1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
29 #include <trace/events/f2fs.h>
31 #define NUM_PREALLOC_POST_READ_CTXS 128
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
40 int __init f2fs_init_bioset(void)
42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS);
46 void f2fs_destroy_bioset(void)
48 bioset_exit(&f2fs_bioset);
51 static bool __is_cp_guaranteed(struct page *page)
53 struct address_space *mapping = page->mapping;
55 struct f2fs_sb_info *sbi;
60 inode = mapping->host;
61 sbi = F2FS_I_SB(inode);
63 if (inode->i_ino == F2FS_META_INO(sbi) ||
64 inode->i_ino == F2FS_NODE_INO(sbi) ||
65 S_ISDIR(inode->i_mode))
68 if (f2fs_is_compressed_page(page))
70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71 page_private_gcing(page))
76 static enum count_type __read_io_type(struct page *page)
78 struct address_space *mapping = page_file_mapping(page);
81 struct inode *inode = mapping->host;
82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
84 if (inode->i_ino == F2FS_META_INO(sbi))
87 if (inode->i_ino == F2FS_NODE_INO(sbi))
93 /* postprocessing steps for read bios */
94 enum bio_post_read_step {
95 #ifdef CONFIG_FS_ENCRYPTION
96 STEP_DECRYPT = 1 << 0,
98 STEP_DECRYPT = 0, /* compile out the decryption-related code */
100 #ifdef CONFIG_F2FS_FS_COMPRESSION
101 STEP_DECOMPRESS = 1 << 1,
103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
105 #ifdef CONFIG_FS_VERITY
106 STEP_VERITY = 1 << 2,
108 STEP_VERITY = 0, /* compile out the verity-related code */
112 struct bio_post_read_ctx {
114 struct f2fs_sb_info *sbi;
115 struct work_struct work;
116 unsigned int enabled_steps;
118 * decompression_attempted keeps track of whether
119 * f2fs_end_read_compressed_page() has been called on the pages in the
120 * bio that belong to a compressed cluster yet.
122 bool decompression_attempted;
127 * Update and unlock a bio's pages, and free the bio.
129 * This marks pages up-to-date only if there was no error in the bio (I/O error,
130 * decryption error, or verity error), as indicated by bio->bi_status.
132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133 * aren't marked up-to-date here, as decompression is done on a per-compression-
134 * cluster basis rather than a per-bio basis. Instead, we only must do two
135 * things for each compressed page here: call f2fs_end_read_compressed_page()
136 * with failed=true if an error occurred before it would have normally gotten
137 * called (i.e., I/O error or decryption error, but *not* verity error), and
138 * release the bio's reference to the decompress_io_ctx of the page's cluster.
140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
143 struct bvec_iter_all iter_all;
144 struct bio_post_read_ctx *ctx = bio->bi_private;
146 bio_for_each_segment_all(bv, bio, iter_all) {
147 struct page *page = bv->bv_page;
149 if (f2fs_is_compressed_page(page)) {
150 if (ctx && !ctx->decompression_attempted)
151 f2fs_end_read_compressed_page(page, true, 0,
153 f2fs_put_page_dic(page, in_task);
158 ClearPageUptodate(page);
160 SetPageUptodate(page);
161 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
166 mempool_free(ctx, bio_post_read_ctx_pool);
170 static void f2fs_verify_bio(struct work_struct *work)
172 struct bio_post_read_ctx *ctx =
173 container_of(work, struct bio_post_read_ctx, work);
174 struct bio *bio = ctx->bio;
175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
178 * fsverity_verify_bio() may call readahead() again, and while verity
179 * will be disabled for this, decryption and/or decompression may still
180 * be needed, resulting in another bio_post_read_ctx being allocated.
181 * So to prevent deadlocks we need to release the current ctx to the
182 * mempool first. This assumes that verity is the last post-read step.
184 mempool_free(ctx, bio_post_read_ctx_pool);
185 bio->bi_private = NULL;
188 * Verify the bio's pages with fs-verity. Exclude compressed pages,
189 * as those were handled separately by f2fs_end_read_compressed_page().
191 if (may_have_compressed_pages) {
193 struct bvec_iter_all iter_all;
195 bio_for_each_segment_all(bv, bio, iter_all) {
196 struct page *page = bv->bv_page;
198 if (!f2fs_is_compressed_page(page) &&
199 !fsverity_verify_page(page)) {
200 bio->bi_status = BLK_STS_IOERR;
205 fsverity_verify_bio(bio);
208 f2fs_finish_read_bio(bio, true);
212 * If the bio's data needs to be verified with fs-verity, then enqueue the
213 * verity work for the bio. Otherwise finish the bio now.
215 * Note that to avoid deadlocks, the verity work can't be done on the
216 * decryption/decompression workqueue. This is because verifying the data pages
217 * can involve reading verity metadata pages from the file, and these verity
218 * metadata pages may be encrypted and/or compressed.
220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
222 struct bio_post_read_ctx *ctx = bio->bi_private;
224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225 INIT_WORK(&ctx->work, f2fs_verify_bio);
226 fsverity_enqueue_verify_work(&ctx->work);
228 f2fs_finish_read_bio(bio, in_task);
233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234 * remaining page was read by @ctx->bio.
236 * Note that a bio may span clusters (even a mix of compressed and uncompressed
237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
238 * that the bio includes at least one compressed page. The actual decompression
239 * is done on a per-cluster basis, not a per-bio basis.
241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
245 struct bvec_iter_all iter_all;
246 bool all_compressed = true;
247 block_t blkaddr = ctx->fs_blkaddr;
249 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250 struct page *page = bv->bv_page;
252 if (f2fs_is_compressed_page(page))
253 f2fs_end_read_compressed_page(page, false, blkaddr,
256 all_compressed = false;
261 ctx->decompression_attempted = true;
264 * Optimization: if all the bio's pages are compressed, then scheduling
265 * the per-bio verity work is unnecessary, as verity will be fully
266 * handled at the compression cluster level.
269 ctx->enabled_steps &= ~STEP_VERITY;
272 static void f2fs_post_read_work(struct work_struct *work)
274 struct bio_post_read_ctx *ctx =
275 container_of(work, struct bio_post_read_ctx, work);
276 struct bio *bio = ctx->bio;
278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279 f2fs_finish_read_bio(bio, true);
283 if (ctx->enabled_steps & STEP_DECOMPRESS)
284 f2fs_handle_step_decompress(ctx, true);
286 f2fs_verify_and_finish_bio(bio, true);
289 static void f2fs_read_end_io(struct bio *bio)
291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292 struct bio_post_read_ctx *ctx;
293 bool intask = in_task();
295 iostat_update_and_unbind_ctx(bio);
296 ctx = bio->bi_private;
298 if (time_to_inject(sbi, FAULT_READ_IO))
299 bio->bi_status = BLK_STS_IOERR;
301 if (bio->bi_status) {
302 f2fs_finish_read_bio(bio, intask);
307 unsigned int enabled_steps = ctx->enabled_steps &
308 (STEP_DECRYPT | STEP_DECOMPRESS);
311 * If we have only decompression step between decompression and
312 * decrypt, we don't need post processing for this.
314 if (enabled_steps == STEP_DECOMPRESS &&
315 !f2fs_low_mem_mode(sbi)) {
316 f2fs_handle_step_decompress(ctx, intask);
317 } else if (enabled_steps) {
318 INIT_WORK(&ctx->work, f2fs_post_read_work);
319 queue_work(ctx->sbi->post_read_wq, &ctx->work);
324 f2fs_verify_and_finish_bio(bio, intask);
327 static void f2fs_write_end_io(struct bio *bio)
329 struct f2fs_sb_info *sbi;
330 struct bio_vec *bvec;
331 struct bvec_iter_all iter_all;
333 iostat_update_and_unbind_ctx(bio);
334 sbi = bio->bi_private;
336 if (time_to_inject(sbi, FAULT_WRITE_IO))
337 bio->bi_status = BLK_STS_IOERR;
339 bio_for_each_segment_all(bvec, bio, iter_all) {
340 struct page *page = bvec->bv_page;
341 enum count_type type = WB_DATA_TYPE(page);
343 if (page_private_dummy(page)) {
344 clear_page_private_dummy(page);
346 mempool_free(page, sbi->write_io_dummy);
348 if (unlikely(bio->bi_status))
349 f2fs_stop_checkpoint(sbi, true,
350 STOP_CP_REASON_WRITE_FAIL);
354 fscrypt_finalize_bounce_page(&page);
356 #ifdef CONFIG_F2FS_FS_COMPRESSION
357 if (f2fs_is_compressed_page(page)) {
358 f2fs_compress_write_end_io(bio, page);
363 if (unlikely(bio->bi_status)) {
364 mapping_set_error(page->mapping, -EIO);
365 if (type == F2FS_WB_CP_DATA)
366 f2fs_stop_checkpoint(sbi, true,
367 STOP_CP_REASON_WRITE_FAIL);
370 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371 page->index != nid_of_node(page));
373 dec_page_count(sbi, type);
374 if (f2fs_in_warm_node_list(sbi, page))
375 f2fs_del_fsync_node_entry(sbi, page);
376 clear_page_private_gcing(page);
377 end_page_writeback(page);
379 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380 wq_has_sleeper(&sbi->cp_wait))
381 wake_up(&sbi->cp_wait);
386 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
387 block_t blk_addr, sector_t *sector)
389 struct block_device *bdev = sbi->sb->s_bdev;
392 if (f2fs_is_multi_device(sbi)) {
393 for (i = 0; i < sbi->s_ndevs; i++) {
394 if (FDEV(i).start_blk <= blk_addr &&
395 FDEV(i).end_blk >= blk_addr) {
396 blk_addr -= FDEV(i).start_blk;
404 *sector = SECTOR_FROM_BLOCK(blk_addr);
408 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
412 if (!f2fs_is_multi_device(sbi))
415 for (i = 0; i < sbi->s_ndevs; i++)
416 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
421 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
423 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
424 unsigned int fua_flag, meta_flag, io_flag;
425 blk_opf_t op_flags = 0;
427 if (fio->op != REQ_OP_WRITE)
429 if (fio->type == DATA)
430 io_flag = fio->sbi->data_io_flag;
431 else if (fio->type == NODE)
432 io_flag = fio->sbi->node_io_flag;
436 fua_flag = io_flag & temp_mask;
437 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
440 * data/node io flag bits per temp:
441 * REQ_META | REQ_FUA |
442 * 5 | 4 | 3 | 2 | 1 | 0 |
443 * Cold | Warm | Hot | Cold | Warm | Hot |
445 if ((1 << fio->temp) & meta_flag)
446 op_flags |= REQ_META;
447 if ((1 << fio->temp) & fua_flag)
452 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
454 struct f2fs_sb_info *sbi = fio->sbi;
455 struct block_device *bdev;
459 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
460 bio = bio_alloc_bioset(bdev, npages,
461 fio->op | fio->op_flags | f2fs_io_flags(fio),
462 GFP_NOIO, &f2fs_bioset);
463 bio->bi_iter.bi_sector = sector;
464 if (is_read_io(fio->op)) {
465 bio->bi_end_io = f2fs_read_end_io;
466 bio->bi_private = NULL;
468 bio->bi_end_io = f2fs_write_end_io;
469 bio->bi_private = sbi;
471 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
474 wbc_init_bio(fio->io_wbc, bio);
479 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
481 const struct f2fs_io_info *fio,
485 * The f2fs garbage collector sets ->encrypted_page when it wants to
486 * read/write raw data without encryption.
