1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/hfsplus/btree.c
9 * Handle opening/closing btree
12 #include <linux/slab.h>
13 #include <linux/pagemap.h>
14 #include <linux/log2.h>
16 #include "hfsplus_fs.h"
17 #include "hfsplus_raw.h"
20 * Initial source code of clump size calculation is gotten
21 * from http://opensource.apple.com/tarballs/diskdev_cmds/
23 #define CLUMP_ENTRIES 15
25 static short clumptbl[CLUMP_ENTRIES * 3] = {
27 * Volume Attributes Catalog Extents
28 * Size Clump (MB) Clump (MB) Clump (MB)
35 * For volumes 16GB and larger, we want to make sure that a full OS
36 * install won't require fragmentation of the Catalog or Attributes
37 * B-trees. We do this by making the clump sizes sufficiently large,
38 * and by leaving a gap after the B-trees for them to grow into.
40 * For SnowLeopard 10A298, a FullNetInstall with all packages selected
42 * Catalog B-tree Header
47 * Attributes B-tree Header
53 * We also want Time Machine backup volumes to have a sufficiently
54 * large clump size to reduce fragmentation.
56 * The series of numbers for Catalog and Attribute form a geometric
57 * series. For Catalog (16GB to 512GB), each term is 8**(1/5) times
58 * the previous term. For Attributes (16GB to 512GB), each term is
59 * 4**(1/5) times the previous term. For 1TB to 16TB, each term is
60 * 2**(1/5) times the previous term.
64 /* 64GB */ 111, 74, 7,
65 /* 128GB */ 147, 111, 8,
66 /* 256GB */ 194, 169, 9,
67 /* 512GB */ 256, 256, 11,
68 /* 1TB */ 294, 294, 14,
69 /* 2TB */ 338, 338, 16,
70 /* 4TB */ 388, 388, 20,
71 /* 8TB */ 446, 446, 25,
72 /* 16TB */ 512, 512, 32
75 u32 hfsplus_calc_btree_clump_size(u32 block_size, u32 node_size,
76 u64 sectors, int file_id)
78 u32 mod = max(node_size, block_size);
83 /* Figure out which column of the above table to use for this file. */
85 case HFSPLUS_ATTR_CNID:
88 case HFSPLUS_CAT_CNID:
97 * The default clump size is 0.8% of the volume size. And
98 * it must also be a multiple of the node and block size.
100 if (sectors < 0x200000) {
101 clump_size = sectors << 2; /* 0.8 % */
102 if (clump_size < (8 * node_size))
103 clump_size = 8 * node_size;
105 /* turn exponent into table index... */
106 for (i = 0, sectors = sectors >> 22;
107 sectors && (i < CLUMP_ENTRIES - 1);
108 ++i, sectors = sectors >> 1) {
112 clump_size = clumptbl[column + (i) * 3] * 1024 * 1024;
116 * Round the clump size to a multiple of node and block size.
117 * NOTE: This rounds down.
123 * Rounding down could have rounded down to 0 if the block size was
124 * greater than the clump size. If so, just use one block or node.
