]> Git Repo - linux.git/blob - fs/f2fs/segment.h
net/mlx5e: RX, Prepare non-linear striding RQ for XDP multi-buffer support
[linux.git] / fs / f2fs / segment.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO                      ((unsigned int)(~0))
13 #define NULL_SECNO                      ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS        4096    /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS       9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS  8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)    ((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)    ((segno) + (free_i)->start_segno)
24
25 #define IS_DATASEG(t)   ((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)   ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
28
29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30                                                 unsigned short seg_type)
31 {
32         f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34
35 #define IS_HOT(t)       ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t)      ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t)      ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39 #define IS_CURSEG(sbi, seg)                                             \
40         (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||    \
41          ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||   \
42          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||   \
43          ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||    \
44          ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||   \
45          ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||   \
46          ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||    \
47          ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49 #define IS_CURSEC(sbi, secno)                                           \
50         (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /            \
51           (sbi)->segs_per_sec) ||       \
52          ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /           \
53           (sbi)->segs_per_sec) ||       \
54          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /           \
55           (sbi)->segs_per_sec) ||       \
56          ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /            \
57           (sbi)->segs_per_sec) ||       \
58          ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /           \
59           (sbi)->segs_per_sec) ||       \
60          ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /           \
61           (sbi)->segs_per_sec) ||       \
62          ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /    \
63           (sbi)->segs_per_sec) ||       \
64          ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /       \
65           (sbi)->segs_per_sec))
66
67 #define MAIN_BLKADDR(sbi)                                               \
68         (SM_I(sbi) ? SM_I(sbi)->main_blkaddr :                          \
69                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi)                                               \
71         (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr :                          \
72                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74 #define MAIN_SEGS(sbi)  (SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi)  ((sbi)->total_sections)
76
77 #define TOTAL_SEGS(sbi)                                                 \
78         (SM_I(sbi) ? SM_I(sbi)->segment_count :                                 \
79                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81
82 #define MAX_BLKADDR(sbi)        (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi)       (1ULL << ((sbi)->log_blocksize +        \
84                                         (sbi)->log_blocks_per_seg))
85
86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) +                    \
87          (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88
89 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
90         (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)     ((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
94         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
96         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97
98 #define GET_SEGNO(sbi, blk_addr)                                        \
99         ((!__is_valid_data_blkaddr(blk_addr)) ?                 \
100         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
101                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi)                                       \
103         ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi)                                   \
105         ((sbi)->segs_per_sec * (sbi)->blocks_per_seg -          \
106          (sbi)->unusable_blocks_per_sec)
107 #define GET_SEC_FROM_SEG(sbi, segno)                            \
108         (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
109 #define GET_SEG_FROM_SEC(sbi, secno)                            \
110         ((secno) * (sbi)->segs_per_sec)
111 #define GET_ZONE_FROM_SEC(sbi, secno)                           \
112         (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
113 #define GET_ZONE_FROM_SEG(sbi, segno)                           \
114         GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
115
116 #define GET_SUM_BLOCK(sbi, segno)                               \
117         ((sbi)->sm_info->ssa_blkaddr + (segno))
118
119 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
120 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
121
122 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
123         ((segno) % (sit_i)->sents_per_block)
124 #define SIT_BLOCK_OFFSET(segno)                                 \
125         ((segno) / SIT_ENTRY_PER_BLOCK)
126 #define START_SEGNO(segno)              \
127         (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
128 #define SIT_BLK_CNT(sbi)                        \
129         DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
130 #define f2fs_bitmap_size(nr)                    \
131         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
132
133 #define SECTOR_FROM_BLOCK(blk_addr)                                     \
134         (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
135 #define SECTOR_TO_BLOCK(sectors)                                        \
136         ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
137
138 /*
139  * indicate a block allocation direction: RIGHT and LEFT.
140  * RIGHT means allocating new sections towards the end of volume.
141  * LEFT means the opposite direction.
142  */
143 enum {
144         ALLOC_RIGHT = 0,
145         ALLOC_LEFT
146 };
147
148 /*
149  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
150  * LFS writes data sequentially with cleaning operations.
