p),
3446 skb_gro_mac_header(skb));
3447 NAPI_GRO_CB(p)->same_flow = !diffs;
3448 NAPI_GRO_CB(p)->flush = 0;
3451 return dev_gro_receive(napi, skb);
3454 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3458 if (netif_receive_skb(skb))
3463 case GRO_MERGED_FREE:
3474 EXPORT_SYMBOL(napi_skb_finish);
3476 void skb_gro_reset_offset(struct sk_buff *skb)
3478 NAPI_GRO_CB(skb)->data_offset = 0;
3479 NAPI_GRO_CB(skb)->frag0 = NULL;
3480 NAPI_GRO_CB(skb)->frag0_len = 0;
3482 if (skb->mac_header == skb->tail &&
3483 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3484 NAPI_GRO_CB(skb)->frag0 =
3485 page_address(skb_shinfo(skb)->frags[0].page) +
3486 skb_shinfo(skb)->frags[0].page_offset;
3487 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3490 EXPORT_SYMBOL(skb_gro_reset_offset);
3492 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3494 skb_gro_reset_offset(skb);
3496 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3498 EXPORT_SYMBOL(napi_gro_receive);
3500 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3502 __skb_pull(skb, skb_headlen(skb));
3503 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3505 skb->dev = napi->dev;
3511 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3513 struct sk_buff *skb = napi->skb;
3516 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3522 EXPORT_SYMBOL(napi_get_frags);
3524 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3530 skb->protocol = eth_type_trans(skb, skb->dev);
3532 if (ret == GRO_HELD)
3533 skb_gro_pull(skb, -ETH_HLEN);
3534 else if (netif_receive_skb(skb))
3539 case GRO_MERGED_FREE:
3540 napi_reuse_skb(napi, skb);
3549 EXPORT_SYMBOL(napi_frags_finish);
3551 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3553 struct sk_buff *skb = napi->skb;
3560 skb_reset_mac_header(skb);
3561 skb_gro_reset_offset(skb);
3563 off = skb_gro_offset(skb);
3564 hlen = off + sizeof(*eth);
3565 eth = skb_gro_header_fast(skb, off);
3566 if (skb_gro_header_hard(skb, hlen)) {
3567 eth = skb_gro_header_slow(skb, hlen, off);
3568 if (unlikely(!eth)) {
3569 napi_reuse_skb(napi, skb);
3575 skb_gro_pull(skb, sizeof(*eth));
3578 * This works because the only protocols we care about don't require
3579 * special handling. We'll fix it up properly at the end.
3581 skb->protocol = eth->h_proto;
3586 EXPORT_SYMBOL(napi_frags_skb);
3588 gro_result_t napi_gro_frags(struct napi_struct *napi)
3590 struct sk_buff *skb = napi_frags_skb(napi);
3595 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3597 EXPORT_SYMBOL(napi_gro_frags);
3600 * net_rps_action sends any pending IPI's for rps.
3601 * Note: called with local irq disabled, but exits with local irq enabled.
3603 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3606 struct softnet_data *remsd = sd->rps_ipi_list;
3609 sd->rps_ipi_list = NULL;
3613 /* Send pending IPI's to kick RPS processing on remote cpus. */
3615 struct softnet_data *next = remsd->rps_ipi_next;
3617 if (cpu_online(remsd->cpu))
3618 __smp_call_function_single(remsd->cpu,
3627 static int process_backlog(struct napi_struct *napi, int quota)
3630 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3633 /* Check if we have pending ipi, its better to send them now,
3634 * not waiting net_rx_action() end.
3636 if (sd->rps_ipi_list) {
3637 local_irq_disable();
3638 net_rps_action_and_irq_enable(sd);
3641 napi->weight = weight_p;
3642 local_irq_disable();
3643 while (work < quota) {
3644 struct sk_buff *skb;
3647 while ((skb = __skb_dequeue(&sd->process_queue))) {
3649 __netif_receive_skb(skb);
3650 local_irq_disable();
3651 input_queue_head_incr(sd);
3652 if (++work >= quota) {
3659 qlen = skb_queue_len(&sd->input_pkt_queue);
3661 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3662 &sd->process_queue);
3664 if (qlen < quota - work) {
3666 * Inline a custom version of __napi_complete().
3667 * only current cpu owns and manipulates this napi,
3668 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3669 * we can use a plain write instead of clear_bit(),
3670 * and we dont need an smp_mb() memory barrier.
3672 list_del(&napi->poll_list);
3675 quota = work + qlen;
3685 * __napi_schedule - schedule for receive
3686 * @n: entry to schedule
3688 * The entry's receive function will be scheduled to run
3690 void __napi_schedule(struct napi_struct *n)
3692 unsigned long flags;
3694 local_irq_save(flags);
3695 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3696 local_irq_restore(flags);
3698 EXPORT_SYMBOL(__napi_schedule);
3700 void __napi_complete(struct napi_struct *n)
3702 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3703 BUG_ON(n->gro_list);
3705 list_del(&n->poll_list);
3706 smp_mb__before_clear_bit();
3707 clear_bit(NAPI_STATE_SCHED, &n->state);
3709 EXPORT_SYMBOL(__napi_complete);
3711 void napi_complete(struct napi_struct *n)
3713 unsigned long flags;
3716 * don't let napi dequeue from the cpu poll list
3717 * just in case its running on a different cpu
3719 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3723 local_irq_save(flags);
3725 local_irq_restore(flags);
3727 EXPORT_SYMBOL(napi_complete);
3729 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3730 int (*poll)(struct napi_struct *, int), int weight)
3732 INIT_LIST_HEAD(&napi->poll_list);
3733 napi->gro_count = 0;
3734 napi->gro_list = NULL;
3737 napi->weight = weight;
3738 list_add(&napi->dev_list, &dev->napi_list);
3740 #ifdef CONFIG_NETPOLL
3741 spin_lock_init(&napi->poll_lock);
3742 napi->poll_owner = -1;
3744 set_bit(NAPI_STATE_SCHED, &napi->state);
3746 EXPORT_SYMBOL(netif_napi_add);
3748 void netif_napi_del(struct napi_struct *napi)
3750 struct sk_buff *skb, *next;
3752 list_del_init(&napi->dev_list);
3753 napi_free_frags(napi);
3755 for (skb = napi->gro_list; skb; skb = next) {
3761 napi->gro_list = NULL;
3762 napi->gro_count = 0;
3764 EXPORT_SYMBOL(netif_napi_del);
3766 static void net_rx_action(struct softirq_action *h)
3768 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3769 unsigned long time_limit = jiffies + 2;
3770 int budget = netdev_budget;
3773 local_irq_disable();
3775 while (!list_empty(&sd->poll_list)) {
3776 struct napi_struct *n;
3779 /* If softirq window is exhuasted then punt.
3780 * Allow this to run for 2 jiffies since which will allow
3781 * an average latency of 1.5/HZ.
3783 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3788 /* Even though interrupts have been re-enabled, this
3789 * access is safe because interrupts can only add new
3790 * entries to the tail of this list, and only ->poll()
3791 * calls can remove this head entry from the list.
3793 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3795 have = netpoll_poll_lock(n);
3799 /* This NAPI_STATE_SCHED test is for avoiding a race
3800 * with netpoll's poll_napi(). Only the entity which
3801 * obtains the lock and sees NAPI_STATE_SCHED set will
3802 * actually make the ->poll() call. Therefore we avoid
3803 * accidentally calling ->poll() when NAPI is not scheduled.
3806 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3807 work = n->poll(n, weight);
3811 WARN_ON_ONCE(work > weight);
3815 local_irq_disable();
3817 /* Drivers must not modify the NAPI state if they
3818 * consume the entire weight. In such cases this code
3819 * still "owns" the NAPI instance and therefore can
3820 * move the instance around on the list at-will.