132 /* Get a reference to a B*Tree and do some initial checks */
133 struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
135 struct hfs_btree *tree;
136 struct hfs_btree_header_rec *head;
137 struct address_space *mapping;
142 tree = kzalloc(sizeof(*tree), GFP_KERNEL);
146 mutex_init(&tree->tree_lock);
147 spin_lock_init(&tree->hash_lock);
150 inode = hfsplus_iget(sb, id);
155 if (!HFSPLUS_I(tree->inode)->first_blocks) {
156 pr_err("invalid btree extent records (0 size)\n");
160 mapping = tree->inode->i_mapping;
161 page = read_mapping_page(mapping, 0, NULL);
165 /* Load the header */
166 head = (struct hfs_btree_header_rec *)(kmap_local_page(page) +
167 sizeof(struct hfs_bnode_desc));
168 tree->root = be32_to_cpu(head->root);
169 tree->leaf_count = be32_to_cpu(head->leaf_count);
170 tree->leaf_head = be32_to_cpu(head->leaf_head);
171 tree->leaf_tail = be32_to_cpu(head->leaf_tail);
172 tree->node_count = be32_to_cpu(head->node_count);
173 tree->free_nodes = be32_to_cpu(head->free_nodes);
174 tree->attributes = be32_to_cpu(head->attributes);
175 tree->node_size = be16_to_cpu(head->node_size);
176 tree->max_key_len = be16_to_cpu(head->max_key_len);
177 tree->depth = be16_to_cpu(head->depth);
179 /* Verify the tree and set the correct compare function */
181 case HFSPLUS_EXT_CNID:
182 if (tree->max_key_len != HFSPLUS_EXT_KEYLEN - sizeof(u16)) {
183 pr_err("invalid extent max_key_len %d\n",
187 if (tree->attributes & HFS_TREE_VARIDXKEYS) {
188 pr_err("invalid extent btree flag\n");
192 tree->keycmp = hfsplus_ext_cmp_key;
194 case HFSPLUS_CAT_CNID:
195 if (tree->max_key_len != HFSPLUS_CAT_KEYLEN - sizeof(u16)) {
196 pr_err("invalid catalog max_key_len %d\n",
200 if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) {
201 pr_err("invalid catalog btree flag\n");
205 if (test_bit(HFSPLUS_SB_HFSX, &HFSPLUS_SB(sb)->flags) &&
206 (head->key_type == HFSPLUS_KEY_BINARY))
207 tree->keycmp = hfsplus_cat_bin_cmp_key;
209 tree->keycmp = hfsplus_cat_case_cmp_key;
210 set_bit(HFSPLUS_SB_CASEFOLD, &HFSPLUS_SB(sb)->flags);
213 case HFSPLUS_ATTR_CNID:
214 if (tree->max_key_len != HFSPLUS_ATTR_KEYLEN - sizeof(u16)) {
215 pr_err("invalid attributes max_key_len %d\n",
219 tree->keycmp = hfsplus_attr_bin_cmp_key;
222 pr_err("unknown B*Tree requested\n");
226 if (!(tree->attributes & HFS_TREE_BIGKEYS)) {
227 pr_err("invalid btree flag\n");
231 size = tree->node_size;
232 if (!is_power_of_2(size))
234 if (!tree->node_count)
237 tree->node_size_shift = ffs(size) - 1;
239 tree->pages_per_bnode =
240 (tree->node_size + PAGE_SIZE - 1) >>
251 tree->inode->i_mapping->a_ops = &hfsplus_aops;
258 /* Release resources used by a btree */
259 void hfs_btree_close(struct hfs_btree *tree)
261 struct hfs_bnode *node;
267 for (i = 0; i < NODE_HASH_SIZE; i++) {
268 while ((node = tree->node_hash[i])) {
269 tree->node_hash[i] = node->next_hash;
270 if (atomic_read(&node->refcnt))
271 pr_crit("node %d:%d "
272 "still has %d user(s)!\n",
273 node->tree->cnid, node->this,
274 atomic_read(&node->refcnt));
275 hfs_bnode_free(node);
276 tree->node_hash_cnt--;
283 int hfs_btree_write(struct hfs_btree *tree)
285 struct hfs_btree_header_rec *head;
286 struct hfs_bnode *node;
289 node = hfs_bnode_find(tree, 0);
293 /* Load the header */
294 page = node->page[0];
295 head = (struct hfs_btree_header_rec *)(kmap_local_page(page) +
296 sizeof(struct hfs_bnode_desc));
