4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
52 #include <trace/events/xen.h>
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
61 #include <asm/linkage.h>
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
78 #include "multicalls.h"
83 * Protects atomic reservation decrease/increase against concurrent increases.
84 * Also protects non-atomic updates of current_pages and balloon lists.
86 DEFINE_SPINLOCK(xen_reservation_lock);
90 * Identity map, in addition to plain kernel map. This needs to be
91 * large enough to allocate page table pages to allocate the rest.
92 * Each page can map 2MB.
94 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
103 * Note about cr3 (pagetable base) values:
105 * xen_cr3 contains the current logical cr3 value; it contains the
106 * last set cr3. This may not be the current effective cr3, because
107 * its update may be being lazily deferred. However, a vcpu looking
108 * at its own cr3 can use this value knowing that it everything will
109 * be self-consistent.
111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112 * hypercall to set the vcpu cr3 is complete (so it may be a little
113 * out of date, but it will never be set early). If one vcpu is
114 * looking at another vcpu's cr3 value, it should use this variable.
116 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
121 * Just beyond the highest usermode address. STACK_TOP_MAX has a
122 * redzone above it, so round it up to a PGD boundary.
124 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
126 unsigned long arbitrary_virt_to_mfn(void *vaddr)
128 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
130 return PFN_DOWN(maddr.maddr);
133 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
135 unsigned long address = (unsigned long)vaddr;
141 * if the PFN is in the linear mapped vaddr range, we can just use
142 * the (quick) virt_to_machine() p2m lookup
144 if (virt_addr_valid(vaddr))
145 return virt_to_machine(vaddr);
147 /* otherwise we have to do a (slower) full page-table walk */
149 pte = lookup_address(address, &level);
151 offset = address & ~PAGE_MASK;
152 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
156 void make_lowmem_page_readonly(void *vaddr)
159 unsigned long address = (unsigned long)vaddr;
162 pte = lookup_address(address, &level);
164 return; /* vaddr missing */
166 ptev = pte_wrprotect(*pte);
168 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
172 void make_lowmem_page_readwrite(void *vaddr)
175 unsigned long address = (unsigned long)vaddr;
178 pte = lookup_address(address, &level);
180 return; /* vaddr missing */
182 ptev = pte_mkwrite(*pte);
184 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
189 static bool xen_page_pinned(void *ptr)
191 struct page *page = virt_to_page(ptr);
193 return PagePinned(page);
196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
198 struct multicall_space mcs;
199 struct mmu_update *u;
201 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
203 mcs = xen_mc_entry(sizeof(*u));
206 /* ptep might be kmapped when using 32-bit HIGHPTE */
207 u->ptr = virt_to_machine(ptep).maddr;
208 u->val = pte_val_ma(pteval);
210 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
212 xen_mc_issue(PARAVIRT_LAZY_MMU);
214 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
216 static void xen_extend_mmu_update(const struct mmu_update *update)
218 struct multicall_space mcs;
219 struct mmu_update *u;
221 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
223 if (mcs.mc != NULL) {
226 mcs = __xen_mc_entry(sizeof(*u));
227 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
234 static void xen_extend_mmuext_op(const struct mmuext_op *op)
236 struct multicall_space mcs;
239 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
241 if (mcs.mc != NULL) {
244 mcs = __xen_mc_entry(sizeof(*u));
245 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
260 /* ptr may be ioremapped for 64-bit pagetable setup */
261 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262 u.val = pmd_val_ma(val);
263 xen_extend_mmu_update(&u);
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
270 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
272 trace_xen_mmu_set_pmd(ptr, val);
274 /* If page is not pinned, we can just update the entry
276 if (!xen_page_pinned(ptr)) {
281 xen_set_pmd_hyper(ptr, val);
285 * Associate a virtual page frame with a given physical page frame
286 * and protection flags for that frame.
288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
290 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
297 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
302 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 u.val = pte_val_ma(pteval);
304 xen_extend_mmu_update(&u);
306 xen_mc_issue(PARAVIRT_LAZY_MMU);
311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
313 if (!xen_batched_set_pte(ptep, pteval)) {
315 * Could call native_set_pte() here and trap and
316 * emulate the PTE write but with 32-bit guests this
317 * needs two traps (one for each of the two 32-bit
318 * words in the PTE) so do one hypercall directly
323 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 u.val = pte_val_ma(pteval);
325 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
329 static void xen_set_pte(pte_t *ptep, pte_t pteval)
331 trace_xen_mmu_set_pte(ptep, pteval);
332 __xen_set_pte(ptep, pteval);
335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 pte_t *ptep, pte_t pteval)
338 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 __xen_set_pte(ptep, pteval);
342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 unsigned long addr, pte_t *ptep)
345 /* Just return the pte as-is. We preserve the bits on commit */
346 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 pte_t *ptep, pte_t pte)
355 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
358 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359 u.val = pte_val_ma(pte);
360 xen_extend_mmu_update(&u);
362 xen_mc_issue(PARAVIRT_LAZY_MMU);
365 /* Assume pteval_t is equivalent to all the other *val_t types. */
366 static pteval_t pte_mfn_to_pfn(pteval_t val)
368 if (val & _PAGE_PRESENT) {
369 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 unsigned long pfn = mfn_to_pfn(mfn);
372 pteval_t flags = val & PTE_FLAGS_MASK;
373 if (unlikely(pfn == ~0))
374 val = flags & ~_PAGE_PRESENT;
376 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
382 static pteval_t pte_pfn_to_mfn(pteval_t val)
384 if (val & _PAGE_PRESENT) {
385 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386 pteval_t flags = val & PTE_FLAGS_MASK;
389 if (!xen_feature(XENFEAT_auto_translated_physmap))
390 mfn = get_phys_to_machine(pfn);
394 * If there's no mfn for the pfn, then just create an
395 * empty non-present pte. Unfortunately this loses
396 * information about the original pfn, so
397 * pte_mfn_to_pfn is asymmetric.
399 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
403 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
404 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
410 __visible pteval_t xen_pte_val(pte_t pte)
412 pteval_t pteval = pte.pte;
414 /* If this is a WC pte, convert back from Xen WC to Linux WC */
415 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
416 WARN_ON(!pat_enabled);
417 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
420 return pte_mfn_to_pfn(pteval);
422 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
424 __visible pgdval_t xen_pgd_val(pgd_t pgd)
426 return pte_mfn_to_pfn(pgd.pgd);
428 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
431 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
432 * are reserved for now, to correspond to the Intel-reserved PAT
435 * We expect Linux's PAT set as follows:
437 * Idx PTE flags Linux Xen Default
444 * 6 PAT PCD UC- rsv UC-
445 * 7 PAT PCD PWT UC rsv UC
448 void xen_set_pat(u64 pat)
450 /* We expect Linux to use a PAT setting of
451 * UC UC- WC WB (ignoring the PAT flag) */
452 WARN_ON(pat != 0x0007010600070106ull);
455 __visible pte_t xen_make_pte(pteval_t pte)
458 /* If Linux is trying to set a WC pte, then map to the Xen WC.
