]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/display/intel_vblank.c
drm/i915/dp: Use connector DSC DPCD in intel_dp_dsc_compute_config()
[linux.git] / drivers / gpu / drm / i915 / display / intel_vblank.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022-2023 Intel Corporation
4  */
5
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_de.h"
9 #include "intel_display_types.h"
10 #include "intel_vblank.h"
11 #include "intel_vrr.h"
12
13 /*
14  * This timing diagram depicts the video signal in and
15  * around the vertical blanking period.
16  *
17  * Assumptions about the fictitious mode used in this example:
18  *  vblank_start >= 3
19  *  vsync_start = vblank_start + 1
20  *  vsync_end = vblank_start + 2
21  *  vtotal = vblank_start + 3
22  *
23  *           start of vblank:
24  *           latch double buffered registers
25  *           increment frame counter (ctg+)
26  *           generate start of vblank interrupt (gen4+)
27  *           |
28  *           |          frame start:
29  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
30  *           |          may be shifted forward 1-3 extra lines via TRANSCONF
31  *           |          |
32  *           |          |  start of vsync:
33  *           |          |  generate vsync interrupt
34  *           |          |  |
35  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
36  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
37  * ----va---> <-----------------vb--------------------> <--------va-------------
38  *       |          |       <----vs----->                     |
39  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
40  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
41  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
42  *       |          |                                         |
43  *       last visible pixel                                   first visible pixel
44  *                  |                                         increment frame counter (gen3/4)
45  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
46  *
47  * x  = horizontal active
48  * _  = horizontal blanking
49  * hs = horizontal sync
50  * va = vertical active
51  * vb = vertical blanking
52  * vs = vertical sync
53  * vbs = vblank_start (number)
54  *
55  * Summary:
56  * - most events happen at the start of horizontal sync
57  * - frame start happens at the start of horizontal blank, 1-4 lines
58  *   (depending on TRANSCONF settings) after the start of vblank
59  * - gen3/4 pixel and frame counter are synchronized with the start
60  *   of horizontal active on the first line of vertical active
61  */
62
63 /*
64  * Called from drm generic code, passed a 'crtc', which we use as a pipe index.
65  */
66 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
67 {
68         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
69         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
70         const struct drm_display_mode *mode = &vblank->hwmode;
71         enum pipe pipe = to_intel_crtc(crtc)->pipe;
72         u32 pixel, vbl_start, hsync_start, htotal;
73         u64 frame;
74
75         /*
76          * On i965gm TV output the frame counter only works up to
77          * the point when we enable the TV encoder. After that the
78          * frame counter ceases to work and reads zero. We need a
79          * vblank wait before enabling the TV encoder and so we
80          * have to enable vblank interrupts while the frame counter
81          * is still in a working state. However the core vblank code
82          * does not like us returning non-zero frame counter values
83          * when we've told it that we don't have a working frame
84          * counter. Thus we must stop non-zero values leaking out.
85          */
86         if (!vblank->max_vblank_count)
87                 return 0;
88
89         htotal = mode->crtc_htotal;
90         hsync_start = mode->crtc_hsync_start;
91         vbl_start = mode->crtc_vblank_start;
92         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
93                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
94
95         /* Convert to pixel count */
96         vbl_start *= htotal;
97
98         /* Start of vblank event occurs at start of hsync */
99         vbl_start -= htotal - hsync_start;
100
101         /*
102          * High & low register fields aren't synchronized, so make sure
103          * we get a low value that's stable across two reads of the high
104          * register.
105          */
106         frame = intel_de_read64_2x32(dev_priv, PIPEFRAMEPIXEL(pipe), PIPEFRAME(pipe));
107
108         pixel = frame & PIPE_PIXEL_MASK;
109         frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff;
110
111         /*
112          * The frame counter increments at beginning of active.
113          * Cook up a vblank counter by also checking the pixel
114          * counter against vblank start.
