1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
46 #include "compression.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
55 #include "inode-item.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
67 #include "relocation.h"
72 #include "raid-stripe-tree.h"
74 struct btrfs_iget_args {
76 struct btrfs_root *root;
79 struct btrfs_dio_data {
81 struct extent_changeset *data_reserved;
82 struct btrfs_ordered_extent *ordered;
83 bool data_space_reserved;
87 struct btrfs_dio_private {
92 /* This must be last */
93 struct btrfs_bio bbio;
96 static struct bio_set btrfs_dio_bioset;
98 struct btrfs_rename_ctx {
99 /* Output field. Stores the index number of the old directory entry. */
104 * Used by data_reloc_print_warning_inode() to pass needed info for filename
105 * resolution and output of error message.
107 struct data_reloc_warn {
108 struct btrfs_path path;
109 struct btrfs_fs_info *fs_info;
110 u64 extent_item_size;
116 * For the file_extent_tree, we want to hold the inode lock when we lookup and
117 * update the disk_i_size, but lockdep will complain because our io_tree we hold
118 * the tree lock and get the inode lock when setting delalloc. These two things
119 * are unrelated, so make a class for the file_extent_tree so we don't get the
120 * two locking patterns mixed up.
122 static struct lock_class_key file_extent_tree_class;
124 static const struct inode_operations btrfs_dir_inode_operations;
125 static const struct inode_operations btrfs_symlink_inode_operations;
126 static const struct inode_operations btrfs_special_inode_operations;
127 static const struct inode_operations btrfs_file_inode_operations;
128 static const struct address_space_operations btrfs_aops;
129 static const struct file_operations btrfs_dir_file_operations;
131 static struct kmem_cache *btrfs_inode_cachep;
133 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
134 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
136 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
137 struct page *locked_page, u64 start,
138 u64 end, struct writeback_control *wbc,
140 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
141 u64 len, u64 orig_start, u64 block_start,
142 u64 block_len, u64 orig_block_len,
143 u64 ram_bytes, int compress_type,
146 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
147 u64 root, void *warn_ctx)
149 struct data_reloc_warn *warn = warn_ctx;
150 struct btrfs_fs_info *fs_info = warn->fs_info;
151 struct extent_buffer *eb;
152 struct btrfs_inode_item *inode_item;
153 struct inode_fs_paths *ipath = NULL;
154 struct btrfs_root *local_root;
155 struct btrfs_key key;
156 unsigned int nofs_flag;
160 local_root = btrfs_get_fs_root(fs_info, root, true);
161 if (IS_ERR(local_root)) {
162 ret = PTR_ERR(local_root);
166 /* This makes the path point to (inum INODE_ITEM ioff). */
168 key.type = BTRFS_INODE_ITEM_KEY;
171 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
173 btrfs_put_root(local_root);
174 btrfs_release_path(&warn->path);
178 eb = warn->path.nodes[0];
179 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
180 nlink = btrfs_inode_nlink(eb, inode_item);
181 btrfs_release_path(&warn->path);
183 nofs_flag = memalloc_nofs_save();
184 ipath = init_ipath(4096, local_root, &warn->path);
185 memalloc_nofs_restore(nofs_flag);
187 btrfs_put_root(local_root);
188 ret = PTR_ERR(ipath);
191 * -ENOMEM, not a critical error, just output an generic error
195 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
196 warn->logical, warn->mirror_num, root, inum, offset);
199 ret = paths_from_inode(inum, ipath);
204 * We deliberately ignore the bit ipath might have been too small to
205 * hold all of the paths here
207 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
209 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
210 warn->logical, warn->mirror_num, root, inum, offset,
211 fs_info->sectorsize, nlink,
212 (char *)(unsigned long)ipath->fspath->val[i]);
215 btrfs_put_root(local_root);
221 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
222 warn->logical, warn->mirror_num, root, inum, offset, ret);
229 * Do extra user-friendly error output (e.g. lookup all the affected files).
231 * Return true if we succeeded doing the backref lookup.
232 * Return false if such lookup failed, and has to fallback to the old error message.
234 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
235 const u8 *csum, const u8 *csum_expected,
238 struct btrfs_fs_info *fs_info = inode->root->fs_info;
239 struct btrfs_path path = { 0 };
240 struct btrfs_key found_key = { 0 };
241 struct extent_buffer *eb;
242 struct btrfs_extent_item *ei;
243 const u32 csum_size = fs_info->csum_size;
249 mutex_lock(&fs_info->reloc_mutex);
250 logical = btrfs_get_reloc_bg_bytenr(fs_info);
251 mutex_unlock(&fs_info->reloc_mutex);
253 if (logical == U64_MAX) {
254 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
255 btrfs_warn_rl(fs_info,
256 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
257 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
258 CSUM_FMT_VALUE(csum_size, csum),
259 CSUM_FMT_VALUE(csum_size, csum_expected),
265 btrfs_warn_rl(fs_info,
266 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
267 inode->root->root_key.objectid,
268 btrfs_ino(inode), file_off, logical,
269 CSUM_FMT_VALUE(csum_size, csum),
270 CSUM_FMT_VALUE(csum_size, csum_expected),
273 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
275 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
280 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
281 item_size = btrfs_item_size(eb, path.slots[0]);
282 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
283 unsigned long ptr = 0;
288 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
289 item_size, &ref_root,
292 btrfs_warn_rl(fs_info,
293 "failed to resolve tree backref for logical %llu: %d",
300 btrfs_warn_rl(fs_info,
301 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
303 (ref_level ? "node" : "leaf"),
304 ref_level, ref_root);
306 btrfs_release_path(&path);
308 struct btrfs_backref_walk_ctx ctx = { 0 };
309 struct data_reloc_warn reloc_warn = { 0 };
311 btrfs_release_path(&path);
313 ctx.bytenr = found_key.objectid;
314 ctx.extent_item_pos = logical - found_key.objectid;
315 ctx.fs_info = fs_info;
317 reloc_warn.logical = logical;
318 reloc_warn.extent_item_size = found_key.offset;
319 reloc_warn.mirror_num = mirror_num;
320 reloc_warn.fs_info = fs_info;
322 iterate_extent_inodes(&ctx, true,
323 data_reloc_print_warning_inode, &reloc_warn);
327 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
328 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
330 struct btrfs_root *root = inode->root;
331 const u32 csum_size = root->fs_info->csum_size;
333 /* For data reloc tree, it's better to do a backref lookup instead. */
334 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
335 return print_data_reloc_error(inode, logical_start, csum,
336 csum_expected, mirror_num);
338 /* Output without objectid, which is more meaningful */
339 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
340 btrfs_warn_rl(root->fs_info,
341 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 root->root_key.objectid, btrfs_ino(inode),
344 CSUM_FMT_VALUE(csum_size, csum),
345 CSUM_FMT_VALUE(csum_size, csum_expected),
348 btrfs_warn_rl(root->fs_info,
349 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
350 root->root_key.objectid, btrfs_ino(inode),
352 CSUM_FMT_VALUE(csum_size, csum),
353 CSUM_FMT_VALUE(csum_size, csum_expected),
359 * Lock inode i_rwsem based on arguments passed.
361 * ilock_flags can have the following bit set:
363 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
364 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
366 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
368 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
370 if (ilock_flags & BTRFS_ILOCK_SHARED) {
371 if (ilock_flags & BTRFS_ILOCK_TRY) {
372 if (!inode_trylock_shared(&inode->vfs_inode))
377 inode_lock_shared(&inode->vfs_inode);
379 if (ilock_flags & BTRFS_ILOCK_TRY) {
380 if (!inode_trylock(&inode->vfs_inode))
385 inode_lock(&inode->vfs_inode);
387 if (ilock_flags & BTRFS_ILOCK_MMAP)
388 down_write(&inode->i_mmap_lock);
393 * Unock inode i_rwsem.
395 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
396 * to decide whether the lock acquired is shared or exclusive.
398 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
400 if (ilock_flags & BTRFS_ILOCK_MMAP)
401 up_write(&inode->i_mmap_lock);
402 if (ilock_flags & BTRFS_ILOCK_SHARED)
403 inode_unlock_shared(&inode->vfs_inode);
405 inode_unlock(&inode->vfs_inode);
409 * Cleanup all submitted ordered extents in specified range to handle errors
410 * from the btrfs_run_delalloc_range() callback.
412 * NOTE: caller must ensure that when an error happens, it can not call
413 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
414 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
415 * to be released, which we want to happen only when finishing the ordered
416 * extent (btrfs_finish_ordered_io()).
418 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
419 struct page *locked_page,
420 u64 offset, u64 bytes)
422 unsigned long index = offset >> PAGE_SHIFT;
423 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
424 u64 page_start = 0, page_end = 0;
428 page_start = page_offset(locked_page);
429 page_end = page_start + PAGE_SIZE - 1;
432 while (index <= end_index) {
434 * For locked page, we will call btrfs_mark_ordered_io_finished
435 * through btrfs_mark_ordered_io_finished() on it
436 * in run_delalloc_range() for the error handling, which will
437 * clear page Ordered and run the ordered extent accounting.
439 * Here we can't just clear the Ordered bit, or
440 * btrfs_mark_ordered_io_finished() would skip the accounting
441 * for the page range, and the ordered extent will never finish.
443 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
447 page = find_get_page(inode->vfs_inode.i_mapping, index);
453 * Here we just clear all Ordered bits for every page in the
454 * range, then btrfs_mark_ordered_io_finished() will handle
455 * the ordered extent accounting for the range.
457 btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
458 page_folio(page), offset, bytes);
463 /* The locked page covers the full range, nothing needs to be done */
464 if (bytes + offset <= page_start + PAGE_SIZE)
467 * In case this page belongs to the delalloc range being
468 * instantiated then skip it, since the first page of a range is
469 * going to be properly cleaned up by the caller of
472 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
473 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
474 offset = page_offset(locked_page) + PAGE_SIZE;
478 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
481 static int btrfs_dirty_inode(struct btrfs_inode *inode);
483 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
484 struct btrfs_new_inode_args *args)
488 if (args->default_acl) {
489 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
495 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
499 if (!args->default_acl && !args->acl)
500 cache_no_acl(args->inode);
501 return btrfs_xattr_security_init(trans, args->inode, args->dir,
502 &args->dentry->d_name);
506 * this does all the hard work for inserting an inline extent into
507 * the btree. The caller should have done a btrfs_drop_extents so that
508 * no overlapping inline items exist in the btree
510 static int insert_inline_extent(struct btrfs_trans_handle *trans,
511 struct btrfs_path *path,
512 struct btrfs_inode *inode, bool extent_inserted,
513 size_t size, size_t compressed_size,
515 struct page **compressed_pages,
518 struct btrfs_root *root = inode->root;
519 struct extent_buffer *leaf;
520 struct page *page = NULL;
523 struct btrfs_file_extent_item *ei;
525 size_t cur_size = size;
528 ASSERT((compressed_size > 0 && compressed_pages) ||
529 (compressed_size == 0 && !compressed_pages));
531 if (compressed_size && compressed_pages)
532 cur_size = compressed_size;
534 if (!extent_inserted) {
535 struct btrfs_key key;
538 key.objectid = btrfs_ino(inode);
540 key.type = BTRFS_EXTENT_DATA_KEY;
542 datasize = btrfs_file_extent_calc_inline_size(cur_size);
543 ret = btrfs_insert_empty_item(trans, root, path, &key,
548 leaf = path->nodes[0];
549 ei = btrfs_item_ptr(leaf, path->slots[0],
550 struct btrfs_file_extent_item);
551 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
552 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
553 btrfs_set_file_extent_encryption(leaf, ei, 0);
554 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
555 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
556 ptr = btrfs_file_extent_inline_start(ei);
558 if (compress_type != BTRFS_COMPRESS_NONE) {
561 while (compressed_size > 0) {
562 cpage = compressed_pages[i];
563 cur_size = min_t(unsigned long, compressed_size,
566 kaddr = kmap_local_page(cpage);
567 write_extent_buffer(leaf, kaddr, ptr, cur_size);
572 compressed_size -= cur_size;
574 btrfs_set_file_extent_compression(leaf, ei,
577 page = find_get_page(inode->vfs_inode.i_mapping, 0);
578 btrfs_set_file_extent_compression(leaf, ei, 0);
579 kaddr = kmap_local_page(page);
580 write_extent_buffer(leaf, kaddr, ptr, size);
584 btrfs_mark_buffer_dirty(trans, leaf);
585 btrfs_release_path(path);
588 * We align size to sectorsize for inline extents just for simplicity
591 ret = btrfs_inode_set_file_extent_range(inode, 0,
592 ALIGN(size, root->fs_info->sectorsize));
597 * We're an inline extent, so nobody can extend the file past i_size
598 * without locking a page we already have locked.
600 * We must do any i_size and inode updates before we unlock the pages.
601 * Otherwise we could end up racing with unlink.
603 i_size = i_size_read(&inode->vfs_inode);
604 if (update_i_size && size > i_size) {
605 i_size_write(&inode->vfs_inode, size);
608 inode->disk_i_size = i_size;
616 * conditionally insert an inline extent into the file. This
617 * does the checks required to make sure the data is small enough
618 * to fit as an inline extent.
620 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
621 size_t compressed_size,
623 struct page **compressed_pages,
626 struct btrfs_drop_extents_args drop_args = { 0 };
627 struct btrfs_root *root = inode->root;
628 struct btrfs_fs_info *fs_info = root->fs_info;
629 struct btrfs_trans_handle *trans;
630 u64 data_len = (compressed_size ?: size);
632 struct btrfs_path *path;
635 * We can create an inline extent if it ends at or beyond the current
636 * i_size, is no larger than a sector (decompressed), and the (possibly
637 * compressed) data fits in a leaf and the configured maximum inline
640 if (size < i_size_read(&inode->vfs_inode) ||
641 size > fs_info->sectorsize ||
642 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
643 data_len > fs_info->max_inline)
646 path = btrfs_alloc_path();
650 trans = btrfs_join_transaction(root);
652 btrfs_free_path(path);
653 return PTR_ERR(trans);
655 trans->block_rsv = &inode->block_rsv;
657 drop_args.path = path;
659 drop_args.end = fs_info->sectorsize;
660 drop_args.drop_cache = true;
661 drop_args.replace_extent = true;
662 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
663 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
665 btrfs_abort_transaction(trans, ret);
669 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
670 size, compressed_size, compress_type,
671 compressed_pages, update_i_size);
672 if (ret && ret != -ENOSPC) {
673 btrfs_abort_transaction(trans, ret);
675 } else if (ret == -ENOSPC) {
680 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
681 ret = btrfs_update_inode(trans, inode);
682 if (ret && ret != -ENOSPC) {
683 btrfs_abort_transaction(trans, ret);
685 } else if (ret == -ENOSPC) {
690 btrfs_set_inode_full_sync(inode);
693 * Don't forget to free the reserved space, as for inlined extent
694 * it won't count as data extent, free them directly here.
695 * And at reserve time, it's always aligned to page size, so
696 * just free one page here.
698 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
699 btrfs_free_path(path);
700 btrfs_end_transaction(trans);
704 struct async_extent {
709 unsigned long nr_pages;
711 struct list_head list;
715 struct btrfs_inode *inode;
716 struct page *locked_page;
719 blk_opf_t write_flags;
720 struct list_head extents;
721 struct cgroup_subsys_state *blkcg_css;
722 struct btrfs_work work;
723 struct async_cow *async_cow;
728 struct async_chunk chunks[];
731 static noinline int add_async_extent(struct async_chunk *cow,
732 u64 start, u64 ram_size,
735 unsigned long nr_pages,
738 struct async_extent *async_extent;
740 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
743 async_extent->start = start;
744 async_extent->ram_size = ram_size;
745 async_extent->compressed_size = compressed_size;
746 async_extent->pages = pages;
747 async_extent->nr_pages = nr_pages;
748 async_extent->compress_type = compress_type;
749 list_add_tail(&async_extent->list, &cow->extents);
754 * Check if the inode needs to be submitted to compression, based on mount
755 * options, defragmentation, properties or heuristics.
757 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
760 struct btrfs_fs_info *fs_info = inode->root->fs_info;
762 if (!btrfs_inode_can_compress(inode)) {
763 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
764 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
769 * Special check for subpage.
771 * We lock the full page then run each delalloc range in the page, thus
772 * for the following case, we will hit some subpage specific corner case:
775 * | |///////| |///////|
778 * In above case, both range A and range B will try to unlock the full
779 * page [0, 64K), causing the one finished later will have page
780 * unlocked already, triggering various page lock requirement BUG_ON()s.
782 * So here we add an artificial limit that subpage compression can only
783 * if the range is fully page aligned.
785 * In theory we only need to ensure the first page is fully covered, but
786 * the tailing partial page will be locked until the full compression
787 * finishes, delaying the write of other range.
789 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
790 * first to prevent any submitted async extent to unlock the full page.
791 * By this, we can ensure for subpage case that only the last async_cow
792 * will unlock the full page.
794 if (fs_info->sectorsize < PAGE_SIZE) {
795 if (!PAGE_ALIGNED(start) ||
796 !PAGE_ALIGNED(end + 1))
801 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
804 if (inode->defrag_compress)
806 /* bad compression ratios */
807 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
809 if (btrfs_test_opt(fs_info, COMPRESS) ||
810 inode->flags & BTRFS_INODE_COMPRESS ||
811 inode->prop_compress)
812 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
816 static inline void inode_should_defrag(struct btrfs_inode *inode,
817 u64 start, u64 end, u64 num_bytes, u32 small_write)
819 /* If this is a small write inside eof, kick off a defrag */
820 if (num_bytes < small_write &&
821 (start > 0 || end + 1 < inode->disk_i_size))
822 btrfs_add_inode_defrag(NULL, inode, small_write);
826 * Work queue call back to started compression on a file and pages.
828 * This is done inside an ordered work queue, and the compression is spread
829 * across many cpus. The actual IO submission is step two, and the ordered work
830 * queue takes care of making sure that happens in the same order things were
831 * put onto the queue by writepages and friends.
833 * If this code finds it can't get good compression, it puts an entry onto the
834 * work queue to write the uncompressed bytes. This makes sure that both
835 * compressed inodes and uncompressed inodes are written in the same order that
836 * the flusher thread sent them down.
838 static void compress_file_range(struct btrfs_work *work)
840 struct async_chunk *async_chunk =
841 container_of(work, struct async_chunk, work);
842 struct btrfs_inode *inode = async_chunk->inode;
843 struct btrfs_fs_info *fs_info = inode->root->fs_info;
844 struct address_space *mapping = inode->vfs_inode.i_mapping;
845 u64 blocksize = fs_info->sectorsize;
846 u64 start = async_chunk->start;
847 u64 end = async_chunk->end;
852 unsigned long nr_pages;
853 unsigned long total_compressed = 0;
854 unsigned long total_in = 0;
857 int compress_type = fs_info->compress_type;
859 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
862 * We need to call clear_page_dirty_for_io on each page in the range.
863 * Otherwise applications with the file mmap'd can wander in and change
864 * the page contents while we are compressing them.
866 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
869 * We need to save i_size before now because it could change in between
870 * us evaluating the size and assigning it. This is because we lock and
871 * unlock the page in truncate and fallocate, and then modify the i_size
874 * The barriers are to emulate READ_ONCE, remove that once i_size_read
878 i_size = i_size_read(&inode->vfs_inode);
880 actual_end = min_t(u64, i_size, end + 1);
883 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
884 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
887 * we don't want to send crud past the end of i_size through
888 * compression, that's just a waste of CPU time. So, if the
889 * end of the file is before the start of our current
890 * requested range of bytes, we bail out to the uncompressed
891 * cleanup code that can deal with all of this.
893 * It isn't really the fastest way to fix things, but this is a
894 * very uncommon corner.
896 if (actual_end <= start)
897 goto cleanup_and_bail_uncompressed;
899 total_compressed = actual_end - start;
902 * Skip compression for a small file range(<=blocksize) that
903 * isn't an inline extent, since it doesn't save disk space at all.
905 if (total_compressed <= blocksize &&
906 (start > 0 || end + 1 < inode->disk_i_size))
907 goto cleanup_and_bail_uncompressed;
910 * For subpage case, we require full page alignment for the sector
912 * Thus we must also check against @actual_end, not just @end.
914 if (blocksize < PAGE_SIZE) {
915 if (!PAGE_ALIGNED(start) ||
916 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
917 goto cleanup_and_bail_uncompressed;
920 total_compressed = min_t(unsigned long, total_compressed,
921 BTRFS_MAX_UNCOMPRESSED);
926 * We do compression for mount -o compress and when the inode has not
927 * been flagged as NOCOMPRESS. This flag can change at any time if we
928 * discover bad compression ratios.
930 if (!inode_need_compress(inode, start, end))
931 goto cleanup_and_bail_uncompressed;
933 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
936 * Memory allocation failure is not a fatal error, we can fall
937 * back to uncompressed code.
939 goto cleanup_and_bail_uncompressed;
942 if (inode->defrag_compress)
943 compress_type = inode->defrag_compress;
944 else if (inode->prop_compress)
945 compress_type = inode->prop_compress;
947 /* Compression level is applied here. */
948 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
949 mapping, start, pages, &nr_pages, &total_in,
952 goto mark_incompressible;
955 * Zero the tail end of the last page, as we might be sending it down
958 poff = offset_in_page(total_compressed);
960 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
963 * Try to create an inline extent.
965 * If we didn't compress the entire range, try to create an uncompressed
966 * inline extent, else a compressed one.
968 * Check cow_file_range() for why we don't even try to create inline
969 * extent for the subpage case.
971 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
972 if (total_in < actual_end) {
973 ret = cow_file_range_inline(inode, actual_end, 0,
974 BTRFS_COMPRESS_NONE, NULL,
977 ret = cow_file_range_inline(inode, actual_end,
979 compress_type, pages,
983 unsigned long clear_flags = EXTENT_DELALLOC |
984 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
985 EXTENT_DO_ACCOUNTING;
988 mapping_set_error(mapping, -EIO);
991 * inline extent creation worked or returned error,
992 * we don't need to create any more async work items.
993 * Unlock and free up our temp pages.
995 * We use DO_ACCOUNTING here because we need the
996 * delalloc_release_metadata to be done _after_ we drop
997 * our outstanding extent for clearing delalloc for this
1000 extent_clear_unlock_delalloc(inode, start, end,
1004 PAGE_START_WRITEBACK |
1005 PAGE_END_WRITEBACK);
1011 * We aren't doing an inline extent. Round the compressed size up to a
1012 * block size boundary so the allocator does sane things.
1014 total_compressed = ALIGN(total_compressed, blocksize);
1017 * One last check to make sure the compression is really a win, compare
1018 * the page count read with the blocks on disk, compression must free at
1021 total_in = round_up(total_in, fs_info->sectorsize);
1022 if (total_compressed + blocksize > total_in)
1023 goto mark_incompressible;
1026 * The async work queues will take care of doing actual allocation on
1027 * disk for these compressed pages, and will submit the bios.
1029 ret = add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1030 nr_pages, compress_type);
1032 if (start + total_in < end) {
1039 mark_incompressible:
1040 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1041 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1042 cleanup_and_bail_uncompressed:
1043 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1044 BTRFS_COMPRESS_NONE);
1048 for (i = 0; i < nr_pages; i++) {
1049 WARN_ON(pages[i]->mapping);
1050 btrfs_free_compr_page(pages[i]);
1056 static void free_async_extent_pages(struct async_extent *async_extent)
1060 if (!async_extent->pages)
1063 for (i = 0; i < async_extent->nr_pages; i++) {
1064 WARN_ON(async_extent->pages[i]->mapping);
1065 btrfs_free_compr_page(async_extent->pages[i]);
1067 kfree(async_extent->pages);
1068 async_extent->nr_pages = 0;
1069 async_extent->pages = NULL;
1072 static void submit_uncompressed_range(struct btrfs_inode *inode,
1073 struct async_extent *async_extent,
1074 struct page *locked_page)
1076 u64 start = async_extent->start;
1077 u64 end = async_extent->start + async_extent->ram_size - 1;
1079 struct writeback_control wbc = {
1080 .sync_mode = WB_SYNC_ALL,
1081 .range_start = start,
1083 .no_cgroup_owner = 1,
1086 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1087 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1088 wbc_detach_inode(&wbc);
1090 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1092 const u64 page_start = page_offset(locked_page);
1094 set_page_writeback(locked_page);
1095 end_page_writeback(locked_page);
1096 btrfs_mark_ordered_io_finished(inode, locked_page,
1097 page_start, PAGE_SIZE,
1099 mapping_set_error(locked_page->mapping, ret);
1100 unlock_page(locked_page);
1105 static void submit_one_async_extent(struct async_chunk *async_chunk,
1106 struct async_extent *async_extent,
1109 struct btrfs_inode *inode = async_chunk->inode;
1110 struct extent_io_tree *io_tree = &inode->io_tree;
1111 struct btrfs_root *root = inode->root;
1112 struct btrfs_fs_info *fs_info = root->fs_info;
1113 struct btrfs_ordered_extent *ordered;
1114 struct btrfs_key ins;
1115 struct page *locked_page = NULL;
1116 struct extent_map *em;
1118 u64 start = async_extent->start;
1119 u64 end = async_extent->start + async_extent->ram_size - 1;
1121 if (async_chunk->blkcg_css)
1122 kthread_associate_blkcg(async_chunk->blkcg_css);
1125 * If async_chunk->locked_page is in the async_extent range, we need to
1128 if (async_chunk->locked_page) {
1129 u64 locked_page_start = page_offset(async_chunk->locked_page);
1130 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1132 if (!(start >= locked_page_end || end <= locked_page_start))
1133 locked_page = async_chunk->locked_page;
1135 lock_extent(io_tree, start, end, NULL);
1137 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1138 submit_uncompressed_range(inode, async_extent, locked_page);
1142 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1143 async_extent->compressed_size,
1144 async_extent->compressed_size,
1145 0, *alloc_hint, &ins, 1, 1);
1148 * Here we used to try again by going back to non-compressed
1149 * path for ENOSPC. But we can't reserve space even for
1150 * compressed size, how could it work for uncompressed size
1151 * which requires larger size? So here we directly go error
1157 /* Here we're doing allocation and writeback of the compressed pages */
1158 em = create_io_em(inode, start,
1159 async_extent->ram_size, /* len */
1160 start, /* orig_start */
1161 ins.objectid, /* block_start */
1162 ins.offset, /* block_len */
1163 ins.offset, /* orig_block_len */
1164 async_extent->ram_size, /* ram_bytes */
1165 async_extent->compress_type,
1166 BTRFS_ORDERED_COMPRESSED);
1169 goto out_free_reserve;
1171 free_extent_map(em);
1173 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
1174 async_extent->ram_size, /* num_bytes */
1175 async_extent->ram_size, /* ram_bytes */
1176 ins.objectid, /* disk_bytenr */
1177 ins.offset, /* disk_num_bytes */
1179 1 << BTRFS_ORDERED_COMPRESSED,
1180 async_extent->compress_type);
1181 if (IS_ERR(ordered)) {
1182 btrfs_drop_extent_map_range(inode, start, end, false);
1183 ret = PTR_ERR(ordered);
1184 goto out_free_reserve;
1186 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1188 /* Clear dirty, set writeback and unlock the pages. */
1189 extent_clear_unlock_delalloc(inode, start, end,
1190 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1191 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1192 btrfs_submit_compressed_write(ordered,
1193 async_extent->pages, /* compressed_pages */
1194 async_extent->nr_pages,
1195 async_chunk->write_flags, true);
1196 *alloc_hint = ins.objectid + ins.offset;
1198 if (async_chunk->blkcg_css)
1199 kthread_associate_blkcg(NULL);
1200 kfree(async_extent);
1204 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1205 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1207 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1208 extent_clear_unlock_delalloc(inode, start, end,
1209 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1210 EXTENT_DELALLOC_NEW |
1211 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1212 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1213 PAGE_END_WRITEBACK);
1214 free_async_extent_pages(async_extent);
1215 if (async_chunk->blkcg_css)
1216 kthread_associate_blkcg(NULL);
1217 btrfs_debug(fs_info,
1218 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1219 root->root_key.objectid, btrfs_ino(inode), start,
1220 async_extent->ram_size, ret);
1221 kfree(async_extent);
1224 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1227 struct extent_map_tree *em_tree = &inode->extent_tree;
1228 struct extent_map *em;
1231 read_lock(&em_tree->lock);
1232 em = search_extent_mapping(em_tree, start, num_bytes);
1235 * if block start isn't an actual block number then find the
1236 * first block in this inode and use that as a hint. If that
1237 * block is also bogus then just don't worry about it.
1239 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1240 free_extent_map(em);
1241 em = search_extent_mapping(em_tree, 0, 0);
1242 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1243 alloc_hint = em->block_start;
1245 free_extent_map(em);
1247 alloc_hint = em->block_start;
1248 free_extent_map(em);
1251 read_unlock(&em_tree->lock);
1257 * when extent_io.c finds a delayed allocation range in the file,
1258 * the call backs end up in this code. The basic idea is to
1259 * allocate extents on disk for the range, and create ordered data structs
1260 * in ram to track those extents.
1262 * locked_page is the page that writepage had locked already. We use
1263 * it to make sure we don't do extra locks or unlocks.
1265 * When this function fails, it unlocks all pages except @locked_page.
1267 * When this function successfully creates an inline extent, it returns 1 and
1268 * unlocks all pages including locked_page and starts I/O on them.
1269 * (In reality inline extents are limited to a single page, so locked_page is
1270 * the only page handled anyway).
1272 * When this function succeed and creates a normal extent, the page locking
1273 * status depends on the passed in flags:
1275 * - If @keep_locked is set, all pages are kept locked.
1276 * - Else all pages except for @locked_page are unlocked.
1278 * When a failure happens in the second or later iteration of the
1279 * while-loop, the ordered extents created in previous iterations are kept
1280 * intact. So, the caller must clean them up by calling
1281 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1284 static noinline int cow_file_range(struct btrfs_inode *inode,
1285 struct page *locked_page, u64 start, u64 end,
1287 bool keep_locked, bool no_inline)
1289 struct btrfs_root *root = inode->root;
1290 struct btrfs_fs_info *fs_info = root->fs_info;
1292 u64 orig_start = start;
1294 unsigned long ram_size;
1295 u64 cur_alloc_size = 0;
1297 u64 blocksize = fs_info->sectorsize;
1298 struct btrfs_key ins;
1299 struct extent_map *em;
1300 unsigned clear_bits;
1301 unsigned long page_ops;
1302 bool extent_reserved = false;
1305 if (btrfs_is_free_space_inode(inode)) {
1310 num_bytes = ALIGN(end - start + 1, blocksize);
1311 num_bytes = max(blocksize, num_bytes);
1312 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1314 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1317 * Due to the page size limit, for subpage we can only trigger the
1318 * writeback for the dirty sectors of page, that means data writeback
1319 * is doing more writeback than what we want.
1321 * This is especially unexpected for some call sites like fallocate,
1322 * where we only increase i_size after everything is done.
1323 * This means we can trigger inline extent even if we didn't want to.
1324 * So here we skip inline extent creation completely.
1326 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1327 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1330 /* lets try to make an inline extent */
1331 ret = cow_file_range_inline(inode, actual_end, 0,
1332 BTRFS_COMPRESS_NONE, NULL, false);
1335 * We use DO_ACCOUNTING here because we need the
1336 * delalloc_release_metadata to be run _after_ we drop
1337 * our outstanding extent for clearing delalloc for this
1340 extent_clear_unlock_delalloc(inode, start, end,
1342 EXTENT_LOCKED | EXTENT_DELALLOC |
1343 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1344 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1345 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1347 * locked_page is locked by the caller of
1348 * writepage_delalloc(), not locked by
1349 * __process_pages_contig().
1351 * We can't let __process_pages_contig() to unlock it,
1352 * as it doesn't have any subpage::writers recorded.
1354 * Here we manually unlock the page, since the caller
1355 * can't determine if it's an inline extent or a
1356 * compressed extent.