459 * If _PAGE_PAT is set, then it probably means it is really
460 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
461 * things work out OK...
463 * (We should never see kernel mappings with _PAGE_PSE set,
464 * but we could see hugetlbfs mappings, I think.).
466 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
467 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
468 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
471 pte = pte_pfn_to_mfn(pte);
473 return native_make_pte(pte);
475 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
477 __visible pgd_t xen_make_pgd(pgdval_t pgd)
479 pgd = pte_pfn_to_mfn(pgd);
480 return native_make_pgd(pgd);
482 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
484 __visible pmdval_t xen_pmd_val(pmd_t pmd)
486 return pte_mfn_to_pfn(pmd.pmd);
488 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
490 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
498 /* ptr may be ioremapped for 64-bit pagetable setup */
499 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
500 u.val = pud_val_ma(val);
501 xen_extend_mmu_update(&u);
503 xen_mc_issue(PARAVIRT_LAZY_MMU);
508 static void xen_set_pud(pud_t *ptr, pud_t val)
510 trace_xen_mmu_set_pud(ptr, val);
512 /* If page is not pinned, we can just update the entry
514 if (!xen_page_pinned(ptr)) {
519 xen_set_pud_hyper(ptr, val);
522 #ifdef CONFIG_X86_PAE
523 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
525 trace_xen_mmu_set_pte_atomic(ptep, pte);
526 set_64bit((u64 *)ptep, native_pte_val(pte));
529 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
531 trace_xen_mmu_pte_clear(mm, addr, ptep);
532 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
533 native_pte_clear(mm, addr, ptep);
536 static void xen_pmd_clear(pmd_t *pmdp)
538 trace_xen_mmu_pmd_clear(pmdp);
539 set_pmd(pmdp, __pmd(0));
541 #endif /* CONFIG_X86_PAE */
543 __visible pmd_t xen_make_pmd(pmdval_t pmd)
545 pmd = pte_pfn_to_mfn(pmd);
546 return native_make_pmd(pmd);
548 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
550 #if PAGETABLE_LEVELS == 4
551 __visible pudval_t xen_pud_val(pud_t pud)
553 return pte_mfn_to_pfn(pud.pud);
555 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
557 __visible pud_t xen_make_pud(pudval_t pud)
559 pud = pte_pfn_to_mfn(pud);
561 return native_make_pud(pud);
563 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
565 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
567 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
568 unsigned offset = pgd - pgd_page;
569 pgd_t *user_ptr = NULL;
571 if (offset < pgd_index(USER_LIMIT)) {
572 struct page *page = virt_to_page(pgd_page);
573 user_ptr = (pgd_t *)page->private;
581 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
585 u.ptr = virt_to_machine(ptr).maddr;
586 u.val = pgd_val_ma(val);
587 xen_extend_mmu_update(&u);
591 * Raw hypercall-based set_pgd, intended for in early boot before
592 * there's a page structure. This implies:
593 * 1. The only existing pagetable is the kernel's
594 * 2. It is always pinned
595 * 3. It has no user pagetable attached to it
597 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
603 __xen_set_pgd_hyper(ptr, val);
605 xen_mc_issue(PARAVIRT_LAZY_MMU);
610 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
612 pgd_t *user_ptr = xen_get_user_pgd(ptr);
614 trace_xen_mmu_set_pgd(ptr, user_ptr, val);
616 /* If page is not pinned, we can just update the entry
618 if (!xen_page_pinned(ptr)) {
621 WARN_ON(xen_page_pinned(user_ptr));
627 /* If it's pinned, then we can at least batch the kernel and
628 user updates together. */
631 __xen_set_pgd_hyper(ptr, val);
633 __xen_set_pgd_hyper(user_ptr, val);
635 xen_mc_issue(PARAVIRT_LAZY_MMU);
637 #endif /* PAGETABLE_LEVELS == 4 */
640 * (Yet another) pagetable walker. This one is intended for pinning a
641 * pagetable. This means that it walks a pagetable and calls the
642 * callback function on each page it finds making up the page table,
643 * at every level. It walks the entire pagetable, but it only bothers
644 * pinning pte pages which are below limit. In the normal case this
645 * will be STACK_TOP_MAX, but at boot we need to pin up to
648 * For 32-bit the important bit is that we don't pin beyond there,
649 * because then we start getting into Xen's ptes.
651 * For 64-bit, we must skip the Xen hole in the middle of the address
652 * space, just after the big x86-64 virtual hole.
654 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
655 int (*func)(struct mm_struct *mm, struct page *,
660 unsigned hole_low, hole_high;
661 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
662 unsigned pgdidx, pudidx, pmdidx;
664 /* The limit is the last byte to be touched */
666 BUG_ON(limit >= FIXADDR_TOP);
668 if (xen_feature(XENFEAT_auto_translated_physmap))
672 * 64-bit has a great big hole in the middle of the address
673 * space, which contains the Xen mappings. On 32-bit these
674 * will end up making a zero-sized hole and so is a no-op.
676 hole_low = pgd_index(USER_LIMIT);
677 hole_high = pgd_index(PAGE_OFFSET);
679 pgdidx_limit = pgd_index(limit);
681 pudidx_limit = pud_index(limit);
686 pmdidx_limit = pmd_index(limit);
691 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
694 if (pgdidx >= hole_low && pgdidx < hole_high)
697 if (!pgd_val(pgd[pgdidx]))
700 pud = pud_offset(&pgd[pgdidx], 0);
702 if (PTRS_PER_PUD > 1) /* not folded */
703 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
705 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
708 if (pgdidx == pgdidx_limit &&
709 pudidx > pudidx_limit)
712 if (pud_none(pud[pudidx]))
715 pmd = pmd_offset(&pud[pudidx], 0);
717 if (PTRS_PER_PMD > 1) /* not folded */
718 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
720 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
723 if (pgdidx == pgdidx_limit &&
724 pudidx == pudidx_limit &&
725 pmdidx > pmdidx_limit)
728 if (pmd_none(pmd[pmdidx]))
731 pte = pmd_page(pmd[pmdidx]);
732 flush |= (*func)(mm, pte, PT_PTE);
738 /* Do the top level last, so that the callbacks can use it as
739 a cue to do final things like tlb flushes. */
740 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
745 static int xen_pgd_walk(struct mm_struct *mm,
746 int (*func)(struct mm_struct *mm, struct page *,
750 return __xen_pgd_walk(mm, mm->pgd, func, limit);
753 /* If we're using split pte locks, then take the page's lock and
754 return a pointer to it. Otherwise return NULL. */
755 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
757 spinlock_t *ptl = NULL;
759 #if USE_SPLIT_PTE_PTLOCKS
760 ptl = ptlock_ptr(page);
761 spin_lock_nest_lock(ptl, &mm->page_table_lock);
767 static void xen_pte_unlock(void *v)
773 static void xen_do_pin(unsigned level, unsigned long pfn)
778 op.arg1.mfn = pfn_to_mfn(pfn);
780 xen_extend_mmuext_op(&op);
783 static int xen_pin_page(struct mm_struct *mm, struct page *page,
786 unsigned pgfl = TestSetPagePinned(page);
790 flush = 0; /* already pinned */
791 else if (PageHighMem(page))
792 /* kmaps need flushing if we found an unpinned
796 void *pt = lowmem_page_address(page);
797 unsigned long pfn = page_to_pfn(page);
798 struct multicall_space mcs = __xen_mc_entry(0);
804 * We need to hold the pagetable lock between the time
805 * we make the pagetable RO and when we actually pin
806 * it. If we don't, then other users may come in and
807 * attempt to update the pagetable by writing it,
808 * which will fail because the memory is RO but not
809 * pinned, so Xen won't do the trap'n'emulate.