488 if (!fio || !fio->encrypted_page)
489 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
492 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
494 const struct f2fs_io_info *fio)
497 * The f2fs garbage collector sets ->encrypted_page when it wants to
498 * read/write raw data without encryption.
500 if (fio && fio->encrypted_page)
501 return !bio_has_crypt_ctx(bio);
503 return fscrypt_mergeable_bio(bio, inode, next_idx);
506 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
509 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
510 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
512 iostat_update_submit_ctx(bio, type);
516 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
519 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
524 /* fill dummy pages */
525 for (; start < F2FS_IO_SIZE(sbi); start++) {
527 mempool_alloc(sbi->write_io_dummy,
528 GFP_NOIO | __GFP_NOFAIL);
529 f2fs_bug_on(sbi, !page);
533 zero_user_segment(page, 0, PAGE_SIZE);
534 set_page_private_dummy(page);
536 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
541 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
544 WARN_ON_ONCE(is_read_io(bio_op(bio)));
546 if (type == DATA || type == NODE) {
547 if (f2fs_lfs_mode(sbi) && current->plug)
548 blk_finish_plug(current->plug);
550 if (F2FS_IO_ALIGNED(sbi)) {
551 f2fs_align_write_bio(sbi, bio);
553 * In the NODE case, we lose next block address chain.
554 * So, we need to do checkpoint in f2fs_sync_file.
557 set_sbi_flag(sbi, SBI_NEED_CP);
561 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
562 iostat_update_submit_ctx(bio, type);
566 static void __submit_merged_bio(struct f2fs_bio_info *io)
568 struct f2fs_io_info *fio = &io->fio;
573 if (is_read_io(fio->op)) {
574 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
575 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
577 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
578 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
583 static bool __has_merged_page(struct bio *bio, struct inode *inode,
584 struct page *page, nid_t ino)
586 struct bio_vec *bvec;
587 struct bvec_iter_all iter_all;
592 if (!inode && !page && !ino)
595 bio_for_each_segment_all(bvec, bio, iter_all) {
596 struct page *target = bvec->bv_page;
598 if (fscrypt_is_bounce_page(target)) {
599 target = fscrypt_pagecache_page(target);
603 if (f2fs_is_compressed_page(target)) {
604 target = f2fs_compress_control_page(target);
609 if (inode && inode == target->mapping->host)
611 if (page && page == target)
613 if (ino && ino == ino_of_node(target))
620 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
624 for (i = 0; i < NR_PAGE_TYPE; i++) {
625 int n = (i == META) ? 1 : NR_TEMP_TYPE;
628 sbi->write_io[i] = f2fs_kmalloc(sbi,
629 array_size(n, sizeof(struct f2fs_bio_info)),
631 if (!sbi->write_io[i])
634 for (j = HOT; j < n; j++) {
635 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
636 sbi->write_io[i][j].sbi = sbi;
637 sbi->write_io[i][j].bio = NULL;
638 spin_lock_init(&sbi->write_io[i][j].io_lock);
639 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
640 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
641 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
648 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
649 enum page_type type, enum temp_type temp)
651 enum page_type btype = PAGE_TYPE_OF_BIO(type);
652 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
654 f2fs_down_write(&io->io_rwsem);
659 /* change META to META_FLUSH in the checkpoint procedure */
660 if (type >= META_FLUSH) {
661 io->fio.type = META_FLUSH;
662 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
663 if (!test_opt(sbi, NOBARRIER))
664 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
666 __submit_merged_bio(io);
668 f2fs_up_write(&io->io_rwsem);
671 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
672 struct inode *inode, struct page *page,
673 nid_t ino, enum page_type type, bool force)
678 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
680 enum page_type btype = PAGE_TYPE_OF_BIO(type);
681 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
683 f2fs_down_read(&io->io_rwsem);
684 ret = __has_merged_page(io->bio, inode, page, ino);
685 f2fs_up_read(&io->io_rwsem);
688 __f2fs_submit_merged_write(sbi, type, temp);
690 /* TODO: use HOT temp only for meta pages now. */
696 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
698 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
701 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
702 struct inode *inode, struct page *page,
703 nid_t ino, enum page_type type)
705 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
708 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
710 f2fs_submit_merged_write(sbi, DATA);
711 f2fs_submit_merged_write(sbi, NODE);
712 f2fs_submit_merged_write(sbi, META);
716 * Fill the locked page with data located in the block address.
717 * A caller needs to unlock the page on failure.
719 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
722 struct page *page = fio->encrypted_page ?
723 fio->encrypted_page : fio->page;
725 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
726 fio->is_por ? META_POR : (__is_meta_io(fio) ?
727 META_GENERIC : DATA_GENERIC_ENHANCE))) {
728 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
729 return -EFSCORRUPTED;
732 trace_f2fs_submit_page_bio(page, fio);
734 /* Allocate a new bio */
735 bio = __bio_alloc(fio, 1);
737 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
738 fio->page->index, fio, GFP_NOIO);
740 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
745 if (fio->io_wbc && !is_read_io(fio->op))
746 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
748 inc_page_count(fio->sbi, is_read_io(fio->op) ?
749 __read_io_type(page) : WB_DATA_TYPE(fio->page));
751 if (is_read_io(bio_op(bio)))
752 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
754 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
758 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
759 block_t last_blkaddr, block_t cur_blkaddr)
761 if (unlikely(sbi->max_io_bytes &&
762 bio->bi_iter.bi_size >= sbi->max_io_bytes))
764 if (last_blkaddr + 1 != cur_blkaddr)
766 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
769 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
770 struct f2fs_io_info *fio)
772 if (io->fio.op != fio->op)
774 return io->fio.op_flags == fio->op_flags;
777 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
778 struct f2fs_bio_info *io,
779 struct f2fs_io_info *fio,
780 block_t last_blkaddr,
783 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
784 unsigned int filled_blocks =
785 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
786 unsigned int io_size = F2FS_IO_SIZE(sbi);
787 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
789 /* IOs in bio is aligned and left space of vectors is not enough */
790 if (!(filled_blocks % io_size) && left_vecs < io_size)
793 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
795 return io_type_is_mergeable(io, fio);
798 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
799 struct page *page, enum temp_type temp)
801 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
802 struct bio_entry *be;
804 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
808 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
811 f2fs_down_write(&io->bio_list_lock);
812 list_add_tail(&be->list, &io->bio_list);
813 f2fs_up_write(&io->bio_list_lock);
816 static void del_bio_entry(struct bio_entry *be)
819 kmem_cache_free(bio_entry_slab, be);
822 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
825 struct f2fs_sb_info *sbi = fio->sbi;
830 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
831 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
832 struct list_head *head = &io->bio_list;
833 struct bio_entry *be;
835 f2fs_down_write(&io->bio_list_lock);
836 list_for_each_entry(be, head, list) {
842 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
845 if (f2fs_crypt_mergeable_bio(*bio,
846 fio->page->mapping->host,
847 fio->page->index, fio) &&
848 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
854 /* page can't be merged into bio; submit the bio */
856 f2fs_submit_write_bio(sbi, *bio, DATA);
859 f2fs_up_write(&io->bio_list_lock);
870 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
871 struct bio **bio, struct page *page)
875 struct bio *target = bio ? *bio : NULL;
877 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
878 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
879 struct list_head *head = &io->bio_list;
880 struct bio_entry *be;
882 if (list_empty(head))
885 f2fs_down_read(&io->bio_list_lock);
886 list_for_each_entry(be, head, list) {
888 found = (target == be->bio);
890 found = __has_merged_page(be->bio, NULL,
895 f2fs_up_read(&io->bio_list_lock);
902 f2fs_down_write(&io->bio_list_lock);
903 list_for_each_entry(be, head, list) {
905 found = (target == be->bio);
907 found = __has_merged_page(be->bio, NULL,
915 f2fs_up_write(&io->bio_list_lock);
919 f2fs_submit_write_bio(sbi, target, DATA);
926 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
928 struct bio *bio = *fio->bio;
929 struct page *page = fio->encrypted_page ?