1358 unlock_page(locked_page);
1361 } else if (ret < 0) {
1366 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1369 * Relocation relies on the relocated extents to have exactly the same
1370 * size as the original extents. Normally writeback for relocation data
1371 * extents follows a NOCOW path because relocation preallocates the
1372 * extents. However, due to an operation such as scrub turning a block
1373 * group to RO mode, it may fallback to COW mode, so we must make sure
1374 * an extent allocated during COW has exactly the requested size and can
1375 * not be split into smaller extents, otherwise relocation breaks and
1376 * fails during the stage where it updates the bytenr of file extent
1379 if (btrfs_is_data_reloc_root(root))
1380 min_alloc_size = num_bytes;
1382 min_alloc_size = fs_info->sectorsize;
1384 while (num_bytes > 0) {
1385 struct btrfs_ordered_extent *ordered;
1387 cur_alloc_size = num_bytes;
1388 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1389 min_alloc_size, 0, alloc_hint,
1391 if (ret == -EAGAIN) {
1393 * btrfs_reserve_extent only returns -EAGAIN for zoned
1394 * file systems, which is an indication that there are
1395 * no active zones to allocate from at the moment.
1397 * If this is the first loop iteration, wait for at
1398 * least one zone to finish before retrying the
1399 * allocation. Otherwise ask the caller to write out
1400 * the already allocated blocks before coming back to
1401 * us, or return -ENOSPC if it can't handle retries.
1403 ASSERT(btrfs_is_zoned(fs_info));
1404 if (start == orig_start) {
1405 wait_on_bit_io(&inode->root->fs_info->flags,
1406 BTRFS_FS_NEED_ZONE_FINISH,
1407 TASK_UNINTERRUPTIBLE);
1411 *done_offset = start - 1;
1418 cur_alloc_size = ins.offset;
1419 extent_reserved = true;
1421 ram_size = ins.offset;
1422 em = create_io_em(inode, start, ins.offset, /* len */
1423 start, /* orig_start */
1424 ins.objectid, /* block_start */
1425 ins.offset, /* block_len */
1426 ins.offset, /* orig_block_len */
1427 ram_size, /* ram_bytes */
1428 BTRFS_COMPRESS_NONE, /* compress_type */
1429 BTRFS_ORDERED_REGULAR /* type */);
1434 free_extent_map(em);
1436 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1437 ram_size, ins.objectid, cur_alloc_size,
1438 0, 1 << BTRFS_ORDERED_REGULAR,
1439 BTRFS_COMPRESS_NONE);
1440 if (IS_ERR(ordered)) {
1441 ret = PTR_ERR(ordered);
1442 goto out_drop_extent_cache;
1445 if (btrfs_is_data_reloc_root(root)) {
1446 ret = btrfs_reloc_clone_csums(ordered);
1449 * Only drop cache here, and process as normal.
1451 * We must not allow extent_clear_unlock_delalloc()
1452 * at out_unlock label to free meta of this ordered
1453 * extent, as its meta should be freed by
1454 * btrfs_finish_ordered_io().
1456 * So we must continue until @start is increased to
1457 * skip current ordered extent.
1460 btrfs_drop_extent_map_range(inode, start,
1461 start + ram_size - 1,
1464 btrfs_put_ordered_extent(ordered);
1466 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1469 * We're not doing compressed IO, don't unlock the first page
1470 * (which the caller expects to stay locked), don't clear any
1471 * dirty bits and don't set any writeback bits
1473 * Do set the Ordered (Private2) bit so we know this page was
1474 * properly setup for writepage.
1476 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1477 page_ops |= PAGE_SET_ORDERED;
1479 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1481 EXTENT_LOCKED | EXTENT_DELALLOC,
1483 if (num_bytes < cur_alloc_size)
1486 num_bytes -= cur_alloc_size;
1487 alloc_hint = ins.objectid + ins.offset;
1488 start += cur_alloc_size;
1489 extent_reserved = false;
1492 * btrfs_reloc_clone_csums() error, since start is increased
1493 * extent_clear_unlock_delalloc() at out_unlock label won't
1494 * free metadata of current ordered extent, we're OK to exit.
1504 out_drop_extent_cache:
1505 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1507 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1508 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1511 * Now, we have three regions to clean up:
1513 * |-------(1)----|---(2)---|-------------(3)----------|
1514 * `- orig_start `- start `- start + cur_alloc_size `- end
1516 * We process each region below.
1519 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1520 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1521 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1524 * For the range (1). We have already instantiated the ordered extents
1525 * for this region. They are cleaned up by
1526 * btrfs_cleanup_ordered_extents() in e.g,
1527 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1528 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1529 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1532 * However, in case of @keep_locked, we still need to unlock the pages
1533 * (except @locked_page) to ensure all the pages are unlocked.
1535 if (keep_locked && orig_start < start) {
1537 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1538 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1539 locked_page, 0, page_ops);
1543 * For the range (2). If we reserved an extent for our delalloc range
1544 * (or a subrange) and failed to create the respective ordered extent,
1545 * then it means that when we reserved the extent we decremented the
1546 * extent's size from the data space_info's bytes_may_use counter and
1547 * incremented the space_info's bytes_reserved counter by the same
1548 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1549 * to decrement again the data space_info's bytes_may_use counter,
1550 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1552 if (extent_reserved) {
1553 extent_clear_unlock_delalloc(inode, start,
1554 start + cur_alloc_size - 1,
1558 start += cur_alloc_size;
1562 * For the range (3). We never touched the region. In addition to the
1563 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1564 * space_info's bytes_may_use counter, reserved in
1565 * btrfs_check_data_free_space().
1568 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1569 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1570 clear_bits, page_ops);
1576 * Phase two of compressed writeback. This is the ordered portion of the code,
1577 * which only gets called in the order the work was queued. We walk all the
1578 * async extents created by compress_file_range and send them down to the disk.
1580 * If called with @do_free == true then it'll try to finish the work and free
1581 * the work struct eventually.
1583 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1585 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1587 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1588 struct async_extent *async_extent;
1589 unsigned long nr_pages;
1593 struct async_chunk *async_chunk;
1594 struct async_cow *async_cow;
1596 async_chunk = container_of(work, struct async_chunk, work);
1597 btrfs_add_delayed_iput(async_chunk->inode);
1598 if (async_chunk->blkcg_css)
1599 css_put(async_chunk->blkcg_css);
1601 async_cow = async_chunk->async_cow;
1602 if (atomic_dec_and_test(&async_cow->num_chunks))
1607 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1610 while (!list_empty(&async_chunk->extents)) {
1611 async_extent = list_entry(async_chunk->extents.next,
1612 struct async_extent, list);
1613 list_del(&async_extent->list);
1614 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1617 /* atomic_sub_return implies a barrier */
1618 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1620 cond_wake_up_nomb(&fs_info->async_submit_wait);
1623 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1624 struct page *locked_page, u64 start,
1625 u64 end, struct writeback_control *wbc)
1627 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1628 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1629 struct async_cow *ctx;
1630 struct async_chunk *async_chunk;
1631 unsigned long nr_pages;
1632 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1635 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1637 nofs_flag = memalloc_nofs_save();
1638 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1639 memalloc_nofs_restore(nofs_flag);
1643 unlock_extent(&inode->io_tree, start, end, NULL);
1644 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1646 async_chunk = ctx->chunks;
1647 atomic_set(&ctx->num_chunks, num_chunks);
1649 for (i = 0; i < num_chunks; i++) {
1650 u64 cur_end = min(end, start + SZ_512K - 1);
1653 * igrab is called higher up in the call chain, take only the
1654 * lightweight reference for the callback lifetime
1656 ihold(&inode->vfs_inode);
1657 async_chunk[i].async_cow = ctx;
1658 async_chunk[i].inode = inode;
1659 async_chunk[i].start = start;
1660 async_chunk[i].end = cur_end;
1661 async_chunk[i].write_flags = write_flags;
1662 INIT_LIST_HEAD(&async_chunk[i].extents);
1665 * The locked_page comes all the way from writepage and its
1666 * the original page we were actually given. As we spread
1667 * this large delalloc region across multiple async_chunk
1668 * structs, only the first struct needs a pointer to locked_page
1670 * This way we don't need racey decisions about who is supposed
1675 * Depending on the compressibility, the pages might or
1676 * might not go through async. We want all of them to
1677 * be accounted against wbc once. Let's do it here
1678 * before the paths diverge. wbc accounting is used
1679 * only for foreign writeback detection and doesn't
1680 * need full accuracy. Just account the whole thing
1681 * against the first page.
1683 wbc_account_cgroup_owner(wbc, locked_page,
1685 async_chunk[i].locked_page = locked_page;
1688 async_chunk[i].locked_page = NULL;
1691 if (blkcg_css != blkcg_root_css) {
1693 async_chunk[i].blkcg_css = blkcg_css;
1694 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1696 async_chunk[i].blkcg_css = NULL;
1699 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1700 submit_compressed_extents);
1702 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1703 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1705 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1707 start = cur_end + 1;
1713 * Run the delalloc range from start to end, and write back any dirty pages
1714 * covered by the range.
1716 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1717 struct page *locked_page, u64 start,
1718 u64 end, struct writeback_control *wbc,
1721 u64 done_offset = end;
1724 while (start <= end) {
1725 ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1729 extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1730 done_offset, wbc, pages_dirty);
1731 start = done_offset + 1;
1737 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1738 u64 bytenr, u64 num_bytes, bool nowait)
1740 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1741 struct btrfs_ordered_sum *sums;
1745 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1747 if (ret == 0 && list_empty(&list))
1750 while (!list_empty(&list)) {
1751 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1752 list_del(&sums->list);
1760 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1761 const u64 start, const u64 end)
1763 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1764 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1765 const u64 range_bytes = end + 1 - start;
1766 struct extent_io_tree *io_tree = &inode->io_tree;
1767 u64 range_start = start;
1772 * If EXTENT_NORESERVE is set it means that when the buffered write was
1773 * made we had not enough available data space and therefore we did not
1774 * reserve data space for it, since we though we could do NOCOW for the
1775 * respective file range (either there is prealloc extent or the inode
1776 * has the NOCOW bit set).
1778 * However when we need to fallback to COW mode (because for example the
1779 * block group for the corresponding extent was turned to RO mode by a
1780 * scrub or relocation) we need to do the following:
1782 * 1) We increment the bytes_may_use counter of the data space info.
1783 * If COW succeeds, it allocates a new data extent and after doing
1784 * that it decrements the space info's bytes_may_use counter and
1785 * increments its bytes_reserved counter by the same amount (we do
1786 * this at btrfs_add_reserved_bytes()). So we need to increment the
1787 * bytes_may_use counter to compensate (when space is reserved at
1788 * buffered write time, the bytes_may_use counter is incremented);
1790 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1791 * that if the COW path fails for any reason, it decrements (through
1792 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1793 * data space info, which we incremented in the step above.
1795 * If we need to fallback to cow and the inode corresponds to a free
1796 * space cache inode or an inode of the data relocation tree, we must
1797 * also increment bytes_may_use of the data space_info for the same
1798 * reason. Space caches and relocated data extents always get a prealloc
1799 * extent for them, however scrub or balance may have set the block
1800 * group that contains that extent to RO mode and therefore force COW
1801 * when starting writeback.
1803 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1804 EXTENT_NORESERVE, 0, NULL);
1805 if (count > 0 || is_space_ino || is_reloc_ino) {
1807 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1808 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1810 if (is_space_ino || is_reloc_ino)
1811 bytes = range_bytes;
1813 spin_lock(&sinfo->lock);
1814 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1815 spin_unlock(&sinfo->lock);
1818 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1823 * Don't try to create inline extents, as a mix of inline extent that
1824 * is written out and unlocked directly and a normal NOCOW extent
1827 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1832 struct can_nocow_file_extent_args {
1835 /* Start file offset of the range we want to NOCOW. */
1837 /* End file offset (inclusive) of the range we want to NOCOW. */
1839 bool writeback_path;
1842 * Free the path passed to can_nocow_file_extent() once it's not needed
1847 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1852 /* Number of bytes that can be written to in NOCOW mode. */
1857 * Check if we can NOCOW the file extent that the path points to.
1858 * This function may return with the path released, so the caller should check
1859 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1861 * Returns: < 0 on error
1862 * 0 if we can not NOCOW
1865 static int can_nocow_file_extent(struct btrfs_path *path,
1866 struct btrfs_key *key,
1867 struct btrfs_inode *inode,
1868 struct can_nocow_file_extent_args *args)
1870 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1871 struct extent_buffer *leaf = path->nodes[0];
1872 struct btrfs_root *root = inode->root;
1873 struct btrfs_file_extent_item *fi;
1878 bool nowait = path->nowait;
1880 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1881 extent_type = btrfs_file_extent_type(leaf, fi);
1883 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1886 /* Can't access these fields unless we know it's not an inline extent. */
1887 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1888 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1889 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1891 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1892 extent_type == BTRFS_FILE_EXTENT_REG)
1896 * If the extent was created before the generation where the last snapshot
1897 * for its subvolume was created, then this implies the extent is shared,
1898 * hence we must COW.
1900 if (!args->strict &&
1901 btrfs_file_extent_generation(leaf, fi) <=
1902 btrfs_root_last_snapshot(&root->root_item))
1905 /* An explicit hole, must COW. */
1906 if (args->disk_bytenr == 0)
1909 /* Compressed/encrypted/encoded extents must be COWed. */
1910 if (btrfs_file_extent_compression(leaf, fi) ||
1911 btrfs_file_extent_encryption(leaf, fi) ||
1912 btrfs_file_extent_other_encoding(leaf, fi))
1915 extent_end = btrfs_file_extent_end(path);
1918 * The following checks can be expensive, as they need to take other
1919 * locks and do btree or rbtree searches, so release the path to avoid
1920 * blocking other tasks for too long.
1922 btrfs_release_path(path);
1924 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1925 key->offset - args->extent_offset,
1926 args->disk_bytenr, args->strict, path);
1927 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1931 if (args->free_path) {
1933 * We don't need the path anymore, plus through the
1934 * csum_exist_in_range() call below we will end up allocating
1935 * another path. So free the path to avoid unnecessary extra
1938 btrfs_free_path(path);
1942 /* If there are pending snapshots for this root, we must COW. */
1943 if (args->writeback_path && !is_freespace_inode &&
1944 atomic_read(&root->snapshot_force_cow))
1947 args->disk_bytenr += args->extent_offset;
1948 args->disk_bytenr += args->start - key->offset;
1949 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1952 * Force COW if csums exist in the range. This ensures that csums for a
1953 * given extent are either valid or do not exist.
1955 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1957 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1963 if (args->free_path && path)
1964 btrfs_free_path(path);
1966 return ret < 0 ? ret : can_nocow;
1970 * when nowcow writeback call back. This checks for snapshots or COW copies
1971 * of the extents that exist in the file, and COWs the file as required.
1973 * If no cow copies or snapshots exist, we write directly to the existing
1976 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1977 struct page *locked_page,
1978 const u64 start, const u64 end)
1980 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1981 struct btrfs_root *root = inode->root;
1982 struct btrfs_path *path;
1983 u64 cow_start = (u64)-1;
1984 u64 cur_offset = start;
1986 bool check_prev = true;
1987 u64 ino = btrfs_ino(inode);
1988 struct can_nocow_file_extent_args nocow_args = { 0 };
1991 * Normally on a zoned device we're only doing COW writes, but in case
1992 * of relocation on a zoned filesystem serializes I/O so that we're only
1993 * writing sequentially and can end up here as well.
1995 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1997 path = btrfs_alloc_path();
2003 nocow_args.end = end;
2004 nocow_args.writeback_path = true;
2007 struct btrfs_block_group *nocow_bg = NULL;
2008 struct btrfs_ordered_extent *ordered;
2009 struct btrfs_key found_key;
2010 struct btrfs_file_extent_item *fi;
2011 struct extent_buffer *leaf;
2018 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2024 * If there is no extent for our range when doing the initial
2025 * search, then go back to the previous slot as it will be the
2026 * one containing the search offset
2028 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2029 leaf = path->nodes[0];
2030 btrfs_item_key_to_cpu(leaf, &found_key,
2031 path->slots[0] - 1);
2032 if (found_key.objectid == ino &&
2033 found_key.type == BTRFS_EXTENT_DATA_KEY)
2038 /* Go to next leaf if we have exhausted the current one */
2039 leaf = path->nodes[0];
2040 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2041 ret = btrfs_next_leaf(root, path);
2046 leaf = path->nodes[0];
2049 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2051 /* Didn't find anything for our INO */
2052 if (found_key.objectid > ino)
2055 * Keep searching until we find an EXTENT_ITEM or there are no
2056 * more extents for this inode
2058 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2059 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2064 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2065 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2066 found_key.offset > end)
2070 * If the found extent starts after requested offset, then
2071 * adjust extent_end to be right before this extent begins
2073 if (found_key.offset > cur_offset) {
2074 extent_end = found_key.offset;
2080 * Found extent which begins before our range and potentially
2083 fi = btrfs_item_ptr(leaf, path->slots[0],
2084 struct btrfs_file_extent_item);
2085 extent_type = btrfs_file_extent_type(leaf, fi);
2086 /* If this is triggered then we have a memory corruption. */
2087 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2088 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2092 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2093 extent_end = btrfs_file_extent_end(path);
2096 * If the extent we got ends before our current offset, skip to
2099 if (extent_end <= cur_offset) {
2104 nocow_args.start = cur_offset;
2105 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2112 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2116 * If we can't perform NOCOW writeback for the range,
2117 * then record the beginning of the range that needs to
2118 * be COWed. It will be written out before the next
2119 * NOCOW range if we find one, or when exiting this
2122 if (cow_start == (u64)-1)
2123 cow_start = cur_offset;
2124 cur_offset = extent_end;
2125 if (cur_offset > end)
2127 if (!path->nodes[0])
2134 * COW range from cow_start to found_key.offset - 1. As the key
2135 * will contain the beginning of the first extent that can be
2136 * NOCOW, following one which needs to be COW'ed
2138 if (cow_start != (u64)-1) {
2139 ret = fallback_to_cow(inode, locked_page,
2140 cow_start, found_key.offset - 1);
2141 cow_start = (u64)-1;
2143 btrfs_dec_nocow_writers(nocow_bg);
2148 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2149 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2151 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2152 struct extent_map *em;
2154 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2156 nocow_args.disk_bytenr, /* block_start */
2157 nocow_args.num_bytes, /* block_len */
2158 nocow_args.disk_num_bytes, /* orig_block_len */
2159 ram_bytes, BTRFS_COMPRESS_NONE,
2160 BTRFS_ORDERED_PREALLOC);
2162 btrfs_dec_nocow_writers(nocow_bg);
2166 free_extent_map(em);
2169 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2170 nocow_args.num_bytes, nocow_args.num_bytes,
2171 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2173 ? (1 << BTRFS_ORDERED_PREALLOC)
2174 : (1 << BTRFS_ORDERED_NOCOW),
2175 BTRFS_COMPRESS_NONE);
2176 btrfs_dec_nocow_writers(nocow_bg);
2177 if (IS_ERR(ordered)) {
2179 btrfs_drop_extent_map_range(inode, cur_offset,
2182 ret = PTR_ERR(ordered);
2186 if (btrfs_is_data_reloc_root(root))
2188 * Error handled later, as we must prevent
2189 * extent_clear_unlock_delalloc() in error handler
2190 * from freeing metadata of created ordered extent.
2192 ret = btrfs_reloc_clone_csums(ordered);
2193 btrfs_put_ordered_extent(ordered);
2195 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2196 locked_page, EXTENT_LOCKED |
2198 EXTENT_CLEAR_DATA_RESV,
2199 PAGE_UNLOCK | PAGE_SET_ORDERED);
2201 cur_offset = extent_end;
2204 * btrfs_reloc_clone_csums() error, now we're OK to call error
2205 * handler, as metadata for created ordered extent will only
2206 * be freed by btrfs_finish_ordered_io().
2210 if (cur_offset > end)
2213 btrfs_release_path(path);
2215 if (cur_offset <= end && cow_start == (u64)-1)
2216 cow_start = cur_offset;
2218 if (cow_start != (u64)-1) {
2220 ret = fallback_to_cow(inode, locked_page, cow_start, end);
2221 cow_start = (u64)-1;
2226 btrfs_free_path(path);
2231 * If an error happened while a COW region is outstanding, cur_offset
2232 * needs to be reset to cow_start to ensure the COW region is unlocked
2235 if (cow_start != (u64)-1)
2236 cur_offset = cow_start;
2237 if (cur_offset < end)
2238 extent_clear_unlock_delalloc(inode, cur_offset, end,
2239 locked_page, EXTENT_LOCKED |
2240 EXTENT_DELALLOC | EXTENT_DEFRAG |
2241 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2242 PAGE_START_WRITEBACK |
2243 PAGE_END_WRITEBACK);
2244 btrfs_free_path(path);
2248 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2250 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2251 if (inode->defrag_bytes &&
2252 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2260 * Function to process delayed allocation (create CoW) for ranges which are
2261 * being touched for the first time.
2263 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2264 u64 start, u64 end, struct writeback_control *wbc)
2266 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2270 * The range must cover part of the @locked_page, or a return of 1
2271 * can confuse the caller.
2273 ASSERT(!(end <= page_offset(locked_page) ||
2274 start >= page_offset(locked_page) + PAGE_SIZE));
2276 if (should_nocow(inode, start, end)) {
2277 ret = run_delalloc_nocow(inode, locked_page, start, end);
2281 if (btrfs_inode_can_compress(inode) &&
2282 inode_need_compress(inode, start, end) &&
2283 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2287 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2290 ret = cow_file_range(inode, locked_page, start, end, NULL,
2295 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2300 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2301 struct extent_state *orig, u64 split)
2303 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2306 lockdep_assert_held(&inode->io_tree.lock);
2308 /* not delalloc, ignore it */
2309 if (!(orig->state & EXTENT_DELALLOC))
2312 size = orig->end - orig->start + 1;
2313 if (size > fs_info->max_extent_size) {
2318 * See the explanation in btrfs_merge_delalloc_extent, the same
2319 * applies here, just in reverse.
2321 new_size = orig->end - split + 1;
2322 num_extents = count_max_extents(fs_info, new_size);
2323 new_size = split - orig->start;
2324 num_extents += count_max_extents(fs_info, new_size);
2325 if (count_max_extents(fs_info, size) >= num_extents)
2329 spin_lock(&inode->lock);
2330 btrfs_mod_outstanding_extents(inode, 1);
2331 spin_unlock(&inode->lock);
2335 * Handle merged delayed allocation extents so we can keep track of new extents
2336 * that are just merged onto old extents, such as when we are doing sequential
2337 * writes, so we can properly account for the metadata space we'll need.
2339 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2340 struct extent_state *other)
2342 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2343 u64 new_size, old_size;
2346 lockdep_assert_held(&inode->io_tree.lock);
2348 /* not delalloc, ignore it */
2349 if (!(other->state & EXTENT_DELALLOC))
2352 if (new->start > other->start)
2353 new_size = new->end - other->start + 1;
2355 new_size = other->end - new->start + 1;
2357 /* we're not bigger than the max, unreserve the space and go */
2358 if (new_size <= fs_info->max_extent_size) {
2359 spin_lock(&inode->lock);
2360 btrfs_mod_outstanding_extents(inode, -1);
2361 spin_unlock(&inode->lock);
2366 * We have to add up either side to figure out how many extents were
2367 * accounted for before we merged into one big extent. If the number of
2368 * extents we accounted for is <= the amount we need for the new range
2369 * then we can return, otherwise drop. Think of it like this
2373 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2374 * need 2 outstanding extents, on one side we have 1 and the other side
2375 * we have 1 so they are == and we can return. But in this case
2377 * [MAX_SIZE+4k][MAX_SIZE+4k]
2379 * Each range on their own accounts for 2 extents, but merged together
2380 * they are only 3 extents worth of accounting, so we need to drop in
2383 old_size = other->end - other->start + 1;
2384 num_extents = count_max_extents(fs_info, old_size);
2385 old_size = new->end - new->start + 1;
2386 num_extents += count_max_extents(fs_info, old_size);
2387 if (count_max_extents(fs_info, new_size) >= num_extents)
2390 spin_lock(&inode->lock);
2391 btrfs_mod_outstanding_extents(inode, -1);
2392 spin_unlock(&inode->lock);
2395 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2397 struct btrfs_root *root = inode->root;
2398 struct btrfs_fs_info *fs_info = root->fs_info;
2400 spin_lock(&root->delalloc_lock);
2401 ASSERT(list_empty(&inode->delalloc_inodes));
2402 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2403 root->nr_delalloc_inodes++;
2404 if (root->nr_delalloc_inodes == 1) {
2405 spin_lock(&fs_info->delalloc_root_lock);
2406 ASSERT(list_empty(&root->delalloc_root));
2407 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2408 spin_unlock(&fs_info->delalloc_root_lock);
2410 spin_unlock(&root->delalloc_lock);
2413 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2415 struct btrfs_root *root = inode->root;
2416 struct btrfs_fs_info *fs_info = root->fs_info;
2418 lockdep_assert_held(&root->delalloc_lock);
2421 * We may be called after the inode was already deleted from the list,
2422 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2423 * and then later through btrfs_clear_delalloc_extent() while the inode
2424 * still has ->delalloc_bytes > 0.
2426 if (!list_empty(&inode->delalloc_inodes)) {
2427 list_del_init(&inode->delalloc_inodes);
2428 root->nr_delalloc_inodes--;
2429 if (!root->nr_delalloc_inodes) {
2430 ASSERT(list_empty(&root->delalloc_inodes));
2431 spin_lock(&fs_info->delalloc_root_lock);
2432 ASSERT(!list_empty(&root->delalloc_root));
2433 list_del_init(&root->delalloc_root);
2434 spin_unlock(&fs_info->delalloc_root_lock);
2440 * Properly track delayed allocation bytes in the inode and to maintain the
2441 * list of inodes that have pending delalloc work to be done.
2443 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2446 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2448 lockdep_assert_held(&inode->io_tree.lock);
2450 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2453 * set_bit and clear bit hooks normally require _irqsave/restore
2454 * but in this case, we are only testing for the DELALLOC
2455 * bit, which is only set or cleared with irqs on
2457 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2458 u64 len = state->end + 1 - state->start;
2459 u64 prev_delalloc_bytes;
2460 u32 num_extents = count_max_extents(fs_info, len);
2462 spin_lock(&inode->lock);
2463 btrfs_mod_outstanding_extents(inode, num_extents);
2464 spin_unlock(&inode->lock);
2466 /* For sanity tests */
2467 if (btrfs_is_testing(fs_info))
2470 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2471 fs_info->delalloc_batch);
2472 spin_lock(&inode->lock);
2473 prev_delalloc_bytes = inode->delalloc_bytes;
2474 inode->delalloc_bytes += len;
2475 if (bits & EXTENT_DEFRAG)
2476 inode->defrag_bytes += len;
2477 spin_unlock(&inode->lock);
2480 * We don't need to be under the protection of the inode's lock,
2481 * because we are called while holding the inode's io_tree lock
2482 * and are therefore protected against concurrent calls of this
2483 * function and btrfs_clear_delalloc_extent().
2485 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2486 btrfs_add_delalloc_inode(inode);
2489 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2490 (bits & EXTENT_DELALLOC_NEW)) {
2491 spin_lock(&inode->lock);
2492 inode->new_delalloc_bytes += state->end + 1 - state->start;
2493 spin_unlock(&inode->lock);
2498 * Once a range is no longer delalloc this function ensures that proper
2499 * accounting happens.
2501 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2502 struct extent_state *state, u32 bits)
2504 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2505 u64 len = state->end + 1 - state->start;
2506 u32 num_extents = count_max_extents(fs_info, len);
2508 lockdep_assert_held(&inode->io_tree.lock);
2510 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2511 spin_lock(&inode->lock);
2512 inode->defrag_bytes -= len;
2513 spin_unlock(&inode->lock);
2517 * set_bit and clear bit hooks normally require _irqsave/restore
2518 * but in this case, we are only testing for the DELALLOC
2519 * bit, which is only set or cleared with irqs on
2521 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2522 struct btrfs_root *root = inode->root;
2523 u64 new_delalloc_bytes;
2525 spin_lock(&inode->lock);
2526 btrfs_mod_outstanding_extents(inode, -num_extents);
2527 spin_unlock(&inode->lock);
2530 * We don't reserve metadata space for space cache inodes so we
2531 * don't need to call delalloc_release_metadata if there is an
2534 if (bits & EXTENT_CLEAR_META_RESV &&
2535 root != fs_info->tree_root)
2536 btrfs_delalloc_release_metadata(inode, len, false);
2538 /* For sanity tests. */
2539 if (btrfs_is_testing(fs_info))
2542 if (!btrfs_is_data_reloc_root(root) &&
2543 !btrfs_is_free_space_inode(inode) &&
2544 !(state->state & EXTENT_NORESERVE) &&
2545 (bits & EXTENT_CLEAR_DATA_RESV))
2546 btrfs_free_reserved_data_space_noquota(fs_info, len);
2548 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2549 fs_info->delalloc_batch);
2550 spin_lock(&inode->lock);
2551 inode->delalloc_bytes -= len;
2552 new_delalloc_bytes = inode->delalloc_bytes;
2553 spin_unlock(&inode->lock);
2556 * We don't need to be under the protection of the inode's lock,
2557 * because we are called while holding the inode's io_tree lock
2558 * and are therefore protected against concurrent calls of this
2559 * function and btrfs_set_delalloc_extent().
2561 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2562 spin_lock(&root->delalloc_lock);
2563 btrfs_del_delalloc_inode(inode);
2564 spin_unlock(&root->delalloc_lock);
2568 if ((state->state & EXTENT_DELALLOC_NEW) &&
2569 (bits & EXTENT_DELALLOC_NEW)) {
2570 spin_lock(&inode->lock);
2571 ASSERT(inode->new_delalloc_bytes >= len);
2572 inode->new_delalloc_bytes -= len;
2573 if (bits & EXTENT_ADD_INODE_BYTES)
2574 inode_add_bytes(&inode->vfs_inode, len);
2575 spin_unlock(&inode->lock);
2579 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2580 struct btrfs_ordered_extent *ordered)
2582 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2583 u64 len = bbio->bio.bi_iter.bi_size;
2584 struct btrfs_ordered_extent *new;
2587 /* Must always be called for the beginning of an ordered extent. */
2588 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2591 /* No need to split if the ordered extent covers the entire bio. */
2592 if (ordered->disk_num_bytes == len) {
2593 refcount_inc(&ordered->refs);
2594 bbio->ordered = ordered;
2599 * Don't split the extent_map for NOCOW extents, as we're writing into
2600 * a pre-existing one.
2602 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2603 ret = split_extent_map(bbio->inode, bbio->file_offset,
2604 ordered->num_bytes, len,
2605 ordered->disk_bytenr);
2610 new = btrfs_split_ordered_extent(ordered, len);
2612 return PTR_ERR(new);
2613 bbio->ordered = new;
2618 * given a list of ordered sums record them in the inode. This happens
2619 * at IO completion time based on sums calculated at bio submission time.
2621 static int add_pending_csums(struct btrfs_trans_handle *trans,
2622 struct list_head *list)
2624 struct btrfs_ordered_sum *sum;
2625 struct btrfs_root *csum_root = NULL;
2628 list_for_each_entry(sum, list, list) {
2629 trans->adding_csums = true;
2631 csum_root = btrfs_csum_root(trans->fs_info,
2633 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2634 trans->adding_csums = false;
2641 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2644 struct extent_state **cached_state)
2646 u64 search_start = start;
2647 const u64 end = start + len - 1;
2649 while (search_start < end) {
2650 const u64 search_len = end - search_start + 1;
2651 struct extent_map *em;
2655 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2659 if (em->block_start != EXTENT_MAP_HOLE)
2663 if (em->start < search_start)
2664 em_len -= search_start - em->start;
2665 if (em_len > search_len)
2666 em_len = search_len;
2668 ret = set_extent_bit(&inode->io_tree, search_start,
2669 search_start + em_len - 1,
2670 EXTENT_DELALLOC_NEW, cached_state);
2672 search_start = extent_map_end(em);
2673 free_extent_map(em);
2680 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2681 unsigned int extra_bits,
2682 struct extent_state **cached_state)
2684 WARN_ON(PAGE_ALIGNED(end));
2686 if (start >= i_size_read(&inode->vfs_inode) &&
2687 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2689 * There can't be any extents following eof in this case so just
2690 * set the delalloc new bit for the range directly.