3822 if (unlikely(work == weight)) {
3823 if (unlikely(napi_disable_pending(n))) {
3826 local_irq_disable();
3828 list_move_tail(&n->poll_list, &sd->poll_list);
3831 netpoll_poll_unlock(have);
3834 net_rps_action_and_irq_enable(sd);
3836 #ifdef CONFIG_NET_DMA
3838 * There may not be any more sk_buffs coming right now, so push
3839 * any pending DMA copies to hardware
3841 dma_issue_pending_all();
3848 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3852 static gifconf_func_t *gifconf_list[NPROTO];
3855 * register_gifconf - register a SIOCGIF handler
3856 * @family: Address family
3857 * @gifconf: Function handler
3859 * Register protocol dependent address dumping routines. The handler
3860 * that is passed must not be freed or reused until it has been replaced
3861 * by another handler.
3863 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3865 if (family >= NPROTO)
3867 gifconf_list[family] = gifconf;
3870 EXPORT_SYMBOL(register_gifconf);
3874 * Map an interface index to its name (SIOCGIFNAME)
3878 * We need this ioctl for efficient implementation of the
3879 * if_indextoname() function required by the IPv6 API. Without
3880 * it, we would have to search all the interfaces to find a
3884 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3886 struct net_device *dev;
3890 * Fetch the caller's info block.
3893 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3897 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3903 strcpy(ifr.ifr_name, dev->name);
3906 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3912 * Perform a SIOCGIFCONF call. This structure will change
3913 * size eventually, and there is nothing I can do about it.
3914 * Thus we will need a 'compatibility mode'.
3917 static int dev_ifconf(struct net *net, char __user *arg)
3920 struct net_device *dev;
3927 * Fetch the caller's info block.
3930 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3937 * Loop over the interfaces, and write an info block for each.
3941 for_each_netdev(net, dev) {
3942 for (i = 0; i < NPROTO; i++) {
3943 if (gifconf_list[i]) {
3946 done = gifconf_list[i](dev, NULL, 0);
3948 done = gifconf_list[i](dev, pos + total,
3958 * All done. Write the updated control block back to the caller.
3960 ifc.ifc_len = total;
3963 * Both BSD and Solaris return 0 here, so we do too.
3965 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3968 #ifdef CONFIG_PROC_FS
3970 * This is invoked by the /proc filesystem handler to display a device
3973 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3976 struct net *net = seq_file_net(seq);
3978 struct net_device *dev;
3982 return SEQ_START_TOKEN;
3985 for_each_netdev_rcu(net, dev)
3992 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3994 struct net_device *dev = v;
3996 if (v == SEQ_START_TOKEN)
3997 dev = first_net_device_rcu(seq_file_net(seq));
3999 dev = next_net_device_rcu(dev);
4005 void dev_seq_stop(struct seq_file *seq, void *v)
4011 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4013 struct rtnl_link_stats64 temp;
4014 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4016 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4017 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4018 dev->name, stats->rx_bytes, stats->rx_packets,
4020 stats->rx_dropped + stats->rx_missed_errors,
4021 stats->rx_fifo_errors,
4022 stats->rx_length_errors + stats->rx_over_errors +
4023 stats->rx_crc_errors + stats->rx_frame_errors,
4024 stats->rx_compressed, stats->multicast,
4025 stats->tx_bytes, stats->tx_packets,
4026 stats->tx_errors, stats->tx_dropped,
4027 stats->tx_fifo_errors, stats->collisions,
4028 stats->tx_carrier_errors +
4029 stats->tx_aborted_errors +
4030 stats->tx_window_errors +
4031 stats->tx_heartbeat_errors,
4032 stats->tx_compressed);
4036 * Called from the PROCfs module. This now uses the new arbitrary sized
4037 * /proc/net interface to create /proc/net/dev
4039 static int dev_seq_show(struct seq_file *seq, void *v)
4041 if (v == SEQ_START_TOKEN)
4042 seq_puts(seq, "Inter-| Receive "
4044 " face |bytes packets errs drop fifo frame "
4045 "compressed multicast|bytes packets errs "
4046 "drop fifo colls carrier compressed\n");
4048 dev_seq_printf_stats(seq, v);
4052 static struct softnet_data *softnet_get_online(loff_t *pos)
4054 struct softnet_data *sd = NULL;
4056 while (*pos < nr_cpu_ids)
4057 if (cpu_online(*pos)) {
4058 sd = &per_cpu(softnet_data, *pos);
4065 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4067 return softnet_get_online(pos);
4070 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4073 return softnet_get_online(pos);
4076 static void softnet_seq_stop(struct seq_file *seq, void *v)
4080 static int softnet_seq_show(struct seq_file *seq, void *v)
4082 struct softnet_data *sd = v;
4084 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4085 sd->processed, sd->dropped, sd->time_squeeze, 0,
4086 0, 0, 0, 0, /* was fastroute */
4087 sd->cpu_collision, sd->received_rps);
4091 static const struct seq_operations dev_seq_ops = {
4092 .start = dev_seq_start,
4093 .next = dev_seq_next,
4094 .stop = dev_seq_stop,
4095 .show = dev_seq_show,
4098 static int dev_seq_open(struct inode *inode, struct file *file)
4100 return seq_open_net(inode, file, &dev_seq_ops,
4101 sizeof(struct seq_net_private));
4104 static const struct file_operations dev_seq_fops = {
4105 .owner = THIS_MODULE,
4106 .open = dev_seq_open,
4108 .llseek = seq_lseek,
4109 .release = seq_release_net,
4112 static const struct seq_operations softnet_seq_ops = {
4113 .start = softnet_seq_start,
4114 .next = softnet_seq_next,
4115 .stop = softnet_seq_stop,
4116 .show = softnet_seq_show,
4119 static int softnet_seq_open(struct inode *inode, struct file *file)
4121 return seq_open(file, &softnet_seq_ops);
4124 static const struct file_operations softnet_seq_fops = {
4125 .owner = THIS_MODULE,
4126 .open = softnet_seq_open,
4128 .llseek = seq_lseek,
4129 .release = seq_release,
4132 static void *ptype_get_idx(loff_t pos)
4134 struct packet_type *pt = NULL;
4138 list_for_each_entry_rcu(pt, &ptype_all, list) {
4144 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4145 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4154 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4158 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4161 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4163 struct packet_type *pt;
4164 struct list_head *nxt;
4168 if (v == SEQ_START_TOKEN)
4169 return ptype_get_idx(0);
4172 nxt = pt->list.next;
4173 if (pt->type == htons(ETH_P_ALL)) {
4174 if (nxt != &ptype_all)
4177 nxt = ptype_base[0].next;
4179 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4181 while (nxt == &ptype_base[hash]) {
4182 if (++hash >= PTYPE_HASH_SIZE)
4184 nxt = ptype_base[hash].next;
4187 return list_entry(nxt, struct packet_type, list);
4190 static void ptype_seq_stop(struct seq_file *seq, void *v)
4196 static int ptype_seq_show(struct seq_file *seq, void *v)
4198 struct packet_type *pt = v;
4200 if (v == SEQ_START_TOKEN)
4201 seq_puts(seq, "Type Device Function\n");
4202 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4203 if (pt->type == htons(ETH_P_ALL))
4204 seq_puts(seq, "ALL ");
4206 seq_printf(seq, "%04x", ntohs(pt->type));
4208 seq_printf(seq, " %-8s %pF\n",
4209 pt->dev ? pt->dev->name : "", pt->func);
4215 static const struct seq_operations ptype_seq_ops = {
4216 .start = ptype_seq_start,
4217 .next = ptype_seq_next,
4218 .stop = ptype_seq_stop,
4219 .show = ptype_seq_show,
4222 static int ptype_seq_open(struct inode *inode, struct file *file)
4224 return seq_open_net(inode, file, &ptype_seq_ops,
4225 sizeof(struct seq_net_private));
4228 static const struct file_operations ptype_seq_fops = {
4229 .owner = THIS_MODULE,
4230 .open = ptype_seq_open,
4232 .llseek = seq_lseek,
4233 .release = seq_release_net,
4237 static int __net_init dev_proc_net_init(struct net *net)
4241 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4243 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4245 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4248 if (wext_proc_init(net))
4254 proc_net_remove(net, "ptype");
4256 proc_net_remove(net, "softnet_stat");
4258 proc_net_remove(net, "dev");
4262 static void __net_exit dev_proc_net_exit(struct net *net)
4264 wext_proc_exit(net);
4266 proc_net_remove(net, "ptype");
4267 proc_net_remove(net, "softnet_stat");
4268 proc_net_remove(net, "dev");
4271 static struct pernet_operations __net_initdata dev_proc_ops = {
4272 .init = dev_proc_net_init,
4273 .exit = dev_proc_net_exit,
4276 static int __init dev_proc_init(void)
4278 return register_pernet_subsys(&dev_proc_ops);
4281 #define dev_proc_init() 0
4282 #endif /* CONFIG_PROC_FS */
4286 * netdev_set_master - set up master pointer
4287 * @slave: slave device
4288 * @master: new master device
4290 * Changes the master device of the slave. Pass %NULL to break the
4291 * bonding. The caller must hold the RTNL semaphore. On a failure
4292 * a negative errno code is returned. On success the reference counts
4293 * are adjusted and the function returns zero.