811 * If we're using split pte locks, we can't hold the
812 * entire pagetable's worth of locks during the
813 * traverse, because we may wrap the preempt count (8
814 * bits). The solution is to mark RO and pin each PTE
815 * page while holding the lock. This means the number
816 * of locks we end up holding is never more than a
817 * batch size (~32 entries, at present).
819 * If we're not using split pte locks, we needn't pin
820 * the PTE pages independently, because we're
821 * protected by the overall pagetable lock.
825 ptl = xen_pte_lock(page, mm);
827 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
828 pfn_pte(pfn, PAGE_KERNEL_RO),
829 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
832 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
834 /* Queue a deferred unlock for when this batch
836 xen_mc_callback(xen_pte_unlock, ptl);
843 /* This is called just after a mm has been created, but it has not
844 been used yet. We need to make sure that its pagetable is all
845 read-only, and can be pinned. */
846 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
848 trace_xen_mmu_pgd_pin(mm, pgd);
852 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
853 /* re-enable interrupts for flushing */
863 pgd_t *user_pgd = xen_get_user_pgd(pgd);
865 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
868 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
869 xen_do_pin(MMUEXT_PIN_L4_TABLE,
870 PFN_DOWN(__pa(user_pgd)));
873 #else /* CONFIG_X86_32 */
874 #ifdef CONFIG_X86_PAE
875 /* Need to make sure unshared kernel PMD is pinnable */
876 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
879 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
880 #endif /* CONFIG_X86_64 */
884 static void xen_pgd_pin(struct mm_struct *mm)
886 __xen_pgd_pin(mm, mm->pgd);
890 * On save, we need to pin all pagetables to make sure they get their
891 * mfns turned into pfns. Search the list for any unpinned pgds and pin
892 * them (unpinned pgds are not currently in use, probably because the
893 * process is under construction or destruction).
895 * Expected to be called in stop_machine() ("equivalent to taking
896 * every spinlock in the system"), so the locking doesn't really
897 * matter all that much.
899 void xen_mm_pin_all(void)
903 spin_lock(&pgd_lock);
905 list_for_each_entry(page, &pgd_list, lru) {
906 if (!PagePinned(page)) {
907 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
908 SetPageSavePinned(page);
912 spin_unlock(&pgd_lock);
916 * The init_mm pagetable is really pinned as soon as its created, but
917 * that's before we have page structures to store the bits. So do all
918 * the book-keeping now.
920 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
927 static void __init xen_mark_init_mm_pinned(void)
929 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
932 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
935 unsigned pgfl = TestClearPagePinned(page);
937 if (pgfl && !PageHighMem(page)) {
938 void *pt = lowmem_page_address(page);
939 unsigned long pfn = page_to_pfn(page);
940 spinlock_t *ptl = NULL;
941 struct multicall_space mcs;
944 * Do the converse to pin_page. If we're using split
945 * pte locks, we must be holding the lock for while
946 * the pte page is unpinned but still RO to prevent
947 * concurrent updates from seeing it in this
948 * partially-pinned state.
950 if (level == PT_PTE) {
951 ptl = xen_pte_lock(page, mm);
954 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
957 mcs = __xen_mc_entry(0);
959 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
960 pfn_pte(pfn, PAGE_KERNEL),
961 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
964 /* unlock when batch completed */
965 xen_mc_callback(xen_pte_unlock, ptl);
969 return 0; /* never need to flush on unpin */
972 /* Release a pagetables pages back as normal RW */
973 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
975 trace_xen_mmu_pgd_unpin(mm, pgd);
979 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
983 pgd_t *user_pgd = xen_get_user_pgd(pgd);
986 xen_do_pin(MMUEXT_UNPIN_TABLE,
987 PFN_DOWN(__pa(user_pgd)));
988 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
993 #ifdef CONFIG_X86_PAE
994 /* Need to make sure unshared kernel PMD is unpinned */
995 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
999 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1004 static void xen_pgd_unpin(struct mm_struct *mm)
1006 __xen_pgd_unpin(mm, mm->pgd);
1010 * On resume, undo any pinning done at save, so that the rest of the
1011 * kernel doesn't see any unexpected pinned pagetables.
1013 void xen_mm_unpin_all(void)
1017 spin_lock(&pgd_lock);
1019 list_for_each_entry(page, &pgd_list, lru) {
1020 if (PageSavePinned(page)) {
1021 BUG_ON(!PagePinned(page));
1022 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1023 ClearPageSavePinned(page);
1027 spin_unlock(&pgd_lock);
1030 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1032 spin_lock(&next->page_table_lock);
1034 spin_unlock(&next->page_table_lock);
1037 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1039 spin_lock(&mm->page_table_lock);
1041 spin_unlock(&mm->page_table_lock);
1046 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1047 we need to repoint it somewhere else before we can unpin it. */
1048 static void drop_other_mm_ref(void *info)
1050 struct mm_struct *mm = info;
1051 struct mm_struct *active_mm;
1053 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1055 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1056 leave_mm(smp_processor_id());
1058 /* If this cpu still has a stale cr3 reference, then make sure
1059 it has been flushed. */
1060 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1061 load_cr3(swapper_pg_dir);
1064 static void xen_drop_mm_ref(struct mm_struct *mm)
1069 if (current->active_mm == mm) {
1070 if (current->mm == mm)
1071 load_cr3(swapper_pg_dir);
1073 leave_mm(smp_processor_id());
1076 /* Get the "official" set of cpus referring to our pagetable. */
1077 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1078 for_each_online_cpu(cpu) {
1079 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1080 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1082 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1086 cpumask_copy(mask, mm_cpumask(mm));
1088 /* It's possible that a vcpu may have a stale reference to our
1089 cr3, because its in lazy mode, and it hasn't yet flushed
1090 its set of pending hypercalls yet. In this case, we can
1091 look at its actual current cr3 value, and force it to flush
1093 for_each_online_cpu(cpu) {
1094 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1095 cpumask_set_cpu(cpu, mask);
1098 if (!cpumask_empty(mask))
1099 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1100 free_cpumask_var(mask);
1103 static void xen_drop_mm_ref(struct mm_struct *mm)
1105 if (current->active_mm == mm)
1106 load_cr3(swapper_pg_dir);
1111 * While a process runs, Xen pins its pagetables, which means that the
1112 * hypervisor forces it to be read-only, and it controls all updates
1113 * to it. This means that all pagetable updates have to go via the
1114 * hypervisor, which is moderately expensive.