151  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
152  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
153  * fragmented segment which has similar aging degree.
154  */
155 enum {
156         LFS = 0,
157         SSR,
158         AT_SSR,
159 };
160
161 /*
162  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
163  * GC_CB is based on cost-benefit algorithm.
164  * GC_GREEDY is based on greedy algorithm.
165  * GC_AT is based on age-threshold algorithm.
166  */
167 enum {
168         GC_CB = 0,
169         GC_GREEDY,
170         GC_AT,
171         ALLOC_NEXT,
172         FLUSH_DEVICE,
173         MAX_GC_POLICY,
174 };
175
176 /*
177  * BG_GC means the background cleaning job.
178  * FG_GC means the on-demand cleaning job.
179  */
180 enum {
181         BG_GC = 0,
182         FG_GC,
183 };
184
185 /* for a function parameter to select a victim segment */
186 struct victim_sel_policy {
187         int alloc_mode;                 /* LFS or SSR */
188         int gc_mode;                    /* GC_CB or GC_GREEDY */
189         unsigned long *dirty_bitmap;    /* dirty segment/section bitmap */
190         unsigned int max_search;        /*
191                                          * maximum # of segments/sections
192                                          * to search
193                                          */
194         unsigned int offset;            /* last scanned bitmap offset */
195         unsigned int ofs_unit;          /* bitmap search unit */
196         unsigned int min_cost;          /* minimum cost */
197         unsigned long long oldest_age;  /* oldest age of segments having the same min cost */
198         unsigned int min_segno;         /* segment # having min. cost */
199         unsigned long long age;         /* mtime of GCed section*/
200         unsigned long long age_threshold;/* age threshold */
201 };
202
203 struct seg_entry {
204         unsigned int type:6;            /* segment type like CURSEG_XXX_TYPE */
205         unsigned int valid_blocks:10;   /* # of valid blocks */
206         unsigned int ckpt_valid_blocks:10;      /* # of valid blocks last cp */
207         unsigned int padding:6;         /* padding */
208         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
209 #ifdef CONFIG_F2FS_CHECK_FS
210         unsigned char *cur_valid_map_mir;       /* mirror of current valid bitmap */
211 #endif
212         /*
213          * # of valid blocks and the validity bitmap stored in the last
214          * checkpoint pack. This information is used by the SSR mode.
215          */
216         unsigned char *ckpt_valid_map;  /* validity bitmap of blocks last cp */
217         unsigned char *discard_map;
218         unsigned long long mtime;       /* modification time of the segment */
219 };
220
221 struct sec_entry {
222         unsigned int valid_blocks;      /* # of valid blocks in a section */
223 };
224
225 #define MAX_SKIP_GC_COUNT                       16
226
227 struct revoke_entry {
228         struct list_head list;
229         block_t old_addr;               /* for revoking when fail to commit */
230         pgoff_t index;
231 };
232
233 struct sit_info {
234         block_t sit_base_addr;          /* start block address of SIT area */
235         block_t sit_blocks;             /* # of blocks used by SIT area */
236         block_t written_valid_blocks;   /* # of valid blocks in main area */
237         char *bitmap;                   /* all bitmaps pointer */
238         char *sit_bitmap;               /* SIT bitmap pointer */
239 #ifdef CONFIG_F2FS_CHECK_FS
240         char *sit_bitmap_mir;           /* SIT bitmap mirror */
241
242         /* bitmap of segments to be ignored by GC in case of errors */
243         unsigned long *invalid_segmap;
244 #endif
245         unsigned int bitmap_size;       /* SIT bitmap size */
246
247         unsigned long *tmp_map;                 /* bitmap for temporal use */
248         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
249         unsigned int dirty_sentries;            /* # of dirty sentries */
250         unsigned int sents_per_block;           /* # of SIT entries per block */
251         struct rw_semaphore sentry_lock;        /* to protect SIT cache */
252         struct seg_entry *sentries;             /* SIT segment-level cache */
253         struct sec_entry *sec_entries;          /* SIT section-level cache */
254
255         /* for cost-benefit algorithm in cleaning procedure */
256         unsigned long long elapsed_time;        /* elapsed time after mount */
257         unsigned long long mounted_time;        /* mount time */
258         unsigned long long min_mtime;           /* min. modification time */