4295 int netdev_set_master(struct net_device *slave, struct net_device *master)
4297 struct net_device *old = slave->master;
4307 slave->master = master;
4315 EXPORT_SYMBOL(netdev_set_master);
4318 * netdev_set_bond_master - set up bonding master/slave pair
4319 * @slave: slave device
4320 * @master: new master device
4322 * Changes the master device of the slave. Pass %NULL to break the
4323 * bonding. The caller must hold the RTNL semaphore. On a failure
4324 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4325 * to the routing socket and the function returns zero.
4327 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4333 err = netdev_set_master(slave, master);
4337 slave->flags |= IFF_SLAVE;
4339 slave->flags &= ~IFF_SLAVE;
4341 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4344 EXPORT_SYMBOL(netdev_set_bond_master);
4346 static void dev_change_rx_flags(struct net_device *dev, int flags)
4348 const struct net_device_ops *ops = dev->netdev_ops;
4350 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4351 ops->ndo_change_rx_flags(dev, flags);
4354 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4356 unsigned short old_flags = dev->flags;
4362 dev->flags |= IFF_PROMISC;
4363 dev->promiscuity += inc;
4364 if (dev->promiscuity == 0) {
4367 * If inc causes overflow, untouch promisc and return error.
4370 dev->flags &= ~IFF_PROMISC;
4372 dev->promiscuity -= inc;
4373 printk(KERN_WARNING "%s: promiscuity touches roof, "
4374 "set promiscuity failed, promiscuity feature "
4375 "of device might be broken.\n", dev->name);
4379 if (dev->flags != old_flags) {
4380 printk(KERN_INFO "device %s %s promiscuous mode\n",
4381 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4383 if (audit_enabled) {
4384 current_uid_gid(&uid, &gid);
4385 audit_log(current->audit_context, GFP_ATOMIC,
4386 AUDIT_ANOM_PROMISCUOUS,
4387 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4388 dev->name, (dev->flags & IFF_PROMISC),
4389 (old_flags & IFF_PROMISC),
4390 audit_get_loginuid(current),
4392 audit_get_sessionid(current));
4395 dev_change_rx_flags(dev, IFF_PROMISC);
4401 * dev_set_promiscuity - update promiscuity count on a device
4405 * Add or remove promiscuity from a device. While the count in the device
4406 * remains above zero the interface remains promiscuous. Once it hits zero
4407 * the device reverts back to normal filtering operation. A negative inc
4408 * value is used to drop promiscuity on the device.
4409 * Return 0 if successful or a negative errno code on error.
4411 int dev_set_promiscuity(struct net_device *dev, int inc)
4413 unsigned short old_flags = dev->flags;
4416 err = __dev_set_promiscuity(dev, inc);
4419 if (dev->flags != old_flags)
4420 dev_set_rx_mode(dev);
4423 EXPORT_SYMBOL(dev_set_promiscuity);
4426 * dev_set_allmulti - update allmulti count on a device
4430 * Add or remove reception of all multicast frames to a device. While the
4431 * count in the device remains above zero the interface remains listening
4432 * to all interfaces. Once it hits zero the device reverts back to normal
4433 * filtering operation. A negative @inc value is used to drop the counter
4434 * when releasing a resource needing all multicasts.
4435 * Return 0 if successful or a negative errno code on error.
4438 int dev_set_allmulti(struct net_device *dev, int inc)
4440 unsigned short old_flags = dev->flags;
4444 dev->flags |= IFF_ALLMULTI;
4445 dev->allmulti += inc;
4446 if (dev->allmulti == 0) {
4449 * If inc causes overflow, untouch allmulti and return error.
4452 dev->flags &= ~IFF_ALLMULTI;
4454 dev->allmulti -= inc;
4455 printk(KERN_WARNING "%s: allmulti touches roof, "
4456 "set allmulti failed, allmulti feature of "
4457 "device might be broken.\n", dev->name);
4461 if (dev->flags ^ old_flags) {
4462 dev_change_rx_flags(dev, IFF_ALLMULTI);
4463 dev_set_rx_mode(dev);
4467 EXPORT_SYMBOL(dev_set_allmulti);
4470 * Upload unicast and multicast address lists to device and
4471 * configure RX filtering. When the device doesn't support unicast
4472 * filtering it is put in promiscuous mode while unicast addresses
4475 void __dev_set_rx_mode(struct net_device *dev)
4477 const struct net_device_ops *ops = dev->netdev_ops;
4479 /* dev_open will call this function so the list will stay sane. */
4480 if (!(dev->flags&IFF_UP))
4483 if (!netif_device_present(dev))
4486 if (ops->ndo_set_rx_mode)
4487 ops->ndo_set_rx_mode(dev);
4489 /* Unicast addresses changes may only happen under the rtnl,
4490 * therefore calling __dev_set_promiscuity here is safe.
4492 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4493 __dev_set_promiscuity(dev, 1);
4494 dev->uc_promisc = 1;
4495 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4496 __dev_set_promiscuity(dev, -1);
4497 dev->uc_promisc = 0;
4500 if (ops->ndo_set_multicast_list)
4501 ops->ndo_set_multicast_list(dev);
4505 void dev_set_rx_mode(struct net_device *dev)
4507 netif_addr_lock_bh(dev);
4508 __dev_set_rx_mode(dev);
4509 netif_addr_unlock_bh(dev);
4513 * dev_get_flags - get flags reported to userspace
4516 * Get the combination of flag bits exported through APIs to userspace.
4518 unsigned dev_get_flags(const struct net_device *dev)
4522 flags = (dev->flags & ~(IFF_PROMISC |
4527 (dev->gflags & (IFF_PROMISC |
4530 if (netif_running(dev)) {
4531 if (netif_oper_up(dev))
4532 flags |= IFF_RUNNING;
4533 if (netif_carrier_ok(dev))
4534 flags |= IFF_LOWER_UP;
4535 if (netif_dormant(dev))
4536 flags |= IFF_DORMANT;
4541 EXPORT_SYMBOL(dev_get_flags);
4543 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4545 int old_flags = dev->flags;
4551 * Set the flags on our device.
4554 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4555 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4557 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4561 * Load in the correct multicast list now the flags have changed.
4564 if ((old_flags ^ flags) & IFF_MULTICAST)
4565 dev_change_rx_flags(dev, IFF_MULTICAST);
4567 dev_set_rx_mode(dev);
4570 * Have we downed the interface. We handle IFF_UP ourselves
4571 * according to user attempts to set it, rather than blindly
4576 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4577 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4580 dev_set_rx_mode(dev);
4583 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4584 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4586 dev->gflags ^= IFF_PROMISC;
4587 dev_set_promiscuity(dev, inc);
4590 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4591 is important. Some (broken) drivers set IFF_PROMISC, when
4592 IFF_ALLMULTI is requested not asking us and not reporting.
4594 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4595 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4597 dev->gflags ^= IFF_ALLMULTI;
4598 dev_set_allmulti(dev, inc);
4604 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4606 unsigned int changes = dev->flags ^ old_flags;
4608 if (changes & IFF_UP) {
4609 if (dev->flags & IFF_UP)
4610 call_netdevice_notifiers(NETDEV_UP, dev);
4612 call_netdevice_notifiers(NETDEV_DOWN, dev);
4615 if (dev->flags & IFF_UP &&
4616 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4617 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4621 * dev_change_flags - change device settings
4623 * @flags: device state flags
4625 * Change settings on device based state flags. The flags are
4626 * in the userspace exported format.
