2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
100 /* various state flags, see below */
102 /* parent cfq_data */
103 struct cfq_data *cfqd;
104 /* service_tree member */
105 struct rb_node rb_node;
106 /* service_tree key */
107 unsigned long rb_key;
108 /* prio tree member */
109 struct rb_node p_node;
110 /* prio tree root we belong to, if any */
111 struct rb_root *p_root;
112 /* sorted list of pending requests */
113 struct rb_root sort_list;
114 /* if fifo isn't expired, next request to serve */
115 struct request *next_rq;
116 /* requests queued in sort_list */
118 /* currently allocated requests */
120 /* fifo list of requests in sort_list */
121 struct list_head fifo;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start;
125 unsigned int allocated_slice;
126 unsigned int slice_dispatch;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start;
129 unsigned long slice_end;
132 /* pending metadata requests */
134 /* number of requests that are on the dispatch list or inside driver */
137 /* io prio of this group */
138 unsigned short ioprio, org_ioprio;
139 unsigned short ioprio_class, org_ioprio_class;
144 sector_t last_request_pos;
146 struct cfq_rb_root *service_tree;
147 struct cfq_queue *new_cfqq;
148 struct cfq_group *cfqg;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors;
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
165 * Second index in the service_trees.
169 SYNC_NOIDLE_WORKLOAD = 1,
173 /* This is per cgroup per device grouping structure */
175 /* group service_tree member */
176 struct rb_node rb_node;
178 /* group service_tree key */
181 unsigned int new_weight;
184 /* number of cfqq currently on this group */
188 * Per group busy queus average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
193 unsigned int busy_queues_avg[CFQ_PRIO_NR];
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
200 * Counts are embedded in the cfq_rb_root
202 struct cfq_rb_root service_trees[2][3];
203 struct cfq_rb_root service_tree_idle;
205 unsigned long saved_workload_slice;
206 enum wl_type_t saved_workload;
207 enum wl_prio_t saved_serving_prio;
208 struct blkio_group blkg;
209 #ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node;
213 /* number of requests that are on the dispatch list or inside driver */
218 * Per block device queue structure
221 struct request_queue *queue;
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
224 struct cfq_group root_group;
227 * The priority currently being served
229 enum wl_prio_t serving_prio;
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
232 struct cfq_group *serving_group;
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
241 unsigned int busy_queues;
242 unsigned int busy_sync_queues;
248 * queue-depth detection
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
262 * idle window management
264 struct timer_list idle_slice_timer;
265 struct work_struct unplug_work;
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
271 * async queue for each priority case
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
276 sector_t last_position;
279 * tunables, see top of file
281 unsigned int cfq_quantum;
282 unsigned int cfq_fifo_expire[2];
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
288 unsigned int cfq_group_idle;
289 unsigned int cfq_latency;
291 unsigned int cic_index;
292 struct list_head cic_list;
295 * Fallback dummy cfqq for extreme OOM conditions
297 struct cfq_queue oom_cfqq;
299 unsigned long last_delayed_sync;
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list;
304 /* Number of groups which are on blkcg->blkg_list */
305 unsigned int nr_blkcg_linked_grps;
308 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
310 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
317 if (prio == IDLE_WORKLOAD)
318 return &cfqg->service_tree_idle;
320 return &cfqg->service_trees[prio][type];
323 enum cfqq_state_flags {
324 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
325 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
326 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
327 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
328 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
329 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
330 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
331 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
332 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
333 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
334 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
335 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
336 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
339 #define CFQ_CFQQ_FNS(name) \
340 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
342 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
344 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
346 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
348 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
350 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
354 CFQ_CFQQ_FNS(wait_request);
355 CFQ_CFQQ_FNS(must_dispatch);
356 CFQ_CFQQ_FNS(must_alloc_slice);
357 CFQ_CFQQ_FNS(fifo_expire);
358 CFQ_CFQQ_FNS(idle_window);
359 CFQ_CFQQ_FNS(prio_changed);
360 CFQ_CFQQ_FNS(slice_new);
363 CFQ_CFQQ_FNS(split_coop);
365 CFQ_CFQQ_FNS(wait_busy);
368 #ifdef CONFIG_CFQ_GROUP_IOSCHED
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372 blkg_path(&(cfqq)->cfqg->blkg), ##args);
374 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
376 blkg_path(&(cfqg)->blkg), ##args); \
379 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
383 #define cfq_log(cfqd, fmt, args...) \
384 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
386 /* Traverses through cfq group service trees */
387 #define for_each_cfqg_st(cfqg, i, j, st) \
388 for (i = 0; i <= IDLE_WORKLOAD; i++) \
389 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390 : &cfqg->service_tree_idle; \
391 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392 (i == IDLE_WORKLOAD && j == 0); \
393 j++, st = i < IDLE_WORKLOAD ? \
394 &cfqg->service_trees[i][j]: NULL) \
397 static inline bool iops_mode(struct cfq_data *cfqd)
400 * If we are not idling on queues and it is a NCQ drive, parallel
401 * execution of requests is on and measuring time is not possible
402 * in most of the cases until and unless we drive shallower queue
403 * depths and that becomes a performance bottleneck. In such cases
404 * switch to start providing fairness in terms of number of IOs.
406 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
412 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
414 if (cfq_class_idle(cfqq))
415 return IDLE_WORKLOAD;
416 if (cfq_class_rt(cfqq))
422 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
424 if (!cfq_cfqq_sync(cfqq))
425 return ASYNC_WORKLOAD;
426 if (!cfq_cfqq_idle_window(cfqq))
427 return SYNC_NOIDLE_WORKLOAD;
428 return SYNC_WORKLOAD;
431 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
432 struct cfq_data *cfqd,
433 struct cfq_group *cfqg)
435 if (wl == IDLE_WORKLOAD)
436 return cfqg->service_tree_idle.count;
438 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
439 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
440 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
443 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
444 struct cfq_group *cfqg)
446 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
447 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
450 static void cfq_dispatch_insert(struct request_queue *, struct request *);
451 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
452 struct io_context *, gfp_t);
453 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
454 struct io_context *);
456 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
459 return cic->cfqq[is_sync];
462 static inline void cic_set_cfqq(struct cfq_io_context *cic,
463 struct cfq_queue *cfqq, bool is_sync)
465 cic->cfqq[is_sync] = cfqq;
468 #define CIC_DEAD_KEY 1ul
469 #define CIC_DEAD_INDEX_SHIFT 1
471 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
473 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
476 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
478 struct cfq_data *cfqd = cic->key;
480 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
487 * We regard a request as SYNC, if it's either a read or has the SYNC bit
488 * set (in which case it could also be direct WRITE).