930 fio->encrypted_page : fio->page;
932 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
933 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
934 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
935 return -EFSCORRUPTED;
938 trace_f2fs_submit_page_bio(page, fio);
940 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
942 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
945 bio = __bio_alloc(fio, BIO_MAX_VECS);
946 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
947 fio->page->index, fio, GFP_NOIO);
949 add_bio_entry(fio->sbi, bio, page, fio->temp);
951 if (add_ipu_page(fio, &bio, page))
956 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
958 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
960 *fio->last_block = fio->new_blkaddr;
966 void f2fs_submit_page_write(struct f2fs_io_info *fio)
968 struct f2fs_sb_info *sbi = fio->sbi;
969 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
970 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
971 struct page *bio_page;
973 f2fs_bug_on(sbi, is_read_io(fio->op));
975 f2fs_down_write(&io->io_rwsem);
978 spin_lock(&io->io_lock);
979 if (list_empty(&io->io_list)) {
980 spin_unlock(&io->io_lock);
983 fio = list_first_entry(&io->io_list,
984 struct f2fs_io_info, list);
985 list_del(&fio->list);
986 spin_unlock(&io->io_lock);
989 verify_fio_blkaddr(fio);
991 if (fio->encrypted_page)
992 bio_page = fio->encrypted_page;
993 else if (fio->compressed_page)
994 bio_page = fio->compressed_page;
996 bio_page = fio->page;
998 /* set submitted = true as a return value */
1001 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1004 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1005 fio->new_blkaddr) ||
1006 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1007 bio_page->index, fio)))
1008 __submit_merged_bio(io);
1010 if (io->bio == NULL) {
1011 if (F2FS_IO_ALIGNED(sbi) &&
1012 (fio->type == DATA || fio->type == NODE) &&
1013 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1014 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1018 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1019 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1020 bio_page->index, fio, GFP_NOIO);
1024 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1025 __submit_merged_bio(io);
1030 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1032 io->last_block_in_bio = fio->new_blkaddr;
1034 trace_f2fs_submit_page_write(fio->page, fio);
1039 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1040 !f2fs_is_checkpoint_ready(sbi))
1041 __submit_merged_bio(io);
1042 f2fs_up_write(&io->io_rwsem);
1045 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1046 unsigned nr_pages, blk_opf_t op_flag,
1047 pgoff_t first_idx, bool for_write)
1049 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1051 struct bio_post_read_ctx *ctx = NULL;
1052 unsigned int post_read_steps = 0;
1054 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1056 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1057 REQ_OP_READ | op_flag,
1058 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1060 return ERR_PTR(-ENOMEM);
1061 bio->bi_iter.bi_sector = sector;
1062 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1063 bio->bi_end_io = f2fs_read_end_io;
1065 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1066 post_read_steps |= STEP_DECRYPT;
1068 if (f2fs_need_verity(inode, first_idx))
1069 post_read_steps |= STEP_VERITY;
1072 * STEP_DECOMPRESS is handled specially, since a compressed file might
1073 * contain both compressed and uncompressed clusters. We'll allocate a
1074 * bio_post_read_ctx if the file is compressed, but the caller is
1075 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1078 if (post_read_steps || f2fs_compressed_file(inode)) {
1079 /* Due to the mempool, this never fails. */
1080 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1083 ctx->enabled_steps = post_read_steps;
1084 ctx->fs_blkaddr = blkaddr;
1085 ctx->decompression_attempted = false;
1086 bio->bi_private = ctx;
1088 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1093 /* This can handle encryption stuffs */
1094 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1095 block_t blkaddr, blk_opf_t op_flags,
1098 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1101 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1102 page->index, for_write);
1104 return PTR_ERR(bio);
1106 /* wait for GCed page writeback via META_MAPPING */
1107 f2fs_wait_on_block_writeback(inode, blkaddr);
1109 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1113 inc_page_count(sbi, F2FS_RD_DATA);
1114 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1115 f2fs_submit_read_bio(sbi, bio, DATA);
1119 static void __set_data_blkaddr(struct dnode_of_data *dn)
1121 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1125 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1126 base = get_extra_isize(dn->inode);
1128 /* Get physical address of data block */
1129 addr_array = blkaddr_in_node(rn);
1130 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1134 * Lock ordering for the change of data block address:
1137 * update block addresses in the node page
1139 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1141 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1142 __set_data_blkaddr(dn);
1143 if (set_page_dirty(dn->node_page))
1144 dn->node_changed = true;
1147 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1149 dn->data_blkaddr = blkaddr;
1150 f2fs_set_data_blkaddr(dn);
1151 f2fs_update_read_extent_cache(dn);
1154 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1155 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1157 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1163 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1165 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1168 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1169 dn->ofs_in_node, count);
1171 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1173 for (; count > 0; dn->ofs_in_node++) {
1174 block_t blkaddr = f2fs_data_blkaddr(dn);
1176 if (blkaddr == NULL_ADDR) {
1177 dn->data_blkaddr = NEW_ADDR;
1178 __set_data_blkaddr(dn);
1183 if (set_page_dirty(dn->node_page))
1184 dn->node_changed = true;
1188 /* Should keep dn->ofs_in_node unchanged */
1189 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1191 unsigned int ofs_in_node = dn->ofs_in_node;
1194 ret = f2fs_reserve_new_blocks(dn, 1);
1195 dn->ofs_in_node = ofs_in_node;
1199 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1201 bool need_put = dn->inode_page ? false : true;
1204 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1208 if (dn->data_blkaddr == NULL_ADDR)
1209 err = f2fs_reserve_new_block(dn);
1210 if (err || need_put)
1215 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1216 blk_opf_t op_flags, bool for_write,
1217 pgoff_t *next_pgofs)
1219 struct address_space *mapping = inode->i_mapping;
1220 struct dnode_of_data dn;
1224 page = f2fs_grab_cache_page(mapping, index, for_write);
1226 return ERR_PTR(-ENOMEM);
1228 if (f2fs_lookup_read_extent_cache_block(inode, index,
1229 &dn.data_blkaddr)) {
1230 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1231 DATA_GENERIC_ENHANCE_READ)) {
1232 err = -EFSCORRUPTED;
1233 f2fs_handle_error(F2FS_I_SB(inode),
1234 ERROR_INVALID_BLKADDR);
1240 set_new_dnode(&dn, inode, NULL, NULL, 0);
1241 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1243 if (err == -ENOENT && next_pgofs)
1244 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1247 f2fs_put_dnode(&dn);
1249 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1252 *next_pgofs = index + 1;
1255 if (dn.data_blkaddr != NEW_ADDR &&
1256 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1258 DATA_GENERIC_ENHANCE)) {
1259 err = -EFSCORRUPTED;
1260 f2fs_handle_error(F2FS_I_SB(inode),
1261 ERROR_INVALID_BLKADDR);
1265 if (PageUptodate(page)) {
1271 * A new dentry page is allocated but not able to be written, since its
1272 * new inode page couldn't be allocated due to -ENOSPC.
1273 * In such the case, its blkaddr can be remained as NEW_ADDR.
1274 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1275 * f2fs_init_inode_metadata.
1277 if (dn.data_blkaddr == NEW_ADDR) {
1278 zero_user_segment(page, 0, PAGE_SIZE);
1279 if (!PageUptodate(page))
1280 SetPageUptodate(page);
1285 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1286 op_flags, for_write);
1292 f2fs_put_page(page, 1);
1293 return ERR_PTR(err);
1296 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1297 pgoff_t *next_pgofs)
1299 struct address_space *mapping = inode->i_mapping;
1302 page = find_get_page(mapping, index);
1303 if (page && PageUptodate(page))
1305 f2fs_put_page(page, 0);
1307 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1311 if (PageUptodate(page))
1314 wait_on_page_locked(page);
1315 if (unlikely(!PageUptodate(page))) {
1316 f2fs_put_page(page, 0);
1317 return ERR_PTR(-EIO);
1323 * If it tries to access a hole, return an error.
1324 * Because, the callers, functions in dir.c and GC, should be able to know
1325 * whether this page exists or not.
1327 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1330 struct address_space *mapping = inode->i_mapping;
1333 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1337 /* wait for read completion */
1339 if (unlikely(page->mapping != mapping)) {
1340 f2fs_put_page(page, 1);
1343 if (unlikely(!PageUptodate(page))) {
1344 f2fs_put_page(page, 1);
1345 return ERR_PTR(-EIO);
1351 * Caller ensures that this data page is never allocated.
1352 * A new zero-filled data page is allocated in the page cache.
1354 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1356 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1357 * ipage should be released by this function.
1359 struct page *f2fs_get_new_data_page(struct inode *inode,
1360 struct page *ipage, pgoff_t index, bool new_i_size)
1362 struct address_space *mapping = inode->i_mapping;
1364 struct dnode_of_data dn;
1367 page = f2fs_grab_cache_page(mapping, index, true);
1370 * before exiting, we should make sure ipage will be released
1371 * if any error occur.
1373 f2fs_put_page(ipage, 1);
1374 return ERR_PTR(-ENOMEM);
1377 set_new_dnode(&dn, inode, ipage, NULL, 0);
1378 err = f2fs_reserve_block(&dn, index);
1380 f2fs_put_page(page, 1);
1381 return ERR_PTR(err);
1384 f2fs_put_dnode(&dn);
1386 if (PageUptodate(page))
1389 if (dn.data_blkaddr == NEW_ADDR) {
1390 zero_user_segment(page, 0, PAGE_SIZE);
1391 if (!PageUptodate(page))
1392 SetPageUptodate(page);
1394 f2fs_put_page(page, 1);
1396 /* if ipage exists, blkaddr should be NEW_ADDR */
1397 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1398 page = f2fs_get_lock_data_page(inode, index, true);
1403 if (new_i_size && i_size_read(inode) <
1404 ((loff_t)(index + 1) << PAGE_SHIFT))
1405 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1409 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1411 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1412 struct f2fs_summary sum;
1413 struct node_info ni;
1414 block_t old_blkaddr;
1418 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1421 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1425 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1426 if (dn->data_blkaddr == NULL_ADDR) {
1427 err = inc_valid_block_count(sbi, dn->inode, &count);
1432 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1433 old_blkaddr = dn->data_blkaddr;
1434 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1435 &sum, seg_type, NULL);
1436 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1437 invalidate_mapping_pages(META_MAPPING(sbi),
1438 old_blkaddr, old_blkaddr);
1439 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1441 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1445 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1447 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1448 f2fs_down_read(&sbi->node_change);
1453 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1455 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1456 f2fs_up_read(&sbi->node_change);
1458 f2fs_unlock_op(sbi);
1461 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1463 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1466 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1467 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1469 err = f2fs_reserve_block(dn, index);
1470 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1475 static int f2fs_map_no_dnode(struct inode *inode,
1476 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1479 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1482 * There is one exceptional case that read_node_page() may return
1483 * -ENOENT due to filesystem has been shutdown or cp_error, return
1484 * -EIO in that case.
1486 if (map->m_may_create &&
1487 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1490 if (map->m_next_pgofs)
1491 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1492 if (map->m_next_extent)
1493 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1497 static bool f2fs_map_blocks_cached(struct inode *inode,
1498 struct f2fs_map_blocks *map, int flag)
1500 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1501 unsigned int maxblocks = map->m_len;
1502 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1503 struct extent_info ei = {};
1505 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1508 map->m_pblk = ei.blk + pgoff - ei.fofs;
1509 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1510 map->m_flags = F2FS_MAP_MAPPED;
1511 if (map->m_next_extent)
1512 *map->m_next_extent = pgoff + map->m_len;
1514 /* for hardware encryption, but to avoid potential issue in future */
1515 if (flag == F2FS_GET_BLOCK_DIO)
1516 f2fs_wait_on_block_writeback_range(inode,
1517 map->m_pblk, map->m_len);
1519 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1520 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1521 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1523 map->m_bdev = dev->bdev;
1524 map->m_pblk -= dev->start_blk;
1525 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1527 map->m_bdev = inode->i_sb->s_bdev;
1533 * f2fs_map_blocks() tries to find or build mapping relationship which
1534 * maps continuous logical blocks to physical blocks, and return such
1535 * info via f2fs_map_blocks structure.
