]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/display/dc/core/dc.c
Merge tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / gpu / drm / amd / display / dc / core / dc.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  */
24
25 #include "dm_services.h"
26
27 #include "dc.h"
28
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33
34 #include "resource.h"
35
36 #include "gpio_service_interface.h"
37 #include "clk_mgr.h"
38 #include "clock_source.h"
39 #include "dc_bios_types.h"
40
41 #include "bios_parser_interface.h"
42 #include "bios/bios_parser_helper.h"
43 #include "include/irq_service_interface.h"
44 #include "transform.h"
45 #include "dmcu.h"
46 #include "dpp.h"
47 #include "timing_generator.h"
48 #include "abm.h"
49 #include "virtual/virtual_link_encoder.h"
50 #include "hubp.h"
51
52 #include "link_hwss.h"
53 #include "link_encoder.h"
54 #include "link_enc_cfg.h"
55
56 #include "link.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59
60 #include "dc_dmub_srv.h"
61
62 #include "dsc.h"
63
64 #include "vm_helper.h"
65
66 #include "dce/dce_i2c.h"
67
68 #include "dmub/dmub_srv.h"
69
70 #include "dce/dmub_psr.h"
71
72 #include "dce/dmub_hw_lock_mgr.h"
73
74 #include "dc_trace.h"
75
76 #include "hw_sequencer_private.h"
77
78 #include "dce/dmub_outbox.h"
79
80 #define CTX \
81         dc->ctx
82
83 #define DC_LOGGER \
84         dc->ctx->logger
85
86 static const char DC_BUILD_ID[] = "production-build";
87
88 /**
89  * DOC: Overview
90  *
91  * DC is the OS-agnostic component of the amdgpu DC driver.
92  *
93  * DC maintains and validates a set of structs representing the state of the
94  * driver and writes that state to AMD hardware
95  *
96  * Main DC HW structs:
97  *
98  * struct dc - The central struct.  One per driver.  Created on driver load,
99  * destroyed on driver unload.
100  *
101  * struct dc_context - One per driver.
102  * Used as a backpointer by most other structs in dc.
103  *
104  * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
105  * plugpoints).  Created on driver load, destroyed on driver unload.
106  *
107  * struct dc_sink - One per display.  Created on boot or hotplug.
108  * Destroyed on shutdown or hotunplug.  A dc_link can have a local sink
109  * (the display directly attached).  It may also have one or more remote
110  * sinks (in the Multi-Stream Transport case)
111  *
112  * struct resource_pool - One per driver.  Represents the hw blocks not in the
113  * main pipeline.  Not directly accessible by dm.
114  *
115  * Main dc state structs:
116  *
117  * These structs can be created and destroyed as needed.  There is a full set of
118  * these structs in dc->current_state representing the currently programmed state.
119  *
120  * struct dc_state - The global DC state to track global state information,
121  * such as bandwidth values.
122  *
123  * struct dc_stream_state - Represents the hw configuration for the pipeline from
124  * a framebuffer to a display.  Maps one-to-one with dc_sink.
125  *
126  * struct dc_plane_state - Represents a framebuffer.  Each stream has at least one,
127  * and may have more in the Multi-Plane Overlay case.
128  *
129  * struct resource_context - Represents the programmable state of everything in
130  * the resource_pool.  Not directly accessible by dm.
131  *
132  * struct pipe_ctx - A member of struct resource_context.  Represents the
133  * internal hardware pipeline components.  Each dc_plane_state has either
134  * one or two (in the pipe-split case).
135  */
136
137 /* Private functions */
138
139 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
140 {
141         if (new > *original)
142                 *original = new;
143 }
144
145 static void destroy_links(struct dc *dc)
146 {
147         uint32_t i;
148
149         for (i = 0; i < dc->link_count; i++) {
150                 if (NULL != dc->links[i])
151                         dc->link_srv->destroy_link(&dc->links[i]);
152         }
153 }
154
155 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
156 {
157         int i;
158         uint32_t count = 0;
159
160         for (i = 0; i < num_links; i++) {
161                 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
162                                 links[i]->is_internal_display)
163                         count++;
164         }
165
166         return count;
167 }
168
169 static int get_seamless_boot_stream_count(struct dc_state *ctx)
170 {
171         uint8_t i;
172         uint8_t seamless_boot_stream_count = 0;
173
174         for (i = 0; i < ctx->stream_count; i++)
175                 if (ctx->streams[i]->apply_seamless_boot_optimization)
176                         seamless_boot_stream_count++;
177
178         return seamless_boot_stream_count;
179 }
180
181 static bool create_links(
182                 struct dc *dc,
183                 uint32_t num_virtual_links)
184 {
185         int i;
186         int connectors_num;
187         struct dc_bios *bios = dc->ctx->dc_bios;
188
189         dc->link_count = 0;
190
191         connectors_num = bios->funcs->get_connectors_number(bios);
192
193         DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
194
195         if (connectors_num > ENUM_ID_COUNT) {
196                 dm_error(
197                         "DC: Number of connectors %d exceeds maximum of %d!\n",
198                         connectors_num,
199                         ENUM_ID_COUNT);
200                 return false;
201         }
202
203         dm_output_to_console(
204                 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
205                 __func__,
206                 connectors_num,
207                 num_virtual_links);
208
209         for (i = 0; i < connectors_num; i++) {
210                 struct link_init_data link_init_params = {0};
211                 struct dc_link *link;
212
213                 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
214
215                 link_init_params.ctx = dc->ctx;
216                 /* next BIOS object table connector */
217                 link_init_params.connector_index = i;
218                 link_init_params.link_index = dc->link_count;
219                 link_init_params.dc = dc;
220                 link = dc->link_srv->create_link(&link_init_params);
221
222                 if (link) {
223                         dc->links[dc->link_count] = link;
224                         link->dc = dc;
225                         ++dc->link_count;
226                 }
227         }
228
229         DC_LOG_DC("BIOS object table - end");
230
231         /* Create a link for each usb4 dpia port */
232         for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
233                 struct link_init_data link_init_params = {0};
234                 struct dc_link *link;
235
236                 link_init_params.ctx = dc->ctx;
237                 link_init_params.connector_index = i;
238                 link_init_params.link_index = dc->link_count;
239                 link_init_params.dc = dc;
240                 link_init_params.is_dpia_link = true;
241
242                 link = dc->link_srv->create_link(&link_init_params);
243                 if (link) {
244                         dc->links[dc->link_count] = link;
245                         link->dc = dc;
246                         ++dc->link_count;
247                 }
248         }
249
250         for (i = 0; i < num_virtual_links; i++) {
251                 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
252                 struct encoder_init_data enc_init = {0};
253
254                 if (link == NULL) {
255                         BREAK_TO_DEBUGGER();
256                         goto failed_alloc;
257                 }
258
259                 link->link_index = dc->link_count;
260                 dc->links[dc->link_count] = link;
261                 dc->link_count++;
262
263                 link->ctx = dc->ctx;
264                 link->dc = dc;
265                 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
266                 link->link_id.type = OBJECT_TYPE_CONNECTOR;
267                 link->link_id.id = CONNECTOR_ID_VIRTUAL;
268                 link->link_id.enum_id = ENUM_ID_1;
269                 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
270
271                 if (!link->link_enc) {
272                         BREAK_TO_DEBUGGER();
273                         goto failed_alloc;
274                 }
275
276                 link->link_status.dpcd_caps = &link->dpcd_caps;
277
278                 enc_init.ctx = dc->ctx;
279                 enc_init.channel = CHANNEL_ID_UNKNOWN;
280                 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
281                 enc_init.transmitter = TRANSMITTER_UNKNOWN;
282                 enc_init.connector = link->link_id;
283                 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
284                 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
285                 enc_init.encoder.enum_id = ENUM_ID_1;
286                 virtual_link_encoder_construct(link->link_enc, &enc_init);
287         }
288
289         dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
290
291         return true;
292
293 failed_alloc:
294         return false;
295 }
296
297 /* Create additional DIG link encoder objects if fewer than the platform
298  * supports were created during link construction. This can happen if the
299  * number of physical connectors is less than the number of DIGs.
300  */
301 static bool create_link_encoders(struct dc *dc)
302 {
303         bool res = true;
304         unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
305         unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
306         int i;
307
308         /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
309          * link encoders and physical display endpoints and does not require
310          * additional link encoder objects.
311          */
312         if (num_usb4_dpia == 0)
313                 return res;
314
315         /* Create as many link encoder objects as the platform supports. DPIA
316          * endpoints can be programmably mapped to any DIG.
317          */
318         if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
319                 for (i = 0; i < num_dig_link_enc; i++) {
320                         struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
321
322                         if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
323                                 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
324                                                 (enum engine_id)(ENGINE_ID_DIGA + i));
325                                 if (link_enc) {
326                                         dc->res_pool->link_encoders[i] = link_enc;
327                                         dc->res_pool->dig_link_enc_count++;
328                                 } else {
329                                         res = false;
330                                 }
331                         }
332                 }
333         }
334
335         return res;
336 }
337
338 /* Destroy any additional DIG link encoder objects created by
339  * create_link_encoders().
340  * NB: Must only be called after destroy_links().
341  */
342 static void destroy_link_encoders(struct dc *dc)
343 {
344         unsigned int num_usb4_dpia;
345         unsigned int num_dig_link_enc;
346         int i;
347
348         if (!dc->res_pool)
349                 return;
350
351         num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
352         num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
353
354         /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
355          * link encoders and physical display endpoints and does not require
356          * additional link encoder objects.
357          */
358         if (num_usb4_dpia == 0)
359                 return;
360
361         for (i = 0; i < num_dig_link_enc; i++) {
362                 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
363
364                 if (link_enc) {
365                         link_enc->funcs->destroy(&link_enc);
366                         dc->res_pool->link_encoders[i] = NULL;
367                         dc->res_pool->dig_link_enc_count--;
368                 }
369         }
370 }
371
372 static struct dc_perf_trace *dc_perf_trace_create(void)
373 {
374         return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
375 }
376
377 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
378 {
379         kfree(*perf_trace);
380         *perf_trace = NULL;
381 }
382
383 /**
384  *  dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
385  *  @dc:     dc reference
386  *  @stream: Initial dc stream state
387  *  @adjust: Updated parameters for vertical_total_min and vertical_total_max
388  *
389  *  Looks up the pipe context of dc_stream_state and updates the
390  *  vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
391  *  Rate, which is a power-saving feature that targets reducing panel
392  *  refresh rate while the screen is static
393  *
394  *  Return: %true if the pipe context is found and adjusted;
395  *          %false if the pipe context is not found.
396  */
397 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
398                 struct dc_stream_state *stream,
399                 struct dc_crtc_timing_adjust *adjust)
400 {
401         int i;
402
403         /*
404          * Don't adjust DRR while there's bandwidth optimizations pending to
405          * avoid conflicting with firmware updates.
406          */
407         if (dc->ctx->dce_version > DCE_VERSION_MAX)
408                 if (dc->optimized_required || dc->wm_optimized_required)
409                         return false;
410
411         stream->adjust.v_total_max = adjust->v_total_max;
412         stream->adjust.v_total_mid = adjust->v_total_mid;
413         stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
414         stream->adjust.v_total_min = adjust->v_total_min;
415
416         for (i = 0; i < MAX_PIPES; i++) {
417                 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
418
419                 if (pipe->stream == stream && pipe->stream_res.tg) {
420                         dc->hwss.set_drr(&pipe,
421                                         1,
422                                         *adjust);
423
424                         return true;
425                 }
426         }
427         return false;
428 }
429
430 /**
431  * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
432  * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
433  *
434  * @dc: [in] dc reference
435  * @stream: [in] Initial dc stream state
436  * @refresh_rate: [in] new refresh_rate
437  *
438  * Return: %true if the pipe context is found and there is an associated
439  *         timing_generator for the DC;
440  *         %false if the pipe context is not found or there is no
441  *         timing_generator for the DC.
442  */
443 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
444                 struct dc_stream_state *stream,
445                 uint32_t *refresh_rate)
446 {
447         bool status = false;
448
449         int i = 0;
450
451         for (i = 0; i < MAX_PIPES; i++) {
452                 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
453
454                 if (pipe->stream == stream && pipe->stream_res.tg) {
455                         /* Only execute if a function pointer has been defined for
456                          * the DC version in question
457                          */
458                         if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
459                                 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
460
461                                 status = true;
462
463                                 break;
464                         }
465                 }
466         }
467
468         return status;
469 }
470
471 bool dc_stream_get_crtc_position(struct dc *dc,
472                 struct dc_stream_state **streams, int num_streams,
473                 unsigned int *v_pos, unsigned int *nom_v_pos)
474 {
475         /* TODO: Support multiple streams */
476         const struct dc_stream_state *stream = streams[0];
477         int i;
478         bool ret = false;
479         struct crtc_position position;
480
481         for (i = 0; i < MAX_PIPES; i++) {
482                 struct pipe_ctx *pipe =
483                                 &dc->current_state->res_ctx.pipe_ctx[i];
484
485                 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
486                         dc->hwss.get_position(&pipe, 1, &position);
487
488                         *v_pos = position.vertical_count;
489                         *nom_v_pos = position.nominal_vcount;
490                         ret = true;
491                 }
492         }
493         return ret;
494 }
495
496 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
497 static inline void
498 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
499                 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
500 {
501         union dmub_rb_cmd cmd = {0};
502
503         cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
504         cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
505
506         if (is_stop) {
507                 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
508                 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
509         } else {
510                 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
511                 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
512                 cmd.secure_display.roi_info.x_start = rect->x;
513                 cmd.secure_display.roi_info.y_start = rect->y;
514                 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
515                 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
516         }
517
518         dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
519         dc_dmub_srv_cmd_execute(dmub_srv);
520 }
521
522 static inline void
523 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
524                 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
525 {
526         if (is_stop)
527                 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
528         else
529                 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
530 }
531
532 bool
533 dc_stream_forward_crc_window(struct dc_stream_state *stream,
534                 struct rect *rect, bool is_stop)
535 {
536         struct dmcu *dmcu;
537         struct dc_dmub_srv *dmub_srv;
538         struct otg_phy_mux mux_mapping;
539         struct pipe_ctx *pipe;
540         int i;
541         struct dc *dc = stream->ctx->dc;
542
543         for (i = 0; i < MAX_PIPES; i++) {
544                 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
545                 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
546                         break;
547         }
548
549         /* Stream not found */
550         if (i == MAX_PIPES)
551                 return false;
552
553         mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
554         mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
555
556         dmcu = dc->res_pool->dmcu;
557         dmub_srv = dc->ctx->dmub_srv;
558
559         /* forward to dmub */
560         if (dmub_srv)
561                 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
562         /* forward to dmcu */
563         else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
564                 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
565         else
566                 return false;
567
568         return true;
569 }
570 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
571
572 /**
573  * dc_stream_configure_crc() - Configure CRC capture for the given stream.
574  * @dc: DC Object
575  * @stream: The stream to configure CRC on.
576  * @enable: Enable CRC if true, disable otherwise.
577  * @crc_window: CRC window (x/y start/end) information
578  * @continuous: Capture CRC on every frame if true. Otherwise, only capture
579  *              once.
580  *
581  * By default, only CRC0 is configured, and the entire frame is used to
582  * calculate the CRC.
583  *
584  * Return: %false if the stream is not found or CRC capture is not supported;
585  *         %true if the stream has been configured.
586  */
587 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
588                              struct crc_params *crc_window, bool enable, bool continuous)
589 {
590         int i;
591         struct pipe_ctx *pipe;
592         struct crc_params param;
593         struct timing_generator *tg;
594
595         for (i = 0; i < MAX_PIPES; i++) {
596                 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
597                 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
598                         break;
599         }
600         /* Stream not found */
601         if (i == MAX_PIPES)
602                 return false;
603
604         /* By default, capture the full frame */
605         param.windowa_x_start = 0;
606         param.windowa_y_start = 0;
607         param.windowa_x_end = pipe->stream->timing.h_addressable;
608         param.windowa_y_end = pipe->stream->timing.v_addressable;
609         param.windowb_x_start = 0;
610         param.windowb_y_start = 0;
611         param.windowb_x_end = pipe->stream->timing.h_addressable;
612         param.windowb_y_end = pipe->stream->timing.v_addressable;
613
614         if (crc_window) {
615                 param.windowa_x_start = crc_window->windowa_x_start;
616                 param.windowa_y_start = crc_window->windowa_y_start;
617                 param.windowa_x_end = crc_window->windowa_x_end;
618                 param.windowa_y_end = crc_window->windowa_y_end;
619                 param.windowb_x_start = crc_window->windowb_x_start;
620                 param.windowb_y_start = crc_window->windowb_y_start;
621                 param.windowb_x_end = crc_window->windowb_x_end;
622                 param.windowb_y_end = crc_window->windowb_y_end;
623         }
624
625         param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
626         param.odm_mode = pipe->next_odm_pipe ? 1:0;
627
628         /* Default to the union of both windows */
629         param.selection = UNION_WINDOW_A_B;
630         param.continuous_mode = continuous;
631         param.enable = enable;
632
633         tg = pipe->stream_res.tg;
634
635         /* Only call if supported */
636         if (tg->funcs->configure_crc)
637                 return tg->funcs->configure_crc(tg, &param);
638         DC_LOG_WARNING("CRC capture not supported.");
639         return false;
640 }
641
642 /**
643  * dc_stream_get_crc() - Get CRC values for the given stream.
644  *
645  * @dc: DC object.
646  * @stream: The DC stream state of the stream to get CRCs from.
647  * @r_cr: CRC value for the red component.
648  * @g_y:  CRC value for the green component.
649  * @b_cb: CRC value for the blue component.
650  *
651  * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
652  *
653  * Return:
654  * %false if stream is not found, or if CRCs are not enabled.