115          */
116         return (frame + (pixel >= vbl_start)) & 0xffffff;
117 }
118
119 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
120 {
121         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
122         struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
123         enum pipe pipe = to_intel_crtc(crtc)->pipe;
124
125         if (!vblank->max_vblank_count)
126                 return 0;
127
128         return intel_de_read(dev_priv, PIPE_FRMCOUNT_G4X(pipe));
129 }
130
131 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
132 {
133         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
134         struct drm_vblank_crtc *vblank =
135                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
136         const struct drm_display_mode *mode = &vblank->hwmode;
137         u32 htotal = mode->crtc_htotal;
138         u32 clock = mode->crtc_clock;
139         u32 scan_prev_time, scan_curr_time, scan_post_time;
140
141         /*
142          * To avoid the race condition where we might cross into the
143          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
144          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
145          * during the same frame.
146          */
147         do {
148                 /*
149                  * This field provides read back of the display
150                  * pipe frame time stamp. The time stamp value
151                  * is sampled at every start of vertical blank.
152                  */
153                 scan_prev_time = intel_de_read_fw(dev_priv,
154                                                   PIPE_FRMTMSTMP(crtc->pipe));
155
156                 /*
157                  * The TIMESTAMP_CTR register has the current
158                  * time stamp value.
159                  */
160                 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
161
162                 scan_post_time = intel_de_read_fw(dev_priv,
163                                                   PIPE_FRMTMSTMP(crtc->pipe));
164         } while (scan_post_time != scan_prev_time);
165
166         return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
167                                    clock), 1000 * htotal);
168 }
169
170 /*
171  * On certain encoders on certain platforms, pipe
172  * scanline register will not work to get the scanline,
173  * since the timings are driven from the PORT or issues
174  * with scanline register updates.
175  * This function will use Framestamp and current
176  * timestamp registers to calculate the scanline.
177  */
178 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
179 {
180         struct drm_vblank_crtc *vblank =
181                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
182         const struct drm_display_mode *mode = &vblank->hwmode;
183         u32 vblank_start = mode->crtc_vblank_start;
184         u32 vtotal = mode->crtc_vtotal;
185         u32 scanline;
186
187         scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
188         scanline = min(scanline, vtotal - 1);
189         scanline = (scanline + vblank_start) % vtotal;
190
191         return scanline;
192 }
193
194 /*
195  * intel_de_read_fw(), only for fast reads of display block, no need for
196  * forcewake etc.
197  */
198 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
199 {
200         struct drm_device *dev = crtc->base.dev;
201         struct drm_i915_private *dev_priv = to_i915(dev);
202         const struct drm_display_mode *mode;
203         struct drm_vblank_crtc *vblank;
204         enum pipe pipe = crtc->pipe;
205         int position, vtotal;
206
207         if (!crtc->active)
208                 return 0;
209
210         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
211         mode = &vblank->hwmode;
212
213         if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
214                 return __intel_get_crtc_scanline_from_timestamp(crtc);
215
216         vtotal = mode->crtc_vtotal;
217         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
218                 vtotal /= 2;
219
220         position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
221
222         /*
223          * On HSW, the DSL reg (0x70000) appears to return 0 if we
224          * read it just before the start of vblank.  So try it again
225          * so we don't accidentally end up spanning a vblank frame
226          * increment, causing the pipe_update_end() code to squak at us.
227          *
228          * The nature of this problem means we can't simply check the ISR
229          * bit and return the vblank start value; nor can we use the scanline
230          * debug register in the transcoder as it appears to have the same
231          * problem.  We may need to extend this to include other platforms,
232          * but so far testing only shows the problem on HSW.
233          */
234         if (HAS_DDI(dev_priv) && !position) {
235                 int i, temp;
236
237                 for (i = 0; i < 100; i++) {
238                         udelay(1);
239                         temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
240                         if (temp != position) {
241                                 position = temp;
242                                 break;
243                         }
244                 }
245         }
246
247         /*
248          * See update_scanline_offset() for the details on the
249          * scanline_offset adjustment.
