2 * linux/fs/ext4/super.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Big-endian to little-endian byte-swapping/bitmaps by
19 #include <linux/module.h>
20 #include <linux/string.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 unsigned int journal_inum);
89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90 * i_mmap_rwsem (inode->i_mmap_rwsem)!
93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94 * page lock -> i_data_sem (rw)
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_sem
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * i_mmap_rwsem (w) -> page lock
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105 * transaction start -> i_data_sem (rw)
108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110 * transaction start -> i_data_sem (rw)
113 * transaction start -> page lock(s) -> i_data_sem (rw)
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #define IS_EXT2_SB(sb) (0)
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
146 if (!ext4_has_feature_metadata_csum(sb))
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
161 return cpu_to_le32(csum);
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
167 if (!ext4_has_metadata_csum(sb))
170 return es->s_checksum == ext4_superblock_csum(sb, es);
173 void ext4_superblock_csum_set(struct super_block *sb)
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
177 if (!ext4_has_metadata_csum(sb))
180 es->s_checksum = ext4_superblock_csum(sb, es);
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
187 ret = kmalloc(size, flags | __GFP_NOWARN);
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
197 ret = kzalloc(size, flags | __GFP_NOWARN);
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
316 static void __save_error_info(struct super_block *sb, const char *func,
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
337 * Start the daily error reporting function if it hasn't been
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
345 static void save_error_info(struct super_block *sb, const char *func,
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
360 static int block_device_ejected(struct super_block *sb)
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
365 return bdi->dev == NULL;
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
375 BUG_ON(txn->t_state == T_FINISHED);
376 spin_lock(&sbi->s_md_lock);
377 while (!list_empty(&txn->t_private_list)) {
378 jce = list_entry(txn->t_private_list.next,
379 struct ext4_journal_cb_entry, jce_list);
380 list_del_init(&jce->jce_list);
381 spin_unlock(&sbi->s_md_lock);
382 jce->jce_func(sb, jce, error);
383 spin_lock(&sbi->s_md_lock);
385 spin_unlock(&sbi->s_md_lock);
388 /* Deal with the reporting of failure conditions on a filesystem such as
389 * inconsistencies detected or read IO failures.
391 * On ext2, we can store the error state of the filesystem in the
392 * superblock. That is not possible on ext4, because we may have other
393 * write ordering constraints on the superblock which prevent us from
394 * writing it out straight away; and given that the journal is about to
395 * be aborted, we can't rely on the current, or future, transactions to
396 * write out the superblock safely.
398 * We'll just use the jbd2_journal_abort() error code to record an error in
399 * the journal instead. On recovery, the journal will complain about
400 * that error until we've noted it down and cleared it.
403 static void ext4_handle_error(struct super_block *sb)
405 if (sb->s_flags & MS_RDONLY)
408 if (!test_opt(sb, ERRORS_CONT)) {
409 journal_t *journal = EXT4_SB(sb)->s_journal;
411 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
413 jbd2_journal_abort(journal, -EIO);
415 if (test_opt(sb, ERRORS_RO)) {
416 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
418 * Make sure updated value of ->s_mount_flags will be visible
419 * before ->s_flags update
422 sb->s_flags |= MS_RDONLY;
424 if (test_opt(sb, ERRORS_PANIC)) {
425 if (EXT4_SB(sb)->s_journal &&
426 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
428 panic("EXT4-fs (device %s): panic forced after error\n",
433 #define ext4_error_ratelimit(sb) \
434 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
437 void __ext4_error(struct super_block *sb, const char *function,
438 unsigned int line, const char *fmt, ...)
440 struct va_format vaf;
443 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
446 if (ext4_error_ratelimit(sb)) {
451 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
452 sb->s_id, function, line, current->comm, &vaf);
455 save_error_info(sb, function, line);
456 ext4_handle_error(sb);
459 void __ext4_error_inode(struct inode *inode, const char *function,
460 unsigned int line, ext4_fsblk_t block,
461 const char *fmt, ...)
464 struct va_format vaf;
465 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
467 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
470 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
471 es->s_last_error_block = cpu_to_le64(block);
472 if (ext4_error_ratelimit(inode->i_sb)) {
477 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
478 "inode #%lu: block %llu: comm %s: %pV\n",
479 inode->i_sb->s_id, function, line, inode->i_ino,
480 block, current->comm, &vaf);
482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
483 "inode #%lu: comm %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 current->comm, &vaf);
488 save_error_info(inode->i_sb, function, line);
489 ext4_handle_error(inode->i_sb);
492 void __ext4_error_file(struct file *file, const char *function,
493 unsigned int line, ext4_fsblk_t block,
494 const char *fmt, ...)
497 struct va_format vaf;
498 struct ext4_super_block *es;
499 struct inode *inode = file_inode(file);
500 char pathname[80], *path;
502 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
505 es = EXT4_SB(inode->i_sb)->s_es;
506 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
507 if (ext4_error_ratelimit(inode->i_sb)) {
508 path = file_path(file, pathname, sizeof(pathname));
516 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
517 "block %llu: comm %s: path %s: %pV\n",
518 inode->i_sb->s_id, function, line, inode->i_ino,
519 block, current->comm, path, &vaf);
522 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
523 "comm %s: path %s: %pV\n",
524 inode->i_sb->s_id, function, line, inode->i_ino,
525 current->comm, path, &vaf);
528 save_error_info(inode->i_sb, function, line);
529 ext4_handle_error(inode->i_sb);
532 const char *ext4_decode_error(struct super_block *sb, int errno,
539 errstr = "Corrupt filesystem";
542 errstr = "Filesystem failed CRC";
545 errstr = "IO failure";
548 errstr = "Out of memory";
551 if (!sb || (EXT4_SB(sb)->s_journal &&
552 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
553 errstr = "Journal has aborted";
555 errstr = "Readonly filesystem";
558 /* If the caller passed in an extra buffer for unknown
559 * errors, textualise them now. Else we just return
562 /* Check for truncated error codes... */
563 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
572 /* __ext4_std_error decodes expected errors from journaling functions
573 * automatically and invokes the appropriate error response. */
575 void __ext4_std_error(struct super_block *sb, const char *function,
576 unsigned int line, int errno)
581 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
584 /* Special case: if the error is EROFS, and we're not already
585 * inside a transaction, then there's really no point in logging
587 if (errno == -EROFS && journal_current_handle() == NULL &&
588 (sb->s_flags & MS_RDONLY))
591 if (ext4_error_ratelimit(sb)) {
592 errstr = ext4_decode_error(sb, errno, nbuf);
593 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
594 sb->s_id, function, line, errstr);
597 save_error_info(sb, function, line);
598 ext4_handle_error(sb);
602 * ext4_abort is a much stronger failure handler than ext4_error. The
603 * abort function may be used to deal with unrecoverable failures such
604 * as journal IO errors or ENOMEM at a critical moment in log management.
606 * We unconditionally force the filesystem into an ABORT|READONLY state,
607 * unless the error response on the fs has been set to panic in which
608 * case we take the easy way out and panic immediately.
611 void __ext4_abort(struct super_block *sb, const char *function,
612 unsigned int line, const char *fmt, ...)
614 struct va_format vaf;
617 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
620 save_error_info(sb, function, line);
624 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
625 sb->s_id, function, line, &vaf);
628 if ((sb->s_flags & MS_RDONLY) == 0) {
629 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
630 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
632 * Make sure updated value of ->s_mount_flags will be visible
633 * before ->s_flags update
636 sb->s_flags |= MS_RDONLY;
637 if (EXT4_SB(sb)->s_journal)
638 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
639 save_error_info(sb, function, line);
641 if (test_opt(sb, ERRORS_PANIC)) {
642 if (EXT4_SB(sb)->s_journal &&
643 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
645 panic("EXT4-fs panic from previous error\n");
649 void __ext4_msg(struct super_block *sb,
650 const char *prefix, const char *fmt, ...)
652 struct va_format vaf;
655 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
661 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
665 #define ext4_warning_ratelimit(sb) \
666 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
669 void __ext4_warning(struct super_block *sb, const char *function,
670 unsigned int line, const char *fmt, ...)
672 struct va_format vaf;
675 if (!ext4_warning_ratelimit(sb))
681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
682 sb->s_id, function, line, &vaf);
686 void __ext4_warning_inode(const struct inode *inode, const char *function,
687 unsigned int line, const char *fmt, ...)
689 struct va_format vaf;
692 if (!ext4_warning_ratelimit(inode->i_sb))
698 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
699 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
700 function, line, inode->i_ino, current->comm, &vaf);
704 void __ext4_grp_locked_error(const char *function, unsigned int line,
705 struct super_block *sb, ext4_group_t grp,
706 unsigned long ino, ext4_fsblk_t block,
707 const char *fmt, ...)
711 struct va_format vaf;
713 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
715 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
718 es->s_last_error_ino = cpu_to_le32(ino);
719 es->s_last_error_block = cpu_to_le64(block);
720 __save_error_info(sb, function, line);
722 if (ext4_error_ratelimit(sb)) {
726 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
727 sb->s_id, function, line, grp);
729 printk(KERN_CONT "inode %lu: ", ino);
731 printk(KERN_CONT "block %llu:",
732 (unsigned long long) block);
733 printk(KERN_CONT "%pV\n", &vaf);
737 if (test_opt(sb, ERRORS_CONT)) {
738 ext4_commit_super(sb, 0);
742 ext4_unlock_group(sb, grp);
743 ext4_handle_error(sb);
745 * We only get here in the ERRORS_RO case; relocking the group
746 * may be dangerous, but nothing bad will happen since the
747 * filesystem will have already been marked read/only and the
748 * journal has been aborted. We return 1 as a hint to callers
749 * who might what to use the return value from
750 * ext4_grp_locked_error() to distinguish between the
751 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
752 * aggressively from the ext4 function in question, with a
753 * more appropriate error code.
755 ext4_lock_group(sb, grp);
759 void ext4_update_dynamic_rev(struct super_block *sb)
761 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
763 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
767 "updating to rev %d because of new feature flag, "
768 "running e2fsck is recommended",
771 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
772 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
773 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
774 /* leave es->s_feature_*compat flags alone */
775 /* es->s_uuid will be set by e2fsck if empty */
778 * The rest of the superblock fields should be zero, and if not it
779 * means they are likely already in use, so leave them alone. We
780 * can leave it up to e2fsck to clean up any inconsistencies there.
785 * Open the external journal device
787 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
789 struct block_device *bdev;
790 char b[BDEVNAME_SIZE];
792 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
798 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
799 __bdevname(dev, b), PTR_ERR(bdev));
804 * Release the journal device
806 static void ext4_blkdev_put(struct block_device *bdev)
808 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
811 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
813 struct block_device *bdev;
814 bdev = sbi->journal_bdev;
816 ext4_blkdev_put(bdev);
817 sbi->journal_bdev = NULL;
821 static inline struct inode *orphan_list_entry(struct list_head *l)
823 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
826 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
830 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
831 le32_to_cpu(sbi->s_es->s_last_orphan));
833 printk(KERN_ERR "sb_info orphan list:\n");
834 list_for_each(l, &sbi->s_orphan) {
835 struct inode *inode = orphan_list_entry(l);
837 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
838 inode->i_sb->s_id, inode->i_ino, inode,
839 inode->i_mode, inode->i_nlink,
845 static int ext4_quota_off(struct super_block *sb, int type);
847 static inline void ext4_quota_off_umount(struct super_block *sb)
851 if (ext4_has_feature_quota(sb)) {
852 dquot_disable(sb, -1,
853 DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
855 /* Use our quota_off function to clear inode flags etc. */
856 for (type = 0; type < EXT4_MAXQUOTAS; type++)
857 ext4_quota_off(sb, type);
861 static inline void ext4_quota_off_umount(struct super_block *sb)
866 static void ext4_put_super(struct super_block *sb)
868 struct ext4_sb_info *sbi = EXT4_SB(sb);
869 struct ext4_super_block *es = sbi->s_es;
873 ext4_unregister_li_request(sb);
874 ext4_quota_off_umount(sb);
876 flush_workqueue(sbi->rsv_conversion_wq);
877 destroy_workqueue(sbi->rsv_conversion_wq);
879 if (sbi->s_journal) {
880 aborted = is_journal_aborted(sbi->s_journal);
881 err = jbd2_journal_destroy(sbi->s_journal);
882 sbi->s_journal = NULL;
883 if ((err < 0) && !aborted)
884 ext4_abort(sb, "Couldn't clean up the journal");
887 ext4_unregister_sysfs(sb);
888 ext4_es_unregister_shrinker(sbi);
889 del_timer_sync(&sbi->s_err_report);
890 ext4_release_system_zone(sb);
892 ext4_ext_release(sb);
894 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
895 ext4_clear_feature_journal_needs_recovery(sb);
896 es->s_state = cpu_to_le16(sbi->s_mount_state);
898 if (!(sb->s_flags & MS_RDONLY))
899 ext4_commit_super(sb, 1);
901 for (i = 0; i < sbi->s_gdb_count; i++)
902 brelse(sbi->s_group_desc[i]);
903 kvfree(sbi->s_group_desc);
904 kvfree(sbi->s_flex_groups);
905 percpu_counter_destroy(&sbi->s_freeclusters_counter);
906 percpu_counter_destroy(&sbi->s_freeinodes_counter);
907 percpu_counter_destroy(&sbi->s_dirs_counter);
908 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
909 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
911 for (i = 0; i < EXT4_MAXQUOTAS; i++)
912 kfree(sbi->s_qf_names[i]);
915 /* Debugging code just in case the in-memory inode orphan list
916 * isn't empty. The on-disk one can be non-empty if we've
917 * detected an error and taken the fs readonly, but the
918 * in-memory list had better be clean by this point. */
919 if (!list_empty(&sbi->s_orphan))
920 dump_orphan_list(sb, sbi);
921 J_ASSERT(list_empty(&sbi->s_orphan));
923 sync_blockdev(sb->s_bdev);
924 invalidate_bdev(sb->s_bdev);
925 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
927 * Invalidate the journal device's buffers. We don't want them
928 * floating about in memory - the physical journal device may
929 * hotswapped, and it breaks the `ro-after' testing code.
931 sync_blockdev(sbi->journal_bdev);
932 invalidate_bdev(sbi->journal_bdev);
933 ext4_blkdev_remove(sbi);
935 if (sbi->s_mb_cache) {
936 ext4_xattr_destroy_cache(sbi->s_mb_cache);
937 sbi->s_mb_cache = NULL;
940 kthread_stop(sbi->s_mmp_tsk);
942 sb->s_fs_info = NULL;
944 * Now that we are completely done shutting down the
945 * superblock, we need to actually destroy the kobject.