490 static inline bool cfq_bio_sync(struct bio *bio)
492 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
496 * scheduler run of queue, if there are requests pending and no one in the
497 * driver that will restart queueing
499 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
501 if (cfqd->busy_queues) {
502 cfq_log(cfqd, "schedule dispatch");
503 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
508 * Scale schedule slice based on io priority. Use the sync time slice only
509 * if a queue is marked sync and has sync io queued. A sync queue with async
510 * io only, should not get full sync slice length.
512 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
515 const int base_slice = cfqd->cfq_slice[sync];
517 WARN_ON(prio >= IOPRIO_BE_NR);
519 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
523 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
525 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
528 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
530 u64 d = delta << CFQ_SERVICE_SHIFT;
532 d = d * BLKIO_WEIGHT_DEFAULT;
533 do_div(d, cfqg->weight);
537 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
539 s64 delta = (s64)(vdisktime - min_vdisktime);
541 min_vdisktime = vdisktime;
543 return min_vdisktime;
546 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
548 s64 delta = (s64)(vdisktime - min_vdisktime);
550 min_vdisktime = vdisktime;
552 return min_vdisktime;
555 static void update_min_vdisktime(struct cfq_rb_root *st)
557 struct cfq_group *cfqg;
560 cfqg = rb_entry_cfqg(st->left);
561 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
567 * get averaged number of queues of RT/BE priority.
568 * average is updated, with a formula that gives more weight to higher numbers,
569 * to quickly follows sudden increases and decrease slowly
572 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
573 struct cfq_group *cfqg, bool rt)
575 unsigned min_q, max_q;
576 unsigned mult = cfq_hist_divisor - 1;
577 unsigned round = cfq_hist_divisor / 2;
578 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
580 min_q = min(cfqg->busy_queues_avg[rt], busy);
581 max_q = max(cfqg->busy_queues_avg[rt], busy);
582 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
584 return cfqg->busy_queues_avg[rt];
587 static inline unsigned
588 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
590 struct cfq_rb_root *st = &cfqd->grp_service_tree;
592 return cfq_target_latency * cfqg->weight / st->total_weight;
595 static inline unsigned
596 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
598 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
599 if (cfqd->cfq_latency) {
601 * interested queues (we consider only the ones with the same
602 * priority class in the cfq group)
604 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
606 unsigned sync_slice = cfqd->cfq_slice[1];
607 unsigned expect_latency = sync_slice * iq;
608 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
610 if (expect_latency > group_slice) {
611 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
612 /* scale low_slice according to IO priority
613 * and sync vs async */
615 min(slice, base_low_slice * slice / sync_slice);
616 /* the adapted slice value is scaled to fit all iqs
617 * into the target latency */
618 slice = max(slice * group_slice / expect_latency,
626 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
628 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
630 cfqq->slice_start = jiffies;
631 cfqq->slice_end = jiffies + slice;
632 cfqq->allocated_slice = slice;
633 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
637 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638 * isn't valid until the first request from the dispatch is activated
639 * and the slice time set.
641 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
643 if (cfq_cfqq_slice_new(cfqq))
645 if (time_before(jiffies, cfqq->slice_end))
652 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
653 * We choose the request that is closest to the head right now. Distance
654 * behind the head is penalized and only allowed to a certain extent.
656 static struct request *
657 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
659 sector_t s1, s2, d1 = 0, d2 = 0;
660 unsigned long back_max;
661 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
662 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
663 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
665 if (rq1 == NULL || rq1 == rq2)
670 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
672 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
674 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
676 else if ((rq2->cmd_flags & REQ_META) &&
677 !(rq1->cmd_flags & REQ_META))
680 s1 = blk_rq_pos(rq1);
681 s2 = blk_rq_pos(rq2);
684 * by definition, 1KiB is 2 sectors
686 back_max = cfqd->cfq_back_max * 2;
689 * Strict one way elevator _except_ in the case where we allow
690 * short backward seeks which are biased as twice the cost of a
691 * similar forward seek.
695 else if (s1 + back_max >= last)
696 d1 = (last - s1) * cfqd->cfq_back_penalty;
698 wrap |= CFQ_RQ1_WRAP;
702 else if (s2 + back_max >= last)
703 d2 = (last - s2) * cfqd->cfq_back_penalty;
705 wrap |= CFQ_RQ2_WRAP;
707 /* Found required data */
710 * By doing switch() on the bit mask "wrap" we avoid having to
711 * check two variables for all permutations: --> faster!
714 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
730 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
733 * Since both rqs are wrapped,
734 * start with the one that's further behind head
735 * (--> only *one* back seek required),
736 * since back seek takes more time than forward.
746 * The below is leftmost cache rbtree addon
748 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
750 /* Service tree is empty */
755 root->left = rb_first(&root->rb);
758 return rb_entry(root->left, struct cfq_queue, rb_node);
763 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
766 root->left = rb_first(&root->rb);
769 return rb_entry_cfqg(root->left);
774 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
780 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
784 rb_erase_init(n, &root->rb);
789 * would be nice to take fifo expire time into account as well
791 static struct request *
792 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
793 struct request *last)
795 struct rb_node *rbnext = rb_next(&last->rb_node);
796 struct rb_node *rbprev = rb_prev(&last->rb_node);
797 struct request *next = NULL, *prev = NULL;
799 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
802 prev = rb_entry_rq(rbprev);
805 next = rb_entry_rq(rbnext);
807 rbnext = rb_first(&cfqq->sort_list);
808 if (rbnext && rbnext != &last->rb_node)
809 next = rb_entry_rq(rbnext);
812 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
815 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
816 struct cfq_queue *cfqq)
819 * just an approximation, should be ok.