2692 extra_bits |= EXTENT_DELALLOC_NEW;
2696 ret = btrfs_find_new_delalloc_bytes(inode, start,
2703 return set_extent_bit(&inode->io_tree, start, end,
2704 EXTENT_DELALLOC | extra_bits, cached_state);
2707 /* see btrfs_writepage_start_hook for details on why this is required */
2708 struct btrfs_writepage_fixup {
2710 struct btrfs_inode *inode;
2711 struct btrfs_work work;
2714 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2716 struct btrfs_writepage_fixup *fixup =
2717 container_of(work, struct btrfs_writepage_fixup, work);
2718 struct btrfs_ordered_extent *ordered;
2719 struct extent_state *cached_state = NULL;
2720 struct extent_changeset *data_reserved = NULL;
2721 struct page *page = fixup->page;
2722 struct btrfs_inode *inode = fixup->inode;
2723 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2724 u64 page_start = page_offset(page);
2725 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2727 bool free_delalloc_space = true;
2730 * This is similar to page_mkwrite, we need to reserve the space before
2731 * we take the page lock.
2733 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2739 * Before we queued this fixup, we took a reference on the page.
2740 * page->mapping may go NULL, but it shouldn't be moved to a different
2743 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2745 * Unfortunately this is a little tricky, either
2747 * 1) We got here and our page had already been dealt with and
2748 * we reserved our space, thus ret == 0, so we need to just
2749 * drop our space reservation and bail. This can happen the
2750 * first time we come into the fixup worker, or could happen
2751 * while waiting for the ordered extent.
2752 * 2) Our page was already dealt with, but we happened to get an
2753 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2754 * this case we obviously don't have anything to release, but
2755 * because the page was already dealt with we don't want to
2756 * mark the page with an error, so make sure we're resetting
2757 * ret to 0. This is why we have this check _before_ the ret
2758 * check, because we do not want to have a surprise ENOSPC
2759 * when the page was already properly dealt with.
2762 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2763 btrfs_delalloc_release_space(inode, data_reserved,
2764 page_start, PAGE_SIZE,
2772 * We can't mess with the page state unless it is locked, so now that
2773 * it is locked bail if we failed to make our space reservation.
2778 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2780 /* already ordered? We're done */
2781 if (PageOrdered(page))
2784 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2786 unlock_extent(&inode->io_tree, page_start, page_end,
2789 btrfs_start_ordered_extent(ordered);
2790 btrfs_put_ordered_extent(ordered);
2794 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2800 * Everything went as planned, we're now the owner of a dirty page with
2801 * delayed allocation bits set and space reserved for our COW
2804 * The page was dirty when we started, nothing should have cleaned it.
2806 BUG_ON(!PageDirty(page));
2807 free_delalloc_space = false;
2809 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2810 if (free_delalloc_space)
2811 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2813 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2817 * We hit ENOSPC or other errors. Update the mapping and page
2818 * to reflect the errors and clean the page.
2820 mapping_set_error(page->mapping, ret);
2821 btrfs_mark_ordered_io_finished(inode, page, page_start,
2823 clear_page_dirty_for_io(page);
2825 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
2829 extent_changeset_free(data_reserved);
2831 * As a precaution, do a delayed iput in case it would be the last iput
2832 * that could need flushing space. Recursing back to fixup worker would
2835 btrfs_add_delayed_iput(inode);
2839 * There are a few paths in the higher layers of the kernel that directly
2840 * set the page dirty bit without asking the filesystem if it is a
2841 * good idea. This causes problems because we want to make sure COW
2842 * properly happens and the data=ordered rules are followed.
2844 * In our case any range that doesn't have the ORDERED bit set
2845 * hasn't been properly setup for IO. We kick off an async process
2846 * to fix it up. The async helper will wait for ordered extents, set
2847 * the delalloc bit and make it safe to write the page.
2849 int btrfs_writepage_cow_fixup(struct page *page)
2851 struct inode *inode = page->mapping->host;
2852 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2853 struct btrfs_writepage_fixup *fixup;
2855 /* This page has ordered extent covering it already */
2856 if (PageOrdered(page))
2860 * PageChecked is set below when we create a fixup worker for this page,
2861 * don't try to create another one if we're already PageChecked()
2863 * The extent_io writepage code will redirty the page if we send back
2866 if (PageChecked(page))
2869 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2874 * We are already holding a reference to this inode from
2875 * write_cache_pages. We need to hold it because the space reservation
2876 * takes place outside of the page lock, and we can't trust
2877 * page->mapping outside of the page lock.
2880 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
2882 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2884 fixup->inode = BTRFS_I(inode);
2885 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2890 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2891 struct btrfs_inode *inode, u64 file_pos,
2892 struct btrfs_file_extent_item *stack_fi,
2893 const bool update_inode_bytes,
2894 u64 qgroup_reserved)
2896 struct btrfs_root *root = inode->root;
2897 const u64 sectorsize = root->fs_info->sectorsize;
2898 struct btrfs_path *path;
2899 struct extent_buffer *leaf;
2900 struct btrfs_key ins;
2901 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2902 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2903 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2904 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2905 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2906 struct btrfs_drop_extents_args drop_args = { 0 };
2909 path = btrfs_alloc_path();
2914 * we may be replacing one extent in the tree with another.
2915 * The new extent is pinned in the extent map, and we don't want
2916 * to drop it from the cache until it is completely in the btree.
2918 * So, tell btrfs_drop_extents to leave this extent in the cache.
2919 * the caller is expected to unpin it and allow it to be merged
2922 drop_args.path = path;
2923 drop_args.start = file_pos;
2924 drop_args.end = file_pos + num_bytes;
2925 drop_args.replace_extent = true;
2926 drop_args.extent_item_size = sizeof(*stack_fi);
2927 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2931 if (!drop_args.extent_inserted) {
2932 ins.objectid = btrfs_ino(inode);
2933 ins.offset = file_pos;
2934 ins.type = BTRFS_EXTENT_DATA_KEY;
2936 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2941 leaf = path->nodes[0];
2942 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2943 write_extent_buffer(leaf, stack_fi,
2944 btrfs_item_ptr_offset(leaf, path->slots[0]),
2945 sizeof(struct btrfs_file_extent_item));
2947 btrfs_mark_buffer_dirty(trans, leaf);
2948 btrfs_release_path(path);
2951 * If we dropped an inline extent here, we know the range where it is
2952 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2953 * number of bytes only for that range containing the inline extent.
2954 * The remaining of the range will be processed when clearning the
2955 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2957 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2958 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2960 inline_size = drop_args.bytes_found - inline_size;
2961 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2962 drop_args.bytes_found -= inline_size;
2963 num_bytes -= sectorsize;
2966 if (update_inode_bytes)
2967 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2969 ins.objectid = disk_bytenr;
2970 ins.offset = disk_num_bytes;
2971 ins.type = BTRFS_EXTENT_ITEM_KEY;
2973 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2977 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2979 qgroup_reserved, &ins);
2981 btrfs_free_path(path);
2986 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2989 struct btrfs_block_group *cache;
2991 cache = btrfs_lookup_block_group(fs_info, start);
2994 spin_lock(&cache->lock);
2995 cache->delalloc_bytes -= len;
2996 spin_unlock(&cache->lock);
2998 btrfs_put_block_group(cache);
3001 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3002 struct btrfs_ordered_extent *oe)
3004 struct btrfs_file_extent_item stack_fi;
3005 bool update_inode_bytes;
3006 u64 num_bytes = oe->num_bytes;
3007 u64 ram_bytes = oe->ram_bytes;
3009 memset(&stack_fi, 0, sizeof(stack_fi));
3010 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3011 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3012 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3013 oe->disk_num_bytes);
3014 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3015 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3016 num_bytes = oe->truncated_len;
3017 ram_bytes = num_bytes;
3019 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3020 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3021 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3022 /* Encryption and other encoding is reserved and all 0 */
3025 * For delalloc, when completing an ordered extent we update the inode's
3026 * bytes when clearing the range in the inode's io tree, so pass false
3027 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3028 * except if the ordered extent was truncated.
3030 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3031 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3032 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3034 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3035 oe->file_offset, &stack_fi,
3036 update_inode_bytes, oe->qgroup_rsv);
3040 * As ordered data IO finishes, this gets called so we can finish
3041 * an ordered extent if the range of bytes in the file it covers are
3044 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3046 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3047 struct btrfs_root *root = inode->root;
3048 struct btrfs_fs_info *fs_info = root->fs_info;
3049 struct btrfs_trans_handle *trans = NULL;
3050 struct extent_io_tree *io_tree = &inode->io_tree;
3051 struct extent_state *cached_state = NULL;
3053 int compress_type = 0;
3055 u64 logical_len = ordered_extent->num_bytes;
3056 bool freespace_inode;
3057 bool truncated = false;
3058 bool clear_reserved_extent = true;
3059 unsigned int clear_bits = EXTENT_DEFRAG;
3061 start = ordered_extent->file_offset;
3062 end = start + ordered_extent->num_bytes - 1;
3064 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3065 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3066 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3067 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3068 clear_bits |= EXTENT_DELALLOC_NEW;
3070 freespace_inode = btrfs_is_free_space_inode(inode);
3071 if (!freespace_inode)
3072 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3074 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3079 if (btrfs_is_zoned(fs_info))
3080 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3081 ordered_extent->disk_num_bytes);
3083 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3085 logical_len = ordered_extent->truncated_len;
3086 /* Truncated the entire extent, don't bother adding */
3091 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3092 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3094 btrfs_inode_safe_disk_i_size_write(inode, 0);
3095 if (freespace_inode)
3096 trans = btrfs_join_transaction_spacecache(root);
3098 trans = btrfs_join_transaction(root);
3099 if (IS_ERR(trans)) {
3100 ret = PTR_ERR(trans);
3104 trans->block_rsv = &inode->block_rsv;
3105 ret = btrfs_update_inode_fallback(trans, inode);
3106 if (ret) /* -ENOMEM or corruption */
3107 btrfs_abort_transaction(trans, ret);
3111 clear_bits |= EXTENT_LOCKED;
3112 lock_extent(io_tree, start, end, &cached_state);
3114 if (freespace_inode)
3115 trans = btrfs_join_transaction_spacecache(root);
3117 trans = btrfs_join_transaction(root);
3118 if (IS_ERR(trans)) {
3119 ret = PTR_ERR(trans);
3124 trans->block_rsv = &inode->block_rsv;
3126 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3130 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3131 compress_type = ordered_extent->compress_type;
3132 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3133 BUG_ON(compress_type);
3134 ret = btrfs_mark_extent_written(trans, inode,
3135 ordered_extent->file_offset,
3136 ordered_extent->file_offset +
3138 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3139 ordered_extent->disk_num_bytes);
3141 BUG_ON(root == fs_info->tree_root);
3142 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3144 clear_reserved_extent = false;
3145 btrfs_release_delalloc_bytes(fs_info,
3146 ordered_extent->disk_bytenr,
3147 ordered_extent->disk_num_bytes);
3151 btrfs_abort_transaction(trans, ret);
3155 ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3156 ordered_extent->num_bytes, trans->transid);
3158 btrfs_abort_transaction(trans, ret);
3162 ret = add_pending_csums(trans, &ordered_extent->list);
3164 btrfs_abort_transaction(trans, ret);
3169 * If this is a new delalloc range, clear its new delalloc flag to
3170 * update the inode's number of bytes. This needs to be done first
3171 * before updating the inode item.
3173 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3174 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3175 clear_extent_bit(&inode->io_tree, start, end,
3176 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3179 btrfs_inode_safe_disk_i_size_write(inode, 0);
3180 ret = btrfs_update_inode_fallback(trans, inode);
3181 if (ret) { /* -ENOMEM or corruption */
3182 btrfs_abort_transaction(trans, ret);
3187 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3191 btrfs_end_transaction(trans);
3193 if (ret || truncated) {
3194 u64 unwritten_start = start;
3197 * If we failed to finish this ordered extent for any reason we
3198 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3199 * extent, and mark the inode with the error if it wasn't
3200 * already set. Any error during writeback would have already
3201 * set the mapping error, so we need to set it if we're the ones
3202 * marking this ordered extent as failed.
3204 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3205 &ordered_extent->flags))
3206 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3209 unwritten_start += logical_len;
3210 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3213 * Drop extent maps for the part of the extent we didn't write.
3215 * We have an exception here for the free_space_inode, this is
3216 * because when we do btrfs_get_extent() on the free space inode
3217 * we will search the commit root. If this is a new block group
3218 * we won't find anything, and we will trip over the assert in
3219 * writepage where we do ASSERT(em->block_start !=
3222 * Theoretically we could also skip this for any NOCOW extent as
3223 * we don't mess with the extent map tree in the NOCOW case, but
3224 * for now simply skip this if we are the free space inode.
3226 if (!btrfs_is_free_space_inode(inode))
3227 btrfs_drop_extent_map_range(inode, unwritten_start,
3231 * If the ordered extent had an IOERR or something else went
3232 * wrong we need to return the space for this ordered extent
3233 * back to the allocator. We only free the extent in the
3234 * truncated case if we didn't write out the extent at all.
3236 * If we made it past insert_reserved_file_extent before we
3237 * errored out then we don't need to do this as the accounting
3238 * has already been done.
3240 if ((ret || !logical_len) &&
3241 clear_reserved_extent &&
3242 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3243 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3245 * Discard the range before returning it back to the
3248 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3249 btrfs_discard_extent(fs_info,
3250 ordered_extent->disk_bytenr,
3251 ordered_extent->disk_num_bytes,
3253 btrfs_free_reserved_extent(fs_info,
3254 ordered_extent->disk_bytenr,
3255 ordered_extent->disk_num_bytes, 1);
3257 * Actually free the qgroup rsv which was released when
3258 * the ordered extent was created.
3260 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3261 ordered_extent->qgroup_rsv,
3262 BTRFS_QGROUP_RSV_DATA);
3267 * This needs to be done to make sure anybody waiting knows we are done
3268 * updating everything for this ordered extent.
3270 btrfs_remove_ordered_extent(inode, ordered_extent);
3273 btrfs_put_ordered_extent(ordered_extent);
3274 /* once for the tree */
3275 btrfs_put_ordered_extent(ordered_extent);
3280 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3282 if (btrfs_is_zoned(inode_to_fs_info(ordered->inode)) &&
3283 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3284 list_empty(&ordered->bioc_list))
3285 btrfs_finish_ordered_zoned(ordered);
3286 return btrfs_finish_one_ordered(ordered);
3290 * Verify the checksum for a single sector without any extra action that depend
3291 * on the type of I/O.
3293 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3294 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3296 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3299 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3301 shash->tfm = fs_info->csum_shash;
3303 kaddr = kmap_local_page(page) + pgoff;
3304 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3305 kunmap_local(kaddr);
3307 if (memcmp(csum, csum_expected, fs_info->csum_size))
3313 * Verify the checksum of a single data sector.
3315 * @bbio: btrfs_io_bio which contains the csum
3316 * @dev: device the sector is on
3317 * @bio_offset: offset to the beginning of the bio (in bytes)
3318 * @bv: bio_vec to check
3320 * Check if the checksum on a data block is valid. When a checksum mismatch is
3321 * detected, report the error and fill the corrupted range with zero.
3323 * Return %true if the sector is ok or had no checksum to start with, else %false.
3325 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3326 u32 bio_offset, struct bio_vec *bv)
3328 struct btrfs_inode *inode = bbio->inode;
3329 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3330 u64 file_offset = bbio->file_offset + bio_offset;
3331 u64 end = file_offset + bv->bv_len - 1;
3333 u8 csum[BTRFS_CSUM_SIZE];
3335 ASSERT(bv->bv_len == fs_info->sectorsize);
3340 if (btrfs_is_data_reloc_root(inode->root) &&
3341 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3343 /* Skip the range without csum for data reloc inode */
3344 clear_extent_bits(&inode->io_tree, file_offset, end,
3349 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3351 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3357 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3360 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3366 * Perform a delayed iput on @inode.
3368 * @inode: The inode we want to perform iput on
3370 * This function uses the generic vfs_inode::i_count to track whether we should
3371 * just decrement it (in case it's > 1) or if this is the last iput then link
3372 * the inode to the delayed iput machinery. Delayed iputs are processed at
3373 * transaction commit time/superblock commit/cleaner kthread.
3375 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3377 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3378 unsigned long flags;
3380 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3383 atomic_inc(&fs_info->nr_delayed_iputs);
3385 * Need to be irq safe here because we can be called from either an irq
3386 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3389 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3390 ASSERT(list_empty(&inode->delayed_iput));
3391 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3392 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3393 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3394 wake_up_process(fs_info->cleaner_kthread);
3397 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3398 struct btrfs_inode *inode)
3400 list_del_init(&inode->delayed_iput);
3401 spin_unlock_irq(&fs_info->delayed_iput_lock);
3402 iput(&inode->vfs_inode);
3403 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3404 wake_up(&fs_info->delayed_iputs_wait);
3405 spin_lock_irq(&fs_info->delayed_iput_lock);
3408 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3409 struct btrfs_inode *inode)
3411 if (!list_empty(&inode->delayed_iput)) {
3412 spin_lock_irq(&fs_info->delayed_iput_lock);
3413 if (!list_empty(&inode->delayed_iput))
3414 run_delayed_iput_locked(fs_info, inode);
3415 spin_unlock_irq(&fs_info->delayed_iput_lock);
3419 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3422 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3423 * calls btrfs_add_delayed_iput() and that needs to lock
3424 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3425 * prevent a deadlock.
3427 spin_lock_irq(&fs_info->delayed_iput_lock);
3428 while (!list_empty(&fs_info->delayed_iputs)) {
3429 struct btrfs_inode *inode;
3431 inode = list_first_entry(&fs_info->delayed_iputs,
3432 struct btrfs_inode, delayed_iput);
3433 run_delayed_iput_locked(fs_info, inode);
3434 if (need_resched()) {
3435 spin_unlock_irq(&fs_info->delayed_iput_lock);
3437 spin_lock_irq(&fs_info->delayed_iput_lock);
3440 spin_unlock_irq(&fs_info->delayed_iput_lock);
3444 * Wait for flushing all delayed iputs
3446 * @fs_info: the filesystem
3448 * This will wait on any delayed iputs that are currently running with KILLABLE
3449 * set. Once they are all done running we will return, unless we are killed in
3450 * which case we return EINTR. This helps in user operations like fallocate etc
3451 * that might get blocked on the iputs.
3453 * Return EINTR if we were killed, 0 if nothing's pending
3455 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3457 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3458 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3465 * This creates an orphan entry for the given inode in case something goes wrong
3466 * in the middle of an unlink.
3468 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3469 struct btrfs_inode *inode)
3473 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3474 if (ret && ret != -EEXIST) {
3475 btrfs_abort_transaction(trans, ret);
3483 * We have done the delete so we can go ahead and remove the orphan item for
3484 * this particular inode.
3486 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3487 struct btrfs_inode *inode)
3489 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3493 * this cleans up any orphans that may be left on the list from the last use
3496 int btrfs_orphan_cleanup(struct btrfs_root *root)
3498 struct btrfs_fs_info *fs_info = root->fs_info;
3499 struct btrfs_path *path;
3500 struct extent_buffer *leaf;
3501 struct btrfs_key key, found_key;
3502 struct btrfs_trans_handle *trans;
3503 struct inode *inode;
3504 u64 last_objectid = 0;
3505 int ret = 0, nr_unlink = 0;
3507 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3510 path = btrfs_alloc_path();
3515 path->reada = READA_BACK;
3517 key.objectid = BTRFS_ORPHAN_OBJECTID;
3518 key.type = BTRFS_ORPHAN_ITEM_KEY;
3519 key.offset = (u64)-1;
3522 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3527 * if ret == 0 means we found what we were searching for, which
3528 * is weird, but possible, so only screw with path if we didn't
3529 * find the key and see if we have stuff that matches
3533 if (path->slots[0] == 0)
3538 /* pull out the item */
3539 leaf = path->nodes[0];
3540 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3542 /* make sure the item matches what we want */
3543 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3545 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3548 /* release the path since we're done with it */
3549 btrfs_release_path(path);
3552 * this is where we are basically btrfs_lookup, without the
3553 * crossing root thing. we store the inode number in the
3554 * offset of the orphan item.
3557 if (found_key.offset == last_objectid) {
3559 * We found the same inode as before. This means we were
3560 * not able to remove its items via eviction triggered
3561 * by an iput(). A transaction abort may have happened,
3562 * due to -ENOSPC for example, so try to grab the error
3563 * that lead to a transaction abort, if any.
3566 "Error removing orphan entry, stopping orphan cleanup");
3567 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3571 last_objectid = found_key.offset;
3573 found_key.objectid = found_key.offset;
3574 found_key.type = BTRFS_INODE_ITEM_KEY;
3575 found_key.offset = 0;
3576 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3577 if (IS_ERR(inode)) {
3578 ret = PTR_ERR(inode);
3584 if (!inode && root == fs_info->tree_root) {
3585 struct btrfs_root *dead_root;
3586 int is_dead_root = 0;
3589 * This is an orphan in the tree root. Currently these
3590 * could come from 2 sources:
3591 * a) a root (snapshot/subvolume) deletion in progress
3592 * b) a free space cache inode
3593 * We need to distinguish those two, as the orphan item
3594 * for a root must not get deleted before the deletion
3595 * of the snapshot/subvolume's tree completes.
3597 * btrfs_find_orphan_roots() ran before us, which has
3598 * found all deleted roots and loaded them into
3599 * fs_info->fs_roots_radix. So here we can find if an
3600 * orphan item corresponds to a deleted root by looking
3601 * up the root from that radix tree.
3604 spin_lock(&fs_info->fs_roots_radix_lock);
3605 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3606 (unsigned long)found_key.objectid);
3607 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3609 spin_unlock(&fs_info->fs_roots_radix_lock);
3612 /* prevent this orphan from being found again */
3613 key.offset = found_key.objectid - 1;
3620 * If we have an inode with links, there are a couple of
3623 * 1. We were halfway through creating fsverity metadata for the
3624 * file. In that case, the orphan item represents incomplete
3625 * fsverity metadata which must be cleaned up with
3626 * btrfs_drop_verity_items and deleting the orphan item.
3628 * 2. Old kernels (before v3.12) used to create an
3629 * orphan item for truncate indicating that there were possibly
3630 * extent items past i_size that needed to be deleted. In v3.12,
3631 * truncate was changed to update i_size in sync with the extent
3632 * items, but the (useless) orphan item was still created. Since
3633 * v4.18, we don't create the orphan item for truncate at all.
3635 * So, this item could mean that we need to do a truncate, but
3636 * only if this filesystem was last used on a pre-v3.12 kernel
3637 * and was not cleanly unmounted. The odds of that are quite
3638 * slim, and it's a pain to do the truncate now, so just delete
3641 * It's also possible that this orphan item was supposed to be
3642 * deleted but wasn't. The inode number may have been reused,
3643 * but either way, we can delete the orphan item.
3645 if (!inode || inode->i_nlink) {
3647 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3653 trans = btrfs_start_transaction(root, 1);
3654 if (IS_ERR(trans)) {
3655 ret = PTR_ERR(trans);
3658 btrfs_debug(fs_info, "auto deleting %Lu",
3659 found_key.objectid);
3660 ret = btrfs_del_orphan_item(trans, root,
3661 found_key.objectid);
3662 btrfs_end_transaction(trans);
3670 /* this will do delete_inode and everything for us */
3673 /* release the path since we're done with it */
3674 btrfs_release_path(path);
3676 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3677 trans = btrfs_join_transaction(root);
3679 btrfs_end_transaction(trans);
3683 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3687 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3688 btrfs_free_path(path);
3693 * very simple check to peek ahead in the leaf looking for xattrs. If we
3694 * don't find any xattrs, we know there can't be any acls.
3696 * slot is the slot the inode is in, objectid is the objectid of the inode
3698 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3699 int slot, u64 objectid,
3700 int *first_xattr_slot)
3702 u32 nritems = btrfs_header_nritems(leaf);
3703 struct btrfs_key found_key;
3704 static u64 xattr_access = 0;
3705 static u64 xattr_default = 0;
3708 if (!xattr_access) {
3709 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3710 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3711 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3712 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3716 *first_xattr_slot = -1;
3717 while (slot < nritems) {
3718 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3720 /* we found a different objectid, there must not be acls */
3721 if (found_key.objectid != objectid)
3724 /* we found an xattr, assume we've got an acl */
3725 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3726 if (*first_xattr_slot == -1)
3727 *first_xattr_slot = slot;
3728 if (found_key.offset == xattr_access ||
3729 found_key.offset == xattr_default)
3734 * we found a key greater than an xattr key, there can't
3735 * be any acls later on
3737 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3744 * it goes inode, inode backrefs, xattrs, extents,
3745 * so if there are a ton of hard links to an inode there can
3746 * be a lot of backrefs. Don't waste time searching too hard,
3747 * this is just an optimization
3752 /* we hit the end of the leaf before we found an xattr or
3753 * something larger than an xattr. We have to assume the inode
3756 if (*first_xattr_slot == -1)
3757 *first_xattr_slot = slot;
3762 * read an inode from the btree into the in-memory inode
3764 static int btrfs_read_locked_inode(struct inode *inode,
3765 struct btrfs_path *in_path)
3767 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3768 struct btrfs_path *path = in_path;
3769 struct extent_buffer *leaf;
3770 struct btrfs_inode_item *inode_item;
3771 struct btrfs_root *root = BTRFS_I(inode)->root;
3772 struct btrfs_key location;
3777 bool filled = false;
3778 int first_xattr_slot;
3780 ret = btrfs_fill_inode(inode, &rdev);
3785 path = btrfs_alloc_path();
3790 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3792 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3794 if (path != in_path)
3795 btrfs_free_path(path);
3799 leaf = path->nodes[0];
3804 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3805 struct btrfs_inode_item);
3806 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3807 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3808 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3809 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3810 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3811 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3812 round_up(i_size_read(inode), fs_info->sectorsize));
3814 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3815 btrfs_timespec_nsec(leaf, &inode_item->atime));
3817 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3818 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3820 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3821 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3823 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3824 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3826 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3827 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3828 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3830 inode_set_iversion_queried(inode,
3831 btrfs_inode_sequence(leaf, inode_item));
3832 inode->i_generation = BTRFS_I(inode)->generation;
3834 rdev = btrfs_inode_rdev(leaf, inode_item);
3836 BTRFS_I(inode)->index_cnt = (u64)-1;
3837 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3838 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3842 * If we were modified in the current generation and evicted from memory
3843 * and then re-read we need to do a full sync since we don't have any
3844 * idea about which extents were modified before we were evicted from
3847 * This is required for both inode re-read from disk and delayed inode
3848 * in the delayed_nodes xarray.
3850 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3851 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3852 &BTRFS_I(inode)->runtime_flags);
3855 * We don't persist the id of the transaction where an unlink operation
3856 * against the inode was last made. So here we assume the inode might
3857 * have been evicted, and therefore the exact value of last_unlink_trans
3858 * lost, and set it to last_trans to avoid metadata inconsistencies
3859 * between the inode and its parent if the inode is fsync'ed and the log
3860 * replayed. For example, in the scenario:
3863 * ln mydir/foo mydir/bar
3866 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3867 * xfs_io -c fsync mydir/foo
3869 * mount fs, triggers fsync log replay
3871 * We must make sure that when we fsync our inode foo we also log its
3872 * parent inode, otherwise after log replay the parent still has the
3873 * dentry with the "bar" name but our inode foo has a link count of 1
3874 * and doesn't have an inode ref with the name "bar" anymore.
3876 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3877 * but it guarantees correctness at the expense of occasional full
3878 * transaction commits on fsync if our inode is a directory, or if our
3879 * inode is not a directory, logging its parent unnecessarily.
3881 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3884 * Same logic as for last_unlink_trans. We don't persist the generation
3885 * of the last transaction where this inode was used for a reflink
3886 * operation, so after eviction and reloading the inode we must be
3887 * pessimistic and assume the last transaction that modified the inode.
3889 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3892 if (inode->i_nlink != 1 ||
3893 path->slots[0] >= btrfs_header_nritems(leaf))
3896 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3897 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3900 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3901 if (location.type == BTRFS_INODE_REF_KEY) {
3902 struct btrfs_inode_ref *ref;
3904 ref = (struct btrfs_inode_ref *)ptr;
3905 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3906 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3907 struct btrfs_inode_extref *extref;
3909 extref = (struct btrfs_inode_extref *)ptr;
3910 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3915 * try to precache a NULL acl entry for files that don't have
3916 * any xattrs or acls
3918 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3919 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3920 if (first_xattr_slot != -1) {
3921 path->slots[0] = first_xattr_slot;
3922 ret = btrfs_load_inode_props(inode, path);
3925 "error loading props for ino %llu (root %llu): %d",
3926 btrfs_ino(BTRFS_I(inode)),
3927 root->root_key.objectid, ret);
3929 if (path != in_path)
3930 btrfs_free_path(path);
3933 cache_no_acl(inode);
3935 switch (inode->i_mode & S_IFMT) {
3937 inode->i_mapping->a_ops = &btrfs_aops;
3938 inode->i_fop = &btrfs_file_operations;
3939 inode->i_op = &btrfs_file_inode_operations;
3942 inode->i_fop = &btrfs_dir_file_operations;
3943 inode->i_op = &btrfs_dir_inode_operations;
3946 inode->i_op = &btrfs_symlink_inode_operations;
3947 inode_nohighmem(inode);
3948 inode->i_mapping->a_ops = &btrfs_aops;
3951 inode->i_op = &btrfs_special_inode_operations;
3952 init_special_inode(inode, inode->i_mode, rdev);
3956 btrfs_sync_inode_flags_to_i_flags(inode);
3961 * given a leaf and an inode, copy the inode fields into the leaf
3963 static void fill_inode_item(struct btrfs_trans_handle *trans,
3964 struct extent_buffer *leaf,
3965 struct btrfs_inode_item *item,
3966 struct inode *inode)
3968 struct btrfs_map_token token;
3971 btrfs_init_map_token(&token, leaf);
3973 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3974 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3975 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3976 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3977 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3979 btrfs_set_token_timespec_sec(&token, &item->atime,
3980 inode_get_atime_sec(inode));
3981 btrfs_set_token_timespec_nsec(&token, &item->atime,
3982 inode_get_atime_nsec(inode));
3984 btrfs_set_token_timespec_sec(&token, &item->mtime,
3985 inode_get_mtime_sec(inode));
3986 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3987 inode_get_mtime_nsec(inode));
3989 btrfs_set_token_timespec_sec(&token, &item->ctime,
3990 inode_get_ctime_sec(inode));
3991 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3992 inode_get_ctime_nsec(inode));
3994 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
3995 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
3997 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3998 btrfs_set_token_inode_generation(&token, item,
3999 BTRFS_I(inode)->generation);
4000 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4001 btrfs_set_token_inode_transid(&token, item, trans->transid);
4002 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4003 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4004 BTRFS_I(inode)->ro_flags);
4005 btrfs_set_token_inode_flags(&token, item, flags);
4006 btrfs_set_token_inode_block_group(&token, item, 0);
4010 * copy everything in the in-memory inode into the btree.
4012 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4013 struct btrfs_inode *inode)
4015 struct btrfs_inode_item *inode_item;
4016 struct btrfs_path *path;
4017 struct extent_buffer *leaf;
4020 path = btrfs_alloc_path();
4024 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
4031 leaf = path->nodes[0];
4032 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4033 struct btrfs_inode_item);
4035 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4036 btrfs_mark_buffer_dirty(trans, leaf);
4037 btrfs_set_inode_last_trans(trans, inode);
4040 btrfs_free_path(path);
4045 * copy everything in the in-memory inode into the btree.
4047 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4048 struct btrfs_inode *inode)
4050 struct btrfs_root *root = inode->root;
4051 struct btrfs_fs_info *fs_info = root->fs_info;
4055 * If the inode is a free space inode, we can deadlock during commit
4056 * if we put it into the delayed code.
4058 * The data relocation inode should also be directly updated
4061 if (!btrfs_is_free_space_inode(inode)
4062 && !btrfs_is_data_reloc_root(root)
4063 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4064 btrfs_update_root_times(trans, root);
4066 ret = btrfs_delayed_update_inode(trans, inode);
4068 btrfs_set_inode_last_trans(trans, inode);
4072 return btrfs_update_inode_item(trans, inode);
4075 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4076 struct btrfs_inode *inode)
4080 ret = btrfs_update_inode(trans, inode);
4082 return btrfs_update_inode_item(trans, inode);
4087 * unlink helper that gets used here in inode.c and in the tree logging
4088 * recovery code. It remove a link in a directory with a given name, and
4089 * also drops the back refs in the inode to the directory
4091 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4092 struct btrfs_inode *dir,
4093 struct btrfs_inode *inode,
4094 const struct fscrypt_str *name,
4095 struct btrfs_rename_ctx *rename_ctx)
4097 struct btrfs_root *root = dir->root;
4098 struct btrfs_fs_info *fs_info = root->fs_info;
4099 struct btrfs_path *path;
4101 struct btrfs_dir_item *di;
4103 u64 ino = btrfs_ino(inode);
4104 u64 dir_ino = btrfs_ino(dir);
4106 path = btrfs_alloc_path();
4112 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4113 if (IS_ERR_OR_NULL(di)) {
4114 ret = di ? PTR_ERR(di) : -ENOENT;
4117 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4120 btrfs_release_path(path);
4123 * If we don't have dir index, we have to get it by looking up
4124 * the inode ref, since we get the inode ref, remove it directly,
4125 * it is unnecessary to do delayed deletion.