1537 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1539 unsigned int maxblocks = map->m_len;
1540 struct dnode_of_data dn;
1541 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1542 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1543 pgoff_t pgofs, end_offset, end;
1544 int err = 0, ofs = 1;
1545 unsigned int ofs_in_node, last_ofs_in_node;
1548 unsigned int start_pgofs;
1555 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1558 map->m_bdev = inode->i_sb->s_bdev;
1559 map->m_multidev_dio =
1560 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1565 /* it only supports block size == page size */
1566 pgofs = (pgoff_t)map->m_lblk;
1567 end = pgofs + maxblocks;
1570 if (map->m_may_create)
1571 f2fs_map_lock(sbi, flag);
1573 /* When reading holes, we need its node page */
1574 set_new_dnode(&dn, inode, NULL, NULL, 0);
1575 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1577 if (flag == F2FS_GET_BLOCK_BMAP)
1580 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1584 start_pgofs = pgofs;
1586 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1587 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1590 blkaddr = f2fs_data_blkaddr(&dn);
1591 is_hole = !__is_valid_data_blkaddr(blkaddr);
1593 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1594 err = -EFSCORRUPTED;
1595 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1599 /* use out-place-update for direct IO under LFS mode */
1600 if (map->m_may_create &&
1601 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1602 if (unlikely(f2fs_cp_error(sbi))) {
1608 case F2FS_GET_BLOCK_PRE_AIO:
1609 if (blkaddr == NULL_ADDR) {
1611 last_ofs_in_node = dn.ofs_in_node;
1614 case F2FS_GET_BLOCK_PRE_DIO:
1615 case F2FS_GET_BLOCK_DIO:
1616 err = __allocate_data_block(&dn, map->m_seg_type);
1619 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1620 file_need_truncate(inode);
1621 set_inode_flag(inode, FI_APPEND_WRITE);
1629 blkaddr = dn.data_blkaddr;
1631 map->m_flags |= F2FS_MAP_NEW;
1632 } else if (is_hole) {
1633 if (f2fs_compressed_file(inode) &&
1634 f2fs_sanity_check_cluster(&dn) &&
1635 (flag != F2FS_GET_BLOCK_FIEMAP ||
1636 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1637 err = -EFSCORRUPTED;
1638 f2fs_handle_error(sbi,
1639 ERROR_CORRUPTED_CLUSTER);
1644 case F2FS_GET_BLOCK_PRECACHE:
1646 case F2FS_GET_BLOCK_BMAP:
1649 case F2FS_GET_BLOCK_FIEMAP:
1650 if (blkaddr == NULL_ADDR) {
1651 if (map->m_next_pgofs)
1652 *map->m_next_pgofs = pgofs + 1;
1657 /* for defragment case */
1658 if (map->m_next_pgofs)
1659 *map->m_next_pgofs = pgofs + 1;
1664 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1667 if (map->m_multidev_dio)
1668 bidx = f2fs_target_device_index(sbi, blkaddr);
1670 if (map->m_len == 0) {
1671 /* reserved delalloc block should be mapped for fiemap. */
1672 if (blkaddr == NEW_ADDR)
1673 map->m_flags |= F2FS_MAP_DELALLOC;
1674 map->m_flags |= F2FS_MAP_MAPPED;
1676 map->m_pblk = blkaddr;
1679 if (map->m_multidev_dio)
1680 map->m_bdev = FDEV(bidx).bdev;
1681 } else if ((map->m_pblk != NEW_ADDR &&
1682 blkaddr == (map->m_pblk + ofs)) ||
1683 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1684 flag == F2FS_GET_BLOCK_PRE_DIO) {
1685 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1697 /* preallocate blocks in batch for one dnode page */
1698 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1699 (pgofs == end || dn.ofs_in_node == end_offset)) {
1701 dn.ofs_in_node = ofs_in_node;
1702 err = f2fs_reserve_new_blocks(&dn, prealloc);
1706 map->m_len += dn.ofs_in_node - ofs_in_node;
1707 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1711 dn.ofs_in_node = end_offset;
1716 else if (dn.ofs_in_node < end_offset)
1719 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1720 if (map->m_flags & F2FS_MAP_MAPPED) {
1721 unsigned int ofs = start_pgofs - map->m_lblk;
1723 f2fs_update_read_extent_cache_range(&dn,
1724 start_pgofs, map->m_pblk + ofs,
1729 f2fs_put_dnode(&dn);
1731 if (map->m_may_create) {
1732 f2fs_map_unlock(sbi, flag);
1733 f2fs_balance_fs(sbi, dn.node_changed);
1739 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1741 * for hardware encryption, but to avoid potential issue
1744 f2fs_wait_on_block_writeback_range(inode,
1745 map->m_pblk, map->m_len);
1747 if (map->m_multidev_dio) {
1748 block_t blk_addr = map->m_pblk;
1750 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1752 map->m_bdev = FDEV(bidx).bdev;
1753 map->m_pblk -= FDEV(bidx).start_blk;
1755 if (map->m_may_create)
1756 f2fs_update_device_state(sbi, inode->i_ino,
1757 blk_addr, map->m_len);
1759 f2fs_bug_on(sbi, blk_addr + map->m_len >
1760 FDEV(bidx).end_blk + 1);
1764 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1765 if (map->m_flags & F2FS_MAP_MAPPED) {
1766 unsigned int ofs = start_pgofs - map->m_lblk;
1768 f2fs_update_read_extent_cache_range(&dn,
1769 start_pgofs, map->m_pblk + ofs,
1772 if (map->m_next_extent)
1773 *map->m_next_extent = pgofs + 1;
1775 f2fs_put_dnode(&dn);
1777 if (map->m_may_create) {
1778 f2fs_map_unlock(sbi, flag);
1779 f2fs_balance_fs(sbi, dn.node_changed);
1782 trace_f2fs_map_blocks(inode, map, flag, err);
1786 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1788 struct f2fs_map_blocks map;
1792 if (pos + len > i_size_read(inode))
1795 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1796 map.m_next_pgofs = NULL;
1797 map.m_next_extent = NULL;
1798 map.m_seg_type = NO_CHECK_TYPE;
1799 map.m_may_create = false;
1800 last_lblk = F2FS_BLK_ALIGN(pos + len);
1802 while (map.m_lblk < last_lblk) {
1803 map.m_len = last_lblk - map.m_lblk;
1804 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1805 if (err || map.m_len == 0)
1807 map.m_lblk += map.m_len;
1812 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1814 return (bytes >> inode->i_blkbits);
1817 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1819 return (blks << inode->i_blkbits);
1822 static int f2fs_xattr_fiemap(struct inode *inode,
1823 struct fiemap_extent_info *fieinfo)
1825 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1827 struct node_info ni;
1828 __u64 phys = 0, len;
1830 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1833 if (f2fs_has_inline_xattr(inode)) {
1836 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1837 inode->i_ino, false);
1841 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1843 f2fs_put_page(page, 1);
1847 phys = blks_to_bytes(inode, ni.blk_addr);
1848 offset = offsetof(struct f2fs_inode, i_addr) +
1849 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1850 get_inline_xattr_addrs(inode));
1853 len = inline_xattr_size(inode);
1855 f2fs_put_page(page, 1);
1857 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1860 flags |= FIEMAP_EXTENT_LAST;
1862 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1863 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1869 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1873 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1875 f2fs_put_page(page, 1);
1879 phys = blks_to_bytes(inode, ni.blk_addr);
1880 len = inode->i_sb->s_blocksize;
1882 f2fs_put_page(page, 1);
1884 flags = FIEMAP_EXTENT_LAST;
1888 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1889 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1892 return (err < 0 ? err : 0);
1895 static loff_t max_inode_blocks(struct inode *inode)
1897 loff_t result = ADDRS_PER_INODE(inode);
1898 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1900 /* two direct node blocks */
1901 result += (leaf_count * 2);
1903 /* two indirect node blocks */
1904 leaf_count *= NIDS_PER_BLOCK;
1905 result += (leaf_count * 2);
1907 /* one double indirect node block */
1908 leaf_count *= NIDS_PER_BLOCK;
1909 result += leaf_count;
1914 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1917 struct f2fs_map_blocks map;
1918 sector_t start_blk, last_blk;
1920 u64 logical = 0, phys = 0, size = 0;
1923 bool compr_cluster = false, compr_appended;
1924 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1925 unsigned int count_in_cluster = 0;
1928 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1929 ret = f2fs_precache_extents(inode);
1934 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1940 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1941 if (start > maxbytes) {
1946 if (len > maxbytes || (maxbytes - len) < start)
1947 len = maxbytes - start;
1949 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1950 ret = f2fs_xattr_fiemap(inode, fieinfo);
1954 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1955 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1960 if (bytes_to_blks(inode, len) == 0)
1961 len = blks_to_bytes(inode, 1);
1963 start_blk = bytes_to_blks(inode, start);
1964 last_blk = bytes_to_blks(inode, start + len - 1);
1967 memset(&map, 0, sizeof(map));
1968 map.m_lblk = start_blk;
1969 map.m_len = bytes_to_blks(inode, len);
1970 map.m_next_pgofs = &next_pgofs;
1971 map.m_seg_type = NO_CHECK_TYPE;
1973 if (compr_cluster) {
1975 map.m_len = cluster_size - count_in_cluster;
1978 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1983 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1984 start_blk = next_pgofs;
1986 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1987 max_inode_blocks(inode)))
1990 flags |= FIEMAP_EXTENT_LAST;
1993 compr_appended = false;
1994 /* In a case of compressed cluster, append this to the last extent */
1995 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1996 !(map.m_flags & F2FS_MAP_FLAGS))) {
1997 compr_appended = true;
2002 flags |= FIEMAP_EXTENT_MERGED;
2003 if (IS_ENCRYPTED(inode))
2004 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2006 ret = fiemap_fill_next_extent(fieinfo, logical,
2008 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2014 if (start_blk > last_blk)
2018 if (map.m_pblk == COMPRESS_ADDR) {
2019 compr_cluster = true;
2020 count_in_cluster = 1;
2021 } else if (compr_appended) {
2022 unsigned int appended_blks = cluster_size -
2023 count_in_cluster + 1;
2024 size += blks_to_bytes(inode, appended_blks);
2025 start_blk += appended_blks;
2026 compr_cluster = false;
2028 logical = blks_to_bytes(inode, start_blk);
2029 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2030 blks_to_bytes(inode, map.m_pblk) : 0;
2031 size = blks_to_bytes(inode, map.m_len);
2034 if (compr_cluster) {
2035 flags = FIEMAP_EXTENT_ENCODED;
2036 count_in_cluster += map.m_len;
2037 if (count_in_cluster == cluster_size) {
2038 compr_cluster = false;
2039 size += blks_to_bytes(inode, 1);
2041 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2042 flags = FIEMAP_EXTENT_UNWRITTEN;
2045 start_blk += bytes_to_blks(inode, size);
2050 if (fatal_signal_pending(current))
2058 inode_unlock(inode);
2062 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2064 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2065 return inode->i_sb->s_maxbytes;
2067 return i_size_read(inode);
2070 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2072 struct f2fs_map_blocks *map,
2073 struct bio **bio_ret,
2074 sector_t *last_block_in_bio,
2077 struct bio *bio = *bio_ret;
2078 const unsigned blocksize = blks_to_bytes(inode, 1);
2079 sector_t block_in_file;
2080 sector_t last_block;
2081 sector_t last_block_in_file;
2085 block_in_file = (sector_t)page_index(page);
2086 last_block = block_in_file + nr_pages;
2087 last_block_in_file = bytes_to_blks(inode,
2088 f2fs_readpage_limit(inode) + blocksize - 1);
2089 if (last_block > last_block_in_file)
2090 last_block = last_block_in_file;
2092 /* just zeroing out page which is beyond EOF */
2093 if (block_in_file >= last_block)
2096 * Map blocks using the previous result first.
2098 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2099 block_in_file > map->m_lblk &&
2100 block_in_file < (map->m_lblk + map->m_len))
2104 * Then do more f2fs_map_blocks() calls until we are
2105 * done with this page.
2107 map->m_lblk = block_in_file;
2108 map->m_len = last_block - block_in_file;
2110 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2114 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2115 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2116 SetPageMappedToDisk(page);
2118 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2119 DATA_GENERIC_ENHANCE_READ)) {
2120 ret = -EFSCORRUPTED;
2121 f2fs_handle_error(F2FS_I_SB(inode),
2122 ERROR_INVALID_BLKADDR);
2127 zero_user_segment(page, 0, PAGE_SIZE);
2128 if (f2fs_need_verity(inode, page->index) &&
2129 !fsverity_verify_page(page)) {
2133 if (!PageUptodate(page))
2134 SetPageUptodate(page);
2140 * This page will go to BIO. Do we need to send this
2143 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2144 *last_block_in_bio, block_nr) ||
2145 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2147 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2151 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2152 is_readahead ? REQ_RAHEAD : 0, page->index,
2162 * If the page is under writeback, we need to wait for
2163 * its completion to see the correct decrypted data.