821 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
822 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
826 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
828 return cfqg->vdisktime - st->min_vdisktime;
832 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
834 struct rb_node **node = &st->rb.rb_node;
835 struct rb_node *parent = NULL;
836 struct cfq_group *__cfqg;
837 s64 key = cfqg_key(st, cfqg);
840 while (*node != NULL) {
842 __cfqg = rb_entry_cfqg(parent);
844 if (key < cfqg_key(st, __cfqg))
845 node = &parent->rb_left;
847 node = &parent->rb_right;
853 st->left = &cfqg->rb_node;
855 rb_link_node(&cfqg->rb_node, parent, node);
856 rb_insert_color(&cfqg->rb_node, &st->rb);
860 cfq_update_group_weight(struct cfq_group *cfqg)
862 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
863 if (cfqg->needs_update) {
864 cfqg->weight = cfqg->new_weight;
865 cfqg->needs_update = false;
870 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
872 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
874 cfq_update_group_weight(cfqg);
875 __cfq_group_service_tree_add(st, cfqg);
876 st->total_weight += cfqg->weight;
880 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
882 struct cfq_rb_root *st = &cfqd->grp_service_tree;
883 struct cfq_group *__cfqg;
887 if (!RB_EMPTY_NODE(&cfqg->rb_node))
891 * Currently put the group at the end. Later implement something
892 * so that groups get lesser vtime based on their weights, so that
893 * if group does not loose all if it was not continuously backlogged.
895 n = rb_last(&st->rb);
897 __cfqg = rb_entry_cfqg(n);
898 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
900 cfqg->vdisktime = st->min_vdisktime;
901 cfq_group_service_tree_add(st, cfqg);
905 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
907 st->total_weight -= cfqg->weight;
908 if (!RB_EMPTY_NODE(&cfqg->rb_node))
909 cfq_rb_erase(&cfqg->rb_node, st);
913 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
915 struct cfq_rb_root *st = &cfqd->grp_service_tree;
917 BUG_ON(cfqg->nr_cfqq < 1);
920 /* If there are other cfq queues under this group, don't delete it */
924 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
925 cfq_group_service_tree_del(st, cfqg);
926 cfqg->saved_workload_slice = 0;
927 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
930 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
931 unsigned int *unaccounted_time)
933 unsigned int slice_used;
936 * Queue got expired before even a single request completed or
937 * got expired immediately after first request completion.
939 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
941 * Also charge the seek time incurred to the group, otherwise
942 * if there are mutiple queues in the group, each can dispatch
943 * a single request on seeky media and cause lots of seek time
944 * and group will never know it.
946 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
949 slice_used = jiffies - cfqq->slice_start;
950 if (slice_used > cfqq->allocated_slice) {
951 *unaccounted_time = slice_used - cfqq->allocated_slice;
952 slice_used = cfqq->allocated_slice;
954 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
955 *unaccounted_time += cfqq->slice_start -
956 cfqq->dispatch_start;
962 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
963 struct cfq_queue *cfqq)
965 struct cfq_rb_root *st = &cfqd->grp_service_tree;
966 unsigned int used_sl, charge, unaccounted_sl = 0;
967 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
968 - cfqg->service_tree_idle.count;
971 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
974 charge = cfqq->slice_dispatch;
975 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
976 charge = cfqq->allocated_slice;
978 /* Can't update vdisktime while group is on service tree */
979 cfq_group_service_tree_del(st, cfqg);
980 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
981 /* If a new weight was requested, update now, off tree */
982 cfq_group_service_tree_add(st, cfqg);
984 /* This group is being expired. Save the context */
985 if (time_after(cfqd->workload_expires, jiffies)) {
986 cfqg->saved_workload_slice = cfqd->workload_expires
988 cfqg->saved_workload = cfqd->serving_type;
989 cfqg->saved_serving_prio = cfqd->serving_prio;
991 cfqg->saved_workload_slice = 0;
993 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
995 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
996 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
997 iops_mode(cfqd), cfqq->nr_sectors);
998 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1000 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1003 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1004 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1007 return container_of(blkg, struct cfq_group, blkg);
1011 void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1012 unsigned int weight)
1014 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1015 cfqg->new_weight = weight;
1016 cfqg->needs_update = true;
1019 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1020 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1022 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1023 unsigned int major, minor;
1026 * Add group onto cgroup list. It might happen that bdi->dev is
1027 * not initialized yet. Initialize this new group without major
1028 * and minor info and this info will be filled in once a new thread
1032 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1033 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1034 (void *)cfqd, MKDEV(major, minor));
1036 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1039 cfqd->nr_blkcg_linked_grps++;
1040 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1042 /* Add group on cfqd list */
1043 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1047 * Should be called from sleepable context. No request queue lock as per
1048 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1049 * from sleepable context.
1051 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1053 struct cfq_group *cfqg = NULL;
1055 struct cfq_rb_root *st;
1057 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1061 for_each_cfqg_st(cfqg, i, j, st)
1063 RB_CLEAR_NODE(&cfqg->rb_node);
1066 * Take the initial reference that will be released on destroy
1067 * This can be thought of a joint reference by cgroup and
1068 * elevator which will be dropped by either elevator exit
1069 * or cgroup deletion path depending on who is exiting first.
1073 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1082 static struct cfq_group *
1083 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1085 struct cfq_group *cfqg = NULL;
1087 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1088 unsigned int major, minor;
1091 * This is the common case when there are no blkio cgroups.
1092 * Avoid lookup in this case
1094 if (blkcg == &blkio_root_cgroup)
1095 cfqg = &cfqd->root_group;
1097 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1099 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1100 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1101 cfqg->blkg.dev = MKDEV(major, minor);
1108 * Search for the cfq group current task belongs to. request_queue lock must
1111 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1113 struct blkio_cgroup *blkcg;
1114 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1115 struct request_queue *q = cfqd->queue;
1118 blkcg = task_blkio_cgroup(current);
1119 cfqg = cfq_find_cfqg(cfqd, blkcg);
1126 * Need to allocate a group. Allocation of group also needs allocation
1127 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1128 * we need to drop rcu lock and queue_lock before we call alloc.
1130 * Not taking any queue reference here and assuming that queue is
1131 * around by the time we return. CFQ queue allocation code does
1132 * the same. It might be racy though.
1136 spin_unlock_irq(q->queue_lock);
1138 cfqg = cfq_alloc_cfqg(cfqd);
1140 spin_lock_irq(q->queue_lock);
1143 blkcg = task_blkio_cgroup(current);
1146 * If some other thread already allocated the group while we were
1147 * not holding queue lock, free up the group
1149 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1158 cfqg = &cfqd->root_group;
1160 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1165 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1171 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1173 /* Currently, all async queues are mapped to root group */
1174 if (!cfq_cfqq_sync(cfqq))
1175 cfqg = &cfqq->cfqd->root_group;
1178 /* cfqq reference on cfqg */
1182 static void cfq_put_cfqg(struct cfq_group *cfqg)
1184 struct cfq_rb_root *st;
1187 BUG_ON(cfqg->ref <= 0);
1191 for_each_cfqg_st(cfqg, i, j, st)
1192 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1193 free_percpu(cfqg->blkg.stats_cpu);
1197 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1199 /* Something wrong if we are trying to remove same group twice */
1200 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1202 hlist_del_init(&cfqg->cfqd_node);
1205 * Put the reference taken at the time of creation so that when all
1206 * queues are gone, group can be destroyed.