4127 * But if we have dir index, needn't search inode ref to get it.
4128 * Since the inode ref is close to the inode item, it is better
4129 * that we delay to delete it, and just do this deletion when
4130 * we update the inode item.
4132 if (inode->dir_index) {
4133 ret = btrfs_delayed_delete_inode_ref(inode);
4135 index = inode->dir_index;
4140 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4143 "failed to delete reference to %.*s, inode %llu parent %llu",
4144 name->len, name->name, ino, dir_ino);
4145 btrfs_abort_transaction(trans, ret);
4150 rename_ctx->index = index;
4152 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4154 btrfs_abort_transaction(trans, ret);
4159 * If we are in a rename context, we don't need to update anything in the
4160 * log. That will be done later during the rename by btrfs_log_new_name().
4161 * Besides that, doing it here would only cause extra unnecessary btree
4162 * operations on the log tree, increasing latency for applications.
4165 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4166 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4170 * If we have a pending delayed iput we could end up with the final iput
4171 * being run in btrfs-cleaner context. If we have enough of these built
4172 * up we can end up burning a lot of time in btrfs-cleaner without any
4173 * way to throttle the unlinks. Since we're currently holding a ref on
4174 * the inode we can run the delayed iput here without any issues as the
4175 * final iput won't be done until after we drop the ref we're currently
4178 btrfs_run_delayed_iput(fs_info, inode);
4180 btrfs_free_path(path);
4184 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4185 inode_inc_iversion(&inode->vfs_inode);
4186 inode_inc_iversion(&dir->vfs_inode);
4187 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4188 ret = btrfs_update_inode(trans, dir);
4193 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4194 struct btrfs_inode *dir, struct btrfs_inode *inode,
4195 const struct fscrypt_str *name)
4199 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4201 drop_nlink(&inode->vfs_inode);
4202 ret = btrfs_update_inode(trans, inode);
4208 * helper to start transaction for unlink and rmdir.
4210 * unlink and rmdir are special in btrfs, they do not always free space, so
4211 * if we cannot make our reservations the normal way try and see if there is
4212 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4213 * allow the unlink to occur.
4215 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4217 struct btrfs_root *root = dir->root;
4219 return btrfs_start_transaction_fallback_global_rsv(root,
4220 BTRFS_UNLINK_METADATA_UNITS);
4223 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4225 struct btrfs_trans_handle *trans;
4226 struct inode *inode = d_inode(dentry);
4228 struct fscrypt_name fname;
4230 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4234 /* This needs to handle no-key deletions later on */
4236 trans = __unlink_start_trans(BTRFS_I(dir));
4237 if (IS_ERR(trans)) {
4238 ret = PTR_ERR(trans);
4242 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4245 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4250 if (inode->i_nlink == 0) {
4251 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4257 btrfs_end_transaction(trans);
4258 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4260 fscrypt_free_filename(&fname);
4264 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4265 struct btrfs_inode *dir, struct dentry *dentry)
4267 struct btrfs_root *root = dir->root;
4268 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4269 struct btrfs_path *path;
4270 struct extent_buffer *leaf;
4271 struct btrfs_dir_item *di;
4272 struct btrfs_key key;
4276 u64 dir_ino = btrfs_ino(dir);
4277 struct fscrypt_name fname;
4279 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4283 /* This needs to handle no-key deletions later on */
4285 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4286 objectid = inode->root->root_key.objectid;
4287 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4288 objectid = inode->location.objectid;
4291 fscrypt_free_filename(&fname);
4295 path = btrfs_alloc_path();
4301 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4302 &fname.disk_name, -1);
4303 if (IS_ERR_OR_NULL(di)) {
4304 ret = di ? PTR_ERR(di) : -ENOENT;
4308 leaf = path->nodes[0];
4309 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4310 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4311 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4313 btrfs_abort_transaction(trans, ret);
4316 btrfs_release_path(path);
4319 * This is a placeholder inode for a subvolume we didn't have a
4320 * reference to at the time of the snapshot creation. In the meantime
4321 * we could have renamed the real subvol link into our snapshot, so
4322 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4323 * Instead simply lookup the dir_index_item for this entry so we can
4324 * remove it. Otherwise we know we have a ref to the root and we can
4325 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4327 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4328 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4329 if (IS_ERR_OR_NULL(di)) {
4334 btrfs_abort_transaction(trans, ret);
4338 leaf = path->nodes[0];
4339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4341 btrfs_release_path(path);
4343 ret = btrfs_del_root_ref(trans, objectid,
4344 root->root_key.objectid, dir_ino,
4345 &index, &fname.disk_name);
4347 btrfs_abort_transaction(trans, ret);
4352 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4354 btrfs_abort_transaction(trans, ret);
4358 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4359 inode_inc_iversion(&dir->vfs_inode);
4360 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4361 ret = btrfs_update_inode_fallback(trans, dir);
4363 btrfs_abort_transaction(trans, ret);
4365 btrfs_free_path(path);
4366 fscrypt_free_filename(&fname);
4371 * Helper to check if the subvolume references other subvolumes or if it's
4374 static noinline int may_destroy_subvol(struct btrfs_root *root)
4376 struct btrfs_fs_info *fs_info = root->fs_info;
4377 struct btrfs_path *path;
4378 struct btrfs_dir_item *di;
4379 struct btrfs_key key;
4380 struct fscrypt_str name = FSTR_INIT("default", 7);
4384 path = btrfs_alloc_path();
4388 /* Make sure this root isn't set as the default subvol */
4389 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4390 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4392 if (di && !IS_ERR(di)) {
4393 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4394 if (key.objectid == root->root_key.objectid) {
4397 "deleting default subvolume %llu is not allowed",
4401 btrfs_release_path(path);
4404 key.objectid = root->root_key.objectid;
4405 key.type = BTRFS_ROOT_REF_KEY;
4406 key.offset = (u64)-1;
4408 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4413 * Key with offset -1 found, there would have to exist a root
4414 * with such id, but this is out of valid range.
4421 if (path->slots[0] > 0) {
4423 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4424 if (key.objectid == root->root_key.objectid &&
4425 key.type == BTRFS_ROOT_REF_KEY)
4429 btrfs_free_path(path);
4433 /* Delete all dentries for inodes belonging to the root */
4434 static void btrfs_prune_dentries(struct btrfs_root *root)
4436 struct btrfs_fs_info *fs_info = root->fs_info;
4437 struct rb_node *node;
4438 struct rb_node *prev;
4439 struct btrfs_inode *entry;
4440 struct inode *inode;
4443 if (!BTRFS_FS_ERROR(fs_info))
4444 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4446 spin_lock(&root->inode_lock);
4448 node = root->inode_tree.rb_node;
4452 entry = rb_entry(node, struct btrfs_inode, rb_node);
4454 if (objectid < btrfs_ino(entry))
4455 node = node->rb_left;
4456 else if (objectid > btrfs_ino(entry))
4457 node = node->rb_right;
4463 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4464 if (objectid <= btrfs_ino(entry)) {
4468 prev = rb_next(prev);
4472 entry = rb_entry(node, struct btrfs_inode, rb_node);
4473 objectid = btrfs_ino(entry) + 1;
4474 inode = igrab(&entry->vfs_inode);
4476 spin_unlock(&root->inode_lock);
4477 if (atomic_read(&inode->i_count) > 1)
4478 d_prune_aliases(inode);
4480 * btrfs_drop_inode will have it removed from the inode
4481 * cache when its usage count hits zero.
4485 spin_lock(&root->inode_lock);
4489 if (cond_resched_lock(&root->inode_lock))
4492 node = rb_next(node);
4494 spin_unlock(&root->inode_lock);
4497 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4499 struct btrfs_root *root = dir->root;
4500 struct btrfs_fs_info *fs_info = root->fs_info;
4501 struct inode *inode = d_inode(dentry);
4502 struct btrfs_root *dest = BTRFS_I(inode)->root;
4503 struct btrfs_trans_handle *trans;
4504 struct btrfs_block_rsv block_rsv;
4508 down_write(&fs_info->subvol_sem);
4511 * Don't allow to delete a subvolume with send in progress. This is
4512 * inside the inode lock so the error handling that has to drop the bit
4513 * again is not run concurrently.
4515 spin_lock(&dest->root_item_lock);
4516 if (dest->send_in_progress) {
4517 spin_unlock(&dest->root_item_lock);
4519 "attempt to delete subvolume %llu during send",
4520 dest->root_key.objectid);
4524 if (atomic_read(&dest->nr_swapfiles)) {
4525 spin_unlock(&dest->root_item_lock);
4527 "attempt to delete subvolume %llu with active swapfile",
4528 root->root_key.objectid);
4532 root_flags = btrfs_root_flags(&dest->root_item);
4533 btrfs_set_root_flags(&dest->root_item,
4534 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4535 spin_unlock(&dest->root_item_lock);
4537 ret = may_destroy_subvol(dest);
4541 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4543 * One for dir inode,
4544 * two for dir entries,
4545 * two for root ref/backref.
4547 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4551 trans = btrfs_start_transaction(root, 0);
4552 if (IS_ERR(trans)) {
4553 ret = PTR_ERR(trans);
4556 trans->block_rsv = &block_rsv;
4557 trans->bytes_reserved = block_rsv.size;
4559 btrfs_record_snapshot_destroy(trans, dir);
4561 ret = btrfs_unlink_subvol(trans, dir, dentry);
4563 btrfs_abort_transaction(trans, ret);
4567 ret = btrfs_record_root_in_trans(trans, dest);
4569 btrfs_abort_transaction(trans, ret);
4573 memset(&dest->root_item.drop_progress, 0,
4574 sizeof(dest->root_item.drop_progress));
4575 btrfs_set_root_drop_level(&dest->root_item, 0);
4576 btrfs_set_root_refs(&dest->root_item, 0);
4578 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4579 ret = btrfs_insert_orphan_item(trans,
4581 dest->root_key.objectid);
4583 btrfs_abort_transaction(trans, ret);
4588 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4589 BTRFS_UUID_KEY_SUBVOL,
4590 dest->root_key.objectid);
4591 if (ret && ret != -ENOENT) {
4592 btrfs_abort_transaction(trans, ret);
4595 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4596 ret = btrfs_uuid_tree_remove(trans,
4597 dest->root_item.received_uuid,
4598 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4599 dest->root_key.objectid);
4600 if (ret && ret != -ENOENT) {
4601 btrfs_abort_transaction(trans, ret);
4606 free_anon_bdev(dest->anon_dev);
4609 trans->block_rsv = NULL;
4610 trans->bytes_reserved = 0;
4611 ret = btrfs_end_transaction(trans);
4612 inode->i_flags |= S_DEAD;
4614 btrfs_subvolume_release_metadata(root, &block_rsv);
4617 spin_lock(&dest->root_item_lock);
4618 root_flags = btrfs_root_flags(&dest->root_item);
4619 btrfs_set_root_flags(&dest->root_item,
4620 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4621 spin_unlock(&dest->root_item_lock);
4624 up_write(&fs_info->subvol_sem);
4626 d_invalidate(dentry);
4627 btrfs_prune_dentries(dest);
4628 ASSERT(dest->send_in_progress == 0);
4634 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4636 struct inode *inode = d_inode(dentry);
4637 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4639 struct btrfs_trans_handle *trans;
4640 u64 last_unlink_trans;
4641 struct fscrypt_name fname;
4643 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4645 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4646 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4648 "extent tree v2 doesn't support snapshot deletion yet");
4651 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4654 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4658 /* This needs to handle no-key deletions later on */
4660 trans = __unlink_start_trans(BTRFS_I(dir));
4661 if (IS_ERR(trans)) {
4662 err = PTR_ERR(trans);
4666 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4667 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4671 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4675 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4677 /* now the directory is empty */
4678 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4681 btrfs_i_size_write(BTRFS_I(inode), 0);
4683 * Propagate the last_unlink_trans value of the deleted dir to
4684 * its parent directory. This is to prevent an unrecoverable
4685 * log tree in the case we do something like this:
4687 * 2) create snapshot under dir foo
4688 * 3) delete the snapshot
4691 * 6) fsync foo or some file inside foo
4693 if (last_unlink_trans >= trans->transid)
4694 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4697 btrfs_end_transaction(trans);
4699 btrfs_btree_balance_dirty(fs_info);
4700 fscrypt_free_filename(&fname);
4706 * Read, zero a chunk and write a block.
4708 * @inode - inode that we're zeroing
4709 * @from - the offset to start zeroing
4710 * @len - the length to zero, 0 to zero the entire range respective to the
4712 * @front - zero up to the offset instead of from the offset on
4714 * This will find the block for the "from" offset and cow the block and zero the
4715 * part we want to zero. This is used with truncate and hole punching.
4717 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4720 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4721 struct address_space *mapping = inode->vfs_inode.i_mapping;
4722 struct extent_io_tree *io_tree = &inode->io_tree;
4723 struct btrfs_ordered_extent *ordered;
4724 struct extent_state *cached_state = NULL;
4725 struct extent_changeset *data_reserved = NULL;
4726 bool only_release_metadata = false;
4727 u32 blocksize = fs_info->sectorsize;
4728 pgoff_t index = from >> PAGE_SHIFT;
4729 unsigned offset = from & (blocksize - 1);
4730 struct folio *folio;
4731 gfp_t mask = btrfs_alloc_write_mask(mapping);
4732 size_t write_bytes = blocksize;
4737 if (IS_ALIGNED(offset, blocksize) &&
4738 (!len || IS_ALIGNED(len, blocksize)))
4741 block_start = round_down(from, blocksize);
4742 block_end = block_start + blocksize - 1;
4744 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4747 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4748 /* For nocow case, no need to reserve data space */
4749 only_release_metadata = true;
4754 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4756 if (!only_release_metadata)
4757 btrfs_free_reserved_data_space(inode, data_reserved,
4758 block_start, blocksize);
4762 folio = __filemap_get_folio(mapping, index,
4763 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4764 if (IS_ERR(folio)) {
4765 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4767 btrfs_delalloc_release_extents(inode, blocksize);
4772 if (!folio_test_uptodate(folio)) {
4773 ret = btrfs_read_folio(NULL, folio);
4775 if (folio->mapping != mapping) {
4776 folio_unlock(folio);
4780 if (!folio_test_uptodate(folio)) {
4787 * We unlock the page after the io is completed and then re-lock it
4788 * above. release_folio() could have come in between that and cleared
4789 * folio private, but left the page in the mapping. Set the page mapped
4790 * here to make sure it's properly set for the subpage stuff.
4792 ret = set_folio_extent_mapped(folio);
4796 folio_wait_writeback(folio);
4798 lock_extent(io_tree, block_start, block_end, &cached_state);
4800 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4802 unlock_extent(io_tree, block_start, block_end, &cached_state);
4803 folio_unlock(folio);
4805 btrfs_start_ordered_extent(ordered);
4806 btrfs_put_ordered_extent(ordered);
4810 clear_extent_bit(&inode->io_tree, block_start, block_end,
4811 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4814 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4817 unlock_extent(io_tree, block_start, block_end, &cached_state);
4821 if (offset != blocksize) {
4823 len = blocksize - offset;
4825 folio_zero_range(folio, block_start - folio_pos(folio),
4828 folio_zero_range(folio,
4829 (block_start - folio_pos(folio)) + offset,
4832 btrfs_folio_clear_checked(fs_info, folio, block_start,
4833 block_end + 1 - block_start);
4834 btrfs_folio_set_dirty(fs_info, folio, block_start,
4835 block_end + 1 - block_start);
4836 unlock_extent(io_tree, block_start, block_end, &cached_state);
4838 if (only_release_metadata)
4839 set_extent_bit(&inode->io_tree, block_start, block_end,
4840 EXTENT_NORESERVE, NULL);
4844 if (only_release_metadata)
4845 btrfs_delalloc_release_metadata(inode, blocksize, true);
4847 btrfs_delalloc_release_space(inode, data_reserved,
4848 block_start, blocksize, true);
4850 btrfs_delalloc_release_extents(inode, blocksize);
4851 folio_unlock(folio);
4854 if (only_release_metadata)
4855 btrfs_check_nocow_unlock(inode);
4856 extent_changeset_free(data_reserved);
4860 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4862 struct btrfs_root *root = inode->root;
4863 struct btrfs_fs_info *fs_info = root->fs_info;
4864 struct btrfs_trans_handle *trans;
4865 struct btrfs_drop_extents_args drop_args = { 0 };
4869 * If NO_HOLES is enabled, we don't need to do anything.
4870 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4871 * or btrfs_update_inode() will be called, which guarantee that the next
4872 * fsync will know this inode was changed and needs to be logged.
4874 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4878 * 1 - for the one we're dropping
4879 * 1 - for the one we're adding
4880 * 1 - for updating the inode.
4882 trans = btrfs_start_transaction(root, 3);
4884 return PTR_ERR(trans);
4886 drop_args.start = offset;
4887 drop_args.end = offset + len;
4888 drop_args.drop_cache = true;
4890 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4892 btrfs_abort_transaction(trans, ret);
4893 btrfs_end_transaction(trans);
4897 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4899 btrfs_abort_transaction(trans, ret);
4901 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4902 btrfs_update_inode(trans, inode);
4904 btrfs_end_transaction(trans);
4909 * This function puts in dummy file extents for the area we're creating a hole
4910 * for. So if we are truncating this file to a larger size we need to insert
4911 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4912 * the range between oldsize and size
4914 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4916 struct btrfs_root *root = inode->root;
4917 struct btrfs_fs_info *fs_info = root->fs_info;
4918 struct extent_io_tree *io_tree = &inode->io_tree;
4919 struct extent_map *em = NULL;
4920 struct extent_state *cached_state = NULL;
4921 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4922 u64 block_end = ALIGN(size, fs_info->sectorsize);
4929 * If our size started in the middle of a block we need to zero out the
4930 * rest of the block before we expand the i_size, otherwise we could
4931 * expose stale data.
4933 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4937 if (size <= hole_start)
4940 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4942 cur_offset = hole_start;
4944 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4950 last_byte = min(extent_map_end(em), block_end);
4951 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4952 hole_size = last_byte - cur_offset;
4954 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4955 struct extent_map *hole_em;
4957 err = maybe_insert_hole(inode, cur_offset, hole_size);
4961 err = btrfs_inode_set_file_extent_range(inode,
4962 cur_offset, hole_size);
4966 hole_em = alloc_extent_map();
4968 btrfs_drop_extent_map_range(inode, cur_offset,
4969 cur_offset + hole_size - 1,
4971 btrfs_set_inode_full_sync(inode);
4974 hole_em->start = cur_offset;
4975 hole_em->len = hole_size;
4976 hole_em->orig_start = cur_offset;
4978 hole_em->block_start = EXTENT_MAP_HOLE;
4979 hole_em->block_len = 0;
4980 hole_em->orig_block_len = 0;
4981 hole_em->ram_bytes = hole_size;
4982 hole_em->generation = btrfs_get_fs_generation(fs_info);
4984 err = btrfs_replace_extent_map_range(inode, hole_em, true);
4985 free_extent_map(hole_em);
4987 err = btrfs_inode_set_file_extent_range(inode,
4988 cur_offset, hole_size);
4993 free_extent_map(em);
4995 cur_offset = last_byte;
4996 if (cur_offset >= block_end)
4999 free_extent_map(em);
5000 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5004 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5006 struct btrfs_root *root = BTRFS_I(inode)->root;
5007 struct btrfs_trans_handle *trans;
5008 loff_t oldsize = i_size_read(inode);
5009 loff_t newsize = attr->ia_size;
5010 int mask = attr->ia_valid;
5014 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5015 * special case where we need to update the times despite not having
5016 * these flags set. For all other operations the VFS set these flags
5017 * explicitly if it wants a timestamp update.
5019 if (newsize != oldsize) {
5020 inode_inc_iversion(inode);
5021 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5022 inode_set_mtime_to_ts(inode,
5023 inode_set_ctime_current(inode));
5027 if (newsize > oldsize) {
5029 * Don't do an expanding truncate while snapshotting is ongoing.
5030 * This is to ensure the snapshot captures a fully consistent
5031 * state of this file - if the snapshot captures this expanding
5032 * truncation, it must capture all writes that happened before
5035 btrfs_drew_write_lock(&root->snapshot_lock);
5036 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5038 btrfs_drew_write_unlock(&root->snapshot_lock);
5042 trans = btrfs_start_transaction(root, 1);
5043 if (IS_ERR(trans)) {
5044 btrfs_drew_write_unlock(&root->snapshot_lock);
5045 return PTR_ERR(trans);
5048 i_size_write(inode, newsize);
5049 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5050 pagecache_isize_extended(inode, oldsize, newsize);
5051 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5052 btrfs_drew_write_unlock(&root->snapshot_lock);
5053 btrfs_end_transaction(trans);
5055 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5057 if (btrfs_is_zoned(fs_info)) {
5058 ret = btrfs_wait_ordered_range(inode,
5059 ALIGN(newsize, fs_info->sectorsize),
5066 * We're truncating a file that used to have good data down to
5067 * zero. Make sure any new writes to the file get on disk
5071 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5072 &BTRFS_I(inode)->runtime_flags);
5074 truncate_setsize(inode, newsize);
5076 inode_dio_wait(inode);
5078 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5079 if (ret && inode->i_nlink) {
5083 * Truncate failed, so fix up the in-memory size. We
5084 * adjusted disk_i_size down as we removed extents, so
5085 * wait for disk_i_size to be stable and then update the
5086 * in-memory size to match.
5088 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5091 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5098 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5101 struct inode *inode = d_inode(dentry);
5102 struct btrfs_root *root = BTRFS_I(inode)->root;
5105 if (btrfs_root_readonly(root))
5108 err = setattr_prepare(idmap, dentry, attr);
5112 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5113 err = btrfs_setsize(inode, attr);
5118 if (attr->ia_valid) {
5119 setattr_copy(idmap, inode, attr);
5120 inode_inc_iversion(inode);
5121 err = btrfs_dirty_inode(BTRFS_I(inode));
5123 if (!err && attr->ia_valid & ATTR_MODE)
5124 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5131 * While truncating the inode pages during eviction, we get the VFS
5132 * calling btrfs_invalidate_folio() against each folio of the inode. This
5133 * is slow because the calls to btrfs_invalidate_folio() result in a
5134 * huge amount of calls to lock_extent() and clear_extent_bit(),
5135 * which keep merging and splitting extent_state structures over and over,
5136 * wasting lots of time.
5138 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5139 * skip all those expensive operations on a per folio basis and do only
5140 * the ordered io finishing, while we release here the extent_map and
5141 * extent_state structures, without the excessive merging and splitting.
5143 static void evict_inode_truncate_pages(struct inode *inode)
5145 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5146 struct rb_node *node;
5148 ASSERT(inode->i_state & I_FREEING);
5149 truncate_inode_pages_final(&inode->i_data);
5151 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5154 * Keep looping until we have no more ranges in the io tree.
5155 * We can have ongoing bios started by readahead that have
5156 * their endio callback (extent_io.c:end_bio_extent_readpage)
5157 * still in progress (unlocked the pages in the bio but did not yet
5158 * unlocked the ranges in the io tree). Therefore this means some
5159 * ranges can still be locked and eviction started because before
5160 * submitting those bios, which are executed by a separate task (work
5161 * queue kthread), inode references (inode->i_count) were not taken
5162 * (which would be dropped in the end io callback of each bio).
5163 * Therefore here we effectively end up waiting for those bios and
5164 * anyone else holding locked ranges without having bumped the inode's
5165 * reference count - if we don't do it, when they access the inode's
5166 * io_tree to unlock a range it may be too late, leading to an
5167 * use-after-free issue.
5169 spin_lock(&io_tree->lock);
5170 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5171 struct extent_state *state;
5172 struct extent_state *cached_state = NULL;
5175 unsigned state_flags;
5177 node = rb_first(&io_tree->state);
5178 state = rb_entry(node, struct extent_state, rb_node);
5179 start = state->start;
5181 state_flags = state->state;
5182 spin_unlock(&io_tree->lock);
5184 lock_extent(io_tree, start, end, &cached_state);
5187 * If still has DELALLOC flag, the extent didn't reach disk,
5188 * and its reserved space won't be freed by delayed_ref.
5189 * So we need to free its reserved space here.
5190 * (Refer to comment in btrfs_invalidate_folio, case 2)
5192 * Note, end is the bytenr of last byte, so we need + 1 here.
5194 if (state_flags & EXTENT_DELALLOC)
5195 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5196 end - start + 1, NULL);
5198 clear_extent_bit(io_tree, start, end,
5199 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5203 spin_lock(&io_tree->lock);
5205 spin_unlock(&io_tree->lock);
5208 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5209 struct btrfs_block_rsv *rsv)
5211 struct btrfs_fs_info *fs_info = root->fs_info;
5212 struct btrfs_trans_handle *trans;
5213 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5217 * Eviction should be taking place at some place safe because of our
5218 * delayed iputs. However the normal flushing code will run delayed
5219 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5221 * We reserve the delayed_refs_extra here again because we can't use
5222 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5223 * above. We reserve our extra bit here because we generate a ton of
5224 * delayed refs activity by truncating.
5226 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5227 * if we fail to make this reservation we can re-try without the
5228 * delayed_refs_extra so we can make some forward progress.
5230 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5231 BTRFS_RESERVE_FLUSH_EVICT);
5233 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5234 BTRFS_RESERVE_FLUSH_EVICT);
5237 "could not allocate space for delete; will truncate on mount");
5238 return ERR_PTR(-ENOSPC);
5240 delayed_refs_extra = 0;
5243 trans = btrfs_join_transaction(root);
5247 if (delayed_refs_extra) {
5248 trans->block_rsv = &fs_info->trans_block_rsv;
5249 trans->bytes_reserved = delayed_refs_extra;
5250 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5251 delayed_refs_extra, true);
5256 void btrfs_evict_inode(struct inode *inode)
5258 struct btrfs_fs_info *fs_info;
5259 struct btrfs_trans_handle *trans;
5260 struct btrfs_root *root = BTRFS_I(inode)->root;
5261 struct btrfs_block_rsv *rsv = NULL;
5264 trace_btrfs_inode_evict(inode);
5267 fsverity_cleanup_inode(inode);
5272 fs_info = inode_to_fs_info(inode);
5273 evict_inode_truncate_pages(inode);
5275 if (inode->i_nlink &&
5276 ((btrfs_root_refs(&root->root_item) != 0 &&
5277 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5278 btrfs_is_free_space_inode(BTRFS_I(inode))))
5281 if (is_bad_inode(inode))
5284 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5287 if (inode->i_nlink > 0) {
5288 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5289 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5294 * This makes sure the inode item in tree is uptodate and the space for
5295 * the inode update is released.
5297 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5302 * This drops any pending insert or delete operations we have for this
5303 * inode. We could have a delayed dir index deletion queued up, but
5304 * we're removing the inode completely so that'll be taken care of in
5307 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5309 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5312 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5313 rsv->failfast = true;
5315 btrfs_i_size_write(BTRFS_I(inode), 0);
5318 struct btrfs_truncate_control control = {
5319 .inode = BTRFS_I(inode),
5320 .ino = btrfs_ino(BTRFS_I(inode)),
5325 trans = evict_refill_and_join(root, rsv);
5329 trans->block_rsv = rsv;
5331 ret = btrfs_truncate_inode_items(trans, root, &control);
5332 trans->block_rsv = &fs_info->trans_block_rsv;
5333 btrfs_end_transaction(trans);
5335 * We have not added new delayed items for our inode after we
5336 * have flushed its delayed items, so no need to throttle on
5337 * delayed items. However we have modified extent buffers.
5339 btrfs_btree_balance_dirty_nodelay(fs_info);
5340 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5347 * Errors here aren't a big deal, it just means we leave orphan items in
5348 * the tree. They will be cleaned up on the next mount. If the inode
5349 * number gets reused, cleanup deletes the orphan item without doing
5350 * anything, and unlink reuses the existing orphan item.
5352 * If it turns out that we are dropping too many of these, we might want
5353 * to add a mechanism for retrying these after a commit.
5355 trans = evict_refill_and_join(root, rsv);
5356 if (!IS_ERR(trans)) {
5357 trans->block_rsv = rsv;
5358 btrfs_orphan_del(trans, BTRFS_I(inode));
5359 trans->block_rsv = &fs_info->trans_block_rsv;
5360 btrfs_end_transaction(trans);
5364 btrfs_free_block_rsv(fs_info, rsv);
5366 * If we didn't successfully delete, the orphan item will still be in
5367 * the tree and we'll retry on the next mount. Again, we might also want
5368 * to retry these periodically in the future.
5370 btrfs_remove_delayed_node(BTRFS_I(inode));
5371 fsverity_cleanup_inode(inode);
5376 * Return the key found in the dir entry in the location pointer, fill @type
5377 * with BTRFS_FT_*, and return 0.
5379 * If no dir entries were found, returns -ENOENT.
5380 * If found a corrupted location in dir entry, returns -EUCLEAN.
5382 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5383 struct btrfs_key *location, u8 *type)
5385 struct btrfs_dir_item *di;
5386 struct btrfs_path *path;
5387 struct btrfs_root *root = dir->root;
5389 struct fscrypt_name fname;
5391 path = btrfs_alloc_path();
5395 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5399 * fscrypt_setup_filename() should never return a positive value, but
5400 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5404 /* This needs to handle no-key deletions later on */
5406 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5407 &fname.disk_name, 0);
5408 if (IS_ERR_OR_NULL(di)) {
5409 ret = di ? PTR_ERR(di) : -ENOENT;
5413 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5414 if (location->type != BTRFS_INODE_ITEM_KEY &&
5415 location->type != BTRFS_ROOT_ITEM_KEY) {
5417 btrfs_warn(root->fs_info,
5418 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5419 __func__, fname.disk_name.name, btrfs_ino(dir),
5420 location->objectid, location->type, location->offset);
5423 *type = btrfs_dir_ftype(path->nodes[0], di);
5425 fscrypt_free_filename(&fname);
5426 btrfs_free_path(path);
5431 * when we hit a tree root in a directory, the btrfs part of the inode
5432 * needs to be changed to reflect the root directory of the tree root. This
5433 * is kind of like crossing a mount point.
