1 /* SPDX-License-Identifier: GPL-2.0 */
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 unsigned short seg_type)
32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
35 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
39 #define IS_CURSEG(sbi, seg) \
40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
49 #define IS_CURSEC(sbi, secno) \
50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
51 (sbi)->segs_per_sec) || \
52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
53 (sbi)->segs_per_sec) || \
54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
55 (sbi)->segs_per_sec) || \
56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
57 (sbi)->segs_per_sec) || \
58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
59 (sbi)->segs_per_sec) || \
60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
61 (sbi)->segs_per_sec) || \
62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
63 (sbi)->segs_per_sec) || \
64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
67 #define MAIN_BLKADDR(sbi) \
68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi) \
71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
74 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi) ((sbi)->total_sections)
77 #define TOTAL_SEGS(sbi) \
78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
82 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
84 (sbi)->log_blocks_per_seg))
86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
87 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
89 #define NEXT_FREE_BLKADDR(sbi, curseg) \
90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
98 #define GET_SEGNO(sbi, blk_addr) \
99 ((!__is_valid_data_blkaddr(blk_addr)) ? \
100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
101 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi) \
103 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi) \
105 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg - \
106 (sbi)->unusable_blocks_per_sec)
107 #define GET_SEC_FROM_SEG(sbi, segno) \
108 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
109 #define GET_SEG_FROM_SEC(sbi, secno) \
110 ((secno) * (sbi)->segs_per_sec)
111 #define GET_ZONE_FROM_SEC(sbi, secno) \
112 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
113 #define GET_ZONE_FROM_SEG(sbi, segno) \
114 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
116 #define GET_SUM_BLOCK(sbi, segno) \
117 ((sbi)->sm_info->ssa_blkaddr + (segno))
119 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
122 #define SIT_ENTRY_OFFSET(sit_i, segno) \
123 ((segno) % (sit_i)->sents_per_block)
124 #define SIT_BLOCK_OFFSET(segno) \
125 ((segno) / SIT_ENTRY_PER_BLOCK)
126 #define START_SEGNO(segno) \
127 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128 #define SIT_BLK_CNT(sbi) \
129 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130 #define f2fs_bitmap_size(nr) \
131 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
133 #define SECTOR_FROM_BLOCK(blk_addr) \
134 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135 #define SECTOR_TO_BLOCK(sectors) \
136 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
139 * indicate a block allocation direction: RIGHT and LEFT.
140 * RIGHT means allocating new sections towards the end of volume.
141 * LEFT means the opposite direction.
149 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
150 * LFS writes data sequentially with cleaning operations.
151 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
152 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
153 * fragmented segment which has similar aging degree.
162 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
163 * GC_CB is based on cost-benefit algorithm.
164 * GC_GREEDY is based on greedy algorithm.
165 * GC_AT is based on age-threshold algorithm.
177 * BG_GC means the background cleaning job.
178 * FG_GC means the on-demand cleaning job.
185 /* for a function parameter to select a victim segment */
186 struct victim_sel_policy {
187 int alloc_mode; /* LFS or SSR */
188 int gc_mode; /* GC_CB or GC_GREEDY */
189 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
190 unsigned int max_search; /*
191 * maximum # of segments/sections
194 unsigned int offset; /* last scanned bitmap offset */
195 unsigned int ofs_unit; /* bitmap search unit */
196 unsigned int min_cost; /* minimum cost */
197 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
198 unsigned int min_segno; /* segment # having min. cost */
199 unsigned long long age; /* mtime of GCed section*/
200 unsigned long long age_threshold;/* age threshold */
204 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
205 unsigned int valid_blocks:10; /* # of valid blocks */
206 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
207 unsigned int padding:6; /* padding */
208 unsigned char *cur_valid_map; /* validity bitmap of blocks */
209 #ifdef CONFIG_F2FS_CHECK_FS
210 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
213 * # of valid blocks and the validity bitmap stored in the last
214 * checkpoint pack. This information is used by the SSR mode.