1116 * Since we're pulling the pagetable down, we switch to use init_mm,
1117 * unpin old process pagetable and mark it all read-write, which
1118 * allows further operations on it to be simple memory accesses.
1120 * The only subtle point is that another CPU may be still using the
1121 * pagetable because of lazy tlb flushing. This means we need need to
1122 * switch all CPUs off this pagetable before we can unpin it.
1124 static void xen_exit_mmap(struct mm_struct *mm)
1126 get_cpu(); /* make sure we don't move around */
1127 xen_drop_mm_ref(mm);
1130 spin_lock(&mm->page_table_lock);
1132 /* pgd may not be pinned in the error exit path of execve */
1133 if (xen_page_pinned(mm->pgd))
1136 spin_unlock(&mm->page_table_lock);
1139 static void xen_post_allocator_init(void);
1141 #ifdef CONFIG_X86_64
1142 static void __init xen_cleanhighmap(unsigned long vaddr,
1143 unsigned long vaddr_end)
1145 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1146 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1148 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1149 * We include the PMD passed in on _both_ boundaries. */
1150 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1151 pmd++, vaddr += PMD_SIZE) {
1154 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1155 set_pmd(pmd, __pmd(0));
1157 /* In case we did something silly, we should crash in this function
1158 * instead of somewhere later and be confusing. */
1161 static void __init xen_pagetable_p2m_copy(void)
1165 unsigned long new_mfn_list;
1167 if (xen_feature(XENFEAT_auto_translated_physmap))
1170 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1172 new_mfn_list = xen_revector_p2m_tree();
1173 /* No memory or already called. */
1174 if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
1177 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1178 memset((void *)xen_start_info->mfn_list, 0xff, size);
1180 /* We should be in __ka space. */
1181 BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1182 addr = xen_start_info->mfn_list;
1183 /* We roundup to the PMD, which means that if anybody at this stage is
1184 * using the __ka address of xen_start_info or xen_start_info->shared_info
1185 * they are in going to crash. Fortunatly we have already revectored
1186 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1187 size = roundup(size, PMD_SIZE);
1188 xen_cleanhighmap(addr, addr + size);
1190 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1191 memblock_free(__pa(xen_start_info->mfn_list), size);
1192 /* And revector! Bye bye old array */
1193 xen_start_info->mfn_list = new_mfn_list;
1195 /* At this stage, cleanup_highmap has already cleaned __ka space
1196 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1197 * the ramdisk). We continue on, erasing PMD entries that point to page
1198 * tables - do note that they are accessible at this stage via __va.
1199 * For good measure we also round up to the PMD - which means that if
1200 * anybody is using __ka address to the initial boot-stack - and try
1201 * to use it - they are going to crash. The xen_start_info has been
1202 * taken care of already in xen_setup_kernel_pagetable. */
1203 addr = xen_start_info->pt_base;
1204 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1206 xen_cleanhighmap(addr, addr + size);
1207 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1209 /* This is superflous and is not neccessary, but you know what
1210 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1211 * anything at this stage. */
1212 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1217 static void __init xen_pagetable_init(void)
1220 #ifdef CONFIG_X86_64
1221 xen_pagetable_p2m_copy();
1223 /* Allocate and initialize top and mid mfn levels for p2m structure */
1224 xen_build_mfn_list_list();
1226 xen_setup_shared_info();
1227 xen_post_allocator_init();
1229 static void xen_write_cr2(unsigned long cr2)
1231 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1234 static unsigned long xen_read_cr2(void)
1236 return this_cpu_read(xen_vcpu)->arch.cr2;
1239 unsigned long xen_read_cr2_direct(void)
1241 return this_cpu_read(xen_vcpu_info.arch.cr2);
1244 void xen_flush_tlb_all(void)
1246 struct mmuext_op *op;
1247 struct multicall_space mcs;
1249 trace_xen_mmu_flush_tlb_all(0);
1253 mcs = xen_mc_entry(sizeof(*op));
1256 op->cmd = MMUEXT_TLB_FLUSH_ALL;
1257 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1259 xen_mc_issue(PARAVIRT_LAZY_MMU);
1263 static void xen_flush_tlb(void)
1265 struct mmuext_op *op;
1266 struct multicall_space mcs;
1268 trace_xen_mmu_flush_tlb(0);
1272 mcs = xen_mc_entry(sizeof(*op));
1275 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1276 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1278 xen_mc_issue(PARAVIRT_LAZY_MMU);
1283 static void xen_flush_tlb_single(unsigned long addr)
1285 struct mmuext_op *op;
1286 struct multicall_space mcs;
1288 trace_xen_mmu_flush_tlb_single(addr);
1292 mcs = xen_mc_entry(sizeof(*op));
1294 op->cmd = MMUEXT_INVLPG_LOCAL;
1295 op->arg1.linear_addr = addr & PAGE_MASK;
1296 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1298 xen_mc_issue(PARAVIRT_LAZY_MMU);
1303 static void xen_flush_tlb_others(const struct cpumask *cpus,
1304 struct mm_struct *mm, unsigned long start,
1308 struct mmuext_op op;
1310 DECLARE_BITMAP(mask, num_processors);
1312 DECLARE_BITMAP(mask, NR_CPUS);
1315 struct multicall_space mcs;
1317 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1319 if (cpumask_empty(cpus))
1320 return; /* nothing to do */
1322 mcs = xen_mc_entry(sizeof(*args));
1324 args->op.arg2.vcpumask = to_cpumask(args->mask);
1326 /* Remove us, and any offline CPUS. */
1327 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1328 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1330 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1331 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1332 args->op.cmd = MMUEXT_INVLPG_MULTI;
1333 args->op.arg1.linear_addr = start;
1336 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1338 xen_mc_issue(PARAVIRT_LAZY_MMU);
1341 static unsigned long xen_read_cr3(void)
1343 return this_cpu_read(xen_cr3);
1346 static void set_current_cr3(void *v)
1348 this_cpu_write(xen_current_cr3, (unsigned long)v);
1351 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1353 struct mmuext_op op;
1356 trace_xen_mmu_write_cr3(kernel, cr3);
1359 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1363 WARN_ON(mfn == 0 && kernel);
1365 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1368 xen_extend_mmuext_op(&op);
1371 this_cpu_write(xen_cr3, cr3);
1373 /* Update xen_current_cr3 once the batch has actually
1375 xen_mc_callback(set_current_cr3, (void *)cr3);
1378 static void xen_write_cr3(unsigned long cr3)
1380 BUG_ON(preemptible());
1382 xen_mc_batch(); /* disables interrupts */
1384 /* Update while interrupts are disabled, so its atomic with
1386 this_cpu_write(xen_cr3, cr3);
1388 __xen_write_cr3(true, cr3);
1390 #ifdef CONFIG_X86_64
1392 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1394 __xen_write_cr3(false, __pa(user_pgd));
1396 __xen_write_cr3(false, 0);
1400 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1403 #ifdef CONFIG_X86_64
1405 * At the start of the day - when Xen launches a guest, it has already
1406 * built pagetables for the guest. We diligently look over them
1407 * in xen_setup_kernel_pagetable and graft as appropiate them in the
1408 * init_level4_pgt and its friends. Then when we are happy we load
1409 * the new init_level4_pgt - and continue on.
