]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c
Merge tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "sdma0/sdma0_4_1_default.h"
50
51 #include "soc15_common.h"
52 #include "soc15.h"
53 #include "vega10_sdma_pkt_open.h"
54
55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
57
58 #include "amdgpu_ras.h"
59 #include "sdma_v4_4.h"
60
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
74
75 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
76 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
77
78 #define WREG32_SDMA(instance, offset, value) \
79         WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
80 #define RREG32_SDMA(instance, offset) \
81         RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
82
83 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
86 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
87 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
88
89 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
90         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
91         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
92         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
93         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
94         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
95         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
96         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
97         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
98         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
100         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
101         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
102         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
103         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
104         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
105         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
107         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
108         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
109         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
110         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
112         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
113         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
114         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
115 };
116
117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
118         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
119         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
120         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
121         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
122         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
123         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
124         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
125 };
126
127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
128         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
129         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
130         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
131         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
133         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
134         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
135 };
136
137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
138         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
139         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
140         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
141         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
143         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
144         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
146         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
148         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
149 };
150
151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
152         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
153 };
154
155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
156 {
157         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
158         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
159         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
160         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
161         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
164         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
165         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
166         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
168         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
181         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
182         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
183         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
184 };
185
186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
187         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
188         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
189         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
190         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
191         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
194         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
195         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
196         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
198         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
211         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
212         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
213         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
214 };
215
216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
217 {
218         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
219         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
220 };
221
222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
223 {
224         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
225         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
226 };
227
228 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
229 {
230         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
231         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
232         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
233         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
234         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
235         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
236         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
237         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
238         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
239         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
240         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
241         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
242         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
243         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
244         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
245         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
246         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
247         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
248         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
249         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
250         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
251         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
252         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
253         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
254         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
255         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
256         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
257         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
258         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
259         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
260         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
261         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
262 };
263
264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
265         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
266         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
267         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
268         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
269         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
270         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
271         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
272         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
273         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
274         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
275         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
276         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
277         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
278         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
279         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
280 };
281
282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
283         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
284         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
285         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
286         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
287         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
288         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
289         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
290         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
291         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
292         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
293 };
294
295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
296         { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
298         0, 0,
299         },
300         { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
302         0, 0,
303         },
304         { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
306         0, 0,
307         },
308         { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
310         0, 0,
311         },
312         { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
314         0, 0,
315         },
316         { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
318         0, 0,
319         },
320         { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
322         0, 0,
323         },
324         { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
326         0, 0,
327         },
328         { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
330         0, 0,
331         },
332         { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
334         0, 0,
335         },
336         { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
338         0, 0,
339         },
340         { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
342         0, 0,
343         },
344         { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
346         0, 0,
347         },
348         { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
350         0, 0,
351         },
352         { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
354         0, 0,
355         },
356         { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
358         0, 0,
359         },
360         { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
362         0, 0,
363         },
364         { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
366         0, 0,
367         },
368         { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
370         0, 0,
371         },
372         { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
373         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
374         0, 0,
375         },
376         { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
377         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
378         0, 0,
379         },
380         { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
381         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
382         0, 0,
383         },
384         { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
385         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
386         0, 0,
387         },
388         { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
389         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
390         0, 0,
391         },
392 };
393
394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
395                 u32 instance, u32 offset)
396 {
397         switch (instance) {
398         case 0:
399                 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
400         case 1:
401                 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
402         case 2:
403                 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
404         case 3:
405                 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
406         case 4:
407                 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
408         case 5:
409                 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
410         case 6:
411                 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
412         case 7:
413                 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
414         default:
415                 break;
416         }
417         return 0;
418 }
419
420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
421 {
422         switch (seq_num) {
423         case 0:
424                 return SOC15_IH_CLIENTID_SDMA0;
425         case 1:
426                 return SOC15_IH_CLIENTID_SDMA1;
427         case 2:
428                 return SOC15_IH_CLIENTID_SDMA2;
429         case 3:
430                 return SOC15_IH_CLIENTID_SDMA3;
431         case 4:
432                 return SOC15_IH_CLIENTID_SDMA4;
433         case 5:
434                 return SOC15_IH_CLIENTID_SDMA5;
435         case 6:
436                 return SOC15_IH_CLIENTID_SDMA6;
437         case 7:
438                 return SOC15_IH_CLIENTID_SDMA7;
439         default:
440                 break;
441         }
442         return -EINVAL;
443 }
444
445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
446 {
447         switch (client_id) {
448         case SOC15_IH_CLIENTID_SDMA0:
449                 return 0;
450         case SOC15_IH_CLIENTID_SDMA1:
451                 return 1;
452         case SOC15_IH_CLIENTID_SDMA2:
453                 return 2;
454         case SOC15_IH_CLIENTID_SDMA3:
455                 return 3;
456         case SOC15_IH_CLIENTID_SDMA4:
457                 return 4;
458         case SOC15_IH_CLIENTID_SDMA5:
459                 return 5;
460         case SOC15_IH_CLIENTID_SDMA6:
461                 return 6;
462         case SOC15_IH_CLIENTID_SDMA7:
463                 return 7;
464         default:
465                 break;
466         }
467         return -EINVAL;
468 }
469
470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
471 {
472         switch (adev->ip_versions[SDMA0_HWIP][0]) {
473         case IP_VERSION(4, 0, 0):
474                 soc15_program_register_sequence(adev,
475                                                 golden_settings_sdma_4,
476                                                 ARRAY_SIZE(golden_settings_sdma_4));
477                 soc15_program_register_sequence(adev,
478                                                 golden_settings_sdma_vg10,
479                                                 ARRAY_SIZE(golden_settings_sdma_vg10));
480                 break;
481         case IP_VERSION(4, 0, 1):
482                 soc15_program_register_sequence(adev,
483                                                 golden_settings_sdma_4,
484                                                 ARRAY_SIZE(golden_settings_sdma_4));
485                 soc15_program_register_sequence(adev,
486                                                 golden_settings_sdma_vg12,
487                                                 ARRAY_SIZE(golden_settings_sdma_vg12));
488                 break;
489         case IP_VERSION(4, 2, 0):
490                 soc15_program_register_sequence(adev,
491                                                 golden_settings_sdma0_4_2_init,
492                                                 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
493                 soc15_program_register_sequence(adev,
494                                                 golden_settings_sdma0_4_2,
495                                                 ARRAY_SIZE(golden_settings_sdma0_4_2));
496                 soc15_program_register_sequence(adev,
497                                                 golden_settings_sdma1_4_2,
498                                                 ARRAY_SIZE(golden_settings_sdma1_4_2));
499                 break;
500         case IP_VERSION(4, 2, 2):
501                 soc15_program_register_sequence(adev,
502                                                 golden_settings_sdma_arct,
503                                                 ARRAY_SIZE(golden_settings_sdma_arct));
504                 break;
505         case IP_VERSION(4, 4, 0):
506                 soc15_program_register_sequence(adev,
507                                                 golden_settings_sdma_aldebaran,
508                                                 ARRAY_SIZE(golden_settings_sdma_aldebaran));
509                 break;
510         case IP_VERSION(4, 1, 0):
511         case IP_VERSION(4, 1, 1):
512                 soc15_program_register_sequence(adev,
513                                                 golden_settings_sdma_4_1,
514                                                 ARRAY_SIZE(golden_settings_sdma_4_1));
515                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
516                         soc15_program_register_sequence(adev,
517                                                         golden_settings_sdma_rv2,
518                                                         ARRAY_SIZE(golden_settings_sdma_rv2));
519                 else
520                         soc15_program_register_sequence(adev,
521                                                         golden_settings_sdma_rv1,
522                                                         ARRAY_SIZE(golden_settings_sdma_rv1));
523                 break;
524         case IP_VERSION(4, 1, 2):
525                 soc15_program_register_sequence(adev,
526                                                 golden_settings_sdma_4_3,
527                                                 ARRAY_SIZE(golden_settings_sdma_4_3));
528                 break;
529         default:
530                 break;
531         }
532 }
533
534 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
535 {
536         int i;
537
538         /*
539          * The only chips with SDMAv4 and ULV are VG10 and VG20.