216 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
217 unsigned char *discard_map;
218 unsigned long long mtime; /* modification time of the segment */
222 unsigned int valid_blocks; /* # of valid blocks in a section */
225 #define MAX_SKIP_GC_COUNT 16
227 struct revoke_entry {
228 struct list_head list;
229 block_t old_addr; /* for revoking when fail to commit */
234 block_t sit_base_addr; /* start block address of SIT area */
235 block_t sit_blocks; /* # of blocks used by SIT area */
236 block_t written_valid_blocks; /* # of valid blocks in main area */
237 char *bitmap; /* all bitmaps pointer */
238 char *sit_bitmap; /* SIT bitmap pointer */
239 #ifdef CONFIG_F2FS_CHECK_FS
240 char *sit_bitmap_mir; /* SIT bitmap mirror */
242 /* bitmap of segments to be ignored by GC in case of errors */
243 unsigned long *invalid_segmap;
245 unsigned int bitmap_size; /* SIT bitmap size */
247 unsigned long *tmp_map; /* bitmap for temporal use */
248 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
249 unsigned int dirty_sentries; /* # of dirty sentries */
250 unsigned int sents_per_block; /* # of SIT entries per block */
251 struct rw_semaphore sentry_lock; /* to protect SIT cache */
252 struct seg_entry *sentries; /* SIT segment-level cache */
253 struct sec_entry *sec_entries; /* SIT section-level cache */
255 /* for cost-benefit algorithm in cleaning procedure */
256 unsigned long long elapsed_time; /* elapsed time after mount */
257 unsigned long long mounted_time; /* mount time */
258 unsigned long long min_mtime; /* min. modification time */
259 unsigned long long max_mtime; /* max. modification time */
260 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
261 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
263 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
266 struct free_segmap_info {
267 unsigned int start_segno; /* start segment number logically */
268 unsigned int free_segments; /* # of free segments */
269 unsigned int free_sections; /* # of free sections */
270 spinlock_t segmap_lock; /* free segmap lock */
271 unsigned long *free_segmap; /* free segment bitmap */
272 unsigned long *free_secmap; /* free section bitmap */
275 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
277 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
278 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
279 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
280 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
281 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
282 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
283 DIRTY, /* to count # of dirty segments */
284 PRE, /* to count # of entirely obsolete segments */
288 struct dirty_seglist_info {
289 const struct victim_selection *v_ops; /* victim selction operation */
290 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
291 unsigned long *dirty_secmap;
292 struct mutex seglist_lock; /* lock for segment bitmaps */
293 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
294 unsigned long *victim_secmap; /* background GC victims */
295 unsigned long *pinned_secmap; /* pinned victims from foreground GC */
296 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */
297 bool enable_pin_section; /* enable pinning section */
300 /* victim selection function for cleaning and SSR */
301 struct victim_selection {
302 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
303 int, int, char, unsigned long long);
306 /* for active log information */
308 struct mutex curseg_mutex; /* lock for consistency */
309 struct f2fs_summary_block *sum_blk; /* cached summary block */
310 struct rw_semaphore journal_rwsem; /* protect journal area */
311 struct f2fs_journal *journal; /* cached journal info */
312 unsigned char alloc_type; /* current allocation type */
313 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
314 unsigned int segno; /* current segment number */
315 unsigned short next_blkoff; /* next block offset to write */
316 unsigned int zone; /* current zone number */
317 unsigned int next_segno; /* preallocated segment */
318 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */
319 bool inited; /* indicate inmem log is inited */
322 struct sit_entry_set {
323 struct list_head set_list; /* link with all sit sets */
324 unsigned int start_segno; /* start segno of sits in set */
325 unsigned int entry_cnt; /* the # of sit entries in set */
331 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
333 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
336 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
339 struct sit_info *sit_i = SIT_I(sbi);
340 return &sit_i->sentries[segno];
343 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
346 struct sit_info *sit_i = SIT_I(sbi);
347 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
350 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
351 unsigned int segno, bool use_section)
354 * In order to get # of valid blocks in a section instantly from many
355 * segments, f2fs manages two counting structures separately.