250          */
251         return (position + crtc->scanline_offset) % vtotal;
252 }
253
254 int intel_crtc_scanline_to_hw(struct intel_crtc *crtc, int scanline)
255 {
256         const struct drm_vblank_crtc *vblank =
257                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
258         const struct drm_display_mode *mode = &vblank->hwmode;
259         int vtotal;
260
261         vtotal = mode->crtc_vtotal;
262         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
263                 vtotal /= 2;
264
265         return (scanline + vtotal - crtc->scanline_offset) % vtotal;
266 }
267
268 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
269                                      bool in_vblank_irq,
270                                      int *vpos, int *hpos,
271                                      ktime_t *stime, ktime_t *etime,
272                                      const struct drm_display_mode *mode)
273 {
274         struct drm_device *dev = _crtc->dev;
275         struct drm_i915_private *dev_priv = to_i915(dev);
276         struct intel_crtc *crtc = to_intel_crtc(_crtc);
277         enum pipe pipe = crtc->pipe;
278         int position;
279         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
280         unsigned long irqflags;
281         bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 ||
282                 IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 ||
283                 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
284
285         if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
286                 drm_dbg(&dev_priv->drm,
287                         "trying to get scanoutpos for disabled pipe %c\n",
288                         pipe_name(pipe));
289                 return false;
290         }
291
292         htotal = mode->crtc_htotal;
293         hsync_start = mode->crtc_hsync_start;
294         vtotal = mode->crtc_vtotal;
295         vbl_start = mode->crtc_vblank_start;
296         vbl_end = mode->crtc_vblank_end;
297
298         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
299                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
300                 vbl_end /= 2;
301                 vtotal /= 2;
302         }
303
304         /*
305          * Lock uncore.lock, as we will do multiple timing critical raw
306          * register reads, potentially with preemption disabled, so the
307          * following code must not block on uncore.lock.
308          */
309         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
310
311         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
312
313         /* Get optional system timestamp before query. */
314         if (stime)
315                 *stime = ktime_get();
316
317         if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
318                 int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
319
320                 position = __intel_get_crtc_scanline(crtc);
321
322                 /*
323                  * Already exiting vblank? If so, shift our position
324                  * so it looks like we're already apporaching the full
325                  * vblank end. This should make the generated timestamp
326                  * more or less match when the active portion will start.
327                  */
328                 if (position >= vbl_start && scanlines < position)
329                         position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
330         } else if (use_scanline_counter) {
331                 /* No obvious pixelcount register. Only query vertical
332                  * scanout position from Display scan line register.
333                  */
334                 position = __intel_get_crtc_scanline(crtc);
335         } else {
336                 /*
337                  * Have access to pixelcount since start of frame.
338                  * We can split this into vertical and horizontal
339                  * scanout position.
340                  */
341                 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
342
343                 /* convert to pixel counts */
344                 vbl_start *= htotal;
345                 vbl_end *= htotal;
346                 vtotal *= htotal;
347
348                 /*
349                  * In interlaced modes, the pixel counter counts all pixels,
350                  * so one field will have htotal more pixels. In order to avoid
351                  * the reported position from jumping backwards when the pixel
352                  * counter is beyond the length of the shorter field, just
353                  * clamp the position the length of the shorter field. This
354                  * matches how the scanline counter based position works since
355                  * the scanline counter doesn't count the two half lines.
356                  */
357                 position = min(position, vtotal - 1);
358
359                 /*
360                  * Start of vblank interrupt is triggered at start of hsync,
361                  * just prior to the first active line of vblank. However we
362                  * consider lines to start at the leading edge of horizontal
363                  * active. So, should we get here before we've crossed into
364                  * the horizontal active of the first line in vblank, we would
365                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
366                  * always add htotal-hsync_start to the current pixel position.
367                  */
368                 position = (position + htotal - hsync_start) % vtotal;
369         }
370
371         /* Get optional system timestamp after query. */
372         if (etime)
373                 *etime = ktime_get();
374
375         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
376
377         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
378
379         /*
380          * While in vblank, position will be negative
381          * counting up towards 0 at vbl_end. And outside
382          * vblank, position will be positive counting
383          * up since vbl_end.