1211 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1213 struct hlist_node *pos, *n;
1214 struct cfq_group *cfqg;
1216 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1218 * If cgroup removal path got to blk_group first and removed
1219 * it from cgroup list, then it will take care of destroying
1222 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1223 cfq_destroy_cfqg(cfqd, cfqg);
1228 * Blk cgroup controller notification saying that blkio_group object is being
1229 * delinked as associated cgroup object is going away. That also means that
1230 * no new IO will come in this group. So get rid of this group as soon as
1231 * any pending IO in the group is finished.
1233 * This function is called under rcu_read_lock(). key is the rcu protected
1234 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1237 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1238 * it should not be NULL as even if elevator was exiting, cgroup deltion
1239 * path got to it first.
1241 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1243 unsigned long flags;
1244 struct cfq_data *cfqd = key;
1246 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1247 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1248 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1251 #else /* GROUP_IOSCHED */
1252 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1254 return &cfqd->root_group;
1257 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1263 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1267 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1268 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1270 #endif /* GROUP_IOSCHED */
1273 * The cfqd->service_trees holds all pending cfq_queue's that have
1274 * requests waiting to be processed. It is sorted in the order that
1275 * we will service the queues.
1277 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1280 struct rb_node **p, *parent;
1281 struct cfq_queue *__cfqq;
1282 unsigned long rb_key;
1283 struct cfq_rb_root *service_tree;
1286 int group_changed = 0;
1288 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1290 if (cfq_class_idle(cfqq)) {
1291 rb_key = CFQ_IDLE_DELAY;
1292 parent = rb_last(&service_tree->rb);
1293 if (parent && parent != &cfqq->rb_node) {
1294 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1295 rb_key += __cfqq->rb_key;
1298 } else if (!add_front) {
1300 * Get our rb key offset. Subtract any residual slice
1301 * value carried from last service. A negative resid
1302 * count indicates slice overrun, and this should position
1303 * the next service time further away in the tree.
1305 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1306 rb_key -= cfqq->slice_resid;
1307 cfqq->slice_resid = 0;
1310 __cfqq = cfq_rb_first(service_tree);
1311 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1314 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1317 * same position, nothing more to do
1319 if (rb_key == cfqq->rb_key &&
1320 cfqq->service_tree == service_tree)
1323 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1324 cfqq->service_tree = NULL;
1329 cfqq->service_tree = service_tree;
1330 p = &service_tree->rb.rb_node;
1335 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1338 * sort by key, that represents service time.
1340 if (time_before(rb_key, __cfqq->rb_key))
1343 n = &(*p)->rb_right;
1351 service_tree->left = &cfqq->rb_node;
1353 cfqq->rb_key = rb_key;
1354 rb_link_node(&cfqq->rb_node, parent, p);
1355 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1356 service_tree->count++;
1357 if ((add_front || !new_cfqq) && !group_changed)
1359 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1362 static struct cfq_queue *
1363 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1364 sector_t sector, struct rb_node **ret_parent,
1365 struct rb_node ***rb_link)
1367 struct rb_node **p, *parent;
1368 struct cfq_queue *cfqq = NULL;
1376 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1379 * Sort strictly based on sector. Smallest to the left,
1380 * largest to the right.
1382 if (sector > blk_rq_pos(cfqq->next_rq))
1383 n = &(*p)->rb_right;
1384 else if (sector < blk_rq_pos(cfqq->next_rq))
1392 *ret_parent = parent;
1398 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1400 struct rb_node **p, *parent;
1401 struct cfq_queue *__cfqq;
1404 rb_erase(&cfqq->p_node, cfqq->p_root);
1405 cfqq->p_root = NULL;
1408 if (cfq_class_idle(cfqq))
1413 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1414 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1415 blk_rq_pos(cfqq->next_rq), &parent, &p);
1417 rb_link_node(&cfqq->p_node, parent, p);
1418 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1420 cfqq->p_root = NULL;
1424 * Update cfqq's position in the service tree.
1426 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1429 * Resorting requires the cfqq to be on the RR list already.
1431 if (cfq_cfqq_on_rr(cfqq)) {
1432 cfq_service_tree_add(cfqd, cfqq, 0);
1433 cfq_prio_tree_add(cfqd, cfqq);
1438 * add to busy list of queues for service, trying to be fair in ordering
1439 * the pending list according to last request service
1441 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1443 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1444 BUG_ON(cfq_cfqq_on_rr(cfqq));
1445 cfq_mark_cfqq_on_rr(cfqq);
1446 cfqd->busy_queues++;
1447 if (cfq_cfqq_sync(cfqq))
1448 cfqd->busy_sync_queues++;
1450 cfq_resort_rr_list(cfqd, cfqq);
1454 * Called when the cfqq no longer has requests pending, remove it from
1457 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1459 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1460 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1461 cfq_clear_cfqq_on_rr(cfqq);
1463 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1464 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1465 cfqq->service_tree = NULL;
1468 rb_erase(&cfqq->p_node, cfqq->p_root);
1469 cfqq->p_root = NULL;
1472 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1473 BUG_ON(!cfqd->busy_queues);
1474 cfqd->busy_queues--;
1475 if (cfq_cfqq_sync(cfqq))
1476 cfqd->busy_sync_queues--;
1480 * rb tree support functions
1482 static void cfq_del_rq_rb(struct request *rq)
1484 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1485 const int sync = rq_is_sync(rq);
1487 BUG_ON(!cfqq->queued[sync]);
1488 cfqq->queued[sync]--;
1490 elv_rb_del(&cfqq->sort_list, rq);
1492 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1494 * Queue will be deleted from service tree when we actually
1495 * expire it later. Right now just remove it from prio tree
1499 rb_erase(&cfqq->p_node, cfqq->p_root);
1500 cfqq->p_root = NULL;
1505 static void cfq_add_rq_rb(struct request *rq)
1507 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1508 struct cfq_data *cfqd = cfqq->cfqd;
1509 struct request *__alias, *prev;
1511 cfqq->queued[rq_is_sync(rq)]++;
1514 * looks a little odd, but the first insert might return an alias.