259         unsigned long long max_mtime;           /* max. modification time */
260         unsigned long long dirty_min_mtime;     /* rerange candidates in GC_AT */
261         unsigned long long dirty_max_mtime;     /* rerange candidates in GC_AT */
262
263         unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
264 };
265
266 struct free_segmap_info {
267         unsigned int start_segno;       /* start segment number logically */
268         unsigned int free_segments;     /* # of free segments */
269         unsigned int free_sections;     /* # of free sections */
270         spinlock_t segmap_lock;         /* free segmap lock */
271         unsigned long *free_segmap;     /* free segment bitmap */
272         unsigned long *free_secmap;     /* free section bitmap */
273 };
274
275 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
276 enum dirty_type {
277         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
278         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
279         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
280         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
281         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
282         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
283         DIRTY,                  /* to count # of dirty segments */
284         PRE,                    /* to count # of entirely obsolete segments */
285         NR_DIRTY_TYPE
286 };
287
288 struct dirty_seglist_info {
289         const struct victim_selection *v_ops;   /* victim selction operation */
290         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
291         unsigned long *dirty_secmap;
292         struct mutex seglist_lock;              /* lock for segment bitmaps */
293         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
294         unsigned long *victim_secmap;           /* background GC victims */
295         unsigned long *pinned_secmap;           /* pinned victims from foreground GC */
296         unsigned int pinned_secmap_cnt;         /* count of victims which has pinned data */
297         bool enable_pin_section;                /* enable pinning section */
298 };
299
300 /* victim selection function for cleaning and SSR */
301 struct victim_selection {
302         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
303                                         int, int, char, unsigned long long);
304 };
305
306 /* for active log information */
307 struct curseg_info {
308         struct mutex curseg_mutex;              /* lock for consistency */
309         struct f2fs_summary_block *sum_blk;     /* cached summary block */
310         struct rw_semaphore journal_rwsem;      /* protect journal area */
311         struct f2fs_journal *journal;           /* cached journal info */
312         unsigned char alloc_type;               /* current allocation type */
313         unsigned short seg_type;                /* segment type like CURSEG_XXX_TYPE */
314         unsigned int segno;                     /* current segment number */
315         unsigned short next_blkoff;             /* next block offset to write */
316         unsigned int zone;                      /* current zone number */
317         unsigned int next_segno;                /* preallocated segment */
318         int fragment_remained_chunk;            /* remained block size in a chunk for block fragmentation mode */
319         bool inited;                            /* indicate inmem log is inited */
320 };
321
322 struct sit_entry_set {
323         struct list_head set_list;      /* link with all sit sets */
324         unsigned int start_segno;       /* start segno of sits in set */
325         unsigned int entry_cnt;         /* the # of sit entries in set */
326 };
327
328 /*
329  * inline functions
330  */
331 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
332 {
333         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
334 }
335
336 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
337                                                 unsigned int segno)
338 {
339         struct sit_info *sit_i = SIT_I(sbi);
340         return &sit_i->sentries[segno];
341 }
342
343 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
344                                                 unsigned int segno)
345 {
346         struct sit_info *sit_i = SIT_I(sbi);
347         return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
348 }
349
350 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
351                                 unsigned int segno, bool use_section)
352 {
353         /*
354          * In order to get # of valid blocks in a section instantly from many
355          * segments, f2fs manages two counting structures separately.