655  */
656 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
657                        uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
658 {
659         int i;
660         struct pipe_ctx *pipe;
661         struct timing_generator *tg;
662
663         for (i = 0; i < MAX_PIPES; i++) {
664                 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
665                 if (pipe->stream == stream)
666                         break;
667         }
668         /* Stream not found */
669         if (i == MAX_PIPES)
670                 return false;
671
672         tg = pipe->stream_res.tg;
673
674         if (tg->funcs->get_crc)
675                 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
676         DC_LOG_WARNING("CRC capture not supported.");
677         return false;
678 }
679
680 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
681                 enum dc_dynamic_expansion option)
682 {
683         /* OPP FMT dyn expansion updates*/
684         int i;
685         struct pipe_ctx *pipe_ctx;
686
687         for (i = 0; i < MAX_PIPES; i++) {
688                 if (dc->current_state->res_ctx.pipe_ctx[i].stream
689                                 == stream) {
690                         pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
691                         pipe_ctx->stream_res.opp->dyn_expansion = option;
692                         pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
693                                         pipe_ctx->stream_res.opp,
694                                         COLOR_SPACE_YCBCR601,
695                                         stream->timing.display_color_depth,
696                                         stream->signal);
697                 }
698         }
699 }
700
701 void dc_stream_set_dither_option(struct dc_stream_state *stream,
702                 enum dc_dither_option option)
703 {
704         struct bit_depth_reduction_params params;
705         struct dc_link *link = stream->link;
706         struct pipe_ctx *pipes = NULL;
707         int i;
708
709         for (i = 0; i < MAX_PIPES; i++) {
710                 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
711                                 stream) {
712                         pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
713                         break;
714                 }
715         }
716
717         if (!pipes)
718                 return;
719         if (option > DITHER_OPTION_MAX)
720                 return;
721
722         stream->dither_option = option;
723
724         memset(&params, 0, sizeof(params));
725         resource_build_bit_depth_reduction_params(stream, &params);
726         stream->bit_depth_params = params;
727
728         if (pipes->plane_res.xfm &&
729             pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
730                 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
731                         pipes->plane_res.xfm,
732                         pipes->plane_res.scl_data.lb_params.depth,
733                         &stream->bit_depth_params);
734         }
735
736         pipes->stream_res.opp->funcs->
737                 opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
738 }
739
740 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
741 {
742         int i;
743         bool ret = false;
744         struct pipe_ctx *pipes;
745
746         for (i = 0; i < MAX_PIPES; i++) {
747                 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
748                         pipes = &dc->current_state->res_ctx.pipe_ctx[i];
749                         dc->hwss.program_gamut_remap(pipes);
750                         ret = true;
751                 }
752         }
753
754         return ret;
755 }
756
757 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
758 {
759         int i;
760         bool ret = false;
761         struct pipe_ctx *pipes;
762
763         for (i = 0; i < MAX_PIPES; i++) {
764                 if (dc->current_state->res_ctx.pipe_ctx[i].stream
765                                 == stream) {
766
767                         pipes = &dc->current_state->res_ctx.pipe_ctx[i];
768                         dc->hwss.program_output_csc(dc,
769                                         pipes,
770                                         stream->output_color_space,
771                                         stream->csc_color_matrix.matrix,
772                                         pipes->stream_res.opp->inst);
773                         ret = true;
774                 }
775         }
776
777         return ret;
778 }
779
780 void dc_stream_set_static_screen_params(struct dc *dc,
781                 struct dc_stream_state **streams,
782                 int num_streams,
783                 const struct dc_static_screen_params *params)
784 {
785         int i, j;
786         struct pipe_ctx *pipes_affected[MAX_PIPES];
787         int num_pipes_affected = 0;
788
789         for (i = 0; i < num_streams; i++) {
790                 struct dc_stream_state *stream = streams[i];
791
792                 for (j = 0; j < MAX_PIPES; j++) {
793                         if (dc->current_state->res_ctx.pipe_ctx[j].stream
794                                         == stream) {
795                                 pipes_affected[num_pipes_affected++] =
796                                                 &dc->current_state->res_ctx.pipe_ctx[j];
797                         }
798                 }
799         }
800
801         dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
802 }
803
804 static void dc_destruct(struct dc *dc)
805 {
806         // reset link encoder assignment table on destruct
807         if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
808                 link_enc_cfg_init(dc, dc->current_state);
809
810         if (dc->current_state) {
811                 dc_release_state(dc->current_state);
812                 dc->current_state = NULL;
813         }
814
815         destroy_links(dc);
816
817         destroy_link_encoders(dc);
818
819         if (dc->clk_mgr) {
820                 dc_destroy_clk_mgr(dc->clk_mgr);
821                 dc->clk_mgr = NULL;
822         }
823
824         dc_destroy_resource_pool(dc);
825
826         if (dc->link_srv)
827                 link_destroy_link_service(&dc->link_srv);
828
829         if (dc->ctx->gpio_service)
830                 dal_gpio_service_destroy(&dc->ctx->gpio_service);
831
832         if (dc->ctx->created_bios)
833                 dal_bios_parser_destroy(&dc->ctx->dc_bios);
834
835         dc_perf_trace_destroy(&dc->ctx->perf_trace);
836
837         kfree(dc->ctx);
838         dc->ctx = NULL;
839
840         kfree(dc->bw_vbios);
841         dc->bw_vbios = NULL;
842
843         kfree(dc->bw_dceip);
844         dc->bw_dceip = NULL;
845
846         kfree(dc->dcn_soc);
847         dc->dcn_soc = NULL;
848
849         kfree(dc->dcn_ip);
850         dc->dcn_ip = NULL;
851
852         kfree(dc->vm_helper);
853         dc->vm_helper = NULL;
854
855 }
856
857 static bool dc_construct_ctx(struct dc *dc,
858                 const struct dc_init_data *init_params)
859 {
860         struct dc_context *dc_ctx;
861         enum dce_version dc_version = DCE_VERSION_UNKNOWN;
862
863         dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
864         if (!dc_ctx)
865                 return false;
866
867         dc_ctx->cgs_device = init_params->cgs_device;
868         dc_ctx->driver_context = init_params->driver;
869         dc_ctx->dc = dc;
870         dc_ctx->asic_id = init_params->asic_id;
871         dc_ctx->dc_sink_id_count = 0;
872         dc_ctx->dc_stream_id_count = 0;
873         dc_ctx->dce_environment = init_params->dce_environment;
874         dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
875         dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
876
877         /* Create logger */
878
879         dc_version = resource_parse_asic_id(init_params->asic_id);
880         dc_ctx->dce_version = dc_version;
881
882         dc_ctx->perf_trace = dc_perf_trace_create();
883         if (!dc_ctx->perf_trace) {
884                 kfree(dc_ctx);
885                 ASSERT_CRITICAL(false);
886                 return false;
887         }
888
889         dc->ctx = dc_ctx;
890
891         dc->link_srv = link_create_link_service();
892         if (!dc->link_srv)
893                 return false;
894
895         return true;
896 }
897
898 static bool dc_construct(struct dc *dc,
899                 const struct dc_init_data *init_params)
900 {
901         struct dc_context *dc_ctx;
902         struct bw_calcs_dceip *dc_dceip;
903         struct bw_calcs_vbios *dc_vbios;
904         struct dcn_soc_bounding_box *dcn_soc;
905         struct dcn_ip_params *dcn_ip;
906
907         dc->config = init_params->flags;
908
909         // Allocate memory for the vm_helper
910         dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
911         if (!dc->vm_helper) {
912                 dm_error("%s: failed to create dc->vm_helper\n", __func__);
913                 goto fail;
914         }
915
916         memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
917
918         dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
919         if (!dc_dceip) {
920                 dm_error("%s: failed to create dceip\n", __func__);
921                 goto fail;
922         }
923
924         dc->bw_dceip = dc_dceip;
925
926         dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
927         if (!dc_vbios) {
928                 dm_error("%s: failed to create vbios\n", __func__);
929                 goto fail;
930         }
931
932         dc->bw_vbios = dc_vbios;
933         dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
934         if (!dcn_soc) {
935                 dm_error("%s: failed to create dcn_soc\n", __func__);
936                 goto fail;
937         }
938
939         dc->dcn_soc = dcn_soc;
940
941         dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
942         if (!dcn_ip) {
943                 dm_error("%s: failed to create dcn_ip\n", __func__);
944                 goto fail;
945         }
946
947         dc->dcn_ip = dcn_ip;
948
949         if (!dc_construct_ctx(dc, init_params)) {
950                 dm_error("%s: failed to create ctx\n", __func__);
951                 goto fail;
952         }
953
954         dc_ctx = dc->ctx;
955
956         /* Resource should construct all asic specific resources.
957          * This should be the only place where we need to parse the asic id
958          */
959         if (init_params->vbios_override)
960                 dc_ctx->dc_bios = init_params->vbios_override;
961         else {
962                 /* Create BIOS parser */
963                 struct bp_init_data bp_init_data;
964
965                 bp_init_data.ctx = dc_ctx;
966                 bp_init_data.bios = init_params->asic_id.atombios_base_address;
967
968                 dc_ctx->dc_bios = dal_bios_parser_create(
969                                 &bp_init_data, dc_ctx->dce_version);
970
971                 if (!dc_ctx->dc_bios) {
972                         ASSERT_CRITICAL(false);
973                         goto fail;
974                 }
975
976                 dc_ctx->created_bios = true;
977         }
978
979         dc->vendor_signature = init_params->vendor_signature;
980
981         /* Create GPIO service */
982         dc_ctx->gpio_service = dal_gpio_service_create(
983                         dc_ctx->dce_version,
984                         dc_ctx->dce_environment,
985                         dc_ctx);
986
987         if (!dc_ctx->gpio_service) {
988                 ASSERT_CRITICAL(false);
989                 goto fail;
990         }
991
992         dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
993         if (!dc->res_pool)
994                 goto fail;
995
996         /* set i2c speed if not done by the respective dcnxxx__resource.c */
997         if (dc->caps.i2c_speed_in_khz_hdcp == 0)
998                 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
999
1000         dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1001         if (!dc->clk_mgr)
1002                 goto fail;
1003 #ifdef CONFIG_DRM_AMD_DC_FP
1004         dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1005
1006         if (dc->res_pool->funcs->update_bw_bounding_box) {
1007                 DC_FP_START();
1008                 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1009                 DC_FP_END();
1010         }
1011 #endif
1012
1013         /* Creation of current_state must occur after dc->dml
1014          * is initialized in dc_create_resource_pool because
1015          * on creation it copies the contents of dc->dml
1016          */
1017
1018         dc->current_state = dc_create_state(dc);
1019
1020         if (!dc->current_state) {
1021                 dm_error("%s: failed to create validate ctx\n", __func__);
1022                 goto fail;
1023         }
1024
1025         if (!create_links(dc, init_params->num_virtual_links))
1026                 goto fail;
1027
1028         /* Create additional DIG link encoder objects if fewer than the platform
1029          * supports were created during link construction.
1030          */
1031         if (!create_link_encoders(dc))
1032                 goto fail;
1033
1034         dc_resource_state_construct(dc, dc->current_state);
1035
1036         return true;
1037
1038 fail:
1039         return false;
1040 }
1041
1042 static void disable_all_writeback_pipes_for_stream(
1043                 const struct dc *dc,
1044                 struct dc_stream_state *stream,
1045                 struct dc_state *context)
1046 {
1047         int i;
1048
1049         for (i = 0; i < stream->num_wb_info; i++)
1050                 stream->writeback_info[i].wb_enabled = false;
1051 }
1052
1053 static void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context,
1054                                           struct dc_stream_state *stream, bool lock)
1055 {
1056         int i;
1057
1058         /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1059         if (dc->hwss.interdependent_update_lock)
1060                 dc->hwss.interdependent_update_lock(dc, context, lock);
1061         else {
1062                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1063                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1064                         struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1065
1066                         // Copied conditions that were previously in dce110_apply_ctx_for_surface
1067                         if (stream == pipe_ctx->stream) {
1068                                 if (!pipe_ctx->top_pipe &&
1069                                         (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1070                                         dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1071                         }
1072                 }
1073         }
1074 }
1075
1076 static void phantom_pipe_blank(
1077                 struct dc *dc,
1078                 struct timing_generator *tg,
1079                 int width,
1080                 int height)
1081 {
1082         struct dce_hwseq *hws = dc->hwseq;
1083         enum dc_color_space color_space;
1084         struct tg_color black_color = {0};
1085         struct output_pixel_processor *opp = NULL;
1086         uint32_t num_opps, opp_id_src0, opp_id_src1;
1087         uint32_t otg_active_width, otg_active_height;
1088         uint32_t i;
1089
1090         /* program opp dpg blank color */
1091         color_space = COLOR_SPACE_SRGB;
1092         color_space_to_black_color(dc, color_space, &black_color);
1093
1094         otg_active_width = width;
1095         otg_active_height = height;
1096
1097         /* get the OPTC source */
1098         tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
1099         ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp);
1100
1101         for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
1102                 if (dc->res_pool->opps[i] != NULL && dc->res_pool->opps[i]->inst == opp_id_src0) {
1103                         opp = dc->res_pool->opps[i];
1104                         break;
1105                 }
1106         }
1107
1108         if (opp && opp->funcs->opp_set_disp_pattern_generator)
1109                 opp->funcs->opp_set_disp_pattern_generator(
1110                                 opp,
1111                                 CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
1112                                 CONTROLLER_DP_COLOR_SPACE_UDEFINED,
1113                                 COLOR_DEPTH_UNDEFINED,
1114                                 &black_color,
1115                                 otg_active_width,
1116                                 otg_active_height,
1117                                 0);
1118
1119         if (tg->funcs->is_tg_enabled(tg))
1120                 hws->funcs.wait_for_blank_complete(opp);
1121 }
1122
1123 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1124 {
1125         int i, j;
1126         struct dc_state *dangling_context = dc_create_state(dc);
1127         struct dc_state *current_ctx;
1128         struct pipe_ctx *pipe;
1129         struct timing_generator *tg;
1130
1131         if (dangling_context == NULL)
1132                 return;
1133
1134         dc_resource_state_copy_construct(dc->current_state, dangling_context);
1135
1136         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1137                 struct dc_stream_state *old_stream =
1138                                 dc->current_state->res_ctx.pipe_ctx[i].stream;
1139                 bool should_disable = true;
1140                 bool pipe_split_change = false;
1141
1142                 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1143                         (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1144                         pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1145                                 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1146                 else
1147                         pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1148                                 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1149
1150                 for (j = 0; j < context->stream_count; j++) {
1151                         if (old_stream == context->streams[j]) {
1152                                 should_disable = false;
1153                                 break;
1154                         }
1155                 }
1156                 if (!should_disable && pipe_split_change &&
1157                                 dc->current_state->stream_count != context->stream_count)
1158                         should_disable = true;
1159
1160                 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1161                                 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1162                         struct pipe_ctx *old_pipe, *new_pipe;
1163
1164                         old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1165                         new_pipe = &context->res_ctx.pipe_ctx[i];
1166
1167                         if (old_pipe->plane_state && !new_pipe->plane_state)
1168                                 should_disable = true;
1169                 }
1170
1171                 if (should_disable && old_stream) {
1172                         pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1173                         tg = pipe->stream_res.tg;
1174                         /* When disabling plane for a phantom pipe, we must turn on the
1175                          * phantom OTG so the disable programming gets the double buffer
1176                          * update. Otherwise the pipe will be left in a partially disabled
1177                          * state that can result in underflow or hang when enabling it
1178                          * again for different use.
1179                          */
1180                         if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1181                                 if (tg->funcs->enable_crtc) {
1182                                         int main_pipe_width, main_pipe_height;
1183
1184                                         main_pipe_width = old_stream->mall_stream_config.paired_stream->dst.width;
1185                                         main_pipe_height = old_stream->mall_stream_config.paired_stream->dst.height;
1186                                         phantom_pipe_blank(dc, tg, main_pipe_width, main_pipe_height);
1187                                         tg->funcs->enable_crtc(tg);
1188                                 }
1189                         }
1190                         dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1191                         disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1192
1193                         if (dc->hwss.apply_ctx_for_surface) {
1194                                 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1195                                 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1196                                 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1197                                 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1198                         }
1199                         if (dc->hwss.program_front_end_for_ctx) {
1200                                 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1201                                 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1202                                 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1203                                 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1204                         }
1205                         /* We need to put the phantom OTG back into it's default (disabled) state or we
1206                          * can get corruption when transition from one SubVP config to a different one.
1207                          * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1208                          * will still get it's double buffer update.