1515 * if that happens, put the alias on the dispatch list
1517 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1518 cfq_dispatch_insert(cfqd->queue, __alias);
1520 if (!cfq_cfqq_on_rr(cfqq))
1521 cfq_add_cfqq_rr(cfqd, cfqq);
1524 * check if this request is a better next-serve candidate
1526 prev = cfqq->next_rq;
1527 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1530 * adjust priority tree position, if ->next_rq changes
1532 if (prev != cfqq->next_rq)
1533 cfq_prio_tree_add(cfqd, cfqq);
1535 BUG_ON(!cfqq->next_rq);
1538 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1540 elv_rb_del(&cfqq->sort_list, rq);
1541 cfqq->queued[rq_is_sync(rq)]--;
1542 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1543 rq_data_dir(rq), rq_is_sync(rq));
1545 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1546 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1550 static struct request *
1551 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1553 struct task_struct *tsk = current;
1554 struct cfq_io_context *cic;
1555 struct cfq_queue *cfqq;
1557 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1561 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1563 sector_t sector = bio->bi_sector + bio_sectors(bio);
1565 return elv_rb_find(&cfqq->sort_list, sector);
1571 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1573 struct cfq_data *cfqd = q->elevator->elevator_data;
1575 cfqd->rq_in_driver++;
1576 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1577 cfqd->rq_in_driver);
1579 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1582 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1584 struct cfq_data *cfqd = q->elevator->elevator_data;
1586 WARN_ON(!cfqd->rq_in_driver);
1587 cfqd->rq_in_driver--;
1588 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1589 cfqd->rq_in_driver);
1592 static void cfq_remove_request(struct request *rq)
1594 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1596 if (cfqq->next_rq == rq)
1597 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1599 list_del_init(&rq->queuelist);
1602 cfqq->cfqd->rq_queued--;
1603 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1604 rq_data_dir(rq), rq_is_sync(rq));
1605 if (rq->cmd_flags & REQ_META) {
1606 WARN_ON(!cfqq->meta_pending);
1607 cfqq->meta_pending--;
1611 static int cfq_merge(struct request_queue *q, struct request **req,
1614 struct cfq_data *cfqd = q->elevator->elevator_data;
1615 struct request *__rq;
1617 __rq = cfq_find_rq_fmerge(cfqd, bio);
1618 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1620 return ELEVATOR_FRONT_MERGE;
1623 return ELEVATOR_NO_MERGE;
1626 static void cfq_merged_request(struct request_queue *q, struct request *req,
1629 if (type == ELEVATOR_FRONT_MERGE) {
1630 struct cfq_queue *cfqq = RQ_CFQQ(req);
1632 cfq_reposition_rq_rb(cfqq, req);
1636 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1639 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1640 bio_data_dir(bio), cfq_bio_sync(bio));
1644 cfq_merged_requests(struct request_queue *q, struct request *rq,
1645 struct request *next)
1647 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1649 * reposition in fifo if next is older than rq
1651 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1652 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1653 list_move(&rq->queuelist, &next->queuelist);
1654 rq_set_fifo_time(rq, rq_fifo_time(next));
1657 if (cfqq->next_rq == next)
1659 cfq_remove_request(next);
1660 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1661 rq_data_dir(next), rq_is_sync(next));
1664 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1667 struct cfq_data *cfqd = q->elevator->elevator_data;
1668 struct cfq_io_context *cic;
1669 struct cfq_queue *cfqq;
1672 * Disallow merge of a sync bio into an async request.
1674 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1678 * Lookup the cfqq that this bio will be queued with. Allow
1679 * merge only if rq is queued there.
1681 cic = cfq_cic_lookup(cfqd, current->io_context);
1685 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1686 return cfqq == RQ_CFQQ(rq);
1689 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1691 del_timer(&cfqd->idle_slice_timer);
1692 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1695 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1696 struct cfq_queue *cfqq)
1699 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1700 cfqd->serving_prio, cfqd->serving_type);
1701 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1702 cfqq->slice_start = 0;
1703 cfqq->dispatch_start = jiffies;
1704 cfqq->allocated_slice = 0;
1705 cfqq->slice_end = 0;
1706 cfqq->slice_dispatch = 0;
1707 cfqq->nr_sectors = 0;
1709 cfq_clear_cfqq_wait_request(cfqq);
1710 cfq_clear_cfqq_must_dispatch(cfqq);
1711 cfq_clear_cfqq_must_alloc_slice(cfqq);
1712 cfq_clear_cfqq_fifo_expire(cfqq);
1713 cfq_mark_cfqq_slice_new(cfqq);
1715 cfq_del_timer(cfqd, cfqq);
1718 cfqd->active_queue = cfqq;
1722 * current cfqq expired its slice (or was too idle), select new one
1725 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1728 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1730 if (cfq_cfqq_wait_request(cfqq))
1731 cfq_del_timer(cfqd, cfqq);
1733 cfq_clear_cfqq_wait_request(cfqq);
1734 cfq_clear_cfqq_wait_busy(cfqq);
1737 * If this cfqq is shared between multiple processes, check to
1738 * make sure that those processes are still issuing I/Os within
1739 * the mean seek distance. If not, it may be time to break the
1740 * queues apart again.
1742 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1743 cfq_mark_cfqq_split_coop(cfqq);
1746 * store what was left of this slice, if the queue idled/timed out
1749 if (cfq_cfqq_slice_new(cfqq))
1750 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1752 cfqq->slice_resid = cfqq->slice_end - jiffies;
1753 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1756 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1758 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1759 cfq_del_cfqq_rr(cfqd, cfqq);
1761 cfq_resort_rr_list(cfqd, cfqq);
1763 if (cfqq == cfqd->active_queue)
1764 cfqd->active_queue = NULL;
1766 if (cfqd->active_cic) {
1767 put_io_context(cfqd->active_cic->ioc);
1768 cfqd->active_cic = NULL;
1772 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1774 struct cfq_queue *cfqq = cfqd->active_queue;
1777 __cfq_slice_expired(cfqd, cfqq, timed_out);
1781 * Get next queue for service. Unless we have a queue preemption,
1782 * we'll simply select the first cfqq in the service tree.