356          */
357         if (use_section && __is_large_section(sbi))
358                 return get_sec_entry(sbi, segno)->valid_blocks;
359         else
360                 return get_seg_entry(sbi, segno)->valid_blocks;
361 }
362
363 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
364                                 unsigned int segno, bool use_section)
365 {
366         if (use_section && __is_large_section(sbi)) {
367                 unsigned int start_segno = START_SEGNO(segno);
368                 unsigned int blocks = 0;
369                 int i;
370
371                 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
372                         struct seg_entry *se = get_seg_entry(sbi, start_segno);
373
374                         blocks += se->ckpt_valid_blocks;
375                 }
376                 return blocks;
377         }
378         return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
379 }
380
381 static inline void seg_info_from_raw_sit(struct seg_entry *se,
382                                         struct f2fs_sit_entry *rs)
383 {
384         se->valid_blocks = GET_SIT_VBLOCKS(rs);
385         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
386         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
387         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
388 #ifdef CONFIG_F2FS_CHECK_FS
389         memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
390 #endif
391         se->type = GET_SIT_TYPE(rs);
392         se->mtime = le64_to_cpu(rs->mtime);
393 }
394
395 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
396                                         struct f2fs_sit_entry *rs)
397 {
398         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
399                                         se->valid_blocks;
400         rs->vblocks = cpu_to_le16(raw_vblocks);
401         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
402         rs->mtime = cpu_to_le64(se->mtime);
403 }
404
405 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
406                                 struct page *page, unsigned int start)
407 {
408         struct f2fs_sit_block *raw_sit;
409         struct seg_entry *se;
410         struct f2fs_sit_entry *rs;
411         unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
412                                         (unsigned long)MAIN_SEGS(sbi));
413         int i;
414
415         raw_sit = (struct f2fs_sit_block *)page_address(page);
416         memset(raw_sit, 0, PAGE_SIZE);
417         for (i = 0; i < end - start; i++) {
418                 rs = &raw_sit->entries[i];
419                 se = get_seg_entry(sbi, start + i);
420                 __seg_info_to_raw_sit(se, rs);
421         }
422 }
423
424 static inline void seg_info_to_raw_sit(struct seg_entry *se,
425                                         struct f2fs_sit_entry *rs)
426 {
427         __seg_info_to_raw_sit(se, rs);
428
429         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
430         se->ckpt_valid_blocks = se->valid_blocks;
431 }
432
433 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
434                 unsigned int max, unsigned int segno)
435 {
436         unsigned int ret;
437         spin_lock(&free_i->segmap_lock);
438         ret = find_next_bit(free_i->free_segmap, max, segno);
439         spin_unlock(&free_i->segmap_lock);
440         return ret;
441 }
442
443 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
444 {
445         struct free_segmap_info *free_i = FREE_I(sbi);
446         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
447         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
448         unsigned int next;
449         unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
450
451         spin_lock(&free_i->segmap_lock);
452         clear_bit(segno, free_i->free_segmap);
453         free_i->free_segments++;
454
455         next = find_next_bit(free_i->free_segmap,
456                         start_segno + sbi->segs_per_sec, start_segno);
457         if (next >= start_segno + usable_segs) {
458                 clear_bit(secno, free_i->free_secmap);
459                 free_i->free_sections++;
460         }
461         spin_unlock(&free_i->segmap_lock);
462 }
463
464 static inline void __set_inuse(struct f2fs_sb_info *sbi,
465                 unsigned int segno)
466 {
467         struct free_segmap_info *free_i = FREE_I(sbi);
468         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469
470         set_bit(segno, free_i->free_segmap);
471         free_i->free_segments--;
472         if (!test_and_set_bit(secno, free_i->free_secmap))
473                 free_i->free_sections--;
474 }
475
476 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
477                 unsigned int segno, bool inmem)
478 {
479         struct free_segmap_info *free_i = FREE_I(sbi);
480         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
481         unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
482         unsigned int next;
483         unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
484
485         spin_lock(&free_i->segmap_lock);
486         if (test_and_clear_bit(segno, free_i->free_segmap)) {
487                 free_i->free_segments++;
488
489                 if (!inmem && IS_CURSEC(sbi, secno))
490                         goto skip_free;
491                 next = find_next_bit(free_i->free_segmap,
492                                 start_segno + sbi->segs_per_sec, start_segno);
493                 if (next >= start_segno + usable_segs) {
494                         if (test_and_clear_bit(secno, free_i->free_secmap))
495                                 free_i->free_sections++;
496                 }
497         }
498 skip_free:
499         spin_unlock(&free_i->segmap_lock);
500 }
501
502 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
503                 unsigned int segno)
504 {
505         struct free_segmap_info *free_i = FREE_I(sbi);
506         unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
507