540          * Server SKUs take a different hysteresis setting from other SKUs.
541          */
542         switch (adev->ip_versions[SDMA0_HWIP][0]) {
543         case IP_VERSION(4, 0, 0):
544                 if (adev->pdev->device == 0x6860)
545                         break;
546                 return;
547         case IP_VERSION(4, 2, 0):
548                 if (adev->pdev->device == 0x66a1)
549                         break;
550                 return;
551         default:
552                 return;
553         }
554
555         for (i = 0; i < adev->sdma.num_instances; i++) {
556                 uint32_t temp;
557
558                 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
559                 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
560                 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
561         }
562 }
563
564 /**
565  * sdma_v4_0_init_microcode - load ucode images from disk
566  *
567  * @adev: amdgpu_device pointer
568  *
569  * Use the firmware interface to load the ucode images into
570  * the driver (not loaded into hw).
571  * Returns 0 on success, error on failure.
572  */
573
574 // emulation only, won't work on real chip
575 // vega10 real chip need to use PSP to load firmware
576 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
577 {
578         int ret, i;
579
580         for (i = 0; i < adev->sdma.num_instances; i++) {
581                 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) ||
582                     adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) {
583                         /* Acturus & Aldebaran will leverage the same FW memory
584                            for every SDMA instance */
585                         ret = amdgpu_sdma_init_microcode(adev, 0, true);
586                         break;
587                 } else {
588                         ret = amdgpu_sdma_init_microcode(adev, i, false);
589                         if (ret)
590                                 return ret;
591                 }
592         }
593
594         return ret;
595 }
596
597 /**
598  * sdma_v4_0_ring_get_rptr - get the current read pointer
599  *
600  * @ring: amdgpu ring pointer
601  *
602  * Get the current rptr from the hardware (VEGA10+).
603  */
604 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
605 {
606         u64 *rptr;
607
608         /* XXX check if swapping is necessary on BE */
609         rptr = ((u64 *)ring->rptr_cpu_addr);
610
611         DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
612         return ((*rptr) >> 2);
613 }
614
615 /**
616  * sdma_v4_0_ring_get_wptr - get the current write pointer
617  *
618  * @ring: amdgpu ring pointer
619  *
620  * Get the current wptr from the hardware (VEGA10+).
621  */
622 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
623 {
624         struct amdgpu_device *adev = ring->adev;
625         u64 wptr;
626
627         if (ring->use_doorbell) {
628                 /* XXX check if swapping is necessary on BE */
629                 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
630                 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
631         } else {
632                 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
633                 wptr = wptr << 32;
634                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
635                 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
636                                 ring->me, wptr);
637         }
638
639         return wptr >> 2;
640 }
641
642 /**
643  * sdma_v4_0_ring_set_wptr - commit the write pointer
644  *
645  * @ring: amdgpu ring pointer
646  *
647  * Write the wptr back to the hardware (VEGA10+).
648  */
649 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
650 {
651         struct amdgpu_device *adev = ring->adev;
652
653         DRM_DEBUG("Setting write pointer\n");
654         if (ring->use_doorbell) {
655                 u64 *wb = (u64 *)ring->wptr_cpu_addr;
656
657                 DRM_DEBUG("Using doorbell -- "
658                                 "wptr_offs == 0x%08x "
659                                 "lower_32_bits(ring->wptr << 2) == 0x%08x "
660                                 "upper_32_bits(ring->wptr << 2) == 0x%08x\n",
661                                 ring->wptr_offs,
662                                 lower_32_bits(ring->wptr << 2),
663                                 upper_32_bits(ring->wptr << 2));
664                 /* XXX check if swapping is necessary on BE */
665                 WRITE_ONCE(*wb, (ring->wptr << 2));
666                 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
667                                 ring->doorbell_index, ring->wptr << 2);
668                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
669         } else {
670                 DRM_DEBUG("Not using doorbell -- "
671                                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
672                                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
673                                 ring->me,
674                                 lower_32_bits(ring->wptr << 2),
675                                 ring->me,
676                                 upper_32_bits(ring->wptr << 2));
677                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
678                             lower_32_bits(ring->wptr << 2));
679                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
680                             upper_32_bits(ring->wptr << 2));
681         }
682 }
683
684 /**
685  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
686  *
687  * @ring: amdgpu ring pointer
688  *
689  * Get the current wptr from the hardware (VEGA10+).
690  */
691 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
692 {
693         struct amdgpu_device *adev = ring->adev;
694         u64 wptr;
695
696         if (ring->use_doorbell) {
697                 /* XXX check if swapping is necessary on BE */
698                 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
699         } else {
700                 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
701                 wptr = wptr << 32;
702                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
703         }
704
705         return wptr >> 2;
706 }
707
708 /**
709  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
710  *
711  * @ring: amdgpu ring pointer
712  *
713  * Write the wptr back to the hardware (VEGA10+).
714  */
715 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
716 {
717         struct amdgpu_device *adev = ring->adev;
718
719         if (ring->use_doorbell) {
720                 u64 *wb = (u64 *)ring->wptr_cpu_addr;
721
722                 /* XXX check if swapping is necessary on BE */
723                 WRITE_ONCE(*wb, (ring->wptr << 2));
724                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
725         } else {
726                 uint64_t wptr = ring->wptr << 2;
727
728                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
729                             lower_32_bits(wptr));
730                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
731                             upper_32_bits(wptr));
732         }
733 }
734
735 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
736 {
737         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
738         int i;
739
740         for (i = 0; i < count; i++)
741                 if (sdma && sdma->burst_nop && (i == 0))
742                         amdgpu_ring_write(ring, ring->funcs->nop |
743                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
744                 else
745                         amdgpu_ring_write(ring, ring->funcs->nop);
746 }
747
748 /**
749  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
750  *
751  * @ring: amdgpu ring pointer
752  * @job: job to retrieve vmid from
753  * @ib: IB object to schedule
754  * @flags: unused
755  *
756  * Schedule an IB in the DMA ring (VEGA10).
757  */
758 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
759                                    struct amdgpu_job *job,
760                                    struct amdgpu_ib *ib,
761                                    uint32_t flags)
762 {
763         unsigned vmid = AMDGPU_JOB_GET_VMID(job);
764
765         /* IB packet must end on a 8 DW boundary */
766         sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
767
768         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
769                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
770         /* base must be 32 byte aligned */
771         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
772         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
773         amdgpu_ring_write(ring, ib->length_dw);
774         amdgpu_ring_write(ring, 0);
775         amdgpu_ring_write(ring, 0);
776
777 }
778
779 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
780                                    int mem_space, int hdp,
781                                    uint32_t addr0, uint32_t addr1,
782                                    uint32_t ref, uint32_t mask,
783                                    uint32_t inv)
784 {
785         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
786                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
787                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
788                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
789         if (mem_space) {
790                 /* memory */
791                 amdgpu_ring_write(ring, addr0);
792                 amdgpu_ring_write(ring, addr1);
793         } else {
794                 /* registers */
795                 amdgpu_ring_write(ring, addr0 << 2);
796                 amdgpu_ring_write(ring, addr1 << 2);
797         }
798         amdgpu_ring_write(ring, ref); /* reference */
799         amdgpu_ring_write(ring, mask); /* mask */
800         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
801                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
802 }
803
804 /**
805  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
806  *
807  * @ring: amdgpu ring pointer
808  *
809  * Emit an hdp flush packet on the requested DMA ring.
810  */
811 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
812 {
813         struct amdgpu_device *adev = ring->adev;
814         u32 ref_and_mask = 0;
815         const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
816
817         ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
818
819         sdma_v4_0_wait_reg_mem(ring, 0, 1,
820                                adev->nbio.funcs->get_hdp_flush_done_offset(adev),
821                                adev->nbio.funcs->get_hdp_flush_req_offset(adev),
822                                ref_and_mask, ref_and_mask, 10);
823 }
824
825 /**
826  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
827  *
828  * @ring: amdgpu ring pointer
829  * @addr: address
830  * @seq: sequence number
831  * @flags: fence related flags
832  *
833  * Add a DMA fence packet to the ring to write
834  * the fence seq number and DMA trap packet to generate
835  * an interrupt if needed (VEGA10).