1784 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1786 struct cfq_rb_root *service_tree =
1787 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1788 cfqd->serving_type);
1790 if (!cfqd->rq_queued)
1793 /* There is nothing to dispatch */
1796 if (RB_EMPTY_ROOT(&service_tree->rb))
1798 return cfq_rb_first(service_tree);
1801 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1803 struct cfq_group *cfqg;
1804 struct cfq_queue *cfqq;
1806 struct cfq_rb_root *st;
1808 if (!cfqd->rq_queued)
1811 cfqg = cfq_get_next_cfqg(cfqd);
1815 for_each_cfqg_st(cfqg, i, j, st)
1816 if ((cfqq = cfq_rb_first(st)) != NULL)
1822 * Get and set a new active queue for service.
1824 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1825 struct cfq_queue *cfqq)
1828 cfqq = cfq_get_next_queue(cfqd);
1830 __cfq_set_active_queue(cfqd, cfqq);
1834 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1837 if (blk_rq_pos(rq) >= cfqd->last_position)
1838 return blk_rq_pos(rq) - cfqd->last_position;
1840 return cfqd->last_position - blk_rq_pos(rq);
1843 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1846 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1849 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1850 struct cfq_queue *cur_cfqq)
1852 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1853 struct rb_node *parent, *node;
1854 struct cfq_queue *__cfqq;
1855 sector_t sector = cfqd->last_position;
1857 if (RB_EMPTY_ROOT(root))
1861 * First, if we find a request starting at the end of the last
1862 * request, choose it.
1864 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1869 * If the exact sector wasn't found, the parent of the NULL leaf
1870 * will contain the closest sector.
1872 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1873 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1876 if (blk_rq_pos(__cfqq->next_rq) < sector)
1877 node = rb_next(&__cfqq->p_node);
1879 node = rb_prev(&__cfqq->p_node);
1883 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1884 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1892 * cur_cfqq - passed in so that we don't decide that the current queue is
1893 * closely cooperating with itself.
1895 * So, basically we're assuming that that cur_cfqq has dispatched at least
1896 * one request, and that cfqd->last_position reflects a position on the disk
1897 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1900 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1901 struct cfq_queue *cur_cfqq)
1903 struct cfq_queue *cfqq;
1905 if (cfq_class_idle(cur_cfqq))
1907 if (!cfq_cfqq_sync(cur_cfqq))
1909 if (CFQQ_SEEKY(cur_cfqq))
1913 * Don't search priority tree if it's the only queue in the group.
1915 if (cur_cfqq->cfqg->nr_cfqq == 1)
1919 * We should notice if some of the queues are cooperating, eg
1920 * working closely on the same area of the disk. In that case,
1921 * we can group them together and don't waste time idling.
1923 cfqq = cfqq_close(cfqd, cur_cfqq);
1927 /* If new queue belongs to different cfq_group, don't choose it */
1928 if (cur_cfqq->cfqg != cfqq->cfqg)
1932 * It only makes sense to merge sync queues.
1934 if (!cfq_cfqq_sync(cfqq))
1936 if (CFQQ_SEEKY(cfqq))
1940 * Do not merge queues of different priority classes
1942 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1949 * Determine whether we should enforce idle window for this queue.
1952 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1954 enum wl_prio_t prio = cfqq_prio(cfqq);
1955 struct cfq_rb_root *service_tree = cfqq->service_tree;
1957 BUG_ON(!service_tree);
1958 BUG_ON(!service_tree->count);
1960 if (!cfqd->cfq_slice_idle)
1963 /* We never do for idle class queues. */
1964 if (prio == IDLE_WORKLOAD)
1967 /* We do for queues that were marked with idle window flag. */
1968 if (cfq_cfqq_idle_window(cfqq) &&
1969 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1973 * Otherwise, we do only if they are the last ones
1974 * in their service tree.
1976 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1978 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1979 service_tree->count);
1983 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1985 struct cfq_queue *cfqq = cfqd->active_queue;
1986 struct cfq_io_context *cic;
1987 unsigned long sl, group_idle = 0;
1990 * SSD device without seek penalty, disable idling. But only do so
1991 * for devices that support queuing, otherwise we still have a problem
1992 * with sync vs async workloads.
1994 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1997 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1998 WARN_ON(cfq_cfqq_slice_new(cfqq));
2001 * idle is disabled, either manually or by past process history
2003 if (!cfq_should_idle(cfqd, cfqq)) {
2004 /* no queue idling. Check for group idling */
2005 if (cfqd->cfq_group_idle)
2006 group_idle = cfqd->cfq_group_idle;
2012 * still active requests from this queue, don't idle
2014 if (cfqq->dispatched)
2018 * task has exited, don't wait
2020 cic = cfqd->active_cic;
2021 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2025 * If our average think time is larger than the remaining time
2026 * slice, then don't idle. This avoids overrunning the allotted
2029 if (sample_valid(cic->ttime_samples) &&
2030 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
2031 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
2036 /* There are other queues in the group, don't do group idle */
2037 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2040 cfq_mark_cfqq_wait_request(cfqq);
2043 sl = cfqd->cfq_group_idle;
2045 sl = cfqd->cfq_slice_idle;
2047 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2048 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2049 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2050 group_idle ? 1 : 0);
2054 * Move request from internal lists to the request queue dispatch list.
2056 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2058 struct cfq_data *cfqd = q->elevator->elevator_data;
2059 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2061 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2063 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2064 cfq_remove_request(rq);
2066 (RQ_CFQG(rq))->dispatched++;
2067 elv_dispatch_sort(q, rq);
2069 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2070 cfqq->nr_sectors += blk_rq_sectors(rq);
2071 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2072 rq_data_dir(rq), rq_is_sync(rq));
2076 * return expired entry, or NULL to just start from scratch in rbtree
2078 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2080 struct request *rq = NULL;
2082 if (cfq_cfqq_fifo_expire(cfqq))
2085 cfq_mark_cfqq_fifo_expire(cfqq);
2087 if (list_empty(&cfqq->fifo))
2090 rq = rq_entry_fifo(cfqq->fifo.next);
2091 if (time_before(jiffies, rq_fifo_time(rq)))
2094 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2099 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2101 const int base_rq = cfqd->cfq_slice_async_rq;
2103 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2105 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2109 * Must be called with the queue_lock held.