508         spin_lock(&free_i->segmap_lock);
509         if (!test_and_set_bit(segno, free_i->free_segmap)) {
510                 free_i->free_segments--;
511                 if (!test_and_set_bit(secno, free_i->free_secmap))
512                         free_i->free_sections--;
513         }
514         spin_unlock(&free_i->segmap_lock);
515 }
516
517 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
518                 void *dst_addr)
519 {
520         struct sit_info *sit_i = SIT_I(sbi);
521
522 #ifdef CONFIG_F2FS_CHECK_FS
523         if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
524                                                 sit_i->bitmap_size))
525                 f2fs_bug_on(sbi, 1);
526 #endif
527         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
528 }
529
530 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
531 {
532         return SIT_I(sbi)->written_valid_blocks;
533 }
534
535 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
536 {
537         return FREE_I(sbi)->free_segments;
538 }
539
540 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
541 {
542         return SM_I(sbi)->reserved_segments +
543                         SM_I(sbi)->additional_reserved_segments;
544 }
545
546 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
547 {
548         return FREE_I(sbi)->free_sections;
549 }
550
551 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
552 {
553         return DIRTY_I(sbi)->nr_dirty[PRE];
554 }
555
556 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
557 {
558         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
559                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
560                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
561                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
562                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
563                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
564 }
565
566 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
567 {
568         return SM_I(sbi)->ovp_segments;
569 }
570
571 static inline int reserved_sections(struct f2fs_sb_info *sbi)
572 {
573         return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
574 }
575
576 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
577                         unsigned int node_blocks, unsigned int dent_blocks)
578 {
579
580         unsigned int segno, left_blocks;
581         int i;
582
583         /* check current node segment */
584         for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
585                 segno = CURSEG_I(sbi, i)->segno;
586                 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
587                                 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
588
589                 if (node_blocks > left_blocks)
590                         return false;
591         }
592
593         /* check current data segment */
594         segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
595         left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
596                         get_seg_entry(sbi, segno)->ckpt_valid_blocks;
597         if (dent_blocks > left_blocks)
598                 return false;
599         return true;
600 }
601
602 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
603                                         int freed, int needed)
604 {
605         unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
606                                         get_pages(sbi, F2FS_DIRTY_DENTS) +
607                                         get_pages(sbi, F2FS_DIRTY_IMETA);
608         unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
609         unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
610         unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
611         unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
612         unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
613         unsigned int free, need_lower, need_upper;
614
615         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
616                 return false;
617
618         free = free_sections(sbi) + freed;
619         need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
620         need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
621
622         if (free > need_upper)
623                 return false;
624         else if (free <= need_lower)
625                 return true;
626         return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
627 }
628
629 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
630 {
631         if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
632                 return true;
633         if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
634                 return true;
635         return false;
636 }
637
638 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
639 {
640         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
641 }
642
643 static inline int utilization(struct f2fs_sb_info *sbi)
644 {
645         return div_u64((u64)valid_user_blocks(sbi) * 100,
646                                         sbi->user_block_count);
647 }
648
649 /*
650  * Sometimes f2fs may be better to drop out-of-place update policy.
651  * And, users can control the policy through sysfs entries.
652  * There are five policies with triggering conditions as follows.
653  * F2FS_IPU_FORCE - all the time,
654  * F2FS_IPU_SSR - if SSR mode is activated,
655  * F2FS_IPU_UTIL - if FS utilization is over threashold,
656  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
657  *                     threashold,
658  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
659  *                     storages. IPU will be triggered only if the # of dirty
660  *                     pages over min_fsync_blocks. (=default option)
661  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
662  * F2FS_IPU_NOCACHE - disable IPU bio cache.
663  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
664  *                            FI_OPU_WRITE flag.