357 if (use_section && __is_large_section(sbi))
358 return get_sec_entry(sbi, segno)->valid_blocks;
360 return get_seg_entry(sbi, segno)->valid_blocks;
363 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
364 unsigned int segno, bool use_section)
366 if (use_section && __is_large_section(sbi)) {
367 unsigned int start_segno = START_SEGNO(segno);
368 unsigned int blocks = 0;
371 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
372 struct seg_entry *se = get_seg_entry(sbi, start_segno);
374 blocks += se->ckpt_valid_blocks;
378 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
381 static inline void seg_info_from_raw_sit(struct seg_entry *se,
382 struct f2fs_sit_entry *rs)
384 se->valid_blocks = GET_SIT_VBLOCKS(rs);
385 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
386 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
387 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
388 #ifdef CONFIG_F2FS_CHECK_FS
389 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
391 se->type = GET_SIT_TYPE(rs);
392 se->mtime = le64_to_cpu(rs->mtime);
395 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
396 struct f2fs_sit_entry *rs)
398 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
400 rs->vblocks = cpu_to_le16(raw_vblocks);
401 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
402 rs->mtime = cpu_to_le64(se->mtime);
405 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
406 struct page *page, unsigned int start)
408 struct f2fs_sit_block *raw_sit;
409 struct seg_entry *se;
410 struct f2fs_sit_entry *rs;
411 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
412 (unsigned long)MAIN_SEGS(sbi));
415 raw_sit = (struct f2fs_sit_block *)page_address(page);
416 memset(raw_sit, 0, PAGE_SIZE);
417 for (i = 0; i < end - start; i++) {
418 rs = &raw_sit->entries[i];
419 se = get_seg_entry(sbi, start + i);
420 __seg_info_to_raw_sit(se, rs);
424 static inline void seg_info_to_raw_sit(struct seg_entry *se,
425 struct f2fs_sit_entry *rs)
427 __seg_info_to_raw_sit(se, rs);
429 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
430 se->ckpt_valid_blocks = se->valid_blocks;
433 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
434 unsigned int max, unsigned int segno)
437 spin_lock(&free_i->segmap_lock);
438 ret = find_next_bit(free_i->free_segmap, max, segno);
439 spin_unlock(&free_i->segmap_lock);
443 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
445 struct free_segmap_info *free_i = FREE_I(sbi);
446 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
447 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
449 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
451 spin_lock(&free_i->segmap_lock);
452 clear_bit(segno, free_i->free_segmap);
453 free_i->free_segments++;
455 next = find_next_bit(free_i->free_segmap,
456 start_segno + sbi->segs_per_sec, start_segno);
457 if (next >= start_segno + usable_segs) {
458 clear_bit(secno, free_i->free_secmap);
459 free_i->free_sections++;
461 spin_unlock(&free_i->segmap_lock);
464 static inline void __set_inuse(struct f2fs_sb_info *sbi,
467 struct free_segmap_info *free_i = FREE_I(sbi);
468 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
470 set_bit(segno, free_i->free_segmap);
471 free_i->free_segments--;
472 if (!test_and_set_bit(secno, free_i->free_secmap))
473 free_i->free_sections--;
476 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
477 unsigned int segno, bool inmem)
479 struct free_segmap_info *free_i = FREE_I(sbi);
480 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
481 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
483 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
485 spin_lock(&free_i->segmap_lock);
486 if (test_and_clear_bit(segno, free_i->free_segmap)) {
487 free_i->free_segments++;
489 if (!inmem && IS_CURSEC(sbi, secno))
491 next = find_next_bit(free_i->free_segmap,
492 start_segno + sbi->segs_per_sec, start_segno);
493 if (next >= start_segno + usable_segs) {
494 if (test_and_clear_bit(secno, free_i->free_secmap))
495 free_i->free_sections++;
499 spin_unlock(&free_i->segmap_lock);
502 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
505 struct free_segmap_info *free_i = FREE_I(sbi);
506 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
508 spin_lock(&free_i->segmap_lock);
509 if (!test_and_set_bit(segno, free_i->free_segmap)) {
510 free_i->free_segments--;
511 if (!test_and_set_bit(secno, free_i->free_secmap))
512 free_i->free_sections--;
514 spin_unlock(&free_i->segmap_lock);
517 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
520 struct sit_info *sit_i = SIT_I(sbi);
522 #ifdef CONFIG_F2FS_CHECK_FS
523 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
527 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
530 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
532 return SIT_I(sbi)->written_valid_blocks;
535 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
537 return FREE_I(sbi)->free_segments;
540 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
542 return SM_I(sbi)->reserved_segments +
543 SM_I(sbi)->additional_reserved_segments;
546 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