2165 f2fs_wait_on_block_writeback(inode, block_nr);
2167 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2168 goto submit_and_realloc;
2170 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2171 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2173 *last_block_in_bio = block_nr;
2180 #ifdef CONFIG_F2FS_FS_COMPRESSION
2181 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2182 unsigned nr_pages, sector_t *last_block_in_bio,
2183 bool is_readahead, bool for_write)
2185 struct dnode_of_data dn;
2186 struct inode *inode = cc->inode;
2187 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2188 struct bio *bio = *bio_ret;
2189 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2190 sector_t last_block_in_file;
2191 const unsigned blocksize = blks_to_bytes(inode, 1);
2192 struct decompress_io_ctx *dic = NULL;
2193 struct extent_info ei = {};
2194 bool from_dnode = true;
2198 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2200 last_block_in_file = bytes_to_blks(inode,
2201 f2fs_readpage_limit(inode) + blocksize - 1);
2203 /* get rid of pages beyond EOF */
2204 for (i = 0; i < cc->cluster_size; i++) {
2205 struct page *page = cc->rpages[i];
2209 if ((sector_t)page->index >= last_block_in_file) {
2210 zero_user_segment(page, 0, PAGE_SIZE);
2211 if (!PageUptodate(page))
2212 SetPageUptodate(page);
2213 } else if (!PageUptodate(page)) {
2219 cc->rpages[i] = NULL;
2223 /* we are done since all pages are beyond EOF */
2224 if (f2fs_cluster_is_empty(cc))
2227 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2231 goto skip_reading_dnode;
2233 set_new_dnode(&dn, inode, NULL, NULL, 0);
2234 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2238 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2241 for (i = 1; i < cc->cluster_size; i++) {
2244 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2245 dn.ofs_in_node + i) :
2248 if (!__is_valid_data_blkaddr(blkaddr))
2251 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2257 if (!from_dnode && i >= ei.c_len)
2261 /* nothing to decompress */
2262 if (cc->nr_cpages == 0) {
2267 dic = f2fs_alloc_dic(cc);
2273 for (i = 0; i < cc->nr_cpages; i++) {
2274 struct page *page = dic->cpages[i];
2276 struct bio_post_read_ctx *ctx;
2278 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2279 dn.ofs_in_node + i + 1) :
2282 f2fs_wait_on_block_writeback(inode, blkaddr);
2284 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2285 if (atomic_dec_and_test(&dic->remaining_pages))
2286 f2fs_decompress_cluster(dic, true);
2290 if (bio && (!page_is_mergeable(sbi, bio,
2291 *last_block_in_bio, blkaddr) ||
2292 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2294 f2fs_submit_read_bio(sbi, bio, DATA);
2299 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2300 is_readahead ? REQ_RAHEAD : 0,
2301 page->index, for_write);
2304 f2fs_decompress_end_io(dic, ret, true);
2305 f2fs_put_dnode(&dn);
2311 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2312 goto submit_and_realloc;
2314 ctx = get_post_read_ctx(bio);
2315 ctx->enabled_steps |= STEP_DECOMPRESS;
2316 refcount_inc(&dic->refcnt);
2318 inc_page_count(sbi, F2FS_RD_DATA);
2319 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2320 *last_block_in_bio = blkaddr;
2324 f2fs_put_dnode(&dn);
2331 f2fs_put_dnode(&dn);
2333 for (i = 0; i < cc->cluster_size; i++) {
2334 if (cc->rpages[i]) {
2335 ClearPageUptodate(cc->rpages[i]);
2336 unlock_page(cc->rpages[i]);
2345 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2346 * Major change was from block_size == page_size in f2fs by default.
2348 static int f2fs_mpage_readpages(struct inode *inode,
2349 struct readahead_control *rac, struct page *page)
2351 struct bio *bio = NULL;
2352 sector_t last_block_in_bio = 0;
2353 struct f2fs_map_blocks map;
2354 #ifdef CONFIG_F2FS_FS_COMPRESSION
2355 struct compress_ctx cc = {
2357 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2358 .cluster_size = F2FS_I(inode)->i_cluster_size,
2359 .cluster_idx = NULL_CLUSTER,
2365 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2367 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2368 unsigned max_nr_pages = nr_pages;
2375 map.m_next_pgofs = NULL;
2376 map.m_next_extent = NULL;
2377 map.m_seg_type = NO_CHECK_TYPE;
2378 map.m_may_create = false;
2380 for (; nr_pages; nr_pages--) {
2382 page = readahead_page(rac);
2383 prefetchw(&page->flags);
2386 #ifdef CONFIG_F2FS_FS_COMPRESSION
2387 if (f2fs_compressed_file(inode)) {
2388 /* there are remained compressed pages, submit them */
2389 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2390 ret = f2fs_read_multi_pages(&cc, &bio,
2393 rac != NULL, false);
2394 f2fs_destroy_compress_ctx(&cc, false);
2396 goto set_error_page;
2398 if (cc.cluster_idx == NULL_CLUSTER) {
2399 if (nc_cluster_idx ==
2400 page->index >> cc.log_cluster_size) {
2401 goto read_single_page;
2404 ret = f2fs_is_compressed_cluster(inode, page->index);
2406 goto set_error_page;
2409 page->index >> cc.log_cluster_size;
2410 goto read_single_page;
2413 nc_cluster_idx = NULL_CLUSTER;
2415 ret = f2fs_init_compress_ctx(&cc);
2417 goto set_error_page;
2419 f2fs_compress_ctx_add_page(&cc, page);
2426 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2427 &bio, &last_block_in_bio, rac);
2429 #ifdef CONFIG_F2FS_FS_COMPRESSION
2432 zero_user_segment(page, 0, PAGE_SIZE);
2435 #ifdef CONFIG_F2FS_FS_COMPRESSION
2441 #ifdef CONFIG_F2FS_FS_COMPRESSION
2442 if (f2fs_compressed_file(inode)) {
2444 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2445 ret = f2fs_read_multi_pages(&cc, &bio,
2448 rac != NULL, false);
2449 f2fs_destroy_compress_ctx(&cc, false);
2455 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2459 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2461 struct page *page = &folio->page;
2462 struct inode *inode = page_file_mapping(page)->host;
2465 trace_f2fs_readpage(page, DATA);
2467 if (!f2fs_is_compress_backend_ready(inode)) {
2472 /* If the file has inline data, try to read it directly */
2473 if (f2fs_has_inline_data(inode))
2474 ret = f2fs_read_inline_data(inode, page);
2476 ret = f2fs_mpage_readpages(inode, NULL, page);
2480 static void f2fs_readahead(struct readahead_control *rac)
2482 struct inode *inode = rac->mapping->host;
2484 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2486 if (!f2fs_is_compress_backend_ready(inode))
2489 /* If the file has inline data, skip readahead */
2490 if (f2fs_has_inline_data(inode))
2493 f2fs_mpage_readpages(inode, rac, NULL);
2496 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2498 struct inode *inode = fio->page->mapping->host;
2499 struct page *mpage, *page;
2500 gfp_t gfp_flags = GFP_NOFS;
2502 if (!f2fs_encrypted_file(inode))
2505 page = fio->compressed_page ? fio->compressed_page : fio->page;
2507 /* wait for GCed page writeback via META_MAPPING */
2508 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2510 if (fscrypt_inode_uses_inline_crypto(inode))
2514 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2515 PAGE_SIZE, 0, gfp_flags);
2516 if (IS_ERR(fio->encrypted_page)) {
2517 /* flush pending IOs and wait for a while in the ENOMEM case */
2518 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2519 f2fs_flush_merged_writes(fio->sbi);
2520 memalloc_retry_wait(GFP_NOFS);
2521 gfp_flags |= __GFP_NOFAIL;
2524 return PTR_ERR(fio->encrypted_page);
2527 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2529 if (PageUptodate(mpage))
2530 memcpy(page_address(mpage),
2531 page_address(fio->encrypted_page), PAGE_SIZE);
2532 f2fs_put_page(mpage, 1);
2537 static inline bool check_inplace_update_policy(struct inode *inode,
2538 struct f2fs_io_info *fio)
2540 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2542 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2543 is_inode_flag_set(inode, FI_OPU_WRITE))
2545 if (IS_F2FS_IPU_FORCE(sbi))
2547 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2549 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2551 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2552 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2556 * IPU for rewrite async pages
2558 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2559 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2562 /* this is only set during fdatasync */
2563 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2566 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2567 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2573 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2575 /* swap file is migrating in aligned write mode */
2576 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2579 if (f2fs_is_pinned_file(inode))
2582 /* if this is cold file, we should overwrite to avoid fragmentation */
2583 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2586 return check_inplace_update_policy(inode, fio);
2589 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2593 /* The below cases were checked when setting it. */
2594 if (f2fs_is_pinned_file(inode))
2596 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2598 if (f2fs_lfs_mode(sbi))
2600 if (S_ISDIR(inode->i_mode))
2602 if (IS_NOQUOTA(inode))
2604 if (f2fs_is_atomic_file(inode))
2607 /* swap file is migrating in aligned write mode */
2608 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2611 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2615 if (page_private_gcing(fio->page))
2617 if (page_private_dummy(fio->page))
2619 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2620 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2626 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2628 struct inode *inode = fio->page->mapping->host;
2630 if (f2fs_should_update_outplace(inode, fio))
2633 return f2fs_should_update_inplace(inode, fio);
2636 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2638 struct page *page = fio->page;
2639 struct inode *inode = page->mapping->host;
2640 struct dnode_of_data dn;
2641 struct node_info ni;
2642 bool ipu_force = false;
2645 /* Use COW inode to make dnode_of_data for atomic write */
2646 if (f2fs_is_atomic_file(inode))
2647 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2649 set_new_dnode(&dn, inode, NULL, NULL, 0);
2651 if (need_inplace_update(fio) &&
2652 f2fs_lookup_read_extent_cache_block(inode, page->index,
2653 &fio->old_blkaddr)) {
2654 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2655 DATA_GENERIC_ENHANCE)) {
2656 f2fs_handle_error(fio->sbi,
2657 ERROR_INVALID_BLKADDR);
2658 return -EFSCORRUPTED;
2662 fio->need_lock = LOCK_DONE;
2666 /* Deadlock due to between page->lock and f2fs_lock_op */
2667 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2670 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2674 fio->old_blkaddr = dn.data_blkaddr;
2676 /* This page is already truncated */
2677 if (fio->old_blkaddr == NULL_ADDR) {
2678 ClearPageUptodate(page);
2679 clear_page_private_gcing(page);
2683 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2684 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2685 DATA_GENERIC_ENHANCE)) {
2686 err = -EFSCORRUPTED;
2687 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2692 * If current allocation needs SSR,
2693 * it had better in-place writes for updated data.