4628 int dev_change_flags(struct net_device *dev, unsigned flags)
4631 int old_flags = dev->flags;
4633 ret = __dev_change_flags(dev, flags);
4637 changes = old_flags ^ dev->flags;
4639 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4641 __dev_notify_flags(dev, old_flags);
4644 EXPORT_SYMBOL(dev_change_flags);
4647 * dev_set_mtu - Change maximum transfer unit
4649 * @new_mtu: new transfer unit
4651 * Change the maximum transfer size of the network device.
4653 int dev_set_mtu(struct net_device *dev, int new_mtu)
4655 const struct net_device_ops *ops = dev->netdev_ops;
4658 if (new_mtu == dev->mtu)
4661 /* MTU must be positive. */
4665 if (!netif_device_present(dev))
4669 if (ops->ndo_change_mtu)
4670 err = ops->ndo_change_mtu(dev, new_mtu);
4674 if (!err && dev->flags & IFF_UP)
4675 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4678 EXPORT_SYMBOL(dev_set_mtu);
4681 * dev_set_group - Change group this device belongs to
4683 * @new_group: group this device should belong to
4685 void dev_set_group(struct net_device *dev, int new_group)
4687 dev->group = new_group;
4689 EXPORT_SYMBOL(dev_set_group);
4692 * dev_set_mac_address - Change Media Access Control Address
4696 * Change the hardware (MAC) address of the device
4698 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4700 const struct net_device_ops *ops = dev->netdev_ops;
4703 if (!ops->ndo_set_mac_address)
4705 if (sa->sa_family != dev->type)
4707 if (!netif_device_present(dev))
4709 err = ops->ndo_set_mac_address(dev, sa);
4711 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4714 EXPORT_SYMBOL(dev_set_mac_address);
4717 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4719 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4722 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4728 case SIOCGIFFLAGS: /* Get interface flags */
4729 ifr->ifr_flags = (short) dev_get_flags(dev);
4732 case SIOCGIFMETRIC: /* Get the metric on the interface
4733 (currently unused) */
4734 ifr->ifr_metric = 0;
4737 case SIOCGIFMTU: /* Get the MTU of a device */
4738 ifr->ifr_mtu = dev->mtu;
4743 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4745 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4746 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4747 ifr->ifr_hwaddr.sa_family = dev->type;
4755 ifr->ifr_map.mem_start = dev->mem_start;
4756 ifr->ifr_map.mem_end = dev->mem_end;
4757 ifr->ifr_map.base_addr = dev->base_addr;
4758 ifr->ifr_map.irq = dev->irq;
4759 ifr->ifr_map.dma = dev->dma;
4760 ifr->ifr_map.port = dev->if_port;
4764 ifr->ifr_ifindex = dev->ifindex;
4768 ifr->ifr_qlen = dev->tx_queue_len;
4772 /* dev_ioctl() should ensure this case
4784 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4786 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4789 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4790 const struct net_device_ops *ops;
4795 ops = dev->netdev_ops;
4798 case SIOCSIFFLAGS: /* Set interface flags */
4799 return dev_change_flags(dev, ifr->ifr_flags);
4801 case SIOCSIFMETRIC: /* Set the metric on the interface
4802 (currently unused) */
4805 case SIOCSIFMTU: /* Set the MTU of a device */
4806 return dev_set_mtu(dev, ifr->ifr_mtu);
4809 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4811 case SIOCSIFHWBROADCAST:
4812 if (ifr->ifr_hwaddr.sa_family != dev->type)
4814 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4815 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4816 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4820 if (ops->ndo_set_config) {
4821 if (!netif_device_present(dev))
4823 return ops->ndo_set_config(dev, &ifr->ifr_map);
4828 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4829 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4831 if (!netif_device_present(dev))
4833 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4836 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4837 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4839 if (!netif_device_present(dev))
4841 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4844 if (ifr->ifr_qlen < 0)
4846 dev->tx_queue_len = ifr->ifr_qlen;
4850 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4851 return dev_change_name(dev, ifr->ifr_newname);
4854 * Unknown or private ioctl
4857 if ((cmd >= SIOCDEVPRIVATE &&
4858 cmd <= SIOCDEVPRIVATE + 15) ||
4859 cmd == SIOCBONDENSLAVE ||
4860 cmd == SIOCBONDRELEASE ||
4861 cmd == SIOCBONDSETHWADDR ||
4862 cmd == SIOCBONDSLAVEINFOQUERY ||
4863 cmd == SIOCBONDINFOQUERY ||
4864 cmd == SIOCBONDCHANGEACTIVE ||
4865 cmd == SIOCGMIIPHY ||
4866 cmd == SIOCGMIIREG ||
4867 cmd == SIOCSMIIREG ||
4868 cmd == SIOCBRADDIF ||
4869 cmd == SIOCBRDELIF ||
4870 cmd == SIOCSHWTSTAMP ||
4871 cmd == SIOCWANDEV) {
4873 if (ops->ndo_do_ioctl) {
4874 if (netif_device_present(dev))
4875 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4887 * This function handles all "interface"-type I/O control requests. The actual
4888 * 'doing' part of this is dev_ifsioc above.
4892 * dev_ioctl - network device ioctl
4893 * @net: the applicable net namespace
4894 * @cmd: command to issue
4895 * @arg: pointer to a struct ifreq in user space
4897 * Issue ioctl functions to devices. This is normally called by the
4898 * user space syscall interfaces but can sometimes be useful for
4899 * other purposes. The return value is the return from the syscall if
4900 * positive or a negative errno code on error.
4903 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4909 /* One special case: SIOCGIFCONF takes ifconf argument
4910 and requires shared lock, because it sleeps writing
4914 if (cmd == SIOCGIFCONF) {
4916 ret = dev_ifconf(net, (char __user *) arg);
4920 if (cmd == SIOCGIFNAME)
4921 return dev_ifname(net, (struct ifreq __user *)arg);
4923 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4926 ifr.ifr_name[IFNAMSIZ-1] = 0;
4928 colon = strchr(ifr.ifr_name, ':');
4933 * See which interface the caller is talking about.
4938 * These ioctl calls:
4939 * - can be done by all.
4940 * - atomic and do not require locking.
4951 dev_load(net, ifr.ifr_name);
4953 ret = dev_ifsioc_locked(net, &ifr, cmd);
4958 if (copy_to_user(arg, &ifr,
4959 sizeof(struct ifreq)))
4965 dev_load(net, ifr.ifr_name);
4967 ret = dev_ethtool(net, &ifr);
4972 if (copy_to_user(arg, &ifr,
4973 sizeof(struct ifreq)))
4979 * These ioctl calls:
4980 * - require superuser power.
4981 * - require strict serialization.
4987 if (!capable(CAP_NET_ADMIN))
4989 dev_load(net, ifr.ifr_name);
4991 ret = dev_ifsioc(net, &ifr, cmd);
4996 if (copy_to_user(arg, &ifr,
4997 sizeof(struct ifreq)))
5003 * These ioctl calls:
5004 * - require superuser power.
5005 * - require strict serialization.
5006 * - do not return a value
5016 case SIOCSIFHWBROADCAST:
5019 case SIOCBONDENSLAVE:
5020 case SIOCBONDRELEASE:
5021 case SIOCBONDSETHWADDR:
5022 case SIOCBONDCHANGEACTIVE:
5026 if (!capable(CAP_NET_ADMIN))
5029 case SIOCBONDSLAVEINFOQUERY:
5030 case SIOCBONDINFOQUERY:
5031 dev_load(net, ifr.ifr_name);
5033 ret = dev_ifsioc(net, &ifr, cmd);
5038 /* Get the per device memory space. We can add this but
5039 * currently do not support it */
5041 /* Set the per device memory buffer space.