1411 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1412 * up the rest of the pagetables. When it has completed it loads the cr3.
1413 * N.B. that baremetal would start at 'start_kernel' (and the early
1414 * #PF handler would create bootstrap pagetables) - so we are running
1415 * with the same assumptions as what to do when write_cr3 is executed
1418 * Since there are no user-page tables at all, we have two variants
1419 * of xen_write_cr3 - the early bootup (this one), and the late one
1420 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1421 * the Linux kernel and user-space are both in ring 3 while the
1422 * hypervisor is in ring 0.
1424 static void __init xen_write_cr3_init(unsigned long cr3)
1426 BUG_ON(preemptible());
1428 xen_mc_batch(); /* disables interrupts */
1430 /* Update while interrupts are disabled, so its atomic with
1432 this_cpu_write(xen_cr3, cr3);
1434 __xen_write_cr3(true, cr3);
1436 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1440 static int xen_pgd_alloc(struct mm_struct *mm)
1442 pgd_t *pgd = mm->pgd;
1445 BUG_ON(PagePinned(virt_to_page(pgd)));
1447 #ifdef CONFIG_X86_64
1449 struct page *page = virt_to_page(pgd);
1452 BUG_ON(page->private != 0);
1456 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1457 page->private = (unsigned long)user_pgd;
1459 if (user_pgd != NULL) {
1460 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1461 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1465 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1472 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1474 #ifdef CONFIG_X86_64
1475 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1478 free_page((unsigned long)user_pgd);
1482 #ifdef CONFIG_X86_32
1483 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1485 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1486 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1487 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1492 #else /* CONFIG_X86_64 */
1493 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1497 #endif /* CONFIG_X86_64 */
1500 * Init-time set_pte while constructing initial pagetables, which
1501 * doesn't allow RO page table pages to be remapped RW.
1503 * If there is no MFN for this PFN then this page is initially
1504 * ballooned out so clear the PTE (as in decrease_reservation() in
1505 * drivers/xen/balloon.c).
1507 * Many of these PTE updates are done on unpinned and writable pages
1508 * and doing a hypercall for these is unnecessary and expensive. At
1509 * this point it is not possible to tell if a page is pinned or not,
1510 * so always write the PTE directly and rely on Xen trapping and
1511 * emulating any updates as necessary.
1513 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1515 if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1516 pte = mask_rw_pte(ptep, pte);
1520 native_set_pte(ptep, pte);
1523 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1525 struct mmuext_op op;
1527 op.arg1.mfn = pfn_to_mfn(pfn);
1528 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1532 /* Early in boot, while setting up the initial pagetable, assume
1533 everything is pinned. */
1534 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1536 #ifdef CONFIG_FLATMEM
1537 BUG_ON(mem_map); /* should only be used early */
1539 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1540 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1543 /* Used for pmd and pud */
1544 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1546 #ifdef CONFIG_FLATMEM
1547 BUG_ON(mem_map); /* should only be used early */
1549 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1552 /* Early release_pte assumes that all pts are pinned, since there's
1553 only init_mm and anything attached to that is pinned. */
1554 static void __init xen_release_pte_init(unsigned long pfn)
1556 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1557 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1560 static void __init xen_release_pmd_init(unsigned long pfn)
1562 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1565 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1567 struct multicall_space mcs;
1568 struct mmuext_op *op;
1570 mcs = __xen_mc_entry(sizeof(*op));
1573 op->arg1.mfn = pfn_to_mfn(pfn);
1575 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1578 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1580 struct multicall_space mcs;
1581 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1583 mcs = __xen_mc_entry(0);
1584 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1585 pfn_pte(pfn, prot), 0);
1588 /* This needs to make sure the new pte page is pinned iff its being
1589 attached to a pinned pagetable. */
1590 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1593 bool pinned = PagePinned(virt_to_page(mm->pgd));
1595 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1598 struct page *page = pfn_to_page(pfn);
1600 SetPagePinned(page);
1602 if (!PageHighMem(page)) {
1605 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1607 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1608 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1610 xen_mc_issue(PARAVIRT_LAZY_MMU);
1612 /* make sure there are no stray mappings of
1614 kmap_flush_unused();
1619 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1621 xen_alloc_ptpage(mm, pfn, PT_PTE);
1624 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1626 xen_alloc_ptpage(mm, pfn, PT_PMD);
1629 /* This should never happen until we're OK to use struct page */
1630 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1632 struct page *page = pfn_to_page(pfn);
1633 bool pinned = PagePinned(page);
1635 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1638 if (!PageHighMem(page)) {
1641 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1642 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1644 __set_pfn_prot(pfn, PAGE_KERNEL);
1646 xen_mc_issue(PARAVIRT_LAZY_MMU);
1648 ClearPagePinned(page);
1652 static void xen_release_pte(unsigned long pfn)
1654 xen_release_ptpage(pfn, PT_PTE);
1657 static void xen_release_pmd(unsigned long pfn)
1659 xen_release_ptpage(pfn, PT_PMD);
1662 #if PAGETABLE_LEVELS == 4
1663 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1665 xen_alloc_ptpage(mm, pfn, PT_PUD);
1668 static void xen_release_pud(unsigned long pfn)
1670 xen_release_ptpage(pfn, PT_PUD);
1674 void __init xen_reserve_top(void)
1676 #ifdef CONFIG_X86_32
1677 unsigned long top = HYPERVISOR_VIRT_START;
1678 struct xen_platform_parameters pp;
1680 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1681 top = pp.virt_start;
1683 reserve_top_address(-top);
1684 #endif /* CONFIG_X86_32 */
1688 * Like __va(), but returns address in the kernel mapping (which is
1689 * all we have until the physical memory mapping has been set up.