836  */
837 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
838                                       unsigned flags)
839 {
840         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
841         /* write the fence */
842         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
843         /* zero in first two bits */
844         BUG_ON(addr & 0x3);
845         amdgpu_ring_write(ring, lower_32_bits(addr));
846         amdgpu_ring_write(ring, upper_32_bits(addr));
847         amdgpu_ring_write(ring, lower_32_bits(seq));
848
849         /* optionally write high bits as well */
850         if (write64bit) {
851                 addr += 4;
852                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
853                 /* zero in first two bits */
854                 BUG_ON(addr & 0x3);
855                 amdgpu_ring_write(ring, lower_32_bits(addr));
856                 amdgpu_ring_write(ring, upper_32_bits(addr));
857                 amdgpu_ring_write(ring, upper_32_bits(seq));
858         }
859
860         /* generate an interrupt */
861         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
862         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
863 }
864
865
866 /**
867  * sdma_v4_0_gfx_enable - enable the gfx async dma engines
868  *
869  * @adev: amdgpu_device pointer
870  * @enable: enable SDMA RB/IB
871  * control the gfx async dma ring buffers (VEGA10).
872  */
873 static void sdma_v4_0_gfx_enable(struct amdgpu_device *adev, bool enable)
874 {
875         u32 rb_cntl, ib_cntl;
876         int i;
877
878         amdgpu_sdma_unset_buffer_funcs_helper(adev);
879
880         for (i = 0; i < adev->sdma.num_instances; i++) {
881                 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
882                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, enable ? 1 : 0);
883                 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
884                 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
885                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, enable ? 1 : 0);
886                 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
887         }
888 }
889
890 /**
891  * sdma_v4_0_rlc_stop - stop the compute async dma engines
892  *
893  * @adev: amdgpu_device pointer
894  *
895  * Stop the compute async dma queues (VEGA10).
896  */
897 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
898 {
899         /* XXX todo */
900 }
901
902 /**
903  * sdma_v4_0_page_stop - stop the page async dma engines
904  *
905  * @adev: amdgpu_device pointer
906  *
907  * Stop the page async dma ring buffers (VEGA10).
908  */
909 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
910 {
911         u32 rb_cntl, ib_cntl;
912         int i;
913
914         amdgpu_sdma_unset_buffer_funcs_helper(adev);
915
916         for (i = 0; i < adev->sdma.num_instances; i++) {
917                 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
918                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
919                                         RB_ENABLE, 0);
920                 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
921                 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
922                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
923                                         IB_ENABLE, 0);
924                 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
925         }
926 }
927
928 /**
929  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
930  *
931  * @adev: amdgpu_device pointer
932  * @enable: enable/disable the DMA MEs context switch.
933  *
934  * Halt or unhalt the async dma engines context switch (VEGA10).
935  */
936 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
937 {
938         u32 f32_cntl, phase_quantum = 0;
939         int i;
940
941         if (amdgpu_sdma_phase_quantum) {
942                 unsigned value = amdgpu_sdma_phase_quantum;
943                 unsigned unit = 0;
944
945                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
946                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
947                         value = (value + 1) >> 1;
948                         unit++;
949                 }
950                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
951                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
952                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
953                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
954                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
955                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
956                         WARN_ONCE(1,
957                         "clamping sdma_phase_quantum to %uK clock cycles\n",
958                                   value << unit);
959                 }
960                 phase_quantum =
961                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
962                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
963         }
964
965         for (i = 0; i < adev->sdma.num_instances; i++) {
966                 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
967                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
968                                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
969                 if (enable && amdgpu_sdma_phase_quantum) {
970                         WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
971                         WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
972                         WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
973                 }
974                 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
975
976                 /*
977                  * Enable SDMA utilization. Its only supported on
978                  * Arcturus for the moment and firmware version 14
979                  * and above.
980                  */
981                 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) &&
982                     adev->sdma.instance[i].fw_version >= 14)
983                         WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
984                 /* Extend page fault timeout to avoid interrupt storm */
985                 WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
986         }
987
988 }
989
990 /**
991  * sdma_v4_0_enable - stop the async dma engines
992  *
993  * @adev: amdgpu_device pointer
994  * @enable: enable/disable the DMA MEs.
995  *
996  * Halt or unhalt the async dma engines (VEGA10).
997  */
998 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
999 {
1000         u32 f32_cntl;
1001         int i;
1002
1003         if (!enable) {
1004                 sdma_v4_0_gfx_enable(adev, enable);
1005                 sdma_v4_0_rlc_stop(adev);
1006                 if (adev->sdma.has_page_queue)
1007                         sdma_v4_0_page_stop(adev);
1008         }
1009
1010         for (i = 0; i < adev->sdma.num_instances; i++) {
1011                 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1012                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1013                 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1014         }
1015 }
1016
1017 /*
1018  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1019  */
1020 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1021 {
1022         /* Set ring buffer size in dwords */
1023         uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1024
1025         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1026 #ifdef __BIG_ENDIAN
1027         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1028         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1029                                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1030 #endif
1031         return rb_cntl;
1032 }
1033
1034 /**
1035  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1036  *
1037  * @adev: amdgpu_device pointer
1038  * @i: instance to resume
1039  *
1040  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1041  * Returns 0 for success, error for failure.
1042  */
1043 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1044 {
1045         struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1046         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1047         u32 doorbell;
1048         u32 doorbell_offset;
1049         u64 wptr_gpu_addr;
1050
1051         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1052         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1053         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1054
1055         /* Initialize the ring buffer's read and write pointers */
1056         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1057         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1058         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1059         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1060
1061         /* set the wb address whether it's enabled or not */
1062         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1063                upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1064         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1065                lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1066
1067         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1068                                 RPTR_WRITEBACK_ENABLE, 1);
1069
1070         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1071         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1072
1073         ring->wptr = 0;
1074
1075         /* before programing wptr to a less value, need set minor_ptr_update first */
1076         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1077
1078         doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1079         doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1080
1081         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1082                                  ring->use_doorbell);
1083         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1084                                         SDMA0_GFX_DOORBELL_OFFSET,
1085                                         OFFSET, ring->doorbell_index);
1086         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1087         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1088
1089         sdma_v4_0_ring_set_wptr(ring);
1090
1091         /* set minor_ptr_update to 0 after wptr programed */
1092         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1093
1094         /* setup the wptr shadow polling */
1095         wptr_gpu_addr = ring->wptr_gpu_addr;
1096         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1097                     lower_32_bits(wptr_gpu_addr));
1098         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1099                     upper_32_bits(wptr_gpu_addr));
1100         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1101         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1102                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
1103                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1104         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1105
1106         /* enable DMA RB */
1107         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1108         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1109
1110         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1111         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1112 #ifdef __BIG_ENDIAN
1113         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1114 #endif
1115         /* enable DMA IBs */
1116         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1117
1118         ring->sched.ready = true;
1119 }
1120
1121 /**
1122  * sdma_v4_0_page_resume - setup and start the async dma engines
1123  *
1124  * @adev: amdgpu_device pointer
1125  * @i: instance to resume
1126  *
1127  * Set up the page DMA ring buffers and enable them (VEGA10).
1128  * Returns 0 for success, error for failure.