5042 * Not applicable in our case */
5047 * Unknown or private ioctl.
5050 if (cmd == SIOCWANDEV ||
5051 (cmd >= SIOCDEVPRIVATE &&
5052 cmd <= SIOCDEVPRIVATE + 15)) {
5053 dev_load(net, ifr.ifr_name);
5055 ret = dev_ifsioc(net, &ifr, cmd);
5057 if (!ret && copy_to_user(arg, &ifr,
5058 sizeof(struct ifreq)))
5062 /* Take care of Wireless Extensions */
5063 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5064 return wext_handle_ioctl(net, &ifr, cmd, arg);
5071 * dev_new_index - allocate an ifindex
5072 * @net: the applicable net namespace
5074 * Returns a suitable unique value for a new device interface
5075 * number. The caller must hold the rtnl semaphore or the
5076 * dev_base_lock to be sure it remains unique.
5078 static int dev_new_index(struct net *net)
5084 if (!__dev_get_by_index(net, ifindex))
5089 /* Delayed registration/unregisteration */
5090 static LIST_HEAD(net_todo_list);
5092 static void net_set_todo(struct net_device *dev)
5094 list_add_tail(&dev->todo_list, &net_todo_list);
5097 static void rollback_registered_many(struct list_head *head)
5099 struct net_device *dev, *tmp;
5101 BUG_ON(dev_boot_phase);
5104 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5105 /* Some devices call without registering
5106 * for initialization unwind. Remove those
5107 * devices and proceed with the remaining.
5109 if (dev->reg_state == NETREG_UNINITIALIZED) {
5110 pr_debug("unregister_netdevice: device %s/%p never "
5111 "was registered\n", dev->name, dev);
5114 list_del(&dev->unreg_list);
5118 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5121 /* If device is running, close it first. */
5122 dev_close_many(head);
5124 list_for_each_entry(dev, head, unreg_list) {
5125 /* And unlink it from device chain. */
5126 unlist_netdevice(dev);
5128 dev->reg_state = NETREG_UNREGISTERING;
5133 list_for_each_entry(dev, head, unreg_list) {
5134 /* Shutdown queueing discipline. */
5138 /* Notify protocols, that we are about to destroy
5139 this device. They should clean all the things.
5141 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5143 if (!dev->rtnl_link_ops ||
5144 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5145 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5148 * Flush the unicast and multicast chains
5153 if (dev->netdev_ops->ndo_uninit)
5154 dev->netdev_ops->ndo_uninit(dev);
5156 /* Notifier chain MUST detach us from master device. */
5157 WARN_ON(dev->master);
5159 /* Remove entries from kobject tree */
5160 netdev_unregister_kobject(dev);
5163 /* Process any work delayed until the end of the batch */
5164 dev = list_first_entry(head, struct net_device, unreg_list);
5165 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5169 list_for_each_entry(dev, head, unreg_list)
5173 static void rollback_registered(struct net_device *dev)
5177 list_add(&dev->unreg_list, &single);
5178 rollback_registered_many(&single);
5182 u32 netdev_fix_features(struct net_device *dev, u32 features)
5184 /* Fix illegal checksum combinations */
5185 if ((features & NETIF_F_HW_CSUM) &&
5186 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5187 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5188 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5191 if ((features & NETIF_F_NO_CSUM) &&
5192 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5193 netdev_info(dev, "mixed no checksumming and other settings.\n");
5194 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5197 /* Fix illegal SG+CSUM combinations. */
5198 if ((features & NETIF_F_SG) &&
5199 !(features & NETIF_F_ALL_CSUM)) {
5201 "Dropping NETIF_F_SG since no checksum feature.\n");
5202 features &= ~NETIF_F_SG;
5205 /* TSO requires that SG is present as well. */
5206 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5207 netdev_info(dev, "Dropping TSO features since no SG feature.\n");
5208 features &= ~NETIF_F_ALL_TSO;
5211 /* TSO ECN requires that TSO is present as well. */
5212 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5213 features &= ~NETIF_F_TSO_ECN;
5215 /* Software GSO depends on SG. */
5216 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5217 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5218 features &= ~NETIF_F_GSO;
5221 /* UFO needs SG and checksumming */
5222 if (features & NETIF_F_UFO) {
5223 /* maybe split UFO into V4 and V6? */
5224 if (!((features & NETIF_F_GEN_CSUM) ||
5225 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5226 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5228 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5229 features &= ~NETIF_F_UFO;
5232 if (!(features & NETIF_F_SG)) {
5234 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5235 features &= ~NETIF_F_UFO;
5241 EXPORT_SYMBOL(netdev_fix_features);
5243 void netdev_update_features(struct net_device *dev)
5248 features = netdev_get_wanted_features(dev);
5250 if (dev->netdev_ops->ndo_fix_features)
5251 features = dev->netdev_ops->ndo_fix_features(dev, features);
5253 /* driver might be less strict about feature dependencies */
5254 features = netdev_fix_features(dev, features);
5256 if (dev->features == features)
5259 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n",
5260 dev->features, features);
5262 if (dev->netdev_ops->ndo_set_features)
5263 err = dev->netdev_ops->ndo_set_features(dev, features);
5266 dev->features = features;
5269 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5270 err, features, dev->features);
5272 EXPORT_SYMBOL(netdev_update_features);
5275 * netif_stacked_transfer_operstate - transfer operstate
5276 * @rootdev: the root or lower level device to transfer state from
5277 * @dev: the device to transfer operstate to
5279 * Transfer operational state from root to device. This is normally
5280 * called when a stacking relationship exists between the root
5281 * device and the device(a leaf device).
5283 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5284 struct net_device *dev)
5286 if (rootdev->operstate == IF_OPER_DORMANT)
5287 netif_dormant_on(dev);
5289 netif_dormant_off(dev);
5291 if (netif_carrier_ok(rootdev)) {
5292 if (!netif_carrier_ok(dev))
5293 netif_carrier_on(dev);
5295 if (netif_carrier_ok(dev))
5296 netif_carrier_off(dev);
5299 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5302 static int netif_alloc_rx_queues(struct net_device *dev)
5304 unsigned int i, count = dev->num_rx_queues;
5305 struct netdev_rx_queue *rx;
5309 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5311 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5316 for (i = 0; i < count; i++)
5322 static void netdev_init_one_queue(struct net_device *dev,
5323 struct netdev_queue *queue, void *_unused)
5325 /* Initialize queue lock */
5326 spin_lock_init(&queue->_xmit_lock);
5327 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5328 queue->xmit_lock_owner = -1;
5329 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5333 static int netif_alloc_netdev_queues(struct net_device *dev)
5335 unsigned int count = dev->num_tx_queues;
5336 struct netdev_queue *tx;
5340 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5342 pr_err("netdev: Unable to allocate %u tx queues.\n",
5348 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5349 spin_lock_init(&dev->tx_global_lock);
5355 * register_netdevice - register a network device
5356 * @dev: device to register
5358 * Take a completed network device structure and add it to the kernel
5359 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5360 * chain. 0 is returned on success. A negative errno code is returned
5361 * on a failure to set up the device, or if the name is a duplicate.
5363 * Callers must hold the rtnl semaphore. You may want
5364 * register_netdev() instead of this.
5367 * The locking appears insufficient to guarantee two parallel registers
5368 * will not get the same name.
5371 int register_netdevice(struct net_device *dev)
5374 struct net *net = dev_net(dev);
5376 BUG_ON(dev_boot_phase);
5381 /* When net_device's are persistent, this will be fatal. */
5382 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5385 spin_lock_init(&dev->addr_list_lock);
5386 netdev_set_addr_lockdep_class(dev);
5390 /* Init, if this function is available */
5391 if (dev->netdev_ops->ndo_init) {
5392 ret = dev->netdev_ops->ndo_init(dev);
5400 ret = dev_get_valid_name(dev, dev->name, 0);
5404 dev->ifindex = dev_new_index(net);
5405 if (dev->iflink == -1)
5406 dev->iflink = dev->ifindex;
5408 /* Transfer changeable features to wanted_features and enable
5409 * software offloads (GSO and GRO).