548 return FREE_I(sbi)->free_sections;
551 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
553 return DIRTY_I(sbi)->nr_dirty[PRE];
556 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
558 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
559 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
560 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
561 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
562 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
563 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
566 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
568 return SM_I(sbi)->ovp_segments;
571 static inline int reserved_sections(struct f2fs_sb_info *sbi)
573 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
576 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
577 unsigned int node_blocks, unsigned int dent_blocks)
580 unsigned int segno, left_blocks;
583 /* check current node segment */
584 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
585 segno = CURSEG_I(sbi, i)->segno;
586 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
587 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
589 if (node_blocks > left_blocks)
593 /* check current data segment */
594 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
595 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
596 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
597 if (dent_blocks > left_blocks)
602 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
603 int freed, int needed)
605 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
606 get_pages(sbi, F2FS_DIRTY_DENTS) +
607 get_pages(sbi, F2FS_DIRTY_IMETA);
608 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
609 unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
610 unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
611 unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
612 unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
613 unsigned int free, need_lower, need_upper;
615 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
618 free = free_sections(sbi) + freed;
619 need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
620 need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
622 if (free > need_upper)
624 else if (free <= need_lower)
626 return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
629 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
631 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
633 if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
638 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
640 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
643 static inline int utilization(struct f2fs_sb_info *sbi)
645 return div_u64((u64)valid_user_blocks(sbi) * 100,
646 sbi->user_block_count);
650 * Sometimes f2fs may be better to drop out-of-place update policy.
651 * And, users can control the policy through sysfs entries.
652 * There are five policies with triggering conditions as follows.
653 * F2FS_IPU_FORCE - all the time,
654 * F2FS_IPU_SSR - if SSR mode is activated,
655 * F2FS_IPU_UTIL - if FS utilization is over threashold,
656 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
658 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
659 * storages. IPU will be triggered only if the # of dirty
660 * pages over min_fsync_blocks. (=default option)
661 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
662 * F2FS_IPU_NOCACHE - disable IPU bio cache.
663 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
665 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
667 #define DEF_MIN_IPU_UTIL 70
668 #define DEF_MIN_FSYNC_BLOCKS 8
669 #define DEF_MIN_HOT_BLOCKS 16
671 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
673 #define F2FS_IPU_DISABLE 0
675 /* Modification on enum should be synchronized with ipu_mode_names array */
684 F2FS_IPU_HONOR_OPU_WRITE,
688 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
690 return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
693 #define F2FS_IPU_POLICY(name) \
694 static inline bool IS_##name(struct f2fs_sb_info *sbi) \
696 return SM_I(sbi)->ipu_policy & BIT(name); \
699 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
700 F2FS_IPU_POLICY(F2FS_IPU_SSR);
701 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
702 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
703 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
704 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
705 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
706 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
708 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
711 struct curseg_info *curseg = CURSEG_I(sbi, type);
712 return curseg->segno;
715 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
718 struct curseg_info *curseg = CURSEG_I(sbi, type);
719 return curseg->alloc_type;
722 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
725 return segno <= (MAIN_SEGS(sbi) - 1);
728 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
730 struct f2fs_sb_info *sbi = fio->sbi;
732 if (__is_valid_data_blkaddr(fio->old_blkaddr))
733 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