2111 static int cfqq_process_refs(struct cfq_queue *cfqq)
2113 int process_refs, io_refs;
2115 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2116 process_refs = cfqq->ref - io_refs;
2117 BUG_ON(process_refs < 0);
2118 return process_refs;
2121 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2123 int process_refs, new_process_refs;
2124 struct cfq_queue *__cfqq;
2127 * If there are no process references on the new_cfqq, then it is
2128 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2129 * chain may have dropped their last reference (not just their
2130 * last process reference).
2132 if (!cfqq_process_refs(new_cfqq))
2135 /* Avoid a circular list and skip interim queue merges */
2136 while ((__cfqq = new_cfqq->new_cfqq)) {
2142 process_refs = cfqq_process_refs(cfqq);
2143 new_process_refs = cfqq_process_refs(new_cfqq);
2145 * If the process for the cfqq has gone away, there is no
2146 * sense in merging the queues.
2148 if (process_refs == 0 || new_process_refs == 0)
2152 * Merge in the direction of the lesser amount of work.
2154 if (new_process_refs >= process_refs) {
2155 cfqq->new_cfqq = new_cfqq;
2156 new_cfqq->ref += process_refs;
2158 new_cfqq->new_cfqq = cfqq;
2159 cfqq->ref += new_process_refs;
2163 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2164 struct cfq_group *cfqg, enum wl_prio_t prio)
2166 struct cfq_queue *queue;
2168 bool key_valid = false;
2169 unsigned long lowest_key = 0;
2170 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2172 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2173 /* select the one with lowest rb_key */
2174 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2176 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2177 lowest_key = queue->rb_key;
2186 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2190 struct cfq_rb_root *st;
2191 unsigned group_slice;
2192 enum wl_prio_t original_prio = cfqd->serving_prio;
2194 /* Choose next priority. RT > BE > IDLE */
2195 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2196 cfqd->serving_prio = RT_WORKLOAD;
2197 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2198 cfqd->serving_prio = BE_WORKLOAD;
2200 cfqd->serving_prio = IDLE_WORKLOAD;
2201 cfqd->workload_expires = jiffies + 1;
2205 if (original_prio != cfqd->serving_prio)
2209 * For RT and BE, we have to choose also the type
2210 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2213 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2217 * check workload expiration, and that we still have other queues ready
2219 if (count && !time_after(jiffies, cfqd->workload_expires))
2223 /* otherwise select new workload type */
2224 cfqd->serving_type =
2225 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2226 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2230 * the workload slice is computed as a fraction of target latency
2231 * proportional to the number of queues in that workload, over
2232 * all the queues in the same priority class
2234 group_slice = cfq_group_slice(cfqd, cfqg);
2236 slice = group_slice * count /
2237 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2238 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2240 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2244 * Async queues are currently system wide. Just taking
2245 * proportion of queues with-in same group will lead to higher
2246 * async ratio system wide as generally root group is going
2247 * to have higher weight. A more accurate thing would be to
2248 * calculate system wide asnc/sync ratio.
2250 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2251 tmp = tmp/cfqd->busy_queues;
2252 slice = min_t(unsigned, slice, tmp);
2254 /* async workload slice is scaled down according to
2255 * the sync/async slice ratio. */
2256 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2258 /* sync workload slice is at least 2 * cfq_slice_idle */
2259 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2261 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2262 cfq_log(cfqd, "workload slice:%d", slice);
2263 cfqd->workload_expires = jiffies + slice;
2266 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2268 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2269 struct cfq_group *cfqg;
2271 if (RB_EMPTY_ROOT(&st->rb))
2273 cfqg = cfq_rb_first_group(st);
2274 update_min_vdisktime(st);
2278 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2280 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2282 cfqd->serving_group = cfqg;
2284 /* Restore the workload type data */
2285 if (cfqg->saved_workload_slice) {
2286 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2287 cfqd->serving_type = cfqg->saved_workload;
2288 cfqd->serving_prio = cfqg->saved_serving_prio;
2290 cfqd->workload_expires = jiffies - 1;
2292 choose_service_tree(cfqd, cfqg);
2296 * Select a queue for service. If we have a current active queue,
2297 * check whether to continue servicing it, or retrieve and set a new one.
2299 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2301 struct cfq_queue *cfqq, *new_cfqq = NULL;
2303 cfqq = cfqd->active_queue;
2307 if (!cfqd->rq_queued)
2311 * We were waiting for group to get backlogged. Expire the queue
2313 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2317 * The active queue has run out of time, expire it and select new.
2319 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2321 * If slice had not expired at the completion of last request
2322 * we might not have turned on wait_busy flag. Don't expire
2323 * the queue yet. Allow the group to get backlogged.
2325 * The very fact that we have used the slice, that means we
2326 * have been idling all along on this queue and it should be
2327 * ok to wait for this request to complete.
2329 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2330 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2334 goto check_group_idle;
2338 * The active queue has requests and isn't expired, allow it to
2341 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2345 * If another queue has a request waiting within our mean seek
2346 * distance, let it run. The expire code will check for close
2347 * cooperators and put the close queue at the front of the service
2348 * tree. If possible, merge the expiring queue with the new cfqq.
2350 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2352 if (!cfqq->new_cfqq)
2353 cfq_setup_merge(cfqq, new_cfqq);
2358 * No requests pending. If the active queue still has requests in
2359 * flight or is idling for a new request, allow either of these
2360 * conditions to happen (or time out) before selecting a new queue.
2362 if (timer_pending(&cfqd->idle_slice_timer)) {
2368 * This is a deep seek queue, but the device is much faster than
2369 * the queue can deliver, don't idle
2371 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2372 (cfq_cfqq_slice_new(cfqq) ||
2373 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2374 cfq_clear_cfqq_deep(cfqq);
2375 cfq_clear_cfqq_idle_window(cfqq);
2378 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2384 * If group idle is enabled and there are requests dispatched from
2385 * this group, wait for requests to complete.
2388 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2389 && cfqq->cfqg->dispatched) {
2395 cfq_slice_expired(cfqd, 0);
2398 * Current queue expired. Check if we have to switch to a new
2402 cfq_choose_cfqg(cfqd);
2404 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2409 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2413 while (cfqq->next_rq) {
2414 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2418 BUG_ON(!list_empty(&cfqq->fifo));
2420 /* By default cfqq is not expired if it is empty. Do it explicitly */
2421 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2426 * Drain our current requests. Used for barriers and when switching
2427 * io schedulers on-the-fly.