5435 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5436 struct btrfs_inode *dir,
5437 struct dentry *dentry,
5438 struct btrfs_key *location,
5439 struct btrfs_root **sub_root)
5441 struct btrfs_path *path;
5442 struct btrfs_root *new_root;
5443 struct btrfs_root_ref *ref;
5444 struct extent_buffer *leaf;
5445 struct btrfs_key key;
5448 struct fscrypt_name fname;
5450 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5454 path = btrfs_alloc_path();
5461 key.objectid = dir->root->root_key.objectid;
5462 key.type = BTRFS_ROOT_REF_KEY;
5463 key.offset = location->objectid;
5465 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5472 leaf = path->nodes[0];
5473 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5474 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5475 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5478 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5479 (unsigned long)(ref + 1), fname.disk_name.len);
5483 btrfs_release_path(path);
5485 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5486 if (IS_ERR(new_root)) {
5487 err = PTR_ERR(new_root);
5491 *sub_root = new_root;
5492 location->objectid = btrfs_root_dirid(&new_root->root_item);
5493 location->type = BTRFS_INODE_ITEM_KEY;
5494 location->offset = 0;
5497 btrfs_free_path(path);
5498 fscrypt_free_filename(&fname);
5502 static void inode_tree_add(struct btrfs_inode *inode)
5504 struct btrfs_root *root = inode->root;
5505 struct btrfs_inode *entry;
5507 struct rb_node *parent;
5508 struct rb_node *new = &inode->rb_node;
5509 u64 ino = btrfs_ino(inode);
5511 if (inode_unhashed(&inode->vfs_inode))
5514 spin_lock(&root->inode_lock);
5515 p = &root->inode_tree.rb_node;
5518 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5520 if (ino < btrfs_ino(entry))
5521 p = &parent->rb_left;
5522 else if (ino > btrfs_ino(entry))
5523 p = &parent->rb_right;
5525 WARN_ON(!(entry->vfs_inode.i_state &
5526 (I_WILL_FREE | I_FREEING)));
5527 rb_replace_node(parent, new, &root->inode_tree);
5528 RB_CLEAR_NODE(parent);
5529 spin_unlock(&root->inode_lock);
5533 rb_link_node(new, parent, p);
5534 rb_insert_color(new, &root->inode_tree);
5535 spin_unlock(&root->inode_lock);
5538 static void inode_tree_del(struct btrfs_inode *inode)
5540 struct btrfs_root *root = inode->root;
5543 spin_lock(&root->inode_lock);
5544 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5545 rb_erase(&inode->rb_node, &root->inode_tree);
5546 RB_CLEAR_NODE(&inode->rb_node);
5547 empty = RB_EMPTY_ROOT(&root->inode_tree);
5549 spin_unlock(&root->inode_lock);
5551 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5552 spin_lock(&root->inode_lock);
5553 empty = RB_EMPTY_ROOT(&root->inode_tree);
5554 spin_unlock(&root->inode_lock);
5556 btrfs_add_dead_root(root);
5561 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5563 struct btrfs_iget_args *args = p;
5565 inode->i_ino = args->ino;
5566 BTRFS_I(inode)->location.objectid = args->ino;
5567 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5568 BTRFS_I(inode)->location.offset = 0;
5569 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5571 if (args->root && args->root == args->root->fs_info->tree_root &&
5572 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5573 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5574 &BTRFS_I(inode)->runtime_flags);
5578 static int btrfs_find_actor(struct inode *inode, void *opaque)
5580 struct btrfs_iget_args *args = opaque;
5582 return args->ino == BTRFS_I(inode)->location.objectid &&
5583 args->root == BTRFS_I(inode)->root;
5586 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5587 struct btrfs_root *root)
5589 struct inode *inode;
5590 struct btrfs_iget_args args;
5591 unsigned long hashval = btrfs_inode_hash(ino, root);
5596 inode = iget5_locked(s, hashval, btrfs_find_actor,
5597 btrfs_init_locked_inode,
5603 * Get an inode object given its inode number and corresponding root.
5604 * Path can be preallocated to prevent recursing back to iget through
5605 * allocator. NULL is also valid but may require an additional allocation
5608 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5609 struct btrfs_root *root, struct btrfs_path *path)
5611 struct inode *inode;
5613 inode = btrfs_iget_locked(s, ino, root);
5615 return ERR_PTR(-ENOMEM);
5617 if (inode->i_state & I_NEW) {
5620 ret = btrfs_read_locked_inode(inode, path);
5622 inode_tree_add(BTRFS_I(inode));
5623 unlock_new_inode(inode);
5627 * ret > 0 can come from btrfs_search_slot called by
5628 * btrfs_read_locked_inode, this means the inode item
5633 inode = ERR_PTR(ret);
5640 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5642 return btrfs_iget_path(s, ino, root, NULL);
5645 static struct inode *new_simple_dir(struct inode *dir,
5646 struct btrfs_key *key,
5647 struct btrfs_root *root)
5649 struct timespec64 ts;
5650 struct inode *inode = new_inode(dir->i_sb);
5653 return ERR_PTR(-ENOMEM);
5655 BTRFS_I(inode)->root = btrfs_grab_root(root);
5656 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5657 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5659 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5661 * We only need lookup, the rest is read-only and there's no inode
5662 * associated with the dentry
5664 inode->i_op = &simple_dir_inode_operations;
5665 inode->i_opflags &= ~IOP_XATTR;
5666 inode->i_fop = &simple_dir_operations;
5667 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5669 ts = inode_set_ctime_current(inode);
5670 inode_set_mtime_to_ts(inode, ts);
5671 inode_set_atime_to_ts(inode, inode_get_atime(dir));
5672 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5673 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5675 inode->i_uid = dir->i_uid;
5676 inode->i_gid = dir->i_gid;
5681 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5682 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5683 static_assert(BTRFS_FT_DIR == FT_DIR);
5684 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5685 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5686 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5687 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5688 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5690 static inline u8 btrfs_inode_type(struct inode *inode)
5692 return fs_umode_to_ftype(inode->i_mode);
5695 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5697 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5698 struct inode *inode;
5699 struct btrfs_root *root = BTRFS_I(dir)->root;
5700 struct btrfs_root *sub_root = root;
5701 struct btrfs_key location;
5705 if (dentry->d_name.len > BTRFS_NAME_LEN)
5706 return ERR_PTR(-ENAMETOOLONG);
5708 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5710 return ERR_PTR(ret);
5712 if (location.type == BTRFS_INODE_ITEM_KEY) {
5713 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5717 /* Do extra check against inode mode with di_type */
5718 if (btrfs_inode_type(inode) != di_type) {
5720 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5721 inode->i_mode, btrfs_inode_type(inode),
5724 return ERR_PTR(-EUCLEAN);
5729 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5730 &location, &sub_root);
5733 inode = ERR_PTR(ret);
5735 inode = new_simple_dir(dir, &location, root);
5737 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5738 btrfs_put_root(sub_root);
5743 down_read(&fs_info->cleanup_work_sem);
5744 if (!sb_rdonly(inode->i_sb))
5745 ret = btrfs_orphan_cleanup(sub_root);
5746 up_read(&fs_info->cleanup_work_sem);
5749 inode = ERR_PTR(ret);
5756 static int btrfs_dentry_delete(const struct dentry *dentry)
5758 struct btrfs_root *root;
5759 struct inode *inode = d_inode(dentry);
5761 if (!inode && !IS_ROOT(dentry))
5762 inode = d_inode(dentry->d_parent);
5765 root = BTRFS_I(inode)->root;
5766 if (btrfs_root_refs(&root->root_item) == 0)
5769 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5775 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5778 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5780 if (inode == ERR_PTR(-ENOENT))
5782 return d_splice_alias(inode, dentry);
5786 * Find the highest existing sequence number in a directory and then set the
5787 * in-memory index_cnt variable to the first free sequence number.
5789 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5791 struct btrfs_root *root = inode->root;
5792 struct btrfs_key key, found_key;
5793 struct btrfs_path *path;
5794 struct extent_buffer *leaf;
5797 key.objectid = btrfs_ino(inode);
5798 key.type = BTRFS_DIR_INDEX_KEY;
5799 key.offset = (u64)-1;
5801 path = btrfs_alloc_path();
5805 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5808 /* FIXME: we should be able to handle this */
5813 if (path->slots[0] == 0) {
5814 inode->index_cnt = BTRFS_DIR_START_INDEX;
5820 leaf = path->nodes[0];
5821 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5823 if (found_key.objectid != btrfs_ino(inode) ||
5824 found_key.type != BTRFS_DIR_INDEX_KEY) {
5825 inode->index_cnt = BTRFS_DIR_START_INDEX;
5829 inode->index_cnt = found_key.offset + 1;
5831 btrfs_free_path(path);
5835 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5839 btrfs_inode_lock(dir, 0);
5840 if (dir->index_cnt == (u64)-1) {
5841 ret = btrfs_inode_delayed_dir_index_count(dir);
5843 ret = btrfs_set_inode_index_count(dir);
5849 /* index_cnt is the index number of next new entry, so decrement it. */
5850 *index = dir->index_cnt - 1;
5852 btrfs_inode_unlock(dir, 0);
5858 * All this infrastructure exists because dir_emit can fault, and we are holding
5859 * the tree lock when doing readdir. For now just allocate a buffer and copy
5860 * our information into that, and then dir_emit from the buffer. This is
5861 * similar to what NFS does, only we don't keep the buffer around in pagecache
5862 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5863 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5866 static int btrfs_opendir(struct inode *inode, struct file *file)
5868 struct btrfs_file_private *private;
5872 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5876 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5879 private->last_index = last_index;
5880 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5881 if (!private->filldir_buf) {
5885 file->private_data = private;
5889 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5891 struct btrfs_file_private *private = file->private_data;
5894 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5895 &private->last_index);
5899 return generic_file_llseek(file, offset, whence);
5909 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5912 struct dir_entry *entry = addr;
5913 char *name = (char *)(entry + 1);
5915 ctx->pos = get_unaligned(&entry->offset);
5916 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5917 get_unaligned(&entry->ino),
5918 get_unaligned(&entry->type)))
5920 addr += sizeof(struct dir_entry) +
5921 get_unaligned(&entry->name_len);
5927 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5929 struct inode *inode = file_inode(file);
5930 struct btrfs_root *root = BTRFS_I(inode)->root;
5931 struct btrfs_file_private *private = file->private_data;
5932 struct btrfs_dir_item *di;
5933 struct btrfs_key key;
5934 struct btrfs_key found_key;
5935 struct btrfs_path *path;
5937 LIST_HEAD(ins_list);
5938 LIST_HEAD(del_list);
5945 struct btrfs_key location;
5947 if (!dir_emit_dots(file, ctx))
5950 path = btrfs_alloc_path();
5954 addr = private->filldir_buf;
5955 path->reada = READA_FORWARD;
5957 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5958 &ins_list, &del_list);
5961 key.type = BTRFS_DIR_INDEX_KEY;
5962 key.offset = ctx->pos;
5963 key.objectid = btrfs_ino(BTRFS_I(inode));
5965 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5966 struct dir_entry *entry;
5967 struct extent_buffer *leaf = path->nodes[0];
5970 if (found_key.objectid != key.objectid)
5972 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5974 if (found_key.offset < ctx->pos)
5976 if (found_key.offset > private->last_index)
5978 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5980 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5981 name_len = btrfs_dir_name_len(leaf, di);
5982 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5984 btrfs_release_path(path);
5985 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5988 addr = private->filldir_buf;
5994 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5996 name_ptr = (char *)(entry + 1);
5997 read_extent_buffer(leaf, name_ptr,
5998 (unsigned long)(di + 1), name_len);
5999 put_unaligned(name_len, &entry->name_len);
6000 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6001 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6002 put_unaligned(location.objectid, &entry->ino);
6003 put_unaligned(found_key.offset, &entry->offset);
6005 addr += sizeof(struct dir_entry) + name_len;
6006 total_len += sizeof(struct dir_entry) + name_len;
6008 /* Catch error encountered during iteration */
6012 btrfs_release_path(path);
6014 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6018 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6023 * Stop new entries from being returned after we return the last
6026 * New directory entries are assigned a strictly increasing
6027 * offset. This means that new entries created during readdir
6028 * are *guaranteed* to be seen in the future by that readdir.
6029 * This has broken buggy programs which operate on names as
6030 * they're returned by readdir. Until we re-use freed offsets
6031 * we have this hack to stop new entries from being returned
6032 * under the assumption that they'll never reach this huge
6035 * This is being careful not to overflow 32bit loff_t unless the
6036 * last entry requires it because doing so has broken 32bit apps
6039 if (ctx->pos >= INT_MAX)
6040 ctx->pos = LLONG_MAX;
6047 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6048 btrfs_free_path(path);
6053 * This is somewhat expensive, updating the tree every time the
6054 * inode changes. But, it is most likely to find the inode in cache.
6055 * FIXME, needs more benchmarking...there are no reasons other than performance
6056 * to keep or drop this code.
6058 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6060 struct btrfs_root *root = inode->root;
6061 struct btrfs_fs_info *fs_info = root->fs_info;
6062 struct btrfs_trans_handle *trans;
6065 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6068 trans = btrfs_join_transaction(root);
6070 return PTR_ERR(trans);
6072 ret = btrfs_update_inode(trans, inode);
6073 if (ret == -ENOSPC || ret == -EDQUOT) {
6074 /* whoops, lets try again with the full transaction */
6075 btrfs_end_transaction(trans);
6076 trans = btrfs_start_transaction(root, 1);
6078 return PTR_ERR(trans);
6080 ret = btrfs_update_inode(trans, inode);
6082 btrfs_end_transaction(trans);
6083 if (inode->delayed_node)
6084 btrfs_balance_delayed_items(fs_info);
6090 * This is a copy of file_update_time. We need this so we can return error on
6091 * ENOSPC for updating the inode in the case of file write and mmap writes.
6093 static int btrfs_update_time(struct inode *inode, int flags)
6095 struct btrfs_root *root = BTRFS_I(inode)->root;
6098 if (btrfs_root_readonly(root))
6101 dirty = inode_update_timestamps(inode, flags);
6102 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6106 * helper to find a free sequence number in a given directory. This current
6107 * code is very simple, later versions will do smarter things in the btree
6109 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6113 if (dir->index_cnt == (u64)-1) {
6114 ret = btrfs_inode_delayed_dir_index_count(dir);
6116 ret = btrfs_set_inode_index_count(dir);
6122 *index = dir->index_cnt;
6128 static int btrfs_insert_inode_locked(struct inode *inode)
6130 struct btrfs_iget_args args;
6132 args.ino = BTRFS_I(inode)->location.objectid;
6133 args.root = BTRFS_I(inode)->root;
6135 return insert_inode_locked4(inode,
6136 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6137 btrfs_find_actor, &args);
6140 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6141 unsigned int *trans_num_items)
6143 struct inode *dir = args->dir;
6144 struct inode *inode = args->inode;
6147 if (!args->orphan) {
6148 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6154 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6156 fscrypt_free_filename(&args->fname);
6160 /* 1 to add inode item */
6161 *trans_num_items = 1;
6162 /* 1 to add compression property */
6163 if (BTRFS_I(dir)->prop_compress)
6164 (*trans_num_items)++;
6165 /* 1 to add default ACL xattr */
6166 if (args->default_acl)
6167 (*trans_num_items)++;
6168 /* 1 to add access ACL xattr */
6170 (*trans_num_items)++;
6171 #ifdef CONFIG_SECURITY
6172 /* 1 to add LSM xattr */
6173 if (dir->i_security)
6174 (*trans_num_items)++;
6177 /* 1 to add orphan item */
6178 (*trans_num_items)++;
6182 * 1 to add dir index
6183 * 1 to update parent inode item
6185 * No need for 1 unit for the inode ref item because it is
6186 * inserted in a batch together with the inode item at
6187 * btrfs_create_new_inode().
6189 *trans_num_items += 3;
6194 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6196 posix_acl_release(args->acl);
6197 posix_acl_release(args->default_acl);
6198 fscrypt_free_filename(&args->fname);
6202 * Inherit flags from the parent inode.
6204 * Currently only the compression flags and the cow flags are inherited.
6206 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6212 if (flags & BTRFS_INODE_NOCOMPRESS) {
6213 inode->flags &= ~BTRFS_INODE_COMPRESS;
6214 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6215 } else if (flags & BTRFS_INODE_COMPRESS) {
6216 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6217 inode->flags |= BTRFS_INODE_COMPRESS;
6220 if (flags & BTRFS_INODE_NODATACOW) {
6221 inode->flags |= BTRFS_INODE_NODATACOW;
6222 if (S_ISREG(inode->vfs_inode.i_mode))
6223 inode->flags |= BTRFS_INODE_NODATASUM;
6226 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6229 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6230 struct btrfs_new_inode_args *args)
6232 struct timespec64 ts;
6233 struct inode *dir = args->dir;
6234 struct inode *inode = args->inode;
6235 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6236 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6237 struct btrfs_root *root;
6238 struct btrfs_inode_item *inode_item;
6239 struct btrfs_key *location;
6240 struct btrfs_path *path;
6242 struct btrfs_inode_ref *ref;
6243 struct btrfs_key key[2];
6245 struct btrfs_item_batch batch;
6249 path = btrfs_alloc_path();
6254 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6255 root = BTRFS_I(inode)->root;
6257 ret = btrfs_get_free_objectid(root, &objectid);
6260 inode->i_ino = objectid;
6264 * O_TMPFILE, set link count to 0, so that after this point, we
6265 * fill in an inode item with the correct link count.
6267 set_nlink(inode, 0);
6269 trace_btrfs_inode_request(dir);
6271 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6275 /* index_cnt is ignored for everything but a dir. */
6276 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6277 BTRFS_I(inode)->generation = trans->transid;
6278 inode->i_generation = BTRFS_I(inode)->generation;
6281 * We don't have any capability xattrs set here yet, shortcut any
6282 * queries for the xattrs here. If we add them later via the inode
6283 * security init path or any other path this flag will be cleared.
6285 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6288 * Subvolumes don't inherit flags from their parent directory.
6289 * Originally this was probably by accident, but we probably can't
6290 * change it now without compatibility issues.
6293 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6295 if (S_ISREG(inode->i_mode)) {
6296 if (btrfs_test_opt(fs_info, NODATASUM))
6297 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6298 if (btrfs_test_opt(fs_info, NODATACOW))
6299 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6300 BTRFS_INODE_NODATASUM;
6303 location = &BTRFS_I(inode)->location;
6304 location->objectid = objectid;
6305 location->offset = 0;
6306 location->type = BTRFS_INODE_ITEM_KEY;
6308 ret = btrfs_insert_inode_locked(inode);
6311 BTRFS_I(dir)->index_cnt--;
6316 * We could have gotten an inode number from somebody who was fsynced
6317 * and then removed in this same transaction, so let's just set full
6318 * sync since it will be a full sync anyway and this will blow away the
6319 * old info in the log.
6321 btrfs_set_inode_full_sync(BTRFS_I(inode));
6323 key[0].objectid = objectid;
6324 key[0].type = BTRFS_INODE_ITEM_KEY;
6327 sizes[0] = sizeof(struct btrfs_inode_item);
6329 if (!args->orphan) {
6331 * Start new inodes with an inode_ref. This is slightly more
6332 * efficient for small numbers of hard links since they will
6333 * be packed into one item. Extended refs will kick in if we
6334 * add more hard links than can fit in the ref item.
6336 key[1].objectid = objectid;
6337 key[1].type = BTRFS_INODE_REF_KEY;
6339 key[1].offset = objectid;
6340 sizes[1] = 2 + sizeof(*ref);
6342 key[1].offset = btrfs_ino(BTRFS_I(dir));
6343 sizes[1] = name->len + sizeof(*ref);
6347 batch.keys = &key[0];
6348 batch.data_sizes = &sizes[0];
6349 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6350 batch.nr = args->orphan ? 1 : 2;
6351 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6353 btrfs_abort_transaction(trans, ret);
6357 ts = simple_inode_init_ts(inode);
6358 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6359 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6362 * We're going to fill the inode item now, so at this point the inode
6363 * must be fully initialized.
6366 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6367 struct btrfs_inode_item);
6368 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6369 sizeof(*inode_item));
6370 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6372 if (!args->orphan) {
6373 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6374 struct btrfs_inode_ref);
6375 ptr = (unsigned long)(ref + 1);
6377 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6378 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6379 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6381 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6383 btrfs_set_inode_ref_index(path->nodes[0], ref,
6384 BTRFS_I(inode)->dir_index);
6385 write_extent_buffer(path->nodes[0], name->name, ptr,
6390 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6392 * We don't need the path anymore, plus inheriting properties, adding
6393 * ACLs, security xattrs, orphan item or adding the link, will result in
6394 * allocating yet another path. So just free our path.
6396 btrfs_free_path(path);
6400 struct inode *parent;
6403 * Subvolumes inherit properties from their parent subvolume,
6404 * not the directory they were created in.
6406 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6407 BTRFS_I(dir)->root);
6408 if (IS_ERR(parent)) {
6409 ret = PTR_ERR(parent);
6411 ret = btrfs_inode_inherit_props(trans, inode, parent);
6415 ret = btrfs_inode_inherit_props(trans, inode, dir);
6419 "error inheriting props for ino %llu (root %llu): %d",
6420 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6425 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6428 if (!args->subvol) {
6429 ret = btrfs_init_inode_security(trans, args);
6431 btrfs_abort_transaction(trans, ret);
6436 inode_tree_add(BTRFS_I(inode));
6438 trace_btrfs_inode_new(inode);
6439 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6441 btrfs_update_root_times(trans, root);
6444 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6446 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6447 0, BTRFS_I(inode)->dir_index);
6450 btrfs_abort_transaction(trans, ret);
6458 * discard_new_inode() calls iput(), but the caller owns the reference
6462 discard_new_inode(inode);
6464 btrfs_free_path(path);
6469 * utility function to add 'inode' into 'parent_inode' with
6470 * a give name and a given sequence number.
6471 * if 'add_backref' is true, also insert a backref from the
6472 * inode to the parent directory.
6474 int btrfs_add_link(struct btrfs_trans_handle *trans,
6475 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6476 const struct fscrypt_str *name, int add_backref, u64 index)
6479 struct btrfs_key key;
6480 struct btrfs_root *root = parent_inode->root;
6481 u64 ino = btrfs_ino(inode);
6482 u64 parent_ino = btrfs_ino(parent_inode);
6484 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6485 memcpy(&key, &inode->root->root_key, sizeof(key));
6488 key.type = BTRFS_INODE_ITEM_KEY;
6492 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6493 ret = btrfs_add_root_ref(trans, key.objectid,
6494 root->root_key.objectid, parent_ino,
6496 } else if (add_backref) {
6497 ret = btrfs_insert_inode_ref(trans, root, name,
6498 ino, parent_ino, index);
6501 /* Nothing to clean up yet */
6505 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6506 btrfs_inode_type(&inode->vfs_inode), index);
6507 if (ret == -EEXIST || ret == -EOVERFLOW)
6510 btrfs_abort_transaction(trans, ret);
6514 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6516 inode_inc_iversion(&parent_inode->vfs_inode);
6518 * If we are replaying a log tree, we do not want to update the mtime
6519 * and ctime of the parent directory with the current time, since the
6520 * log replay procedure is responsible for setting them to their correct
6521 * values (the ones it had when the fsync was done).
6523 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6524 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6525 inode_set_ctime_current(&parent_inode->vfs_inode));
6527 ret = btrfs_update_inode(trans, parent_inode);
6529 btrfs_abort_transaction(trans, ret);
6533 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6536 err = btrfs_del_root_ref(trans, key.objectid,
6537 root->root_key.objectid, parent_ino,
6538 &local_index, name);
6540 btrfs_abort_transaction(trans, err);
6541 } else if (add_backref) {
6545 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6548 btrfs_abort_transaction(trans, err);
6551 /* Return the original error code */
6555 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6556 struct inode *inode)
6558 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6559 struct btrfs_root *root = BTRFS_I(dir)->root;
6560 struct btrfs_new_inode_args new_inode_args = {
6565 unsigned int trans_num_items;
6566 struct btrfs_trans_handle *trans;
6569 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6573 trans = btrfs_start_transaction(root, trans_num_items);
6574 if (IS_ERR(trans)) {
6575 err = PTR_ERR(trans);
6576 goto out_new_inode_args;
6579 err = btrfs_create_new_inode(trans, &new_inode_args);
6581 d_instantiate_new(dentry, inode);
6583 btrfs_end_transaction(trans);
6584 btrfs_btree_balance_dirty(fs_info);
6586 btrfs_new_inode_args_destroy(&new_inode_args);
6593 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6594 struct dentry *dentry, umode_t mode, dev_t rdev)
6596 struct inode *inode;
6598 inode = new_inode(dir->i_sb);
6601 inode_init_owner(idmap, inode, dir, mode);
6602 inode->i_op = &btrfs_special_inode_operations;
6603 init_special_inode(inode, inode->i_mode, rdev);
6604 return btrfs_create_common(dir, dentry, inode);
6607 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6608 struct dentry *dentry, umode_t mode, bool excl)
6610 struct inode *inode;
6612 inode = new_inode(dir->i_sb);
6615 inode_init_owner(idmap, inode, dir, mode);
6616 inode->i_fop = &btrfs_file_operations;
6617 inode->i_op = &btrfs_file_inode_operations;
6618 inode->i_mapping->a_ops = &btrfs_aops;
6619 return btrfs_create_common(dir, dentry, inode);
6622 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6623 struct dentry *dentry)
6625 struct btrfs_trans_handle *trans = NULL;
6626 struct btrfs_root *root = BTRFS_I(dir)->root;
6627 struct inode *inode = d_inode(old_dentry);
6628 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6629 struct fscrypt_name fname;
6634 /* do not allow sys_link's with other subvols of the same device */
6635 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6638 if (inode->i_nlink >= BTRFS_LINK_MAX)
6641 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6645 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6650 * 2 items for inode and inode ref
6651 * 2 items for dir items
6652 * 1 item for parent inode
6653 * 1 item for orphan item deletion if O_TMPFILE
6655 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6656 if (IS_ERR(trans)) {
6657 err = PTR_ERR(trans);
6662 /* There are several dir indexes for this inode, clear the cache. */
6663 BTRFS_I(inode)->dir_index = 0ULL;
6665 inode_inc_iversion(inode);
6666 inode_set_ctime_current(inode);
6668 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6670 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6671 &fname.disk_name, 1, index);
6676 struct dentry *parent = dentry->d_parent;
6678 err = btrfs_update_inode(trans, BTRFS_I(inode));
6681 if (inode->i_nlink == 1) {
6683 * If new hard link count is 1, it's a file created
6684 * with open(2) O_TMPFILE flag.
6686 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6690 d_instantiate(dentry, inode);
6691 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6695 fscrypt_free_filename(&fname);
6697 btrfs_end_transaction(trans);
6699 inode_dec_link_count(inode);
6702 btrfs_btree_balance_dirty(fs_info);
6706 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6707 struct dentry *dentry, umode_t mode)
6709 struct inode *inode;
6711 inode = new_inode(dir->i_sb);
6714 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6715 inode->i_op = &btrfs_dir_inode_operations;
6716 inode->i_fop = &btrfs_dir_file_operations;
6717 return btrfs_create_common(dir, dentry, inode);
6720 static noinline int uncompress_inline(struct btrfs_path *path,
6722 struct btrfs_file_extent_item *item)
6725 struct extent_buffer *leaf = path->nodes[0];
6728 unsigned long inline_size;
6732 compress_type = btrfs_file_extent_compression(leaf, item);
6733 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6734 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6735 tmp = kmalloc(inline_size, GFP_NOFS);
6738 ptr = btrfs_file_extent_inline_start(item);
6740 read_extent_buffer(leaf, tmp, ptr, inline_size);
6742 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6743 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6746 * decompression code contains a memset to fill in any space between the end
6747 * of the uncompressed data and the end of max_size in case the decompressed
6748 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6749 * the end of an inline extent and the beginning of the next block, so we
6750 * cover that region here.
6753 if (max_size < PAGE_SIZE)
6754 memzero_page(page, max_size, PAGE_SIZE - max_size);
6759 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6762 struct btrfs_file_extent_item *fi;
6766 if (!page || PageUptodate(page))
6769 ASSERT(page_offset(page) == 0);
6771 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6772 struct btrfs_file_extent_item);
6773 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6774 return uncompress_inline(path, page, fi);
6776 copy_size = min_t(u64, PAGE_SIZE,
6777 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6778 kaddr = kmap_local_page(page);
6779 read_extent_buffer(path->nodes[0], kaddr,
6780 btrfs_file_extent_inline_start(fi), copy_size);
6781 kunmap_local(kaddr);
6782 if (copy_size < PAGE_SIZE)
6783 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6788 * Lookup the first extent overlapping a range in a file.
6790 * @inode: file to search in
6791 * @page: page to read extent data into if the extent is inline
6792 * @start: file offset
6793 * @len: length of range starting at @start
6795 * Return the first &struct extent_map which overlaps the given range, reading
6796 * it from the B-tree and caching it if necessary. Note that there may be more
6797 * extents which overlap the given range after the returned extent_map.
6799 * If @page is not NULL and the extent is inline, this also reads the extent
6800 * data directly into the page and marks the extent up to date in the io_tree.
6802 * Return: ERR_PTR on error, non-NULL extent_map on success.
6804 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6805 struct page *page, u64 start, u64 len)
6807 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6809 u64 extent_start = 0;
6811 u64 objectid = btrfs_ino(inode);
6812 int extent_type = -1;
6813 struct btrfs_path *path = NULL;
6814 struct btrfs_root *root = inode->root;
6815 struct btrfs_file_extent_item *item;
6816 struct extent_buffer *leaf;
6817 struct btrfs_key found_key;
6818 struct extent_map *em = NULL;
6819 struct extent_map_tree *em_tree = &inode->extent_tree;
6821 read_lock(&em_tree->lock);
6822 em = lookup_extent_mapping(em_tree, start, len);
6823 read_unlock(&em_tree->lock);
6826 if (em->start > start || em->start + em->len <= start)
6827 free_extent_map(em);
6828 else if (em->block_start == EXTENT_MAP_INLINE && page)
6829 free_extent_map(em);
6833 em = alloc_extent_map();
6838 em->start = EXTENT_MAP_HOLE;
6839 em->orig_start = EXTENT_MAP_HOLE;
6841 em->block_len = (u64)-1;
6843 path = btrfs_alloc_path();
6849 /* Chances are we'll be called again, so go ahead and do readahead */
6850 path->reada = READA_FORWARD;
6853 * The same explanation in load_free_space_cache applies here as well,
6854 * we only read when we're loading the free space cache, and at that
6855 * point the commit_root has everything we need.
6857 if (btrfs_is_free_space_inode(inode)) {
6858 path->search_commit_root = 1;
6859 path->skip_locking = 1;
6862 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6865 } else if (ret > 0) {
6866 if (path->slots[0] == 0)
6872 leaf = path->nodes[0];
6873 item = btrfs_item_ptr(leaf, path->slots[0],
6874 struct btrfs_file_extent_item);
6875 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6876 if (found_key.objectid != objectid ||
6877 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6879 * If we backup past the first extent we want to move forward
6880 * and see if there is an extent in front of us, otherwise we'll
6881 * say there is a hole for our whole search range which can
6888 extent_type = btrfs_file_extent_type(leaf, item);
6889 extent_start = found_key.offset;
6890 extent_end = btrfs_file_extent_end(path);
6891 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6892 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6893 /* Only regular file could have regular/prealloc extent */
6894 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6897 "regular/prealloc extent found for non-regular inode %llu",
6901 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6903 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6904 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6909 if (start >= extent_end) {
6911 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6912 ret = btrfs_next_leaf(root, path);
6918 leaf = path->nodes[0];
6920 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6921 if (found_key.objectid != objectid ||
6922 found_key.type != BTRFS_EXTENT_DATA_KEY)
6924 if (start + len <= found_key.offset)
6926 if (start > found_key.offset)
6929 /* New extent overlaps with existing one */
6931 em->orig_start = start;
6932 em->len = found_key.offset - start;
6933 em->block_start = EXTENT_MAP_HOLE;
6937 btrfs_extent_item_to_extent_map(inode, path, item, em);
6939 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6940 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6942 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6944 * Inline extent can only exist at file offset 0. This is
6945 * ensured by tree-checker and inline extent creation path.
6946 * Thus all members representing file offsets should be zero.
6948 ASSERT(extent_start == 0);
6949 ASSERT(em->start == 0);
6952 * btrfs_extent_item_to_extent_map() should have properly
6953 * initialized em members already.
6955 * Other members are not utilized for inline extents.
6957 ASSERT(em->block_start == EXTENT_MAP_INLINE);
6958 ASSERT(em->len == fs_info->sectorsize);
6960 ret = read_inline_extent(inode, path, page);
6967 em->orig_start = start;
6969 em->block_start = EXTENT_MAP_HOLE;
6972 btrfs_release_path(path);
6973 if (em->start > start || extent_map_end(em) <= start) {
6975 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6976 em->start, em->len, start, len);
6981 write_lock(&em_tree->lock);
6982 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6983 write_unlock(&em_tree->lock);
6985 btrfs_free_path(path);
6987 trace_btrfs_get_extent(root, inode, em);
6990 free_extent_map(em);
6991 return ERR_PTR(ret);
6996 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6997 struct btrfs_dio_data *dio_data,
7000 const u64 orig_start,
7001 const u64 block_start,
7002 const u64 block_len,
7003 const u64 orig_block_len,
7004 const u64 ram_bytes,
7007 struct extent_map *em = NULL;
7008 struct btrfs_ordered_extent *ordered;
7010 if (type != BTRFS_ORDERED_NOCOW) {
7011 em = create_io_em(inode, start, len, orig_start, block_start,
7012 block_len, orig_block_len, ram_bytes,
7013 BTRFS_COMPRESS_NONE, /* compress_type */
7018 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
7019 block_start, block_len, 0,
7021 (1 << BTRFS_ORDERED_DIRECT),
7022 BTRFS_COMPRESS_NONE);
7023 if (IS_ERR(ordered)) {
7025 free_extent_map(em);
7026 btrfs_drop_extent_map_range(inode, start,
7027 start + len - 1, false);
7029 em = ERR_CAST(ordered);
7031 ASSERT(!dio_data->ordered);
7032 dio_data->ordered = ordered;
7039 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7040 struct btrfs_dio_data *dio_data,
7043 struct btrfs_root *root = inode->root;
7044 struct btrfs_fs_info *fs_info = root->fs_info;
7045 struct extent_map *em;
7046 struct btrfs_key ins;
7050 alloc_hint = get_extent_allocation_hint(inode, start, len);
7052 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7053 0, alloc_hint, &ins, 1, 1);
7054 if (ret == -EAGAIN) {
7055 ASSERT(btrfs_is_zoned(fs_info));
7056 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7057 TASK_UNINTERRUPTIBLE);
7061 return ERR_PTR(ret);
7063 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7064 ins.objectid, ins.offset, ins.offset,
7065 ins.offset, BTRFS_ORDERED_REGULAR);
7066 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7068 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7074 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7076 struct btrfs_block_group *block_group;
7077 bool readonly = false;
7079 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7080 if (!block_group || block_group->ro)
7083 btrfs_put_block_group(block_group);
7088 * Check if we can do nocow write into the range [@offset, @offset + @len)
7090 * @offset: File offset
7091 * @len: The length to write, will be updated to the nocow writeable
7093 * @orig_start: (optional) Return the original file offset of the file extent
7094 * @orig_len: (optional) Return the original on-disk length of the file extent
7095 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7096 * @strict: if true, omit optimizations that might force us into unnecessary
7097 * cow. e.g., don't trust generation number.