2696 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2697 need_inplace_update(fio))) {
2698 err = f2fs_encrypt_one_page(fio);
2702 set_page_writeback(page);
2703 f2fs_put_dnode(&dn);
2704 if (fio->need_lock == LOCK_REQ)
2705 f2fs_unlock_op(fio->sbi);
2706 err = f2fs_inplace_write_data(fio);
2708 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2709 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2710 if (PageWriteback(page))
2711 end_page_writeback(page);
2713 set_inode_flag(inode, FI_UPDATE_WRITE);
2715 trace_f2fs_do_write_data_page(fio->page, IPU);
2719 if (fio->need_lock == LOCK_RETRY) {
2720 if (!f2fs_trylock_op(fio->sbi)) {
2724 fio->need_lock = LOCK_REQ;
2727 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2731 fio->version = ni.version;
2733 err = f2fs_encrypt_one_page(fio);
2737 set_page_writeback(page);
2739 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2740 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2742 /* LFS mode write path */
2743 f2fs_outplace_write_data(&dn, fio);
2744 trace_f2fs_do_write_data_page(page, OPU);
2745 set_inode_flag(inode, FI_APPEND_WRITE);
2746 if (page->index == 0)
2747 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2749 f2fs_put_dnode(&dn);
2751 if (fio->need_lock == LOCK_REQ)
2752 f2fs_unlock_op(fio->sbi);
2756 int f2fs_write_single_data_page(struct page *page, int *submitted,
2758 sector_t *last_block,
2759 struct writeback_control *wbc,
2760 enum iostat_type io_type,
2764 struct inode *inode = page->mapping->host;
2765 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2766 loff_t i_size = i_size_read(inode);
2767 const pgoff_t end_index = ((unsigned long long)i_size)
2769 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2770 unsigned offset = 0;
2771 bool need_balance_fs = false;
2773 struct f2fs_io_info fio = {
2775 .ino = inode->i_ino,
2778 .op_flags = wbc_to_write_flags(wbc),
2779 .old_blkaddr = NULL_ADDR,
2781 .encrypted_page = NULL,
2783 .compr_blocks = compr_blocks,
2784 .need_lock = LOCK_RETRY,
2785 .post_read = f2fs_post_read_required(inode) ? 1 : 0,
2789 .last_block = last_block,
2792 trace_f2fs_writepage(page, DATA);
2794 /* we should bypass data pages to proceed the kworker jobs */
2795 if (unlikely(f2fs_cp_error(sbi))) {
2796 mapping_set_error(page->mapping, -EIO);
2798 * don't drop any dirty dentry pages for keeping lastest
2799 * directory structure.
2801 if (S_ISDIR(inode->i_mode))
2806 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2809 if (page->index < end_index ||
2810 f2fs_verity_in_progress(inode) ||
2815 * If the offset is out-of-range of file size,
2816 * this page does not have to be written to disk.
2818 offset = i_size & (PAGE_SIZE - 1);
2819 if ((page->index >= end_index + 1) || !offset)
2822 zero_user_segment(page, offset, PAGE_SIZE);
2824 if (f2fs_is_drop_cache(inode))
2827 /* Dentry/quota blocks are controlled by checkpoint */
2828 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2830 * We need to wait for node_write to avoid block allocation during
2831 * checkpoint. This can only happen to quota writes which can cause
2832 * the below discard race condition.
2834 if (IS_NOQUOTA(inode))
2835 f2fs_down_read(&sbi->node_write);
2837 fio.need_lock = LOCK_DONE;
2838 err = f2fs_do_write_data_page(&fio);
2840 if (IS_NOQUOTA(inode))
2841 f2fs_up_read(&sbi->node_write);
2846 if (!wbc->for_reclaim)
2847 need_balance_fs = true;
2848 else if (has_not_enough_free_secs(sbi, 0, 0))
2851 set_inode_flag(inode, FI_HOT_DATA);
2854 if (f2fs_has_inline_data(inode)) {
2855 err = f2fs_write_inline_data(inode, page);
2860 if (err == -EAGAIN) {
2861 err = f2fs_do_write_data_page(&fio);
2862 if (err == -EAGAIN) {
2863 fio.need_lock = LOCK_REQ;
2864 err = f2fs_do_write_data_page(&fio);
2869 file_set_keep_isize(inode);
2871 spin_lock(&F2FS_I(inode)->i_size_lock);
2872 if (F2FS_I(inode)->last_disk_size < psize)
2873 F2FS_I(inode)->last_disk_size = psize;
2874 spin_unlock(&F2FS_I(inode)->i_size_lock);
2878 if (err && err != -ENOENT)
2882 inode_dec_dirty_pages(inode);
2884 ClearPageUptodate(page);
2885 clear_page_private_gcing(page);
2888 if (wbc->for_reclaim) {
2889 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2890 clear_inode_flag(inode, FI_HOT_DATA);
2891 f2fs_remove_dirty_inode(inode);
2895 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2896 !F2FS_I(inode)->wb_task && allow_balance)
2897 f2fs_balance_fs(sbi, need_balance_fs);
2899 if (unlikely(f2fs_cp_error(sbi))) {
2900 f2fs_submit_merged_write(sbi, DATA);
2901 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2906 *submitted = fio.submitted;
2911 redirty_page_for_writepage(wbc, page);
2913 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2914 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2915 * file_write_and_wait_range() will see EIO error, which is critical
2916 * to return value of fsync() followed by atomic_write failure to user.
2918 if (!err || wbc->for_reclaim)
2919 return AOP_WRITEPAGE_ACTIVATE;
2924 static int f2fs_write_data_page(struct page *page,
2925 struct writeback_control *wbc)
2927 #ifdef CONFIG_F2FS_FS_COMPRESSION
2928 struct inode *inode = page->mapping->host;
2930 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2933 if (f2fs_compressed_file(inode)) {
2934 if (f2fs_is_compressed_cluster(inode, page->index)) {
2935 redirty_page_for_writepage(wbc, page);
2936 return AOP_WRITEPAGE_ACTIVATE;
2942 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2943 wbc, FS_DATA_IO, 0, true);
2947 * This function was copied from write_cache_pages from mm/page-writeback.c.
2948 * The major change is making write step of cold data page separately from
2949 * warm/hot data page.
2951 static int f2fs_write_cache_pages(struct address_space *mapping,
2952 struct writeback_control *wbc,
2953 enum iostat_type io_type)
2956 int done = 0, retry = 0;
2957 struct page *pages[F2FS_ONSTACK_PAGES];
2958 struct folio_batch fbatch;
2959 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2960 struct bio *bio = NULL;
2961 sector_t last_block;
2962 #ifdef CONFIG_F2FS_FS_COMPRESSION
2963 struct inode *inode = mapping->host;
2964 struct compress_ctx cc = {
2966 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2967 .cluster_size = F2FS_I(inode)->i_cluster_size,
2968 .cluster_idx = NULL_CLUSTER,
2972 .valid_nr_cpages = 0,
2975 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2979 int nr_folios, p, idx;
2982 pgoff_t end; /* Inclusive */
2984 int range_whole = 0;
2990 folio_batch_init(&fbatch);
2992 if (get_dirty_pages(mapping->host) <=
2993 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2994 set_inode_flag(mapping->host, FI_HOT_DATA);
2996 clear_inode_flag(mapping->host, FI_HOT_DATA);
2998 if (wbc->range_cyclic) {
2999 index = mapping->writeback_index; /* prev offset */
3002 index = wbc->range_start >> PAGE_SHIFT;
3003 end = wbc->range_end >> PAGE_SHIFT;
3004 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3007 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3008 tag = PAGECACHE_TAG_TOWRITE;
3010 tag = PAGECACHE_TAG_DIRTY;
3013 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3014 tag_pages_for_writeback(mapping, index, end);
3016 while (!done && !retry && (index <= end)) {
3019 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3021 if (nr_folios == 0) {
3027 for (i = 0; i < nr_folios; i++) {
3028 struct folio *folio = fbatch.folios[i];
3031 p = folio_nr_pages(folio);
3033 pages[nr_pages] = folio_page(folio, idx);
3035 if (++nr_pages == F2FS_ONSTACK_PAGES) {
3036 index = folio->index + idx + 1;
3037 folio_batch_release(&fbatch);
3043 folio_batch_release(&fbatch);
3046 for (i = 0; i < nr_pages; i++) {
3047 struct page *page = pages[i];
3048 struct folio *folio = page_folio(page);
3052 #ifdef CONFIG_F2FS_FS_COMPRESSION
3053 if (f2fs_compressed_file(inode)) {
3054 void *fsdata = NULL;
3058 ret = f2fs_init_compress_ctx(&cc);
3064 if (!f2fs_cluster_can_merge_page(&cc,
3066 ret = f2fs_write_multi_pages(&cc,
3067 &submitted, wbc, io_type);
3073 if (unlikely(f2fs_cp_error(sbi)))
3076 if (!f2fs_cluster_is_empty(&cc))
3079 if (f2fs_all_cluster_page_ready(&cc,
3080 pages, i, nr_pages, true))
3083 ret2 = f2fs_prepare_compress_overwrite(
3085 folio->index, &fsdata);
3091 (!f2fs_compress_write_end(inode,
3092 fsdata, folio->index, 1) ||
3093 !f2fs_all_cluster_page_ready(&cc,
3101 /* give a priority to WB_SYNC threads */
3102 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3103 wbc->sync_mode == WB_SYNC_NONE) {
3107 #ifdef CONFIG_F2FS_FS_COMPRESSION
3110 done_index = folio->index;
3114 if (unlikely(folio->mapping != mapping)) {
3116 folio_unlock(folio);
3120 if (!folio_test_dirty(folio)) {
3121 /* someone wrote it for us */
3122 goto continue_unlock;
3125 if (folio_test_writeback(folio)) {
3126 if (wbc->sync_mode != WB_SYNC_NONE)
3127 f2fs_wait_on_page_writeback(
3131 goto continue_unlock;
3134 if (!folio_clear_dirty_for_io(folio))
3135 goto continue_unlock;
3137 #ifdef CONFIG_F2FS_FS_COMPRESSION
3138 if (f2fs_compressed_file(inode)) {
3140 f2fs_compress_ctx_add_page(&cc, &folio->page);
3144 ret = f2fs_write_single_data_page(&folio->page,
3145 &submitted, &bio, &last_block,
3146 wbc, io_type, 0, true);
3147 if (ret == AOP_WRITEPAGE_ACTIVATE)
3148 folio_unlock(folio);
3149 #ifdef CONFIG_F2FS_FS_COMPRESSION
3152 nwritten += submitted;
3153 wbc->nr_to_write -= submitted;
3155 if (unlikely(ret)) {
3157 * keep nr_to_write, since vfs uses this to
3158 * get # of written pages.