947 kobject_put(&sbi->s_kobj);
948 wait_for_completion(&sbi->s_kobj_unregister);
949 if (sbi->s_chksum_driver)
950 crypto_free_shash(sbi->s_chksum_driver);
951 kfree(sbi->s_blockgroup_lock);
955 static struct kmem_cache *ext4_inode_cachep;
958 * Called inside transaction, so use GFP_NOFS
960 static struct inode *ext4_alloc_inode(struct super_block *sb)
962 struct ext4_inode_info *ei;
964 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
968 ei->vfs_inode.i_version = 1;
969 spin_lock_init(&ei->i_raw_lock);
970 INIT_LIST_HEAD(&ei->i_prealloc_list);
971 spin_lock_init(&ei->i_prealloc_lock);
972 ext4_es_init_tree(&ei->i_es_tree);
973 rwlock_init(&ei->i_es_lock);
974 INIT_LIST_HEAD(&ei->i_es_list);
977 ei->i_es_shrink_lblk = 0;
978 ei->i_reserved_data_blocks = 0;
979 ei->i_reserved_meta_blocks = 0;
980 ei->i_allocated_meta_blocks = 0;
981 ei->i_da_metadata_calc_len = 0;
982 ei->i_da_metadata_calc_last_lblock = 0;
983 spin_lock_init(&(ei->i_block_reservation_lock));
985 ei->i_reserved_quota = 0;
986 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
989 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
990 spin_lock_init(&ei->i_completed_io_lock);
992 ei->i_datasync_tid = 0;
993 atomic_set(&ei->i_unwritten, 0);
994 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
995 return &ei->vfs_inode;
998 static int ext4_drop_inode(struct inode *inode)
1000 int drop = generic_drop_inode(inode);
1002 trace_ext4_drop_inode(inode, drop);
1006 static void ext4_i_callback(struct rcu_head *head)
1008 struct inode *inode = container_of(head, struct inode, i_rcu);
1009 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1012 static void ext4_destroy_inode(struct inode *inode)
1014 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1015 ext4_msg(inode->i_sb, KERN_ERR,
1016 "Inode %lu (%p): orphan list check failed!",
1017 inode->i_ino, EXT4_I(inode));
1018 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1019 EXT4_I(inode), sizeof(struct ext4_inode_info),
1023 call_rcu(&inode->i_rcu, ext4_i_callback);
1026 static void init_once(void *foo)
1028 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1030 INIT_LIST_HEAD(&ei->i_orphan);
1031 init_rwsem(&ei->xattr_sem);
1032 init_rwsem(&ei->i_data_sem);
1033 init_rwsem(&ei->i_mmap_sem);
1034 inode_init_once(&ei->vfs_inode);
1037 static int __init init_inodecache(void)
1039 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1040 sizeof(struct ext4_inode_info),
1041 0, (SLAB_RECLAIM_ACCOUNT|
1042 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1044 if (ext4_inode_cachep == NULL)
1049 static void destroy_inodecache(void)
1052 * Make sure all delayed rcu free inodes are flushed before we
1056 kmem_cache_destroy(ext4_inode_cachep);
1059 void ext4_clear_inode(struct inode *inode)
1061 invalidate_inode_buffers(inode);
1064 ext4_discard_preallocations(inode);
1065 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1066 if (EXT4_I(inode)->jinode) {
1067 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1068 EXT4_I(inode)->jinode);
1069 jbd2_free_inode(EXT4_I(inode)->jinode);
1070 EXT4_I(inode)->jinode = NULL;
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073 fscrypt_put_encryption_info(inode, NULL);
1077 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1078 u64 ino, u32 generation)
1080 struct inode *inode;
1082 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1083 return ERR_PTR(-ESTALE);
1084 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1085 return ERR_PTR(-ESTALE);
1087 /* iget isn't really right if the inode is currently unallocated!!
1089 * ext4_read_inode will return a bad_inode if the inode had been
1090 * deleted, so we should be safe.
1092 * Currently we don't know the generation for parent directory, so
1093 * a generation of 0 means "accept any"
1095 inode = ext4_iget_normal(sb, ino);
1097 return ERR_CAST(inode);
1098 if (generation && inode->i_generation != generation) {
1100 return ERR_PTR(-ESTALE);
1106 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1107 int fh_len, int fh_type)
1109 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1110 ext4_nfs_get_inode);
1113 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1114 int fh_len, int fh_type)
1116 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1117 ext4_nfs_get_inode);
1121 * Try to release metadata pages (indirect blocks, directories) which are
1122 * mapped via the block device. Since these pages could have journal heads
1123 * which would prevent try_to_free_buffers() from freeing them, we must use
1124 * jbd2 layer's try_to_free_buffers() function to release them.
1126 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1129 journal_t *journal = EXT4_SB(sb)->s_journal;
1131 WARN_ON(PageChecked(page));
1132 if (!page_has_buffers(page))
1135 return jbd2_journal_try_to_free_buffers(journal, page,
1136 wait & ~__GFP_DIRECT_RECLAIM);
1137 return try_to_free_buffers(page);
1140 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1141 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1143 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1144 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1147 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1150 handle_t *handle = fs_data;
1151 int res, res2, retries = 0;
1153 res = ext4_convert_inline_data(inode);
1158 * If a journal handle was specified, then the encryption context is
1159 * being set on a new inode via inheritance and is part of a larger
1160 * transaction to create the inode. Otherwise the encryption context is
1161 * being set on an existing inode in its own transaction. Only in the
1162 * latter case should the "retry on ENOSPC" logic be used.
1166 res = ext4_xattr_set_handle(handle, inode,
1167 EXT4_XATTR_INDEX_ENCRYPTION,
1168 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1171 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1172 ext4_clear_inode_state(inode,
1173 EXT4_STATE_MAY_INLINE_DATA);
1175 * Update inode->i_flags - e.g. S_DAX may get disabled
1177 ext4_set_inode_flags(inode);
1183 handle = ext4_journal_start(inode, EXT4_HT_MISC,
1184 ext4_jbd2_credits_xattr(inode));
1186 return PTR_ERR(handle);
1188 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1189 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1192 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1193 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1194 ext4_set_inode_flags(inode);
1195 res = ext4_mark_inode_dirty(handle, inode);
1197 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1199 res2 = ext4_journal_stop(handle);
1201 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1208 static int ext4_dummy_context(struct inode *inode)
1210 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1213 static unsigned ext4_max_namelen(struct inode *inode)
1215 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1219 static const struct fscrypt_operations ext4_cryptops = {
1220 .key_prefix = "ext4:",
1221 .get_context = ext4_get_context,
1222 .set_context = ext4_set_context,
1223 .dummy_context = ext4_dummy_context,
1224 .is_encrypted = ext4_encrypted_inode,
1225 .empty_dir = ext4_empty_dir,
1226 .max_namelen = ext4_max_namelen,
1229 static const struct fscrypt_operations ext4_cryptops = {
1230 .is_encrypted = ext4_encrypted_inode,
1235 static const char * const quotatypes[] = INITQFNAMES;
1236 #define QTYPE2NAME(t) (quotatypes[t])
1238 static int ext4_write_dquot(struct dquot *dquot);
1239 static int ext4_acquire_dquot(struct dquot *dquot);
1240 static int ext4_release_dquot(struct dquot *dquot);
1241 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1242 static int ext4_write_info(struct super_block *sb, int type);
1243 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1244 const struct path *path);
1245 static int ext4_quota_on_mount(struct super_block *sb, int type);
1246 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1247 size_t len, loff_t off);
1248 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1249 const char *data, size_t len, loff_t off);
1250 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1251 unsigned int flags);
1252 static int ext4_enable_quotas(struct super_block *sb);
1253 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1255 static struct dquot **ext4_get_dquots(struct inode *inode)
1257 return EXT4_I(inode)->i_dquot;
1260 static const struct dquot_operations ext4_quota_operations = {
1261 .get_reserved_space = ext4_get_reserved_space,
1262 .write_dquot = ext4_write_dquot,
1263 .acquire_dquot = ext4_acquire_dquot,
1264 .release_dquot = ext4_release_dquot,
1265 .mark_dirty = ext4_mark_dquot_dirty,
1266 .write_info = ext4_write_info,
1267 .alloc_dquot = dquot_alloc,
1268 .destroy_dquot = dquot_destroy,
1269 .get_projid = ext4_get_projid,
1270 .get_next_id = ext4_get_next_id,
1273 static const struct quotactl_ops ext4_qctl_operations = {
1274 .quota_on = ext4_quota_on,
1275 .quota_off = ext4_quota_off,
1276 .quota_sync = dquot_quota_sync,
1277 .get_state = dquot_get_state,
1278 .set_info = dquot_set_dqinfo,
1279 .get_dqblk = dquot_get_dqblk,
1280 .set_dqblk = dquot_set_dqblk,
1281 .get_nextdqblk = dquot_get_next_dqblk,
1285 static const struct super_operations ext4_sops = {
1286 .alloc_inode = ext4_alloc_inode,
1287 .destroy_inode = ext4_destroy_inode,
1288 .write_inode = ext4_write_inode,
1289 .dirty_inode = ext4_dirty_inode,
1290 .drop_inode = ext4_drop_inode,
1291 .evict_inode = ext4_evict_inode,
1292 .put_super = ext4_put_super,
1293 .sync_fs = ext4_sync_fs,
1294 .freeze_fs = ext4_freeze,
1295 .unfreeze_fs = ext4_unfreeze,
1296 .statfs = ext4_statfs,
1297 .remount_fs = ext4_remount,
1298 .show_options = ext4_show_options,
1300 .quota_read = ext4_quota_read,
1301 .quota_write = ext4_quota_write,
1302 .get_dquots = ext4_get_dquots,
1304 .bdev_try_to_free_page = bdev_try_to_free_page,
1307 static const struct export_operations ext4_export_ops = {
1308 .fh_to_dentry = ext4_fh_to_dentry,
1309 .fh_to_parent = ext4_fh_to_parent,
1310 .get_parent = ext4_get_parent,
1314 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1315 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1316 Opt_nouid32, Opt_debug, Opt_removed,
1317 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1318 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1319 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1320 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1321 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1322 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1323 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1324 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1325 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1326 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1327 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1328 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1329 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1330 Opt_inode_readahead_blks, Opt_journal_ioprio,
1331 Opt_dioread_nolock, Opt_dioread_lock,
1332 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1333 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1336 static const match_table_t tokens = {
1337 {Opt_bsd_df, "bsddf"},
1338 {Opt_minix_df, "minixdf"},
1339 {Opt_grpid, "grpid"},
1340 {Opt_grpid, "bsdgroups"},
1341 {Opt_nogrpid, "nogrpid"},
1342 {Opt_nogrpid, "sysvgroups"},
1343 {Opt_resgid, "resgid=%u"},
1344 {Opt_resuid, "resuid=%u"},
1346 {Opt_err_cont, "errors=continue"},
1347 {Opt_err_panic, "errors=panic"},
1348 {Opt_err_ro, "errors=remount-ro"},
1349 {Opt_nouid32, "nouid32"},
1350 {Opt_debug, "debug"},
1351 {Opt_removed, "oldalloc"},
1352 {Opt_removed, "orlov"},
1353 {Opt_user_xattr, "user_xattr"},
1354 {Opt_nouser_xattr, "nouser_xattr"},
1356 {Opt_noacl, "noacl"},
1357 {Opt_noload, "norecovery"},
1358 {Opt_noload, "noload"},
1359 {Opt_removed, "nobh"},
1360 {Opt_removed, "bh"},
1361 {Opt_commit, "commit=%u"},
1362 {Opt_min_batch_time, "min_batch_time=%u"},
1363 {Opt_max_batch_time, "max_batch_time=%u"},
1364 {Opt_journal_dev, "journal_dev=%u"},
1365 {Opt_journal_path, "journal_path=%s"},
1366 {Opt_journal_checksum, "journal_checksum"},
1367 {Opt_nojournal_checksum, "nojournal_checksum"},
1368 {Opt_journal_async_commit, "journal_async_commit"},
1369 {Opt_abort, "abort"},
1370 {Opt_data_journal, "data=journal"},
1371 {Opt_data_ordered, "data=ordered"},
1372 {Opt_data_writeback, "data=writeback"},
1373 {Opt_data_err_abort, "data_err=abort"},
1374 {Opt_data_err_ignore, "data_err=ignore"},
1375 {Opt_offusrjquota, "usrjquota="},
1376 {Opt_usrjquota, "usrjquota=%s"},
1377 {Opt_offgrpjquota, "grpjquota="},
1378 {Opt_grpjquota, "grpjquota=%s"},
1379 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1380 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1381 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1382 {Opt_grpquota, "grpquota"},
1383 {Opt_noquota, "noquota"},
1384 {Opt_quota, "quota"},
1385 {Opt_usrquota, "usrquota"},
1386 {Opt_prjquota, "prjquota"},
1387 {Opt_barrier, "barrier=%u"},
1388 {Opt_barrier, "barrier"},
1389 {Opt_nobarrier, "nobarrier"},
1390 {Opt_i_version, "i_version"},
1392 {Opt_stripe, "stripe=%u"},
1393 {Opt_delalloc, "delalloc"},
1394 {Opt_lazytime, "lazytime"},
1395 {Opt_nolazytime, "nolazytime"},
1396 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1397 {Opt_nodelalloc, "nodelalloc"},
1398 {Opt_removed, "mblk_io_submit"},
1399 {Opt_removed, "nomblk_io_submit"},
1400 {Opt_block_validity, "block_validity"},
1401 {Opt_noblock_validity, "noblock_validity"},
1402 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1403 {Opt_journal_ioprio, "journal_ioprio=%u"},
1404 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1405 {Opt_auto_da_alloc, "auto_da_alloc"},
1406 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1407 {Opt_dioread_nolock, "dioread_nolock"},
1408 {Opt_dioread_lock, "dioread_lock"},
1409 {Opt_discard, "discard"},
1410 {Opt_nodiscard, "nodiscard"},
1411 {Opt_init_itable, "init_itable=%u"},
1412 {Opt_init_itable, "init_itable"},
1413 {Opt_noinit_itable, "noinit_itable"},
1414 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1415 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1416 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1417 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1418 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1419 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1420 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1424 static ext4_fsblk_t get_sb_block(void **data)
1426 ext4_fsblk_t sb_block;
1427 char *options = (char *) *data;
1429 if (!options || strncmp(options, "sb=", 3) != 0)
1430 return 1; /* Default location */
1433 /* TODO: use simple_strtoll with >32bit ext4 */
1434 sb_block = simple_strtoul(options, &options, 0);
1435 if (*options && *options != ',') {
1436 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1440 if (*options == ',')
1442 *data = (void *) options;
1447 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1448 static const char deprecated_msg[] =
1449 "Mount option \"%s\" will be removed by %s\n"
1453 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1455 struct ext4_sb_info *sbi = EXT4_SB(sb);
1459 if (sb_any_quota_loaded(sb) &&
1460 !sbi->s_qf_names[qtype]) {
1461 ext4_msg(sb, KERN_ERR,
1462 "Cannot change journaled "
1463 "quota options when quota turned on");
1466 if (ext4_has_feature_quota(sb)) {
1467 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1468 "ignored when QUOTA feature is enabled");
1471 qname = match_strdup(args);
1473 ext4_msg(sb, KERN_ERR,
1474 "Not enough memory for storing quotafile name");
1477 if (sbi->s_qf_names[qtype]) {
1478 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1481 ext4_msg(sb, KERN_ERR,
1482 "%s quota file already specified",
1486 if (strchr(qname, '/')) {
1487 ext4_msg(sb, KERN_ERR,
1488 "quotafile must be on filesystem root");
1491 sbi->s_qf_names[qtype] = qname;
1499 static int clear_qf_name(struct super_block *sb, int qtype)
1502 struct ext4_sb_info *sbi = EXT4_SB(sb);
1504 if (sb_any_quota_loaded(sb) &&
1505 sbi->s_qf_names[qtype]) {
1506 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1507 " when quota turned on");
1510 kfree(sbi->s_qf_names[qtype]);
1511 sbi->s_qf_names[qtype] = NULL;
1516 #define MOPT_SET 0x0001
1517 #define MOPT_CLEAR 0x0002
1518 #define MOPT_NOSUPPORT 0x0004
1519 #define MOPT_EXPLICIT 0x0008
1520 #define MOPT_CLEAR_ERR 0x0010
1521 #define MOPT_GTE0 0x0020
1524 #define MOPT_QFMT 0x0040
1526 #define MOPT_Q MOPT_NOSUPPORT
1527 #define MOPT_QFMT MOPT_NOSUPPORT
1529 #define MOPT_DATAJ 0x0080
1530 #define MOPT_NO_EXT2 0x0100
1531 #define MOPT_NO_EXT3 0x0200
1532 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1533 #define MOPT_STRING 0x0400
1535 static const struct mount_opts {
1539 } ext4_mount_opts[] = {
1540 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1541 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1542 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1543 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1544 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1545 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1546 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1547 MOPT_EXT4_ONLY | MOPT_SET},
1548 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1549 MOPT_EXT4_ONLY | MOPT_CLEAR},
1550 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1551 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1552 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1553 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1554 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1555 MOPT_EXT4_ONLY | MOPT_CLEAR},
1556 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1557 MOPT_EXT4_ONLY | MOPT_CLEAR},
1558 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1559 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1560 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1561 EXT4_MOUNT_JOURNAL_CHECKSUM),
1562 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1563 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1564 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1565 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1566 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1567 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1569 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1571 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1572 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1573 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1574 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1575 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1576 {Opt_commit, 0, MOPT_GTE0},
1577 {Opt_max_batch_time, 0, MOPT_GTE0},
1578 {Opt_min_batch_time, 0, MOPT_GTE0},
1579 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1580 {Opt_init_itable, 0, MOPT_GTE0},
1581 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1582 {Opt_stripe, 0, MOPT_GTE0},
1583 {Opt_resuid, 0, MOPT_GTE0},
1584 {Opt_resgid, 0, MOPT_GTE0},
1585 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1586 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1587 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1588 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1589 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1590 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1591 MOPT_NO_EXT2 | MOPT_DATAJ},
1592 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1593 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1594 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1595 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1596 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1598 {Opt_acl, 0, MOPT_NOSUPPORT},
1599 {Opt_noacl, 0, MOPT_NOSUPPORT},
1601 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1602 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1603 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1604 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1605 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1607 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1609 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1611 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1612 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1613 MOPT_CLEAR | MOPT_Q},
1614 {Opt_usrjquota, 0, MOPT_Q},
1615 {Opt_grpjquota, 0, MOPT_Q},
1616 {Opt_offusrjquota, 0, MOPT_Q},
1617 {Opt_offgrpjquota, 0, MOPT_Q},