1129  */
1130 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1131 {
1132         struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1133         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1134         u32 doorbell;
1135         u32 doorbell_offset;
1136         u64 wptr_gpu_addr;
1137
1138         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1139         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1140         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1141
1142         /* Initialize the ring buffer's read and write pointers */
1143         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1144         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1145         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1146         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1147
1148         /* set the wb address whether it's enabled or not */
1149         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1150                upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1151         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1152                lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1153
1154         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1155                                 RPTR_WRITEBACK_ENABLE, 1);
1156
1157         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1158         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1159
1160         ring->wptr = 0;
1161
1162         /* before programing wptr to a less value, need set minor_ptr_update first */
1163         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1164
1165         doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1166         doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1167
1168         doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1169                                  ring->use_doorbell);
1170         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1171                                         SDMA0_PAGE_DOORBELL_OFFSET,
1172                                         OFFSET, ring->doorbell_index);
1173         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1174         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1175
1176         /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1177         sdma_v4_0_page_ring_set_wptr(ring);
1178
1179         /* set minor_ptr_update to 0 after wptr programed */
1180         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1181
1182         /* setup the wptr shadow polling */
1183         wptr_gpu_addr = ring->wptr_gpu_addr;
1184         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1185                     lower_32_bits(wptr_gpu_addr));
1186         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1187                     upper_32_bits(wptr_gpu_addr));
1188         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1189         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1190                                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1191                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1192         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1193
1194         /* enable DMA RB */
1195         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1196         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1197
1198         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1199         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1200 #ifdef __BIG_ENDIAN
1201         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1202 #endif
1203         /* enable DMA IBs */
1204         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1205
1206         ring->sched.ready = true;
1207 }
1208
1209 static void
1210 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1211 {
1212         uint32_t def, data;
1213
1214         if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1215                 /* enable idle interrupt */
1216                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1217                 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1218
1219                 if (data != def)
1220                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1221         } else {
1222                 /* disable idle interrupt */
1223                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1224                 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1225                 if (data != def)
1226                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1227         }
1228 }
1229
1230 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1231 {
1232         uint32_t def, data;
1233
1234         /* Enable HW based PG. */
1235         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1236         data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1237         if (data != def)
1238                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1239
1240         /* enable interrupt */
1241         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1242         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1243         if (data != def)
1244                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1245
1246         /* Configure hold time to filter in-valid power on/off request. Use default right now */
1247         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1248         data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1249         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1250         /* Configure switch time for hysteresis purpose. Use default right now */
1251         data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1252         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1253         if(data != def)
1254                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1255 }
1256
1257 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1258 {
1259         if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1260                 return;
1261
1262         switch (adev->ip_versions[SDMA0_HWIP][0]) {
1263         case IP_VERSION(4, 1, 0):
1264         case IP_VERSION(4, 1, 1):
1265         case IP_VERSION(4, 1, 2):
1266                 sdma_v4_1_init_power_gating(adev);
1267                 sdma_v4_1_update_power_gating(adev, true);
1268                 break;
1269         default:
1270                 break;
1271         }
1272 }
1273
1274 /**
1275  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1276  *
1277  * @adev: amdgpu_device pointer
1278  *
1279  * Set up the compute DMA queues and enable them (VEGA10).
1280  * Returns 0 for success, error for failure.
1281  */
1282 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1283 {
1284         sdma_v4_0_init_pg(adev);
1285
1286         return 0;
1287 }
1288
1289 /**
1290  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1291  *
1292  * @adev: amdgpu_device pointer
1293  *
1294  * Loads the sDMA0/1 ucode.
1295  * Returns 0 for success, -EINVAL if the ucode is not available.
1296  */
1297 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1298 {
1299         const struct sdma_firmware_header_v1_0 *hdr;
1300         const __le32 *fw_data;
1301         u32 fw_size;
1302         int i, j;
1303
1304         /* halt the MEs */
1305         sdma_v4_0_enable(adev, false);
1306
1307         for (i = 0; i < adev->sdma.num_instances; i++) {
1308                 if (!adev->sdma.instance[i].fw)
1309                         return -EINVAL;
1310
1311                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1312                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1313                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1314
1315                 fw_data = (const __le32 *)
1316                         (adev->sdma.instance[i].fw->data +
1317                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1318
1319                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1320
1321                 for (j = 0; j < fw_size; j++)
1322                         WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1323                                     le32_to_cpup(fw_data++));
1324
1325                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1326                             adev->sdma.instance[i].fw_version);
1327         }
1328
1329         return 0;
1330 }
1331
1332 /**
1333  * sdma_v4_0_start - setup and start the async dma engines
1334  *
1335  * @adev: amdgpu_device pointer
1336  *
1337  * Set up the DMA engines and enable them (VEGA10).
1338  * Returns 0 for success, error for failure.
1339  */
1340 static int sdma_v4_0_start(struct amdgpu_device *adev)
1341 {
1342         struct amdgpu_ring *ring;
1343         int i, r = 0;
1344
1345         if (amdgpu_sriov_vf(adev)) {
1346                 sdma_v4_0_ctx_switch_enable(adev, false);
1347                 sdma_v4_0_enable(adev, false);
1348         } else {
1349
1350                 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1351                         r = sdma_v4_0_load_microcode(adev);
1352                         if (r)
1353                                 return r;
1354                 }
1355
1356                 /* unhalt the MEs */
1357                 sdma_v4_0_enable(adev, true);
1358                 /* enable sdma ring preemption */
1359                 sdma_v4_0_ctx_switch_enable(adev, true);
1360         }
1361
1362         /* start the gfx rings and rlc compute queues */
1363         for (i = 0; i < adev->sdma.num_instances; i++) {
1364                 uint32_t temp;
1365
1366                 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1367                 sdma_v4_0_gfx_resume(adev, i);
1368                 if (adev->sdma.has_page_queue)
1369                         sdma_v4_0_page_resume(adev, i);
1370
1371                 /* set utc l1 enable flag always to 1 */
1372                 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1373                 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1374                 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1375
1376                 if (!amdgpu_sriov_vf(adev)) {
1377                         /* unhalt engine */
1378                         temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1379                         temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1380                         WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1381                 }
1382         }
1383
1384         if (amdgpu_sriov_vf(adev)) {
1385                 sdma_v4_0_ctx_switch_enable(adev, true);
1386                 sdma_v4_0_enable(adev, true);
1387         } else {
1388                 r = sdma_v4_0_rlc_resume(adev);
1389                 if (r)
1390                         return r;
1391         }
1392
1393         for (i = 0; i < adev->sdma.num_instances; i++) {
1394                 ring = &adev->sdma.instance[i].ring;
1395
1396                 r = amdgpu_ring_test_helper(ring);
1397                 if (r)
1398                         return r;
1399
1400                 if (adev->sdma.has_page_queue) {
1401                         struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1402
1403                         r = amdgpu_ring_test_helper(page);
1404                         if (r)
1405                                 return r;
1406
1407                         if (adev->mman.buffer_funcs_ring == page)
1408                                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1409                 }
1410
1411                 if (adev->mman.buffer_funcs_ring == ring)
1412                         amdgpu_ttm_set_buffer_funcs_status(adev, true);
1413         }
1414
1415         return r;
1416 }
1417
1418 /**
1419  * sdma_v4_0_ring_test_ring - simple async dma engine test
1420  *
1421  * @ring: amdgpu_ring structure holding ring information
1422  *
1423  * Test the DMA engine by writing using it to write an
1424  * value to memory. (VEGA10).
1425  * Returns 0 for success, error for failure.
1426  */
1427 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1428 {
1429         struct amdgpu_device *adev = ring->adev;
1430         unsigned i;
1431         unsigned index;
1432         int r;
1433         u32 tmp;
1434         u64 gpu_addr;
1435
1436         r = amdgpu_device_wb_get(adev, &index);
1437         if (r)
1438                 return r;
1439
1440         gpu_addr = adev->wb.gpu_addr + (index * 4);
1441         tmp = 0xCAFEDEAD;
1442         adev->wb.wb[index] = cpu_to_le32(tmp);
1443
1444         r = amdgpu_ring_alloc(ring, 5);
1445         if (r)
1446                 goto error_free_wb;
1447
1448         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1449                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1450         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1451         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1452         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1453         amdgpu_ring_write(ring, 0xDEADBEEF);
1454         amdgpu_ring_commit(ring);
1455
1456         for (i = 0; i < adev->usec_timeout; i++) {
1457                 tmp = le32_to_cpu(adev->wb.wb[index]);
1458                 if (tmp == 0xDEADBEEF)
1459                         break;
1460                 udelay(1);
1461         }
1462
1463         if (i >= adev->usec_timeout)
1464                 r = -ETIMEDOUT;
1465
1466 error_free_wb:
1467         amdgpu_device_wb_free(adev, index);
1468         return r;
1469 }
1470
1471 /**
1472  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1473  *
1474  * @ring: amdgpu_ring structure holding ring information
1475  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1476  *
1477  * Test a simple IB in the DMA ring (VEGA10).