7100 * >0 and update @len if we can do nocow write
7101 * 0 if we can't do nocow write
7102 * <0 if error happened
7104 * NOTE: This only checks the file extents, caller is responsible to wait for
7105 * any ordered extents.
7107 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7108 u64 *orig_start, u64 *orig_block_len,
7109 u64 *ram_bytes, bool nowait, bool strict)
7111 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7112 struct can_nocow_file_extent_args nocow_args = { 0 };
7113 struct btrfs_path *path;
7115 struct extent_buffer *leaf;
7116 struct btrfs_root *root = BTRFS_I(inode)->root;
7117 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7118 struct btrfs_file_extent_item *fi;
7119 struct btrfs_key key;
7122 path = btrfs_alloc_path();
7125 path->nowait = nowait;
7127 ret = btrfs_lookup_file_extent(NULL, root, path,
7128 btrfs_ino(BTRFS_I(inode)), offset, 0);
7133 if (path->slots[0] == 0) {
7134 /* can't find the item, must cow */
7141 leaf = path->nodes[0];
7142 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7143 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7144 key.type != BTRFS_EXTENT_DATA_KEY) {
7145 /* not our file or wrong item type, must cow */
7149 if (key.offset > offset) {
7150 /* Wrong offset, must cow */
7154 if (btrfs_file_extent_end(path) <= offset)
7157 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7158 found_type = btrfs_file_extent_type(leaf, fi);
7160 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7162 nocow_args.start = offset;
7163 nocow_args.end = offset + *len - 1;
7164 nocow_args.strict = strict;
7165 nocow_args.free_path = true;
7167 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7168 /* can_nocow_file_extent() has freed the path. */
7172 /* Treat errors as not being able to NOCOW. */
7178 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7181 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7182 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7185 range_end = round_up(offset + nocow_args.num_bytes,
7186 root->fs_info->sectorsize) - 1;
7187 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7195 *orig_start = key.offset - nocow_args.extent_offset;
7197 *orig_block_len = nocow_args.disk_num_bytes;
7199 *len = nocow_args.num_bytes;
7202 btrfs_free_path(path);
7206 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7207 struct extent_state **cached_state,
7208 unsigned int iomap_flags)
7210 const bool writing = (iomap_flags & IOMAP_WRITE);
7211 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7212 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7213 struct btrfs_ordered_extent *ordered;
7218 if (!try_lock_extent(io_tree, lockstart, lockend,
7222 lock_extent(io_tree, lockstart, lockend, cached_state);
7225 * We're concerned with the entire range that we're going to be
7226 * doing DIO to, so we need to make sure there's no ordered
7227 * extents in this range.
7229 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7230 lockend - lockstart + 1);
7233 * We need to make sure there are no buffered pages in this
7234 * range either, we could have raced between the invalidate in
7235 * generic_file_direct_write and locking the extent. The
7236 * invalidate needs to happen so that reads after a write do not
7240 (!writing || !filemap_range_has_page(inode->i_mapping,
7241 lockstart, lockend)))
7244 unlock_extent(io_tree, lockstart, lockend, cached_state);
7248 btrfs_put_ordered_extent(ordered);
7253 * If we are doing a DIO read and the ordered extent we
7254 * found is for a buffered write, we can not wait for it
7255 * to complete and retry, because if we do so we can
7256 * deadlock with concurrent buffered writes on page
7257 * locks. This happens only if our DIO read covers more
7258 * than one extent map, if at this point has already
7259 * created an ordered extent for a previous extent map
7260 * and locked its range in the inode's io tree, and a
7261 * concurrent write against that previous extent map's
7262 * range and this range started (we unlock the ranges
7263 * in the io tree only when the bios complete and
7264 * buffered writes always lock pages before attempting
7265 * to lock range in the io tree).
7268 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7269 btrfs_start_ordered_extent(ordered);
7271 ret = nowait ? -EAGAIN : -ENOTBLK;
7272 btrfs_put_ordered_extent(ordered);
7275 * We could trigger writeback for this range (and wait
7276 * for it to complete) and then invalidate the pages for
7277 * this range (through invalidate_inode_pages2_range()),
7278 * but that can lead us to a deadlock with a concurrent
7279 * call to readahead (a buffered read or a defrag call
7280 * triggered a readahead) on a page lock due to an
7281 * ordered dio extent we created before but did not have
7282 * yet a corresponding bio submitted (whence it can not
7283 * complete), which makes readahead wait for that
7284 * ordered extent to complete while holding a lock on
7287 ret = nowait ? -EAGAIN : -ENOTBLK;
7299 /* The callers of this must take lock_extent() */
7300 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7301 u64 len, u64 orig_start, u64 block_start,
7302 u64 block_len, u64 orig_block_len,
7303 u64 ram_bytes, int compress_type,
7306 struct extent_map *em;
7309 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7310 type == BTRFS_ORDERED_COMPRESSED ||
7311 type == BTRFS_ORDERED_NOCOW ||
7312 type == BTRFS_ORDERED_REGULAR);
7314 em = alloc_extent_map();
7316 return ERR_PTR(-ENOMEM);
7319 em->orig_start = orig_start;
7321 em->block_len = block_len;
7322 em->block_start = block_start;
7323 em->orig_block_len = orig_block_len;
7324 em->ram_bytes = ram_bytes;
7325 em->generation = -1;
7326 em->flags |= EXTENT_FLAG_PINNED;
7327 if (type == BTRFS_ORDERED_PREALLOC)
7328 em->flags |= EXTENT_FLAG_FILLING;
7329 else if (type == BTRFS_ORDERED_COMPRESSED)
7330 extent_map_set_compression(em, compress_type);
7332 ret = btrfs_replace_extent_map_range(inode, em, true);
7334 free_extent_map(em);
7335 return ERR_PTR(ret);
7338 /* em got 2 refs now, callers needs to do free_extent_map once. */
7343 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7344 struct inode *inode,
7345 struct btrfs_dio_data *dio_data,
7346 u64 start, u64 *lenp,
7347 unsigned int iomap_flags)
7349 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7350 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7351 struct extent_map *em = *map;
7353 u64 block_start, orig_start, orig_block_len, ram_bytes;
7354 struct btrfs_block_group *bg;
7355 bool can_nocow = false;
7356 bool space_reserved = false;
7362 * We don't allocate a new extent in the following cases
7364 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7366 * 2) The extent is marked as PREALLOC. We're good to go here and can
7367 * just use the extent.
7370 if ((em->flags & EXTENT_FLAG_PREALLOC) ||
7371 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7372 em->block_start != EXTENT_MAP_HOLE)) {
7373 if (em->flags & EXTENT_FLAG_PREALLOC)
7374 type = BTRFS_ORDERED_PREALLOC;
7376 type = BTRFS_ORDERED_NOCOW;
7377 len = min(len, em->len - (start - em->start));
7378 block_start = em->block_start + (start - em->start);
7380 if (can_nocow_extent(inode, start, &len, &orig_start,
7381 &orig_block_len, &ram_bytes, false, false) == 1) {
7382 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7390 struct extent_map *em2;
7392 /* We can NOCOW, so only need to reserve metadata space. */
7393 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7396 /* Our caller expects us to free the input extent map. */
7397 free_extent_map(em);
7399 btrfs_dec_nocow_writers(bg);
7400 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7404 space_reserved = true;
7406 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7407 orig_start, block_start,
7408 len, orig_block_len,
7410 btrfs_dec_nocow_writers(bg);
7411 if (type == BTRFS_ORDERED_PREALLOC) {
7412 free_extent_map(em);
7422 dio_data->nocow_done = true;
7424 /* Our caller expects us to free the input extent map. */
7425 free_extent_map(em);
7434 * If we could not allocate data space before locking the file
7435 * range and we can't do a NOCOW write, then we have to fail.
7437 if (!dio_data->data_space_reserved) {
7443 * We have to COW and we have already reserved data space before,
7444 * so now we reserve only metadata.
7446 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7450 space_reserved = true;
7452 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7458 len = min(len, em->len - (start - em->start));
7460 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7461 prev_len - len, true);
7465 * We have created our ordered extent, so we can now release our reservation
7466 * for an outstanding extent.
7468 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7471 * Need to update the i_size under the extent lock so buffered
7472 * readers will get the updated i_size when we unlock.
7474 if (start + len > i_size_read(inode))
7475 i_size_write(inode, start + len);
7477 if (ret && space_reserved) {
7478 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7479 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7485 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7486 loff_t length, unsigned int flags, struct iomap *iomap,
7487 struct iomap *srcmap)
7489 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7490 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7491 struct extent_map *em;
7492 struct extent_state *cached_state = NULL;
7493 struct btrfs_dio_data *dio_data = iter->private;
7494 u64 lockstart, lockend;
7495 const bool write = !!(flags & IOMAP_WRITE);
7498 const u64 data_alloc_len = length;
7499 bool unlock_extents = false;
7502 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7503 * we're NOWAIT we may submit a bio for a partial range and return
7504 * EIOCBQUEUED, which would result in an errant short read.
7506 * The best way to handle this would be to allow for partial completions
7507 * of iocb's, so we could submit the partial bio, return and fault in
7508 * the rest of the pages, and then submit the io for the rest of the
7509 * range. However we don't have that currently, so simply return
7510 * -EAGAIN at this point so that the normal path is used.
7512 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7516 * Cap the size of reads to that usually seen in buffered I/O as we need
7517 * to allocate a contiguous array for the checksums.
7520 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7523 lockend = start + len - 1;
7526 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7527 * enough if we've written compressed pages to this area, so we need to
7528 * flush the dirty pages again to make absolutely sure that any
7529 * outstanding dirty pages are on disk - the first flush only starts
7530 * compression on the data, while keeping the pages locked, so by the
7531 * time the second flush returns we know bios for the compressed pages
7532 * were submitted and finished, and the pages no longer under writeback.
7534 * If we have a NOWAIT request and we have any pages in the range that
7535 * are locked, likely due to compression still in progress, we don't want
7536 * to block on page locks. We also don't want to block on pages marked as
7537 * dirty or under writeback (same as for the non-compression case).
7538 * iomap_dio_rw() did the same check, but after that and before we got
7539 * here, mmap'ed writes may have happened or buffered reads started
7540 * (readpage() and readahead(), which lock pages), as we haven't locked
7541 * the file range yet.
7543 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7544 &BTRFS_I(inode)->runtime_flags)) {
7545 if (flags & IOMAP_NOWAIT) {
7546 if (filemap_range_needs_writeback(inode->i_mapping,
7547 lockstart, lockend))
7550 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7551 start + length - 1);
7557 memset(dio_data, 0, sizeof(*dio_data));
7560 * We always try to allocate data space and must do it before locking
7561 * the file range, to avoid deadlocks with concurrent writes to the same
7562 * range if the range has several extents and the writes don't expand the
7563 * current i_size (the inode lock is taken in shared mode). If we fail to
7564 * allocate data space here we continue and later, after locking the
7565 * file range, we fail with ENOSPC only if we figure out we can not do a
7568 if (write && !(flags & IOMAP_NOWAIT)) {
7569 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7570 &dio_data->data_reserved,
7571 start, data_alloc_len, false);
7573 dio_data->data_space_reserved = true;
7574 else if (ret && !(BTRFS_I(inode)->flags &
7575 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7580 * If this errors out it's because we couldn't invalidate pagecache for
7581 * this range and we need to fallback to buffered IO, or we are doing a
7582 * NOWAIT read/write and we need to block.
7584 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7588 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
7595 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7596 * io. INLINE is special, and we could probably kludge it in here, but
7597 * it's still buffered so for safety lets just fall back to the generic
7600 * For COMPRESSED we _have_ to read the entire extent in so we can
7601 * decompress it, so there will be buffering required no matter what we
7602 * do, so go ahead and fallback to buffered.
7604 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7605 * to buffered IO. Don't blame me, this is the price we pay for using
7608 if (extent_map_is_compressed(em) ||
7609 em->block_start == EXTENT_MAP_INLINE) {
7610 free_extent_map(em);
7612 * If we are in a NOWAIT context, return -EAGAIN in order to
7613 * fallback to buffered IO. This is not only because we can
7614 * block with buffered IO (no support for NOWAIT semantics at
7615 * the moment) but also to avoid returning short reads to user
7616 * space - this happens if we were able to read some data from
7617 * previous non-compressed extents and then when we fallback to
7618 * buffered IO, at btrfs_file_read_iter() by calling
7619 * filemap_read(), we fail to fault in pages for the read buffer,
7620 * in which case filemap_read() returns a short read (the number
7621 * of bytes previously read is > 0, so it does not return -EFAULT).
7623 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7627 len = min(len, em->len - (start - em->start));
7630 * If we have a NOWAIT request and the range contains multiple extents
7631 * (or a mix of extents and holes), then we return -EAGAIN to make the
7632 * caller fallback to a context where it can do a blocking (without
7633 * NOWAIT) request. This way we avoid doing partial IO and returning
7634 * success to the caller, which is not optimal for writes and for reads
7635 * it can result in unexpected behaviour for an application.
7637 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7638 * iomap_dio_rw(), we can end up returning less data then what the caller
7639 * asked for, resulting in an unexpected, and incorrect, short read.
7640 * That is, the caller asked to read N bytes and we return less than that,
7641 * which is wrong unless we are crossing EOF. This happens if we get a
7642 * page fault error when trying to fault in pages for the buffer that is
7643 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7644 * have previously submitted bios for other extents in the range, in
7645 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7646 * those bios have completed by the time we get the page fault error,
7647 * which we return back to our caller - we should only return EIOCBQUEUED
7648 * after we have submitted bios for all the extents in the range.
7650 if ((flags & IOMAP_NOWAIT) && len < length) {
7651 free_extent_map(em);
7657 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7658 start, &len, flags);
7661 unlock_extents = true;
7662 /* Recalc len in case the new em is smaller than requested */
7663 len = min(len, em->len - (start - em->start));
7664 if (dio_data->data_space_reserved) {
7666 u64 release_len = 0;
7668 if (dio_data->nocow_done) {
7669 release_offset = start;
7670 release_len = data_alloc_len;
7671 } else if (len < data_alloc_len) {
7672 release_offset = start + len;
7673 release_len = data_alloc_len - len;
7676 if (release_len > 0)
7677 btrfs_free_reserved_data_space(BTRFS_I(inode),
7678 dio_data->data_reserved,
7684 * We need to unlock only the end area that we aren't using.
7685 * The rest is going to be unlocked by the endio routine.
7687 lockstart = start + len;
7688 if (lockstart < lockend)
7689 unlock_extents = true;
7693 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7696 free_extent_state(cached_state);
7699 * Translate extent map information to iomap.
7700 * We trim the extents (and move the addr) even though iomap code does
7701 * that, since we have locked only the parts we are performing I/O in.
7703 if ((em->block_start == EXTENT_MAP_HOLE) ||
7704 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
7705 iomap->addr = IOMAP_NULL_ADDR;
7706 iomap->type = IOMAP_HOLE;
7708 iomap->addr = em->block_start + (start - em->start);
7709 iomap->type = IOMAP_MAPPED;
7711 iomap->offset = start;
7712 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7713 iomap->length = len;
7714 free_extent_map(em);
7719 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7722 if (dio_data->data_space_reserved) {
7723 btrfs_free_reserved_data_space(BTRFS_I(inode),
7724 dio_data->data_reserved,
7725 start, data_alloc_len);
7726 extent_changeset_free(dio_data->data_reserved);
7732 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7733 ssize_t written, unsigned int flags, struct iomap *iomap)
7735 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7736 struct btrfs_dio_data *dio_data = iter->private;
7737 size_t submitted = dio_data->submitted;
7738 const bool write = !!(flags & IOMAP_WRITE);
7741 if (!write && (iomap->type == IOMAP_HOLE)) {
7742 /* If reading from a hole, unlock and return */
7743 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7748 if (submitted < length) {
7750 length -= submitted;
7752 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7753 pos, length, false);
7755 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7756 pos + length - 1, NULL);
7760 btrfs_put_ordered_extent(dio_data->ordered);
7761 dio_data->ordered = NULL;
7765 extent_changeset_free(dio_data->data_reserved);
7769 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7771 struct btrfs_dio_private *dip =
7772 container_of(bbio, struct btrfs_dio_private, bbio);
7773 struct btrfs_inode *inode = bbio->inode;
7774 struct bio *bio = &bbio->bio;
7776 if (bio->bi_status) {
7777 btrfs_warn(inode->root->fs_info,
7778 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7779 btrfs_ino(inode), bio->bi_opf,
7780 dip->file_offset, dip->bytes, bio->bi_status);
7783 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7784 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7785 dip->file_offset, dip->bytes,
7788 unlock_extent(&inode->io_tree, dip->file_offset,
7789 dip->file_offset + dip->bytes - 1, NULL);
7792 bbio->bio.bi_private = bbio->private;
7793 iomap_dio_bio_end_io(bio);
7796 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7799 struct btrfs_bio *bbio = btrfs_bio(bio);
7800 struct btrfs_dio_private *dip =
7801 container_of(bbio, struct btrfs_dio_private, bbio);
7802 struct btrfs_dio_data *dio_data = iter->private;
7804 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7805 btrfs_dio_end_io, bio->bi_private);
7806 bbio->inode = BTRFS_I(iter->inode);
7807 bbio->file_offset = file_offset;
7809 dip->file_offset = file_offset;
7810 dip->bytes = bio->bi_iter.bi_size;
7812 dio_data->submitted += bio->bi_iter.bi_size;
7815 * Check if we are doing a partial write. If we are, we need to split
7816 * the ordered extent to match the submitted bio. Hang on to the
7817 * remaining unfinishable ordered_extent in dio_data so that it can be
7818 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7819 * remaining pages is blocked on the outstanding ordered extent.
7821 if (iter->flags & IOMAP_WRITE) {
7824 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7826 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7827 file_offset, dip->bytes,
7829 bio->bi_status = errno_to_blk_status(ret);
7830 iomap_dio_bio_end_io(bio);
7835 btrfs_submit_bio(bbio, 0);
7838 static const struct iomap_ops btrfs_dio_iomap_ops = {
7839 .iomap_begin = btrfs_dio_iomap_begin,
7840 .iomap_end = btrfs_dio_iomap_end,
7843 static const struct iomap_dio_ops btrfs_dio_ops = {
7844 .submit_io = btrfs_dio_submit_io,
7845 .bio_set = &btrfs_dio_bioset,
7848 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7850 struct btrfs_dio_data data = { 0 };
7852 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7853 IOMAP_DIO_PARTIAL, &data, done_before);
7856 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7859 struct btrfs_dio_data data = { 0 };
7861 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7862 IOMAP_DIO_PARTIAL, &data, done_before);
7865 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7868 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7871 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7876 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7877 * file range (0 to LLONG_MAX), but that is not enough if we have
7878 * compression enabled. The first filemap_fdatawrite_range() only kicks
7879 * in the compression of data (in an async thread) and will return
7880 * before the compression is done and writeback is started. A second
7881 * filemap_fdatawrite_range() is needed to wait for the compression to
7882 * complete and writeback to start. We also need to wait for ordered
7883 * extents to complete, because our fiemap implementation uses mainly
7884 * file extent items to list the extents, searching for extent maps
7885 * only for file ranges with holes or prealloc extents to figure out
7886 * if we have delalloc in those ranges.
7888 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7889 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7894 btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7897 * We did an initial flush to avoid holding the inode's lock while
7898 * triggering writeback and waiting for the completion of IO and ordered
7899 * extents. Now after we locked the inode we do it again, because it's
7900 * possible a new write may have happened in between those two steps.
7902 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7903 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7905 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7910 ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7911 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7916 static int btrfs_writepages(struct address_space *mapping,
7917 struct writeback_control *wbc)
7919 return extent_writepages(mapping, wbc);
7922 static void btrfs_readahead(struct readahead_control *rac)
7924 extent_readahead(rac);
7928 * For release_folio() and invalidate_folio() we have a race window where
7929 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7930 * If we continue to release/invalidate the page, we could cause use-after-free
7931 * for subpage spinlock. So this function is to spin and wait for subpage
7934 static void wait_subpage_spinlock(struct page *page)
7936 struct btrfs_fs_info *fs_info = page_to_fs_info(page);
7937 struct folio *folio = page_folio(page);
7938 struct btrfs_subpage *subpage;
7940 if (!btrfs_is_subpage(fs_info, page->mapping))
7943 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7944 subpage = folio_get_private(folio);
7947 * This may look insane as we just acquire the spinlock and release it,
7948 * without doing anything. But we just want to make sure no one is
7949 * still holding the subpage spinlock.
7950 * And since the page is not dirty nor writeback, and we have page
7951 * locked, the only possible way to hold a spinlock is from the endio
7952 * function to clear page writeback.
7954 * Here we just acquire the spinlock so that all existing callers
7955 * should exit and we're safe to release/invalidate the page.
7957 spin_lock_irq(&subpage->lock);
7958 spin_unlock_irq(&subpage->lock);
7961 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7963 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7966 wait_subpage_spinlock(&folio->page);
7967 clear_page_extent_mapped(&folio->page);
7972 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7974 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7976 return __btrfs_release_folio(folio, gfp_flags);
7979 #ifdef CONFIG_MIGRATION
7980 static int btrfs_migrate_folio(struct address_space *mapping,
7981 struct folio *dst, struct folio *src,
7982 enum migrate_mode mode)
7984 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7986 if (ret != MIGRATEPAGE_SUCCESS)
7989 if (folio_test_ordered(src)) {
7990 folio_clear_ordered(src);
7991 folio_set_ordered(dst);
7994 return MIGRATEPAGE_SUCCESS;
7997 #define btrfs_migrate_folio NULL
8000 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8003 struct btrfs_inode *inode = folio_to_inode(folio);
8004 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8005 struct extent_io_tree *tree = &inode->io_tree;
8006 struct extent_state *cached_state = NULL;
8007 u64 page_start = folio_pos(folio);
8008 u64 page_end = page_start + folio_size(folio) - 1;
8010 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8013 * We have folio locked so no new ordered extent can be created on this
8014 * page, nor bio can be submitted for this folio.
8016 * But already submitted bio can still be finished on this folio.
8017 * Furthermore, endio function won't skip folio which has Ordered
8018 * (Private2) already cleared, so it's possible for endio and
8019 * invalidate_folio to do the same ordered extent accounting twice
8022 * So here we wait for any submitted bios to finish, so that we won't
8023 * do double ordered extent accounting on the same folio.
8025 folio_wait_writeback(folio);
8026 wait_subpage_spinlock(&folio->page);
8029 * For subpage case, we have call sites like
8030 * btrfs_punch_hole_lock_range() which passes range not aligned to
8032 * If the range doesn't cover the full folio, we don't need to and
8033 * shouldn't clear page extent mapped, as folio->private can still
8034 * record subpage dirty bits for other part of the range.
8036 * For cases that invalidate the full folio even the range doesn't
8037 * cover the full folio, like invalidating the last folio, we're
8038 * still safe to wait for ordered extent to finish.
8040 if (!(offset == 0 && length == folio_size(folio))) {
8041 btrfs_release_folio(folio, GFP_NOFS);
8045 if (!inode_evicting)
8046 lock_extent(tree, page_start, page_end, &cached_state);
8049 while (cur < page_end) {
8050 struct btrfs_ordered_extent *ordered;
8053 u32 extra_flags = 0;
8055 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8056 page_end + 1 - cur);
8058 range_end = page_end;
8060 * No ordered extent covering this range, we are safe
8061 * to delete all extent states in the range.
8063 extra_flags = EXTENT_CLEAR_ALL_BITS;
8066 if (ordered->file_offset > cur) {
8068 * There is a range between [cur, oe->file_offset) not
8069 * covered by any ordered extent.
8070 * We are safe to delete all extent states, and handle
8071 * the ordered extent in the next iteration.
8073 range_end = ordered->file_offset - 1;
8074 extra_flags = EXTENT_CLEAR_ALL_BITS;
8078 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8080 ASSERT(range_end + 1 - cur < U32_MAX);
8081 range_len = range_end + 1 - cur;
8082 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
8084 * If Ordered (Private2) is cleared, it means endio has
8085 * already been executed for the range.
8086 * We can't delete the extent states as
8087 * btrfs_finish_ordered_io() may still use some of them.
8091 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
8094 * IO on this page will never be started, so we need to account
8095 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8096 * here, must leave that up for the ordered extent completion.
8098 * This will also unlock the range for incoming
8099 * btrfs_finish_ordered_io().
8101 if (!inode_evicting)
8102 clear_extent_bit(tree, cur, range_end,
8104 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8105 EXTENT_DEFRAG, &cached_state);
8107 spin_lock_irq(&inode->ordered_tree_lock);
8108 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8109 ordered->truncated_len = min(ordered->truncated_len,
8110 cur - ordered->file_offset);
8111 spin_unlock_irq(&inode->ordered_tree_lock);
8114 * If the ordered extent has finished, we're safe to delete all
8115 * the extent states of the range, otherwise
8116 * btrfs_finish_ordered_io() will get executed by endio for
8117 * other pages, so we can't delete extent states.
8119 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8120 cur, range_end + 1 - cur)) {
8121 btrfs_finish_ordered_io(ordered);
8123 * The ordered extent has finished, now we're again
8124 * safe to delete all extent states of the range.
8126 extra_flags = EXTENT_CLEAR_ALL_BITS;
8130 btrfs_put_ordered_extent(ordered);
8132 * Qgroup reserved space handler
8133 * Sector(s) here will be either:
8135 * 1) Already written to disk or bio already finished
8136 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8137 * Qgroup will be handled by its qgroup_record then.
8138 * btrfs_qgroup_free_data() call will do nothing here.
8140 * 2) Not written to disk yet
8141 * Then btrfs_qgroup_free_data() call will clear the
8142 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8143 * reserved data space.
8144 * Since the IO will never happen for this page.
8146 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8147 if (!inode_evicting) {
8148 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8149 EXTENT_DELALLOC | EXTENT_UPTODATE |
8150 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8151 extra_flags, &cached_state);
8153 cur = range_end + 1;
8156 * We have iterated through all ordered extents of the page, the page
8157 * should not have Ordered (Private2) anymore, or the above iteration
8158 * did something wrong.
8160 ASSERT(!folio_test_ordered(folio));
8161 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
8162 if (!inode_evicting)
8163 __btrfs_release_folio(folio, GFP_NOFS);
8164 clear_page_extent_mapped(&folio->page);
8168 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8169 * called from a page fault handler when a page is first dirtied. Hence we must
8170 * be careful to check for EOF conditions here. We set the page up correctly
8171 * for a written page which means we get ENOSPC checking when writing into
8172 * holes and correct delalloc and unwritten extent mapping on filesystems that
8173 * support these features.
8175 * We are not allowed to take the i_mutex here so we have to play games to
8176 * protect against truncate races as the page could now be beyond EOF. Because
8177 * truncate_setsize() writes the inode size before removing pages, once we have
8178 * the page lock we can determine safely if the page is beyond EOF. If it is not
8179 * beyond EOF, then the page is guaranteed safe against truncation until we
8182 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8184 struct page *page = vmf->page;
8185 struct folio *folio = page_folio(page);
8186 struct inode *inode = file_inode(vmf->vma->vm_file);
8187 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8188 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8189 struct btrfs_ordered_extent *ordered;
8190 struct extent_state *cached_state = NULL;
8191 struct extent_changeset *data_reserved = NULL;
8192 unsigned long zero_start;
8202 ASSERT(folio_order(folio) == 0);
8204 reserved_space = PAGE_SIZE;
8206 sb_start_pagefault(inode->i_sb);
8207 page_start = page_offset(page);
8208 page_end = page_start + PAGE_SIZE - 1;
8212 * Reserving delalloc space after obtaining the page lock can lead to
8213 * deadlock. For example, if a dirty page is locked by this function
8214 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8215 * dirty page write out, then the btrfs_writepages() function could
8216 * end up waiting indefinitely to get a lock on the page currently
8217 * being processed by btrfs_page_mkwrite() function.
8219 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8220 page_start, reserved_space);
8222 ret2 = file_update_time(vmf->vma->vm_file);
8226 ret = vmf_error(ret2);
8232 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8234 down_read(&BTRFS_I(inode)->i_mmap_lock);
8236 size = i_size_read(inode);
8238 if ((page->mapping != inode->i_mapping) ||
8239 (page_start >= size)) {
8240 /* page got truncated out from underneath us */
8243 wait_on_page_writeback(page);
8245 lock_extent(io_tree, page_start, page_end, &cached_state);
8246 ret2 = set_page_extent_mapped(page);
8248 ret = vmf_error(ret2);
8249 unlock_extent(io_tree, page_start, page_end, &cached_state);
8254 * we can't set the delalloc bits if there are pending ordered
8255 * extents. Drop our locks and wait for them to finish
8257 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8260 unlock_extent(io_tree, page_start, page_end, &cached_state);
8262 up_read(&BTRFS_I(inode)->i_mmap_lock);
8263 btrfs_start_ordered_extent(ordered);
8264 btrfs_put_ordered_extent(ordered);
8268 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8269 reserved_space = round_up(size - page_start,
8270 fs_info->sectorsize);
8271 if (reserved_space < PAGE_SIZE) {
8272 end = page_start + reserved_space - 1;
8273 btrfs_delalloc_release_space(BTRFS_I(inode),
8274 data_reserved, page_start,
8275 PAGE_SIZE - reserved_space, true);
8280 * page_mkwrite gets called when the page is firstly dirtied after it's
8281 * faulted in, but write(2) could also dirty a page and set delalloc
8282 * bits, thus in this case for space account reason, we still need to
8283 * clear any delalloc bits within this page range since we have to
8284 * reserve data&meta space before lock_page() (see above comments).
8286 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8287 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8288 EXTENT_DEFRAG, &cached_state);
8290 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8293 unlock_extent(io_tree, page_start, page_end, &cached_state);
8294 ret = VM_FAULT_SIGBUS;
8298 /* page is wholly or partially inside EOF */
8299 if (page_start + PAGE_SIZE > size)
8300 zero_start = offset_in_page(size);
8302 zero_start = PAGE_SIZE;
8304 if (zero_start != PAGE_SIZE)
8305 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8307 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
8308 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
8309 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
8311 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8313 unlock_extent(io_tree, page_start, page_end, &cached_state);
8314 up_read(&BTRFS_I(inode)->i_mmap_lock);
8316 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8317 sb_end_pagefault(inode->i_sb);
8318 extent_changeset_free(data_reserved);
8319 return VM_FAULT_LOCKED;
8323 up_read(&BTRFS_I(inode)->i_mmap_lock);
8325 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8326 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8327 reserved_space, (ret != 0));
8329 sb_end_pagefault(inode->i_sb);
8330 extent_changeset_free(data_reserved);
8334 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8336 struct btrfs_truncate_control control = {
8338 .ino = btrfs_ino(inode),
8339 .min_type = BTRFS_EXTENT_DATA_KEY,
8340 .clear_extent_range = true,
8342 struct btrfs_root *root = inode->root;
8343 struct btrfs_fs_info *fs_info = root->fs_info;
8344 struct btrfs_block_rsv *rsv;
8346 struct btrfs_trans_handle *trans;
8347 u64 mask = fs_info->sectorsize - 1;
8348 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8350 if (!skip_writeback) {
8351 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8352 inode->vfs_inode.i_size & (~mask),
8359 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8360 * things going on here:
8362 * 1) We need to reserve space to update our inode.