1691 static void *__ka(phys_addr_t paddr)
1693 #ifdef CONFIG_X86_64
1694 return (void *)(paddr + __START_KERNEL_map);
1700 /* Convert a machine address to physical address */
1701 static unsigned long m2p(phys_addr_t maddr)
1705 maddr &= PTE_PFN_MASK;
1706 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1711 /* Convert a machine address to kernel virtual */
1712 static void *m2v(phys_addr_t maddr)
1714 return __ka(m2p(maddr));
1717 /* Set the page permissions on an identity-mapped pages */
1718 static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1720 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1721 pte_t pte = pfn_pte(pfn, prot);
1723 /* For PVH no need to set R/O or R/W to pin them or unpin them. */
1724 if (xen_feature(XENFEAT_auto_translated_physmap))
1727 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1730 static void set_page_prot(void *addr, pgprot_t prot)
1732 return set_page_prot_flags(addr, prot, UVMF_NONE);
1734 #ifdef CONFIG_X86_32
1735 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1737 unsigned pmdidx, pteidx;
1741 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1746 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1749 /* Reuse or allocate a page of ptes */
1750 if (pmd_present(pmd[pmdidx]))
1751 pte_page = m2v(pmd[pmdidx].pmd);
1753 /* Check for free pte pages */
1754 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1757 pte_page = &level1_ident_pgt[ident_pte];
1758 ident_pte += PTRS_PER_PTE;
1760 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1763 /* Install mappings */
1764 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1767 #ifdef CONFIG_X86_32
1768 if (pfn > max_pfn_mapped)
1769 max_pfn_mapped = pfn;
1772 if (!pte_none(pte_page[pteidx]))
1775 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1776 pte_page[pteidx] = pte;
1780 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1781 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1783 set_page_prot(pmd, PAGE_KERNEL_RO);
1786 void __init xen_setup_machphys_mapping(void)
1788 struct xen_machphys_mapping mapping;
1790 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1791 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1792 machine_to_phys_nr = mapping.max_mfn + 1;
1794 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1796 #ifdef CONFIG_X86_32
1797 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1798 < machine_to_phys_mapping);
1802 #ifdef CONFIG_X86_64
1803 static void convert_pfn_mfn(void *v)
1808 /* All levels are converted the same way, so just treat them
1810 for (i = 0; i < PTRS_PER_PTE; i++)
1811 pte[i] = xen_make_pte(pte[i].pte);
1813 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1816 if (*pt_base == PFN_DOWN(__pa(addr))) {
1817 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1818 clear_page((void *)addr);
1821 if (*pt_end == PFN_DOWN(__pa(addr))) {
1822 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1823 clear_page((void *)addr);
1828 * Set up the initial kernel pagetable.
1830 * We can construct this by grafting the Xen provided pagetable into
1831 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1832 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1833 * kernel has a physical mapping to start with - but that's enough to
1834 * get __va working. We need to fill in the rest of the physical
1835 * mapping once some sort of allocator has been set up. NOTE: for
1836 * PVH, the page tables are native.
1838 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1842 unsigned long addr[3];
1843 unsigned long pt_base, pt_end;
1846 /* max_pfn_mapped is the last pfn mapped in the initial memory
1847 * mappings. Considering that on Xen after the kernel mappings we
1848 * have the mappings of some pages that don't exist in pfn space, we
1849 * set max_pfn_mapped to the last real pfn mapped. */
1850 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1852 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1853 pt_end = pt_base + xen_start_info->nr_pt_frames;
1855 /* Zap identity mapping */
1856 init_level4_pgt[0] = __pgd(0);
1858 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1859 /* Pre-constructed entries are in pfn, so convert to mfn */
1860 /* L4[272] -> level3_ident_pgt
1861 * L4[511] -> level3_kernel_pgt */
1862 convert_pfn_mfn(init_level4_pgt);
1864 /* L3_i[0] -> level2_ident_pgt */
1865 convert_pfn_mfn(level3_ident_pgt);
1866 /* L3_k[510] -> level2_kernel_pgt
1867 * L3_k[511] -> level2_fixmap_pgt */
1868 convert_pfn_mfn(level3_kernel_pgt);
1870 /* L3_k[511][506] -> level1_fixmap_pgt */
1871 convert_pfn_mfn(level2_fixmap_pgt);
1873 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1874 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1875 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1877 addr[0] = (unsigned long)pgd;
1878 addr[1] = (unsigned long)l3;
1879 addr[2] = (unsigned long)l2;
1880 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1881 * Both L4[272][0] and L4[511][510] have entries that point to the same
1882 * L2 (PMD) tables. Meaning that if you modify it in __va space
1883 * it will be also modified in the __ka space! (But if you just
1884 * modify the PMD table to point to other PTE's or none, then you
1885 * are OK - which is what cleanup_highmap does) */
1886 copy_page(level2_ident_pgt, l2);
1887 /* Graft it onto L4[511][510] */
1888 copy_page(level2_kernel_pgt, l2);
1890 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1891 /* Make pagetable pieces RO */
1892 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1893 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1894 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1895 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1896 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1897 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1898 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1899 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1901 /* Pin down new L4 */
1902 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1903 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1905 /* Unpin Xen-provided one */
1906 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1909 * At this stage there can be no user pgd, and no page
1910 * structure to attach it to, so make sure we just set kernel
1914 __xen_write_cr3(true, __pa(init_level4_pgt));
1915 xen_mc_issue(PARAVIRT_LAZY_CPU);
1917 native_write_cr3(__pa(init_level4_pgt));
1919 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1920 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1921 * the initial domain. For guests using the toolstack, they are in:
1922 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1923 * rip out the [L4] (pgd), but for guests we shave off three pages.
1925 for (i = 0; i < ARRAY_SIZE(addr); i++)
1926 check_pt_base(&pt_base, &pt_end, addr[i]);
1928 /* Our (by three pages) smaller Xen pagetable that we are using */
1929 memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1930 /* Revector the xen_start_info */
1931 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1933 #else /* !CONFIG_X86_64 */
1934 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1935 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1937 static void __init xen_write_cr3_init(unsigned long cr3)
1939 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1941 BUG_ON(read_cr3() != __pa(initial_page_table));
1942 BUG_ON(cr3 != __pa(swapper_pg_dir));
1945 * We are switching to swapper_pg_dir for the first time (from
1946 * initial_page_table) and therefore need to mark that page
1947 * read-only and then pin it.
1949 * Xen disallows sharing of kernel PMDs for PAE
1950 * guests. Therefore we must copy the kernel PMD from
1951 * initial_page_table into a new kernel PMD to be used in
1954 swapper_kernel_pmd =
1955 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1956 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1957 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1958 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1959 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1961 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1963 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1965 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1966 PFN_DOWN(__pa(initial_page_table)));
1967 set_page_prot(initial_page_table, PAGE_KERNEL);
1968 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1970 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1973 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1977 initial_kernel_pmd =
1978 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1980 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1981 xen_start_info->nr_pt_frames * PAGE_SIZE +
1984 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1985 copy_page(initial_kernel_pmd, kernel_pmd);
1987 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1989 copy_page(initial_page_table, pgd);
1990 initial_page_table[KERNEL_PGD_BOUNDARY] =
1991 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1993 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1994 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1995 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1997 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1999 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2000 PFN_DOWN(__pa(initial_page_table)));
2001 xen_write_cr3(__pa(initial_page_table));
2003 memblock_reserve(__pa(xen_start_info->pt_base),
2004 xen_start_info->nr_pt_frames * PAGE_SIZE);
2006 #endif /* CONFIG_X86_64 */
2008 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2010 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2014 phys >>= PAGE_SHIFT;
2017 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2019 #ifdef CONFIG_X86_32
2021 # ifdef CONFIG_HIGHMEM
2022 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2027 case FIX_TEXT_POKE0:
2028 case FIX_TEXT_POKE1:
2029 /* All local page mappings */
2030 pte = pfn_pte(phys, prot);
2033 #ifdef CONFIG_X86_LOCAL_APIC
2034 case FIX_APIC_BASE: /* maps dummy local APIC */
2035 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2039 #ifdef CONFIG_X86_IO_APIC
2040 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2042 * We just don't map the IO APIC - all access is via
2043 * hypercalls. Keep the address in the pte for reference.