1478  * Returns 0 on success, error on failure.
1479  */
1480 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1481 {
1482         struct amdgpu_device *adev = ring->adev;
1483         struct amdgpu_ib ib;
1484         struct dma_fence *f = NULL;
1485         unsigned index;
1486         long r;
1487         u32 tmp = 0;
1488         u64 gpu_addr;
1489
1490         r = amdgpu_device_wb_get(adev, &index);
1491         if (r)
1492                 return r;
1493
1494         gpu_addr = adev->wb.gpu_addr + (index * 4);
1495         tmp = 0xCAFEDEAD;
1496         adev->wb.wb[index] = cpu_to_le32(tmp);
1497         memset(&ib, 0, sizeof(ib));
1498         r = amdgpu_ib_get(adev, NULL, 256,
1499                                         AMDGPU_IB_POOL_DIRECT, &ib);
1500         if (r)
1501                 goto err0;
1502
1503         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1504                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1505         ib.ptr[1] = lower_32_bits(gpu_addr);
1506         ib.ptr[2] = upper_32_bits(gpu_addr);
1507         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1508         ib.ptr[4] = 0xDEADBEEF;
1509         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1510         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1511         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1512         ib.length_dw = 8;
1513
1514         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1515         if (r)
1516                 goto err1;
1517
1518         r = dma_fence_wait_timeout(f, false, timeout);
1519         if (r == 0) {
1520                 r = -ETIMEDOUT;
1521                 goto err1;
1522         } else if (r < 0) {
1523                 goto err1;
1524         }
1525         tmp = le32_to_cpu(adev->wb.wb[index]);
1526         if (tmp == 0xDEADBEEF)
1527                 r = 0;
1528         else
1529                 r = -EINVAL;
1530
1531 err1:
1532         amdgpu_ib_free(adev, &ib, NULL);
1533         dma_fence_put(f);
1534 err0:
1535         amdgpu_device_wb_free(adev, index);
1536         return r;
1537 }
1538
1539
1540 /**
1541  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1542  *
1543  * @ib: indirect buffer to fill with commands
1544  * @pe: addr of the page entry
1545  * @src: src addr to copy from
1546  * @count: number of page entries to update
1547  *
1548  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1549  */
1550 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1551                                   uint64_t pe, uint64_t src,
1552                                   unsigned count)
1553 {
1554         unsigned bytes = count * 8;
1555
1556         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1557                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1558         ib->ptr[ib->length_dw++] = bytes - 1;
1559         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1560         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1561         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1562         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1563         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1564
1565 }
1566
1567 /**
1568  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1569  *
1570  * @ib: indirect buffer to fill with commands
1571  * @pe: addr of the page entry
1572  * @value: dst addr to write into pe
1573  * @count: number of page entries to update
1574  * @incr: increase next addr by incr bytes
1575  *
1576  * Update PTEs by writing them manually using sDMA (VEGA10).
1577  */
1578 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1579                                    uint64_t value, unsigned count,
1580                                    uint32_t incr)
1581 {
1582         unsigned ndw = count * 2;
1583
1584         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1585                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1586         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1587         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1588         ib->ptr[ib->length_dw++] = ndw - 1;
1589         for (; ndw > 0; ndw -= 2) {
1590                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1591                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1592                 value += incr;
1593         }
1594 }
1595
1596 /**
1597  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1598  *
1599  * @ib: indirect buffer to fill with commands
1600  * @pe: addr of the page entry
1601  * @addr: dst addr to write into pe
1602  * @count: number of page entries to update
1603  * @incr: increase next addr by incr bytes
1604  * @flags: access flags
1605  *
1606  * Update the page tables using sDMA (VEGA10).
1607  */
1608 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1609                                      uint64_t pe,
1610                                      uint64_t addr, unsigned count,
1611                                      uint32_t incr, uint64_t flags)
1612 {
1613         /* for physically contiguous pages (vram) */
1614         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1615         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1616         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1617         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1618         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1619         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1620         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1621         ib->ptr[ib->length_dw++] = incr; /* increment size */
1622         ib->ptr[ib->length_dw++] = 0;
1623         ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1624 }
1625
1626 /**
1627  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1628  *
1629  * @ring: amdgpu_ring structure holding ring information
1630  * @ib: indirect buffer to fill with padding
1631  */
1632 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1633 {
1634         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1635         u32 pad_count;
1636         int i;
1637
1638         pad_count = (-ib->length_dw) & 7;
1639         for (i = 0; i < pad_count; i++)
1640                 if (sdma && sdma->burst_nop && (i == 0))
1641                         ib->ptr[ib->length_dw++] =
1642                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1643                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1644                 else
1645                         ib->ptr[ib->length_dw++] =
1646                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1647 }
1648
1649
1650 /**
1651  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1652  *
1653  * @ring: amdgpu_ring pointer
1654  *
1655  * Make sure all previous operations are completed (CIK).
1656  */
1657 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1658 {
1659         uint32_t seq = ring->fence_drv.sync_seq;
1660         uint64_t addr = ring->fence_drv.gpu_addr;
1661
1662         /* wait for idle */
1663         sdma_v4_0_wait_reg_mem(ring, 1, 0,
1664                                addr & 0xfffffffc,
1665                                upper_32_bits(addr) & 0xffffffff,
1666                                seq, 0xffffffff, 4);
1667 }
1668
1669
1670 /**
1671  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1672  *
1673  * @ring: amdgpu_ring pointer
1674  * @vmid: vmid number to use
1675  * @pd_addr: address
1676  *
1677  * Update the page table base and flush the VM TLB
1678  * using sDMA (VEGA10).
1679  */
1680 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1681                                          unsigned vmid, uint64_t pd_addr)
1682 {
1683         amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1684 }
1685
1686 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1687                                      uint32_t reg, uint32_t val)
1688 {
1689         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1690                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1691         amdgpu_ring_write(ring, reg);
1692         amdgpu_ring_write(ring, val);
1693 }
1694
1695 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1696                                          uint32_t val, uint32_t mask)
1697 {
1698         sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1699 }
1700
1701 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1702 {
1703         uint fw_version = adev->sdma.instance[0].fw_version;
1704
1705         switch (adev->ip_versions[SDMA0_HWIP][0]) {
1706         case IP_VERSION(4, 0, 0):
1707                 return fw_version >= 430;
1708         case IP_VERSION(4, 0, 1):
1709                 /*return fw_version >= 31;*/
1710                 return false;
1711         case IP_VERSION(4, 2, 0):
1712                 return fw_version >= 123;
1713         default:
1714                 return false;
1715         }
1716 }
1717
1718 static int sdma_v4_0_early_init(void *handle)
1719 {
1720         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1721         int r;
1722
1723         r = sdma_v4_0_init_microcode(adev);
1724         if (r) {
1725                 DRM_ERROR("Failed to load sdma firmware!\n");
1726                 return r;
1727         }
1728
1729         /* TODO: Page queue breaks driver reload under SRIOV */
1730         if ((adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 0, 0)) &&
1731             amdgpu_sriov_vf((adev)))
1732                 adev->sdma.has_page_queue = false;
1733         else if (sdma_v4_0_fw_support_paging_queue(adev))
1734                 adev->sdma.has_page_queue = true;
1735
1736         sdma_v4_0_set_ring_funcs(adev);
1737         sdma_v4_0_set_buffer_funcs(adev);
1738         sdma_v4_0_set_vm_pte_funcs(adev);
1739         sdma_v4_0_set_irq_funcs(adev);
1740         sdma_v4_0_set_ras_funcs(adev);
1741
1742         return 0;
1743 }
1744
1745 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1746                 void *err_data,
1747                 struct amdgpu_iv_entry *entry);
1748
1749 static int sdma_v4_0_late_init(void *handle)
1750 {
1751         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1752
1753         sdma_v4_0_setup_ulv(adev);
1754
1755         if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
1756                 if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops &&
1757                     adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count)
1758                         adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev);
1759         }
1760
1761         return 0;
1762 }
1763
1764 static int sdma_v4_0_sw_init(void *handle)
1765 {
1766         struct amdgpu_ring *ring;
1767         int r, i;
1768         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1769
1770         /* SDMA trap event */
1771         for (i = 0; i < adev->sdma.num_instances; i++) {
1772                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1773                                       SDMA0_4_0__SRCID__SDMA_TRAP,
1774                                       &adev->sdma.trap_irq);
1775                 if (r)
1776                         return r;
1777         }
1778
1779         /* SDMA SRAM ECC event */
1780         for (i = 0; i < adev->sdma.num_instances; i++) {
1781                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1782                                       SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1783                                       &adev->sdma.ecc_irq);
1784                 if (r)
1785                         return r;
1786         }
1787
1788         /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1789         for (i = 0; i < adev->sdma.num_instances; i++) {
1790                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1791                                       SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1792                                       &adev->sdma.vm_hole_irq);
1793                 if (r)
1794                         return r;
1795
1796                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1797                                       SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1798                                       &adev->sdma.doorbell_invalid_irq);
1799                 if (r)
1800                         return r;
1801
1802                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1803                                       SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1804                                       &adev->sdma.pool_timeout_irq);
1805                 if (r)
1806                         return r;
1807
1808                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1809                                       SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1810                                       &adev->sdma.srbm_write_irq);
1811                 if (r)
1812                         return r;
1813         }
1814
1815         for (i = 0; i < adev->sdma.num_instances; i++) {
1816                 ring = &adev->sdma.instance[i].ring;
1817                 ring->ring_obj = NULL;
1818                 ring->use_doorbell = true;
1819
1820                 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1821                                 ring->use_doorbell?"true":"false");
1822
1823                 /* doorbell size is 2 dwords, get DWORD offset */
1824                 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1825
1826                 /*
1827                  * On Arcturus, SDMA instance 5~7 has a different vmhub
1828                  * type(AMDGPU_MMHUB_1).