1618 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1619 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1620 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1621 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1622 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1626 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1627 substring_t *args, unsigned long *journal_devnum,
1628 unsigned int *journal_ioprio, int is_remount)
1630 struct ext4_sb_info *sbi = EXT4_SB(sb);
1631 const struct mount_opts *m;
1637 if (token == Opt_usrjquota)
1638 return set_qf_name(sb, USRQUOTA, &args[0]);
1639 else if (token == Opt_grpjquota)
1640 return set_qf_name(sb, GRPQUOTA, &args[0]);
1641 else if (token == Opt_offusrjquota)
1642 return clear_qf_name(sb, USRQUOTA);
1643 else if (token == Opt_offgrpjquota)
1644 return clear_qf_name(sb, GRPQUOTA);
1648 case Opt_nouser_xattr:
1649 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1652 return 1; /* handled by get_sb_block() */
1654 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1657 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1660 sb->s_flags |= MS_I_VERSION;
1663 sb->s_flags |= MS_LAZYTIME;
1665 case Opt_nolazytime:
1666 sb->s_flags &= ~MS_LAZYTIME;
1670 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1671 if (token == m->token)
1674 if (m->token == Opt_err) {
1675 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1676 "or missing value", opt);
1680 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1681 ext4_msg(sb, KERN_ERR,
1682 "Mount option \"%s\" incompatible with ext2", opt);
1685 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1686 ext4_msg(sb, KERN_ERR,
1687 "Mount option \"%s\" incompatible with ext3", opt);
1691 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1693 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1695 if (m->flags & MOPT_EXPLICIT) {
1696 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1697 set_opt2(sb, EXPLICIT_DELALLOC);
1698 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1699 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1703 if (m->flags & MOPT_CLEAR_ERR)
1704 clear_opt(sb, ERRORS_MASK);
1705 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1706 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1707 "options when quota turned on");
1711 if (m->flags & MOPT_NOSUPPORT) {
1712 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1713 } else if (token == Opt_commit) {
1715 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1716 sbi->s_commit_interval = HZ * arg;
1717 } else if (token == Opt_debug_want_extra_isize) {
1718 sbi->s_want_extra_isize = arg;
1719 } else if (token == Opt_max_batch_time) {
1720 sbi->s_max_batch_time = arg;
1721 } else if (token == Opt_min_batch_time) {
1722 sbi->s_min_batch_time = arg;
1723 } else if (token == Opt_inode_readahead_blks) {
1724 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1725 ext4_msg(sb, KERN_ERR,
1726 "EXT4-fs: inode_readahead_blks must be "
1727 "0 or a power of 2 smaller than 2^31");
1730 sbi->s_inode_readahead_blks = arg;
1731 } else if (token == Opt_init_itable) {
1732 set_opt(sb, INIT_INODE_TABLE);
1734 arg = EXT4_DEF_LI_WAIT_MULT;
1735 sbi->s_li_wait_mult = arg;
1736 } else if (token == Opt_max_dir_size_kb) {
1737 sbi->s_max_dir_size_kb = arg;
1738 } else if (token == Opt_stripe) {
1739 sbi->s_stripe = arg;
1740 } else if (token == Opt_resuid) {
1741 uid = make_kuid(current_user_ns(), arg);
1742 if (!uid_valid(uid)) {
1743 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1746 sbi->s_resuid = uid;
1747 } else if (token == Opt_resgid) {
1748 gid = make_kgid(current_user_ns(), arg);
1749 if (!gid_valid(gid)) {
1750 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1753 sbi->s_resgid = gid;
1754 } else if (token == Opt_journal_dev) {
1756 ext4_msg(sb, KERN_ERR,
1757 "Cannot specify journal on remount");
1760 *journal_devnum = arg;
1761 } else if (token == Opt_journal_path) {
1763 struct inode *journal_inode;
1768 ext4_msg(sb, KERN_ERR,
1769 "Cannot specify journal on remount");
1772 journal_path = match_strdup(&args[0]);
1773 if (!journal_path) {
1774 ext4_msg(sb, KERN_ERR, "error: could not dup "
1775 "journal device string");
1779 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1781 ext4_msg(sb, KERN_ERR, "error: could not find "
1782 "journal device path: error %d", error);
1783 kfree(journal_path);
1787 journal_inode = d_inode(path.dentry);
1788 if (!S_ISBLK(journal_inode->i_mode)) {
1789 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1790 "is not a block device", journal_path);
1792 kfree(journal_path);
1796 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1798 kfree(journal_path);
1799 } else if (token == Opt_journal_ioprio) {
1801 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1806 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1807 } else if (token == Opt_test_dummy_encryption) {
1808 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1809 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1810 ext4_msg(sb, KERN_WARNING,
1811 "Test dummy encryption mode enabled");
1813 ext4_msg(sb, KERN_WARNING,
1814 "Test dummy encryption mount option ignored");
1816 } else if (m->flags & MOPT_DATAJ) {
1818 if (!sbi->s_journal)
1819 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1820 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1821 ext4_msg(sb, KERN_ERR,
1822 "Cannot change data mode on remount");
1826 clear_opt(sb, DATA_FLAGS);
1827 sbi->s_mount_opt |= m->mount_opt;
1830 } else if (m->flags & MOPT_QFMT) {
1831 if (sb_any_quota_loaded(sb) &&
1832 sbi->s_jquota_fmt != m->mount_opt) {
1833 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1834 "quota options when quota turned on");
1837 if (ext4_has_feature_quota(sb)) {
1838 ext4_msg(sb, KERN_INFO,
1839 "Quota format mount options ignored "
1840 "when QUOTA feature is enabled");
1843 sbi->s_jquota_fmt = m->mount_opt;
1845 } else if (token == Opt_dax) {
1846 #ifdef CONFIG_FS_DAX
1847 ext4_msg(sb, KERN_WARNING,
1848 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1849 sbi->s_mount_opt |= m->mount_opt;
1851 ext4_msg(sb, KERN_INFO, "dax option not supported");
1854 } else if (token == Opt_data_err_abort) {
1855 sbi->s_mount_opt |= m->mount_opt;
1856 } else if (token == Opt_data_err_ignore) {
1857 sbi->s_mount_opt &= ~m->mount_opt;
1861 if (m->flags & MOPT_CLEAR)
1863 else if (unlikely(!(m->flags & MOPT_SET))) {
1864 ext4_msg(sb, KERN_WARNING,
1865 "buggy handling of option %s", opt);
1870 sbi->s_mount_opt |= m->mount_opt;
1872 sbi->s_mount_opt &= ~m->mount_opt;
1877 static int parse_options(char *options, struct super_block *sb,
1878 unsigned long *journal_devnum,
1879 unsigned int *journal_ioprio,
1882 struct ext4_sb_info *sbi = EXT4_SB(sb);
1884 substring_t args[MAX_OPT_ARGS];
1890 while ((p = strsep(&options, ",")) != NULL) {
1894 * Initialize args struct so we know whether arg was
1895 * found; some options take optional arguments.
1897 args[0].to = args[0].from = NULL;
1898 token = match_token(p, tokens, args);
1899 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1900 journal_ioprio, is_remount) < 0)
1905 * We do the test below only for project quotas. 'usrquota' and
1906 * 'grpquota' mount options are allowed even without quota feature
1907 * to support legacy quotas in quota files.
1909 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1910 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1911 "Cannot enable project quota enforcement.");
1914 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1915 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1916 clear_opt(sb, USRQUOTA);
1918 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1919 clear_opt(sb, GRPQUOTA);
1921 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1922 ext4_msg(sb, KERN_ERR, "old and new quota "
1927 if (!sbi->s_jquota_fmt) {
1928 ext4_msg(sb, KERN_ERR, "journaled quota format "
1934 if (test_opt(sb, DIOREAD_NOLOCK)) {
1936 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1938 if (blocksize < PAGE_SIZE) {
1939 ext4_msg(sb, KERN_ERR, "can't mount with "
1940 "dioread_nolock if block size != PAGE_SIZE");
1947 static inline void ext4_show_quota_options(struct seq_file *seq,
1948 struct super_block *sb)
1950 #if defined(CONFIG_QUOTA)
1951 struct ext4_sb_info *sbi = EXT4_SB(sb);
1953 if (sbi->s_jquota_fmt) {
1956 switch (sbi->s_jquota_fmt) {
1967 seq_printf(seq, ",jqfmt=%s", fmtname);
1970 if (sbi->s_qf_names[USRQUOTA])
1971 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1973 if (sbi->s_qf_names[GRPQUOTA])
1974 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1978 static const char *token2str(int token)
1980 const struct match_token *t;
1982 for (t = tokens; t->token != Opt_err; t++)
1983 if (t->token == token && !strchr(t->pattern, '='))
1990 * - it's set to a non-default value OR
1991 * - if the per-sb default is different from the global default
1993 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1996 struct ext4_sb_info *sbi = EXT4_SB(sb);
1997 struct ext4_super_block *es = sbi->s_es;
1998 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1999 const struct mount_opts *m;
2000 char sep = nodefs ? '\n' : ',';
2002 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2003 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2005 if (sbi->s_sb_block != 1)
2006 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2008 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2009 int want_set = m->flags & MOPT_SET;
2010 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2011 (m->flags & MOPT_CLEAR_ERR))
2013 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2014 continue; /* skip if same as the default */
2016 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2017 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2018 continue; /* select Opt_noFoo vs Opt_Foo */
2019 SEQ_OPTS_PRINT("%s", token2str(m->token));
2022 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2023 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2024 SEQ_OPTS_PRINT("resuid=%u",
2025 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2026 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2027 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2028 SEQ_OPTS_PRINT("resgid=%u",
2029 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2030 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2031 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2032 SEQ_OPTS_PUTS("errors=remount-ro");
2033 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2034 SEQ_OPTS_PUTS("errors=continue");
2035 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2036 SEQ_OPTS_PUTS("errors=panic");
2037 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2038 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2039 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2040 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2041 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2042 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2043 if (sb->s_flags & MS_I_VERSION)
2044 SEQ_OPTS_PUTS("i_version");
2045 if (nodefs || sbi->s_stripe)
2046 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2047 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2048 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2049 SEQ_OPTS_PUTS("data=journal");
2050 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2051 SEQ_OPTS_PUTS("data=ordered");
2052 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2053 SEQ_OPTS_PUTS("data=writeback");
2056 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2057 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2058 sbi->s_inode_readahead_blks);
2060 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2061 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2062 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2063 if (nodefs || sbi->s_max_dir_size_kb)
2064 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2065 if (test_opt(sb, DATA_ERR_ABORT))
2066 SEQ_OPTS_PUTS("data_err=abort");
2068 ext4_show_quota_options(seq, sb);
2072 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2074 return _ext4_show_options(seq, root->d_sb, 0);
2077 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2079 struct super_block *sb = seq->private;
2082 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2083 rc = _ext4_show_options(seq, sb, 1);
2084 seq_puts(seq, "\n");
2088 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2091 struct ext4_sb_info *sbi = EXT4_SB(sb);
2094 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2095 ext4_msg(sb, KERN_ERR, "revision level too high, "
2096 "forcing read-only mode");
2101 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2102 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2103 "running e2fsck is recommended");
2104 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2105 ext4_msg(sb, KERN_WARNING,
2106 "warning: mounting fs with errors, "
2107 "running e2fsck is recommended");
2108 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2109 le16_to_cpu(es->s_mnt_count) >=
2110 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2111 ext4_msg(sb, KERN_WARNING,
2112 "warning: maximal mount count reached, "
2113 "running e2fsck is recommended");
2114 else if (le32_to_cpu(es->s_checkinterval) &&
2115 (le32_to_cpu(es->s_lastcheck) +
2116 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2117 ext4_msg(sb, KERN_WARNING,
2118 "warning: checktime reached, "
2119 "running e2fsck is recommended");
2120 if (!sbi->s_journal)
2121 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2122 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2123 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2124 le16_add_cpu(&es->s_mnt_count, 1);
2125 es->s_mtime = cpu_to_le32(get_seconds());
2126 ext4_update_dynamic_rev(sb);
2128 ext4_set_feature_journal_needs_recovery(sb);
2130 ext4_commit_super(sb, 1);
2132 if (test_opt(sb, DEBUG))
2133 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2134 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2136 sbi->s_groups_count,
2137 EXT4_BLOCKS_PER_GROUP(sb),
2138 EXT4_INODES_PER_GROUP(sb),
2139 sbi->s_mount_opt, sbi->s_mount_opt2);
2141 cleancache_init_fs(sb);
2145 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2147 struct ext4_sb_info *sbi = EXT4_SB(sb);
2148 struct flex_groups *new_groups;
2151 if (!sbi->s_log_groups_per_flex)
2154 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2155 if (size <= sbi->s_flex_groups_allocated)
2158 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2159 new_groups = kvzalloc(size, GFP_KERNEL);
2161 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2162 size / (int) sizeof(struct flex_groups));
2166 if (sbi->s_flex_groups) {
2167 memcpy(new_groups, sbi->s_flex_groups,
2168 (sbi->s_flex_groups_allocated *
2169 sizeof(struct flex_groups)));
2170 kvfree(sbi->s_flex_groups);
2172 sbi->s_flex_groups = new_groups;
2173 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2177 static int ext4_fill_flex_info(struct super_block *sb)
2179 struct ext4_sb_info *sbi = EXT4_SB(sb);
2180 struct ext4_group_desc *gdp = NULL;
2181 ext4_group_t flex_group;
2184 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2185 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2186 sbi->s_log_groups_per_flex = 0;
2190 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2194 for (i = 0; i < sbi->s_groups_count; i++) {
2195 gdp = ext4_get_group_desc(sb, i, NULL);
2197 flex_group = ext4_flex_group(sbi, i);
2198 atomic_add(ext4_free_inodes_count(sb, gdp),
2199 &sbi->s_flex_groups[flex_group].free_inodes);
2200 atomic64_add(ext4_free_group_clusters(sb, gdp),
2201 &sbi->s_flex_groups[flex_group].free_clusters);
2202 atomic_add(ext4_used_dirs_count(sb, gdp),
2203 &sbi->s_flex_groups[flex_group].used_dirs);
2211 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2212 struct ext4_group_desc *gdp)
2214 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2216 __le32 le_group = cpu_to_le32(block_group);
2217 struct ext4_sb_info *sbi = EXT4_SB(sb);
2219 if (ext4_has_metadata_csum(sbi->s_sb)) {
2220 /* Use new metadata_csum algorithm */
2222 __u16 dummy_csum = 0;
2224 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2226 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2227 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2228 sizeof(dummy_csum));
2229 offset += sizeof(dummy_csum);
2230 if (offset < sbi->s_desc_size)
2231 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2232 sbi->s_desc_size - offset);
2234 crc = csum32 & 0xFFFF;
2238 /* old crc16 code */
2239 if (!ext4_has_feature_gdt_csum(sb))
2242 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2243 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2244 crc = crc16(crc, (__u8 *)gdp, offset);
2245 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2246 /* for checksum of struct ext4_group_desc do the rest...*/
2247 if (ext4_has_feature_64bit(sb) &&
2248 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2249 crc = crc16(crc, (__u8 *)gdp + offset,
2250 le16_to_cpu(sbi->s_es->s_desc_size) -
2254 return cpu_to_le16(crc);
2257 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2258 struct ext4_group_desc *gdp)
2260 if (ext4_has_group_desc_csum(sb) &&
2261 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2267 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2268 struct ext4_group_desc *gdp)
2270 if (!ext4_has_group_desc_csum(sb))
2272 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2275 /* Called at mount-time, super-block is locked */
2276 static int ext4_check_descriptors(struct super_block *sb,
2277 ext4_fsblk_t sb_block,
2278 ext4_group_t *first_not_zeroed)
2280 struct ext4_sb_info *sbi = EXT4_SB(sb);
2281 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2282 ext4_fsblk_t last_block;
2283 ext4_fsblk_t block_bitmap;
2284 ext4_fsblk_t inode_bitmap;
2285 ext4_fsblk_t inode_table;
2286 int flexbg_flag = 0;
2287 ext4_group_t i, grp = sbi->s_groups_count;
2289 if (ext4_has_feature_flex_bg(sb))
2292 ext4_debug("Checking group descriptors");
2294 for (i = 0; i < sbi->s_groups_count; i++) {
2295 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2297 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2298 last_block = ext4_blocks_count(sbi->s_es) - 1;
2300 last_block = first_block +
2301 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2303 if ((grp == sbi->s_groups_count) &&
2304 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2307 block_bitmap = ext4_block_bitmap(sb, gdp);
2308 if (block_bitmap == sb_block) {
2309 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2310 "Block bitmap for group %u overlaps "
2313 if (block_bitmap < first_block || block_bitmap > last_block) {
2314 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2315 "Block bitmap for group %u not in group "
2316 "(block %llu)!", i, block_bitmap);
2319 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2320 if (inode_bitmap == sb_block) {
2321 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2322 "Inode bitmap for group %u overlaps "
2325 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2326 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2327 "Inode bitmap for group %u not in group "
2328 "(block %llu)!", i, inode_bitmap);
2331 inode_table = ext4_inode_table(sb, gdp);
2332 if (inode_table == sb_block) {
2333 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2334 "Inode table for group %u overlaps "
2337 if (inode_table < first_block ||
2338 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2339 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2340 "Inode table for group %u not in group "
2341 "(block %llu)!", i, inode_table);
2344 ext4_lock_group(sb, i);
2345 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2346 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2347 "Checksum for group %u failed (%u!=%u)",
2348 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2349 gdp)), le16_to_cpu(gdp->bg_checksum));
2350 if (!(sb->s_flags & MS_RDONLY)) {
2351 ext4_unlock_group(sb, i);
2355 ext4_unlock_group(sb, i);
2357 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2359 if (NULL != first_not_zeroed)
2360 *first_not_zeroed = grp;
2364 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2365 * the superblock) which were deleted from all directories, but held open by
2366 * a process at the time of a crash. We walk the list and try to delete these
2367 * inodes at recovery time (only with a read-write filesystem).