1209                          */
1210                         if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1211                                 if (tg->funcs->disable_phantom_crtc)
1212                                         tg->funcs->disable_phantom_crtc(tg);
1213                         }
1214                 }
1215         }
1216
1217         current_ctx = dc->current_state;
1218         dc->current_state = dangling_context;
1219         dc_release_state(current_ctx);
1220 }
1221
1222 static void disable_vbios_mode_if_required(
1223                 struct dc *dc,
1224                 struct dc_state *context)
1225 {
1226         unsigned int i, j;
1227
1228         /* check if timing_changed, disable stream*/
1229         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1230                 struct dc_stream_state *stream = NULL;
1231                 struct dc_link *link = NULL;
1232                 struct pipe_ctx *pipe = NULL;
1233
1234                 pipe = &context->res_ctx.pipe_ctx[i];
1235                 stream = pipe->stream;
1236                 if (stream == NULL)
1237                         continue;
1238
1239                 // only looking for first odm pipe
1240                 if (pipe->prev_odm_pipe)
1241                         continue;
1242
1243                 if (stream->link->local_sink &&
1244                         stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1245                         link = stream->link;
1246                 }
1247
1248                 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1249                         unsigned int enc_inst, tg_inst = 0;
1250                         unsigned int pix_clk_100hz;
1251
1252                         enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1253                         if (enc_inst != ENGINE_ID_UNKNOWN) {
1254                                 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1255                                         if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1256                                                 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1257                                                         dc->res_pool->stream_enc[j]);
1258                                                 break;
1259                                         }
1260                                 }
1261
1262                                 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1263                                         dc->res_pool->dp_clock_source,
1264                                         tg_inst, &pix_clk_100hz);
1265
1266                                 if (link->link_status.link_active) {
1267                                         uint32_t requested_pix_clk_100hz =
1268                                                 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1269
1270                                         if (pix_clk_100hz != requested_pix_clk_100hz) {
1271                                                 dc->link_srv->set_dpms_off(pipe);
1272                                                 pipe->stream->dpms_off = false;
1273                                         }
1274                                 }
1275                         }
1276                 }
1277         }
1278 }
1279
1280 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1281 {
1282         int i;
1283         PERF_TRACE();
1284         for (i = 0; i < MAX_PIPES; i++) {
1285                 int count = 0;
1286                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1287
1288                 if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1289                         continue;
1290
1291                 /* Timeout 100 ms */
1292                 while (count < 100000) {
1293                         /* Must set to false to start with, due to OR in update function */
1294                         pipe->plane_state->status.is_flip_pending = false;
1295                         dc->hwss.update_pending_status(pipe);
1296                         if (!pipe->plane_state->status.is_flip_pending)
1297                                 break;
1298                         udelay(1);
1299                         count++;
1300                 }
1301                 ASSERT(!pipe->plane_state->status.is_flip_pending);
1302         }
1303         PERF_TRACE();
1304 }
1305
1306 /* Public functions */
1307
1308 struct dc *dc_create(const struct dc_init_data *init_params)
1309 {
1310         struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1311         unsigned int full_pipe_count;
1312
1313         if (!dc)
1314                 return NULL;
1315
1316         if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1317                 if (!dc_construct_ctx(dc, init_params))
1318                         goto destruct_dc;
1319         } else {
1320                 if (!dc_construct(dc, init_params))
1321                         goto destruct_dc;
1322
1323                 full_pipe_count = dc->res_pool->pipe_count;
1324                 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1325                         full_pipe_count--;
1326                 dc->caps.max_streams = min(
1327                                 full_pipe_count,
1328                                 dc->res_pool->stream_enc_count);
1329
1330                 dc->caps.max_links = dc->link_count;
1331                 dc->caps.max_audios = dc->res_pool->audio_count;
1332                 dc->caps.linear_pitch_alignment = 64;
1333
1334                 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1335
1336                 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1337
1338                 if (dc->res_pool->dmcu != NULL)
1339                         dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1340         }
1341
1342         dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1343         dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1344
1345         /* Populate versioning information */
1346         dc->versions.dc_ver = DC_VER;
1347
1348         dc->build_id = DC_BUILD_ID;
1349
1350         DC_LOG_DC("Display Core initialized\n");
1351
1352
1353
1354         return dc;
1355
1356 destruct_dc:
1357         dc_destruct(dc);
1358         kfree(dc);
1359         return NULL;
1360 }
1361
1362 static void detect_edp_presence(struct dc *dc)
1363 {
1364         struct dc_link *edp_links[MAX_NUM_EDP];
1365         struct dc_link *edp_link = NULL;
1366         enum dc_connection_type type;
1367         int i;
1368         int edp_num;
1369
1370         dc_get_edp_links(dc, edp_links, &edp_num);
1371         if (!edp_num)
1372                 return;
1373
1374         for (i = 0; i < edp_num; i++) {
1375                 edp_link = edp_links[i];
1376                 if (dc->config.edp_not_connected) {
1377                         edp_link->edp_sink_present = false;
1378                 } else {
1379                         dc_link_detect_connection_type(edp_link, &type);
1380                         edp_link->edp_sink_present = (type != dc_connection_none);
1381                 }
1382         }
1383 }
1384
1385 void dc_hardware_init(struct dc *dc)
1386 {
1387
1388         detect_edp_presence(dc);
1389         if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1390                 dc->hwss.init_hw(dc);
1391 }
1392
1393 void dc_init_callbacks(struct dc *dc,
1394                 const struct dc_callback_init *init_params)
1395 {
1396         dc->ctx->cp_psp = init_params->cp_psp;
1397 }
1398
1399 void dc_deinit_callbacks(struct dc *dc)
1400 {
1401         memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1402 }
1403
1404 void dc_destroy(struct dc **dc)
1405 {
1406         dc_destruct(*dc);
1407         kfree(*dc);
1408         *dc = NULL;
1409 }
1410
1411 static void enable_timing_multisync(
1412                 struct dc *dc,
1413                 struct dc_state *ctx)
1414 {
1415         int i, multisync_count = 0;
1416         int pipe_count = dc->res_pool->pipe_count;
1417         struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1418
1419         for (i = 0; i < pipe_count; i++) {
1420                 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1421                                 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1422                         continue;
1423                 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1424                         continue;
1425                 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1426                 multisync_count++;
1427         }
1428
1429         if (multisync_count > 0) {
1430                 dc->hwss.enable_per_frame_crtc_position_reset(
1431                         dc, multisync_count, multisync_pipes);
1432         }
1433 }
1434
1435 static void program_timing_sync(
1436                 struct dc *dc,
1437                 struct dc_state *ctx)
1438 {
1439         int i, j, k;
1440         int group_index = 0;
1441         int num_group = 0;
1442         int pipe_count = dc->res_pool->pipe_count;
1443         struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1444
1445         for (i = 0; i < pipe_count; i++) {
1446                 if (!ctx->res_ctx.pipe_ctx[i].stream
1447                                 || ctx->res_ctx.pipe_ctx[i].top_pipe
1448                                 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1449                         continue;
1450
1451                 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1452         }
1453
1454         for (i = 0; i < pipe_count; i++) {
1455                 int group_size = 1;
1456                 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1457                 struct pipe_ctx *pipe_set[MAX_PIPES];
1458
1459                 if (!unsynced_pipes[i])
1460                         continue;
1461
1462                 pipe_set[0] = unsynced_pipes[i];
1463                 unsynced_pipes[i] = NULL;
1464
1465                 /* Add tg to the set, search rest of the tg's for ones with
1466                  * same timing, add all tgs with same timing to the group
1467                  */
1468                 for (j = i + 1; j < pipe_count; j++) {
1469                         if (!unsynced_pipes[j])
1470                                 continue;
1471                         if (sync_type != TIMING_SYNCHRONIZABLE &&
1472                                 dc->hwss.enable_vblanks_synchronization &&
1473                                 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1474                                 resource_are_vblanks_synchronizable(
1475                                         unsynced_pipes[j]->stream,
1476                                         pipe_set[0]->stream)) {
1477                                 sync_type = VBLANK_SYNCHRONIZABLE;
1478                                 pipe_set[group_size] = unsynced_pipes[j];
1479                                 unsynced_pipes[j] = NULL;
1480                                 group_size++;
1481                         } else
1482                         if (sync_type != VBLANK_SYNCHRONIZABLE &&
1483                                 resource_are_streams_timing_synchronizable(
1484                                         unsynced_pipes[j]->stream,
1485                                         pipe_set[0]->stream)) {
1486                                 sync_type = TIMING_SYNCHRONIZABLE;
1487                                 pipe_set[group_size] = unsynced_pipes[j];
1488                                 unsynced_pipes[j] = NULL;
1489                                 group_size++;
1490                         }
1491                 }
1492
1493                 /* set first unblanked pipe as master */
1494                 for (j = 0; j < group_size; j++) {
1495                         bool is_blanked;
1496
1497                         if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1498                                 is_blanked =
1499                                         pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1500                         else
1501                                 is_blanked =
1502                                         pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1503                         if (!is_blanked) {
1504                                 if (j == 0)
1505                                         break;
1506
1507                                 swap(pipe_set[0], pipe_set[j]);
1508                                 break;
1509                         }
1510                 }
1511
1512                 for (k = 0; k < group_size; k++) {
1513                         struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1514
1515                         status->timing_sync_info.group_id = num_group;
1516                         status->timing_sync_info.group_size = group_size;
1517                         if (k == 0)
1518                                 status->timing_sync_info.master = true;
1519                         else
1520                                 status->timing_sync_info.master = false;
1521
1522                 }
1523
1524                 /* remove any other pipes that are already been synced */
1525                 if (dc->config.use_pipe_ctx_sync_logic) {
1526                         /* check pipe's syncd to decide which pipe to be removed */
1527                         for (j = 1; j < group_size; j++) {
1528                                 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1529                                         group_size--;
1530                                         pipe_set[j] = pipe_set[group_size];
1531                                         j--;
1532                                 } else
1533                                         /* link slave pipe's syncd with master pipe */
1534                                         pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1535                         }
1536                 } else {
1537                         for (j = j + 1; j < group_size; j++) {
1538                                 bool is_blanked;
1539
1540                                 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1541                                         is_blanked =
1542                                                 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1543                                 else
1544                                         is_blanked =
1545                                                 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1546                                 if (!is_blanked) {
1547                                         group_size--;
1548                                         pipe_set[j] = pipe_set[group_size];
1549                                         j--;
1550                                 }
1551                         }
1552                 }
1553
1554                 if (group_size > 1) {
1555                         if (sync_type == TIMING_SYNCHRONIZABLE) {
1556                                 dc->hwss.enable_timing_synchronization(
1557                                         dc, group_index, group_size, pipe_set);
1558                         } else
1559                                 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1560                                 dc->hwss.enable_vblanks_synchronization(
1561                                         dc, group_index, group_size, pipe_set);
1562                                 }
1563                         group_index++;
1564                 }
1565                 num_group++;
1566         }
1567 }
1568
1569 static bool streams_changed(struct dc *dc,
1570                             struct dc_stream_state *streams[],
1571                             uint8_t stream_count)
1572 {
1573         uint8_t i;
1574
1575         if (stream_count != dc->current_state->stream_count)
1576                 return true;
1577
1578         for (i = 0; i < dc->current_state->stream_count; i++) {
1579                 if (dc->current_state->streams[i] != streams[i])
1580                         return true;
1581                 if (!streams[i]->link->link_state_valid)
1582                         return true;
1583         }
1584
1585         return false;
1586 }
1587
1588 bool dc_validate_boot_timing(const struct dc *dc,
1589                                 const struct dc_sink *sink,
1590                                 struct dc_crtc_timing *crtc_timing)
1591 {
1592         struct timing_generator *tg;
1593         struct stream_encoder *se = NULL;
1594
1595         struct dc_crtc_timing hw_crtc_timing = {0};
1596
1597         struct dc_link *link = sink->link;
1598         unsigned int i, enc_inst, tg_inst = 0;
1599
1600         /* Support seamless boot on EDP displays only */
1601         if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1602                 return false;
1603         }
1604
1605         /* Check for enabled DIG to identify enabled display */
1606         if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1607                 return false;
1608
1609         enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1610
1611         if (enc_inst == ENGINE_ID_UNKNOWN)
1612                 return false;
1613
1614         for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1615                 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1616
1617                         se = dc->res_pool->stream_enc[i];
1618
1619                         tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1620                                 dc->res_pool->stream_enc[i]);
1621                         break;
1622                 }
1623         }
1624
1625         // tg_inst not found
1626         if (i == dc->res_pool->stream_enc_count)
1627                 return false;
1628
1629         if (tg_inst >= dc->res_pool->timing_generator_count)
1630                 return false;
1631
1632         if (tg_inst != link->link_enc->preferred_engine)
1633                 return false;
1634
1635         tg = dc->res_pool->timing_generators[tg_inst];
1636
1637         if (!tg->funcs->get_hw_timing)
1638                 return false;
1639
1640         if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1641                 return false;
1642
1643         if (crtc_timing->h_total != hw_crtc_timing.h_total)
1644                 return false;
1645
1646         if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1647                 return false;
1648
1649         if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1650                 return false;
1651
1652         if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1653                 return false;
1654
1655         if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1656                 return false;
1657
1658         if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1659                 return false;
1660
1661         if (crtc_timing->v_total != hw_crtc_timing.v_total)
1662                 return false;
1663
1664         if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1665                 return false;
1666
1667         if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1668                 return false;
1669
1670         if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1671                 return false;
1672
1673         if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1674                 return false;
1675
1676         if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1677                 return false;
1678
1679         /* block DSC for now, as VBIOS does not currently support DSC timings */
1680         if (crtc_timing->flags.DSC)
1681                 return false;
1682
1683         if (dc_is_dp_signal(link->connector_signal)) {
1684                 unsigned int pix_clk_100hz;
1685                 uint32_t numOdmPipes = 1;
1686                 uint32_t id_src[4] = {0};
1687
1688                 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1689                         dc->res_pool->dp_clock_source,
1690                         tg_inst, &pix_clk_100hz);
1691
1692                 if (tg->funcs->get_optc_source)
1693                         tg->funcs->get_optc_source(tg,
1694                                                 &numOdmPipes, &id_src[0], &id_src[1]);
1695
1696                 if (numOdmPipes == 2)
1697                         pix_clk_100hz *= 2;
1698                 if (numOdmPipes == 4)
1699                         pix_clk_100hz *= 4;
1700
1701                 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1702                 // slightly due to rounding issues in 10 kHz units.
1703                 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1704                         return false;
1705
1706                 if (!se->funcs->dp_get_pixel_format)
1707                         return false;
1708
1709                 if (!se->funcs->dp_get_pixel_format(
1710                         se,
1711                         &hw_crtc_timing.pixel_encoding,
1712                         &hw_crtc_timing.display_color_depth))
1713                         return false;
1714
1715                 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1716                         return false;
1717
1718                 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1719                         return false;
1720         }
1721
1722         if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1723                 return false;
1724         }
1725
1726         if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1727                 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1728                 return false;
1729         }
1730
1731         return true;
1732 }
1733
1734 static inline bool should_update_pipe_for_stream(
1735                 struct dc_state *context,
1736                 struct pipe_ctx *pipe_ctx,
1737                 struct dc_stream_state *stream)
1738 {
1739         return (pipe_ctx->stream && pipe_ctx->stream == stream);
1740 }
1741
1742 static inline bool should_update_pipe_for_plane(
1743                 struct dc_state *context,
1744                 struct pipe_ctx *pipe_ctx,
1745                 struct dc_plane_state *plane_state)
1746 {
1747         return (pipe_ctx->plane_state == plane_state);
1748 }
1749
1750 void dc_enable_stereo(
1751         struct dc *dc,
1752         struct dc_state *context,
1753         struct dc_stream_state *streams[],
1754         uint8_t stream_count)
1755 {
1756         int i, j;
1757         struct pipe_ctx *pipe;
1758
1759         for (i = 0; i < MAX_PIPES; i++) {
1760                 if (context != NULL) {
1761                         pipe = &context->res_ctx.pipe_ctx[i];
1762                 } else {
1763                         context = dc->current_state;
1764                         pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1765                 }
1766
1767                 for (j = 0; pipe && j < stream_count; j++)  {
1768                         if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1769                                 dc->hwss.setup_stereo)
1770                                 dc->hwss.setup_stereo(pipe, dc);
1771                 }
1772         }
1773 }
1774
1775 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1776 {
1777         if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1778                 enable_timing_multisync(dc, context);
1779                 program_timing_sync(dc, context);
1780         }
1781 }
1782
1783 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1784 {
1785         int i;
1786         unsigned int stream_mask = 0;
1787
1788         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1789                 if (context->res_ctx.pipe_ctx[i].stream)
1790                         stream_mask |= 1 << i;
1791         }
1792
1793         return stream_mask;
1794 }
1795
1796 void dc_z10_restore(const struct dc *dc)
1797 {
1798         if (dc->hwss.z10_restore)
1799                 dc->hwss.z10_restore(dc);
1800 }
1801
1802 void dc_z10_save_init(struct dc *dc)
1803 {
1804         if (dc->hwss.z10_save_init)
1805                 dc->hwss.z10_save_init(dc);
1806 }
1807
1808 /**
1809  * dc_commit_state_no_check - Apply context to the hardware
1810  *
1811  * @dc: DC object with the current status to be updated
1812  * @context: New state that will become the current status at the end of this function
1813  *
1814  * Applies given context to the hardware and copy it into current context.
1815  * It's up to the user to release the src context afterwards.
1816  *
1817  * Return: an enum dc_status result code for the operation
1818  */
1819 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1820 {
1821         struct dc_bios *dcb = dc->ctx->dc_bios;
1822         enum dc_status result = DC_ERROR_UNEXPECTED;
1823         struct pipe_ctx *pipe;
1824         int i, k, l;
1825         struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1826         struct dc_state *old_state;
1827         bool subvp_prev_use = false;
1828
1829         dc_z10_restore(dc);
1830         dc_allow_idle_optimizations(dc, false);
1831
1832         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1833                 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1834
1835                 /* Check old context for SubVP */
1836                 subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1837                 if (subvp_prev_use)
1838                         break;
1839         }
1840
1841         for (i = 0; i < context->stream_count; i++)
1842                 dc_streams[i] =  context->streams[i];
1843
1844         if (!dcb->funcs->is_accelerated_mode(dcb)) {
1845                 disable_vbios_mode_if_required(dc, context);
1846                 dc->hwss.enable_accelerated_mode(dc, context);
1847         }
1848
1849         if (context->stream_count > get_seamless_boot_stream_count(context) ||
1850                 context->stream_count == 0)
1851                 dc->hwss.prepare_bandwidth(dc, context);
1852
1853         /* When SubVP is active, all HW programming must be done while
1854          * SubVP lock is acquired
1855          */
1856         if (dc->hwss.subvp_pipe_control_lock)
1857                 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1858
1859         if (dc->debug.enable_double_buffered_dsc_pg_support)
1860                 dc->hwss.update_dsc_pg(dc, context, false);
1861
1862         disable_dangling_plane(dc, context);
1863         /* re-program planes for existing stream, in case we need to
1864          * free up plane resource for later use
1865          */
1866         if (dc->hwss.apply_ctx_for_surface) {
1867                 for (i = 0; i < context->stream_count; i++) {
1868                         if (context->streams[i]->mode_changed)
1869                                 continue;
1870                         apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1871                         dc->hwss.apply_ctx_for_surface(
1872                                 dc, context->streams[i],
1873                                 context->stream_status[i].plane_count,
1874                                 context); /* use new pipe config in new context */
1875                         apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1876                         dc->hwss.post_unlock_program_front_end(dc, context);
1877                 }
1878         }
1879
1880         /* Program hardware */
1881         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1882                 pipe = &context->res_ctx.pipe_ctx[i];
1883                 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1884         }
1885
1886         result = dc->hwss.apply_ctx_to_hw(dc, context);
1887
1888         if (result != DC_OK) {
1889                 /* Application of dc_state to hardware stopped. */
1890                 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1891                 return result;
1892         }
1893
1894         dc_trigger_sync(dc, context);
1895
1896         /* Program all planes within new context*/
1897         if (dc->hwss.program_front_end_for_ctx) {
1898                 dc->hwss.interdependent_update_lock(dc, context, true);
1899                 dc->hwss.program_front_end_for_ctx(dc, context);
1900                 dc->hwss.interdependent_update_lock(dc, context, false);
1901                 dc->hwss.post_unlock_program_front_end(dc, context);
1902         }
1903
1904         if (dc->hwss.commit_subvp_config)
1905                 dc->hwss.commit_subvp_config(dc, context);
1906         if (dc->hwss.subvp_pipe_control_lock)
1907                 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1908
1909         for (i = 0; i < context->stream_count; i++) {
1910                 const struct dc_link *link = context->streams[i]->link;
1911
1912                 if (!context->streams[i]->mode_changed)
1913                         continue;
1914
1915                 if (dc->hwss.apply_ctx_for_surface) {
1916                         apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1917                         dc->hwss.apply_ctx_for_surface(
1918                                         dc, context->streams[i],
1919                                         context->stream_status[i].plane_count,
1920                                         context);
1921                         apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1922                         dc->hwss.post_unlock_program_front_end(dc, context);
1923                 }
1924
1925                 /*
1926                  * enable stereo
1927                  * TODO rework dc_enable_stereo call to work with validation sets?