1829                  */
1830                 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5)
1831                         ring->vm_hub = AMDGPU_MMHUB_1;
1832                 else
1833                         ring->vm_hub = AMDGPU_MMHUB_0;
1834
1835                 sprintf(ring->name, "sdma%d", i);
1836                 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1837                                      AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1838                                      AMDGPU_RING_PRIO_DEFAULT, NULL);
1839                 if (r)
1840                         return r;
1841
1842                 if (adev->sdma.has_page_queue) {
1843                         ring = &adev->sdma.instance[i].page;
1844                         ring->ring_obj = NULL;
1845                         ring->use_doorbell = true;
1846
1847                         /* paging queue use same doorbell index/routing as gfx queue
1848                          * with 0x400 (4096 dwords) offset on second doorbell page
1849                          */
1850                         ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1851                         ring->doorbell_index += 0x400;
1852
1853                         if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5)
1854                                 ring->vm_hub = AMDGPU_MMHUB_1;
1855                         else
1856                                 ring->vm_hub = AMDGPU_MMHUB_0;
1857
1858                         sprintf(ring->name, "page%d", i);
1859                         r = amdgpu_ring_init(adev, ring, 1024,
1860                                              &adev->sdma.trap_irq,
1861                                              AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1862                                              AMDGPU_RING_PRIO_DEFAULT, NULL);
1863                         if (r)
1864                                 return r;
1865                 }
1866         }
1867
1868         if (amdgpu_sdma_ras_sw_init(adev)) {
1869                 dev_err(adev->dev, "Failed to initialize sdma ras block!\n");
1870                 return -EINVAL;
1871         }
1872
1873         return r;
1874 }
1875
1876 static int sdma_v4_0_sw_fini(void *handle)
1877 {
1878         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1879         int i;
1880
1881         for (i = 0; i < adev->sdma.num_instances; i++) {
1882                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1883                 if (adev->sdma.has_page_queue)
1884                         amdgpu_ring_fini(&adev->sdma.instance[i].page);
1885         }
1886
1887         if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) ||
1888             adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0))
1889                 amdgpu_sdma_destroy_inst_ctx(adev, true);
1890         else
1891                 amdgpu_sdma_destroy_inst_ctx(adev, false);
1892
1893         return 0;
1894 }
1895
1896 static int sdma_v4_0_hw_init(void *handle)
1897 {
1898         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1899
1900         if (adev->flags & AMD_IS_APU)
1901                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1902
1903         if (!amdgpu_sriov_vf(adev))
1904                 sdma_v4_0_init_golden_registers(adev);
1905
1906         return sdma_v4_0_start(adev);
1907 }
1908
1909 static int sdma_v4_0_hw_fini(void *handle)
1910 {
1911         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1912         int i;
1913
1914         if (amdgpu_sriov_vf(adev)) {
1915                 /* disable the scheduler for SDMA */
1916                 amdgpu_sdma_unset_buffer_funcs_helper(adev);
1917                 return 0;
1918         }
1919
1920         for (i = 0; i < adev->sdma.num_instances; i++) {
1921                 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1922                                AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1923         }
1924
1925         sdma_v4_0_ctx_switch_enable(adev, false);
1926         sdma_v4_0_enable(adev, false);
1927
1928         if (adev->flags & AMD_IS_APU)
1929                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1930
1931         return 0;
1932 }
1933
1934 static int sdma_v4_0_suspend(void *handle)
1935 {
1936         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1937
1938         /* SMU saves SDMA state for us */
1939         if (adev->in_s0ix) {
1940                 sdma_v4_0_gfx_enable(adev, false);
1941                 return 0;
1942         }
1943
1944         return sdma_v4_0_hw_fini(adev);
1945 }
1946
1947 static int sdma_v4_0_resume(void *handle)
1948 {
1949         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1950
1951         /* SMU restores SDMA state for us */
1952         if (adev->in_s0ix) {
1953                 sdma_v4_0_enable(adev, true);
1954                 sdma_v4_0_gfx_enable(adev, true);
1955                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1956                 return 0;
1957         }
1958
1959         return sdma_v4_0_hw_init(adev);
1960 }
1961
1962 static bool sdma_v4_0_is_idle(void *handle)
1963 {
1964         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1965         u32 i;
1966
1967         for (i = 0; i < adev->sdma.num_instances; i++) {
1968                 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1969
1970                 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1971                         return false;
1972         }
1973
1974         return true;
1975 }
1976
1977 static int sdma_v4_0_wait_for_idle(void *handle)
1978 {
1979         unsigned i, j;
1980         u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
1981         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1982
1983         for (i = 0; i < adev->usec_timeout; i++) {
1984                 for (j = 0; j < adev->sdma.num_instances; j++) {
1985                         sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
1986                         if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
1987                                 break;
1988                 }
1989                 if (j == adev->sdma.num_instances)
1990                         return 0;
1991                 udelay(1);
1992         }
1993         return -ETIMEDOUT;
1994 }
1995
1996 static int sdma_v4_0_soft_reset(void *handle)
1997 {
1998         /* todo */
1999
2000         return 0;
2001 }
2002
2003 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2004                                         struct amdgpu_irq_src *source,
2005                                         unsigned type,
2006                                         enum amdgpu_interrupt_state state)
2007 {
2008         u32 sdma_cntl;
2009
2010         sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2011         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2012                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2013         WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2014
2015         return 0;
2016 }
2017
2018 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2019                                       struct amdgpu_irq_src *source,
2020                                       struct amdgpu_iv_entry *entry)
2021 {
2022         uint32_t instance;
2023
2024         DRM_DEBUG("IH: SDMA trap\n");
2025         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2026         switch (entry->ring_id) {
2027         case 0:
2028                 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2029                 break;
2030         case 1:
2031                 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0))
2032                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2033                 break;
2034         case 2:
2035                 /* XXX compute */
2036                 break;
2037         case 3:
2038                 if (adev->ip_versions[SDMA0_HWIP][0] != IP_VERSION(4, 2, 0))
2039                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2040                 break;
2041         }
2042         return 0;
2043 }
2044
2045 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2046                 void *err_data,
2047                 struct amdgpu_iv_entry *entry)
2048 {
2049         int instance;
2050
2051         /* When “Full RAS” is enabled, the per-IP interrupt sources should
2052          * be disabled and the driver should only look for the aggregated
2053          * interrupt via sync flood
2054          */
2055         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2056                 goto out;
2057
2058         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2059         if (instance < 0)
2060                 goto out;
2061
2062         amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2063
2064 out:
2065         return AMDGPU_RAS_SUCCESS;
2066 }
2067
2068 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2069                                               struct amdgpu_irq_src *source,
2070                                               struct amdgpu_iv_entry *entry)
2071 {
2072         int instance;
2073
2074         DRM_ERROR("Illegal instruction in SDMA command stream\n");
2075
2076         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2077         if (instance < 0)
2078                 return 0;
2079
2080         switch (entry->ring_id) {
2081         case 0:
2082                 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2083                 break;
2084         }
2085         return 0;
2086 }
2087
2088 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2089                                         struct amdgpu_irq_src *source,
2090                                         unsigned type,
2091                                         enum amdgpu_interrupt_state state)
2092 {
2093         u32 sdma_edc_config;
2094
2095         sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2096         sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2097                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2098         WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2099
2100         return 0;
2101 }
2102
2103 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2104                                               struct amdgpu_iv_entry *entry)
2105 {
2106         int instance;
2107         struct amdgpu_task_info task_info;
2108         u64 addr;
2109
2110         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2111         if (instance < 0 || instance >= adev->sdma.num_instances) {
2112                 dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2113                 return -EINVAL;
2114         }
2115
2116         addr = (u64)entry->src_data[0] << 12;
2117         addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2118
2119         memset(&task_info, 0, sizeof(struct amdgpu_task_info));
2120         amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
2121
2122         dev_dbg_ratelimited(adev->dev,
2123                    "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