2369 * In order to keep the orphan inode chain consistent during traversal (in
2370 * case of crash during recovery), we link each inode into the superblock
2371 * orphan list_head and handle it the same way as an inode deletion during
2372 * normal operation (which journals the operations for us).
2374 * We only do an iget() and an iput() on each inode, which is very safe if we
2375 * accidentally point at an in-use or already deleted inode. The worst that
2376 * can happen in this case is that we get a "bit already cleared" message from
2377 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2378 * e2fsck was run on this filesystem, and it must have already done the orphan
2379 * inode cleanup for us, so we can safely abort without any further action.
2381 static void ext4_orphan_cleanup(struct super_block *sb,
2382 struct ext4_super_block *es)
2384 unsigned int s_flags = sb->s_flags;
2385 int ret, nr_orphans = 0, nr_truncates = 0;
2389 if (!es->s_last_orphan) {
2390 jbd_debug(4, "no orphan inodes to clean up\n");
2394 if (bdev_read_only(sb->s_bdev)) {
2395 ext4_msg(sb, KERN_ERR, "write access "
2396 "unavailable, skipping orphan cleanup");
2400 /* Check if feature set would not allow a r/w mount */
2401 if (!ext4_feature_set_ok(sb, 0)) {
2402 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2403 "unknown ROCOMPAT features");
2407 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2408 /* don't clear list on RO mount w/ errors */
2409 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2410 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2411 "clearing orphan list.\n");
2412 es->s_last_orphan = 0;
2414 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2418 if (s_flags & MS_RDONLY) {
2419 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2420 sb->s_flags &= ~MS_RDONLY;
2423 /* Needed for iput() to work correctly and not trash data */
2424 sb->s_flags |= MS_ACTIVE;
2425 /* Turn on quotas so that they are updated correctly */
2426 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2427 if (EXT4_SB(sb)->s_qf_names[i]) {
2428 int ret = ext4_quota_on_mount(sb, i);
2430 ext4_msg(sb, KERN_ERR,
2431 "Cannot turn on journaled "
2432 "quota: error %d", ret);
2437 while (es->s_last_orphan) {
2438 struct inode *inode;
2441 * We may have encountered an error during cleanup; if
2442 * so, skip the rest.
2444 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2445 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2446 es->s_last_orphan = 0;
2450 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2451 if (IS_ERR(inode)) {
2452 es->s_last_orphan = 0;
2456 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2457 dquot_initialize(inode);
2458 if (inode->i_nlink) {
2459 if (test_opt(sb, DEBUG))
2460 ext4_msg(sb, KERN_DEBUG,
2461 "%s: truncating inode %lu to %lld bytes",
2462 __func__, inode->i_ino, inode->i_size);
2463 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2464 inode->i_ino, inode->i_size);
2466 truncate_inode_pages(inode->i_mapping, inode->i_size);
2467 ret = ext4_truncate(inode);
2469 ext4_std_error(inode->i_sb, ret);
2470 inode_unlock(inode);
2473 if (test_opt(sb, DEBUG))
2474 ext4_msg(sb, KERN_DEBUG,
2475 "%s: deleting unreferenced inode %lu",
2476 __func__, inode->i_ino);
2477 jbd_debug(2, "deleting unreferenced inode %lu\n",
2481 iput(inode); /* The delete magic happens here! */
2484 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2487 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2488 PLURAL(nr_orphans));
2490 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2491 PLURAL(nr_truncates));
2493 /* Turn quotas off */
2494 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2495 if (sb_dqopt(sb)->files[i])
2496 dquot_quota_off(sb, i);
2499 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2503 * Maximal extent format file size.
2504 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2505 * extent format containers, within a sector_t, and within i_blocks
2506 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2507 * so that won't be a limiting factor.
2509 * However there is other limiting factor. We do store extents in the form
2510 * of starting block and length, hence the resulting length of the extent
2511 * covering maximum file size must fit into on-disk format containers as
2512 * well. Given that length is always by 1 unit bigger than max unit (because
2513 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2515 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2517 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2520 loff_t upper_limit = MAX_LFS_FILESIZE;
2522 /* small i_blocks in vfs inode? */
2523 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2525 * CONFIG_LBDAF is not enabled implies the inode
2526 * i_block represent total blocks in 512 bytes
2527 * 32 == size of vfs inode i_blocks * 8
2529 upper_limit = (1LL << 32) - 1;
2531 /* total blocks in file system block size */
2532 upper_limit >>= (blkbits - 9);
2533 upper_limit <<= blkbits;
2537 * 32-bit extent-start container, ee_block. We lower the maxbytes
2538 * by one fs block, so ee_len can cover the extent of maximum file
2541 res = (1LL << 32) - 1;
2544 /* Sanity check against vm- & vfs- imposed limits */
2545 if (res > upper_limit)
2552 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2553 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2554 * We need to be 1 filesystem block less than the 2^48 sector limit.
2556 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2558 loff_t res = EXT4_NDIR_BLOCKS;
2561 /* This is calculated to be the largest file size for a dense, block
2562 * mapped file such that the file's total number of 512-byte sectors,
2563 * including data and all indirect blocks, does not exceed (2^48 - 1).
2565 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2566 * number of 512-byte sectors of the file.
2569 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2571 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2572 * the inode i_block field represents total file blocks in
2573 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2575 upper_limit = (1LL << 32) - 1;
2577 /* total blocks in file system block size */
2578 upper_limit >>= (bits - 9);
2582 * We use 48 bit ext4_inode i_blocks
2583 * With EXT4_HUGE_FILE_FL set the i_blocks
2584 * represent total number of blocks in
2585 * file system block size
2587 upper_limit = (1LL << 48) - 1;
2591 /* indirect blocks */
2593 /* double indirect blocks */
2594 meta_blocks += 1 + (1LL << (bits-2));
2595 /* tripple indirect blocks */
2596 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2598 upper_limit -= meta_blocks;
2599 upper_limit <<= bits;
2601 res += 1LL << (bits-2);
2602 res += 1LL << (2*(bits-2));
2603 res += 1LL << (3*(bits-2));
2605 if (res > upper_limit)
2608 if (res > MAX_LFS_FILESIZE)
2609 res = MAX_LFS_FILESIZE;
2614 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2615 ext4_fsblk_t logical_sb_block, int nr)
2617 struct ext4_sb_info *sbi = EXT4_SB(sb);
2618 ext4_group_t bg, first_meta_bg;
2621 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2623 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2624 return logical_sb_block + nr + 1;
2625 bg = sbi->s_desc_per_block * nr;
2626 if (ext4_bg_has_super(sb, bg))
2630 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2631 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2632 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2635 if (sb->s_blocksize == 1024 && nr == 0 &&
2636 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2639 return (has_super + ext4_group_first_block_no(sb, bg));
2643 * ext4_get_stripe_size: Get the stripe size.
2644 * @sbi: In memory super block info
2646 * If we have specified it via mount option, then
2647 * use the mount option value. If the value specified at mount time is
2648 * greater than the blocks per group use the super block value.
2649 * If the super block value is greater than blocks per group return 0.
2650 * Allocator needs it be less than blocks per group.
2653 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2655 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2656 unsigned long stripe_width =
2657 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2660 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2661 ret = sbi->s_stripe;
2662 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2664 else if (stride && stride <= sbi->s_blocks_per_group)
2670 * If the stripe width is 1, this makes no sense and
2671 * we set it to 0 to turn off stripe handling code.
2680 * Check whether this filesystem can be mounted based on
2681 * the features present and the RDONLY/RDWR mount requested.
2682 * Returns 1 if this filesystem can be mounted as requested,
2683 * 0 if it cannot be.
2685 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2687 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2688 ext4_msg(sb, KERN_ERR,
2689 "Couldn't mount because of "
2690 "unsupported optional features (%x)",
2691 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2692 ~EXT4_FEATURE_INCOMPAT_SUPP));
2699 if (ext4_has_feature_readonly(sb)) {
2700 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2701 sb->s_flags |= MS_RDONLY;
2705 /* Check that feature set is OK for a read-write mount */
2706 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2707 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2708 "unsupported optional features (%x)",
2709 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2710 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2714 * Large file size enabled file system can only be mounted
2715 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2717 if (ext4_has_feature_huge_file(sb)) {
2718 if (sizeof(blkcnt_t) < sizeof(u64)) {
2719 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2720 "cannot be mounted RDWR without "
2725 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2726 ext4_msg(sb, KERN_ERR,
2727 "Can't support bigalloc feature without "
2728 "extents feature\n");
2732 #ifndef CONFIG_QUOTA
2733 if (ext4_has_feature_quota(sb) && !readonly) {
2734 ext4_msg(sb, KERN_ERR,
2735 "Filesystem with quota feature cannot be mounted RDWR "
2736 "without CONFIG_QUOTA");
2739 if (ext4_has_feature_project(sb) && !readonly) {
2740 ext4_msg(sb, KERN_ERR,
2741 "Filesystem with project quota feature cannot be mounted RDWR "
2742 "without CONFIG_QUOTA");
2745 #endif /* CONFIG_QUOTA */
2750 * This function is called once a day if we have errors logged
2751 * on the file system
2753 static void print_daily_error_info(unsigned long arg)
2755 struct super_block *sb = (struct super_block *) arg;
2756 struct ext4_sb_info *sbi;
2757 struct ext4_super_block *es;
2762 if (es->s_error_count)
2763 /* fsck newer than v1.41.13 is needed to clean this condition. */
2764 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2765 le32_to_cpu(es->s_error_count));
2766 if (es->s_first_error_time) {
2767 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2768 sb->s_id, le32_to_cpu(es->s_first_error_time),
2769 (int) sizeof(es->s_first_error_func),
2770 es->s_first_error_func,
2771 le32_to_cpu(es->s_first_error_line));
2772 if (es->s_first_error_ino)
2773 printk(KERN_CONT ": inode %u",
2774 le32_to_cpu(es->s_first_error_ino));
2775 if (es->s_first_error_block)
2776 printk(KERN_CONT ": block %llu", (unsigned long long)
2777 le64_to_cpu(es->s_first_error_block));
2778 printk(KERN_CONT "\n");
2780 if (es->s_last_error_time) {
2781 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2782 sb->s_id, le32_to_cpu(es->s_last_error_time),
2783 (int) sizeof(es->s_last_error_func),
2784 es->s_last_error_func,
2785 le32_to_cpu(es->s_last_error_line));
2786 if (es->s_last_error_ino)
2787 printk(KERN_CONT ": inode %u",
2788 le32_to_cpu(es->s_last_error_ino));
2789 if (es->s_last_error_block)
2790 printk(KERN_CONT ": block %llu", (unsigned long long)
2791 le64_to_cpu(es->s_last_error_block));
2792 printk(KERN_CONT "\n");
2794 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2797 /* Find next suitable group and run ext4_init_inode_table */
2798 static int ext4_run_li_request(struct ext4_li_request *elr)
2800 struct ext4_group_desc *gdp = NULL;
2801 ext4_group_t group, ngroups;
2802 struct super_block *sb;
2803 unsigned long timeout = 0;
2807 ngroups = EXT4_SB(sb)->s_groups_count;
2809 for (group = elr->lr_next_group; group < ngroups; group++) {
2810 gdp = ext4_get_group_desc(sb, group, NULL);
2816 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2820 if (group >= ngroups)
2825 ret = ext4_init_inode_table(sb, group,
2826 elr->lr_timeout ? 0 : 1);
2827 if (elr->lr_timeout == 0) {
2828 timeout = (jiffies - timeout) *
2829 elr->lr_sbi->s_li_wait_mult;
2830 elr->lr_timeout = timeout;
2832 elr->lr_next_sched = jiffies + elr->lr_timeout;
2833 elr->lr_next_group = group + 1;
2839 * Remove lr_request from the list_request and free the
2840 * request structure. Should be called with li_list_mtx held
2842 static void ext4_remove_li_request(struct ext4_li_request *elr)
2844 struct ext4_sb_info *sbi;
2851 list_del(&elr->lr_request);
2852 sbi->s_li_request = NULL;
2856 static void ext4_unregister_li_request(struct super_block *sb)
2858 mutex_lock(&ext4_li_mtx);
2859 if (!ext4_li_info) {
2860 mutex_unlock(&ext4_li_mtx);
2864 mutex_lock(&ext4_li_info->li_list_mtx);
2865 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2866 mutex_unlock(&ext4_li_info->li_list_mtx);
2867 mutex_unlock(&ext4_li_mtx);
2870 static struct task_struct *ext4_lazyinit_task;
2873 * This is the function where ext4lazyinit thread lives. It walks
2874 * through the request list searching for next scheduled filesystem.
2875 * When such a fs is found, run the lazy initialization request
2876 * (ext4_rn_li_request) and keep track of the time spend in this
2877 * function. Based on that time we compute next schedule time of
2878 * the request. When walking through the list is complete, compute
2879 * next waking time and put itself into sleep.