734 META_GENERIC : DATA_GENERIC);
735 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
736 META_GENERIC : DATA_GENERIC_ENHANCE);
740 * Summary block is always treated as an invalid block
742 static inline int check_block_count(struct f2fs_sb_info *sbi,
743 int segno, struct f2fs_sit_entry *raw_sit)
745 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
746 int valid_blocks = 0;
747 int cur_pos = 0, next_pos;
748 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
750 /* check bitmap with valid block count */
753 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
756 valid_blocks += next_pos - cur_pos;
758 next_pos = find_next_bit_le(&raw_sit->valid_map,
762 is_valid = !is_valid;
763 } while (cur_pos < usable_blks_per_seg);
765 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
766 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
767 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
768 set_sbi_flag(sbi, SBI_NEED_FSCK);
769 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
770 return -EFSCORRUPTED;
773 if (usable_blks_per_seg < sbi->blocks_per_seg)
774 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
776 usable_blks_per_seg) != sbi->blocks_per_seg);
778 /* check segment usage, and check boundary of a given segment number */
779 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
780 || !valid_main_segno(sbi, segno))) {
781 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
782 GET_SIT_VBLOCKS(raw_sit), segno);
783 set_sbi_flag(sbi, SBI_NEED_FSCK);
784 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
785 return -EFSCORRUPTED;
790 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
793 struct sit_info *sit_i = SIT_I(sbi);
794 unsigned int offset = SIT_BLOCK_OFFSET(start);
795 block_t blk_addr = sit_i->sit_base_addr + offset;
797 f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
799 #ifdef CONFIG_F2FS_CHECK_FS
800 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
801 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
805 /* calculate sit block address */
806 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
807 blk_addr += sit_i->sit_blocks;
812 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
815 struct sit_info *sit_i = SIT_I(sbi);
816 block_addr -= sit_i->sit_base_addr;
817 if (block_addr < sit_i->sit_blocks)
818 block_addr += sit_i->sit_blocks;
820 block_addr -= sit_i->sit_blocks;
822 return block_addr + sit_i->sit_base_addr;
825 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
827 unsigned int block_off = SIT_BLOCK_OFFSET(start);
829 f2fs_change_bit(block_off, sit_i->sit_bitmap);
830 #ifdef CONFIG_F2FS_CHECK_FS
831 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
835 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
838 struct sit_info *sit_i = SIT_I(sbi);
839 time64_t diff, now = ktime_get_boottime_seconds();
841 if (now >= sit_i->mounted_time)
842 return sit_i->elapsed_time + now - sit_i->mounted_time;
844 /* system time is set to the past */
846 diff = sit_i->mounted_time - now;
847 if (sit_i->elapsed_time >= diff)
848 return sit_i->elapsed_time - diff;
851 return sit_i->elapsed_time;
854 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
855 unsigned int ofs_in_node, unsigned char version)
857 sum->nid = cpu_to_le32(nid);
858 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
859 sum->version = version;
862 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
864 return __start_cp_addr(sbi) +
865 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
868 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
870 return __start_cp_addr(sbi) +
871 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
875 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
877 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
883 * It is very important to gather dirty pages and write at once, so that we can
884 * submit a big bio without interfering other data writes.
885 * By default, 512 pages for directory data,
886 * 512 pages (2MB) * 8 for nodes, and
887 * 256 pages * 8 for meta are set.
889 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
891 if (sbi->sb->s_bdi->wb.dirty_exceeded)
895 return sbi->blocks_per_seg;
896 else if (type == NODE)
897 return 8 * sbi->blocks_per_seg;
898 else if (type == META)
899 return 8 * BIO_MAX_VECS;
905 * When writing pages, it'd better align nr_to_write for segment size.
907 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
908 struct writeback_control *wbc)
910 long nr_to_write, desired;
912 if (wbc->sync_mode != WB_SYNC_NONE)
915 nr_to_write = wbc->nr_to_write;
916 desired = BIO_MAX_VECS;
920 wbc->nr_to_write = desired;
921 return desired - nr_to_write;
924 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
926 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
933 mutex_lock(&dcc->cmd_lock);
934 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
935 if (i + 1 < dcc->discard_granularity)
937 if (!list_empty(&dcc->pend_list[i])) {
942 mutex_unlock(&dcc->cmd_lock);
943 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
946 dcc->discard_wake = true;
947 wake_up_interruptible_all(&dcc->discard_wait_queue);