2124                    "pasid:%u, for process %s pid %d thread %s pid %d\n",
2125                    instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2126                    entry->pasid, task_info.process_name, task_info.tgid,
2127                    task_info.task_name, task_info.pid);
2128         return 0;
2129 }
2130
2131 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2132                                               struct amdgpu_irq_src *source,
2133                                               struct amdgpu_iv_entry *entry)
2134 {
2135         dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2136         sdma_v4_0_print_iv_entry(adev, entry);
2137         return 0;
2138 }
2139
2140 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2141                                               struct amdgpu_irq_src *source,
2142                                               struct amdgpu_iv_entry *entry)
2143 {
2144         dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2145         sdma_v4_0_print_iv_entry(adev, entry);
2146         return 0;
2147 }
2148
2149 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2150                                               struct amdgpu_irq_src *source,
2151                                               struct amdgpu_iv_entry *entry)
2152 {
2153         dev_dbg_ratelimited(adev->dev,
2154                 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2155         sdma_v4_0_print_iv_entry(adev, entry);
2156         return 0;
2157 }
2158
2159 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2160                                               struct amdgpu_irq_src *source,
2161                                               struct amdgpu_iv_entry *entry)
2162 {
2163         dev_dbg_ratelimited(adev->dev,
2164                 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2165         sdma_v4_0_print_iv_entry(adev, entry);
2166         return 0;
2167 }
2168
2169 static void sdma_v4_0_update_medium_grain_clock_gating(
2170                 struct amdgpu_device *adev,
2171                 bool enable)
2172 {
2173         uint32_t data, def;
2174         int i;
2175
2176         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2177                 for (i = 0; i < adev->sdma.num_instances; i++) {
2178                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2179                         data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2180                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2181                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2182                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2183                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2184                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2185                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2186                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2187                         if (def != data)
2188                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2189                 }
2190         } else {
2191                 for (i = 0; i < adev->sdma.num_instances; i++) {
2192                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2193                         data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2194                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2195                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2196                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2197                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2198                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2199                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2200                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2201                         if (def != data)
2202                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2203                 }
2204         }
2205 }
2206
2207
2208 static void sdma_v4_0_update_medium_grain_light_sleep(
2209                 struct amdgpu_device *adev,
2210                 bool enable)
2211 {
2212         uint32_t data, def;
2213         int i;
2214
2215         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2216                 for (i = 0; i < adev->sdma.num_instances; i++) {
2217                         /* 1-not override: enable sdma mem light sleep */
2218                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2219                         data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2220                         if (def != data)
2221                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2222                 }
2223         } else {
2224                 for (i = 0; i < adev->sdma.num_instances; i++) {
2225                 /* 0-override:disable sdma mem light sleep */
2226                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2227                         data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2228                         if (def != data)
2229                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2230                 }
2231         }
2232 }
2233
2234 static int sdma_v4_0_set_clockgating_state(void *handle,
2235                                           enum amd_clockgating_state state)
2236 {
2237         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2238
2239         if (amdgpu_sriov_vf(adev))
2240                 return 0;
2241
2242         sdma_v4_0_update_medium_grain_clock_gating(adev,
2243                         state == AMD_CG_STATE_GATE);
2244         sdma_v4_0_update_medium_grain_light_sleep(adev,
2245                         state == AMD_CG_STATE_GATE);
2246         return 0;
2247 }
2248
2249 static int sdma_v4_0_set_powergating_state(void *handle,
2250                                           enum amd_powergating_state state)
2251 {
2252         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2253
2254         switch (adev->ip_versions[SDMA0_HWIP][0]) {
2255         case IP_VERSION(4, 1, 0):
2256         case IP_VERSION(4, 1, 1):
2257         case IP_VERSION(4, 1, 2):
2258                 sdma_v4_1_update_power_gating(adev,
2259                                 state == AMD_PG_STATE_GATE);
2260                 break;
2261         default:
2262                 break;
2263         }
2264
2265         return 0;
2266 }
2267
2268 static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2269 {
2270         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2271         int data;
2272
2273         if (amdgpu_sriov_vf(adev))
2274                 *flags = 0;
2275
2276         /* AMD_CG_SUPPORT_SDMA_MGCG */
2277         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2278         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2279                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2280
2281         /* AMD_CG_SUPPORT_SDMA_LS */
2282         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2283         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2284                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2285 }
2286
2287 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2288         .name = "sdma_v4_0",
2289         .early_init = sdma_v4_0_early_init,
2290         .late_init = sdma_v4_0_late_init,
2291         .sw_init = sdma_v4_0_sw_init,
2292         .sw_fini = sdma_v4_0_sw_fini,
2293         .hw_init = sdma_v4_0_hw_init,
2294         .hw_fini = sdma_v4_0_hw_fini,
2295         .suspend = sdma_v4_0_suspend,
2296         .resume = sdma_v4_0_resume,
2297         .is_idle = sdma_v4_0_is_idle,
2298         .wait_for_idle = sdma_v4_0_wait_for_idle,
2299         .soft_reset = sdma_v4_0_soft_reset,
2300         .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2301         .set_powergating_state = sdma_v4_0_set_powergating_state,
2302         .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2303 };
2304
2305 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2306         .type = AMDGPU_RING_TYPE_SDMA,
2307         .align_mask = 0xf,
2308         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2309         .support_64bit_ptrs = true,
2310         .secure_submission_supported = true,
2311         .get_rptr = sdma_v4_0_ring_get_rptr,
2312         .get_wptr = sdma_v4_0_ring_get_wptr,
2313         .set_wptr = sdma_v4_0_ring_set_wptr,
2314         .emit_frame_size =
2315                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2316                 3 + /* hdp invalidate */
2317                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2318                 /* sdma_v4_0_ring_emit_vm_flush */
2319                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2320                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2321                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2322         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2323         .emit_ib = sdma_v4_0_ring_emit_ib,
2324         .emit_fence = sdma_v4_0_ring_emit_fence,
2325         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2326         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2327         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2328         .test_ring = sdma_v4_0_ring_test_ring,
2329         .test_ib = sdma_v4_0_ring_test_ib,
2330         .insert_nop = sdma_v4_0_ring_insert_nop,
2331         .pad_ib = sdma_v4_0_ring_pad_ib,
2332         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2333         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2334         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2335 };
2336
2337 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2338         .type = AMDGPU_RING_TYPE_SDMA,
2339         .align_mask = 0xf,
2340         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2341         .support_64bit_ptrs = true,
2342         .secure_submission_supported = true,
2343         .get_rptr = sdma_v4_0_ring_get_rptr,
2344         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2345         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2346         .emit_frame_size =
2347                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2348                 3 + /* hdp invalidate */
2349                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2350                 /* sdma_v4_0_ring_emit_vm_flush */
2351                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2352                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2353                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2354         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2355         .emit_ib = sdma_v4_0_ring_emit_ib,
2356         .emit_fence = sdma_v4_0_ring_emit_fence,
2357         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2358         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2359         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2360         .test_ring = sdma_v4_0_ring_test_ring,