384          */
385         if (position >= vbl_start)
386                 position -= vbl_end;
387         else
388                 position += vtotal - vbl_end;
389
390         if (use_scanline_counter) {
391                 *vpos = position;
392                 *hpos = 0;
393         } else {
394                 *vpos = position / htotal;
395                 *hpos = position - (*vpos * htotal);
396         }
397
398         return true;
399 }
400
401 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
402                                      ktime_t *vblank_time, bool in_vblank_irq)
403 {
404         return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
405                 crtc, max_error, vblank_time, in_vblank_irq,
406                 i915_get_crtc_scanoutpos);
407 }
408
409 int intel_get_crtc_scanline(struct intel_crtc *crtc)
410 {
411         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
412         unsigned long irqflags;
413         int position;
414
415         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
416         position = __intel_get_crtc_scanline(crtc);
417         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
418
419         return position;
420 }
421
422 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
423                                     enum pipe pipe)
424 {
425         i915_reg_t reg = PIPEDSL(pipe);
426         u32 line1, line2;
427
428         line1 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK;
429         msleep(5);
430         line2 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK;
431
432         return line1 != line2;
433 }
434
435 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
436 {
437         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
438         enum pipe pipe = crtc->pipe;
439
440         /* Wait for the display line to settle/start moving */
441         if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
442                 drm_err(&dev_priv->drm,
443                         "pipe %c scanline %s wait timed out\n",
444                         pipe_name(pipe), str_on_off(state));
445 }
446
447 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
448 {
449         wait_for_pipe_scanline_moving(crtc, false);
450 }
451
452 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
453 {
454         wait_for_pipe_scanline_moving(crtc, true);
455 }
456
457 static int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state)
458 {
459         struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
460         const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
461
462         /*
463          * The scanline counter increments at the leading edge of hsync.
464          *
465          * On most platforms it starts counting from vtotal-1 on the
466          * first active line. That means the scanline counter value is
467          * always one less than what we would expect. Ie. just after
468          * start of vblank, which also occurs at start of hsync (on the
469          * last active line), the scanline counter will read vblank_start-1.
470          *
471          * On gen2 the scanline counter starts counting from 1 instead
472          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
473          * to keep the value positive), instead of adding one.
474          *
475          * On HSW+ the behaviour of the scanline counter depends on the output
476          * type. For DP ports it behaves like most other platforms, but on HDMI
477          * there's an extra 1 line difference. So we need to add two instead of
478          * one to the value.
479          *
480          * On VLV/CHV DSI the scanline counter would appear to increment
481          * approx. 1/3 of a scanline before start of vblank. Unfortunately
482          * that means we can't tell whether we're in vblank or not while
483          * we're on that particular line. We must still set scanline_offset
484          * to 1 so that the vblank timestamps come out correct when we query
485          * the scanline counter from within the vblank interrupt handler.
486          * However if queried just before the start of vblank we'll get an
487          * answer that's slightly in the future.
488          */
489         if (DISPLAY_VER(i915) == 2) {
490                 int vtotal;
491
492                 vtotal = adjusted_mode->crtc_vtotal;
493                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
494                         vtotal /= 2;
495
496                 return vtotal - 1;
497         } else if (HAS_DDI(i915) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
498                 return 2;
499         } else {
500                 return 1;
501         }
502 }
503
504 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state,
505                                       bool vrr_enable)
506 {
507         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
508         struct drm_i915_private *i915 = to_i915(crtc->base.dev);
509         u8 mode_flags = crtc_state->mode_flags;
510         struct drm_display_mode adjusted_mode;
511         int vmax_vblank_start = 0;
512         unsigned long irqflags;
513
514         drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode);
515
516         if (vrr_enable) {
517                 drm_WARN_ON(&i915->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0);
518
519                 adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax;
520                 adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax;
521                 adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
522                 vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
523         } else {
524                 mode_flags &= ~I915_MODE_FLAG_VRR;
525         }
526
527         /*
528          * Belts and suspenders locking to guarantee everyone sees 100%
529          * consistent state during fastset seamless refresh rate changes.
530          *
531          * vblank_time_lock takes care of all drm_vblank.c stuff, and
532          * uncore.lock takes care of __intel_get_crtc_scanline() which
533          * may get called elsewhere as well.
534          *
535          * TODO maybe just protect everything (including
536          * __intel_get_crtc_scanline()) with vblank_time_lock?
537          * Need to audit everything to make sure it's safe.
538          */
539         spin_lock_irqsave(&i915->drm.vblank_time_lock, irqflags);
540         spin_lock(&i915->uncore.lock);
541
542         drm_calc_timestamping_constants(&crtc->base, &adjusted_mode);
543
544         crtc->vmax_vblank_start = vmax_vblank_start;
545
546         crtc->mode_flags = mode_flags;
547
548         crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state);
549
550         spin_unlock(&i915->uncore.lock);
551         spin_unlock_irqrestore(&i915->drm.vblank_time_lock, irqflags);
552 }
This page took 0.061957 seconds and 4 git commands to generate.