665  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
666  */
667 #define DEF_MIN_IPU_UTIL        70
668 #define DEF_MIN_FSYNC_BLOCKS    8
669 #define DEF_MIN_HOT_BLOCKS      16
670
671 #define SMALL_VOLUME_SEGMENTS   (16 * 512)      /* 16GB */
672
673 #define F2FS_IPU_DISABLE        0
674
675 /* Modification on enum should be synchronized with ipu_mode_names array */
676 enum {
677         F2FS_IPU_FORCE,
678         F2FS_IPU_SSR,
679         F2FS_IPU_UTIL,
680         F2FS_IPU_SSR_UTIL,
681         F2FS_IPU_FSYNC,
682         F2FS_IPU_ASYNC,
683         F2FS_IPU_NOCACHE,
684         F2FS_IPU_HONOR_OPU_WRITE,
685         F2FS_IPU_MAX,
686 };
687
688 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
689 {
690         return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
691 }
692
693 #define F2FS_IPU_POLICY(name)                                   \
694 static inline bool IS_##name(struct f2fs_sb_info *sbi)          \
695 {                                                               \
696         return SM_I(sbi)->ipu_policy & BIT(name);               \
697 }
698
699 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
700 F2FS_IPU_POLICY(F2FS_IPU_SSR);
701 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
702 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
703 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
704 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
705 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
706 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
707
708 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
709                 int type)
710 {
711         struct curseg_info *curseg = CURSEG_I(sbi, type);
712         return curseg->segno;
713 }
714
715 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
716                 int type)
717 {
718         struct curseg_info *curseg = CURSEG_I(sbi, type);
719         return curseg->alloc_type;
720 }
721
722 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
723                 unsigned int segno)
724 {
725         return segno <= (MAIN_SEGS(sbi) - 1);
726 }
727
728 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
729 {
730         struct f2fs_sb_info *sbi = fio->sbi;
731
732         if (__is_valid_data_blkaddr(fio->old_blkaddr))
733                 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
734                                         META_GENERIC : DATA_GENERIC);
735         verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
736                                         META_GENERIC : DATA_GENERIC_ENHANCE);
737 }
738
739 /*
740  * Summary block is always treated as an invalid block
741  */
742 static inline int check_block_count(struct f2fs_sb_info *sbi,
743                 int segno, struct f2fs_sit_entry *raw_sit)
744 {
745         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
746         int valid_blocks = 0;
747         int cur_pos = 0, next_pos;
748         unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
749
750         /* check bitmap with valid block count */
751         do {
752                 if (is_valid) {
753                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
754                                         usable_blks_per_seg,
755                                         cur_pos);
756                         valid_blocks += next_pos - cur_pos;
757                 } else
758                         next_pos = find_next_bit_le(&raw_sit->valid_map,
759                                         usable_blks_per_seg,
760                                         cur_pos);
761                 cur_pos = next_pos;
762                 is_valid = !is_valid;
763         } while (cur_pos < usable_blks_per_seg);
764
765         if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
766                 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
767                          GET_SIT_VBLOCKS(raw_sit), valid_blocks);
768                 set_sbi_flag(sbi, SBI_NEED_FSCK);
769                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
770                 return -EFSCORRUPTED;
771         }
772
773         if (usable_blks_per_seg < sbi->blocks_per_seg)
774                 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
775                                 sbi->blocks_per_seg,
776                                 usable_blks_per_seg) != sbi->blocks_per_seg);
777
778         /* check segment usage, and check boundary of a given segment number */
779         if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
780                                         || !valid_main_segno(sbi, segno))) {
781                 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
782                          GET_SIT_VBLOCKS(raw_sit), segno);
783                 set_sbi_flag(sbi, SBI_NEED_FSCK);
784                 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
785                 return -EFSCORRUPTED;
786         }
787         return 0;
788 }
789
790 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
791                                                 unsigned int start)
792 {
793         struct sit_info *sit_i = SIT_I(sbi);
794         unsigned int offset = SIT_BLOCK_OFFSET(start);