2881 static int ext4_lazyinit_thread(void *arg)
2883 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2884 struct list_head *pos, *n;
2885 struct ext4_li_request *elr;
2886 unsigned long next_wakeup, cur;
2888 BUG_ON(NULL == eli);
2892 next_wakeup = MAX_JIFFY_OFFSET;
2894 mutex_lock(&eli->li_list_mtx);
2895 if (list_empty(&eli->li_request_list)) {
2896 mutex_unlock(&eli->li_list_mtx);
2899 list_for_each_safe(pos, n, &eli->li_request_list) {
2902 elr = list_entry(pos, struct ext4_li_request,
2905 if (time_before(jiffies, elr->lr_next_sched)) {
2906 if (time_before(elr->lr_next_sched, next_wakeup))
2907 next_wakeup = elr->lr_next_sched;
2910 if (down_read_trylock(&elr->lr_super->s_umount)) {
2911 if (sb_start_write_trylock(elr->lr_super)) {
2914 * We hold sb->s_umount, sb can not
2915 * be removed from the list, it is
2916 * now safe to drop li_list_mtx
2918 mutex_unlock(&eli->li_list_mtx);
2919 err = ext4_run_li_request(elr);
2920 sb_end_write(elr->lr_super);
2921 mutex_lock(&eli->li_list_mtx);
2924 up_read((&elr->lr_super->s_umount));
2926 /* error, remove the lazy_init job */
2928 ext4_remove_li_request(elr);
2932 elr->lr_next_sched = jiffies +
2934 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2936 if (time_before(elr->lr_next_sched, next_wakeup))
2937 next_wakeup = elr->lr_next_sched;
2939 mutex_unlock(&eli->li_list_mtx);
2944 if ((time_after_eq(cur, next_wakeup)) ||
2945 (MAX_JIFFY_OFFSET == next_wakeup)) {
2950 schedule_timeout_interruptible(next_wakeup - cur);
2952 if (kthread_should_stop()) {
2953 ext4_clear_request_list();
2960 * It looks like the request list is empty, but we need
2961 * to check it under the li_list_mtx lock, to prevent any
2962 * additions into it, and of course we should lock ext4_li_mtx
2963 * to atomically free the list and ext4_li_info, because at
2964 * this point another ext4 filesystem could be registering
2967 mutex_lock(&ext4_li_mtx);
2968 mutex_lock(&eli->li_list_mtx);
2969 if (!list_empty(&eli->li_request_list)) {
2970 mutex_unlock(&eli->li_list_mtx);
2971 mutex_unlock(&ext4_li_mtx);
2974 mutex_unlock(&eli->li_list_mtx);
2975 kfree(ext4_li_info);
2976 ext4_li_info = NULL;
2977 mutex_unlock(&ext4_li_mtx);
2982 static void ext4_clear_request_list(void)
2984 struct list_head *pos, *n;
2985 struct ext4_li_request *elr;
2987 mutex_lock(&ext4_li_info->li_list_mtx);
2988 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2989 elr = list_entry(pos, struct ext4_li_request,
2991 ext4_remove_li_request(elr);
2993 mutex_unlock(&ext4_li_info->li_list_mtx);
2996 static int ext4_run_lazyinit_thread(void)
2998 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2999 ext4_li_info, "ext4lazyinit");
3000 if (IS_ERR(ext4_lazyinit_task)) {
3001 int err = PTR_ERR(ext4_lazyinit_task);
3002 ext4_clear_request_list();
3003 kfree(ext4_li_info);
3004 ext4_li_info = NULL;
3005 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3006 "initialization thread\n",
3010 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3015 * Check whether it make sense to run itable init. thread or not.
3016 * If there is at least one uninitialized inode table, return
3017 * corresponding group number, else the loop goes through all
3018 * groups and return total number of groups.
3020 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3022 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3023 struct ext4_group_desc *gdp = NULL;
3025 for (group = 0; group < ngroups; group++) {
3026 gdp = ext4_get_group_desc(sb, group, NULL);
3030 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3037 static int ext4_li_info_new(void)
3039 struct ext4_lazy_init *eli = NULL;
3041 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3045 INIT_LIST_HEAD(&eli->li_request_list);
3046 mutex_init(&eli->li_list_mtx);
3048 eli->li_state |= EXT4_LAZYINIT_QUIT;
3055 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3058 struct ext4_sb_info *sbi = EXT4_SB(sb);
3059 struct ext4_li_request *elr;
3061 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3067 elr->lr_next_group = start;
3070 * Randomize first schedule time of the request to
3071 * spread the inode table initialization requests
3074 elr->lr_next_sched = jiffies + (prandom_u32() %
3075 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3079 int ext4_register_li_request(struct super_block *sb,
3080 ext4_group_t first_not_zeroed)
3082 struct ext4_sb_info *sbi = EXT4_SB(sb);
3083 struct ext4_li_request *elr = NULL;
3084 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3087 mutex_lock(&ext4_li_mtx);
3088 if (sbi->s_li_request != NULL) {
3090 * Reset timeout so it can be computed again, because
3091 * s_li_wait_mult might have changed.
3093 sbi->s_li_request->lr_timeout = 0;
3097 if (first_not_zeroed == ngroups ||
3098 (sb->s_flags & MS_RDONLY) ||
3099 !test_opt(sb, INIT_INODE_TABLE))
3102 elr = ext4_li_request_new(sb, first_not_zeroed);
3108 if (NULL == ext4_li_info) {
3109 ret = ext4_li_info_new();
3114 mutex_lock(&ext4_li_info->li_list_mtx);
3115 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3116 mutex_unlock(&ext4_li_info->li_list_mtx);
3118 sbi->s_li_request = elr;
3120 * set elr to NULL here since it has been inserted to
3121 * the request_list and the removal and free of it is
3122 * handled by ext4_clear_request_list from now on.
3126 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3127 ret = ext4_run_lazyinit_thread();
3132 mutex_unlock(&ext4_li_mtx);
3139 * We do not need to lock anything since this is called on
3142 static void ext4_destroy_lazyinit_thread(void)
3145 * If thread exited earlier
3146 * there's nothing to be done.
3148 if (!ext4_li_info || !ext4_lazyinit_task)
3151 kthread_stop(ext4_lazyinit_task);
3154 static int set_journal_csum_feature_set(struct super_block *sb)
3157 int compat, incompat;
3158 struct ext4_sb_info *sbi = EXT4_SB(sb);
3160 if (ext4_has_metadata_csum(sb)) {
3161 /* journal checksum v3 */
3163 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3165 /* journal checksum v1 */
3166 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3170 jbd2_journal_clear_features(sbi->s_journal,
3171 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3172 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3173 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3174 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3175 ret = jbd2_journal_set_features(sbi->s_journal,
3177 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3179 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3180 ret = jbd2_journal_set_features(sbi->s_journal,
3183 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3184 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3186 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3187 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3194 * Note: calculating the overhead so we can be compatible with
3195 * historical BSD practice is quite difficult in the face of
3196 * clusters/bigalloc. This is because multiple metadata blocks from
3197 * different block group can end up in the same allocation cluster.
3198 * Calculating the exact overhead in the face of clustered allocation
3199 * requires either O(all block bitmaps) in memory or O(number of block
3200 * groups**2) in time. We will still calculate the superblock for
3201 * older file systems --- and if we come across with a bigalloc file
3202 * system with zero in s_overhead_clusters the estimate will be close to
3203 * correct especially for very large cluster sizes --- but for newer
3204 * file systems, it's better to calculate this figure once at mkfs
3205 * time, and store it in the superblock. If the superblock value is
3206 * present (even for non-bigalloc file systems), we will use it.
3208 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3211 struct ext4_sb_info *sbi = EXT4_SB(sb);
3212 struct ext4_group_desc *gdp;
3213 ext4_fsblk_t first_block, last_block, b;
3214 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3215 int s, j, count = 0;
3217 if (!ext4_has_feature_bigalloc(sb))
3218 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3219 sbi->s_itb_per_group + 2);
3221 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3222 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3223 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3224 for (i = 0; i < ngroups; i++) {
3225 gdp = ext4_get_group_desc(sb, i, NULL);
3226 b = ext4_block_bitmap(sb, gdp);
3227 if (b >= first_block && b <= last_block) {
3228 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3231 b = ext4_inode_bitmap(sb, gdp);
3232 if (b >= first_block && b <= last_block) {
3233 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3236 b = ext4_inode_table(sb, gdp);
3237 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3238 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3239 int c = EXT4_B2C(sbi, b - first_block);
3240 ext4_set_bit(c, buf);
3246 if (ext4_bg_has_super(sb, grp)) {
3247 ext4_set_bit(s++, buf);
3250 j = ext4_bg_num_gdb(sb, grp);
3251 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3252 ext4_error(sb, "Invalid number of block group "
3253 "descriptor blocks: %d", j);
3254 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3258 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3262 return EXT4_CLUSTERS_PER_GROUP(sb) -
3263 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3267 * Compute the overhead and stash it in sbi->s_overhead
3269 int ext4_calculate_overhead(struct super_block *sb)
3271 struct ext4_sb_info *sbi = EXT4_SB(sb);
3272 struct ext4_super_block *es = sbi->s_es;
3273 struct inode *j_inode;
3274 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3275 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3276 ext4_fsblk_t overhead = 0;
3277 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3283 * Compute the overhead (FS structures). This is constant
3284 * for a given filesystem unless the number of block groups
3285 * changes so we cache the previous value until it does.
3289 * All of the blocks before first_data_block are overhead
3291 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3294 * Add the overhead found in each block group
3296 for (i = 0; i < ngroups; i++) {
3299 blks = count_overhead(sb, i, buf);
3302 memset(buf, 0, PAGE_SIZE);
3307 * Add the internal journal blocks whether the journal has been
3310 if (sbi->s_journal && !sbi->journal_bdev)
3311 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3312 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3313 j_inode = ext4_get_journal_inode(sb, j_inum);
3315 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3316 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3319 ext4_msg(sb, KERN_ERR, "can't get journal size");
3322 sbi->s_overhead = overhead;
3324 free_page((unsigned long) buf);
3328 static void ext4_set_resv_clusters(struct super_block *sb)
3330 ext4_fsblk_t resv_clusters;
3331 struct ext4_sb_info *sbi = EXT4_SB(sb);
3334 * There's no need to reserve anything when we aren't using extents.
3335 * The space estimates are exact, there are no unwritten extents,
3336 * hole punching doesn't need new metadata... This is needed especially
3337 * to keep ext2/3 backward compatibility.
3339 if (!ext4_has_feature_extents(sb))
3342 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3343 * This should cover the situations where we can not afford to run
3344 * out of space like for example punch hole, or converting
3345 * unwritten extents in delalloc path. In most cases such
3346 * allocation would require 1, or 2 blocks, higher numbers are
3349 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3350 sbi->s_cluster_bits);
3352 do_div(resv_clusters, 50);
3353 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3355 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3358 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3360 char *orig_data = kstrdup(data, GFP_KERNEL);
3361 struct buffer_head *bh;
3362 struct ext4_super_block *es = NULL;
3363 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3365 ext4_fsblk_t sb_block = get_sb_block(&data);
3366 ext4_fsblk_t logical_sb_block;
3367 unsigned long offset = 0;
3368 unsigned long journal_devnum = 0;
3369 unsigned long def_mount_opts;
3373 int blocksize, clustersize;
3374 unsigned int db_count;
3376 int needs_recovery, has_huge_files, has_bigalloc;
3379 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3380 ext4_group_t first_not_zeroed;
3382 if ((data && !orig_data) || !sbi)
3385 sbi->s_blockgroup_lock =
3386 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3387 if (!sbi->s_blockgroup_lock)
3390 sb->s_fs_info = sbi;
3392 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3393 sbi->s_sb_block = sb_block;
3394 if (sb->s_bdev->bd_part)
3395 sbi->s_sectors_written_start =
3396 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3398 /* Cleanup superblock name */
3399 strreplace(sb->s_id, '/', '!');
3401 /* -EINVAL is default */
3403 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3405 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3410 * The ext4 superblock will not be buffer aligned for other than 1kB
3411 * block sizes. We need to calculate the offset from buffer start.
3413 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3414 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3415 offset = do_div(logical_sb_block, blocksize);
3417 logical_sb_block = sb_block;
3420 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3421 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3425 * Note: s_es must be initialized as soon as possible because
3426 * some ext4 macro-instructions depend on its value
3428 es = (struct ext4_super_block *) (bh->b_data + offset);
3430 sb->s_magic = le16_to_cpu(es->s_magic);
3431 if (sb->s_magic != EXT4_SUPER_MAGIC)
3433 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3435 /* Warn if metadata_csum and gdt_csum are both set. */
3436 if (ext4_has_feature_metadata_csum(sb) &&
3437 ext4_has_feature_gdt_csum(sb))
3438 ext4_warning(sb, "metadata_csum and uninit_bg are "
3439 "redundant flags; please run fsck.");
3441 /* Check for a known checksum algorithm */
3442 if (!ext4_verify_csum_type(sb, es)) {
3443 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3444 "unknown checksum algorithm.");
3449 /* Load the checksum driver */
3450 if (ext4_has_feature_metadata_csum(sb)) {
3451 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3452 if (IS_ERR(sbi->s_chksum_driver)) {
3453 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3454 ret = PTR_ERR(sbi->s_chksum_driver);
3455 sbi->s_chksum_driver = NULL;
3460 /* Check superblock checksum */
3461 if (!ext4_superblock_csum_verify(sb, es)) {
3462 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3463 "invalid superblock checksum. Run e2fsck?");
3469 /* Precompute checksum seed for all metadata */
3470 if (ext4_has_feature_csum_seed(sb))
3471 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3472 else if (ext4_has_metadata_csum(sb))
3473 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3474 sizeof(es->s_uuid));
3476 /* Set defaults before we parse the mount options */
3477 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3478 set_opt(sb, INIT_INODE_TABLE);
3479 if (def_mount_opts & EXT4_DEFM_DEBUG)
3481 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3483 if (def_mount_opts & EXT4_DEFM_UID16)
3484 set_opt(sb, NO_UID32);
3485 /* xattr user namespace & acls are now defaulted on */
3486 set_opt(sb, XATTR_USER);
3487 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3488 set_opt(sb, POSIX_ACL);
3490 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3491 if (ext4_has_metadata_csum(sb))
3492 set_opt(sb, JOURNAL_CHECKSUM);
3494 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3495 set_opt(sb, JOURNAL_DATA);
3496 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3497 set_opt(sb, ORDERED_DATA);
3498 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3499 set_opt(sb, WRITEBACK_DATA);
3501 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3502 set_opt(sb, ERRORS_PANIC);
3503 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3504 set_opt(sb, ERRORS_CONT);
3506 set_opt(sb, ERRORS_RO);
3507 /* block_validity enabled by default; disable with noblock_validity */
3508 set_opt(sb, BLOCK_VALIDITY);
3509 if (def_mount_opts & EXT4_DEFM_DISCARD)
3510 set_opt(sb, DISCARD);
3512 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3513 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3514 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3515 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3516 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3518 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3519 set_opt(sb, BARRIER);
3522 * enable delayed allocation by default
3523 * Use -o nodelalloc to turn it off
3525 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3526 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3527 set_opt(sb, DELALLOC);
3530 * set default s_li_wait_mult for lazyinit, for the case there is
3531 * no mount option specified.
3533 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3535 if (sbi->s_es->s_mount_opts[0]) {
3536 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3537 sizeof(sbi->s_es->s_mount_opts),
3541 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3542 &journal_ioprio, 0)) {
3543 ext4_msg(sb, KERN_WARNING,
3544 "failed to parse options in superblock: %s",
3547 kfree(s_mount_opts);
3549 sbi->s_def_mount_opt = sbi->s_mount_opt;
3550 if (!parse_options((char *) data, sb, &journal_devnum,
3551 &journal_ioprio, 0))
3554 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3555 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3556 "with data=journal disables delayed "
3557 "allocation and O_DIRECT support!\n");
3558 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3559 ext4_msg(sb, KERN_ERR, "can't mount with "
3560 "both data=journal and delalloc");
3563 if (test_opt(sb, DIOREAD_NOLOCK)) {
3564 ext4_msg(sb, KERN_ERR, "can't mount with "
3565 "both data=journal and dioread_nolock");
3568 if (test_opt(sb, DAX)) {
3569 ext4_msg(sb, KERN_ERR, "can't mount with "
3570 "both data=journal and dax");
3573 if (ext4_has_feature_encrypt(sb)) {
3574 ext4_msg(sb, KERN_WARNING,
3575 "encrypted files will use data=ordered "
3576 "instead of data journaling mode");
3578 if (test_opt(sb, DELALLOC))
3579 clear_opt(sb, DELALLOC);
3581 sb->s_iflags |= SB_I_CGROUPWB;
3584 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3585 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3587 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3588 (ext4_has_compat_features(sb) ||
3589 ext4_has_ro_compat_features(sb) ||
3590 ext4_has_incompat_features(sb)))
3591 ext4_msg(sb, KERN_WARNING,
3592 "feature flags set on rev 0 fs, "
3593 "running e2fsck is recommended");
3595 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3596 set_opt2(sb, HURD_COMPAT);
3597 if (ext4_has_feature_64bit(sb)) {
3598 ext4_msg(sb, KERN_ERR,
3599 "The Hurd can't support 64-bit file systems");
3604 if (IS_EXT2_SB(sb)) {
3605 if (ext2_feature_set_ok(sb))
3606 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3607 "using the ext4 subsystem");
3609 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3610 "to feature incompatibilities");
3615 if (IS_EXT3_SB(sb)) {
3616 if (ext3_feature_set_ok(sb))
3617 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3618 "using the ext4 subsystem");
3620 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3621 "to feature incompatibilities");
3627 * Check feature flags regardless of the revision level, since we
3628 * previously didn't change the revision level when setting the flags,
3629 * so there is a chance incompat flags are set on a rev 0 filesystem.