1928                  */
1929                 for (k = 0; k < MAX_PIPES; k++) {
1930                         pipe = &context->res_ctx.pipe_ctx[k];
1931
1932                         for (l = 0 ; pipe && l < context->stream_count; l++)  {
1933                                 if (context->streams[l] &&
1934                                         context->streams[l] == pipe->stream &&
1935                                         dc->hwss.setup_stereo)
1936                                         dc->hwss.setup_stereo(pipe, dc);
1937                         }
1938                 }
1939
1940                 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1941                                 context->streams[i]->timing.h_addressable,
1942                                 context->streams[i]->timing.v_addressable,
1943                                 context->streams[i]->timing.h_total,
1944                                 context->streams[i]->timing.v_total,
1945                                 context->streams[i]->timing.pix_clk_100hz / 10);
1946         }
1947
1948         dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1949
1950         if (context->stream_count > get_seamless_boot_stream_count(context) ||
1951                 context->stream_count == 0) {
1952                 /* Must wait for no flips to be pending before doing optimize bw */
1953                 wait_for_no_pipes_pending(dc, context);
1954                 /* pplib is notified if disp_num changed */
1955                 dc->hwss.optimize_bandwidth(dc, context);
1956         }
1957
1958         if (dc->debug.enable_double_buffered_dsc_pg_support)
1959                 dc->hwss.update_dsc_pg(dc, context, true);
1960
1961         if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1962                 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1963         else
1964                 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1965
1966         context->stream_mask = get_stream_mask(dc, context);
1967
1968         if (context->stream_mask != dc->current_state->stream_mask)
1969                 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1970
1971         for (i = 0; i < context->stream_count; i++)
1972                 context->streams[i]->mode_changed = false;
1973
1974         old_state = dc->current_state;
1975         dc->current_state = context;
1976
1977         dc_release_state(old_state);
1978
1979         dc_retain_state(dc->current_state);
1980
1981         return result;
1982 }
1983
1984 /**
1985  * dc_commit_streams - Commit current stream state
1986  *
1987  * @dc: DC object with the commit state to be configured in the hardware
1988  * @streams: Array with a list of stream state
1989  * @stream_count: Total of streams
1990  *
1991  * Function responsible for commit streams change to the hardware.
1992  *
1993  * Return:
1994  * Return DC_OK if everything work as expected, otherwise, return a dc_status
1995  * code.
1996  */
1997 enum dc_status dc_commit_streams(struct dc *dc,
1998                                  struct dc_stream_state *streams[],
1999                                  uint8_t stream_count)
2000 {
2001         int i, j;
2002         struct dc_state *context;
2003         enum dc_status res = DC_OK;
2004         struct dc_validation_set set[MAX_STREAMS] = {0};
2005
2006         if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2007                 return res;
2008
2009         if (!streams_changed(dc, streams, stream_count))
2010                 return res;
2011
2012         DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2013
2014         for (i = 0; i < stream_count; i++) {
2015                 struct dc_stream_state *stream = streams[i];
2016                 struct dc_stream_status *status = dc_stream_get_status(stream);
2017
2018                 dc_stream_log(dc, stream);
2019
2020                 set[i].stream = stream;
2021
2022                 if (status) {
2023                         set[i].plane_count = status->plane_count;
2024                         for (j = 0; j < status->plane_count; j++)
2025                                 set[i].plane_states[j] = status->plane_states[j];
2026                 }
2027         }
2028
2029         context = dc_create_state(dc);
2030         if (!context)
2031                 goto context_alloc_fail;
2032
2033         dc_resource_state_copy_construct_current(dc, context);
2034
2035         res = dc_validate_with_context(dc, set, stream_count, context, false);
2036         if (res != DC_OK) {
2037                 BREAK_TO_DEBUGGER();
2038                 goto fail;
2039         }
2040
2041         res = dc_commit_state_no_check(dc, context);
2042
2043         for (i = 0; i < stream_count; i++) {
2044                 for (j = 0; j < context->stream_count; j++) {
2045                         if (streams[i]->stream_id == context->streams[j]->stream_id)
2046                                 streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2047
2048                         if (dc_is_embedded_signal(streams[i]->signal)) {
2049                                 struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
2050
2051                                 if (dc->hwss.is_abm_supported)
2052                                         status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2053                                 else
2054                                         status->is_abm_supported = true;
2055                         }
2056                 }
2057         }
2058
2059 fail:
2060         dc_release_state(context);
2061
2062 context_alloc_fail:
2063
2064         DC_LOG_DC("%s Finished.\n", __func__);
2065
2066         return res;
2067 }
2068
2069 bool dc_acquire_release_mpc_3dlut(
2070                 struct dc *dc, bool acquire,
2071                 struct dc_stream_state *stream,
2072                 struct dc_3dlut **lut,
2073                 struct dc_transfer_func **shaper)
2074 {
2075         int pipe_idx;
2076         bool ret = false;
2077         bool found_pipe_idx = false;
2078         const struct resource_pool *pool = dc->res_pool;
2079         struct resource_context *res_ctx = &dc->current_state->res_ctx;
2080         int mpcc_id = 0;
2081
2082         if (pool && res_ctx) {
2083                 if (acquire) {
2084                         /*find pipe idx for the given stream*/
2085                         for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2086                                 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2087                                         found_pipe_idx = true;
2088                                         mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2089                                         break;
2090                                 }
2091                         }
2092                 } else
2093                         found_pipe_idx = true;/*for release pipe_idx is not required*/
2094
2095                 if (found_pipe_idx) {
2096                         if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2097                                 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2098                         else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2099                                 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2100                 }
2101         }
2102         return ret;
2103 }
2104
2105 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2106 {
2107         int i;
2108         struct pipe_ctx *pipe;
2109
2110         for (i = 0; i < MAX_PIPES; i++) {
2111                 pipe = &context->res_ctx.pipe_ctx[i];
2112
2113                 // Don't check flip pending on phantom pipes
2114                 if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
2115                         continue;
2116
2117                 /* Must set to false to start with, due to OR in update function */
2118                 pipe->plane_state->status.is_flip_pending = false;
2119                 dc->hwss.update_pending_status(pipe);
2120                 if (pipe->plane_state->status.is_flip_pending)
2121                         return true;
2122         }
2123         return false;
2124 }
2125
2126 /* Perform updates here which need to be deferred until next vupdate
2127  *
2128  * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2129  * but forcing lut memory to shutdown state is immediate. This causes
2130  * single frame corruption as lut gets disabled mid-frame unless shutdown
2131  * is deferred until after entering bypass.
2132  */
2133 static void process_deferred_updates(struct dc *dc)
2134 {
2135         int i = 0;
2136
2137         if (dc->debug.enable_mem_low_power.bits.cm) {
2138                 ASSERT(dc->dcn_ip->max_num_dpp);
2139                 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2140                         if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2141                                 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2142         }
2143 }
2144
2145 void dc_post_update_surfaces_to_stream(struct dc *dc)
2146 {
2147         int i;
2148         struct dc_state *context = dc->current_state;
2149
2150         if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2151                 return;
2152
2153         post_surface_trace(dc);
2154
2155         /*
2156          * Only relevant for DCN behavior where we can guarantee the optimization
2157          * is safe to apply - retain the legacy behavior for DCE.
2158          */
2159
2160         if (dc->ctx->dce_version < DCE_VERSION_MAX)
2161                 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2162         else {
2163                 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2164
2165                 if (is_flip_pending_in_pipes(dc, context))
2166                         return;
2167
2168                 for (i = 0; i < dc->res_pool->pipe_count; i++)
2169                         if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2170                                         context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2171                                 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2172                                 dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2173                         }
2174
2175                 process_deferred_updates(dc);
2176
2177                 dc->hwss.optimize_bandwidth(dc, context);
2178
2179                 if (dc->debug.enable_double_buffered_dsc_pg_support)
2180                         dc->hwss.update_dsc_pg(dc, context, true);
2181         }
2182
2183         dc->optimized_required = false;
2184         dc->wm_optimized_required = false;
2185 }
2186
2187 static void init_state(struct dc *dc, struct dc_state *context)
2188 {
2189         /* Each context must have their own instance of VBA and in order to
2190          * initialize and obtain IP and SOC the base DML instance from DC is
2191          * initially copied into every context
2192          */
2193         memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2194 }
2195
2196 struct dc_state *dc_create_state(struct dc *dc)
2197 {
2198         struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2199                                             GFP_KERNEL);
2200
2201         if (!context)
2202                 return NULL;
2203
2204         init_state(dc, context);
2205
2206         kref_init(&context->refcount);
2207
2208         return context;
2209 }
2210
2211 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2212 {
2213         int i, j;
2214         struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2215
2216         if (!new_ctx)
2217                 return NULL;
2218         memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2219
2220         for (i = 0; i < MAX_PIPES; i++) {
2221                         struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2222
2223                         if (cur_pipe->top_pipe)
2224                                 cur_pipe->top_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2225
2226                         if (cur_pipe->bottom_pipe)
2227                                 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2228
2229                         if (cur_pipe->prev_odm_pipe)
2230                                 cur_pipe->prev_odm_pipe =  &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2231
2232                         if (cur_pipe->next_odm_pipe)
2233                                 cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2234
2235         }
2236
2237         for (i = 0; i < new_ctx->stream_count; i++) {
2238                         dc_stream_retain(new_ctx->streams[i]);
2239                         for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2240                                 dc_plane_state_retain(
2241                                         new_ctx->stream_status[i].plane_states[j]);
2242         }
2243
2244         kref_init(&new_ctx->refcount);
2245
2246         return new_ctx;
2247 }
2248
2249 void dc_retain_state(struct dc_state *context)
2250 {
2251         kref_get(&context->refcount);
2252 }
2253
2254 static void dc_state_free(struct kref *kref)
2255 {
2256         struct dc_state *context = container_of(kref, struct dc_state, refcount);
2257         dc_resource_state_destruct(context);
2258         kvfree(context);
2259 }
2260
2261 void dc_release_state(struct dc_state *context)
2262 {
2263         kref_put(&context->refcount, dc_state_free);
2264 }
2265
2266 bool dc_set_generic_gpio_for_stereo(bool enable,
2267                 struct gpio_service *gpio_service)
2268 {
2269         enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2270         struct gpio_pin_info pin_info;
2271         struct gpio *generic;
2272         struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2273                            GFP_KERNEL);
2274
2275         if (!config)
2276                 return false;
2277         pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2278
2279         if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2280                 kfree(config);
2281                 return false;
2282         } else {
2283                 generic = dal_gpio_service_create_generic_mux(
2284                         gpio_service,
2285                         pin_info.offset,
2286                         pin_info.mask);
2287         }
2288
2289         if (!generic) {
2290                 kfree(config);
2291                 return false;
2292         }
2293
2294         gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2295
2296         config->enable_output_from_mux = enable;
2297         config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2298
2299         if (gpio_result == GPIO_RESULT_OK)
2300                 gpio_result = dal_mux_setup_config(generic, config);
2301
2302         if (gpio_result == GPIO_RESULT_OK) {
2303                 dal_gpio_close(generic);
2304                 dal_gpio_destroy_generic_mux(&generic);
2305                 kfree(config);
2306                 return true;
2307         } else {
2308                 dal_gpio_close(generic);
2309                 dal_gpio_destroy_generic_mux(&generic);
2310                 kfree(config);
2311                 return false;
2312         }
2313 }
2314
2315 static bool is_surface_in_context(
2316                 const struct dc_state *context,
2317                 const struct dc_plane_state *plane_state)
2318 {
2319         int j;
2320
2321         for (j = 0; j < MAX_PIPES; j++) {
2322                 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2323
2324                 if (plane_state == pipe_ctx->plane_state) {
2325                         return true;
2326                 }
2327         }
2328
2329         return false;
2330 }
2331
2332 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2333 {
2334         union surface_update_flags *update_flags = &u->surface->update_flags;
2335         enum surface_update_type update_type = UPDATE_TYPE_FAST;
2336
2337         if (!u->plane_info)
2338                 return UPDATE_TYPE_FAST;
2339
2340         if (u->plane_info->color_space != u->surface->color_space) {
2341                 update_flags->bits.color_space_change = 1;
2342                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2343         }
2344
2345         if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2346                 update_flags->bits.horizontal_mirror_change = 1;
2347                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2348         }
2349
2350         if (u->plane_info->rotation != u->surface->rotation) {
2351                 update_flags->bits.rotation_change = 1;
2352                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2353         }
2354
2355         if (u->plane_info->format != u->surface->format) {
2356                 update_flags->bits.pixel_format_change = 1;
2357                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2358         }
2359
2360         if (u->plane_info->stereo_format != u->surface->stereo_format) {
2361                 update_flags->bits.stereo_format_change = 1;
2362                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2363         }
2364
2365         if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2366                 update_flags->bits.per_pixel_alpha_change = 1;
2367                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2368         }
2369
2370         if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2371                 update_flags->bits.global_alpha_change = 1;
2372                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2373         }
2374
2375         if (u->plane_info->dcc.enable != u->surface->dcc.enable
2376                         || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2377                         || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2378                 /* During DCC on/off, stutter period is calculated before
2379                  * DCC has fully transitioned. This results in incorrect
2380                  * stutter period calculation. Triggering a full update will
2381                  * recalculate stutter period.
2382                  */
2383                 update_flags->bits.dcc_change = 1;
2384                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2385         }
2386
2387         if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2388                         resource_pixel_format_to_bpp(u->surface->format)) {
2389                 /* different bytes per element will require full bandwidth
2390                  * and DML calculation
2391                  */
2392                 update_flags->bits.bpp_change = 1;
2393                 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2394         }
2395
2396         if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2397                         || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2398                 update_flags->bits.plane_size_change = 1;
2399                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2400         }
2401
2402
2403         if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2404                         sizeof(union dc_tiling_info)) != 0) {
2405                 update_flags->bits.swizzle_change = 1;
2406                 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2407
2408                 /* todo: below are HW dependent, we should add a hook to
2409                  * DCE/N resource and validated there.
2410                  */
2411                 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2412                         /* swizzled mode requires RQ to be setup properly,
2413                          * thus need to run DML to calculate RQ settings
2414                          */
2415                         update_flags->bits.bandwidth_change = 1;
2416                         elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2417                 }
2418         }
2419
2420         /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2421         return update_type;
2422 }
2423
2424 static enum surface_update_type get_scaling_info_update_type(
2425                 const struct dc_surface_update *u)
2426 {
2427         union surface_update_flags *update_flags = &u->surface->update_flags;
2428
2429         if (!u->scaling_info)
2430                 return UPDATE_TYPE_FAST;
2431
2432         if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2433                         || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2434                         || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2435                         || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2436                         || u->scaling_info->scaling_quality.integer_scaling !=
2437                                 u->surface->scaling_quality.integer_scaling
2438                         ) {
2439                 update_flags->bits.scaling_change = 1;
2440
2441                 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2442                         || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2443                                 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2444                                         || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2445                         /* Making dst rect smaller requires a bandwidth change */
2446                         update_flags->bits.bandwidth_change = 1;
2447         }
2448
2449         if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2450                 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2451
2452                 update_flags->bits.scaling_change = 1;
2453                 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2454                                 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2455                         /* Making src rect bigger requires a bandwidth change */
2456                         update_flags->bits.clock_change = 1;
2457         }
2458
2459         if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2460                         || u->scaling_info->src_rect.y != u->surface->src_rect.y
2461                         || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2462                         || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2463                         || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2464                         || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2465                 update_flags->bits.position_change = 1;
2466
2467         if (update_flags->bits.clock_change
2468                         || update_flags->bits.bandwidth_change
2469                         || update_flags->bits.scaling_change)
2470                 return UPDATE_TYPE_FULL;
2471
2472         if (update_flags->bits.position_change)
2473                 return UPDATE_TYPE_MED;
2474
2475         return UPDATE_TYPE_FAST;
2476 }
2477
2478 static enum surface_update_type det_surface_update(const struct dc *dc,
2479                 const struct dc_surface_update *u)
2480 {
2481         const struct dc_state *context = dc->current_state;
2482         enum surface_update_type type;
2483         enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2484         union surface_update_flags *update_flags = &u->surface->update_flags;
2485
2486         if (u->flip_addr)
2487                 update_flags->bits.addr_update = 1;
2488
2489         if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2490                 update_flags->raw = 0xFFFFFFFF;
2491                 return UPDATE_TYPE_FULL;
2492         }
2493
2494         update_flags->raw = 0; // Reset all flags
2495
2496         type = get_plane_info_update_type(u);
2497         elevate_update_type(&overall_type, type);
2498
2499         type = get_scaling_info_update_type(u);
2500         elevate_update_type(&overall_type, type);
2501
2502         if (u->flip_addr) {
2503                 update_flags->bits.addr_update = 1;
2504                 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2505                         update_flags->bits.tmz_changed = 1;
2506                         elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2507                 }
2508         }
2509         if (u->in_transfer_func)
2510                 update_flags->bits.in_transfer_func_change = 1;
2511
2512         if (u->input_csc_color_matrix)
2513                 update_flags->bits.input_csc_change = 1;
2514
2515         if (u->coeff_reduction_factor)
2516                 update_flags->bits.coeff_reduction_change = 1;
2517
2518         if (u->gamut_remap_matrix)
2519                 update_flags->bits.gamut_remap_change = 1;
2520
2521         if (u->gamma) {
2522                 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2523
2524                 if (u->plane_info)
2525                         format = u->plane_info->format;
2526                 else if (u->surface)
2527                         format = u->surface->format;
2528
2529                 if (dce_use_lut(format))
2530                         update_flags->bits.gamma_change = 1;
2531         }
2532
2533         if (u->lut3d_func || u->func_shaper)
2534                 update_flags->bits.lut_3d = 1;
2535
2536         if (u->hdr_mult.value)
2537                 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2538                         update_flags->bits.hdr_mult = 1;
2539                         elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2540                 }
2541
2542         if (update_flags->bits.in_transfer_func_change) {
2543                 type = UPDATE_TYPE_MED;
2544                 elevate_update_type(&overall_type, type);
2545         }
2546
2547         if (update_flags->bits.input_csc_change
2548                         || update_flags->bits.coeff_reduction_change
2549                         || update_flags->bits.lut_3d
2550                         || update_flags->bits.gamma_change
2551                         || update_flags->bits.gamut_remap_change) {
2552                 type = UPDATE_TYPE_FULL;
2553                 elevate_update_type(&overall_type, type);
2554         }
2555
2556         return overall_type;
2557 }
2558
2559 static enum surface_update_type check_update_surfaces_for_stream(
2560                 struct dc *dc,
2561                 struct dc_surface_update *updates,
2562                 int surface_count,
2563                 struct dc_stream_update *stream_update,
2564                 const struct dc_stream_status *stream_status)
2565 {
2566         int i;
2567         enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2568
2569         if (dc->idle_optimizations_allowed)
2570                 overall_type = UPDATE_TYPE_FULL;
2571
2572         if (stream_status == NULL || stream_status->plane_count != surface_count)
2573                 overall_type = UPDATE_TYPE_FULL;
2574
2575         if (stream_update && stream_update->pending_test_pattern) {
2576                 overall_type = UPDATE_TYPE_FULL;
2577         }
2578
2579         /* some stream updates require passive update */
2580         if (stream_update) {
2581                 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2582
2583                 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2584                         (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2585                         stream_update->integer_scaling_update)
2586                         su_flags->bits.scaling = 1;
2587
2588                 if (stream_update->out_transfer_func)
2589                         su_flags->bits.out_tf = 1;
2590
2591                 if (stream_update->abm_level)
2592                         su_flags->bits.abm_level = 1;
2593
2594                 if (stream_update->dpms_off)
2595                         su_flags->bits.dpms_off = 1;
2596
2597                 if (stream_update->gamut_remap)
2598                         su_flags->bits.gamut_remap = 1;
2599
2600                 if (stream_update->wb_update)
2601                         su_flags->bits.wb_update = 1;
2602
2603                 if (stream_update->dsc_config)
2604                         su_flags->bits.dsc_changed = 1;
2605
2606                 if (stream_update->mst_bw_update)
2607                         su_flags->bits.mst_bw = 1;
2608                 if (stream_update->crtc_timing_adjust && dc_extended_blank_supported(dc))
2609                         su_flags->bits.crtc_timing_adjust = 1;
2610
2611                 if (su_flags->raw != 0)
2612                         overall_type = UPDATE_TYPE_FULL;
2613
2614                 if (stream_update->output_csc_transform || stream_update->output_color_space)
2615                         su_flags->bits.out_csc = 1;
2616         }
2617
2618         for (i = 0 ; i < surface_count; i++) {
2619                 enum surface_update_type type =
2620                                 det_surface_update(dc, &updates[i]);
2621
2622                 elevate_update_type(&overall_type, type);
2623         }
2624
2625         return overall_type;
2626 }
2627
2628 static bool dc_check_is_fullscreen_video(struct rect src, struct rect clip_rect)
2629 {
2630         int view_height, view_width, clip_x, clip_y, clip_width, clip_height;
2631
2632         view_height = src.height;
2633         view_width = src.width;
2634
2635         clip_x = clip_rect.x;
2636         clip_y = clip_rect.y;
2637
2638         clip_width = clip_rect.width;
2639         clip_height = clip_rect.height;
2640
2641         /* check for centered video accounting for off by 1 scaling truncation */
2642         if ((view_height - clip_y - clip_height <= clip_y + 1) &&
2643                         (view_width - clip_x - clip_width <= clip_x + 1) &&
2644                         (view_height - clip_y - clip_height >= clip_y - 1) &&
2645                         (view_width - clip_x - clip_width >= clip_x - 1)) {
2646
2647                 /* when OS scales up/down to letter box, it may end up
2648                  * with few blank pixels on the border due to truncating.