298 head->root = cpu_to_be32(tree->root);
299 head->leaf_count = cpu_to_be32(tree->leaf_count);
300 head->leaf_head = cpu_to_be32(tree->leaf_head);
301 head->leaf_tail = cpu_to_be32(tree->leaf_tail);
302 head->node_count = cpu_to_be32(tree->node_count);
303 head->free_nodes = cpu_to_be32(tree->free_nodes);
304 head->attributes = cpu_to_be32(tree->attributes);
305 head->depth = cpu_to_be16(tree->depth);
308 set_page_dirty(page);
313 static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
315 struct hfs_btree *tree = prev->tree;
316 struct hfs_bnode *node;
317 struct hfs_bnode_desc desc;
320 node = hfs_bnode_create(tree, idx);
326 cnid = cpu_to_be32(idx);
327 hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
329 node->type = HFS_NODE_MAP;
331 hfs_bnode_clear(node, 0, tree->node_size);
334 desc.type = HFS_NODE_MAP;
336 desc.num_recs = cpu_to_be16(1);
338 hfs_bnode_write(node, &desc, 0, sizeof(desc));
339 hfs_bnode_write_u16(node, 14, 0x8000);
340 hfs_bnode_write_u16(node, tree->node_size - 2, 14);
341 hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
346 /* Make sure @tree has enough space for the @rsvd_nodes */
347 int hfs_bmap_reserve(struct hfs_btree *tree, int rsvd_nodes)
349 struct inode *inode = tree->inode;
350 struct hfsplus_inode_info *hip = HFSPLUS_I(inode);
357 while (tree->free_nodes < rsvd_nodes) {
358 res = hfsplus_file_extend(inode, hfs_bnode_need_zeroout(tree));
361 hip->phys_size = inode->i_size =
362 (loff_t)hip->alloc_blocks <<
363 HFSPLUS_SB(tree->sb)->alloc_blksz_shift;
365 hip->alloc_blocks << HFSPLUS_SB(tree->sb)->fs_shift;
366 inode_set_bytes(inode, inode->i_size);
367 count = inode->i_size >> tree->node_size_shift;
368 tree->free_nodes += count - tree->node_count;
369 tree->node_count = count;
374 struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
376 struct hfs_bnode *node, *next_node;
385 res = hfs_bmap_reserve(tree, 1);
390 node = hfs_bnode_find(tree, nidx);
393 len = hfs_brec_lenoff(node, 2, &off16);
396 off += node->page_offset;
397 pagep = node->page + (off >> PAGE_SHIFT);
398 data = kmap_local_page(*pagep);
406 for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
410 set_page_dirty(*pagep);
413 mark_inode_dirty(tree->inode);
415 return hfs_bnode_create(tree,
420 if (++off >= PAGE_SIZE) {
422 data = kmap_local_page(*++pagep);
431 hfs_dbg(BNODE_MOD, "create new bmap node\n");
432 next_node = hfs_bmap_new_bmap(node, idx);
434 next_node = hfs_bnode_find(tree, nidx);
436 if (IS_ERR(next_node))
440 len = hfs_brec_lenoff(node, 0, &off16);
442 off += node->page_offset;
443 pagep = node->page + (off >> PAGE_SHIFT);
444 data = kmap_local_page(*pagep);
449 void hfs_bmap_free(struct hfs_bnode *node)
451 struct hfs_btree *tree;
457 hfs_dbg(BNODE_MOD, "btree_free_node: %u\n", node->this);
461 node = hfs_bnode_find(tree, 0);
464 len = hfs_brec_lenoff(node, 2, &off);
465 while (nidx >= len * 8) {
472 pr_crit("unable to free bnode %u. "
479 node = hfs_bnode_find(tree, i);
482 if (node->type != HFS_NODE_MAP) {
484 pr_crit("invalid bmap found! "
486 node->this, node->type);
490 len = hfs_brec_lenoff(node, 0, &off);
492 off += node->page_offset + nidx / 8;
493 page = node->page[off >> PAGE_SHIFT];
494 data = kmap_local_page(page);
496 m = 1 << (~nidx & 7);
499 pr_crit("trying to free free bnode "
501 node->this, node->type);
506 data[off] = byte & ~m;
507 set_page_dirty(page);
511 mark_inode_dirty(tree->inode);