3631 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3634 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3635 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3636 blocksize > EXT4_MAX_BLOCK_SIZE) {
3637 ext4_msg(sb, KERN_ERR,
3638 "Unsupported filesystem blocksize %d (%d log_block_size)",
3639 blocksize, le32_to_cpu(es->s_log_block_size));
3642 if (le32_to_cpu(es->s_log_block_size) >
3643 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3644 ext4_msg(sb, KERN_ERR,
3645 "Invalid log block size: %u",
3646 le32_to_cpu(es->s_log_block_size));
3650 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3651 ext4_msg(sb, KERN_ERR,
3652 "Number of reserved GDT blocks insanely large: %d",
3653 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3657 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3658 err = bdev_dax_supported(sb, blocksize);
3663 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3664 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3665 es->s_encryption_level);
3669 if (sb->s_blocksize != blocksize) {
3670 /* Validate the filesystem blocksize */
3671 if (!sb_set_blocksize(sb, blocksize)) {
3672 ext4_msg(sb, KERN_ERR, "bad block size %d",
3678 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3679 offset = do_div(logical_sb_block, blocksize);
3680 bh = sb_bread_unmovable(sb, logical_sb_block);
3682 ext4_msg(sb, KERN_ERR,
3683 "Can't read superblock on 2nd try");
3686 es = (struct ext4_super_block *)(bh->b_data + offset);
3688 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3689 ext4_msg(sb, KERN_ERR,
3690 "Magic mismatch, very weird!");
3695 has_huge_files = ext4_has_feature_huge_file(sb);
3696 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3698 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3700 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3701 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3702 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3704 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3705 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3706 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3707 (!is_power_of_2(sbi->s_inode_size)) ||
3708 (sbi->s_inode_size > blocksize)) {
3709 ext4_msg(sb, KERN_ERR,
3710 "unsupported inode size: %d",
3714 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3715 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3718 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3719 if (ext4_has_feature_64bit(sb)) {
3720 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3721 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3722 !is_power_of_2(sbi->s_desc_size)) {
3723 ext4_msg(sb, KERN_ERR,
3724 "unsupported descriptor size %lu",
3729 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3731 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3732 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3734 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3735 if (sbi->s_inodes_per_block == 0)
3737 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3738 sbi->s_inodes_per_group > blocksize * 8) {
3739 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3740 sbi->s_blocks_per_group);
3743 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3744 sbi->s_inodes_per_block;
3745 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3747 sbi->s_mount_state = le16_to_cpu(es->s_state);
3748 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3749 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3751 for (i = 0; i < 4; i++)
3752 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3753 sbi->s_def_hash_version = es->s_def_hash_version;
3754 if (ext4_has_feature_dir_index(sb)) {
3755 i = le32_to_cpu(es->s_flags);
3756 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3757 sbi->s_hash_unsigned = 3;
3758 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3759 #ifdef __CHAR_UNSIGNED__
3760 if (!(sb->s_flags & MS_RDONLY))
3762 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3763 sbi->s_hash_unsigned = 3;
3765 if (!(sb->s_flags & MS_RDONLY))
3767 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3772 /* Handle clustersize */
3773 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3774 has_bigalloc = ext4_has_feature_bigalloc(sb);
3776 if (clustersize < blocksize) {
3777 ext4_msg(sb, KERN_ERR,
3778 "cluster size (%d) smaller than "
3779 "block size (%d)", clustersize, blocksize);
3782 if (le32_to_cpu(es->s_log_cluster_size) >
3783 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3784 ext4_msg(sb, KERN_ERR,
3785 "Invalid log cluster size: %u",
3786 le32_to_cpu(es->s_log_cluster_size));
3789 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3790 le32_to_cpu(es->s_log_block_size);
3791 sbi->s_clusters_per_group =
3792 le32_to_cpu(es->s_clusters_per_group);
3793 if (sbi->s_clusters_per_group > blocksize * 8) {
3794 ext4_msg(sb, KERN_ERR,
3795 "#clusters per group too big: %lu",
3796 sbi->s_clusters_per_group);
3799 if (sbi->s_blocks_per_group !=
3800 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3801 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3802 "clusters per group (%lu) inconsistent",
3803 sbi->s_blocks_per_group,
3804 sbi->s_clusters_per_group);
3808 if (clustersize != blocksize) {
3809 ext4_warning(sb, "fragment/cluster size (%d) != "
3810 "block size (%d)", clustersize,
3812 clustersize = blocksize;
3814 if (sbi->s_blocks_per_group > blocksize * 8) {
3815 ext4_msg(sb, KERN_ERR,
3816 "#blocks per group too big: %lu",
3817 sbi->s_blocks_per_group);
3820 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3821 sbi->s_cluster_bits = 0;
3823 sbi->s_cluster_ratio = clustersize / blocksize;
3825 /* Do we have standard group size of clustersize * 8 blocks ? */
3826 if (sbi->s_blocks_per_group == clustersize << 3)
3827 set_opt2(sb, STD_GROUP_SIZE);
3830 * Test whether we have more sectors than will fit in sector_t,
3831 * and whether the max offset is addressable by the page cache.
3833 err = generic_check_addressable(sb->s_blocksize_bits,
3834 ext4_blocks_count(es));
3836 ext4_msg(sb, KERN_ERR, "filesystem"
3837 " too large to mount safely on this system");
3838 if (sizeof(sector_t) < 8)
3839 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3843 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3846 /* check blocks count against device size */
3847 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3848 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3849 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3850 "exceeds size of device (%llu blocks)",
3851 ext4_blocks_count(es), blocks_count);
3856 * It makes no sense for the first data block to be beyond the end
3857 * of the filesystem.
3859 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3860 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3861 "block %u is beyond end of filesystem (%llu)",
3862 le32_to_cpu(es->s_first_data_block),
3863 ext4_blocks_count(es));
3866 blocks_count = (ext4_blocks_count(es) -
3867 le32_to_cpu(es->s_first_data_block) +
3868 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3869 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3870 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3871 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3872 "(block count %llu, first data block %u, "
3873 "blocks per group %lu)", sbi->s_groups_count,
3874 ext4_blocks_count(es),
3875 le32_to_cpu(es->s_first_data_block),
3876 EXT4_BLOCKS_PER_GROUP(sb));
3879 sbi->s_groups_count = blocks_count;
3880 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3881 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3882 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3883 EXT4_DESC_PER_BLOCK(sb);
3884 if (ext4_has_feature_meta_bg(sb)) {
3885 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3886 ext4_msg(sb, KERN_WARNING,
3887 "first meta block group too large: %u "
3888 "(group descriptor block count %u)",
3889 le32_to_cpu(es->s_first_meta_bg), db_count);
3893 sbi->s_group_desc = kvmalloc(db_count *
3894 sizeof(struct buffer_head *),
3896 if (sbi->s_group_desc == NULL) {
3897 ext4_msg(sb, KERN_ERR, "not enough memory");
3902 bgl_lock_init(sbi->s_blockgroup_lock);
3904 /* Pre-read the descriptors into the buffer cache */
3905 for (i = 0; i < db_count; i++) {
3906 block = descriptor_loc(sb, logical_sb_block, i);
3907 sb_breadahead(sb, block);
3910 for (i = 0; i < db_count; i++) {
3911 block = descriptor_loc(sb, logical_sb_block, i);
3912 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3913 if (!sbi->s_group_desc[i]) {
3914 ext4_msg(sb, KERN_ERR,
3915 "can't read group descriptor %d", i);
3920 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3921 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3922 ret = -EFSCORRUPTED;
3926 sbi->s_gdb_count = db_count;
3927 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3928 spin_lock_init(&sbi->s_next_gen_lock);
3930 setup_timer(&sbi->s_err_report, print_daily_error_info,
3931 (unsigned long) sb);
3933 /* Register extent status tree shrinker */
3934 if (ext4_es_register_shrinker(sbi))
3937 sbi->s_stripe = ext4_get_stripe_size(sbi);
3938 sbi->s_extent_max_zeroout_kb = 32;
3941 * set up enough so that it can read an inode
3943 sb->s_op = &ext4_sops;
3944 sb->s_export_op = &ext4_export_ops;
3945 sb->s_xattr = ext4_xattr_handlers;
3946 sb->s_cop = &ext4_cryptops;
3948 sb->dq_op = &ext4_quota_operations;
3949 if (ext4_has_feature_quota(sb))
3950 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3952 sb->s_qcop = &ext4_qctl_operations;
3953 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3955 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3957 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3958 mutex_init(&sbi->s_orphan_lock);
3962 needs_recovery = (es->s_last_orphan != 0 ||
3963 ext4_has_feature_journal_needs_recovery(sb));
3965 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3966 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3967 goto failed_mount3a;
3970 * The first inode we look at is the journal inode. Don't try
3971 * root first: it may be modified in the journal!
3973 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3974 err = ext4_load_journal(sb, es, journal_devnum);
3976 goto failed_mount3a;
3977 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3978 ext4_has_feature_journal_needs_recovery(sb)) {
3979 ext4_msg(sb, KERN_ERR, "required journal recovery "
3980 "suppressed and not mounted read-only");
3981 goto failed_mount_wq;
3983 /* Nojournal mode, all journal mount options are illegal */
3984 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3985 ext4_msg(sb, KERN_ERR, "can't mount with "
3986 "journal_checksum, fs mounted w/o journal");
3987 goto failed_mount_wq;
3989 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3990 ext4_msg(sb, KERN_ERR, "can't mount with "
3991 "journal_async_commit, fs mounted w/o journal");
3992 goto failed_mount_wq;
3994 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3995 ext4_msg(sb, KERN_ERR, "can't mount with "
3996 "commit=%lu, fs mounted w/o journal",
3997 sbi->s_commit_interval / HZ);
3998 goto failed_mount_wq;
4000 if (EXT4_MOUNT_DATA_FLAGS &
4001 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4002 ext4_msg(sb, KERN_ERR, "can't mount with "
4003 "data=, fs mounted w/o journal");
4004 goto failed_mount_wq;
4006 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4007 clear_opt(sb, JOURNAL_CHECKSUM);
4008 clear_opt(sb, DATA_FLAGS);
4009 sbi->s_journal = NULL;
4014 if (ext4_has_feature_64bit(sb) &&
4015 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4016 JBD2_FEATURE_INCOMPAT_64BIT)) {
4017 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4018 goto failed_mount_wq;
4021 if (!set_journal_csum_feature_set(sb)) {
4022 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4024 goto failed_mount_wq;
4027 /* We have now updated the journal if required, so we can
4028 * validate the data journaling mode. */
4029 switch (test_opt(sb, DATA_FLAGS)) {
4031 /* No mode set, assume a default based on the journal
4032 * capabilities: ORDERED_DATA if the journal can
4033 * cope, else JOURNAL_DATA
4035 if (jbd2_journal_check_available_features
4036 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4037 set_opt(sb, ORDERED_DATA);
4039 set_opt(sb, JOURNAL_DATA);
4042 case EXT4_MOUNT_ORDERED_DATA:
4043 case EXT4_MOUNT_WRITEBACK_DATA:
4044 if (!jbd2_journal_check_available_features
4045 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4046 ext4_msg(sb, KERN_ERR, "Journal does not support "
4047 "requested data journaling mode");
4048 goto failed_mount_wq;
4054 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4055 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4056 ext4_msg(sb, KERN_ERR, "can't mount with "
4057 "journal_async_commit in data=ordered mode");
4058 goto failed_mount_wq;
4061 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4063 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4066 sbi->s_mb_cache = ext4_xattr_create_cache();
4067 if (!sbi->s_mb_cache) {
4068 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4069 goto failed_mount_wq;
4072 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4073 (blocksize != PAGE_SIZE)) {
4074 ext4_msg(sb, KERN_ERR,
4075 "Unsupported blocksize for fs encryption");
4076 goto failed_mount_wq;
4079 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4080 !ext4_has_feature_encrypt(sb)) {
4081 ext4_set_feature_encrypt(sb);
4082 ext4_commit_super(sb, 1);
4086 * Get the # of file system overhead blocks from the
4087 * superblock if present.
4089 if (es->s_overhead_clusters)
4090 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4092 err = ext4_calculate_overhead(sb);
4094 goto failed_mount_wq;
4098 * The maximum number of concurrent works can be high and
4099 * concurrency isn't really necessary. Limit it to 1.
4101 EXT4_SB(sb)->rsv_conversion_wq =
4102 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4103 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4104 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4110 * The jbd2_journal_load will have done any necessary log recovery,
4111 * so we can safely mount the rest of the filesystem now.
4114 root = ext4_iget(sb, EXT4_ROOT_INO);
4116 ext4_msg(sb, KERN_ERR, "get root inode failed");
4117 ret = PTR_ERR(root);
4121 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4122 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4126 sb->s_root = d_make_root(root);
4128 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4133 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4134 sb->s_flags |= MS_RDONLY;
4136 /* determine the minimum size of new large inodes, if present */
4137 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4138 sbi->s_want_extra_isize == 0) {
4139 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4140 EXT4_GOOD_OLD_INODE_SIZE;
4141 if (ext4_has_feature_extra_isize(sb)) {
4142 if (sbi->s_want_extra_isize <
4143 le16_to_cpu(es->s_want_extra_isize))
4144 sbi->s_want_extra_isize =
4145 le16_to_cpu(es->s_want_extra_isize);
4146 if (sbi->s_want_extra_isize <
4147 le16_to_cpu(es->s_min_extra_isize))
4148 sbi->s_want_extra_isize =
4149 le16_to_cpu(es->s_min_extra_isize);
4152 /* Check if enough inode space is available */
4153 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4154 sbi->s_inode_size) {
4155 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4156 EXT4_GOOD_OLD_INODE_SIZE;
4157 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4161 ext4_set_resv_clusters(sb);
4163 err = ext4_setup_system_zone(sb);
4165 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4167 goto failed_mount4a;
4171 err = ext4_mb_init(sb);
4173 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4178 block = ext4_count_free_clusters(sb);
4179 ext4_free_blocks_count_set(sbi->s_es,
4180 EXT4_C2B(sbi, block));
4181 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4184 unsigned long freei = ext4_count_free_inodes(sb);
4185 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4186 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4190 err = percpu_counter_init(&sbi->s_dirs_counter,
4191 ext4_count_dirs(sb), GFP_KERNEL);
4193 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4196 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4199 ext4_msg(sb, KERN_ERR, "insufficient memory");
4203 if (ext4_has_feature_flex_bg(sb))
4204 if (!ext4_fill_flex_info(sb)) {
4205 ext4_msg(sb, KERN_ERR,
4206 "unable to initialize "
4207 "flex_bg meta info!");
4211 err = ext4_register_li_request(sb, first_not_zeroed);
4215 err = ext4_register_sysfs(sb);
4220 /* Enable quota usage during mount. */
4221 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4222 err = ext4_enable_quotas(sb);
4226 #endif /* CONFIG_QUOTA */
4228 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4229 ext4_orphan_cleanup(sb, es);
4230 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4231 if (needs_recovery) {
4232 ext4_msg(sb, KERN_INFO, "recovery complete");
4233 ext4_mark_recovery_complete(sb, es);
4235 if (EXT4_SB(sb)->s_journal) {
4236 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4237 descr = " journalled data mode";
4238 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4239 descr = " ordered data mode";
4241 descr = " writeback data mode";
4243 descr = "out journal";
4245 if (test_opt(sb, DISCARD)) {
4246 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4247 if (!blk_queue_discard(q))
4248 ext4_msg(sb, KERN_WARNING,
4249 "mounting with \"discard\" option, but "
4250 "the device does not support discard");
4253 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4254 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4255 "Opts: %.*s%s%s", descr,
4256 (int) sizeof(sbi->s_es->s_mount_opts),
4257 sbi->s_es->s_mount_opts,
4258 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4260 if (es->s_error_count)
4261 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4263 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4264 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4265 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4266 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4273 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4278 ext4_unregister_sysfs(sb);
4281 ext4_unregister_li_request(sb);
4283 ext4_mb_release(sb);
4284 if (sbi->s_flex_groups)
4285 kvfree(sbi->s_flex_groups);
4286 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4287 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4288 percpu_counter_destroy(&sbi->s_dirs_counter);
4289 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4291 ext4_ext_release(sb);
4292 ext4_release_system_zone(sb);
4297 ext4_msg(sb, KERN_ERR, "mount failed");
4298 if (EXT4_SB(sb)->rsv_conversion_wq)
4299 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4301 if (sbi->s_mb_cache) {
4302 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4303 sbi->s_mb_cache = NULL;
4305 if (sbi->s_journal) {
4306 jbd2_journal_destroy(sbi->s_journal);
4307 sbi->s_journal = NULL;
4310 ext4_es_unregister_shrinker(sbi);
4312 del_timer_sync(&sbi->s_err_report);
4314 kthread_stop(sbi->s_mmp_tsk);
4316 for (i = 0; i < db_count; i++)
4317 brelse(sbi->s_group_desc[i]);
4318 kvfree(sbi->s_group_desc);
4320 if (sbi->s_chksum_driver)
4321 crypto_free_shash(sbi->s_chksum_driver);
4323 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4324 kfree(sbi->s_qf_names[i]);
4326 ext4_blkdev_remove(sbi);
4329 sb->s_fs_info = NULL;
4330 kfree(sbi->s_blockgroup_lock);
4334 return err ? err : ret;
4338 * Setup any per-fs journal parameters now. We'll do this both on
4339 * initial mount, once the journal has been initialised but before we've
4340 * done any recovery; and again on any subsequent remount.