2649                  * Add offset margin to account for this
2650                  */
2651                 if (clip_x <= 4 || clip_y <= 4)
2652                         return true;
2653         }
2654
2655         return false;
2656 }
2657
2658 static enum surface_update_type check_boundary_crossing_for_windowed_mpo_with_odm(struct dc *dc,
2659                 struct dc_surface_update *srf_updates, int surface_count,
2660                 enum surface_update_type update_type)
2661 {
2662         enum surface_update_type new_update_type = update_type;
2663         int i, j;
2664         struct pipe_ctx *pipe = NULL;
2665         struct dc_stream_state *stream;
2666
2667         /* Check that we are in windowed MPO with ODM
2668          * - look for MPO pipe by scanning pipes for first pipe matching
2669          *   surface that has moved ( position change )
2670          * - MPO pipe will have top pipe
2671          * - check that top pipe has ODM pointer
2672          */
2673         if ((surface_count > 1) && dc->config.enable_windowed_mpo_odm) {
2674                 for (i = 0; i < surface_count; i++) {
2675                         if (srf_updates[i].surface && srf_updates[i].scaling_info
2676                                         && srf_updates[i].surface->update_flags.bits.position_change) {
2677
2678                                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2679                                         if (srf_updates[i].surface == dc->current_state->res_ctx.pipe_ctx[j].plane_state) {
2680                                                 pipe = &dc->current_state->res_ctx.pipe_ctx[j];
2681                                                 stream = pipe->stream;
2682                                                 break;
2683                                         }
2684                                 }
2685
2686                                 if (pipe && pipe->top_pipe && (get_num_odm_splits(pipe->top_pipe) > 0) && stream
2687                                                 && !dc_check_is_fullscreen_video(stream->src, srf_updates[i].scaling_info->clip_rect)) {
2688                                         struct rect old_clip_rect, new_clip_rect;
2689                                         bool old_clip_rect_left, old_clip_rect_right, old_clip_rect_middle;
2690                                         bool new_clip_rect_left, new_clip_rect_right, new_clip_rect_middle;
2691
2692                                         old_clip_rect = srf_updates[i].surface->clip_rect;
2693                                         new_clip_rect = srf_updates[i].scaling_info->clip_rect;
2694
2695                                         old_clip_rect_left = ((old_clip_rect.x + old_clip_rect.width) <= (stream->src.x + (stream->src.width/2)));
2696                                         old_clip_rect_right = (old_clip_rect.x >= (stream->src.x + (stream->src.width/2)));
2697                                         old_clip_rect_middle = !old_clip_rect_left && !old_clip_rect_right;
2698
2699                                         new_clip_rect_left = ((new_clip_rect.x + new_clip_rect.width) <= (stream->src.x + (stream->src.width/2)));
2700                                         new_clip_rect_right = (new_clip_rect.x >= (stream->src.x + (stream->src.width/2)));
2701                                         new_clip_rect_middle = !new_clip_rect_left && !new_clip_rect_right;
2702
2703                                         if (old_clip_rect_left && new_clip_rect_middle)
2704                                                 new_update_type = UPDATE_TYPE_FULL;
2705                                         else if (old_clip_rect_middle && new_clip_rect_right)
2706                                                 new_update_type = UPDATE_TYPE_FULL;
2707                                         else if (old_clip_rect_right && new_clip_rect_middle)
2708                                                 new_update_type = UPDATE_TYPE_FULL;
2709                                         else if (old_clip_rect_middle && new_clip_rect_left)
2710                                                 new_update_type = UPDATE_TYPE_FULL;
2711                                 }
2712                         }
2713                 }
2714         }
2715         return new_update_type;
2716 }
2717
2718 /*
2719  * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2720  *
2721  * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2722  */
2723 enum surface_update_type dc_check_update_surfaces_for_stream(
2724                 struct dc *dc,
2725                 struct dc_surface_update *updates,
2726                 int surface_count,
2727                 struct dc_stream_update *stream_update,
2728                 const struct dc_stream_status *stream_status)
2729 {
2730         int i;
2731         enum surface_update_type type;
2732
2733         if (stream_update)
2734                 stream_update->stream->update_flags.raw = 0;
2735         for (i = 0; i < surface_count; i++)
2736                 updates[i].surface->update_flags.raw = 0;
2737
2738         type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2739         if (type == UPDATE_TYPE_FULL) {
2740                 if (stream_update) {
2741                         uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2742                         stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2743                         stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2744                 }
2745                 for (i = 0; i < surface_count; i++)
2746                         updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2747         }
2748
2749         if (type == UPDATE_TYPE_MED)
2750                 type = check_boundary_crossing_for_windowed_mpo_with_odm(dc,
2751                                 updates, surface_count, type);
2752
2753         if (type == UPDATE_TYPE_FAST) {
2754                 // If there's an available clock comparator, we use that.
2755                 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2756                         if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2757                                 dc->optimized_required = true;
2758                 // Else we fallback to mem compare.
2759                 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2760                         dc->optimized_required = true;
2761                 }
2762
2763                 dc->optimized_required |= dc->wm_optimized_required;
2764         }
2765
2766         return type;
2767 }
2768
2769 static struct dc_stream_status *stream_get_status(
2770         struct dc_state *ctx,
2771         struct dc_stream_state *stream)
2772 {
2773         uint8_t i;
2774
2775         for (i = 0; i < ctx->stream_count; i++) {
2776                 if (stream == ctx->streams[i]) {
2777                         return &ctx->stream_status[i];
2778                 }
2779         }
2780
2781         return NULL;
2782 }
2783
2784 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2785
2786 static void copy_surface_update_to_plane(
2787                 struct dc_plane_state *surface,
2788                 struct dc_surface_update *srf_update)
2789 {
2790         if (srf_update->flip_addr) {
2791                 surface->address = srf_update->flip_addr->address;
2792                 surface->flip_immediate =
2793                         srf_update->flip_addr->flip_immediate;
2794                 surface->time.time_elapsed_in_us[surface->time.index] =
2795                         srf_update->flip_addr->flip_timestamp_in_us -
2796                                 surface->time.prev_update_time_in_us;
2797                 surface->time.prev_update_time_in_us =
2798                         srf_update->flip_addr->flip_timestamp_in_us;
2799                 surface->time.index++;
2800                 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2801                         surface->time.index = 0;
2802
2803                 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2804         }
2805
2806         if (srf_update->scaling_info) {
2807                 surface->scaling_quality =
2808                                 srf_update->scaling_info->scaling_quality;
2809                 surface->dst_rect =
2810                                 srf_update->scaling_info->dst_rect;
2811                 surface->src_rect =
2812                                 srf_update->scaling_info->src_rect;
2813                 surface->clip_rect =
2814                                 srf_update->scaling_info->clip_rect;
2815         }
2816
2817         if (srf_update->plane_info) {
2818                 surface->color_space =
2819                                 srf_update->plane_info->color_space;
2820                 surface->format =
2821                                 srf_update->plane_info->format;
2822                 surface->plane_size =
2823                                 srf_update->plane_info->plane_size;
2824                 surface->rotation =
2825                                 srf_update->plane_info->rotation;
2826                 surface->horizontal_mirror =
2827                                 srf_update->plane_info->horizontal_mirror;
2828                 surface->stereo_format =
2829                                 srf_update->plane_info->stereo_format;
2830                 surface->tiling_info =
2831                                 srf_update->plane_info->tiling_info;
2832                 surface->visible =
2833                                 srf_update->plane_info->visible;
2834                 surface->per_pixel_alpha =
2835                                 srf_update->plane_info->per_pixel_alpha;
2836                 surface->global_alpha =
2837                                 srf_update->plane_info->global_alpha;
2838                 surface->global_alpha_value =
2839                                 srf_update->plane_info->global_alpha_value;
2840                 surface->dcc =
2841                                 srf_update->plane_info->dcc;
2842                 surface->layer_index =
2843                                 srf_update->plane_info->layer_index;
2844         }
2845
2846         if (srf_update->gamma &&
2847                         (surface->gamma_correction !=
2848                                         srf_update->gamma)) {
2849                 memcpy(&surface->gamma_correction->entries,
2850                         &srf_update->gamma->entries,
2851                         sizeof(struct dc_gamma_entries));
2852                 surface->gamma_correction->is_identity =
2853                         srf_update->gamma->is_identity;
2854                 surface->gamma_correction->num_entries =
2855                         srf_update->gamma->num_entries;
2856                 surface->gamma_correction->type =
2857                         srf_update->gamma->type;
2858         }
2859
2860         if (srf_update->in_transfer_func &&
2861                         (surface->in_transfer_func !=
2862                                 srf_update->in_transfer_func)) {
2863                 surface->in_transfer_func->sdr_ref_white_level =
2864                         srf_update->in_transfer_func->sdr_ref_white_level;
2865                 surface->in_transfer_func->tf =
2866                         srf_update->in_transfer_func->tf;
2867                 surface->in_transfer_func->type =
2868                         srf_update->in_transfer_func->type;
2869                 memcpy(&surface->in_transfer_func->tf_pts,
2870                         &srf_update->in_transfer_func->tf_pts,
2871                         sizeof(struct dc_transfer_func_distributed_points));
2872         }
2873
2874         if (srf_update->func_shaper &&
2875                         (surface->in_shaper_func !=
2876                         srf_update->func_shaper))
2877                 memcpy(surface->in_shaper_func, srf_update->func_shaper,
2878                 sizeof(*surface->in_shaper_func));
2879
2880         if (srf_update->lut3d_func &&
2881                         (surface->lut3d_func !=
2882                         srf_update->lut3d_func))
2883                 memcpy(surface->lut3d_func, srf_update->lut3d_func,
2884                 sizeof(*surface->lut3d_func));
2885
2886         if (srf_update->hdr_mult.value)
2887                 surface->hdr_mult =
2888                                 srf_update->hdr_mult;
2889
2890         if (srf_update->blend_tf &&
2891                         (surface->blend_tf !=
2892                         srf_update->blend_tf))
2893                 memcpy(surface->blend_tf, srf_update->blend_tf,
2894                 sizeof(*surface->blend_tf));
2895
2896         if (srf_update->input_csc_color_matrix)
2897                 surface->input_csc_color_matrix =
2898                         *srf_update->input_csc_color_matrix;
2899
2900         if (srf_update->coeff_reduction_factor)
2901                 surface->coeff_reduction_factor =
2902                         *srf_update->coeff_reduction_factor;
2903
2904         if (srf_update->gamut_remap_matrix)
2905                 surface->gamut_remap_matrix =
2906                         *srf_update->gamut_remap_matrix;
2907 }
2908
2909 static void copy_stream_update_to_stream(struct dc *dc,
2910                                          struct dc_state *context,
2911                                          struct dc_stream_state *stream,
2912                                          struct dc_stream_update *update)
2913 {
2914         struct dc_context *dc_ctx = dc->ctx;
2915
2916         if (update == NULL || stream == NULL)
2917                 return;
2918
2919         if (update->src.height && update->src.width)
2920                 stream->src = update->src;
2921
2922         if (update->dst.height && update->dst.width)
2923                 stream->dst = update->dst;
2924
2925         if (update->out_transfer_func &&
2926             stream->out_transfer_func != update->out_transfer_func) {
2927                 stream->out_transfer_func->sdr_ref_white_level =
2928                         update->out_transfer_func->sdr_ref_white_level;
2929                 stream->out_transfer_func->tf = update->out_transfer_func->tf;
2930                 stream->out_transfer_func->type =
2931                         update->out_transfer_func->type;
2932                 memcpy(&stream->out_transfer_func->tf_pts,
2933                        &update->out_transfer_func->tf_pts,
2934                        sizeof(struct dc_transfer_func_distributed_points));
2935         }
2936
2937         if (update->hdr_static_metadata)
2938                 stream->hdr_static_metadata = *update->hdr_static_metadata;
2939
2940         if (update->abm_level)
2941                 stream->abm_level = *update->abm_level;
2942
2943         if (update->periodic_interrupt)
2944                 stream->periodic_interrupt = *update->periodic_interrupt;
2945
2946         if (update->gamut_remap)
2947                 stream->gamut_remap_matrix = *update->gamut_remap;
2948
2949         /* Note: this being updated after mode set is currently not a use case
2950          * however if it arises OCSC would need to be reprogrammed at the
2951          * minimum
2952          */
2953         if (update->output_color_space)
2954                 stream->output_color_space = *update->output_color_space;
2955
2956         if (update->output_csc_transform)
2957                 stream->csc_color_matrix = *update->output_csc_transform;
2958
2959         if (update->vrr_infopacket)
2960                 stream->vrr_infopacket = *update->vrr_infopacket;
2961
2962         if (update->allow_freesync)
2963                 stream->allow_freesync = *update->allow_freesync;
2964
2965         if (update->vrr_active_variable)
2966                 stream->vrr_active_variable = *update->vrr_active_variable;
2967
2968         if (update->crtc_timing_adjust)
2969                 stream->adjust = *update->crtc_timing_adjust;
2970
2971         if (update->dpms_off)
2972                 stream->dpms_off = *update->dpms_off;
2973
2974         if (update->hfvsif_infopacket)
2975                 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2976
2977         if (update->vtem_infopacket)
2978                 stream->vtem_infopacket = *update->vtem_infopacket;
2979
2980         if (update->vsc_infopacket)
2981                 stream->vsc_infopacket = *update->vsc_infopacket;
2982
2983         if (update->vsp_infopacket)
2984                 stream->vsp_infopacket = *update->vsp_infopacket;
2985
2986         if (update->adaptive_sync_infopacket)
2987                 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2988
2989         if (update->dither_option)
2990                 stream->dither_option = *update->dither_option;
2991
2992         if (update->pending_test_pattern)
2993                 stream->test_pattern = *update->pending_test_pattern;
2994         /* update current stream with writeback info */
2995         if (update->wb_update) {
2996                 int i;
2997
2998                 stream->num_wb_info = update->wb_update->num_wb_info;
2999                 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3000                 for (i = 0; i < stream->num_wb_info; i++)
3001                         stream->writeback_info[i] =
3002                                 update->wb_update->writeback_info[i];
3003         }
3004         if (update->dsc_config) {
3005                 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3006                 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3007                 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3008                                        update->dsc_config->num_slices_v != 0);
3009
3010                 /* Use temporarry context for validating new DSC config */
3011                 struct dc_state *dsc_validate_context = dc_create_state(dc);
3012
3013                 if (dsc_validate_context) {
3014                         dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
3015
3016                         stream->timing.dsc_cfg = *update->dsc_config;
3017                         stream->timing.flags.DSC = enable_dsc;
3018                         if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3019                                 stream->timing.dsc_cfg = old_dsc_cfg;
3020                                 stream->timing.flags.DSC = old_dsc_enabled;
3021                                 update->dsc_config = NULL;
3022                         }
3023
3024                         dc_release_state(dsc_validate_context);
3025                 } else {
3026                         DC_ERROR("Failed to allocate new validate context for DSC change\n");
3027                         update->dsc_config = NULL;
3028                 }
3029         }
3030 }
3031
3032 static bool update_planes_and_stream_state(struct dc *dc,
3033                 struct dc_surface_update *srf_updates, int surface_count,
3034                 struct dc_stream_state *stream,
3035                 struct dc_stream_update *stream_update,
3036                 enum surface_update_type *new_update_type,
3037                 struct dc_state **new_context)
3038 {
3039         struct dc_state *context;
3040         int i, j;
3041         enum surface_update_type update_type;
3042         const struct dc_stream_status *stream_status;
3043         struct dc_context *dc_ctx = dc->ctx;
3044
3045         stream_status = dc_stream_get_status(stream);
3046
3047         if (!stream_status) {
3048                 if (surface_count) /* Only an error condition if surf_count non-zero*/
3049                         ASSERT(false);
3050
3051                 return false; /* Cannot commit surface to stream that is not committed */
3052         }
3053
3054         context = dc->current_state;
3055
3056         update_type = dc_check_update_surfaces_for_stream(
3057                         dc, srf_updates, surface_count, stream_update, stream_status);
3058
3059         /* update current stream with the new updates */
3060         copy_stream_update_to_stream(dc, context, stream, stream_update);
3061
3062         /* do not perform surface update if surface has invalid dimensions
3063          * (all zero) and no scaling_info is provided
3064          */
3065         if (surface_count > 0) {
3066                 for (i = 0; i < surface_count; i++) {
3067                         if ((srf_updates[i].surface->src_rect.width == 0 ||
3068                                  srf_updates[i].surface->src_rect.height == 0 ||
3069                                  srf_updates[i].surface->dst_rect.width == 0 ||
3070                                  srf_updates[i].surface->dst_rect.height == 0) &&
3071                                 (!srf_updates[i].scaling_info ||
3072                                   srf_updates[i].scaling_info->src_rect.width == 0 ||
3073                                   srf_updates[i].scaling_info->src_rect.height == 0 ||
3074                                   srf_updates[i].scaling_info->dst_rect.width == 0 ||
3075                                   srf_updates[i].scaling_info->dst_rect.height == 0)) {
3076                                 DC_ERROR("Invalid src/dst rects in surface update!\n");
3077                                 return false;
3078                         }
3079                 }
3080         }
3081
3082         if (update_type >= update_surface_trace_level)
3083                 update_surface_trace(dc, srf_updates, surface_count);
3084
3085         if (update_type >= UPDATE_TYPE_FULL) {
3086                 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3087
3088                 for (i = 0; i < surface_count; i++)
3089                         new_planes[i] = srf_updates[i].surface;
3090
3091                 /* initialize scratch memory for building context */
3092                 context = dc_create_state(dc);
3093                 if (context == NULL) {
3094                         DC_ERROR("Failed to allocate new validate context!\n");
3095                         return false;
3096                 }
3097
3098                 dc_resource_state_copy_construct(
3099                                 dc->current_state, context);
3100
3101                 /* For each full update, remove all existing phantom pipes first.