8364 * 2) We need to have something to cache all the space that is going to
8365 * be free'd up by the truncate operation, but also have some slack
8366 * space reserved in case it uses space during the truncate (thank you
8367 * very much snapshotting).
8369 * And we need these to be separate. The fact is we can use a lot of
8370 * space doing the truncate, and we have no earthly idea how much space
8371 * we will use, so we need the truncate reservation to be separate so it
8372 * doesn't end up using space reserved for updating the inode. We also
8373 * need to be able to stop the transaction and start a new one, which
8374 * means we need to be able to update the inode several times, and we
8375 * have no idea of knowing how many times that will be, so we can't just
8376 * reserve 1 item for the entirety of the operation, so that has to be
8377 * done separately as well.
8379 * So that leaves us with
8381 * 1) rsv - for the truncate reservation, which we will steal from the
8382 * transaction reservation.
8383 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8384 * updating the inode.
8386 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8389 rsv->size = min_size;
8390 rsv->failfast = true;
8393 * 1 for the truncate slack space
8394 * 1 for updating the inode.
8396 trans = btrfs_start_transaction(root, 2);
8397 if (IS_ERR(trans)) {
8398 ret = PTR_ERR(trans);
8402 /* Migrate the slack space for the truncate to our reserve */
8403 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8406 * We have reserved 2 metadata units when we started the transaction and
8407 * min_size matches 1 unit, so this should never fail, but if it does,
8408 * it's not critical we just fail truncation.
8411 btrfs_end_transaction(trans);
8415 trans->block_rsv = rsv;
8418 struct extent_state *cached_state = NULL;
8419 const u64 new_size = inode->vfs_inode.i_size;
8420 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8422 control.new_size = new_size;
8423 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8425 * We want to drop from the next block forward in case this new
8426 * size is not block aligned since we will be keeping the last
8427 * block of the extent just the way it is.
8429 btrfs_drop_extent_map_range(inode,
8430 ALIGN(new_size, fs_info->sectorsize),
8433 ret = btrfs_truncate_inode_items(trans, root, &control);
8435 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8436 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8438 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8440 trans->block_rsv = &fs_info->trans_block_rsv;
8441 if (ret != -ENOSPC && ret != -EAGAIN)
8444 ret = btrfs_update_inode(trans, inode);
8448 btrfs_end_transaction(trans);
8449 btrfs_btree_balance_dirty(fs_info);
8451 trans = btrfs_start_transaction(root, 2);
8452 if (IS_ERR(trans)) {
8453 ret = PTR_ERR(trans);
8458 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8459 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8460 rsv, min_size, false);
8462 * We have reserved 2 metadata units when we started the
8463 * transaction and min_size matches 1 unit, so this should never
8464 * fail, but if it does, it's not critical we just fail truncation.
8469 trans->block_rsv = rsv;
8473 * We can't call btrfs_truncate_block inside a trans handle as we could
8474 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8475 * know we've truncated everything except the last little bit, and can
8476 * do btrfs_truncate_block and then update the disk_i_size.
8478 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8479 btrfs_end_transaction(trans);
8480 btrfs_btree_balance_dirty(fs_info);
8482 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8485 trans = btrfs_start_transaction(root, 1);
8486 if (IS_ERR(trans)) {
8487 ret = PTR_ERR(trans);
8490 btrfs_inode_safe_disk_i_size_write(inode, 0);
8496 trans->block_rsv = &fs_info->trans_block_rsv;
8497 ret2 = btrfs_update_inode(trans, inode);
8501 ret2 = btrfs_end_transaction(trans);
8504 btrfs_btree_balance_dirty(fs_info);
8507 btrfs_free_block_rsv(fs_info, rsv);
8509 * So if we truncate and then write and fsync we normally would just
8510 * write the extents that changed, which is a problem if we need to
8511 * first truncate that entire inode. So set this flag so we write out
8512 * all of the extents in the inode to the sync log so we're completely
8515 * If no extents were dropped or trimmed we don't need to force the next
8516 * fsync to truncate all the inode's items from the log and re-log them
8517 * all. This means the truncate operation did not change the file size,
8518 * or changed it to a smaller size but there was only an implicit hole
8519 * between the old i_size and the new i_size, and there were no prealloc
8520 * extents beyond i_size to drop.
8522 if (control.extents_found > 0)
8523 btrfs_set_inode_full_sync(inode);
8528 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8531 struct inode *inode;
8533 inode = new_inode(dir->i_sb);
8536 * Subvolumes don't inherit the sgid bit or the parent's gid if
8537 * the parent's sgid bit is set. This is probably a bug.
8539 inode_init_owner(idmap, inode, NULL,
8540 S_IFDIR | (~current_umask() & S_IRWXUGO));
8541 inode->i_op = &btrfs_dir_inode_operations;
8542 inode->i_fop = &btrfs_dir_file_operations;
8547 struct inode *btrfs_alloc_inode(struct super_block *sb)
8549 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8550 struct btrfs_inode *ei;
8551 struct inode *inode;
8552 struct extent_io_tree *file_extent_tree = NULL;
8554 /* Self tests may pass a NULL fs_info. */
8555 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8556 file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
8557 if (!file_extent_tree)
8561 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8563 kfree(file_extent_tree);
8570 ei->last_sub_trans = 0;
8571 ei->logged_trans = 0;
8572 ei->delalloc_bytes = 0;
8573 ei->new_delalloc_bytes = 0;
8574 ei->defrag_bytes = 0;
8575 ei->disk_i_size = 0;
8579 ei->index_cnt = (u64)-1;
8581 ei->last_unlink_trans = 0;
8582 ei->last_reflink_trans = 0;
8583 ei->last_log_commit = 0;
8585 spin_lock_init(&ei->lock);
8586 ei->outstanding_extents = 0;
8587 if (sb->s_magic != BTRFS_TEST_MAGIC)
8588 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8589 BTRFS_BLOCK_RSV_DELALLOC);
8590 ei->runtime_flags = 0;
8591 ei->prop_compress = BTRFS_COMPRESS_NONE;
8592 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8594 ei->delayed_node = NULL;
8596 ei->i_otime_sec = 0;
8597 ei->i_otime_nsec = 0;
8599 inode = &ei->vfs_inode;
8600 extent_map_tree_init(&ei->extent_tree);
8602 /* This io tree sets the valid inode. */
8603 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8604 ei->io_tree.inode = ei;
8606 ei->file_extent_tree = file_extent_tree;
8607 if (file_extent_tree) {
8608 extent_io_tree_init(fs_info, ei->file_extent_tree,
8609 IO_TREE_INODE_FILE_EXTENT);
8610 /* Lockdep class is set only for the file extent tree. */
8611 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8613 mutex_init(&ei->log_mutex);
8614 spin_lock_init(&ei->ordered_tree_lock);
8615 ei->ordered_tree = RB_ROOT;
8616 ei->ordered_tree_last = NULL;
8617 INIT_LIST_HEAD(&ei->delalloc_inodes);
8618 INIT_LIST_HEAD(&ei->delayed_iput);
8619 RB_CLEAR_NODE(&ei->rb_node);
8620 init_rwsem(&ei->i_mmap_lock);
8625 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8626 void btrfs_test_destroy_inode(struct inode *inode)
8628 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8629 kfree(BTRFS_I(inode)->file_extent_tree);
8630 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8634 void btrfs_free_inode(struct inode *inode)
8636 kfree(BTRFS_I(inode)->file_extent_tree);
8637 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8640 void btrfs_destroy_inode(struct inode *vfs_inode)
8642 struct btrfs_ordered_extent *ordered;
8643 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8644 struct btrfs_root *root = inode->root;
8645 bool freespace_inode;
8647 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8648 WARN_ON(vfs_inode->i_data.nrpages);
8649 WARN_ON(inode->block_rsv.reserved);
8650 WARN_ON(inode->block_rsv.size);
8651 WARN_ON(inode->outstanding_extents);
8652 if (!S_ISDIR(vfs_inode->i_mode)) {
8653 WARN_ON(inode->delalloc_bytes);
8654 WARN_ON(inode->new_delalloc_bytes);
8656 WARN_ON(inode->csum_bytes);
8657 WARN_ON(inode->defrag_bytes);
8660 * This can happen where we create an inode, but somebody else also
8661 * created the same inode and we need to destroy the one we already
8668 * If this is a free space inode do not take the ordered extents lockdep
8671 freespace_inode = btrfs_is_free_space_inode(inode);
8674 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8678 btrfs_err(root->fs_info,
8679 "found ordered extent %llu %llu on inode cleanup",
8680 ordered->file_offset, ordered->num_bytes);
8682 if (!freespace_inode)
8683 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8685 btrfs_remove_ordered_extent(inode, ordered);
8686 btrfs_put_ordered_extent(ordered);
8687 btrfs_put_ordered_extent(ordered);
8690 btrfs_qgroup_check_reserved_leak(inode);
8691 inode_tree_del(inode);
8692 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8693 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8694 btrfs_put_root(inode->root);
8697 int btrfs_drop_inode(struct inode *inode)
8699 struct btrfs_root *root = BTRFS_I(inode)->root;
8704 /* the snap/subvol tree is on deleting */
8705 if (btrfs_root_refs(&root->root_item) == 0)
8708 return generic_drop_inode(inode);
8711 static void init_once(void *foo)
8713 struct btrfs_inode *ei = foo;
8715 inode_init_once(&ei->vfs_inode);
8718 void __cold btrfs_destroy_cachep(void)
8721 * Make sure all delayed rcu free inodes are flushed before we
8725 bioset_exit(&btrfs_dio_bioset);
8726 kmem_cache_destroy(btrfs_inode_cachep);
8729 int __init btrfs_init_cachep(void)
8731 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8732 sizeof(struct btrfs_inode), 0,
8733 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
8735 if (!btrfs_inode_cachep)
8738 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8739 offsetof(struct btrfs_dio_private, bbio.bio),
8745 btrfs_destroy_cachep();
8749 static int btrfs_getattr(struct mnt_idmap *idmap,
8750 const struct path *path, struct kstat *stat,
8751 u32 request_mask, unsigned int flags)
8755 struct inode *inode = d_inode(path->dentry);
8756 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8757 u32 bi_flags = BTRFS_I(inode)->flags;
8758 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8760 stat->result_mask |= STATX_BTIME;
8761 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8762 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8763 if (bi_flags & BTRFS_INODE_APPEND)
8764 stat->attributes |= STATX_ATTR_APPEND;
8765 if (bi_flags & BTRFS_INODE_COMPRESS)
8766 stat->attributes |= STATX_ATTR_COMPRESSED;
8767 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8768 stat->attributes |= STATX_ATTR_IMMUTABLE;
8769 if (bi_flags & BTRFS_INODE_NODUMP)
8770 stat->attributes |= STATX_ATTR_NODUMP;
8771 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8772 stat->attributes |= STATX_ATTR_VERITY;
8774 stat->attributes_mask |= (STATX_ATTR_APPEND |
8775 STATX_ATTR_COMPRESSED |
8776 STATX_ATTR_IMMUTABLE |
8779 generic_fillattr(idmap, request_mask, inode, stat);
8780 stat->dev = BTRFS_I(inode)->root->anon_dev;
8782 spin_lock(&BTRFS_I(inode)->lock);
8783 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8784 inode_bytes = inode_get_bytes(inode);
8785 spin_unlock(&BTRFS_I(inode)->lock);
8786 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8787 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8791 static int btrfs_rename_exchange(struct inode *old_dir,
8792 struct dentry *old_dentry,
8793 struct inode *new_dir,
8794 struct dentry *new_dentry)
8796 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8797 struct btrfs_trans_handle *trans;
8798 unsigned int trans_num_items;
8799 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8800 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8801 struct inode *new_inode = new_dentry->d_inode;
8802 struct inode *old_inode = old_dentry->d_inode;
8803 struct btrfs_rename_ctx old_rename_ctx;
8804 struct btrfs_rename_ctx new_rename_ctx;
8805 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8806 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8811 bool need_abort = false;
8812 struct fscrypt_name old_fname, new_fname;
8813 struct fscrypt_str *old_name, *new_name;
8816 * For non-subvolumes allow exchange only within one subvolume, in the
8817 * same inode namespace. Two subvolumes (represented as directory) can
8818 * be exchanged as they're a logical link and have a fixed inode number.
8821 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8822 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8825 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8829 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8831 fscrypt_free_filename(&old_fname);
8835 old_name = &old_fname.disk_name;
8836 new_name = &new_fname.disk_name;
8838 /* close the race window with snapshot create/destroy ioctl */
8839 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8840 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8841 down_read(&fs_info->subvol_sem);
8845 * 1 to remove old dir item
8846 * 1 to remove old dir index
8847 * 1 to add new dir item
8848 * 1 to add new dir index
8849 * 1 to update parent inode
8851 * If the parents are the same, we only need to account for one
8853 trans_num_items = (old_dir == new_dir ? 9 : 10);
8854 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8856 * 1 to remove old root ref
8857 * 1 to remove old root backref
8858 * 1 to add new root ref
8859 * 1 to add new root backref
8861 trans_num_items += 4;
8864 * 1 to update inode item
8865 * 1 to remove old inode ref
8866 * 1 to add new inode ref
8868 trans_num_items += 3;
8870 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8871 trans_num_items += 4;
8873 trans_num_items += 3;
8874 trans = btrfs_start_transaction(root, trans_num_items);
8875 if (IS_ERR(trans)) {
8876 ret = PTR_ERR(trans);
8881 ret = btrfs_record_root_in_trans(trans, dest);
8887 * We need to find a free sequence number both in the source and
8888 * in the destination directory for the exchange.
8890 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8893 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8897 BTRFS_I(old_inode)->dir_index = 0ULL;
8898 BTRFS_I(new_inode)->dir_index = 0ULL;
8900 /* Reference for the source. */
8901 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8902 /* force full log commit if subvolume involved. */
8903 btrfs_set_log_full_commit(trans);
8905 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8906 btrfs_ino(BTRFS_I(new_dir)),
8913 /* And now for the dest. */
8914 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8915 /* force full log commit if subvolume involved. */
8916 btrfs_set_log_full_commit(trans);
8918 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8919 btrfs_ino(BTRFS_I(old_dir)),
8923 btrfs_abort_transaction(trans, ret);
8928 /* Update inode version and ctime/mtime. */
8929 inode_inc_iversion(old_dir);
8930 inode_inc_iversion(new_dir);
8931 inode_inc_iversion(old_inode);
8932 inode_inc_iversion(new_inode);
8933 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8935 if (old_dentry->d_parent != new_dentry->d_parent) {
8936 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8937 BTRFS_I(old_inode), true);
8938 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8939 BTRFS_I(new_inode), true);
8942 /* src is a subvolume */
8943 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8944 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8945 } else { /* src is an inode */
8946 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8947 BTRFS_I(old_dentry->d_inode),
8948 old_name, &old_rename_ctx);
8950 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8953 btrfs_abort_transaction(trans, ret);
8957 /* dest is a subvolume */
8958 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8959 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8960 } else { /* dest is an inode */
8961 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8962 BTRFS_I(new_dentry->d_inode),
8963 new_name, &new_rename_ctx);
8965 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8968 btrfs_abort_transaction(trans, ret);
8972 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8973 new_name, 0, old_idx);
8975 btrfs_abort_transaction(trans, ret);
8979 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8980 old_name, 0, new_idx);
8982 btrfs_abort_transaction(trans, ret);
8986 if (old_inode->i_nlink == 1)
8987 BTRFS_I(old_inode)->dir_index = old_idx;
8988 if (new_inode->i_nlink == 1)
8989 BTRFS_I(new_inode)->dir_index = new_idx;
8992 * Now pin the logs of the roots. We do it to ensure that no other task
8993 * can sync the logs while we are in progress with the rename, because
8994 * that could result in an inconsistency in case any of the inodes that
8995 * are part of this rename operation were logged before.
8997 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8998 btrfs_pin_log_trans(root);
8999 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9000 btrfs_pin_log_trans(dest);
9002 /* Do the log updates for all inodes. */
9003 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9004 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9005 old_rename_ctx.index, new_dentry->d_parent);
9006 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9007 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9008 new_rename_ctx.index, old_dentry->d_parent);
9010 /* Now unpin the logs. */
9011 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9012 btrfs_end_log_trans(root);
9013 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9014 btrfs_end_log_trans(dest);
9016 ret2 = btrfs_end_transaction(trans);
9017 ret = ret ? ret : ret2;
9019 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9020 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9021 up_read(&fs_info->subvol_sem);
9023 fscrypt_free_filename(&new_fname);
9024 fscrypt_free_filename(&old_fname);
9028 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
9031 struct inode *inode;
9033 inode = new_inode(dir->i_sb);
9035 inode_init_owner(idmap, inode, dir,
9036 S_IFCHR | WHITEOUT_MODE);
9037 inode->i_op = &btrfs_special_inode_operations;
9038 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9043 static int btrfs_rename(struct mnt_idmap *idmap,
9044 struct inode *old_dir, struct dentry *old_dentry,
9045 struct inode *new_dir, struct dentry *new_dentry,
9048 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
9049 struct btrfs_new_inode_args whiteout_args = {
9051 .dentry = old_dentry,
9053 struct btrfs_trans_handle *trans;
9054 unsigned int trans_num_items;
9055 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9056 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9057 struct inode *new_inode = d_inode(new_dentry);
9058 struct inode *old_inode = d_inode(old_dentry);
9059 struct btrfs_rename_ctx rename_ctx;
9063 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9064 struct fscrypt_name old_fname, new_fname;
9066 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9069 /* we only allow rename subvolume link between subvolumes */
9070 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9073 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9074 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9077 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9078 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9081 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9085 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9087 fscrypt_free_filename(&old_fname);
9091 /* check for collisions, even if the name isn't there */
9092 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9094 if (ret == -EEXIST) {
9096 * eexist without a new_inode */
9097 if (WARN_ON(!new_inode)) {
9098 goto out_fscrypt_names;
9101 /* maybe -EOVERFLOW */
9102 goto out_fscrypt_names;
9108 * we're using rename to replace one file with another. Start IO on it
9109 * now so we don't add too much work to the end of the transaction
9111 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9112 filemap_flush(old_inode->i_mapping);
9114 if (flags & RENAME_WHITEOUT) {
9115 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9116 if (!whiteout_args.inode) {
9118 goto out_fscrypt_names;
9120 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9122 goto out_whiteout_inode;
9124 /* 1 to update the old parent inode. */
9125 trans_num_items = 1;
9128 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9129 /* Close the race window with snapshot create/destroy ioctl */
9130 down_read(&fs_info->subvol_sem);
9132 * 1 to remove old root ref
9133 * 1 to remove old root backref
9134 * 1 to add new root ref
9135 * 1 to add new root backref
9137 trans_num_items += 4;
9141 * 1 to remove old inode ref
9142 * 1 to add new inode ref
9144 trans_num_items += 3;
9147 * 1 to remove old dir item
9148 * 1 to remove old dir index
9149 * 1 to add new dir item
9150 * 1 to add new dir index
9152 trans_num_items += 4;
9153 /* 1 to update new parent inode if it's not the same as the old parent */
9154 if (new_dir != old_dir)
9159 * 1 to remove inode ref
9160 * 1 to remove dir item
9161 * 1 to remove dir index
9162 * 1 to possibly add orphan item
9164 trans_num_items += 5;
9166 trans = btrfs_start_transaction(root, trans_num_items);
9167 if (IS_ERR(trans)) {
9168 ret = PTR_ERR(trans);
9173 ret = btrfs_record_root_in_trans(trans, dest);
9178 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9182 BTRFS_I(old_inode)->dir_index = 0ULL;
9183 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9184 /* force full log commit if subvolume involved. */
9185 btrfs_set_log_full_commit(trans);
9187 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9188 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9194 inode_inc_iversion(old_dir);
9195 inode_inc_iversion(new_dir);
9196 inode_inc_iversion(old_inode);
9197 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9199 if (old_dentry->d_parent != new_dentry->d_parent)
9200 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9201 BTRFS_I(old_inode), true);
9203 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9204 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9206 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9207 BTRFS_I(d_inode(old_dentry)),
9208 &old_fname.disk_name, &rename_ctx);
9210 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
9213 btrfs_abort_transaction(trans, ret);
9218 inode_inc_iversion(new_inode);
9219 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9220 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9221 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9222 BUG_ON(new_inode->i_nlink == 0);
9224 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9225 BTRFS_I(d_inode(new_dentry)),
9226 &new_fname.disk_name);
9228 if (!ret && new_inode->i_nlink == 0)
9229 ret = btrfs_orphan_add(trans,
9230 BTRFS_I(d_inode(new_dentry)));
9232 btrfs_abort_transaction(trans, ret);
9237 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9238 &new_fname.disk_name, 0, index);
9240 btrfs_abort_transaction(trans, ret);
9244 if (old_inode->i_nlink == 1)
9245 BTRFS_I(old_inode)->dir_index = index;
9247 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9248 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9249 rename_ctx.index, new_dentry->d_parent);
9251 if (flags & RENAME_WHITEOUT) {
9252 ret = btrfs_create_new_inode(trans, &whiteout_args);
9254 btrfs_abort_transaction(trans, ret);
9257 unlock_new_inode(whiteout_args.inode);
9258 iput(whiteout_args.inode);
9259 whiteout_args.inode = NULL;
9263 ret2 = btrfs_end_transaction(trans);
9264 ret = ret ? ret : ret2;
9266 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9267 up_read(&fs_info->subvol_sem);
9268 if (flags & RENAME_WHITEOUT)
9269 btrfs_new_inode_args_destroy(&whiteout_args);
9271 if (flags & RENAME_WHITEOUT)
9272 iput(whiteout_args.inode);
9274 fscrypt_free_filename(&old_fname);
9275 fscrypt_free_filename(&new_fname);
9279 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9280 struct dentry *old_dentry, struct inode *new_dir,
9281 struct dentry *new_dentry, unsigned int flags)
9285 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9288 if (flags & RENAME_EXCHANGE)
9289 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9292 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9295 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9300 struct btrfs_delalloc_work {
9301 struct inode *inode;
9302 struct completion completion;
9303 struct list_head list;
9304 struct btrfs_work work;
9307 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9309 struct btrfs_delalloc_work *delalloc_work;
9310 struct inode *inode;
9312 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9314 inode = delalloc_work->inode;
9315 filemap_flush(inode->i_mapping);
9316 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9317 &BTRFS_I(inode)->runtime_flags))
9318 filemap_flush(inode->i_mapping);
9321 complete(&delalloc_work->completion);
9324 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9326 struct btrfs_delalloc_work *work;
9328 work = kmalloc(sizeof(*work), GFP_NOFS);
9332 init_completion(&work->completion);
9333 INIT_LIST_HEAD(&work->list);
9334 work->inode = inode;
9335 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
9341 * some fairly slow code that needs optimization. This walks the list
9342 * of all the inodes with pending delalloc and forces them to disk.
9344 static int start_delalloc_inodes(struct btrfs_root *root,
9345 struct writeback_control *wbc, bool snapshot,
9346 bool in_reclaim_context)
9348 struct btrfs_inode *binode;
9349 struct inode *inode;
9350 struct btrfs_delalloc_work *work, *next;
9354 bool full_flush = wbc->nr_to_write == LONG_MAX;
9356 mutex_lock(&root->delalloc_mutex);
9357 spin_lock(&root->delalloc_lock);
9358 list_splice_init(&root->delalloc_inodes, &splice);
9359 while (!list_empty(&splice)) {
9360 binode = list_entry(splice.next, struct btrfs_inode,
9363 list_move_tail(&binode->delalloc_inodes,
9364 &root->delalloc_inodes);
9366 if (in_reclaim_context &&
9367 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9370 inode = igrab(&binode->vfs_inode);
9372 cond_resched_lock(&root->delalloc_lock);
9375 spin_unlock(&root->delalloc_lock);
9378 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9379 &binode->runtime_flags);
9381 work = btrfs_alloc_delalloc_work(inode);
9387 list_add_tail(&work->list, &works);
9388 btrfs_queue_work(root->fs_info->flush_workers,
9391 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9392 btrfs_add_delayed_iput(BTRFS_I(inode));
9393 if (ret || wbc->nr_to_write <= 0)
9397 spin_lock(&root->delalloc_lock);
9399 spin_unlock(&root->delalloc_lock);
9402 list_for_each_entry_safe(work, next, &works, list) {
9403 list_del_init(&work->list);
9404 wait_for_completion(&work->completion);
9408 if (!list_empty(&splice)) {
9409 spin_lock(&root->delalloc_lock);
9410 list_splice_tail(&splice, &root->delalloc_inodes);
9411 spin_unlock(&root->delalloc_lock);
9413 mutex_unlock(&root->delalloc_mutex);
9417 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9419 struct writeback_control wbc = {
9420 .nr_to_write = LONG_MAX,
9421 .sync_mode = WB_SYNC_NONE,
9423 .range_end = LLONG_MAX,
9425 struct btrfs_fs_info *fs_info = root->fs_info;
9427 if (BTRFS_FS_ERROR(fs_info))
9430 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9433 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9434 bool in_reclaim_context)
9436 struct writeback_control wbc = {
9438 .sync_mode = WB_SYNC_NONE,
9440 .range_end = LLONG_MAX,
9442 struct btrfs_root *root;
9446 if (BTRFS_FS_ERROR(fs_info))
9449 mutex_lock(&fs_info->delalloc_root_mutex);
9450 spin_lock(&fs_info->delalloc_root_lock);
9451 list_splice_init(&fs_info->delalloc_roots, &splice);
9452 while (!list_empty(&splice)) {
9454 * Reset nr_to_write here so we know that we're doing a full
9458 wbc.nr_to_write = LONG_MAX;
9460 root = list_first_entry(&splice, struct btrfs_root,
9462 root = btrfs_grab_root(root);
9464 list_move_tail(&root->delalloc_root,
9465 &fs_info->delalloc_roots);
9466 spin_unlock(&fs_info->delalloc_root_lock);
9468 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9469 btrfs_put_root(root);
9470 if (ret < 0 || wbc.nr_to_write <= 0)
9472 spin_lock(&fs_info->delalloc_root_lock);
9474 spin_unlock(&fs_info->delalloc_root_lock);
9478 if (!list_empty(&splice)) {
9479 spin_lock(&fs_info->delalloc_root_lock);
9480 list_splice_tail(&splice, &fs_info->delalloc_roots);
9481 spin_unlock(&fs_info->delalloc_root_lock);
9483 mutex_unlock(&fs_info->delalloc_root_mutex);
9487 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9488 struct dentry *dentry, const char *symname)
9490 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9491 struct btrfs_trans_handle *trans;
9492 struct btrfs_root *root = BTRFS_I(dir)->root;
9493 struct btrfs_path *path;
9494 struct btrfs_key key;
9495 struct inode *inode;
9496 struct btrfs_new_inode_args new_inode_args = {
9500 unsigned int trans_num_items;
9505 struct btrfs_file_extent_item *ei;
9506 struct extent_buffer *leaf;
9508 name_len = strlen(symname);
9509 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9510 return -ENAMETOOLONG;
9512 inode = new_inode(dir->i_sb);
9515 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9516 inode->i_op = &btrfs_symlink_inode_operations;
9517 inode_nohighmem(inode);
9518 inode->i_mapping->a_ops = &btrfs_aops;
9519 btrfs_i_size_write(BTRFS_I(inode), name_len);
9520 inode_set_bytes(inode, name_len);
9522 new_inode_args.inode = inode;
9523 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9526 /* 1 additional item for the inline extent */
9529 trans = btrfs_start_transaction(root, trans_num_items);
9530 if (IS_ERR(trans)) {
9531 err = PTR_ERR(trans);
9532 goto out_new_inode_args;
9535 err = btrfs_create_new_inode(trans, &new_inode_args);
9539 path = btrfs_alloc_path();
9542 btrfs_abort_transaction(trans, err);
9543 discard_new_inode(inode);
9547 key.objectid = btrfs_ino(BTRFS_I(inode));
9549 key.type = BTRFS_EXTENT_DATA_KEY;
9550 datasize = btrfs_file_extent_calc_inline_size(name_len);
9551 err = btrfs_insert_empty_item(trans, root, path, &key,
9554 btrfs_abort_transaction(trans, err);
9555 btrfs_free_path(path);
9556 discard_new_inode(inode);
9560 leaf = path->nodes[0];
9561 ei = btrfs_item_ptr(leaf, path->slots[0],
9562 struct btrfs_file_extent_item);
9563 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9564 btrfs_set_file_extent_type(leaf, ei,
9565 BTRFS_FILE_EXTENT_INLINE);
9566 btrfs_set_file_extent_encryption(leaf, ei, 0);
9567 btrfs_set_file_extent_compression(leaf, ei, 0);
9568 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9569 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9571 ptr = btrfs_file_extent_inline_start(ei);
9572 write_extent_buffer(leaf, symname, ptr, name_len);
9573 btrfs_mark_buffer_dirty(trans, leaf);
9574 btrfs_free_path(path);
9576 d_instantiate_new(dentry, inode);
9579 btrfs_end_transaction(trans);
9580 btrfs_btree_balance_dirty(fs_info);
9582 btrfs_new_inode_args_destroy(&new_inode_args);
9589 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9590 struct btrfs_trans_handle *trans_in,
9591 struct btrfs_inode *inode,
9592 struct btrfs_key *ins,
9595 struct btrfs_file_extent_item stack_fi;
9596 struct btrfs_replace_extent_info extent_info;
9597 struct btrfs_trans_handle *trans = trans_in;
9598 struct btrfs_path *path;
9599 u64 start = ins->objectid;
9600 u64 len = ins->offset;
9601 u64 qgroup_released = 0;
9604 memset(&stack_fi, 0, sizeof(stack_fi));
9606 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9607 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9608 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9609 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9610 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9611 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9612 /* Encryption and other encoding is reserved and all 0 */
9614 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9616 return ERR_PTR(ret);
9619 ret = insert_reserved_file_extent(trans, inode,
9620 file_offset, &stack_fi,
9621 true, qgroup_released);
9627 extent_info.disk_offset = start;
9628 extent_info.disk_len = len;
9629 extent_info.data_offset = 0;
9630 extent_info.data_len = len;
9631 extent_info.file_offset = file_offset;
9632 extent_info.extent_buf = (char *)&stack_fi;
9633 extent_info.is_new_extent = true;
9634 extent_info.update_times = true;
9635 extent_info.qgroup_reserved = qgroup_released;
9636 extent_info.insertions = 0;
9638 path = btrfs_alloc_path();
9644 ret = btrfs_replace_file_extents(inode, path, file_offset,
9645 file_offset + len - 1, &extent_info,
9647 btrfs_free_path(path);
9654 * We have released qgroup data range at the beginning of the function,
9655 * and normally qgroup_released bytes will be freed when committing
9657 * But if we error out early, we have to free what we have released
9658 * or we leak qgroup data reservation.
9660 btrfs_qgroup_free_refroot(inode->root->fs_info,
9661 inode->root->root_key.objectid, qgroup_released,
9662 BTRFS_QGROUP_RSV_DATA);
9663 return ERR_PTR(ret);
9666 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9667 u64 start, u64 num_bytes, u64 min_size,
9668 loff_t actual_len, u64 *alloc_hint,
9669 struct btrfs_trans_handle *trans)
9671 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9672 struct extent_map *em;
9673 struct btrfs_root *root = BTRFS_I(inode)->root;
9674 struct btrfs_key ins;
9675 u64 cur_offset = start;
9676 u64 clear_offset = start;
9679 u64 last_alloc = (u64)-1;
9681 bool own_trans = true;
9682 u64 end = start + num_bytes - 1;
9686 while (num_bytes > 0) {
9687 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9688 cur_bytes = max(cur_bytes, min_size);
9690 * If we are severely fragmented we could end up with really
9691 * small allocations, so if the allocator is returning small
9692 * chunks lets make its job easier by only searching for those
9695 cur_bytes = min(cur_bytes, last_alloc);
9696 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9697 min_size, 0, *alloc_hint, &ins, 1, 0);
9702 * We've reserved this space, and thus converted it from
9703 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9704 * from here on out we will only need to clear our reservation
9705 * for the remaining unreserved area, so advance our
9706 * clear_offset by our extent size.