4342 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4344 struct ext4_sb_info *sbi = EXT4_SB(sb);
4346 journal->j_commit_interval = sbi->s_commit_interval;
4347 journal->j_min_batch_time = sbi->s_min_batch_time;
4348 journal->j_max_batch_time = sbi->s_max_batch_time;
4350 write_lock(&journal->j_state_lock);
4351 if (test_opt(sb, BARRIER))
4352 journal->j_flags |= JBD2_BARRIER;
4354 journal->j_flags &= ~JBD2_BARRIER;
4355 if (test_opt(sb, DATA_ERR_ABORT))
4356 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4358 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4359 write_unlock(&journal->j_state_lock);
4362 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4363 unsigned int journal_inum)
4365 struct inode *journal_inode;
4368 * Test for the existence of a valid inode on disk. Bad things
4369 * happen if we iget() an unused inode, as the subsequent iput()
4370 * will try to delete it.
4372 journal_inode = ext4_iget(sb, journal_inum);
4373 if (IS_ERR(journal_inode)) {
4374 ext4_msg(sb, KERN_ERR, "no journal found");
4377 if (!journal_inode->i_nlink) {
4378 make_bad_inode(journal_inode);
4379 iput(journal_inode);
4380 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4384 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4385 journal_inode, journal_inode->i_size);
4386 if (!S_ISREG(journal_inode->i_mode)) {
4387 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4388 iput(journal_inode);
4391 return journal_inode;
4394 static journal_t *ext4_get_journal(struct super_block *sb,
4395 unsigned int journal_inum)
4397 struct inode *journal_inode;
4400 BUG_ON(!ext4_has_feature_journal(sb));
4402 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4406 journal = jbd2_journal_init_inode(journal_inode);
4408 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4409 iput(journal_inode);
4412 journal->j_private = sb;
4413 ext4_init_journal_params(sb, journal);
4417 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4420 struct buffer_head *bh;
4424 int hblock, blocksize;
4425 ext4_fsblk_t sb_block;
4426 unsigned long offset;
4427 struct ext4_super_block *es;
4428 struct block_device *bdev;
4430 BUG_ON(!ext4_has_feature_journal(sb));
4432 bdev = ext4_blkdev_get(j_dev, sb);
4436 blocksize = sb->s_blocksize;
4437 hblock = bdev_logical_block_size(bdev);
4438 if (blocksize < hblock) {
4439 ext4_msg(sb, KERN_ERR,
4440 "blocksize too small for journal device");
4444 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4445 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4446 set_blocksize(bdev, blocksize);
4447 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4448 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4449 "external journal");
4453 es = (struct ext4_super_block *) (bh->b_data + offset);
4454 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4455 !(le32_to_cpu(es->s_feature_incompat) &
4456 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4457 ext4_msg(sb, KERN_ERR, "external journal has "
4463 if ((le32_to_cpu(es->s_feature_ro_compat) &
4464 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4465 es->s_checksum != ext4_superblock_csum(sb, es)) {
4466 ext4_msg(sb, KERN_ERR, "external journal has "
4467 "corrupt superblock");
4472 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4473 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4478 len = ext4_blocks_count(es);
4479 start = sb_block + 1;
4480 brelse(bh); /* we're done with the superblock */
4482 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4483 start, len, blocksize);
4485 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4488 journal->j_private = sb;
4489 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4490 wait_on_buffer(journal->j_sb_buffer);
4491 if (!buffer_uptodate(journal->j_sb_buffer)) {
4492 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4495 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4496 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4497 "user (unsupported) - %d",
4498 be32_to_cpu(journal->j_superblock->s_nr_users));
4501 EXT4_SB(sb)->journal_bdev = bdev;
4502 ext4_init_journal_params(sb, journal);
4506 jbd2_journal_destroy(journal);
4508 ext4_blkdev_put(bdev);
4512 static int ext4_load_journal(struct super_block *sb,
4513 struct ext4_super_block *es,
4514 unsigned long journal_devnum)
4517 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4520 int really_read_only;
4522 BUG_ON(!ext4_has_feature_journal(sb));
4524 if (journal_devnum &&
4525 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4526 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4527 "numbers have changed");
4528 journal_dev = new_decode_dev(journal_devnum);
4530 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4532 really_read_only = bdev_read_only(sb->s_bdev);
4535 * Are we loading a blank journal or performing recovery after a
4536 * crash? For recovery, we need to check in advance whether we
4537 * can get read-write access to the device.
4539 if (ext4_has_feature_journal_needs_recovery(sb)) {
4540 if (sb->s_flags & MS_RDONLY) {
4541 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4542 "required on readonly filesystem");
4543 if (really_read_only) {
4544 ext4_msg(sb, KERN_ERR, "write access "
4545 "unavailable, cannot proceed");
4548 ext4_msg(sb, KERN_INFO, "write access will "
4549 "be enabled during recovery");
4553 if (journal_inum && journal_dev) {
4554 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4555 "and inode journals!");
4560 if (!(journal = ext4_get_journal(sb, journal_inum)))
4563 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4567 if (!(journal->j_flags & JBD2_BARRIER))
4568 ext4_msg(sb, KERN_INFO, "barriers disabled");
4570 if (!ext4_has_feature_journal_needs_recovery(sb))
4571 err = jbd2_journal_wipe(journal, !really_read_only);
4573 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4575 memcpy(save, ((char *) es) +
4576 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4577 err = jbd2_journal_load(journal);
4579 memcpy(((char *) es) + EXT4_S_ERR_START,
4580 save, EXT4_S_ERR_LEN);
4585 ext4_msg(sb, KERN_ERR, "error loading journal");
4586 jbd2_journal_destroy(journal);
4590 EXT4_SB(sb)->s_journal = journal;
4591 ext4_clear_journal_err(sb, es);
4593 if (!really_read_only && journal_devnum &&
4594 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4595 es->s_journal_dev = cpu_to_le32(journal_devnum);
4597 /* Make sure we flush the recovery flag to disk. */
4598 ext4_commit_super(sb, 1);
4604 static int ext4_commit_super(struct super_block *sb, int sync)
4606 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4607 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4610 if (!sbh || block_device_ejected(sb))
4613 * If the file system is mounted read-only, don't update the
4614 * superblock write time. This avoids updating the superblock
4615 * write time when we are mounting the root file system
4616 * read/only but we need to replay the journal; at that point,
4617 * for people who are east of GMT and who make their clock
4618 * tick in localtime for Windows bug-for-bug compatibility,
4619 * the clock is set in the future, and this will cause e2fsck
4620 * to complain and force a full file system check.
4622 if (!(sb->s_flags & MS_RDONLY))
4623 es->s_wtime = cpu_to_le32(get_seconds());
4624 if (sb->s_bdev->bd_part)
4625 es->s_kbytes_written =
4626 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4627 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4628 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4630 es->s_kbytes_written =
4631 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4632 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4633 ext4_free_blocks_count_set(es,
4634 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4635 &EXT4_SB(sb)->s_freeclusters_counter)));
4636 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4637 es->s_free_inodes_count =
4638 cpu_to_le32(percpu_counter_sum_positive(
4639 &EXT4_SB(sb)->s_freeinodes_counter));
4640 BUFFER_TRACE(sbh, "marking dirty");
4641 ext4_superblock_csum_set(sb);
4644 if (buffer_write_io_error(sbh)) {
4646 * Oh, dear. A previous attempt to write the
4647 * superblock failed. This could happen because the
4648 * USB device was yanked out. Or it could happen to
4649 * be a transient write error and maybe the block will
4650 * be remapped. Nothing we can do but to retry the
4651 * write and hope for the best.
4653 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4654 "superblock detected");
4655 clear_buffer_write_io_error(sbh);
4656 set_buffer_uptodate(sbh);
4658 mark_buffer_dirty(sbh);
4661 error = __sync_dirty_buffer(sbh,
4662 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4666 error = buffer_write_io_error(sbh);
4668 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4670 clear_buffer_write_io_error(sbh);
4671 set_buffer_uptodate(sbh);
4678 * Have we just finished recovery? If so, and if we are mounting (or
4679 * remounting) the filesystem readonly, then we will end up with a
4680 * consistent fs on disk. Record that fact.
4682 static void ext4_mark_recovery_complete(struct super_block *sb,
4683 struct ext4_super_block *es)
4685 journal_t *journal = EXT4_SB(sb)->s_journal;
4687 if (!ext4_has_feature_journal(sb)) {
4688 BUG_ON(journal != NULL);
4691 jbd2_journal_lock_updates(journal);
4692 if (jbd2_journal_flush(journal) < 0)
4695 if (ext4_has_feature_journal_needs_recovery(sb) &&
4696 sb->s_flags & MS_RDONLY) {
4697 ext4_clear_feature_journal_needs_recovery(sb);
4698 ext4_commit_super(sb, 1);
4702 jbd2_journal_unlock_updates(journal);
4706 * If we are mounting (or read-write remounting) a filesystem whose journal
4707 * has recorded an error from a previous lifetime, move that error to the
4708 * main filesystem now.
4710 static void ext4_clear_journal_err(struct super_block *sb,
4711 struct ext4_super_block *es)
4717 BUG_ON(!ext4_has_feature_journal(sb));
4719 journal = EXT4_SB(sb)->s_journal;
4722 * Now check for any error status which may have been recorded in the
4723 * journal by a prior ext4_error() or ext4_abort()
4726 j_errno = jbd2_journal_errno(journal);
4730 errstr = ext4_decode_error(sb, j_errno, nbuf);
4731 ext4_warning(sb, "Filesystem error recorded "
4732 "from previous mount: %s", errstr);
4733 ext4_warning(sb, "Marking fs in need of filesystem check.");
4735 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4736 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4737 ext4_commit_super(sb, 1);
4739 jbd2_journal_clear_err(journal);
4740 jbd2_journal_update_sb_errno(journal);
4745 * Force the running and committing transactions to commit,
4746 * and wait on the commit.
4748 int ext4_force_commit(struct super_block *sb)
4752 if (sb->s_flags & MS_RDONLY)
4755 journal = EXT4_SB(sb)->s_journal;
4756 return ext4_journal_force_commit(journal);
4759 static int ext4_sync_fs(struct super_block *sb, int wait)
4763 bool needs_barrier = false;
4764 struct ext4_sb_info *sbi = EXT4_SB(sb);
4766 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4769 trace_ext4_sync_fs(sb, wait);
4770 flush_workqueue(sbi->rsv_conversion_wq);
4772 * Writeback quota in non-journalled quota case - journalled quota has
4775 dquot_writeback_dquots(sb, -1);
4777 * Data writeback is possible w/o journal transaction, so barrier must
4778 * being sent at the end of the function. But we can skip it if
4779 * transaction_commit will do it for us.
4781 if (sbi->s_journal) {
4782 target = jbd2_get_latest_transaction(sbi->s_journal);
4783 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4784 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4785 needs_barrier = true;
4787 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4789 ret = jbd2_log_wait_commit(sbi->s_journal,
4792 } else if (wait && test_opt(sb, BARRIER))
4793 needs_barrier = true;
4794 if (needs_barrier) {
4796 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4805 * LVM calls this function before a (read-only) snapshot is created. This
4806 * gives us a chance to flush the journal completely and mark the fs clean.
4808 * Note that only this function cannot bring a filesystem to be in a clean
4809 * state independently. It relies on upper layer to stop all data & metadata
4812 static int ext4_freeze(struct super_block *sb)
4817 if (sb->s_flags & MS_RDONLY)
4820 journal = EXT4_SB(sb)->s_journal;
4823 /* Now we set up the journal barrier. */
4824 jbd2_journal_lock_updates(journal);
4827 * Don't clear the needs_recovery flag if we failed to
4828 * flush the journal.
4830 error = jbd2_journal_flush(journal);
4834 /* Journal blocked and flushed, clear needs_recovery flag. */
4835 ext4_clear_feature_journal_needs_recovery(sb);
4838 error = ext4_commit_super(sb, 1);
4841 /* we rely on upper layer to stop further updates */
4842 jbd2_journal_unlock_updates(journal);
4847 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4848 * flag here, even though the filesystem is not technically dirty yet.
4850 static int ext4_unfreeze(struct super_block *sb)
4852 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb)))
4855 if (EXT4_SB(sb)->s_journal) {
4856 /* Reset the needs_recovery flag before the fs is unlocked. */
4857 ext4_set_feature_journal_needs_recovery(sb);
4860 ext4_commit_super(sb, 1);
4865 * Structure to save mount options for ext4_remount's benefit
4867 struct ext4_mount_options {
4868 unsigned long s_mount_opt;
4869 unsigned long s_mount_opt2;
4872 unsigned long s_commit_interval;
4873 u32 s_min_batch_time, s_max_batch_time;
4876 char *s_qf_names[EXT4_MAXQUOTAS];
4880 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4882 struct ext4_super_block *es;
4883 struct ext4_sb_info *sbi = EXT4_SB(sb);
4884 unsigned long old_sb_flags;
4885 struct ext4_mount_options old_opts;
4886 int enable_quota = 0;
4888 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4893 char *orig_data = kstrdup(data, GFP_KERNEL);
4895 /* Store the original options */
4896 old_sb_flags = sb->s_flags;
4897 old_opts.s_mount_opt = sbi->s_mount_opt;
4898 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4899 old_opts.s_resuid = sbi->s_resuid;
4900 old_opts.s_resgid = sbi->s_resgid;
4901 old_opts.s_commit_interval = sbi->s_commit_interval;
4902 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4903 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4905 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4906 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4907 if (sbi->s_qf_names[i]) {
4908 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4910 if (!old_opts.s_qf_names[i]) {
4911 for (j = 0; j < i; j++)
4912 kfree(old_opts.s_qf_names[j]);
4917 old_opts.s_qf_names[i] = NULL;
4919 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4920 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4922 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4927 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4928 test_opt(sb, JOURNAL_CHECKSUM)) {
4929 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4930 "during remount not supported; ignoring");
4931 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4934 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4935 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4936 ext4_msg(sb, KERN_ERR, "can't mount with "
4937 "both data=journal and delalloc");
4941 if (test_opt(sb, DIOREAD_NOLOCK)) {
4942 ext4_msg(sb, KERN_ERR, "can't mount with "
4943 "both data=journal and dioread_nolock");
4947 if (test_opt(sb, DAX)) {
4948 ext4_msg(sb, KERN_ERR, "can't mount with "
4949 "both data=journal and dax");
4953 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
4954 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4955 ext4_msg(sb, KERN_ERR, "can't mount with "
4956 "journal_async_commit in data=ordered mode");
4962 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4963 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4964 "dax flag with busy inodes while remounting");
4965 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4968 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4969 ext4_abort(sb, "Abort forced by user");
4971 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4972 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4976 if (sbi->s_journal) {
4977 ext4_init_journal_params(sb, sbi->s_journal);
4978 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4981 if (*flags & MS_LAZYTIME)
4982 sb->s_flags |= MS_LAZYTIME;
4984 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4985 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4990 if (*flags & MS_RDONLY) {
4991 err = sync_filesystem(sb);
4994 err = dquot_suspend(sb, -1);
4999 * First of all, the unconditional stuff we have to do
5000 * to disable replay of the journal when we next remount
5002 sb->s_flags |= MS_RDONLY;
5005 * OK, test if we are remounting a valid rw partition
5006 * readonly, and if so set the rdonly flag and then
5007 * mark the partition as valid again.