3102                  * Ensures that we have enough pipes for newly added MPO planes
3103                  */
3104                 if (dc->res_pool->funcs->remove_phantom_pipes)
3105                         dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
3106
3107                 /*remove old surfaces from context */
3108                 if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
3109
3110                         BREAK_TO_DEBUGGER();
3111                         goto fail;
3112                 }
3113
3114                 /* add surface to context */
3115                 if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3116
3117                         BREAK_TO_DEBUGGER();
3118                         goto fail;
3119                 }
3120         }
3121
3122         /* save update parameters into surface */
3123         for (i = 0; i < surface_count; i++) {
3124                 struct dc_plane_state *surface = srf_updates[i].surface;
3125
3126                 copy_surface_update_to_plane(surface, &srf_updates[i]);
3127
3128                 if (update_type >= UPDATE_TYPE_MED) {
3129                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
3130                                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3131
3132                                 if (pipe_ctx->plane_state != surface)
3133                                         continue;
3134
3135                                 resource_build_scaling_params(pipe_ctx);
3136                         }
3137                 }
3138         }
3139
3140         if (update_type == UPDATE_TYPE_FULL) {
3141                 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3142                         /* For phantom pipes we remove and create a new set of phantom pipes
3143                          * for each full update (because we don't know if we'll need phantom
3144                          * pipes until after the first round of validation). However, if validation
3145                          * fails we need to keep the existing phantom pipes (because we don't update
3146                          * the dc->current_state).
3147                          *
3148                          * The phantom stream/plane refcount is decremented for validation because
3149                          * we assume it'll be removed (the free comes when the dc_state is freed),
3150                          * but if validation fails we have to increment back the refcount so it's
3151                          * consistent.
3152                          */
3153                         if (dc->res_pool->funcs->retain_phantom_pipes)
3154                                 dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
3155                         BREAK_TO_DEBUGGER();
3156                         goto fail;
3157                 }
3158         }
3159
3160         *new_context = context;
3161         *new_update_type = update_type;
3162
3163         return true;
3164
3165 fail:
3166         dc_release_state(context);
3167
3168         return false;
3169
3170 }
3171
3172 static void commit_planes_do_stream_update(struct dc *dc,
3173                 struct dc_stream_state *stream,
3174                 struct dc_stream_update *stream_update,
3175                 enum surface_update_type update_type,
3176                 struct dc_state *context)
3177 {
3178         int j;
3179
3180         // Stream updates
3181         for (j = 0; j < dc->res_pool->pipe_count; j++) {
3182                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3183
3184                 if (!pipe_ctx->top_pipe &&  !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
3185
3186                         if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3187                                 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3188
3189                         if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3190                                         stream_update->vrr_infopacket ||
3191                                         stream_update->vsc_infopacket ||
3192                                         stream_update->vsp_infopacket ||
3193                                         stream_update->hfvsif_infopacket ||
3194                                         stream_update->adaptive_sync_infopacket ||
3195                                         stream_update->vtem_infopacket) {
3196                                 resource_build_info_frame(pipe_ctx);
3197                                 dc->hwss.update_info_frame(pipe_ctx);
3198
3199                                 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3200                                         dc->link_srv->dp_trace_source_sequence(
3201                                                         pipe_ctx->stream->link,
3202                                                         DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3203                         }
3204
3205                         if (stream_update->hdr_static_metadata &&
3206                                         stream->use_dynamic_meta &&
3207                                         dc->hwss.set_dmdata_attributes &&
3208                                         pipe_ctx->stream->dmdata_address.quad_part != 0)
3209                                 dc->hwss.set_dmdata_attributes(pipe_ctx);
3210
3211                         if (stream_update->gamut_remap)
3212                                 dc_stream_set_gamut_remap(dc, stream);
3213
3214                         if (stream_update->output_csc_transform)
3215                                 dc_stream_program_csc_matrix(dc, stream);
3216
3217                         if (stream_update->dither_option) {
3218                                 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3219                                 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3220                                                                         &pipe_ctx->stream->bit_depth_params);
3221                                 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3222                                                 &stream->bit_depth_params,
3223                                                 &stream->clamping);
3224                                 while (odm_pipe) {
3225                                         odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3226                                                         &stream->bit_depth_params,
3227                                                         &stream->clamping);
3228                                         odm_pipe = odm_pipe->next_odm_pipe;
3229                                 }
3230                         }
3231
3232
3233                         /* Full fe update*/
3234                         if (update_type == UPDATE_TYPE_FAST)
3235                                 continue;
3236
3237                         if (stream_update->dsc_config)
3238                                 dc->link_srv->update_dsc_config(pipe_ctx);
3239
3240                         if (stream_update->mst_bw_update) {
3241                                 if (stream_update->mst_bw_update->is_increase)
3242                                         dc->link_srv->increase_mst_payload(pipe_ctx,
3243                                                         stream_update->mst_bw_update->mst_stream_bw);
3244                                 else
3245                                         dc->link_srv->reduce_mst_payload(pipe_ctx,
3246                                                         stream_update->mst_bw_update->mst_stream_bw);
3247                         }
3248
3249                         if (stream_update->pending_test_pattern) {
3250                                 dc_link_dp_set_test_pattern(stream->link,
3251                                         stream->test_pattern.type,
3252                                         stream->test_pattern.color_space,
3253                                         stream->test_pattern.p_link_settings,
3254                                         stream->test_pattern.p_custom_pattern,
3255                                         stream->test_pattern.cust_pattern_size);
3256                         }
3257
3258                         if (stream_update->dpms_off) {
3259                                 if (*stream_update->dpms_off) {
3260                                         dc->link_srv->set_dpms_off(pipe_ctx);
3261                                         /* for dpms, keep acquired resources*/
3262                                         if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3263                                                 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3264
3265                                         dc->optimized_required = true;
3266
3267                                 } else {
3268                                         if (get_seamless_boot_stream_count(context) == 0)
3269                                                 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3270                                         dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3271                                 }
3272                         }
3273
3274                         if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3275                                 bool should_program_abm = true;
3276
3277                                 // if otg funcs defined check if blanked before programming
3278                                 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3279                                         if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3280                                                 should_program_abm = false;
3281
3282                                 if (should_program_abm) {
3283                                         if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3284                                                 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3285                                         } else {
3286                                                 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3287                                                         pipe_ctx->stream_res.abm, stream->abm_level);
3288                                         }
3289                                 }
3290                         }
3291                 }
3292         }
3293 }
3294
3295 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3296 {
3297         if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3298                         || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3299                         && stream->ctx->dce_version >= DCN_VERSION_3_1)
3300                 return true;
3301
3302         return false;
3303 }
3304
3305 void dc_dmub_update_dirty_rect(struct dc *dc,
3306                                int surface_count,
3307                                struct dc_stream_state *stream,
3308                                struct dc_surface_update *srf_updates,
3309                                struct dc_state *context)
3310 {
3311         union dmub_rb_cmd cmd;
3312         struct dc_context *dc_ctx = dc->ctx;
3313         struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3314         unsigned int i, j;
3315         unsigned int panel_inst = 0;
3316
3317         if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3318                 return;
3319
3320         if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3321                 return;
3322
3323         memset(&cmd, 0x0, sizeof(cmd));
3324         cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3325         cmd.update_dirty_rect.header.sub_type = 0;
3326         cmd.update_dirty_rect.header.payload_bytes =
3327                 sizeof(cmd.update_dirty_rect) -
3328                 sizeof(cmd.update_dirty_rect.header);
3329         update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3330         for (i = 0; i < surface_count; i++) {
3331                 struct dc_plane_state *plane_state = srf_updates[i].surface;
3332                 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3333
3334                 if (!srf_updates[i].surface || !flip_addr)
3335                         continue;
3336                 /* Do not send in immediate flip mode */
3337                 if (srf_updates[i].surface->flip_immediate)
3338                         continue;
3339
3340                 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3341                 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3342                                 sizeof(flip_addr->dirty_rects));
3343                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3344                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3345
3346                         if (pipe_ctx->stream != stream)
3347                                 continue;
3348                         if (pipe_ctx->plane_state != plane_state)
3349                                 continue;
3350
3351                         update_dirty_rect->panel_inst = panel_inst;
3352                         update_dirty_rect->pipe_idx = j;
3353                         dc_dmub_srv_cmd_queue(dc_ctx->dmub_srv, &cmd);
3354                         dc_dmub_srv_cmd_execute(dc_ctx->dmub_srv);
3355                 }
3356         }
3357 }
3358
3359 static void commit_planes_for_stream(struct dc *dc,
3360                 struct dc_surface_update *srf_updates,
3361                 int surface_count,
3362                 struct dc_stream_state *stream,
3363                 struct dc_stream_update *stream_update,
3364                 enum surface_update_type update_type,
3365                 struct dc_state *context)
3366 {
3367         int i, j;
3368         struct pipe_ctx *top_pipe_to_program = NULL;
3369         bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3370         bool subvp_prev_use = false;
3371         bool subvp_curr_use = false;
3372
3373         // Once we apply the new subvp context to hardware it won't be in the
3374         // dc->current_state anymore, so we have to cache it before we apply
3375         // the new SubVP context
3376         subvp_prev_use = false;
3377
3378
3379         dc_z10_restore(dc);
3380
3381         if (update_type == UPDATE_TYPE_FULL) {
3382                 /* wait for all double-buffer activity to clear on all pipes */
3383                 int pipe_idx;
3384
3385                 for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3386                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
3387
3388                         if (!pipe_ctx->stream)
3389                                 continue;
3390
3391                         if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3392                                 pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3393                 }
3394         }
3395
3396         if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3397                 /* Optimize seamless boot flag keeps clocks and watermarks high until
3398                  * first flip. After first flip, optimization is required to lower
3399                  * bandwidth. Important to note that it is expected UEFI will
3400                  * only light up a single display on POST, therefore we only expect
3401                  * one stream with seamless boot flag set.
3402                  */
3403                 if (stream->apply_seamless_boot_optimization) {
3404                         stream->apply_seamless_boot_optimization = false;
3405
3406                         if (get_seamless_boot_stream_count(context) == 0)
3407                                 dc->optimized_required = true;
3408                 }
3409         }
3410
3411         if (update_type == UPDATE_TYPE_FULL) {
3412                 dc_allow_idle_optimizations(dc, false);
3413
3414                 if (get_seamless_boot_stream_count(context) == 0)
3415                         dc->hwss.prepare_bandwidth(dc, context);
3416
3417                 if (dc->debug.enable_double_buffered_dsc_pg_support)
3418                         dc->hwss.update_dsc_pg(dc, context, false);
3419
3420                 context_clock_trace(dc, context);
3421         }
3422
3423         for (j = 0; j < dc->res_pool->pipe_count; j++) {
3424                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3425
3426                 if (!pipe_ctx->top_pipe &&
3427                         !pipe_ctx->prev_odm_pipe &&
3428                         pipe_ctx->stream &&
3429                         pipe_ctx->stream == stream) {
3430                         top_pipe_to_program = pipe_ctx;
3431                 }
3432         }
3433
3434         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3435                 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3436
3437                 // Check old context for SubVP
3438                 subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3439                 if (subvp_prev_use)
3440                         break;
3441         }
3442
3443         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3444                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3445
3446                 if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3447                         subvp_curr_use = true;
3448                         break;
3449                 }
3450         }
3451
3452         if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3453                 struct pipe_ctx *mpcc_pipe;
3454                 struct pipe_ctx *odm_pipe;
3455
3456                 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3457                         for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3458                                 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3459         }
3460
3461         if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3462                 if (top_pipe_to_program &&
3463                         top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3464                         if (should_use_dmub_lock(stream->link)) {
3465                                 union dmub_hw_lock_flags hw_locks = { 0 };
3466                                 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3467
3468                                 hw_locks.bits.lock_dig = 1;
3469                                 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3470
3471                                 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3472                                                         true,
3473                                                         &hw_locks,
3474                                                         &inst_flags);
3475                         } else
3476                                 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3477                                                 top_pipe_to_program->stream_res.tg);
3478                 }
3479
3480         if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3481                 if (dc->hwss.subvp_pipe_control_lock)
3482                                 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3483                 dc->hwss.interdependent_update_lock(dc, context, true);
3484
3485         } else {
3486                 if (dc->hwss.subvp_pipe_control_lock)
3487                         dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3488                 /* Lock the top pipe while updating plane addrs, since freesync requires
3489                  *  plane addr update event triggers to be synchronized.
3490                  *  top_pipe_to_program is expected to never be NULL
3491                  */
3492                 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3493         }
3494
3495         dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3496
3497         // Stream updates
3498         if (stream_update)
3499                 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3500
3501         if (surface_count == 0) {
3502                 /*
3503                  * In case of turning off screen, no need to program front end a second time.
3504                  * just return after program blank.
3505                  */
3506                 if (dc->hwss.apply_ctx_for_surface)
3507                         dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3508                 if (dc->hwss.program_front_end_for_ctx)
3509                         dc->hwss.program_front_end_for_ctx(dc, context);
3510
3511                 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3512                         dc->hwss.interdependent_update_lock(dc, context, false);
3513                 } else {
3514                         dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3515                 }
3516                 dc->hwss.post_unlock_program_front_end(dc, context);
3517
3518                 if (update_type != UPDATE_TYPE_FAST)
3519                         if (dc->hwss.commit_subvp_config)
3520                                 dc->hwss.commit_subvp_config(dc, context);
3521
3522                 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3523                  * move the SubVP lock to after the phantom pipes have been setup
3524                  */
3525                 if (dc->hwss.subvp_pipe_control_lock)
3526                         dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3527                                                          NULL, subvp_prev_use);
3528                 return;
3529         }
3530
3531         if (update_type != UPDATE_TYPE_FAST) {
3532                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3533                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3534
3535                         if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP &&
3536                                 pipe_ctx->stream && pipe_ctx->plane_state) {
3537                                 /* Only update visual confirm for SUBVP here.
3538                                  * The bar appears on all pipes, so we need to update the bar on all displays,
3539                                  * so the information doesn't get stale.
3540                                  */
3541                                 struct mpcc_blnd_cfg blnd_cfg = { 0 };
3542
3543                                 dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color,
3544                                                 pipe_ctx->plane_res.hubp->inst);
3545                         }
3546                 }
3547         }
3548
3549         if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
3550                 for (i = 0; i < surface_count; i++) {
3551                         struct dc_plane_state *plane_state = srf_updates[i].surface;
3552                         /*set logical flag for lock/unlock use*/
3553                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
3554                                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3555                                 if (!pipe_ctx->plane_state)
3556                                         continue;
3557                                 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3558                                         continue;
3559                                 pipe_ctx->plane_state->triplebuffer_flips = false;
3560                                 if (update_type == UPDATE_TYPE_FAST &&
3561                                         dc->hwss.program_triplebuffer != NULL &&
3562                                         !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3563                                                 /*triple buffer for VUpdate  only*/
3564                                                 pipe_ctx->plane_state->triplebuffer_flips = true;
3565                                 }
3566                         }
3567                         if (update_type == UPDATE_TYPE_FULL) {
3568                                 /* force vsync flip when reconfiguring pipes to prevent underflow */
3569                                 plane_state->flip_immediate = false;
3570                         }
3571                 }
3572         }
3573
3574         // Update Type FULL, Surface updates
3575         for (j = 0; j < dc->res_pool->pipe_count; j++) {
3576                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3577
3578                 if (!pipe_ctx->top_pipe &&
3579                         !pipe_ctx->prev_odm_pipe &&
3580                         should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3581                         struct dc_stream_status *stream_status = NULL;
3582
3583                         if (!pipe_ctx->plane_state)
3584                                 continue;
3585
3586                         /* Full fe update*/
3587                         if (update_type == UPDATE_TYPE_FAST)
3588                                 continue;
3589
3590                         ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3591
3592                         if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3593                                 /*turn off triple buffer for full update*/
3594                                 dc->hwss.program_triplebuffer(
3595                                         dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3596                         }
3597                         stream_status =
3598                                 stream_get_status(context, pipe_ctx->stream);
3599
3600                         if (dc->hwss.apply_ctx_for_surface)
3601                                 dc->hwss.apply_ctx_for_surface(
3602                                         dc, pipe_ctx->stream, stream_status->plane_count, context);
3603                 }
3604         }
3605         if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3606                 dc->hwss.program_front_end_for_ctx(dc, context);
3607                 if (dc->debug.validate_dml_output) {
3608                         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3609                                 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3610                                 if (cur_pipe->stream == NULL)
3611                                         continue;
3612
3613                                 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3614                                                 cur_pipe->plane_res.hubp, dc->ctx,
3615                                                 &context->res_ctx.pipe_ctx[i].rq_regs,
3616                                                 &context->res_ctx.pipe_ctx[i].dlg_regs,
3617                                                 &context->res_ctx.pipe_ctx[i].ttu_regs);
3618                         }
3619                 }
3620         }
3621
3622         // Update Type FAST, Surface updates
3623         if (update_type == UPDATE_TYPE_FAST) {
3624                 if (dc->hwss.set_flip_control_gsl)
3625                         for (i = 0; i < surface_count; i++) {
3626                                 struct dc_plane_state *plane_state = srf_updates[i].surface;
3627
3628                                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3629                                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3630
3631                                         if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3632                                                 continue;
3633
3634                                         if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3635                                                 continue;
3636
3637                                         // GSL has to be used for flip immediate
3638                                         dc->hwss.set_flip_control_gsl(pipe_ctx,
3639                                                         pipe_ctx->plane_state->flip_immediate);
3640                                 }
3641                         }
3642
3643                 /* Perform requested Updates */
3644                 for (i = 0; i < surface_count; i++) {
3645                         struct dc_plane_state *plane_state = srf_updates[i].surface;
3646
3647                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
3648                                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3649
3650                                 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3651                                         continue;
3652
3653                                 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3654                                         continue;
3655
3656                                 /*program triple buffer after lock based on flip type*/
3657                                 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3658                                         /*only enable triplebuffer for  fast_update*/
3659                                         dc->hwss.program_triplebuffer(
3660                                                 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3661                                 }
3662                                 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3663                                         dc->hwss.update_plane_addr(dc, pipe_ctx);
3664                         }
3665                 }
3666         }
3667
3668         if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3669                 dc->hwss.interdependent_update_lock(dc, context, false);
3670         } else {
3671                 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3672         }
3673
3674         if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3675                 if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3676                         top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3677                                 top_pipe_to_program->stream_res.tg,
3678                                 CRTC_STATE_VACTIVE);
3679                         top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3680                                 top_pipe_to_program->stream_res.tg,
3681                                 CRTC_STATE_VBLANK);
3682                         top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3683                                 top_pipe_to_program->stream_res.tg,
3684                                 CRTC_STATE_VACTIVE);
3685
3686                         if (should_use_dmub_lock(stream->link)) {
3687                                 union dmub_hw_lock_flags hw_locks = { 0 };
3688                                 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3689
3690                                 hw_locks.bits.lock_dig = 1;
3691                                 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3692
3693                                 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3694                                                         false,
3695                                                         &hw_locks,
3696                                                         &inst_flags);
3697                         } else
3698                                 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3699                                         top_pipe_to_program->stream_res.tg);
3700                 }
3701
3702         if (subvp_curr_use) {
3703                 /* If enabling subvp or transitioning from subvp->subvp, enable the
3704                  * phantom streams before we program front end for the phantom pipes.