3160 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3163 } else if (ret == -EAGAIN) {
3165 if (wbc->sync_mode == WB_SYNC_ALL) {
3166 f2fs_io_schedule_timeout(
3167 DEFAULT_IO_TIMEOUT);
3172 done_index = folio->index +
3173 folio_nr_pages(folio);
3178 if (wbc->nr_to_write <= 0 &&
3179 wbc->sync_mode == WB_SYNC_NONE) {
3187 release_pages(pages, nr_pages);
3190 #ifdef CONFIG_F2FS_FS_COMPRESSION
3191 /* flush remained pages in compress cluster */
3192 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3193 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3194 nwritten += submitted;
3195 wbc->nr_to_write -= submitted;
3201 if (f2fs_compressed_file(inode))
3202 f2fs_destroy_compress_ctx(&cc, false);
3209 if (wbc->range_cyclic && !done)
3211 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3212 mapping->writeback_index = done_index;
3215 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3217 /* submit cached bio of IPU write */
3219 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3224 static inline bool __should_serialize_io(struct inode *inode,
3225 struct writeback_control *wbc)
3227 /* to avoid deadlock in path of data flush */
3228 if (F2FS_I(inode)->wb_task)
3231 if (!S_ISREG(inode->i_mode))
3233 if (IS_NOQUOTA(inode))
3236 if (f2fs_need_compress_data(inode))
3238 if (wbc->sync_mode != WB_SYNC_ALL)
3240 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3245 static int __f2fs_write_data_pages(struct address_space *mapping,
3246 struct writeback_control *wbc,
3247 enum iostat_type io_type)
3249 struct inode *inode = mapping->host;
3250 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3251 struct blk_plug plug;
3253 bool locked = false;
3255 /* deal with chardevs and other special file */
3256 if (!mapping->a_ops->writepage)
3259 /* skip writing if there is no dirty page in this inode */
3260 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3263 /* during POR, we don't need to trigger writepage at all. */
3264 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3267 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3268 wbc->sync_mode == WB_SYNC_NONE &&
3269 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3270 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3273 /* skip writing in file defragment preparing stage */
3274 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3277 trace_f2fs_writepages(mapping->host, wbc, DATA);
3279 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3280 if (wbc->sync_mode == WB_SYNC_ALL)
3281 atomic_inc(&sbi->wb_sync_req[DATA]);
3282 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3283 /* to avoid potential deadlock */
3285 blk_finish_plug(current->plug);
3289 if (__should_serialize_io(inode, wbc)) {
3290 mutex_lock(&sbi->writepages);
3294 blk_start_plug(&plug);
3295 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3296 blk_finish_plug(&plug);
3299 mutex_unlock(&sbi->writepages);
3301 if (wbc->sync_mode == WB_SYNC_ALL)
3302 atomic_dec(&sbi->wb_sync_req[DATA]);
3304 * if some pages were truncated, we cannot guarantee its mapping->host
3305 * to detect pending bios.
3308 f2fs_remove_dirty_inode(inode);
3312 wbc->pages_skipped += get_dirty_pages(inode);
3313 trace_f2fs_writepages(mapping->host, wbc, DATA);
3317 static int f2fs_write_data_pages(struct address_space *mapping,
3318 struct writeback_control *wbc)
3320 struct inode *inode = mapping->host;
3322 return __f2fs_write_data_pages(mapping, wbc,
3323 F2FS_I(inode)->cp_task == current ?
3324 FS_CP_DATA_IO : FS_DATA_IO);
3327 void f2fs_write_failed(struct inode *inode, loff_t to)
3329 loff_t i_size = i_size_read(inode);
3331 if (IS_NOQUOTA(inode))
3334 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3335 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3336 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3337 filemap_invalidate_lock(inode->i_mapping);
3339 truncate_pagecache(inode, i_size);
3340 f2fs_truncate_blocks(inode, i_size, true);
3342 filemap_invalidate_unlock(inode->i_mapping);
3343 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3347 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3348 struct page *page, loff_t pos, unsigned len,
3349 block_t *blk_addr, bool *node_changed)
3351 struct inode *inode = page->mapping->host;
3352 pgoff_t index = page->index;
3353 struct dnode_of_data dn;
3355 bool locked = false;
3356 int flag = F2FS_GET_BLOCK_PRE_AIO;
3360 * If a whole page is being written and we already preallocated all the
3361 * blocks, then there is no need to get a block address now.
3363 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3366 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3367 if (f2fs_has_inline_data(inode)) {
3368 if (pos + len > MAX_INLINE_DATA(inode))
3369 flag = F2FS_GET_BLOCK_DEFAULT;
3370 f2fs_map_lock(sbi, flag);
3372 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3373 f2fs_map_lock(sbi, flag);
3378 /* check inline_data */
3379 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3380 if (IS_ERR(ipage)) {
3381 err = PTR_ERR(ipage);
3385 set_new_dnode(&dn, inode, ipage, ipage, 0);
3387 if (f2fs_has_inline_data(inode)) {
3388 if (pos + len <= MAX_INLINE_DATA(inode)) {
3389 f2fs_do_read_inline_data(page, ipage);
3390 set_inode_flag(inode, FI_DATA_EXIST);
3392 set_page_private_inline(ipage);
3395 err = f2fs_convert_inline_page(&dn, page);
3396 if (err || dn.data_blkaddr != NULL_ADDR)
3400 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3401 &dn.data_blkaddr)) {
3403 err = f2fs_reserve_block(&dn, index);
3408 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3409 if (!err && dn.data_blkaddr != NULL_ADDR)
3411 f2fs_put_dnode(&dn);
3412 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3413 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3419 /* convert_inline_page can make node_changed */
3420 *blk_addr = dn.data_blkaddr;
3421 *node_changed = dn.node_changed;
3423 f2fs_put_dnode(&dn);
3426 f2fs_map_unlock(sbi, flag);
3430 static int __find_data_block(struct inode *inode, pgoff_t index,
3433 struct dnode_of_data dn;
3437 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3439 return PTR_ERR(ipage);
3441 set_new_dnode(&dn, inode, ipage, ipage, 0);
3443 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3444 &dn.data_blkaddr)) {
3446 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3448 dn.data_blkaddr = NULL_ADDR;
3452 *blk_addr = dn.data_blkaddr;
3453 f2fs_put_dnode(&dn);
3457 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3458 block_t *blk_addr, bool *node_changed)
3460 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3461 struct dnode_of_data dn;
3465 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3467 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3468 if (IS_ERR(ipage)) {
3469 err = PTR_ERR(ipage);
3472 set_new_dnode(&dn, inode, ipage, ipage, 0);
3474 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3476 err = f2fs_reserve_block(&dn, index);
3478 *blk_addr = dn.data_blkaddr;
3479 *node_changed = dn.node_changed;
3480 f2fs_put_dnode(&dn);
3483 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3487 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3488 struct page *page, loff_t pos, unsigned int len,
3489 block_t *blk_addr, bool *node_changed)
3491 struct inode *inode = page->mapping->host;
3492 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3493 pgoff_t index = page->index;
3495 block_t ori_blk_addr = NULL_ADDR;
3497 /* If pos is beyond the end of file, reserve a new block in COW inode */
3498 if ((pos & PAGE_MASK) >= i_size_read(inode))
3501 /* Look for the block in COW inode first */
3502 err = __find_data_block(cow_inode, index, blk_addr);
3505 else if (*blk_addr != NULL_ADDR)
3508 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3511 /* Look for the block in the original inode */
3512 err = __find_data_block(inode, index, &ori_blk_addr);
3517 /* Finally, we should reserve a new block in COW inode for the update */
3518 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3521 inc_atomic_write_cnt(inode);
3523 if (ori_blk_addr != NULL_ADDR)
3524 *blk_addr = ori_blk_addr;
3528 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3529 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3531 struct inode *inode = mapping->host;
3532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3533 struct page *page = NULL;
3534 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3535 bool need_balance = false;
3536 block_t blkaddr = NULL_ADDR;
3539 trace_f2fs_write_begin(inode, pos, len);
3541 if (!f2fs_is_checkpoint_ready(sbi)) {
3547 * We should check this at this moment to avoid deadlock on inode page
3548 * and #0 page. The locking rule for inline_data conversion should be:
3549 * lock_page(page #0) -> lock_page(inode_page)
3552 err = f2fs_convert_inline_inode(inode);
3557 #ifdef CONFIG_F2FS_FS_COMPRESSION
3558 if (f2fs_compressed_file(inode)) {
3563 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3566 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3579 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3580 * wait_for_stable_page. Will wait that below with our IO control.
3582 page = f2fs_pagecache_get_page(mapping, index,
3583 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3589 /* TODO: cluster can be compressed due to race with .writepage */
3593 if (f2fs_is_atomic_file(inode))
3594 err = prepare_atomic_write_begin(sbi, page, pos, len,
3595 &blkaddr, &need_balance);
3597 err = prepare_write_begin(sbi, page, pos, len,
3598 &blkaddr, &need_balance);
3602 if (need_balance && !IS_NOQUOTA(inode) &&
3603 has_not_enough_free_secs(sbi, 0, 0)) {
3605 f2fs_balance_fs(sbi, true);
3607 if (page->mapping != mapping) {
3608 /* The page got truncated from under us */
3609 f2fs_put_page(page, 1);
3614 f2fs_wait_on_page_writeback(page, DATA, false, true);
3616 if (len == PAGE_SIZE || PageUptodate(page))
3619 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3620 !f2fs_verity_in_progress(inode)) {
3621 zero_user_segment(page, len, PAGE_SIZE);
3625 if (blkaddr == NEW_ADDR) {
3626 zero_user_segment(page, 0, PAGE_SIZE);
3627 SetPageUptodate(page);
3629 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3630 DATA_GENERIC_ENHANCE_READ)) {
3631 err = -EFSCORRUPTED;
3632 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3635 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3640 if (unlikely(page->mapping != mapping)) {
3641 f2fs_put_page(page, 1);
3644 if (unlikely(!PageUptodate(page))) {
3652 f2fs_put_page(page, 1);
3653 f2fs_write_failed(inode, pos + len);
3657 static int f2fs_write_end(struct file *file,
3658 struct address_space *mapping,
3659 loff_t pos, unsigned len, unsigned copied,
3660 struct page *page, void *fsdata)
3662 struct inode *inode = page->mapping->host;
3664 trace_f2fs_write_end(inode, pos, len, copied);
3667 * This should be come from len == PAGE_SIZE, and we expect copied
3668 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3669 * let generic_perform_write() try to copy data again through copied=0.