2045 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2049 case FIX_PARAVIRT_BOOTMAP:
2050 /* This is an MFN, but it isn't an IO mapping from the
2052 pte = mfn_pte(phys, prot);
2056 /* By default, set_fixmap is used for hardware mappings */
2057 pte = mfn_pte(phys, prot);
2061 __native_set_fixmap(idx, pte);
2063 #ifdef CONFIG_X86_64
2064 /* Replicate changes to map the vsyscall page into the user
2065 pagetable vsyscall mapping. */
2066 if (idx == VSYSCALL_PAGE) {
2067 unsigned long vaddr = __fix_to_virt(idx);
2068 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2073 static void __init xen_post_allocator_init(void)
2075 if (xen_feature(XENFEAT_auto_translated_physmap))
2078 pv_mmu_ops.set_pte = xen_set_pte;
2079 pv_mmu_ops.set_pmd = xen_set_pmd;
2080 pv_mmu_ops.set_pud = xen_set_pud;
2081 #if PAGETABLE_LEVELS == 4
2082 pv_mmu_ops.set_pgd = xen_set_pgd;
2085 /* This will work as long as patching hasn't happened yet
2086 (which it hasn't) */
2087 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2088 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2089 pv_mmu_ops.release_pte = xen_release_pte;
2090 pv_mmu_ops.release_pmd = xen_release_pmd;
2091 #if PAGETABLE_LEVELS == 4
2092 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2093 pv_mmu_ops.release_pud = xen_release_pud;
2096 #ifdef CONFIG_X86_64
2097 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2098 SetPagePinned(virt_to_page(level3_user_vsyscall));
2100 xen_mark_init_mm_pinned();
2103 static void xen_leave_lazy_mmu(void)
2107 paravirt_leave_lazy_mmu();
2111 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2112 .read_cr2 = xen_read_cr2,
2113 .write_cr2 = xen_write_cr2,
2115 .read_cr3 = xen_read_cr3,
2116 .write_cr3 = xen_write_cr3_init,
2118 .flush_tlb_user = xen_flush_tlb,
2119 .flush_tlb_kernel = xen_flush_tlb,
2120 .flush_tlb_single = xen_flush_tlb_single,
2121 .flush_tlb_others = xen_flush_tlb_others,
2123 .pte_update = paravirt_nop,
2124 .pte_update_defer = paravirt_nop,
2126 .pgd_alloc = xen_pgd_alloc,
2127 .pgd_free = xen_pgd_free,
2129 .alloc_pte = xen_alloc_pte_init,
2130 .release_pte = xen_release_pte_init,
2131 .alloc_pmd = xen_alloc_pmd_init,
2132 .release_pmd = xen_release_pmd_init,
2134 .set_pte = xen_set_pte_init,
2135 .set_pte_at = xen_set_pte_at,
2136 .set_pmd = xen_set_pmd_hyper,
2138 .ptep_modify_prot_start = __ptep_modify_prot_start,
2139 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2141 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2142 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2144 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2145 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2147 #ifdef CONFIG_X86_PAE
2148 .set_pte_atomic = xen_set_pte_atomic,
2149 .pte_clear = xen_pte_clear,
2150 .pmd_clear = xen_pmd_clear,
2151 #endif /* CONFIG_X86_PAE */
2152 .set_pud = xen_set_pud_hyper,
2154 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2155 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2157 #if PAGETABLE_LEVELS == 4
2158 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2159 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2160 .set_pgd = xen_set_pgd_hyper,
2162 .alloc_pud = xen_alloc_pmd_init,
2163 .release_pud = xen_release_pmd_init,
2164 #endif /* PAGETABLE_LEVELS == 4 */
2166 .activate_mm = xen_activate_mm,
2167 .dup_mmap = xen_dup_mmap,
2168 .exit_mmap = xen_exit_mmap,
2171 .enter = paravirt_enter_lazy_mmu,
2172 .leave = xen_leave_lazy_mmu,
2173 .flush = paravirt_flush_lazy_mmu,
2176 .set_fixmap = xen_set_fixmap,
2179 void __init xen_init_mmu_ops(void)
2181 x86_init.paging.pagetable_init = xen_pagetable_init;
2183 /* Optimization - we can use the HVM one but it has no idea which
2184 * VCPUs are descheduled - which means that it will needlessly IPI
2185 * them. Xen knows so let it do the job.
2187 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2188 pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2191 pv_mmu_ops = xen_mmu_ops;
2193 memset(dummy_mapping, 0xff, PAGE_SIZE);
2196 /* Protected by xen_reservation_lock. */
2197 #define MAX_CONTIG_ORDER 9 /* 2MB */
2198 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2200 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2201 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2202 unsigned long *in_frames,
2203 unsigned long *out_frames)
2206 struct multicall_space mcs;
2209 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2210 mcs = __xen_mc_entry(0);
2213 in_frames[i] = virt_to_mfn(vaddr);
2215 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2216 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2219 out_frames[i] = virt_to_pfn(vaddr);
2225 * Update the pfn-to-mfn mappings for a virtual address range, either to
2226 * point to an array of mfns, or contiguously from a single starting
2229 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2230 unsigned long *mfns,
2231 unsigned long first_mfn)
2238 limit = 1u << order;
2239 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2240 struct multicall_space mcs;
2243 mcs = __xen_mc_entry(0);
2247 mfn = first_mfn + i;
2249 if (i < (limit - 1))
2253 flags = UVMF_INVLPG | UVMF_ALL;
2255 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2258 MULTI_update_va_mapping(mcs.mc, vaddr,
2259 mfn_pte(mfn, PAGE_KERNEL), flags);
2261 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2268 * Perform the hypercall to exchange a region of our pfns to point to
2269 * memory with the required contiguous alignment. Takes the pfns as
2270 * input, and populates mfns as output.
2272 * Returns a success code indicating whether the hypervisor was able to
2273 * satisfy the request or not.
2275 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2276 unsigned long *pfns_in,
2277 unsigned long extents_out,
2278 unsigned int order_out,
2279 unsigned long *mfns_out,
2280 unsigned int address_bits)
2285 struct xen_memory_exchange exchange = {
2287 .nr_extents = extents_in,
2288 .extent_order = order_in,
2289 .extent_start = pfns_in,
2293 .nr_extents = extents_out,
2294 .extent_order = order_out,
2295 .extent_start = mfns_out,
2296 .address_bits = address_bits,
2301 BUG_ON(extents_in << order_in != extents_out << order_out);
2303 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2304 success = (exchange.nr_exchanged == extents_in);
2306 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2307 BUG_ON(success && (rc != 0));
2312 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2313 unsigned int address_bits,
2314 dma_addr_t *dma_handle)
2316 unsigned long *in_frames = discontig_frames, out_frame;
2317 unsigned long flags;
2319 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2322 * Currently an auto-translated guest will not perform I/O, nor will
2323 * it require PAE page directories below 4GB. Therefore any calls to
2324 * this function are redundant and can be ignored.