3705                  */
3706                 if (update_type != UPDATE_TYPE_FAST) {
3707                         if (dc->hwss.enable_phantom_streams)
3708                                 dc->hwss.enable_phantom_streams(dc, context);
3709                 }
3710         }
3711
3712         if (update_type != UPDATE_TYPE_FAST)
3713                 dc->hwss.post_unlock_program_front_end(dc, context);
3714
3715         if (subvp_prev_use && !subvp_curr_use) {
3716                 /* If disabling subvp, disable phantom streams after front end
3717                  * programming has completed (we turn on phantom OTG in order
3718                  * to complete the plane disable for phantom pipes).
3719                  */
3720                 dc->hwss.apply_ctx_to_hw(dc, context);
3721         }
3722
3723         if (update_type != UPDATE_TYPE_FAST)
3724                 if (dc->hwss.commit_subvp_config)
3725                         dc->hwss.commit_subvp_config(dc, context);
3726         /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3727          * move the SubVP lock to after the phantom pipes have been setup
3728          */
3729         if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3730                 if (dc->hwss.subvp_pipe_control_lock)
3731                         dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3732         } else {
3733                 if (dc->hwss.subvp_pipe_control_lock)
3734                         dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3735         }
3736
3737         // Fire manual trigger only when bottom plane is flipped
3738         for (j = 0; j < dc->res_pool->pipe_count; j++) {
3739                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3740
3741                 if (!pipe_ctx->plane_state)
3742                         continue;
3743
3744                 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3745                                 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3746                                 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
3747                                 pipe_ctx->plane_state->skip_manual_trigger)
3748                         continue;
3749
3750                 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3751                         pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3752         }
3753 }
3754
3755 /**
3756  * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3757  *
3758  * @dc: Used to get the current state status
3759  * @stream: Target stream, which we want to remove the attached planes
3760  * @surface_count: Number of surface update
3761  * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3762  *
3763  * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3764  * the MPO if used simultaneously in some specific configurations (e.g.,
3765  * 4k@144). This function checks if the incoming context requires applying a
3766  * transition state with unnecessary pipe splitting and ODM disabled to
3767  * circumvent our hardware limitations to prevent this edge case. If the OPP
3768  * associated with an MPCC might change due to plane additions, this function
3769  * returns true.
3770  *
3771  * Return:
3772  * Return true if OPP and MPCC might change, otherwise, return false.
3773  */
3774 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3775                 struct dc_stream_state *stream,
3776                 int surface_count,
3777                 bool *is_plane_addition)
3778 {
3779
3780         struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3781         bool force_minimal_pipe_splitting = false;
3782         bool subvp_active = false;
3783         uint32_t i;
3784
3785         *is_plane_addition = false;
3786
3787         if (cur_stream_status &&
3788                         dc->current_state->stream_count > 0 &&
3789                         dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3790                 /* determine if minimal transition is required due to MPC*/
3791                 if (surface_count > 0) {
3792                         if (cur_stream_status->plane_count > surface_count) {
3793                                 force_minimal_pipe_splitting = true;
3794                         } else if (cur_stream_status->plane_count < surface_count) {
3795                                 force_minimal_pipe_splitting = true;
3796                                 *is_plane_addition = true;
3797                         }
3798                 }
3799         }
3800
3801         if (cur_stream_status &&
3802                         dc->current_state->stream_count == 1 &&
3803                         dc->debug.enable_single_display_2to1_odm_policy) {
3804                 /* determine if minimal transition is required due to dynamic ODM*/
3805                 if (surface_count > 0) {
3806                         if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3807                                 force_minimal_pipe_splitting = true;
3808                         } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3809                                 force_minimal_pipe_splitting = true;
3810                                 *is_plane_addition = true;
3811                         }
3812                 }
3813         }
3814
3815         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3816                 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3817
3818                 if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) {
3819                         subvp_active = true;
3820                         break;
3821                 }
3822         }
3823
3824         /* For SubVP when adding or removing planes we need to add a minimal transition
3825          * (even when disabling all planes). Whenever disabling a phantom pipe, we
3826          * must use the minimal transition path to disable the pipe correctly.
3827          *
3828          * We want to use the minimal transition whenever subvp is active, not only if
3829          * a plane is being added / removed from a subvp stream (MPO plane can be added
3830          * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
3831          * a min transition to disable subvp.
3832          */
3833         if (cur_stream_status && subvp_active) {
3834                 /* determine if minimal transition is required due to SubVP*/
3835                 if (cur_stream_status->plane_count > surface_count) {
3836                         force_minimal_pipe_splitting = true;
3837                 } else if (cur_stream_status->plane_count < surface_count) {
3838                         force_minimal_pipe_splitting = true;
3839                         *is_plane_addition = true;
3840                 }
3841         }
3842
3843         return force_minimal_pipe_splitting;
3844 }
3845
3846 /**
3847  * commit_minimal_transition_state - Create a transition pipe split state
3848  *
3849  * @dc: Used to get the current state status
3850  * @transition_base_context: New transition state
3851  *
3852  * In some specific configurations, such as pipe split on multi-display with
3853  * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
3854  * programming when moving to new planes. To mitigate those types of problems,
3855  * this function adds a transition state that minimizes pipe usage before
3856  * programming the new configuration. When adding a new plane, the current
3857  * state requires the least pipes, so it is applied without splitting. When
3858  * removing a plane, the new state requires the least pipes, so it is applied
3859  * without splitting.
3860  *
3861  * Return:
3862  * Return false if something is wrong in the transition state.
3863  */
3864 static bool commit_minimal_transition_state(struct dc *dc,
3865                 struct dc_state *transition_base_context)
3866 {
3867         struct dc_state *transition_context = dc_create_state(dc);
3868         enum pipe_split_policy tmp_mpc_policy;
3869         bool temp_dynamic_odm_policy;
3870         bool temp_subvp_policy;
3871         enum dc_status ret = DC_ERROR_UNEXPECTED;
3872         unsigned int i, j;
3873         unsigned int pipe_in_use = 0;
3874         bool subvp_in_use = false;
3875
3876         if (!transition_context)
3877                 return false;
3878         /* Setup:
3879          * Store the current ODM and MPC config in some temp variables to be
3880          * restored after we commit the transition state.
3881          */
3882
3883         /* check current pipes in use*/
3884         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3885                 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
3886
3887                 if (pipe->plane_state)
3888                         pipe_in_use++;
3889         }
3890
3891         /* If SubVP is enabled and we are adding or removing planes from any main subvp
3892          * pipe, we must use the minimal transition.
3893          */
3894         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3895                 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3896
3897                 if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3898                         subvp_in_use = true;
3899                         break;
3900                 }
3901         }
3902
3903         /* When the OS add a new surface if we have been used all of pipes with odm combine
3904          * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
3905          * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
3906          * call it again. Otherwise return true to skip.
3907          *
3908          * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
3909          * enter/exit MPO when DCN still have enough resources.
3910          */
3911         if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use) {
3912                 dc_release_state(transition_context);
3913                 return true;
3914         }
3915
3916         if (!dc->config.is_vmin_only_asic) {
3917                 tmp_mpc_policy = dc->debug.pipe_split_policy;
3918                 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
3919         }
3920
3921         temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
3922         dc->debug.enable_single_display_2to1_odm_policy = false;
3923
3924         temp_subvp_policy = dc->debug.force_disable_subvp;
3925         dc->debug.force_disable_subvp = true;
3926
3927         dc_resource_state_copy_construct(transition_base_context, transition_context);
3928
3929         /* commit minimal state */
3930         if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
3931                 for (i = 0; i < transition_context->stream_count; i++) {
3932                         struct dc_stream_status *stream_status = &transition_context->stream_status[i];
3933
3934                         for (j = 0; j < stream_status->plane_count; j++) {
3935                                 struct dc_plane_state *plane_state = stream_status->plane_states[j];
3936
3937                                 /* force vsync flip when reconfiguring pipes to prevent underflow
3938                                  * and corruption
3939                                  */
3940                                 plane_state->flip_immediate = false;
3941                         }
3942                 }
3943
3944                 ret = dc_commit_state_no_check(dc, transition_context);
3945         }
3946
3947         /* always release as dc_commit_state_no_check retains in good case */
3948         dc_release_state(transition_context);
3949
3950         /* TearDown:
3951          * Restore original configuration for ODM and MPO.
3952          */
3953         if (!dc->config.is_vmin_only_asic)
3954                 dc->debug.pipe_split_policy = tmp_mpc_policy;
3955
3956         dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
3957         dc->debug.force_disable_subvp = temp_subvp_policy;
3958
3959         if (ret != DC_OK) {
3960                 /* this should never happen */
3961                 BREAK_TO_DEBUGGER();
3962                 return false;
3963         }
3964
3965         /* force full surface update */
3966         for (i = 0; i < dc->current_state->stream_count; i++) {
3967                 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
3968                         dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
3969                 }
3970         }
3971
3972         return true;
3973 }
3974
3975 bool dc_update_planes_and_stream(struct dc *dc,
3976                 struct dc_surface_update *srf_updates, int surface_count,
3977                 struct dc_stream_state *stream,
3978                 struct dc_stream_update *stream_update)
3979 {
3980         struct dc_state *context;
3981         enum surface_update_type update_type;
3982         int i;
3983         struct mall_temp_config mall_temp_config;
3984
3985         /* In cases where MPO and split or ODM are used transitions can
3986          * cause underflow. Apply stream configuration with minimal pipe
3987          * split first to avoid unsupported transitions for active pipes.
3988          */
3989         bool force_minimal_pipe_splitting;
3990         bool is_plane_addition;
3991
3992         force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
3993                         dc,
3994                         stream,
3995                         surface_count,
3996                         &is_plane_addition);
3997
3998         /* on plane addition, minimal state is the current one */
3999         if (force_minimal_pipe_splitting && is_plane_addition &&
4000                 !commit_minimal_transition_state(dc, dc->current_state))
4001                                 return false;
4002
4003         if (!update_planes_and_stream_state(
4004                         dc,
4005                         srf_updates,
4006                         surface_count,
4007                         stream,
4008                         stream_update,
4009                         &update_type,
4010                         &context))
4011                 return false;
4012
4013         /* on plane removal, minimal state is the new one */
4014         if (force_minimal_pipe_splitting && !is_plane_addition) {
4015                 /* Since all phantom pipes are removed in full validation,
4016                  * we have to save and restore the subvp/mall config when
4017                  * we do a minimal transition since the flags marking the
4018                  * pipe as subvp/phantom will be cleared (dc copy constructor
4019                  * creates a shallow copy).
4020                  */
4021                 if (dc->res_pool->funcs->save_mall_state)
4022                         dc->res_pool->funcs->save_mall_state(dc, context, &mall_temp_config);
4023                 if (!commit_minimal_transition_state(dc, context)) {
4024                         dc_release_state(context);
4025                         return false;
4026                 }
4027                 if (dc->res_pool->funcs->restore_mall_state)
4028                         dc->res_pool->funcs->restore_mall_state(dc, context, &mall_temp_config);
4029
4030                 /* If we do a minimal transition with plane removal and the context
4031                  * has subvp we also have to retain back the phantom stream / planes
4032                  * since the refcount is decremented as part of the min transition
4033                  * (we commit a state with no subvp, so the phantom streams / planes
4034                  * had to be removed).
4035                  */
4036                 if (dc->res_pool->funcs->retain_phantom_pipes)
4037                         dc->res_pool->funcs->retain_phantom_pipes(dc, context);
4038                 update_type = UPDATE_TYPE_FULL;
4039         }
4040
4041         commit_planes_for_stream(
4042                         dc,
4043                         srf_updates,
4044                         surface_count,
4045                         stream,
4046                         stream_update,
4047                         update_type,
4048                         context);
4049
4050         if (dc->current_state != context) {
4051
4052                 /* Since memory free requires elevated IRQL, an interrupt
4053                  * request is generated by mem free. If this happens
4054                  * between freeing and reassigning the context, our vsync
4055                  * interrupt will call into dc and cause a memory
4056                  * corruption BSOD. Hence, we first reassign the context,
4057                  * then free the old context.
4058                  */
4059
4060                 struct dc_state *old = dc->current_state;
4061
4062                 dc->current_state = context;
4063                 dc_release_state(old);
4064
4065                 // clear any forced full updates
4066                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4067                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4068
4069                         if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4070                                 pipe_ctx->plane_state->force_full_update = false;
4071                 }
4072         }
4073         return true;
4074 }
4075
4076 void dc_commit_updates_for_stream(struct dc *dc,
4077                 struct dc_surface_update *srf_updates,
4078                 int surface_count,
4079                 struct dc_stream_state *stream,
4080                 struct dc_stream_update *stream_update,
4081                 struct dc_state *state)
4082 {
4083         const struct dc_stream_status *stream_status;
4084         enum surface_update_type update_type;
4085         struct dc_state *context;
4086         struct dc_context *dc_ctx = dc->ctx;
4087         int i, j;
4088
4089         stream_status = dc_stream_get_status(stream);
4090         context = dc->current_state;
4091
4092         update_type = dc_check_update_surfaces_for_stream(
4093                                 dc, srf_updates, surface_count, stream_update, stream_status);
4094
4095         /* TODO: Since change commit sequence can have a huge impact,
4096          * we decided to only enable it for DCN3x. However, as soon as
4097          * we get more confident about this change we'll need to enable
4098          * the new sequence for all ASICs.
4099          */
4100         if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4101                 /*
4102                  * Previous frame finished and HW is ready for optimization.
4103                  */
4104                 if (update_type == UPDATE_TYPE_FAST)
4105                         dc_post_update_surfaces_to_stream(dc);
4106
4107                 dc_update_planes_and_stream(dc, srf_updates,
4108                                             surface_count, stream,
4109                                             stream_update);
4110                 return;
4111         }
4112
4113         if (update_type >= update_surface_trace_level)
4114                 update_surface_trace(dc, srf_updates, surface_count);
4115
4116
4117         if (update_type >= UPDATE_TYPE_FULL) {
4118
4119                 /* initialize scratch memory for building context */
4120                 context = dc_create_state(dc);
4121                 if (context == NULL) {
4122                         DC_ERROR("Failed to allocate new validate context!\n");
4123                         return;
4124                 }
4125
4126                 dc_resource_state_copy_construct(state, context);
4127
4128                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4129                         struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4130                         struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4131
4132                         if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4133                                 new_pipe->plane_state->force_full_update = true;
4134                 }
4135         } else if (update_type == UPDATE_TYPE_FAST) {
4136                 /*
4137                  * Previous frame finished and HW is ready for optimization.
4138                  */
4139                 dc_post_update_surfaces_to_stream(dc);
4140         }
4141
4142
4143         for (i = 0; i < surface_count; i++) {
4144                 struct dc_plane_state *surface = srf_updates[i].surface;
4145
4146                 copy_surface_update_to_plane(surface, &srf_updates[i]);
4147
4148                 if (update_type >= UPDATE_TYPE_MED) {
4149                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
4150                                 struct pipe_ctx *pipe_ctx =
4151                                         &context->res_ctx.pipe_ctx[j];
4152
4153                                 if (pipe_ctx->plane_state != surface)
4154                                         continue;
4155
4156                                 resource_build_scaling_params(pipe_ctx);
4157                         }
4158                 }
4159         }
4160
4161         copy_stream_update_to_stream(dc, context, stream, stream_update);
4162
4163         if (update_type >= UPDATE_TYPE_FULL) {
4164                 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4165                         DC_ERROR("Mode validation failed for stream update!\n");
4166                         dc_release_state(context);
4167                         return;
4168                 }
4169         }
4170
4171         TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4172
4173         commit_planes_for_stream(
4174                                 dc,
4175                                 srf_updates,
4176                                 surface_count,
4177                                 stream,
4178                                 stream_update,
4179                                 update_type,
4180                                 context);
4181         /*update current_State*/
4182         if (dc->current_state != context) {
4183
4184                 struct dc_state *old = dc->current_state;
4185
4186                 dc->current_state = context;
4187                 dc_release_state(old);
4188
4189                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4190                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4191
4192                         if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4193                                 pipe_ctx->plane_state->force_full_update = false;
4194                 }
4195         }
4196
4197         /* Legacy optimization path for DCE. */
4198         if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4199                 dc_post_update_surfaces_to_stream(dc);
4200                 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4201         }
4202
4203         return;
4204
4205 }
4206
4207 uint8_t dc_get_current_stream_count(struct dc *dc)
4208 {
4209         return dc->current_state->stream_count;
4210 }
4211
4212 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4213 {
4214         if (i < dc->current_state->stream_count)
4215                 return dc->current_state->streams[i];
4216         return NULL;
4217 }
4218
4219 enum dc_irq_source dc_interrupt_to_irq_source(
4220                 struct dc *dc,
4221                 uint32_t src_id,
4222                 uint32_t ext_id)
4223 {
4224         return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4225 }
4226
4227 /*
4228  * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4229  */
4230 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4231 {
4232
4233         if (dc == NULL)
4234                 return false;
4235
4236         return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4237 }
4238
4239 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4240 {
4241         dal_irq_service_ack(dc->res_pool->irqs, src);
4242 }
4243
4244 void dc_power_down_on_boot(struct dc *dc)
4245 {
4246         if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4247                         dc->hwss.power_down_on_boot)
4248                 dc->hwss.power_down_on_boot(dc);
4249 }
4250
4251 void dc_set_power_state(
4252         struct dc *dc,
4253         enum dc_acpi_cm_power_state power_state)
4254 {
4255         struct kref refcount;
4256         struct display_mode_lib *dml;
4257
4258         if (!dc->current_state)
4259                 return;
4260
4261         switch (power_state) {
4262         case DC_ACPI_CM_POWER_STATE_D0:
4263                 dc_resource_state_construct(dc, dc->current_state);
4264
4265                 dc_z10_restore(dc);
4266
4267                 if (dc->ctx->dmub_srv)
4268                         dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
4269
4270                 dc->hwss.init_hw(dc);
4271
4272                 if (dc->hwss.init_sys_ctx != NULL &&
4273                         dc->vm_pa_config.valid) {
4274                         dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4275                 }
4276
4277                 break;
4278         default:
4279                 ASSERT(dc->current_state->stream_count == 0);
4280                 /* Zero out the current context so that on resume we start with
4281                  * clean state, and dc hw programming optimizations will not
4282                  * cause any trouble.