5009 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5010 (sbi->s_mount_state & EXT4_VALID_FS))
5011 es->s_state = cpu_to_le16(sbi->s_mount_state);
5014 ext4_mark_recovery_complete(sb, es);
5016 /* Make sure we can mount this feature set readwrite */
5017 if (ext4_has_feature_readonly(sb) ||
5018 !ext4_feature_set_ok(sb, 0)) {
5023 * Make sure the group descriptor checksums
5024 * are sane. If they aren't, refuse to remount r/w.
5026 for (g = 0; g < sbi->s_groups_count; g++) {
5027 struct ext4_group_desc *gdp =
5028 ext4_get_group_desc(sb, g, NULL);
5030 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5031 ext4_msg(sb, KERN_ERR,
5032 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5033 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5034 le16_to_cpu(gdp->bg_checksum));
5041 * If we have an unprocessed orphan list hanging
5042 * around from a previously readonly bdev mount,
5043 * require a full umount/remount for now.
5045 if (es->s_last_orphan) {
5046 ext4_msg(sb, KERN_WARNING, "Couldn't "
5047 "remount RDWR because of unprocessed "
5048 "orphan inode list. Please "
5049 "umount/remount instead");
5055 * Mounting a RDONLY partition read-write, so reread
5056 * and store the current valid flag. (It may have
5057 * been changed by e2fsck since we originally mounted
5061 ext4_clear_journal_err(sb, es);
5062 sbi->s_mount_state = le16_to_cpu(es->s_state);
5063 if (!ext4_setup_super(sb, es, 0))
5064 sb->s_flags &= ~MS_RDONLY;
5065 if (ext4_has_feature_mmp(sb))
5066 if (ext4_multi_mount_protect(sb,
5067 le64_to_cpu(es->s_mmp_block))) {
5076 * Reinitialize lazy itable initialization thread based on
5079 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5080 ext4_unregister_li_request(sb);
5082 ext4_group_t first_not_zeroed;
5083 first_not_zeroed = ext4_has_uninit_itable(sb);
5084 ext4_register_li_request(sb, first_not_zeroed);
5087 ext4_setup_system_zone(sb);
5088 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5089 ext4_commit_super(sb, 1);
5092 /* Release old quota file names */
5093 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5094 kfree(old_opts.s_qf_names[i]);
5096 if (sb_any_quota_suspended(sb))
5097 dquot_resume(sb, -1);
5098 else if (ext4_has_feature_quota(sb)) {
5099 err = ext4_enable_quotas(sb);
5106 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5107 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5112 sb->s_flags = old_sb_flags;
5113 sbi->s_mount_opt = old_opts.s_mount_opt;
5114 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5115 sbi->s_resuid = old_opts.s_resuid;
5116 sbi->s_resgid = old_opts.s_resgid;
5117 sbi->s_commit_interval = old_opts.s_commit_interval;
5118 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5119 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5121 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5122 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5123 kfree(sbi->s_qf_names[i]);
5124 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5132 static int ext4_statfs_project(struct super_block *sb,
5133 kprojid_t projid, struct kstatfs *buf)
5136 struct dquot *dquot;
5140 qid = make_kqid_projid(projid);
5141 dquot = dqget(sb, qid);
5143 return PTR_ERR(dquot);
5144 spin_lock(&dq_data_lock);
5146 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5147 dquot->dq_dqb.dqb_bsoftlimit :
5148 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5149 if (limit && buf->f_blocks > limit) {
5150 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5151 buf->f_blocks = limit;
5152 buf->f_bfree = buf->f_bavail =
5153 (buf->f_blocks > curblock) ?
5154 (buf->f_blocks - curblock) : 0;
5157 limit = dquot->dq_dqb.dqb_isoftlimit ?
5158 dquot->dq_dqb.dqb_isoftlimit :
5159 dquot->dq_dqb.dqb_ihardlimit;
5160 if (limit && buf->f_files > limit) {
5161 buf->f_files = limit;
5163 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5164 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5167 spin_unlock(&dq_data_lock);
5173 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5175 struct super_block *sb = dentry->d_sb;
5176 struct ext4_sb_info *sbi = EXT4_SB(sb);
5177 struct ext4_super_block *es = sbi->s_es;
5178 ext4_fsblk_t overhead = 0, resv_blocks;
5181 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5183 if (!test_opt(sb, MINIX_DF))
5184 overhead = sbi->s_overhead;
5186 buf->f_type = EXT4_SUPER_MAGIC;
5187 buf->f_bsize = sb->s_blocksize;
5188 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5189 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5190 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5191 /* prevent underflow in case that few free space is available */
5192 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5193 buf->f_bavail = buf->f_bfree -
5194 (ext4_r_blocks_count(es) + resv_blocks);
5195 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5197 buf->f_files = le32_to_cpu(es->s_inodes_count);
5198 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5199 buf->f_namelen = EXT4_NAME_LEN;
5200 fsid = le64_to_cpup((void *)es->s_uuid) ^
5201 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5202 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5203 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5206 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5207 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5208 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5213 /* Helper function for writing quotas on sync - we need to start transaction
5214 * before quota file is locked for write. Otherwise the are possible deadlocks:
5215 * Process 1 Process 2
5216 * ext4_create() quota_sync()
5217 * jbd2_journal_start() write_dquot()
5218 * dquot_initialize() down(dqio_mutex)
5219 * down(dqio_mutex) jbd2_journal_start()
5225 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5227 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5230 static int ext4_write_dquot(struct dquot *dquot)
5234 struct inode *inode;
5236 inode = dquot_to_inode(dquot);
5237 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5238 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5240 return PTR_ERR(handle);
5241 ret = dquot_commit(dquot);
5242 err = ext4_journal_stop(handle);
5248 static int ext4_acquire_dquot(struct dquot *dquot)
5253 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5254 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5256 return PTR_ERR(handle);
5257 ret = dquot_acquire(dquot);
5258 err = ext4_journal_stop(handle);
5264 static int ext4_release_dquot(struct dquot *dquot)
5269 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5270 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5271 if (IS_ERR(handle)) {
5272 /* Release dquot anyway to avoid endless cycle in dqput() */
5273 dquot_release(dquot);
5274 return PTR_ERR(handle);
5276 ret = dquot_release(dquot);
5277 err = ext4_journal_stop(handle);
5283 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5285 struct super_block *sb = dquot->dq_sb;
5286 struct ext4_sb_info *sbi = EXT4_SB(sb);
5288 /* Are we journaling quotas? */
5289 if (ext4_has_feature_quota(sb) ||
5290 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5291 dquot_mark_dquot_dirty(dquot);
5292 return ext4_write_dquot(dquot);
5294 return dquot_mark_dquot_dirty(dquot);
5298 static int ext4_write_info(struct super_block *sb, int type)
5303 /* Data block + inode block */
5304 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5306 return PTR_ERR(handle);
5307 ret = dquot_commit_info(sb, type);
5308 err = ext4_journal_stop(handle);
5315 * Turn on quotas during mount time - we need to find
5316 * the quota file and such...
5318 static int ext4_quota_on_mount(struct super_block *sb, int type)
5320 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5321 EXT4_SB(sb)->s_jquota_fmt, type);
5324 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5326 struct ext4_inode_info *ei = EXT4_I(inode);
5328 /* The first argument of lockdep_set_subclass has to be
5329 * *exactly* the same as the argument to init_rwsem() --- in
5330 * this case, in init_once() --- or lockdep gets unhappy
5331 * because the name of the lock is set using the
5332 * stringification of the argument to init_rwsem().
5334 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5335 lockdep_set_subclass(&ei->i_data_sem, subclass);
5339 * Standard function to be called on quota_on
5341 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5342 const struct path *path)
5346 if (!test_opt(sb, QUOTA))
5349 /* Quotafile not on the same filesystem? */
5350 if (path->dentry->d_sb != sb)
5352 /* Journaling quota? */
5353 if (EXT4_SB(sb)->s_qf_names[type]) {
5354 /* Quotafile not in fs root? */
5355 if (path->dentry->d_parent != sb->s_root)
5356 ext4_msg(sb, KERN_WARNING,
5357 "Quota file not on filesystem root. "
5358 "Journaled quota will not work");
5362 * When we journal data on quota file, we have to flush journal to see
5363 * all updates to the file when we bypass pagecache...
5365 if (EXT4_SB(sb)->s_journal &&
5366 ext4_should_journal_data(d_inode(path->dentry))) {
5368 * We don't need to lock updates but journal_flush() could
5369 * otherwise be livelocked...
5371 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5372 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5373 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5378 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5379 err = dquot_quota_on(sb, type, format_id, path);
5381 lockdep_set_quota_inode(path->dentry->d_inode,
5384 struct inode *inode = d_inode(path->dentry);
5388 * Set inode flags to prevent userspace from messing with quota
5389 * files. If this fails, we return success anyway since quotas
5390 * are already enabled and this is not a hard failure.
5393 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5396 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5397 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5398 S_NOATIME | S_IMMUTABLE);
5399 ext4_mark_inode_dirty(handle, inode);
5400 ext4_journal_stop(handle);
5402 inode_unlock(inode);
5407 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5411 struct inode *qf_inode;
5412 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5413 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5414 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5415 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5418 BUG_ON(!ext4_has_feature_quota(sb));
5420 if (!qf_inums[type])
5423 qf_inode = ext4_iget(sb, qf_inums[type]);
5424 if (IS_ERR(qf_inode)) {
5425 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5426 return PTR_ERR(qf_inode);
5429 /* Don't account quota for quota files to avoid recursion */
5430 qf_inode->i_flags |= S_NOQUOTA;
5431 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5432 err = dquot_enable(qf_inode, type, format_id, flags);
5435 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5440 /* Enable usage tracking for all quota types. */
5441 static int ext4_enable_quotas(struct super_block *sb)
5444 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5445 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5446 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5447 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5449 bool quota_mopt[EXT4_MAXQUOTAS] = {
5450 test_opt(sb, USRQUOTA),
5451 test_opt(sb, GRPQUOTA),
5452 test_opt(sb, PRJQUOTA),
5455 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5456 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5457 if (qf_inums[type]) {
5458 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5459 DQUOT_USAGE_ENABLED |
5460 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5463 "Failed to enable quota tracking "
5464 "(type=%d, err=%d). Please run "
5465 "e2fsck to fix.", type, err);
5473 static int ext4_quota_off(struct super_block *sb, int type)
5475 struct inode *inode = sb_dqopt(sb)->files[type];
5479 /* Force all delayed allocation blocks to be allocated.
5480 * Caller already holds s_umount sem */
5481 if (test_opt(sb, DELALLOC))
5482 sync_filesystem(sb);
5484 if (!inode || !igrab(inode))
5487 err = dquot_quota_off(sb, type);
5493 * Update modification times of quota files when userspace can
5494 * start looking at them. If we fail, we return success anyway since
5495 * this is not a hard failure and quotas are already disabled.
5497 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5500 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5501 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5502 inode->i_mtime = inode->i_ctime = current_time(inode);
5503 ext4_mark_inode_dirty(handle, inode);
5504 ext4_journal_stop(handle);
5506 inode_unlock(inode);
5511 return dquot_quota_off(sb, type);
5514 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5515 * acquiring the locks... As quota files are never truncated and quota code
5516 * itself serializes the operations (and no one else should touch the files)
5517 * we don't have to be afraid of races */
5518 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5519 size_t len, loff_t off)
5521 struct inode *inode = sb_dqopt(sb)->files[type];
5522 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5523 int offset = off & (sb->s_blocksize - 1);
5526 struct buffer_head *bh;
5527 loff_t i_size = i_size_read(inode);
5531 if (off+len > i_size)
5534 while (toread > 0) {
5535 tocopy = sb->s_blocksize - offset < toread ?
5536 sb->s_blocksize - offset : toread;
5537 bh = ext4_bread(NULL, inode, blk, 0);
5540 if (!bh) /* A hole? */
5541 memset(data, 0, tocopy);
5543 memcpy(data, bh->b_data+offset, tocopy);
5553 /* Write to quotafile (we know the transaction is already started and has
5554 * enough credits) */
5555 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5556 const char *data, size_t len, loff_t off)
5558 struct inode *inode = sb_dqopt(sb)->files[type];
5559 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5560 int err, offset = off & (sb->s_blocksize - 1);
5562 struct buffer_head *bh;
5563 handle_t *handle = journal_current_handle();
5565 if (EXT4_SB(sb)->s_journal && !handle) {
5566 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5567 " cancelled because transaction is not started",
5568 (unsigned long long)off, (unsigned long long)len);
5572 * Since we account only one data block in transaction credits,
5573 * then it is impossible to cross a block boundary.
5575 if (sb->s_blocksize - offset < len) {
5576 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5577 " cancelled because not block aligned",
5578 (unsigned long long)off, (unsigned long long)len);
5583 bh = ext4_bread(handle, inode, blk,
5584 EXT4_GET_BLOCKS_CREATE |
5585 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5586 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5587 ext4_should_retry_alloc(inode->i_sb, &retries));
5592 BUFFER_TRACE(bh, "get write access");
5593 err = ext4_journal_get_write_access(handle, bh);
5599 memcpy(bh->b_data+offset, data, len);
5600 flush_dcache_page(bh->b_page);
5602 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5605 if (inode->i_size < off + len) {
5606 i_size_write(inode, off + len);
5607 EXT4_I(inode)->i_disksize = inode->i_size;
5608 ext4_mark_inode_dirty(handle, inode);
5613 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5615 const struct quota_format_ops *ops;
5617 if (!sb_has_quota_loaded(sb, qid->type))
5619 ops = sb_dqopt(sb)->ops[qid->type];
5620 if (!ops || !ops->get_next_id)
5622 return dquot_get_next_id(sb, qid);
5626 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5627 const char *dev_name, void *data)
5629 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5632 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5633 static inline void register_as_ext2(void)
5635 int err = register_filesystem(&ext2_fs_type);
5638 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5641 static inline void unregister_as_ext2(void)
5643 unregister_filesystem(&ext2_fs_type);
5646 static inline int ext2_feature_set_ok(struct super_block *sb)
5648 if (ext4_has_unknown_ext2_incompat_features(sb))
5650 if (sb->s_flags & MS_RDONLY)
5652 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5657 static inline void register_as_ext2(void) { }
5658 static inline void unregister_as_ext2(void) { }
5659 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5662 static inline void register_as_ext3(void)
5664 int err = register_filesystem(&ext3_fs_type);
5667 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5670 static inline void unregister_as_ext3(void)
5672 unregister_filesystem(&ext3_fs_type);
5675 static inline int ext3_feature_set_ok(struct super_block *sb)
5677 if (ext4_has_unknown_ext3_incompat_features(sb))
5679 if (!ext4_has_feature_journal(sb))
5681 if (sb->s_flags & MS_RDONLY)
5683 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5688 static struct file_system_type ext4_fs_type = {
5689 .owner = THIS_MODULE,
5691 .mount = ext4_mount,
5692 .kill_sb = kill_block_super,
5693 .fs_flags = FS_REQUIRES_DEV,
5695 MODULE_ALIAS_FS("ext4");
5697 /* Shared across all ext4 file systems */
5698 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5700 static int __init ext4_init_fs(void)
5704 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5705 ext4_li_info = NULL;
5706 mutex_init(&ext4_li_mtx);
5708 /* Build-time check for flags consistency */
5709 ext4_check_flag_values();
5711 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5712 init_waitqueue_head(&ext4__ioend_wq[i]);
5714 err = ext4_init_es();
5718 err = ext4_init_pageio();
5722 err = ext4_init_system_zone();
5726 err = ext4_init_sysfs();
5730 err = ext4_init_mballoc();
5733 err = init_inodecache();
5738 err = register_filesystem(&ext4_fs_type);
5744 unregister_as_ext2();
5745 unregister_as_ext3();
5746 destroy_inodecache();
5748 ext4_exit_mballoc();
5752 ext4_exit_system_zone();
5761 static void __exit ext4_exit_fs(void)
5763 ext4_destroy_lazyinit_thread();
5764 unregister_as_ext2();
5765 unregister_as_ext3();
5766 unregister_filesystem(&ext4_fs_type);
5767 destroy_inodecache();
5768 ext4_exit_mballoc();
5770 ext4_exit_system_zone();
5775 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5776 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5777 MODULE_LICENSE("GPL");
5778 module_init(ext4_init_fs)
5779 module_exit(ext4_exit_fs)