3671 if (!PageUptodate(page)) {
3672 if (unlikely(copied != len))
3675 SetPageUptodate(page);
3678 #ifdef CONFIG_F2FS_FS_COMPRESSION
3679 /* overwrite compressed file */
3680 if (f2fs_compressed_file(inode) && fsdata) {
3681 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3682 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3684 if (pos + copied > i_size_read(inode) &&
3685 !f2fs_verity_in_progress(inode))
3686 f2fs_i_size_write(inode, pos + copied);
3694 set_page_dirty(page);
3696 if (pos + copied > i_size_read(inode) &&
3697 !f2fs_verity_in_progress(inode)) {
3698 f2fs_i_size_write(inode, pos + copied);
3699 if (f2fs_is_atomic_file(inode))
3700 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3704 f2fs_put_page(page, 1);
3705 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3709 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3711 struct inode *inode = folio->mapping->host;
3712 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3714 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3715 (offset || length != folio_size(folio)))
3718 if (folio_test_dirty(folio)) {
3719 if (inode->i_ino == F2FS_META_INO(sbi)) {
3720 dec_page_count(sbi, F2FS_DIRTY_META);
3721 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3722 dec_page_count(sbi, F2FS_DIRTY_NODES);
3724 inode_dec_dirty_pages(inode);
3725 f2fs_remove_dirty_inode(inode);
3729 clear_page_private_reference(&folio->page);
3730 clear_page_private_gcing(&folio->page);
3732 if (test_opt(sbi, COMPRESS_CACHE) &&
3733 inode->i_ino == F2FS_COMPRESS_INO(sbi))
3734 clear_page_private_data(&folio->page);
3736 folio_detach_private(folio);
3739 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3741 struct f2fs_sb_info *sbi;
3743 /* If this is dirty folio, keep private data */
3744 if (folio_test_dirty(folio))
3747 sbi = F2FS_M_SB(folio->mapping);
3748 if (test_opt(sbi, COMPRESS_CACHE)) {
3749 struct inode *inode = folio->mapping->host;
3751 if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3752 clear_page_private_data(&folio->page);
3755 clear_page_private_reference(&folio->page);
3756 clear_page_private_gcing(&folio->page);
3758 folio_detach_private(folio);
3762 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3763 struct folio *folio)
3765 struct inode *inode = mapping->host;
3767 trace_f2fs_set_page_dirty(&folio->page, DATA);
3769 if (!folio_test_uptodate(folio))
3770 folio_mark_uptodate(folio);
3771 BUG_ON(folio_test_swapcache(folio));
3773 if (filemap_dirty_folio(mapping, folio)) {
3774 f2fs_update_dirty_folio(inode, folio);
3781 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3783 #ifdef CONFIG_F2FS_FS_COMPRESSION
3784 struct dnode_of_data dn;
3785 sector_t start_idx, blknr = 0;
3788 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3790 set_new_dnode(&dn, inode, NULL, NULL, 0);
3791 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3795 if (dn.data_blkaddr != COMPRESS_ADDR) {
3796 dn.ofs_in_node += block - start_idx;
3797 blknr = f2fs_data_blkaddr(&dn);
3798 if (!__is_valid_data_blkaddr(blknr))
3802 f2fs_put_dnode(&dn);
3810 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3812 struct inode *inode = mapping->host;
3815 if (f2fs_has_inline_data(inode))
3818 /* make sure allocating whole blocks */
3819 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3820 filemap_write_and_wait(mapping);
3822 /* Block number less than F2FS MAX BLOCKS */
3823 if (unlikely(block >= max_file_blocks(inode)))
3826 if (f2fs_compressed_file(inode)) {
3827 blknr = f2fs_bmap_compress(inode, block);
3829 struct f2fs_map_blocks map;
3831 memset(&map, 0, sizeof(map));
3834 map.m_next_pgofs = NULL;
3835 map.m_seg_type = NO_CHECK_TYPE;
3837 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3841 trace_f2fs_bmap(inode, block, blknr);
3846 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3847 unsigned int blkcnt)
3849 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3850 unsigned int blkofs;
3851 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3852 unsigned int secidx = start_blk / blk_per_sec;
3853 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3856 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3857 filemap_invalidate_lock(inode->i_mapping);
3859 set_inode_flag(inode, FI_ALIGNED_WRITE);
3860 set_inode_flag(inode, FI_OPU_WRITE);
3862 for (; secidx < end_sec; secidx++) {
3863 f2fs_down_write(&sbi->pin_sem);
3866 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3867 f2fs_unlock_op(sbi);
3869 set_inode_flag(inode, FI_SKIP_WRITES);
3871 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3873 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3875 page = f2fs_get_lock_data_page(inode, blkidx, true);
3877 f2fs_up_write(&sbi->pin_sem);
3878 ret = PTR_ERR(page);
3882 set_page_dirty(page);
3883 f2fs_put_page(page, 1);
3886 clear_inode_flag(inode, FI_SKIP_WRITES);
3888 ret = filemap_fdatawrite(inode->i_mapping);
3890 f2fs_up_write(&sbi->pin_sem);
3897 clear_inode_flag(inode, FI_SKIP_WRITES);
3898 clear_inode_flag(inode, FI_OPU_WRITE);
3899 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3901 filemap_invalidate_unlock(inode->i_mapping);
3902 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3907 static int check_swap_activate(struct swap_info_struct *sis,
3908 struct file *swap_file, sector_t *span)
3910 struct address_space *mapping = swap_file->f_mapping;
3911 struct inode *inode = mapping->host;
3912 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3913 sector_t cur_lblock;
3914 sector_t last_lblock;
3916 sector_t lowest_pblock = -1;
3917 sector_t highest_pblock = 0;
3919 unsigned long nr_pblocks;
3920 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3921 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3922 unsigned int not_aligned = 0;
3926 * Map all the blocks into the extent list. This code doesn't try
3930 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3932 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3933 struct f2fs_map_blocks map;
3937 memset(&map, 0, sizeof(map));
3938 map.m_lblk = cur_lblock;
3939 map.m_len = last_lblock - cur_lblock;
3940 map.m_next_pgofs = NULL;
3941 map.m_next_extent = NULL;
3942 map.m_seg_type = NO_CHECK_TYPE;
3943 map.m_may_create = false;
3945 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3950 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3951 f2fs_err(sbi, "Swapfile has holes");
3956 pblock = map.m_pblk;
3957 nr_pblocks = map.m_len;
3959 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3960 nr_pblocks & sec_blks_mask) {
3963 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3964 if (cur_lblock + nr_pblocks > sis->max)
3965 nr_pblocks -= blks_per_sec;
3968 /* this extent is last one */
3969 nr_pblocks = map.m_len;
3970 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3974 ret = f2fs_migrate_blocks(inode, cur_lblock,
3981 if (cur_lblock + nr_pblocks >= sis->max)
3982 nr_pblocks = sis->max - cur_lblock;
3984 if (cur_lblock) { /* exclude the header page */
3985 if (pblock < lowest_pblock)
3986 lowest_pblock = pblock;
3987 if (pblock + nr_pblocks - 1 > highest_pblock)
3988 highest_pblock = pblock + nr_pblocks - 1;
3992 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3994 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3998 cur_lblock += nr_pblocks;
4001 *span = 1 + highest_pblock - lowest_pblock;
4002 if (cur_lblock == 0)
4003 cur_lblock = 1; /* force Empty message */
4004 sis->max = cur_lblock;
4005 sis->pages = cur_lblock - 1;
4006 sis->highest_bit = cur_lblock - 1;
4009 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4010 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4014 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4017 struct inode *inode = file_inode(file);
4020 if (!S_ISREG(inode->i_mode))
4023 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4026 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4027 f2fs_err(F2FS_I_SB(inode),
4028 "Swapfile not supported in LFS mode");
4032 ret = f2fs_convert_inline_inode(inode);
4036 if (!f2fs_disable_compressed_file(inode))
4039 f2fs_precache_extents(inode);
4041 ret = check_swap_activate(sis, file, span);
4045 stat_inc_swapfile_inode(inode);
4046 set_inode_flag(inode, FI_PIN_FILE);
4047 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4051 static void f2fs_swap_deactivate(struct file *file)
4053 struct inode *inode = file_inode(file);
4055 stat_dec_swapfile_inode(inode);
4056 clear_inode_flag(inode, FI_PIN_FILE);
4059 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4065 static void f2fs_swap_deactivate(struct file *file)
4070 const struct address_space_operations f2fs_dblock_aops = {
4071 .read_folio = f2fs_read_data_folio,
4072 .readahead = f2fs_readahead,
4073 .writepage = f2fs_write_data_page,
4074 .writepages = f2fs_write_data_pages,
4075 .write_begin = f2fs_write_begin,
4076 .write_end = f2fs_write_end,
4077 .dirty_folio = f2fs_dirty_data_folio,
4078 .migrate_folio = filemap_migrate_folio,
4079 .invalidate_folio = f2fs_invalidate_folio,
4080 .release_folio = f2fs_release_folio,
4081 .direct_IO = noop_direct_IO,
4083 .swap_activate = f2fs_swap_activate,
4084 .swap_deactivate = f2fs_swap_deactivate,
4087 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4089 struct address_space *mapping = page_mapping(page);
4090 unsigned long flags;
4092 xa_lock_irqsave(&mapping->i_pages, flags);
4093 __xa_clear_mark(&mapping->i_pages, page_index(page),
4094 PAGECACHE_TAG_DIRTY);
4095 xa_unlock_irqrestore(&mapping->i_pages, flags);
4098 int __init f2fs_init_post_read_processing(void)
4100 bio_post_read_ctx_cache =
4101 kmem_cache_create("f2fs_bio_post_read_ctx",
4102 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4103 if (!bio_post_read_ctx_cache)
4105 bio_post_read_ctx_pool =
4106 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4107 bio_post_read_ctx_cache);
4108 if (!bio_post_read_ctx_pool)
4109 goto fail_free_cache;
4113 kmem_cache_destroy(bio_post_read_ctx_cache);
4118 void f2fs_destroy_post_read_processing(void)
4120 mempool_destroy(bio_post_read_ctx_pool);
4121 kmem_cache_destroy(bio_post_read_ctx_cache);
4124 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4126 if (!f2fs_sb_has_encrypt(sbi) &&
4127 !f2fs_sb_has_verity(sbi) &&
4128 !f2fs_sb_has_compression(sbi))
4131 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4132 WQ_UNBOUND | WQ_HIGHPRI,
4134 return sbi->post_read_wq ? 0 : -ENOMEM;
4137 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4139 if (sbi->post_read_wq)
4140 destroy_workqueue(sbi->post_read_wq);
4143 int __init f2fs_init_bio_entry_cache(void)
4145 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4146 sizeof(struct bio_entry));
4147 return bio_entry_slab ? 0 : -ENOMEM;
4150 void f2fs_destroy_bio_entry_cache(void)
4152 kmem_cache_destroy(bio_entry_slab);
4155 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4156 unsigned int flags, struct iomap *iomap,
4157 struct iomap *srcmap)
4159 struct f2fs_map_blocks map = {};
4160 pgoff_t next_pgofs = 0;
4163 map.m_lblk = bytes_to_blks(inode, offset);
4164 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4165 map.m_next_pgofs = &next_pgofs;
4166 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4167 if (flags & IOMAP_WRITE)
4168 map.m_may_create = true;
4170 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4174 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4177 * When inline encryption is enabled, sometimes I/O to an encrypted file
4178 * has to be broken up to guarantee DUN contiguity. Handle this by
4179 * limiting the length of the mapping returned.
4181 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4184 * We should never see delalloc or compressed extents here based on
4185 * prior flushing and checks.
4187 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4189 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4192 if (map.m_pblk != NULL_ADDR) {
4193 iomap->length = blks_to_bytes(inode, map.m_len);
4194 iomap->type = IOMAP_MAPPED;
4195 iomap->flags |= IOMAP_F_MERGED;
4196 iomap->bdev = map.m_bdev;
4197 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4199 if (flags & IOMAP_WRITE)
4201 iomap->length = blks_to_bytes(inode, next_pgofs) -
4203 iomap->type = IOMAP_HOLE;
4204 iomap->addr = IOMAP_NULL_ADDR;
4207 if (map.m_flags & F2FS_MAP_NEW)
4208 iomap->flags |= IOMAP_F_NEW;
4209 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4210 offset + length > i_size_read(inode))
4211 iomap->flags |= IOMAP_F_DIRTY;
4216 const struct iomap_ops f2fs_iomap_ops = {
4217 .iomap_begin = f2fs_iomap_begin,