4283                  */
4284                 dml = kzalloc(sizeof(struct display_mode_lib),
4285                                 GFP_KERNEL);
4286
4287                 ASSERT(dml);
4288                 if (!dml)
4289                         return;
4290
4291                 /* Preserve refcount */
4292                 refcount = dc->current_state->refcount;
4293                 /* Preserve display mode lib */
4294                 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4295
4296                 dc_resource_state_destruct(dc->current_state);
4297                 memset(dc->current_state, 0,
4298                                 sizeof(*dc->current_state));
4299
4300                 dc->current_state->refcount = refcount;
4301                 dc->current_state->bw_ctx.dml = *dml;
4302
4303                 kfree(dml);
4304
4305                 break;
4306         }
4307 }
4308
4309 void dc_resume(struct dc *dc)
4310 {
4311         uint32_t i;
4312
4313         for (i = 0; i < dc->link_count; i++)
4314                 dc->link_srv->resume(dc->links[i]);
4315 }
4316
4317 bool dc_is_dmcu_initialized(struct dc *dc)
4318 {
4319         struct dmcu *dmcu = dc->res_pool->dmcu;
4320
4321         if (dmcu)
4322                 return dmcu->funcs->is_dmcu_initialized(dmcu);
4323         return false;
4324 }
4325
4326 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4327 {
4328         info->displayClock                              = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4329         info->engineClock                               = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4330         info->memoryClock                               = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4331         info->maxSupportedDppClock              = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4332         info->dppClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4333         info->socClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4334         info->dcfClockDeepSleep                 = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4335         info->fClock                                    = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4336         info->phyClock                                  = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4337 }
4338 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4339 {
4340         if (dc->hwss.set_clock)
4341                 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4342         return DC_ERROR_UNEXPECTED;
4343 }
4344 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4345 {
4346         if (dc->hwss.get_clock)
4347                 dc->hwss.get_clock(dc, clock_type, clock_cfg);
4348 }
4349
4350 /* enable/disable eDP PSR without specify stream for eDP */
4351 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4352 {
4353         int i;
4354         bool allow_active;
4355
4356         for (i = 0; i < dc->current_state->stream_count ; i++) {
4357                 struct dc_link *link;
4358                 struct dc_stream_state *stream = dc->current_state->streams[i];
4359
4360                 link = stream->link;
4361                 if (!link)
4362                         continue;
4363
4364                 if (link->psr_settings.psr_feature_enabled) {
4365                         if (enable && !link->psr_settings.psr_allow_active) {
4366                                 allow_active = true;
4367                                 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4368                                         return false;
4369                         } else if (!enable && link->psr_settings.psr_allow_active) {
4370                                 allow_active = false;
4371                                 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4372                                         return false;
4373                         }
4374                 }
4375         }
4376
4377         return true;
4378 }
4379
4380 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4381 {
4382         if (dc->debug.disable_idle_power_optimizations)
4383                 return;
4384
4385         if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4386                 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4387                         return;
4388
4389         if (allow == dc->idle_optimizations_allowed)
4390                 return;
4391
4392         if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4393                 dc->idle_optimizations_allowed = allow;
4394 }
4395
4396 /* set min and max memory clock to lowest and highest DPM level, respectively */
4397 void dc_unlock_memory_clock_frequency(struct dc *dc)
4398 {
4399         if (dc->clk_mgr->funcs->set_hard_min_memclk)
4400                 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4401
4402         if (dc->clk_mgr->funcs->set_hard_max_memclk)
4403                 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4404 }
4405
4406 /* set min memory clock to the min required for current mode, max to maxDPM */
4407 void dc_lock_memory_clock_frequency(struct dc *dc)
4408 {
4409         if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4410                 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4411
4412         if (dc->clk_mgr->funcs->set_hard_min_memclk)
4413                 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4414
4415         if (dc->clk_mgr->funcs->set_hard_max_memclk)
4416                 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4417 }
4418
4419 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4420 {
4421         struct dc_state *context = dc->current_state;
4422         struct hubp *hubp;
4423         struct pipe_ctx *pipe;
4424         int i;
4425
4426         for (i = 0; i < dc->res_pool->pipe_count; i++) {
4427                 pipe = &context->res_ctx.pipe_ctx[i];
4428
4429                 if (pipe->stream != NULL) {
4430                         dc->hwss.disable_pixel_data(dc, pipe, true);
4431
4432                         // wait for double buffer
4433                         pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4434                         pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4435                         pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4436
4437                         hubp = pipe->plane_res.hubp;
4438                         hubp->funcs->set_blank_regs(hubp, true);
4439                 }
4440         }
4441
4442         dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4443         dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4444
4445         for (i = 0; i < dc->res_pool->pipe_count; i++) {
4446                 pipe = &context->res_ctx.pipe_ctx[i];
4447
4448                 if (pipe->stream != NULL) {
4449                         dc->hwss.disable_pixel_data(dc, pipe, false);
4450
4451                         hubp = pipe->plane_res.hubp;
4452                         hubp->funcs->set_blank_regs(hubp, false);
4453                 }
4454         }
4455 }
4456
4457
4458 /**
4459  * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4460  * @dc: pointer to dc of the dm calling this
4461  * @enable: True = transition to DC mode, false = transition back to AC mode
4462  *
4463  * Some SoCs define additional clock limits when in DC mode, DM should
4464  * invoke this function when the platform undergoes a power source transition
4465  * so DC can apply/unapply the limit. This interface may be disruptive to
4466  * the onscreen content.
4467  *
4468  * Context: Triggered by OS through DM interface, or manually by escape calls.
4469  * Need to hold a dclock when doing so.
4470  *
4471  * Return: none (void function)
4472  *
4473  */
4474 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4475 {
4476         uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
4477         unsigned int softMax, maxDPM, funcMin;
4478         bool p_state_change_support;
4479
4480         if (!ASICREV_IS_BEIGE_GOBY_P(hw_internal_rev))
4481                 return;
4482
4483         softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4484         maxDPM = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz;
4485         funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4486         p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4487
4488         if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4489                 if (p_state_change_support) {
4490                         if (funcMin <= softMax)
4491                                 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4492                         // else: No-Op
4493                 } else {
4494                         if (funcMin <= softMax)
4495                                 blank_and_force_memclk(dc, true, softMax);
4496                         // else: No-Op
4497                 }
4498         } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4499                 if (p_state_change_support) {
4500                         if (funcMin <= softMax)
4501                                 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4502                         // else: No-Op
4503                 } else {
4504                         if (funcMin <= softMax)
4505                                 blank_and_force_memclk(dc, true, maxDPM);
4506                         // else: No-Op
4507                 }
4508         }
4509         dc->clk_mgr->dc_mode_softmax_enabled = enable;
4510 }
4511 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4512                 struct dc_cursor_attributes *cursor_attr)
4513 {
4514         if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4515                 return true;
4516         return false;
4517 }
4518
4519 /* cleanup on driver unload */
4520 void dc_hardware_release(struct dc *dc)
4521 {
4522         dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4523
4524         if (dc->hwss.hardware_release)
4525                 dc->hwss.hardware_release(dc);
4526 }
4527
4528 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4529 {
4530         if (dc->current_state)
4531                 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4532 }
4533
4534 /**
4535  * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
4536  *
4537  * @dc: [in] dc structure
4538  *
4539  * Checks whether DMUB FW supports outbox notifications, if supported DM
4540  * should register outbox interrupt prior to actually enabling interrupts
4541  * via dc_enable_dmub_outbox
4542  *
4543  * Return:
4544  * True if DMUB FW supports outbox notifications, False otherwise
4545  */
4546 bool dc_is_dmub_outbox_supported(struct dc *dc)
4547 {
4548         /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4549         if (dc->ctx->asic_id.chip_family == FAMILY_YELLOW_CARP &&
4550             dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4551             !dc->debug.dpia_debug.bits.disable_dpia)
4552                 return true;
4553
4554         if (dc->ctx->asic_id.chip_family == AMDGPU_FAMILY_GC_11_0_1 &&
4555             !dc->debug.dpia_debug.bits.disable_dpia)
4556                 return true;
4557
4558         /* dmub aux needs dmub notifications to be enabled */
4559         return dc->debug.enable_dmub_aux_for_legacy_ddc;
4560 }
4561
4562 /**
4563  * dc_enable_dmub_notifications - Check if dmub fw supports outbox
4564  *
4565  * @dc: [in] dc structure
4566  *
4567  * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4568  * notifications. All DMs shall switch to dc_is_dmub_outbox_supported.  This
4569  * API shall be removed after switching.
4570  *
4571  * Return:
4572  * True if DMUB FW supports outbox notifications, False otherwise
4573  */
4574 bool dc_enable_dmub_notifications(struct dc *dc)
4575 {
4576         return dc_is_dmub_outbox_supported(dc);
4577 }
4578
4579 /**
4580  * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
4581  *
4582  * @dc: [in] dc structure
4583  *
4584  * Enables DMUB unsolicited notifications to x86 via outbox.
4585  */
4586 void dc_enable_dmub_outbox(struct dc *dc)
4587 {
4588         struct dc_context *dc_ctx = dc->ctx;
4589
4590         dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4591         DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4592 }
4593
4594 /**
4595  * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4596  *                                      Sets port index appropriately for legacy DDC
4597  * @dc: dc structure
4598  * @link_index: link index
4599  * @payload: aux payload
4600  *
4601  * Returns: True if successful, False if failure
4602  */
4603 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4604                                 uint32_t link_index,
4605                                 struct aux_payload *payload)
4606 {
4607         uint8_t action;
4608         union dmub_rb_cmd cmd = {0};
4609         struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4610
4611         ASSERT(payload->length <= 16);
4612
4613         cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4614         cmd.dp_aux_access.header.payload_bytes = 0;
4615         /* For dpia, ddc_pin is set to NULL */
4616         if (!dc->links[link_index]->ddc->ddc_pin)
4617                 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4618         else
4619                 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4620
4621         cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4622         cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4623         cmd.dp_aux_access.aux_control.timeout = 0;
4624         cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4625         cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4626         cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4627
4628         /* set aux action */
4629         if (payload->i2c_over_aux) {
4630                 if (payload->write) {
4631                         if (payload->mot)
4632                                 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4633                         else
4634                                 action = DP_AUX_REQ_ACTION_I2C_WRITE;
4635                 } else {
4636                         if (payload->mot)
4637                                 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4638                         else
4639                                 action = DP_AUX_REQ_ACTION_I2C_READ;
4640                         }
4641         } else {
4642                 if (payload->write)
4643                         action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4644                 else
4645                         action = DP_AUX_REQ_ACTION_DPCD_READ;
4646         }
4647
4648         cmd.dp_aux_access.aux_control.dpaux.action = action;
4649
4650         if (payload->length && payload->write) {
4651                 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
4652                         payload->data,
4653                         payload->length
4654                         );
4655         }
4656
4657         dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
4658         dc_dmub_srv_cmd_execute(dmub_srv);
4659         dc_dmub_srv_wait_idle(dmub_srv);
4660
4661         return true;
4662 }
4663
4664 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
4665                                             uint8_t dpia_port_index)
4666 {
4667         uint8_t index, link_index = 0xFF;
4668
4669         for (index = 0; index < dc->link_count; index++) {
4670                 /* ddc_hw_inst has dpia port index for dpia links
4671                  * and ddc instance for legacy links
4672                  */
4673                 if (!dc->links[index]->ddc->ddc_pin) {
4674                         if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
4675                                 link_index = index;
4676                                 break;
4677                         }
4678                 }
4679         }
4680         ASSERT(link_index != 0xFF);
4681         return link_index;
4682 }
4683
4684 /**
4685  * dc_process_dmub_set_config_async - Submits set_config command
4686  *
4687  * @dc: [in] dc structure
4688  * @link_index: [in] link_index: link index
4689  * @payload: [in] aux payload
4690  * @notify: [out] set_config immediate reply
4691  *
4692  * Submits set_config command to dmub via inbox message.
4693  *
4694  * Return:
4695  * True if successful, False if failure
4696  */
4697 bool dc_process_dmub_set_config_async(struct dc *dc,
4698                                 uint32_t link_index,
4699                                 struct set_config_cmd_payload *payload,
4700                                 struct dmub_notification *notify)
4701 {
4702         union dmub_rb_cmd cmd = {0};
4703         struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4704         bool is_cmd_complete = true;
4705
4706         /* prepare SET_CONFIG command */
4707         cmd.set_config_access.header.type = DMUB_CMD__DPIA;
4708         cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
4709
4710         cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
4711         cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
4712         cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
4713
4714         if (!dc_dmub_srv_cmd_with_reply_data(dmub_srv, &cmd)) {
4715                 /* command is not processed by dmub */
4716                 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
4717                 return is_cmd_complete;
4718         }
4719
4720         /* command processed by dmub, if ret_status is 1, it is completed instantly */
4721         if (cmd.set_config_access.header.ret_status == 1)
4722                 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
4723         else
4724                 /* cmd pending, will receive notification via outbox */
4725                 is_cmd_complete = false;
4726
4727         return is_cmd_complete;
4728 }
4729
4730 /**
4731  * dc_process_dmub_set_mst_slots - Submits MST solt allocation
4732  *
4733  * @dc: [in] dc structure
4734  * @link_index: [in] link index
4735  * @mst_alloc_slots: [in] mst slots to be allotted
4736  * @mst_slots_in_use: [out] mst slots in use returned in failure case
4737  *
4738  * Submits mst slot allocation command to dmub via inbox message
4739  *
4740  * Return:
4741  * DC_OK if successful, DC_ERROR if failure
4742  */
4743 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
4744                                 uint32_t link_index,
4745                                 uint8_t mst_alloc_slots,
4746                                 uint8_t *mst_slots_in_use)
4747 {
4748         union dmub_rb_cmd cmd = {0};
4749         struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4750
4751         /* prepare MST_ALLOC_SLOTS command */
4752         cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
4753         cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
4754
4755         cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
4756         cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
4757
4758         if (!dc_dmub_srv_cmd_with_reply_data(dmub_srv, &cmd))
4759                 /* command is not processed by dmub */
4760                 return DC_ERROR_UNEXPECTED;
4761
4762         /* command processed by dmub, if ret_status is 1 */
4763         if (cmd.set_config_access.header.ret_status != 1)
4764                 /* command processing error */
4765                 return DC_ERROR_UNEXPECTED;
4766
4767         /* command processed and we have a status of 2, mst not enabled in dpia */
4768         if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
4769                 return DC_FAIL_UNSUPPORTED_1;
4770
4771         /* previously configured mst alloc and used slots did not match */
4772         if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
4773                 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
4774                 return DC_NOT_SUPPORTED;
4775         }
4776
4777         return DC_OK;
4778 }
4779
4780 /**
4781  * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
4782  *
4783  * @dc: [in] dc structure
4784  * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
4785  *
4786  * Submits dpia hpd int enable command to dmub via inbox message
4787  */
4788 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
4789                                 uint32_t hpd_int_enable)
4790 {
4791         union dmub_rb_cmd cmd = {0};
4792         struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4793
4794         cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
4795         cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
4796
4797         dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
4798         dc_dmub_srv_cmd_execute(dmub_srv);
4799         dc_dmub_srv_wait_idle(dmub_srv);
4800
4801         DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
4802 }
4803
4804 /**
4805  * dc_disable_accelerated_mode - disable accelerated mode
4806  * @dc: dc structure
4807  */
4808 void dc_disable_accelerated_mode(struct dc *dc)
4809 {
4810         bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
4811 }
4812
4813
4814 /**
4815  *  dc_notify_vsync_int_state - notifies vsync enable/disable state
4816  *  @dc: dc structure
4817  *  @stream: stream where vsync int state changed
4818  *  @enable: whether vsync is enabled or disabled
4819  *
4820  *  Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
4821  *  interrupts after steady state is reached.
4822  */
4823 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
4824 {
4825         int i;
4826         int edp_num;
4827         struct pipe_ctx *pipe = NULL;
4828         struct dc_link *link = stream->sink->link;
4829         struct dc_link *edp_links[MAX_NUM_EDP];
4830
4831
4832         if (link->psr_settings.psr_feature_enabled)
4833                 return;
4834
4835         /*find primary pipe associated with stream*/
4836         for (i = 0; i < MAX_PIPES; i++) {
4837                 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4838
4839                 if (pipe->stream == stream && pipe->stream_res.tg)
4840                         break;
4841         }
4842
4843         if (i == MAX_PIPES) {
4844                 ASSERT(0);
4845                 return;
4846         }
4847
4848         dc_get_edp_links(dc, edp_links, &edp_num);
4849
4850         /* Determine panel inst */
4851         for (i = 0; i < edp_num; i++) {
4852                 if (edp_links[i] == link)
4853                         break;
4854         }
4855
4856         if (i == edp_num) {
4857                 return;
4858         }
4859
4860         if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
4861                 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
4862 }
4863
4864 /**
4865  * dc_extended_blank_supported - Decide whether extended blank is supported
4866  *
4867  * @dc: [in] Current DC state
4868  *
4869  * Extended blank is a freesync optimization feature to be enabled in the
4870  * future.  During the extra vblank period gained from freesync, we have the
4871  * ability to enter z9/z10.
4872  *
4873  * Return:
4874  * Indicate whether extended blank is supported (%true or %false)
4875  */
4876 bool dc_extended_blank_supported(struct dc *dc)
4877 {
4878         return dc->debug.extended_blank_optimization && !dc->debug.disable_z10
4879                 && dc->caps.zstate_support && dc->caps.is_apu;
4880 }
This page took 0.34399 seconds and 4 git commands to generate.