5411 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5412 dev->features |= NETIF_F_SOFT_FEATURES;
5413 dev->wanted_features = dev->features & dev->hw_features;
5415 /* Avoid warning from netdev_fix_features() for GSO without SG */
5416 if (!(dev->wanted_features & NETIF_F_SG)) {
5417 dev->wanted_features &= ~NETIF_F_GSO;
5418 dev->features &= ~NETIF_F_GSO;
5421 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5422 * vlan_dev_init() will do the dev->features check, so these features
5423 * are enabled only if supported by underlying device.
5425 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5427 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5428 ret = notifier_to_errno(ret);
5432 ret = netdev_register_kobject(dev);
5435 dev->reg_state = NETREG_REGISTERED;
5437 netdev_update_features(dev);
5440 * Default initial state at registry is that the
5441 * device is present.
5444 set_bit(__LINK_STATE_PRESENT, &dev->state);
5446 dev_init_scheduler(dev);
5448 list_netdevice(dev);
5450 /* Notify protocols, that a new device appeared. */
5451 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5452 ret = notifier_to_errno(ret);
5454 rollback_registered(dev);
5455 dev->reg_state = NETREG_UNREGISTERED;
5458 * Prevent userspace races by waiting until the network
5459 * device is fully setup before sending notifications.
5461 if (!dev->rtnl_link_ops ||
5462 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5463 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5469 if (dev->netdev_ops->ndo_uninit)
5470 dev->netdev_ops->ndo_uninit(dev);
5473 EXPORT_SYMBOL(register_netdevice);
5476 * init_dummy_netdev - init a dummy network device for NAPI
5477 * @dev: device to init
5479 * This takes a network device structure and initialize the minimum
5480 * amount of fields so it can be used to schedule NAPI polls without
5481 * registering a full blown interface. This is to be used by drivers
5482 * that need to tie several hardware interfaces to a single NAPI
5483 * poll scheduler due to HW limitations.
5485 int init_dummy_netdev(struct net_device *dev)
5487 /* Clear everything. Note we don't initialize spinlocks
5488 * are they aren't supposed to be taken by any of the
5489 * NAPI code and this dummy netdev is supposed to be
5490 * only ever used for NAPI polls
5492 memset(dev, 0, sizeof(struct net_device));
5494 /* make sure we BUG if trying to hit standard
5495 * register/unregister code path
5497 dev->reg_state = NETREG_DUMMY;
5499 /* NAPI wants this */
5500 INIT_LIST_HEAD(&dev->napi_list);
5502 /* a dummy interface is started by default */
5503 set_bit(__LINK_STATE_PRESENT, &dev->state);
5504 set_bit(__LINK_STATE_START, &dev->state);
5506 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5507 * because users of this 'device' dont need to change
5513 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5517 * register_netdev - register a network device
5518 * @dev: device to register
5520 * Take a completed network device structure and add it to the kernel
5521 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5522 * chain. 0 is returned on success. A negative errno code is returned
5523 * on a failure to set up the device, or if the name is a duplicate.
5525 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5526 * and expands the device name if you passed a format string to
5529 int register_netdev(struct net_device *dev)
5536 * If the name is a format string the caller wants us to do a
5539 if (strchr(dev->name, '%')) {
5540 err = dev_alloc_name(dev, dev->name);
5545 err = register_netdevice(dev);
5550 EXPORT_SYMBOL(register_netdev);
5552 int netdev_refcnt_read(const struct net_device *dev)
5556 for_each_possible_cpu(i)
5557 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5560 EXPORT_SYMBOL(netdev_refcnt_read);
5563 * netdev_wait_allrefs - wait until all references are gone.
5565 * This is called when unregistering network devices.
5567 * Any protocol or device that holds a reference should register
5568 * for netdevice notification, and cleanup and put back the
5569 * reference if they receive an UNREGISTER event.
5570 * We can get stuck here if buggy protocols don't correctly
5573 static void netdev_wait_allrefs(struct net_device *dev)
5575 unsigned long rebroadcast_time, warning_time;
5578 linkwatch_forget_dev(dev);
5580 rebroadcast_time = warning_time = jiffies;
5581 refcnt = netdev_refcnt_read(dev);
5583 while (refcnt != 0) {
5584 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5587 /* Rebroadcast unregister notification */
5588 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5589 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5590 * should have already handle it the first time */
5592 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5594 /* We must not have linkwatch events
5595 * pending on unregister. If this
5596 * happens, we simply run the queue
5597 * unscheduled, resulting in a noop
5600 linkwatch_run_queue();
5605 rebroadcast_time = jiffies;
5610 refcnt = netdev_refcnt_read(dev);
5612 if (time_after(jiffies, warning_time + 10 * HZ)) {
5613 printk(KERN_EMERG "unregister_netdevice: "
5614 "waiting for %s to become free. Usage "
5617 warning_time = jiffies;
5626 * register_netdevice(x1);
5627 * register_netdevice(x2);
5629 * unregister_netdevice(y1);
5630 * unregister_netdevice(y2);
5636 * We are invoked by rtnl_unlock().
5637 * This allows us to deal with problems:
5638 * 1) We can delete sysfs objects which invoke hotplug
5639 * without deadlocking with linkwatch via keventd.
5640 * 2) Since we run with the RTNL semaphore not held, we can sleep
5641 * safely in order to wait for the netdev refcnt to drop to zero.
5643 * We must not return until all unregister events added during
5644 * the interval the lock was held have been completed.
5646 void netdev_run_todo(void)
5648 struct list_head list;
5650 /* Snapshot list, allow later requests */
5651 list_replace_init(&net_todo_list, &list);
5655 while (!list_empty(&list)) {
5656 struct net_device *dev
5657 = list_first_entry(&list, struct net_device, todo_list);
5658 list_del(&dev->todo_list);
5660 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5661 printk(KERN_ERR "network todo '%s' but state %d\n",
5662 dev->name, dev->reg_state);
5667 dev->reg_state = NETREG_UNREGISTERED;
5669 on_each_cpu(flush_backlog, dev, 1);
5671 netdev_wait_allrefs(dev);
5674 BUG_ON(netdev_refcnt_read(dev));
5675 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5676 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5677 WARN_ON(dev->dn_ptr);
5679 if (dev->destructor)
5680 dev->destructor(dev);
5682 /* Free network device */
5683 kobject_put(&dev->dev.kobj);
5687 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5688 * fields in the same order, with only the type differing.
5690 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5691 const struct net_device_stats *netdev_stats)
5693 #if BITS_PER_LONG == 64
5694 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5695 memcpy(stats64, netdev_stats, sizeof(*stats64));
5697 size_t i, n = sizeof(*stats64) / sizeof(u64);
5698 const unsigned long *src = (const unsigned long *)netdev_stats;
5699 u64 *dst = (u64 *)stats64;
5701 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5702 sizeof(*stats64) / sizeof(u64));
5703 for (i = 0; i < n; i++)
5709 * dev_get_stats - get network device statistics
5710 * @dev: device to get statistics from
5711 * @storage: place to store stats
5713 * Get network statistics from device. Return @storage.
5714 * The device driver may provide its own method by setting
5715 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5716 * otherwise the internal statistics structure is used.