2361         .test_ib = sdma_v4_0_ring_test_ib,
2362         .insert_nop = sdma_v4_0_ring_insert_nop,
2363         .pad_ib = sdma_v4_0_ring_pad_ib,
2364         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2365         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2366         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2367 };
2368
2369 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2370 {
2371         int i;
2372
2373         for (i = 0; i < adev->sdma.num_instances; i++) {
2374                 adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
2375                 adev->sdma.instance[i].ring.me = i;
2376                 if (adev->sdma.has_page_queue) {
2377                         adev->sdma.instance[i].page.funcs =
2378                                         &sdma_v4_0_page_ring_funcs;
2379                         adev->sdma.instance[i].page.me = i;
2380                 }
2381         }
2382 }
2383
2384 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2385         .set = sdma_v4_0_set_trap_irq_state,
2386         .process = sdma_v4_0_process_trap_irq,
2387 };
2388
2389 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2390         .process = sdma_v4_0_process_illegal_inst_irq,
2391 };
2392
2393 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2394         .set = sdma_v4_0_set_ecc_irq_state,
2395         .process = amdgpu_sdma_process_ecc_irq,
2396 };
2397
2398 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2399         .process = sdma_v4_0_process_vm_hole_irq,
2400 };
2401
2402 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2403         .process = sdma_v4_0_process_doorbell_invalid_irq,
2404 };
2405
2406 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2407         .process = sdma_v4_0_process_pool_timeout_irq,
2408 };
2409
2410 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2411         .process = sdma_v4_0_process_srbm_write_irq,
2412 };
2413
2414 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2415 {
2416         adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2417         adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2418         /*For Arcturus and Aldebaran, add another 4 irq handler*/
2419         switch (adev->sdma.num_instances) {
2420         case 5:
2421         case 8:
2422                 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2423                 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2424                 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2425                 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2426                 break;
2427         default:
2428                 break;
2429         }
2430         adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2431         adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2432         adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2433         adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2434         adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2435         adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2436         adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2437 }
2438
2439 /**
2440  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2441  *
2442  * @ib: indirect buffer to copy to
2443  * @src_offset: src GPU address
2444  * @dst_offset: dst GPU address
2445  * @byte_count: number of bytes to xfer
2446  * @tmz: if a secure copy should be used
2447  *
2448  * Copy GPU buffers using the DMA engine (VEGA10/12).
2449  * Used by the amdgpu ttm implementation to move pages if
2450  * registered as the asic copy callback.
2451  */
2452 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2453                                        uint64_t src_offset,
2454                                        uint64_t dst_offset,
2455                                        uint32_t byte_count,
2456                                        bool tmz)
2457 {
2458         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2459                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2460                 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2461         ib->ptr[ib->length_dw++] = byte_count - 1;
2462         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2463         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2464         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2465         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2466         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2467 }
2468
2469 /**
2470  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2471  *
2472  * @ib: indirect buffer to copy to
2473  * @src_data: value to write to buffer
2474  * @dst_offset: dst GPU address
2475  * @byte_count: number of bytes to xfer
2476  *
2477  * Fill GPU buffers using the DMA engine (VEGA10/12).
2478  */
2479 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2480                                        uint32_t src_data,
2481                                        uint64_t dst_offset,
2482                                        uint32_t byte_count)
2483 {
2484         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2485         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2486         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2487         ib->ptr[ib->length_dw++] = src_data;
2488         ib->ptr[ib->length_dw++] = byte_count - 1;
2489 }
2490
2491 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2492         .copy_max_bytes = 0x400000,
2493         .copy_num_dw = 7,
2494         .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2495
2496         .fill_max_bytes = 0x400000,
2497         .fill_num_dw = 5,
2498         .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2499 };
2500
2501 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2502 {
2503         adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2504         if (adev->sdma.has_page_queue)
2505                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2506         else
2507                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2508 }
2509
2510 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2511         .copy_pte_num_dw = 7,
2512         .copy_pte = sdma_v4_0_vm_copy_pte,
2513
2514         .write_pte = sdma_v4_0_vm_write_pte,
2515         .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2516 };
2517
2518 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2519 {
2520         struct drm_gpu_scheduler *sched;
2521         unsigned i;
2522
2523         adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2524         for (i = 0; i < adev->sdma.num_instances; i++) {
2525                 if (adev->sdma.has_page_queue)
2526                         sched = &adev->sdma.instance[i].page.sched;
2527                 else
2528                         sched = &adev->sdma.instance[i].ring.sched;
2529                 adev->vm_manager.vm_pte_scheds[i] = sched;
2530         }
2531         adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2532 }
2533
2534 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2535                                         uint32_t instance,
2536                                         uint32_t *sec_count)
2537 {
2538         uint32_t i;
2539         uint32_t sec_cnt;
2540
2541         /* double bits error (multiple bits) error detection is not supported */
2542         for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2543                 /* the SDMA_EDC_COUNTER register in each sdma instance
2544                  * shares the same sed shift_mask
2545                  * */
2546                 sec_cnt = (value &
2547                         sdma_v4_0_ras_fields[i].sec_count_mask) >>
2548                         sdma_v4_0_ras_fields[i].sec_count_shift;
2549                 if (sec_cnt) {
2550                         DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2551                                 sdma_v4_0_ras_fields[i].name,
2552                                 instance, sec_cnt);
2553                         *sec_count += sec_cnt;
2554                 }
2555         }
2556 }
2557
2558 static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2559                         uint32_t instance, void *ras_error_status)
2560 {
2561         struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2562         uint32_t sec_count = 0;
2563         uint32_t reg_value = 0;
2564
2565         reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2566         /* double bit error is not supported */
2567         if (reg_value)
2568                 sdma_v4_0_get_ras_error_count(reg_value,
2569                                 instance, &sec_count);
2570         /* err_data->ce_count should be initialized to 0
2571          * before calling into this function */
2572         err_data->ce_count += sec_count;
2573         /* double bit error is not supported
2574          * set ue count to 0 */
2575         err_data->ue_count = 0;
2576
2577         return 0;
2578 };
2579
2580 static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,  void *ras_error_status)
2581 {
2582         int i = 0;
2583
2584         for (i = 0; i < adev->sdma.num_instances; i++) {
2585                 if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) {
2586                         dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2587                         return;
2588                 }
2589         }
2590 }
2591
2592 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2593 {
2594         int i;
2595
2596         /* read back edc counter registers to clear the counters */
2597         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2598                 for (i = 0; i < adev->sdma.num_instances; i++)
2599                         RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2600         }
2601 }
2602
2603 const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2604         .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2605         .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2606 };
2607
2608 static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2609         .ras_block = {
2610                 .hw_ops = &sdma_v4_0_ras_hw_ops,
2611                 .ras_cb = sdma_v4_0_process_ras_data_cb,
2612         },
2613 };
2614
2615 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2616 {
2617         switch (adev->ip_versions[SDMA0_HWIP][0]) {
2618         case IP_VERSION(4, 2, 0):
2619         case IP_VERSION(4, 2, 2):
2620                 adev->sdma.ras = &sdma_v4_0_ras;
2621                 break;
2622         case IP_VERSION(4, 4, 0):
2623                 adev->sdma.ras = &sdma_v4_4_ras;
2624                 break;
2625         default:
2626                 break;
2627         }
2628
2629 }
2630
2631 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2632         .type = AMD_IP_BLOCK_TYPE_SDMA,
2633         .major = 4,
2634         .minor = 0,
2635         .rev = 0,
2636         .funcs = &sdma_v4_0_ip_funcs,
2637 };
This page took 0.189527 seconds and 4 git commands to generate.