2327 if (xen_feature(XENFEAT_auto_translated_physmap))
2330 if (unlikely(order > MAX_CONTIG_ORDER))
2333 memset((void *) vstart, 0, PAGE_SIZE << order);
2335 spin_lock_irqsave(&xen_reservation_lock, flags);
2337 /* 1. Zap current PTEs, remembering MFNs. */
2338 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2340 /* 2. Get a new contiguous memory extent. */
2341 out_frame = virt_to_pfn(vstart);
2342 success = xen_exchange_memory(1UL << order, 0, in_frames,
2343 1, order, &out_frame,
2346 /* 3. Map the new extent in place of old pages. */
2348 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2350 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2352 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2354 *dma_handle = virt_to_machine(vstart).maddr;
2355 return success ? 0 : -ENOMEM;
2357 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2359 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2361 unsigned long *out_frames = discontig_frames, in_frame;
2362 unsigned long flags;
2364 unsigned long vstart;
2366 if (xen_feature(XENFEAT_auto_translated_physmap))
2369 if (unlikely(order > MAX_CONTIG_ORDER))
2372 vstart = (unsigned long)phys_to_virt(pstart);
2373 memset((void *) vstart, 0, PAGE_SIZE << order);
2375 spin_lock_irqsave(&xen_reservation_lock, flags);
2377 /* 1. Find start MFN of contiguous extent. */
2378 in_frame = virt_to_mfn(vstart);
2380 /* 2. Zap current PTEs. */
2381 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2383 /* 3. Do the exchange for non-contiguous MFNs. */
2384 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2387 /* 4. Map new pages in place of old pages. */
2389 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2391 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2393 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2395 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2397 #ifdef CONFIG_XEN_PVHVM
2398 #ifdef CONFIG_PROC_VMCORE
2400 * This function is used in two contexts:
2401 * - the kdump kernel has to check whether a pfn of the crashed kernel
2402 * was a ballooned page. vmcore is using this function to decide
2403 * whether to access a pfn of the crashed kernel.
2404 * - the kexec kernel has to check whether a pfn was ballooned by the
2405 * previous kernel. If the pfn is ballooned, handle it properly.
2406 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2407 * handle the pfn special in this case.
2409 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2411 struct xen_hvm_get_mem_type a = {
2412 .domid = DOMID_SELF,
2417 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2420 switch (a.mem_type) {
2421 case HVMMEM_mmio_dm:
2435 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2437 struct xen_hvm_pagetable_dying a;
2440 a.domid = DOMID_SELF;
2441 a.gpa = __pa(mm->pgd);
2442 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2443 WARN_ON_ONCE(rc < 0);
2446 static int is_pagetable_dying_supported(void)
2448 struct xen_hvm_pagetable_dying a;
2451 a.domid = DOMID_SELF;
2453 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2455 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2461 void __init xen_hvm_init_mmu_ops(void)
2463 if (is_pagetable_dying_supported())
2464 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2465 #ifdef CONFIG_PROC_VMCORE
2466 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2471 #ifdef CONFIG_XEN_PVH
2473 * Map foreign gfn (fgfn), to local pfn (lpfn). This for the user
2474 * space creating new guest on pvh dom0 and needing to map domU pages.
2476 static int xlate_add_to_p2m(unsigned long lpfn, unsigned long fgfn,
2480 xen_pfn_t gpfn = lpfn;
2481 xen_ulong_t idx = fgfn;
2483 struct xen_add_to_physmap_range xatp = {
2484 .domid = DOMID_SELF,
2485 .foreign_domid = domid,
2487 .space = XENMAPSPACE_gmfn_foreign,
2489 set_xen_guest_handle(xatp.idxs, &idx);
2490 set_xen_guest_handle(xatp.gpfns, &gpfn);
2491 set_xen_guest_handle(xatp.errs, &err);
2493 rc = HYPERVISOR_memory_op(XENMEM_add_to_physmap_range, &xatp);
2499 static int xlate_remove_from_p2m(unsigned long spfn, int count)
2501 struct xen_remove_from_physmap xrp;
2504 for (i = 0; i < count; i++) {
2505 xrp.domid = DOMID_SELF;
2507 rc = HYPERVISOR_memory_op(XENMEM_remove_from_physmap, &xrp);
2514 struct xlate_remap_data {
2515 unsigned long fgfn; /* foreign domain's gfn */
2519 struct page **pages;
2522 static int xlate_map_pte_fn(pte_t *ptep, pgtable_t token, unsigned long addr,
2526 struct xlate_remap_data *remap = data;
2527 unsigned long pfn = page_to_pfn(remap->pages[remap->index++]);
2528 pte_t pteval = pte_mkspecial(pfn_pte(pfn, remap->prot));
2530 rc = xlate_add_to_p2m(pfn, remap->fgfn, remap->domid);
2533 native_set_pte(ptep, pteval);
2538 static int xlate_remap_gfn_range(struct vm_area_struct *vma,
2539 unsigned long addr, unsigned long mfn,
2540 int nr, pgprot_t prot, unsigned domid,
2541 struct page **pages)
2544 struct xlate_remap_data pvhdata;
2549 pvhdata.prot = prot;
2550 pvhdata.domid = domid;
2552 pvhdata.pages = pages;
2553 err = apply_to_page_range(vma->vm_mm, addr, nr << PAGE_SHIFT,
2554 xlate_map_pte_fn, &pvhdata);
2560 #define REMAP_BATCH_SIZE 16
2565 struct mmu_update *mmu_update;
2568 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2569 unsigned long addr, void *data)
2571 struct remap_data *rmd = data;
2572 pte_t pte = pte_mkspecial(mfn_pte(rmd->mfn++, rmd->prot));
2574 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2575 rmd->mmu_update->val = pte_val_ma(pte);
2581 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2583 xen_pfn_t mfn, int nr,
2584 pgprot_t prot, unsigned domid,
2585 struct page **pages)
2588 struct remap_data rmd;
2589 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2591 unsigned long range;
2594 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2596 if (xen_feature(XENFEAT_auto_translated_physmap)) {
2597 #ifdef CONFIG_XEN_PVH
2598 /* We need to update the local page tables and the xen HAP */
2599 return xlate_remap_gfn_range(vma, addr, mfn, nr, prot,
2610 batch = min(REMAP_BATCH_SIZE, nr);
2611 range = (unsigned long)batch << PAGE_SHIFT;
2613 rmd.mmu_update = mmu_update;
2614 err = apply_to_page_range(vma->vm_mm, addr, range,
2615 remap_area_mfn_pte_fn, &rmd);
2619 err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2630 xen_flush_tlb_all();
2634 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2636 /* Returns: 0 success */
2637 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2638 int numpgs, struct page **pages)
2640 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2643 #ifdef CONFIG_XEN_PVH
2646 * The mmu has already cleaned up the process mmu
2647 * resources at this point (lookup_address will return
2650 unsigned long pfn = page_to_pfn(pages[numpgs]);
2652 xlate_remove_from_p2m(pfn, 1);
2655 * We don't need to flush tlbs because as part of
2656 * xlate_remove_from_p2m, the hypervisor will do tlb flushes
2657 * after removing the p2m entries from the EPT/NPT
2664 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);