795         block_t blk_addr = sit_i->sit_base_addr + offset;
796
797         f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
798
799 #ifdef CONFIG_F2FS_CHECK_FS
800         if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
801                         f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
802                 f2fs_bug_on(sbi, 1);
803 #endif
804
805         /* calculate sit block address */
806         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
807                 blk_addr += sit_i->sit_blocks;
808
809         return blk_addr;
810 }
811
812 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
813                                                 pgoff_t block_addr)
814 {
815         struct sit_info *sit_i = SIT_I(sbi);
816         block_addr -= sit_i->sit_base_addr;
817         if (block_addr < sit_i->sit_blocks)
818                 block_addr += sit_i->sit_blocks;
819         else
820                 block_addr -= sit_i->sit_blocks;
821
822         return block_addr + sit_i->sit_base_addr;
823 }
824
825 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
826 {
827         unsigned int block_off = SIT_BLOCK_OFFSET(start);
828
829         f2fs_change_bit(block_off, sit_i->sit_bitmap);
830 #ifdef CONFIG_F2FS_CHECK_FS
831         f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
832 #endif
833 }
834
835 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
836                                                 bool base_time)
837 {
838         struct sit_info *sit_i = SIT_I(sbi);
839         time64_t diff, now = ktime_get_boottime_seconds();
840
841         if (now >= sit_i->mounted_time)
842                 return sit_i->elapsed_time + now - sit_i->mounted_time;
843
844         /* system time is set to the past */
845         if (!base_time) {
846                 diff = sit_i->mounted_time - now;
847                 if (sit_i->elapsed_time >= diff)
848                         return sit_i->elapsed_time - diff;
849                 return 0;
850         }
851         return sit_i->elapsed_time;
852 }
853
854 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
855                         unsigned int ofs_in_node, unsigned char version)
856 {
857         sum->nid = cpu_to_le32(nid);
858         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
859         sum->version = version;
860 }
861
862 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
863 {
864         return __start_cp_addr(sbi) +
865                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
866 }
867
868 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
869 {
870         return __start_cp_addr(sbi) +
871                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
872                                 - (base + 1) + type;
873 }
874
875 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
876 {
877         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
878                 return true;
879         return false;
880 }
881
882 /*
883  * It is very important to gather dirty pages and write at once, so that we can
884  * submit a big bio without interfering other data writes.
885  * By default, 512 pages for directory data,
886  * 512 pages (2MB) * 8 for nodes, and
887  * 256 pages * 8 for meta are set.
888  */
889 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
890 {
891         if (sbi->sb->s_bdi->wb.dirty_exceeded)
892                 return 0;
893
894         if (type == DATA)
895                 return sbi->blocks_per_seg;
896         else if (type == NODE)
897                 return 8 * sbi->blocks_per_seg;
898         else if (type == META)
899                 return 8 * BIO_MAX_VECS;
900         else
901                 return 0;
902 }
903
904 /*
905  * When writing pages, it'd better align nr_to_write for segment size.
906  */
907 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
908                                         struct writeback_control *wbc)
909 {
910         long nr_to_write, desired;
911
912         if (wbc->sync_mode != WB_SYNC_NONE)
913                 return 0;
914
915         nr_to_write = wbc->nr_to_write;
916         desired = BIO_MAX_VECS;
917         if (type == NODE)
918                 desired <<= 1;
919
920         wbc->nr_to_write = desired;
921         return desired - nr_to_write;
922 }
923
924 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
925 {
926         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
927         bool wakeup = false;
928         int i;
929
930         if (force)
931                 goto wake_up;
932
933         mutex_lock(&dcc->cmd_lock);
934         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
935                 if (i + 1 < dcc->discard_granularity)
936                         break;
937                 if (!list_empty(&dcc->pend_list[i])) {
938                         wakeup = true;
939                         break;
940                 }
941         }
942         mutex_unlock(&dcc->cmd_lock);
943         if (!wakeup || !is_idle(sbi, DISCARD_TIME))
944                 return;
945 wake_up:
946         dcc->discard_wake = true;
947         wake_up_interruptible_all(&dcc->discard_wait_queue);
948 }
This page took 0.093343 seconds and 4 git commands to generate.