5718 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5719 struct rtnl_link_stats64 *storage)
5721 const struct net_device_ops *ops = dev->netdev_ops;
5723 if (ops->ndo_get_stats64) {
5724 memset(storage, 0, sizeof(*storage));
5725 ops->ndo_get_stats64(dev, storage);
5726 } else if (ops->ndo_get_stats) {
5727 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5729 netdev_stats_to_stats64(storage, &dev->stats);
5731 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5734 EXPORT_SYMBOL(dev_get_stats);
5736 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5738 struct netdev_queue *queue = dev_ingress_queue(dev);
5740 #ifdef CONFIG_NET_CLS_ACT
5743 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5746 netdev_init_one_queue(dev, queue, NULL);
5747 queue->qdisc = &noop_qdisc;
5748 queue->qdisc_sleeping = &noop_qdisc;
5749 rcu_assign_pointer(dev->ingress_queue, queue);
5755 * alloc_netdev_mqs - allocate network device
5756 * @sizeof_priv: size of private data to allocate space for
5757 * @name: device name format string
5758 * @setup: callback to initialize device
5759 * @txqs: the number of TX subqueues to allocate
5760 * @rxqs: the number of RX subqueues to allocate
5762 * Allocates a struct net_device with private data area for driver use
5763 * and performs basic initialization. Also allocates subquue structs
5764 * for each queue on the device.
5766 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5767 void (*setup)(struct net_device *),
5768 unsigned int txqs, unsigned int rxqs)
5770 struct net_device *dev;
5772 struct net_device *p;
5774 BUG_ON(strlen(name) >= sizeof(dev->name));
5777 pr_err("alloc_netdev: Unable to allocate device "
5778 "with zero queues.\n");
5784 pr_err("alloc_netdev: Unable to allocate device "
5785 "with zero RX queues.\n");
5790 alloc_size = sizeof(struct net_device);
5792 /* ensure 32-byte alignment of private area */
5793 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5794 alloc_size += sizeof_priv;
5796 /* ensure 32-byte alignment of whole construct */
5797 alloc_size += NETDEV_ALIGN - 1;
5799 p = kzalloc(alloc_size, GFP_KERNEL);
5801 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5805 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5806 dev->padded = (char *)dev - (char *)p;
5808 dev->pcpu_refcnt = alloc_percpu(int);
5809 if (!dev->pcpu_refcnt)
5812 if (dev_addr_init(dev))
5818 dev_net_set(dev, &init_net);
5820 dev->gso_max_size = GSO_MAX_SIZE;
5822 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5823 dev->ethtool_ntuple_list.count = 0;
5824 INIT_LIST_HEAD(&dev->napi_list);
5825 INIT_LIST_HEAD(&dev->unreg_list);
5826 INIT_LIST_HEAD(&dev->link_watch_list);
5827 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5830 dev->num_tx_queues = txqs;
5831 dev->real_num_tx_queues = txqs;
5832 if (netif_alloc_netdev_queues(dev))
5836 dev->num_rx_queues = rxqs;
5837 dev->real_num_rx_queues = rxqs;
5838 if (netif_alloc_rx_queues(dev))
5842 strcpy(dev->name, name);
5843 dev->group = INIT_NETDEV_GROUP;
5851 free_percpu(dev->pcpu_refcnt);
5861 EXPORT_SYMBOL(alloc_netdev_mqs);
5864 * free_netdev - free network device
5867 * This function does the last stage of destroying an allocated device
5868 * interface. The reference to the device object is released.
5869 * If this is the last reference then it will be freed.
5871 void free_netdev(struct net_device *dev)
5873 struct napi_struct *p, *n;
5875 release_net(dev_net(dev));
5882 kfree(rcu_dereference_raw(dev->ingress_queue));
5884 /* Flush device addresses */
5885 dev_addr_flush(dev);
5887 /* Clear ethtool n-tuple list */
5888 ethtool_ntuple_flush(dev);
5890 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5893 free_percpu(dev->pcpu_refcnt);
5894 dev->pcpu_refcnt = NULL;
5896 /* Compatibility with error handling in drivers */
5897 if (dev->reg_state == NETREG_UNINITIALIZED) {
5898 kfree((char *)dev - dev->padded);
5902 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5903 dev->reg_state = NETREG_RELEASED;
5905 /* will free via device release */
5906 put_device(&dev->dev);
5908 EXPORT_SYMBOL(free_netdev);
5911 * synchronize_net - Synchronize with packet receive processing
5913 * Wait for packets currently being received to be done.
5914 * Does not block later packets from starting.
5916 void synchronize_net(void)
5921 EXPORT_SYMBOL(synchronize_net);
5924 * unregister_netdevice_queue - remove device from the kernel
5928 * This function shuts down a device interface and removes it
5929 * from the kernel tables.
5930 * If head not NULL, device is queued to be unregistered later.
5932 * Callers must hold the rtnl semaphore. You may want
5933 * unregister_netdev() instead of this.
5936 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5941 list_move_tail(&dev->unreg_list, head);
5943 rollback_registered(dev);
5944 /* Finish processing unregister after unlock */
5948 EXPORT_SYMBOL(unregister_netdevice_queue);
5951 * unregister_netdevice_many - unregister many devices
5952 * @head: list of devices
5954 void unregister_netdevice_many(struct list_head *head)
5956 struct net_device *dev;
5958 if (!list_empty(head)) {
5959 rollback_registered_many(head);
5960 list_for_each_entry(dev, head, unreg_list)
5964 EXPORT_SYMBOL(unregister_netdevice_many);
5967 * unregister_netdev - remove device from the kernel
5970 * This function shuts down a device interface and removes it
5971 * from the kernel tables.
5973 * This is just a wrapper for unregister_netdevice that takes
5974 * the rtnl semaphore. In general you want to use this and not
5975 * unregister_netdevice.
5977 void unregister_netdev(struct net_device *dev)
5980 unregister_netdevice(dev);
5983 EXPORT_SYMBOL(unregister_netdev);
5986 * dev_change_net_namespace - move device to different nethost namespace
5988 * @net: network namespace
5989 * @pat: If not NULL name pattern to try if the current device name
5990 * is already taken in the destination network namespace.
5992 * This function shuts down a device interface and moves it
5993 * to a new network namespace. On success 0 is returned, on
5994 * a failure a netagive errno code is returned.
5996 * Callers must hold the rtnl semaphore.
5999 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6005 /* Don't allow namespace local devices to be moved. */
6007 if (dev->features & NETIF_F_NETNS_LOCAL)
6010 /* Ensure the device has been registrered */
6012 if (dev->reg_state != NETREG_REGISTERED)
6015 /* Get out if there is nothing todo */
6017 if (net_eq(dev_net(dev), net))
6020 /* Pick the destination device name, and ensure
6021 * we can use it in the destination network namespace.
6024 if (__dev_get_by_name(net, dev->name)) {
6025 /* We get here if we can't use the current device name */
6028 if (dev_get_valid_name(dev, pat, 1))
6033 * And now a mini version of register_netdevice unregister_netdevice.
6036 /* If device is running close it first. */
6039 /* And unlink it from device chain */
6041 unlist_netdevice(dev);
6045 /* Shutdown queueing discipline. */
6048 /* Notify protocols, that we are about to destroy
6049 this device. They should clean all the things.
6051 Note that dev->reg_state stays at NETREG_REGISTERED.
6052 This is wanted because this way 8021q and macvlan know
6053 the device is just moving and can keep their slaves up.
6055 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6056 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6059 * Flush the unicast and multicast chains
6064 /* Actually switch the network namespace */
6065 dev_net_set(dev, net);
6067 /* If there is an ifindex conflict assign a new one */
6068 if (__dev_get_by_index(net, dev->ifindex)) {
6069 int iflink = (dev->iflink == dev->ifindex);
6070 dev->ifindex = dev_new_index(net);
6072 dev->iflink = dev->ifindex;
6075 /* Fixup kobjects */
6076 err = device_rename(&dev->dev, dev->name);
6079 /* Add the device back in the hashes */
6080 list_netdevice(dev);
6082 /* Notify protocols, that a new device appeared. */
6083 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6086 * Prevent userspace races by waiting until the network
6087 * device is fully setup before sending notifications.