9708 clear_offset += ins.offset;
9710 last_alloc = ins.offset;
9711 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9714 * Now that we inserted the prealloc extent we can finally
9715 * decrement the number of reservations in the block group.
9716 * If we did it before, we could race with relocation and have
9717 * relocation miss the reserved extent, making it fail later.
9719 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9720 if (IS_ERR(trans)) {
9721 ret = PTR_ERR(trans);
9722 btrfs_free_reserved_extent(fs_info, ins.objectid,
9727 em = alloc_extent_map();
9729 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9730 cur_offset + ins.offset - 1, false);
9731 btrfs_set_inode_full_sync(BTRFS_I(inode));
9735 em->start = cur_offset;
9736 em->orig_start = cur_offset;
9737 em->len = ins.offset;
9738 em->block_start = ins.objectid;
9739 em->block_len = ins.offset;
9740 em->orig_block_len = ins.offset;
9741 em->ram_bytes = ins.offset;
9742 em->flags |= EXTENT_FLAG_PREALLOC;
9743 em->generation = trans->transid;
9745 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9746 free_extent_map(em);
9748 num_bytes -= ins.offset;
9749 cur_offset += ins.offset;
9750 *alloc_hint = ins.objectid + ins.offset;
9752 inode_inc_iversion(inode);
9753 inode_set_ctime_current(inode);
9754 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9755 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9756 (actual_len > inode->i_size) &&
9757 (cur_offset > inode->i_size)) {
9758 if (cur_offset > actual_len)
9759 i_size = actual_len;
9761 i_size = cur_offset;
9762 i_size_write(inode, i_size);
9763 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9766 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9769 btrfs_abort_transaction(trans, ret);
9771 btrfs_end_transaction(trans);
9776 btrfs_end_transaction(trans);
9780 if (clear_offset < end)
9781 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9782 end - clear_offset + 1);
9786 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9787 u64 start, u64 num_bytes, u64 min_size,
9788 loff_t actual_len, u64 *alloc_hint)
9790 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9791 min_size, actual_len, alloc_hint,
9795 int btrfs_prealloc_file_range_trans(struct inode *inode,
9796 struct btrfs_trans_handle *trans, int mode,
9797 u64 start, u64 num_bytes, u64 min_size,
9798 loff_t actual_len, u64 *alloc_hint)
9800 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9801 min_size, actual_len, alloc_hint, trans);
9804 static int btrfs_permission(struct mnt_idmap *idmap,
9805 struct inode *inode, int mask)
9807 struct btrfs_root *root = BTRFS_I(inode)->root;
9808 umode_t mode = inode->i_mode;
9810 if (mask & MAY_WRITE &&
9811 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9812 if (btrfs_root_readonly(root))
9814 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9817 return generic_permission(idmap, inode, mask);
9820 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9821 struct file *file, umode_t mode)
9823 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9824 struct btrfs_trans_handle *trans;
9825 struct btrfs_root *root = BTRFS_I(dir)->root;
9826 struct inode *inode;
9827 struct btrfs_new_inode_args new_inode_args = {
9829 .dentry = file->f_path.dentry,
9832 unsigned int trans_num_items;
9835 inode = new_inode(dir->i_sb);
9838 inode_init_owner(idmap, inode, dir, mode);
9839 inode->i_fop = &btrfs_file_operations;
9840 inode->i_op = &btrfs_file_inode_operations;
9841 inode->i_mapping->a_ops = &btrfs_aops;
9843 new_inode_args.inode = inode;
9844 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9848 trans = btrfs_start_transaction(root, trans_num_items);
9849 if (IS_ERR(trans)) {
9850 ret = PTR_ERR(trans);
9851 goto out_new_inode_args;
9854 ret = btrfs_create_new_inode(trans, &new_inode_args);
9857 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9858 * set it to 1 because d_tmpfile() will issue a warning if the count is
9861 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9863 set_nlink(inode, 1);
9866 d_tmpfile(file, inode);
9867 unlock_new_inode(inode);
9868 mark_inode_dirty(inode);
9871 btrfs_end_transaction(trans);
9872 btrfs_btree_balance_dirty(fs_info);
9874 btrfs_new_inode_args_destroy(&new_inode_args);
9878 return finish_open_simple(file, ret);
9881 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9883 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9884 unsigned long index = start >> PAGE_SHIFT;
9885 unsigned long end_index = end >> PAGE_SHIFT;
9889 ASSERT(end + 1 - start <= U32_MAX);
9890 len = end + 1 - start;
9891 while (index <= end_index) {
9892 page = find_get_page(inode->vfs_inode.i_mapping, index);
9893 ASSERT(page); /* Pages should be in the extent_io_tree */
9895 /* This is for data, which doesn't yet support larger folio. */
9896 ASSERT(folio_order(page_folio(page)) == 0);
9897 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
9903 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9906 switch (compress_type) {
9907 case BTRFS_COMPRESS_NONE:
9908 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9909 case BTRFS_COMPRESS_ZLIB:
9910 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9911 case BTRFS_COMPRESS_LZO:
9913 * The LZO format depends on the sector size. 64K is the maximum
9914 * sector size that we support.
9916 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9918 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9919 (fs_info->sectorsize_bits - 12);
9920 case BTRFS_COMPRESS_ZSTD:
9921 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9927 static ssize_t btrfs_encoded_read_inline(
9929 struct iov_iter *iter, u64 start,
9931 struct extent_state **cached_state,
9932 u64 extent_start, size_t count,
9933 struct btrfs_ioctl_encoded_io_args *encoded,
9936 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9937 struct btrfs_root *root = inode->root;
9938 struct btrfs_fs_info *fs_info = root->fs_info;
9939 struct extent_io_tree *io_tree = &inode->io_tree;
9940 struct btrfs_path *path;
9941 struct extent_buffer *leaf;
9942 struct btrfs_file_extent_item *item;
9948 path = btrfs_alloc_path();
9953 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9957 /* The extent item disappeared? */
9962 leaf = path->nodes[0];
9963 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9965 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9966 ptr = btrfs_file_extent_inline_start(item);
9968 encoded->len = min_t(u64, extent_start + ram_bytes,
9969 inode->vfs_inode.i_size) - iocb->ki_pos;
9970 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9971 btrfs_file_extent_compression(leaf, item));
9974 encoded->compression = ret;
9975 if (encoded->compression) {
9978 inline_size = btrfs_file_extent_inline_item_len(leaf,
9980 if (inline_size > count) {
9984 count = inline_size;
9985 encoded->unencoded_len = ram_bytes;
9986 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9988 count = min_t(u64, count, encoded->len);
9989 encoded->len = count;
9990 encoded->unencoded_len = count;
9991 ptr += iocb->ki_pos - extent_start;
9994 tmp = kmalloc(count, GFP_NOFS);
9999 read_extent_buffer(leaf, tmp, ptr, count);
10000 btrfs_release_path(path);
10001 unlock_extent(io_tree, start, lockend, cached_state);
10002 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10005 ret = copy_to_iter(tmp, count, iter);
10010 btrfs_free_path(path);
10014 struct btrfs_encoded_read_private {
10015 wait_queue_head_t wait;
10017 blk_status_t status;
10020 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
10022 struct btrfs_encoded_read_private *priv = bbio->private;
10024 if (bbio->bio.bi_status) {
10026 * The memory barrier implied by the atomic_dec_return() here
10027 * pairs with the memory barrier implied by the
10028 * atomic_dec_return() or io_wait_event() in
10029 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10030 * write is observed before the load of status in
10031 * btrfs_encoded_read_regular_fill_pages().
10033 WRITE_ONCE(priv->status, bbio->bio.bi_status);
10035 if (!atomic_dec_return(&priv->pending))
10036 wake_up(&priv->wait);
10037 bio_put(&bbio->bio);
10040 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10041 u64 file_offset, u64 disk_bytenr,
10042 u64 disk_io_size, struct page **pages)
10044 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10045 struct btrfs_encoded_read_private priv = {
10046 .pending = ATOMIC_INIT(1),
10048 unsigned long i = 0;
10049 struct btrfs_bio *bbio;
10051 init_waitqueue_head(&priv.wait);
10053 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10054 btrfs_encoded_read_endio, &priv);
10055 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10056 bbio->inode = inode;
10059 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10061 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10062 atomic_inc(&priv.pending);
10063 btrfs_submit_bio(bbio, 0);
10065 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10066 btrfs_encoded_read_endio, &priv);
10067 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10068 bbio->inode = inode;
10073 disk_bytenr += bytes;
10074 disk_io_size -= bytes;
10075 } while (disk_io_size);
10077 atomic_inc(&priv.pending);
10078 btrfs_submit_bio(bbio, 0);
10080 if (atomic_dec_return(&priv.pending))
10081 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10082 /* See btrfs_encoded_read_endio() for ordering. */
10083 return blk_status_to_errno(READ_ONCE(priv.status));
10086 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10087 struct iov_iter *iter,
10088 u64 start, u64 lockend,
10089 struct extent_state **cached_state,
10090 u64 disk_bytenr, u64 disk_io_size,
10091 size_t count, bool compressed,
10094 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10095 struct extent_io_tree *io_tree = &inode->io_tree;
10096 struct page **pages;
10097 unsigned long nr_pages, i;
10099 size_t page_offset;
10102 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10103 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10106 ret = btrfs_alloc_page_array(nr_pages, pages, 0);
10112 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10113 disk_io_size, pages);
10117 unlock_extent(io_tree, start, lockend, cached_state);
10118 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10125 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10126 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10129 while (cur < count) {
10130 size_t bytes = min_t(size_t, count - cur,
10131 PAGE_SIZE - page_offset);
10133 if (copy_page_to_iter(pages[i], page_offset, bytes,
10144 for (i = 0; i < nr_pages; i++) {
10146 __free_page(pages[i]);
10152 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10153 struct btrfs_ioctl_encoded_io_args *encoded)
10155 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10156 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10157 struct extent_io_tree *io_tree = &inode->io_tree;
10159 size_t count = iov_iter_count(iter);
10160 u64 start, lockend, disk_bytenr, disk_io_size;
10161 struct extent_state *cached_state = NULL;
10162 struct extent_map *em;
10163 bool unlocked = false;
10165 file_accessed(iocb->ki_filp);
10167 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10169 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10170 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10173 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10175 * We don't know how long the extent containing iocb->ki_pos is, but if
10176 * it's compressed we know that it won't be longer than this.
10178 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10181 struct btrfs_ordered_extent *ordered;
10183 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10184 lockend - start + 1);
10186 goto out_unlock_inode;
10187 lock_extent(io_tree, start, lockend, &cached_state);
10188 ordered = btrfs_lookup_ordered_range(inode, start,
10189 lockend - start + 1);
10192 btrfs_put_ordered_extent(ordered);
10193 unlock_extent(io_tree, start, lockend, &cached_state);
10197 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
10200 goto out_unlock_extent;
10203 if (em->block_start == EXTENT_MAP_INLINE) {
10204 u64 extent_start = em->start;
10207 * For inline extents we get everything we need out of the
10210 free_extent_map(em);
10212 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10213 &cached_state, extent_start,
10214 count, encoded, &unlocked);
10219 * We only want to return up to EOF even if the extent extends beyond
10222 encoded->len = min_t(u64, extent_map_end(em),
10223 inode->vfs_inode.i_size) - iocb->ki_pos;
10224 if (em->block_start == EXTENT_MAP_HOLE ||
10225 (em->flags & EXTENT_FLAG_PREALLOC)) {
10226 disk_bytenr = EXTENT_MAP_HOLE;
10227 count = min_t(u64, count, encoded->len);
10228 encoded->len = count;
10229 encoded->unencoded_len = count;
10230 } else if (extent_map_is_compressed(em)) {
10231 disk_bytenr = em->block_start;
10233 * Bail if the buffer isn't large enough to return the whole
10234 * compressed extent.
10236 if (em->block_len > count) {
10240 disk_io_size = em->block_len;
10241 count = em->block_len;
10242 encoded->unencoded_len = em->ram_bytes;
10243 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10244 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10245 extent_map_compression(em));
10248 encoded->compression = ret;
10250 disk_bytenr = em->block_start + (start - em->start);
10251 if (encoded->len > count)
10252 encoded->len = count;
10254 * Don't read beyond what we locked. This also limits the page
10255 * allocations that we'll do.
10257 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10258 count = start + disk_io_size - iocb->ki_pos;
10259 encoded->len = count;
10260 encoded->unencoded_len = count;
10261 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10263 free_extent_map(em);
10266 if (disk_bytenr == EXTENT_MAP_HOLE) {
10267 unlock_extent(io_tree, start, lockend, &cached_state);
10268 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10270 ret = iov_iter_zero(count, iter);
10274 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10275 &cached_state, disk_bytenr,
10276 disk_io_size, count,
10277 encoded->compression,
10283 iocb->ki_pos += encoded->len;
10285 free_extent_map(em);
10288 unlock_extent(io_tree, start, lockend, &cached_state);
10291 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10295 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10296 const struct btrfs_ioctl_encoded_io_args *encoded)
10298 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10299 struct btrfs_root *root = inode->root;
10300 struct btrfs_fs_info *fs_info = root->fs_info;
10301 struct extent_io_tree *io_tree = &inode->io_tree;
10302 struct extent_changeset *data_reserved = NULL;
10303 struct extent_state *cached_state = NULL;
10304 struct btrfs_ordered_extent *ordered;
10308 u64 num_bytes, ram_bytes, disk_num_bytes;
10309 unsigned long nr_pages, i;
10310 struct page **pages;
10311 struct btrfs_key ins;
10312 bool extent_reserved = false;
10313 struct extent_map *em;
10316 switch (encoded->compression) {
10317 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10318 compression = BTRFS_COMPRESS_ZLIB;
10320 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10321 compression = BTRFS_COMPRESS_ZSTD;
10323 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10324 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10325 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10326 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10327 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10328 /* The sector size must match for LZO. */
10329 if (encoded->compression -
10330 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10331 fs_info->sectorsize_bits)
10333 compression = BTRFS_COMPRESS_LZO;
10338 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10342 * Compressed extents should always have checksums, so error out if we
10343 * have a NOCOW file or inode was created while mounted with NODATASUM.
10345 if (inode->flags & BTRFS_INODE_NODATASUM)
10348 orig_count = iov_iter_count(from);
10350 /* The extent size must be sane. */
10351 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10352 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10356 * The compressed data must be smaller than the decompressed data.
10358 * It's of course possible for data to compress to larger or the same
10359 * size, but the buffered I/O path falls back to no compression for such
10360 * data, and we don't want to break any assumptions by creating these
10363 * Note that this is less strict than the current check we have that the
10364 * compressed data must be at least one sector smaller than the
10365 * decompressed data. We only want to enforce the weaker requirement
10366 * from old kernels that it is at least one byte smaller.
10368 if (orig_count >= encoded->unencoded_len)
10371 /* The extent must start on a sector boundary. */
10372 start = iocb->ki_pos;
10373 if (!IS_ALIGNED(start, fs_info->sectorsize))
10377 * The extent must end on a sector boundary. However, we allow a write
10378 * which ends at or extends i_size to have an unaligned length; we round
10379 * up the extent size and set i_size to the unaligned end.
10381 if (start + encoded->len < inode->vfs_inode.i_size &&
10382 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10385 /* Finally, the offset in the unencoded data must be sector-aligned. */
10386 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10389 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10390 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10391 end = start + num_bytes - 1;
10394 * If the extent cannot be inline, the compressed data on disk must be
10395 * sector-aligned. For convenience, we extend it with zeroes if it
10398 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10399 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10400 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10403 for (i = 0; i < nr_pages; i++) {
10404 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10407 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10412 kaddr = kmap_local_page(pages[i]);
10413 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10414 kunmap_local(kaddr);
10418 if (bytes < PAGE_SIZE)
10419 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10420 kunmap_local(kaddr);
10424 struct btrfs_ordered_extent *ordered;
10426 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10429 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10430 start >> PAGE_SHIFT,
10431 end >> PAGE_SHIFT);
10434 lock_extent(io_tree, start, end, &cached_state);
10435 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10437 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10440 btrfs_put_ordered_extent(ordered);
10441 unlock_extent(io_tree, start, end, &cached_state);
10446 * We don't use the higher-level delalloc space functions because our
10447 * num_bytes and disk_num_bytes are different.
10449 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10452 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10454 goto out_free_data_space;
10455 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10458 goto out_qgroup_free_data;
10460 /* Try an inline extent first. */
10461 if (start == 0 && encoded->unencoded_len == encoded->len &&
10462 encoded->unencoded_offset == 0) {
10463 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10464 compression, pages, true);
10468 goto out_delalloc_release;
10472 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10473 disk_num_bytes, 0, 0, &ins, 1, 1);
10475 goto out_delalloc_release;
10476 extent_reserved = true;
10478 em = create_io_em(inode, start, num_bytes,
10479 start - encoded->unencoded_offset, ins.objectid,
10480 ins.offset, ins.offset, ram_bytes, compression,
10481 BTRFS_ORDERED_COMPRESSED);
10484 goto out_free_reserved;
10486 free_extent_map(em);
10488 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10489 ins.objectid, ins.offset,
10490 encoded->unencoded_offset,
10491 (1 << BTRFS_ORDERED_ENCODED) |
10492 (1 << BTRFS_ORDERED_COMPRESSED),
10494 if (IS_ERR(ordered)) {
10495 btrfs_drop_extent_map_range(inode, start, end, false);
10496 ret = PTR_ERR(ordered);
10497 goto out_free_reserved;
10499 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10501 if (start + encoded->len > inode->vfs_inode.i_size)
10502 i_size_write(&inode->vfs_inode, start + encoded->len);
10504 unlock_extent(io_tree, start, end, &cached_state);
10506 btrfs_delalloc_release_extents(inode, num_bytes);
10508 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10513 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10514 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10515 out_delalloc_release:
10516 btrfs_delalloc_release_extents(inode, num_bytes);
10517 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10518 out_qgroup_free_data:
10520 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10521 out_free_data_space:
10523 * If btrfs_reserve_extent() succeeded, then we already decremented
10526 if (!extent_reserved)
10527 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10529 unlock_extent(io_tree, start, end, &cached_state);
10531 for (i = 0; i < nr_pages; i++) {
10533 __free_page(pages[i]);
10538 iocb->ki_pos += encoded->len;
10544 * Add an entry indicating a block group or device which is pinned by a
10545 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10546 * negative errno on failure.
10548 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10549 bool is_block_group)
10551 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10552 struct btrfs_swapfile_pin *sp, *entry;
10553 struct rb_node **p;
10554 struct rb_node *parent = NULL;
10556 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10561 sp->is_block_group = is_block_group;
10562 sp->bg_extent_count = 1;
10564 spin_lock(&fs_info->swapfile_pins_lock);
10565 p = &fs_info->swapfile_pins.rb_node;
10568 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10569 if (sp->ptr < entry->ptr ||
10570 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10571 p = &(*p)->rb_left;
10572 } else if (sp->ptr > entry->ptr ||
10573 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10574 p = &(*p)->rb_right;
10576 if (is_block_group)
10577 entry->bg_extent_count++;
10578 spin_unlock(&fs_info->swapfile_pins_lock);
10583 rb_link_node(&sp->node, parent, p);
10584 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10585 spin_unlock(&fs_info->swapfile_pins_lock);
10589 /* Free all of the entries pinned by this swapfile. */
10590 static void btrfs_free_swapfile_pins(struct inode *inode)
10592 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10593 struct btrfs_swapfile_pin *sp;
10594 struct rb_node *node, *next;
10596 spin_lock(&fs_info->swapfile_pins_lock);
10597 node = rb_first(&fs_info->swapfile_pins);
10599 next = rb_next(node);
10600 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10601 if (sp->inode == inode) {
10602 rb_erase(&sp->node, &fs_info->swapfile_pins);
10603 if (sp->is_block_group) {
10604 btrfs_dec_block_group_swap_extents(sp->ptr,
10605 sp->bg_extent_count);
10606 btrfs_put_block_group(sp->ptr);
10612 spin_unlock(&fs_info->swapfile_pins_lock);
10615 struct btrfs_swap_info {
10621 unsigned long nr_pages;
10625 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10626 struct btrfs_swap_info *bsi)
10628 unsigned long nr_pages;
10629 unsigned long max_pages;
10630 u64 first_ppage, first_ppage_reported, next_ppage;
10634 * Our swapfile may have had its size extended after the swap header was
10635 * written. In that case activating the swapfile should not go beyond
10636 * the max size set in the swap header.
10638 if (bsi->nr_pages >= sis->max)
10641 max_pages = sis->max - bsi->nr_pages;
10642 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10643 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10645 if (first_ppage >= next_ppage)
10647 nr_pages = next_ppage - first_ppage;
10648 nr_pages = min(nr_pages, max_pages);
10650 first_ppage_reported = first_ppage;
10651 if (bsi->start == 0)
10652 first_ppage_reported++;
10653 if (bsi->lowest_ppage > first_ppage_reported)
10654 bsi->lowest_ppage = first_ppage_reported;
10655 if (bsi->highest_ppage < (next_ppage - 1))
10656 bsi->highest_ppage = next_ppage - 1;
10658 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10661 bsi->nr_extents += ret;
10662 bsi->nr_pages += nr_pages;
10666 static void btrfs_swap_deactivate(struct file *file)
10668 struct inode *inode = file_inode(file);
10670 btrfs_free_swapfile_pins(inode);
10671 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10674 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10677 struct inode *inode = file_inode(file);
10678 struct btrfs_root *root = BTRFS_I(inode)->root;
10679 struct btrfs_fs_info *fs_info = root->fs_info;
10680 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10681 struct extent_state *cached_state = NULL;
10682 struct extent_map *em = NULL;
10683 struct btrfs_chunk_map *map = NULL;
10684 struct btrfs_device *device = NULL;
10685 struct btrfs_swap_info bsi = {
10686 .lowest_ppage = (sector_t)-1ULL,
10693 * If the swap file was just created, make sure delalloc is done. If the
10694 * file changes again after this, the user is doing something stupid and
10695 * we don't really care.
10697 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10702 * The inode is locked, so these flags won't change after we check them.
10704 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10705 btrfs_warn(fs_info, "swapfile must not be compressed");
10708 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10709 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10712 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10713 btrfs_warn(fs_info, "swapfile must not be checksummed");
10718 * Balance or device remove/replace/resize can move stuff around from
10719 * under us. The exclop protection makes sure they aren't running/won't
10720 * run concurrently while we are mapping the swap extents, and
10721 * fs_info->swapfile_pins prevents them from running while the swap
10722 * file is active and moving the extents. Note that this also prevents
10723 * a concurrent device add which isn't actually necessary, but it's not
10724 * really worth the trouble to allow it.
10726 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10727 btrfs_warn(fs_info,
10728 "cannot activate swapfile while exclusive operation is running");
10733 * Prevent snapshot creation while we are activating the swap file.
10734 * We do not want to race with snapshot creation. If snapshot creation
10735 * already started before we bumped nr_swapfiles from 0 to 1 and
10736 * completes before the first write into the swap file after it is
10737 * activated, than that write would fallback to COW.
10739 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10740 btrfs_exclop_finish(fs_info);
10741 btrfs_warn(fs_info,
10742 "cannot activate swapfile because snapshot creation is in progress");
10746 * Snapshots can create extents which require COW even if NODATACOW is
10747 * set. We use this counter to prevent snapshots. We must increment it
10748 * before walking the extents because we don't want a concurrent
10749 * snapshot to run after we've already checked the extents.
10751 * It is possible that subvolume is marked for deletion but still not
10752 * removed yet. To prevent this race, we check the root status before
10753 * activating the swapfile.
10755 spin_lock(&root->root_item_lock);
10756 if (btrfs_root_dead(root)) {
10757 spin_unlock(&root->root_item_lock);
10759 btrfs_exclop_finish(fs_info);
10760 btrfs_warn(fs_info,
10761 "cannot activate swapfile because subvolume %llu is being deleted",
10762 root->root_key.objectid);
10765 atomic_inc(&root->nr_swapfiles);
10766 spin_unlock(&root->root_item_lock);
10768 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10770 lock_extent(io_tree, 0, isize - 1, &cached_state);
10772 while (start < isize) {
10773 u64 logical_block_start, physical_block_start;
10774 struct btrfs_block_group *bg;
10775 u64 len = isize - start;
10777 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
10783 if (em->block_start == EXTENT_MAP_HOLE) {
10784 btrfs_warn(fs_info, "swapfile must not have holes");
10788 if (em->block_start == EXTENT_MAP_INLINE) {
10790 * It's unlikely we'll ever actually find ourselves
10791 * here, as a file small enough to fit inline won't be
10792 * big enough to store more than the swap header, but in
10793 * case something changes in the future, let's catch it
10794 * here rather than later.
10796 btrfs_warn(fs_info, "swapfile must not be inline");
10800 if (extent_map_is_compressed(em)) {
10801 btrfs_warn(fs_info, "swapfile must not be compressed");
10806 logical_block_start = em->block_start + (start - em->start);
10807 len = min(len, em->len - (start - em->start));
10808 free_extent_map(em);
10811 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10817 btrfs_warn(fs_info,
10818 "swapfile must not be copy-on-write");
10823 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10825 ret = PTR_ERR(map);
10829 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10830 btrfs_warn(fs_info,
10831 "swapfile must have single data profile");
10836 if (device == NULL) {
10837 device = map->stripes[0].dev;
10838 ret = btrfs_add_swapfile_pin(inode, device, false);
10843 } else if (device != map->stripes[0].dev) {
10844 btrfs_warn(fs_info, "swapfile must be on one device");
10849 physical_block_start = (map->stripes[0].physical +
10850 (logical_block_start - map->start));
10851 len = min(len, map->chunk_len - (logical_block_start - map->start));
10852 btrfs_free_chunk_map(map);
10855 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10857 btrfs_warn(fs_info,
10858 "could not find block group containing swapfile");
10863 if (!btrfs_inc_block_group_swap_extents(bg)) {
10864 btrfs_warn(fs_info,
10865 "block group for swapfile at %llu is read-only%s",
10867 atomic_read(&fs_info->scrubs_running) ?
10868 " (scrub running)" : "");
10869 btrfs_put_block_group(bg);
10874 ret = btrfs_add_swapfile_pin(inode, bg, true);
10876 btrfs_put_block_group(bg);
10883 if (bsi.block_len &&
10884 bsi.block_start + bsi.block_len == physical_block_start) {
10885 bsi.block_len += len;
10887 if (bsi.block_len) {
10888 ret = btrfs_add_swap_extent(sis, &bsi);
10893 bsi.block_start = physical_block_start;
10894 bsi.block_len = len;
10901 ret = btrfs_add_swap_extent(sis, &bsi);
10904 if (!IS_ERR_OR_NULL(em))
10905 free_extent_map(em);
10906 if (!IS_ERR_OR_NULL(map))
10907 btrfs_free_chunk_map(map);
10909 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10912 btrfs_swap_deactivate(file);
10914 btrfs_drew_write_unlock(&root->snapshot_lock);
10916 btrfs_exclop_finish(fs_info);
10922 sis->bdev = device->bdev;
10923 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10924 sis->max = bsi.nr_pages;
10925 sis->pages = bsi.nr_pages - 1;
10926 sis->highest_bit = bsi.nr_pages - 1;
10927 return bsi.nr_extents;
10930 static void btrfs_swap_deactivate(struct file *file)
10934 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10937 return -EOPNOTSUPP;
10942 * Update the number of bytes used in the VFS' inode. When we replace extents in
10943 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10944 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10945 * always get a correct value.
10947 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10948 const u64 add_bytes,
10949 const u64 del_bytes)
10951 if (add_bytes == del_bytes)
10954 spin_lock(&inode->lock);
10956 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10958 inode_add_bytes(&inode->vfs_inode, add_bytes);
10959 spin_unlock(&inode->lock);
10963 * Verify that there are no ordered extents for a given file range.
10965 * @inode: The target inode.
10966 * @start: Start offset of the file range, should be sector size aligned.
10967 * @end: End offset (inclusive) of the file range, its value +1 should be
10968 * sector size aligned.
10970 * This should typically be used for cases where we locked an inode's VFS lock in
10971 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10972 * we have flushed all delalloc in the range, we have waited for all ordered
10973 * extents in the range to complete and finally we have locked the file range in
10974 * the inode's io_tree.
10976 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10978 struct btrfs_root *root = inode->root;
10979 struct btrfs_ordered_extent *ordered;
10981 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10984 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10986 btrfs_err(root->fs_info,
10987 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10988 start, end, btrfs_ino(inode), root->root_key.objectid,
10989 ordered->file_offset,
10990 ordered->file_offset + ordered->num_bytes - 1);
10991 btrfs_put_ordered_extent(ordered);
10994 ASSERT(ordered == NULL);
10997 static const struct inode_operations btrfs_dir_inode_operations = {
10998 .getattr = btrfs_getattr,
10999 .lookup = btrfs_lookup,
11000 .create = btrfs_create,
11001 .unlink = btrfs_unlink,
11002 .link = btrfs_link,
11003 .mkdir = btrfs_mkdir,
11004 .rmdir = btrfs_rmdir,
11005 .rename = btrfs_rename2,
11006 .symlink = btrfs_symlink,
11007 .setattr = btrfs_setattr,
11008 .mknod = btrfs_mknod,
11009 .listxattr = btrfs_listxattr,
11010 .permission = btrfs_permission,
11011 .get_inode_acl = btrfs_get_acl,
11012 .set_acl = btrfs_set_acl,
11013 .update_time = btrfs_update_time,
11014 .tmpfile = btrfs_tmpfile,
11015 .fileattr_get = btrfs_fileattr_get,
11016 .fileattr_set = btrfs_fileattr_set,
11019 static const struct file_operations btrfs_dir_file_operations = {
11020 .llseek = btrfs_dir_llseek,
11021 .read = generic_read_dir,
11022 .iterate_shared = btrfs_real_readdir,
11023 .open = btrfs_opendir,
11024 .unlocked_ioctl = btrfs_ioctl,
11025 #ifdef CONFIG_COMPAT
11026 .compat_ioctl = btrfs_compat_ioctl,
11028 .release = btrfs_release_file,
11029 .fsync = btrfs_sync_file,
11033 * btrfs doesn't support the bmap operation because swapfiles
11034 * use bmap to make a mapping of extents in the file. They assume
11035 * these extents won't change over the life of the file and they
11036 * use the bmap result to do IO directly to the drive.
11038 * the btrfs bmap call would return logical addresses that aren't
11039 * suitable for IO and they also will change frequently as COW
11040 * operations happen. So, swapfile + btrfs == corruption.
11042 * For now we're avoiding this by dropping bmap.
11044 static const struct address_space_operations btrfs_aops = {
11045 .read_folio = btrfs_read_folio,
11046 .writepages = btrfs_writepages,
11047 .readahead = btrfs_readahead,
11048 .invalidate_folio = btrfs_invalidate_folio,
11049 .release_folio = btrfs_release_folio,
11050 .migrate_folio = btrfs_migrate_folio,
11051 .dirty_folio = filemap_dirty_folio,
11052 .error_remove_folio = generic_error_remove_folio,
11053 .swap_activate = btrfs_swap_activate,
11054 .swap_deactivate = btrfs_swap_deactivate,
11057 static const struct inode_operations btrfs_file_inode_operations = {
11058 .getattr = btrfs_getattr,
11059 .setattr = btrfs_setattr,
11060 .listxattr = btrfs_listxattr,
11061 .permission = btrfs_permission,
11062 .fiemap = btrfs_fiemap,
11063 .get_inode_acl = btrfs_get_acl,
11064 .set_acl = btrfs_set_acl,
11065 .update_time = btrfs_update_time,
11066 .fileattr_get = btrfs_fileattr_get,
11067 .fileattr_set = btrfs_fileattr_set,
11069 static const struct inode_operations btrfs_special_inode_operations = {
11070 .getattr = btrfs_getattr,
11071 .setattr = btrfs_setattr,
11072 .permission = btrfs_permission,
11073 .listxattr = btrfs_listxattr,
11074 .get_inode_acl = btrfs_get_acl,
11075 .set_acl = btrfs_set_acl,
11076 .update_time = btrfs_update_time,
11078 static const struct inode_operations btrfs_symlink_inode_operations = {
11079 .get_link = page_get_link,
11080 .getattr = btrfs_getattr,
11081 .setattr = btrfs_setattr,
11082 .permission = btrfs_permission,
11083 .listxattr = btrfs_listxattr,
11084 .update_time = btrfs_update_time,
11087 const struct dentry_operations btrfs_dentry_operations = {
11088 .d_delete = btrfs_dentry_delete,