6089 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6096 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6098 static int dev_cpu_callback(struct notifier_block *nfb,
6099 unsigned long action,
6102 struct sk_buff **list_skb;
6103 struct sk_buff *skb;
6104 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6105 struct softnet_data *sd, *oldsd;
6107 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6110 local_irq_disable();
6111 cpu = smp_processor_id();
6112 sd = &per_cpu(softnet_data, cpu);
6113 oldsd = &per_cpu(softnet_data, oldcpu);
6115 /* Find end of our completion_queue. */
6116 list_skb = &sd->completion_queue;
6118 list_skb = &(*list_skb)->next;
6119 /* Append completion queue from offline CPU. */
6120 *list_skb = oldsd->completion_queue;
6121 oldsd->completion_queue = NULL;
6123 /* Append output queue from offline CPU. */
6124 if (oldsd->output_queue) {
6125 *sd->output_queue_tailp = oldsd->output_queue;
6126 sd->output_queue_tailp = oldsd->output_queue_tailp;
6127 oldsd->output_queue = NULL;
6128 oldsd->output_queue_tailp = &oldsd->output_queue;
6131 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6134 /* Process offline CPU's input_pkt_queue */
6135 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6137 input_queue_head_incr(oldsd);
6139 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6141 input_queue_head_incr(oldsd);
6149 * netdev_increment_features - increment feature set by one
6150 * @all: current feature set
6151 * @one: new feature set
6152 * @mask: mask feature set
6154 * Computes a new feature set after adding a device with feature set
6155 * @one to the master device with current feature set @all. Will not
6156 * enable anything that is off in @mask. Returns the new feature set.
6158 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6160 /* If device needs checksumming, downgrade to it. */
6161 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6162 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6163 else if (mask & NETIF_F_ALL_CSUM) {
6164 /* If one device supports v4/v6 checksumming, set for all. */
6165 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6166 !(all & NETIF_F_GEN_CSUM)) {
6167 all &= ~NETIF_F_ALL_CSUM;
6168 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6171 /* If one device supports hw checksumming, set for all. */
6172 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6173 all &= ~NETIF_F_ALL_CSUM;
6174 all |= NETIF_F_HW_CSUM;
6178 one |= NETIF_F_ALL_CSUM;
6180 one |= all & NETIF_F_ONE_FOR_ALL;
6181 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6182 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6186 EXPORT_SYMBOL(netdev_increment_features);
6188 static struct hlist_head *netdev_create_hash(void)
6191 struct hlist_head *hash;
6193 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6195 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6196 INIT_HLIST_HEAD(&hash[i]);
6201 /* Initialize per network namespace state */
6202 static int __net_init netdev_init(struct net *net)
6204 INIT_LIST_HEAD(&net->dev_base_head);
6206 net->dev_name_head = netdev_create_hash();
6207 if (net->dev_name_head == NULL)
6210 net->dev_index_head = netdev_create_hash();
6211 if (net->dev_index_head == NULL)
6217 kfree(net->dev_name_head);
6223 * netdev_drivername - network driver for the device
6224 * @dev: network device
6225 * @buffer: buffer for resulting name
6226 * @len: size of buffer
6228 * Determine network driver for device.
6230 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6232 const struct device_driver *driver;
6233 const struct device *parent;
6235 if (len <= 0 || !buffer)
6239 parent = dev->dev.parent;
6244 driver = parent->driver;
6245 if (driver && driver->name)
6246 strlcpy(buffer, driver->name, len);
6250 static int __netdev_printk(const char *level, const struct net_device *dev,
6251 struct va_format *vaf)
6255 if (dev && dev->dev.parent)
6256 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6257 netdev_name(dev), vaf);
6259 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6261 r = printk("%s(NULL net_device): %pV", level, vaf);
6266 int netdev_printk(const char *level, const struct net_device *dev,
6267 const char *format, ...)
6269 struct va_format vaf;
6273 va_start(args, format);
6278 r = __netdev_printk(level, dev, &vaf);
6283 EXPORT_SYMBOL(netdev_printk);
6285 #define define_netdev_printk_level(func, level) \
6286 int func(const struct net_device *dev, const char *fmt, ...) \
6289 struct va_format vaf; \
6292 va_start(args, fmt); \
6297 r = __netdev_printk(level, dev, &vaf); \
6302 EXPORT_SYMBOL(func);
6304 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6305 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6306 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6307 define_netdev_printk_level(netdev_err, KERN_ERR);
6308 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6309 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6310 define_netdev_printk_level(netdev_info, KERN_INFO);
6312 static void __net_exit netdev_exit(struct net *net)
6314 kfree(net->dev_name_head);
6315 kfree(net->dev_index_head);
6318 static struct pernet_operations __net_initdata netdev_net_ops = {
6319 .init = netdev_init,
6320 .exit = netdev_exit,
6323 static void __net_exit default_device_exit(struct net *net)
6325 struct net_device *dev, *aux;
6327 * Push all migratable network devices back to the
6328 * initial network namespace
6331 for_each_netdev_safe(net, dev, aux) {
6333 char fb_name[IFNAMSIZ];
6335 /* Ignore unmoveable devices (i.e. loopback) */
6336 if (dev->features & NETIF_F_NETNS_LOCAL)
6339 /* Leave virtual devices for the generic cleanup */
6340 if (dev->rtnl_link_ops)
6343 /* Push remaining network devices to init_net */
6344 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6345 err = dev_change_net_namespace(dev, &init_net, fb_name);
6347 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6348 __func__, dev->name, err);
6355 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6357 /* At exit all network devices most be removed from a network
6358 * namespace. Do this in the reverse order of registration.
6359 * Do this across as many network namespaces as possible to
6360 * improve batching efficiency.
6362 struct net_device *dev;
6364 LIST_HEAD(dev_kill_list);
6367 list_for_each_entry(net, net_list, exit_list) {
6368 for_each_netdev_reverse(net, dev) {
6369 if (dev->rtnl_link_ops)
6370 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6372 unregister_netdevice_queue(dev, &dev_kill_list);
6375 unregister_netdevice_many(&dev_kill_list);
6376 list_del(&dev_kill_list);
6380 static struct pernet_operations __net_initdata default_device_ops = {
6381 .exit = default_device_exit,
6382 .exit_batch = default_device_exit_batch,
6386 * Initialize the DEV module. At boot time this walks the device list and
6387 * unhooks any devices that fail to initialise (normally hardware not
6388 * present) and leaves us with a valid list of present and active devices.
6393 * This is called single threaded during boot, so no need
6394 * to take the rtnl semaphore.
6396 static int __init net_dev_init(void)
6398 int i, rc = -ENOMEM;
6400 BUG_ON(!dev_boot_phase);
6402 if (dev_proc_init())
6405 if (netdev_kobject_init())
6408 INIT_LIST_HEAD(&ptype_all);
6409 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6410 INIT_LIST_HEAD(&ptype_base[i]);
6412 if (register_pernet_subsys(&netdev_net_ops))
6416 * Initialise the packet receive queues.
6419 for_each_possible_cpu(i) {
6420 struct softnet_data *sd = &per_cpu(softnet_data, i);
6422 memset(sd, 0, sizeof(*sd));
6423 skb_queue_head_init(&sd->input_pkt_queue);
6424 skb_queue_head_init(&sd->process_queue);
6425 sd->completion_queue = NULL;
6426 INIT_LIST_HEAD(&sd->poll_list);
6427 sd->output_queue = NULL;
6428 sd->output_queue_tailp = &sd->output_queue;
6430 sd->csd.func = rps_trigger_softirq;
6436 sd->backlog.poll = process_backlog;
6437 sd->backlog.weight = weight_p;
6438 sd->backlog.gro_list = NULL;
6439 sd->backlog.gro_count = 0;
6444 /* The loopback device is special if any other network devices
6445 * is present in a network namespace the loopback device must
6446 * be present. Since we now dynamically allocate and free the
6447 * loopback device ensure this invariant is maintained by
6448 * keeping the loopback device as the first device on the
6449 * list of network devices. Ensuring the loopback devices
6450 * is the first device that appears and the last network device
6453 if (register_pernet_device(&loopback_net_ops))
6456 if (register_pernet_device(&default_device_ops))
6459 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6460 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6462 hotcpu_notifier(dev_cpu_callback, 0);
6470 subsys_initcall(net_dev_init);
6472 static int __init initialize_hashrnd(void)
6474 get_random_bytes(&hashrnd, sizeof(hashrnd));
6478 late_initcall_sync(initialize_hashrnd);