2429 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2431 struct cfq_queue *cfqq;
2434 /* Expire the timeslice of the current active queue first */
2435 cfq_slice_expired(cfqd, 0);
2436 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2437 __cfq_set_active_queue(cfqd, cfqq);
2438 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2441 BUG_ON(cfqd->busy_queues);
2443 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2447 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2448 struct cfq_queue *cfqq)
2450 /* the queue hasn't finished any request, can't estimate */
2451 if (cfq_cfqq_slice_new(cfqq))
2453 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2460 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2462 unsigned int max_dispatch;
2465 * Drain async requests before we start sync IO
2467 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2471 * If this is an async queue and we have sync IO in flight, let it wait
2473 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2476 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2477 if (cfq_class_idle(cfqq))
2481 * Does this cfqq already have too much IO in flight?
2483 if (cfqq->dispatched >= max_dispatch) {
2484 bool promote_sync = false;
2486 * idle queue must always only have a single IO in flight
2488 if (cfq_class_idle(cfqq))
2492 * If there is only one sync queue
2493 * we can ignore async queue here and give the sync
2494 * queue no dispatch limit. The reason is a sync queue can
2495 * preempt async queue, limiting the sync queue doesn't make
2496 * sense. This is useful for aiostress test.
2498 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2499 promote_sync = true;
2502 * We have other queues, don't allow more IO from this one
2504 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2509 * Sole queue user, no limit
2511 if (cfqd->busy_queues == 1 || promote_sync)
2515 * Normally we start throttling cfqq when cfq_quantum/2
2516 * requests have been dispatched. But we can drive
2517 * deeper queue depths at the beginning of slice
2518 * subjected to upper limit of cfq_quantum.
2520 max_dispatch = cfqd->cfq_quantum;
2524 * Async queues must wait a bit before being allowed dispatch.
2525 * We also ramp up the dispatch depth gradually for async IO,
2526 * based on the last sync IO we serviced
2528 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2529 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2532 depth = last_sync / cfqd->cfq_slice[1];
2533 if (!depth && !cfqq->dispatched)
2535 if (depth < max_dispatch)
2536 max_dispatch = depth;
2540 * If we're below the current max, allow a dispatch
2542 return cfqq->dispatched < max_dispatch;
2546 * Dispatch a request from cfqq, moving them to the request queue
2549 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2553 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2555 if (!cfq_may_dispatch(cfqd, cfqq))
2559 * follow expired path, else get first next available
2561 rq = cfq_check_fifo(cfqq);
2566 * insert request into driver dispatch list
2568 cfq_dispatch_insert(cfqd->queue, rq);
2570 if (!cfqd->active_cic) {
2571 struct cfq_io_context *cic = RQ_CIC(rq);
2573 atomic_long_inc(&cic->ioc->refcount);
2574 cfqd->active_cic = cic;
2581 * Find the cfqq that we need to service and move a request from that to the
2584 static int cfq_dispatch_requests(struct request_queue *q, int force)
2586 struct cfq_data *cfqd = q->elevator->elevator_data;
2587 struct cfq_queue *cfqq;
2589 if (!cfqd->busy_queues)
2592 if (unlikely(force))
2593 return cfq_forced_dispatch(cfqd);
2595 cfqq = cfq_select_queue(cfqd);
2600 * Dispatch a request from this cfqq, if it is allowed
2602 if (!cfq_dispatch_request(cfqd, cfqq))
2605 cfqq->slice_dispatch++;
2606 cfq_clear_cfqq_must_dispatch(cfqq);
2609 * expire an async queue immediately if it has used up its slice. idle
2610 * queue always expire after 1 dispatch round.
2612 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2613 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2614 cfq_class_idle(cfqq))) {
2615 cfqq->slice_end = jiffies + 1;
2616 cfq_slice_expired(cfqd, 0);
2619 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2624 * task holds one reference to the queue, dropped when task exits. each rq
2625 * in-flight on this queue also holds a reference, dropped when rq is freed.
2627 * Each cfq queue took a reference on the parent group. Drop it now.
2628 * queue lock must be held here.
2630 static void cfq_put_queue(struct cfq_queue *cfqq)
2632 struct cfq_data *cfqd = cfqq->cfqd;
2633 struct cfq_group *cfqg;
2635 BUG_ON(cfqq->ref <= 0);
2641 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2642 BUG_ON(rb_first(&cfqq->sort_list));
2643 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2646 if (unlikely(cfqd->active_queue == cfqq)) {
2647 __cfq_slice_expired(cfqd, cfqq, 0);
2648 cfq_schedule_dispatch(cfqd);
2651 BUG_ON(cfq_cfqq_on_rr(cfqq));
2652 kmem_cache_free(cfq_pool, cfqq);
2657 * Call func for each cic attached to this ioc.
2660 call_for_each_cic(struct io_context *ioc,
2661 void (*func)(struct io_context *, struct cfq_io_context *))
2663 struct cfq_io_context *cic;
2664 struct hlist_node *n;
2668 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2674 static void cfq_cic_free_rcu(struct rcu_head *head)
2676 struct cfq_io_context *cic;
2678 cic = container_of(head, struct cfq_io_context, rcu_head);
2680 kmem_cache_free(cfq_ioc_pool, cic);
2681 elv_ioc_count_dec(cfq_ioc_count);
2685 * CFQ scheduler is exiting, grab exit lock and check
2686 * the pending io context count. If it hits zero,
2687 * complete ioc_gone and set it back to NULL
2689 spin_lock(&ioc_gone_lock);
2690 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2694 spin_unlock(&ioc_gone_lock);
2698 static void cfq_cic_free(struct cfq_io_context *cic)
2700 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2703 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2705 unsigned long flags;
2706 unsigned long dead_key = (unsigned long) cic->key;
2708 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2710 spin_lock_irqsave(&ioc->lock, flags);
2711 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2712 hlist_del_rcu(&cic->cic_list);
2713 spin_unlock_irqrestore(&ioc->lock, flags);
2719 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2720 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2721 * and ->trim() which is called with the task lock held
2723 static void cfq_free_io_context(struct io_context *ioc)
2726 * ioc->refcount is zero here, or we are called from elv_unregister(),
2727 * so no more cic's are allowed to be linked into this ioc. So it
2728 * should be ok to iterate over the known list, we will see all cic's
2729 * since no new ones are added.
2731 call_for_each_cic(ioc, cic_free_func);
2734 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2736 struct cfq_queue *__cfqq, *next;
2739 * If this queue was scheduled to merge with another queue, be
2740 * sure to drop the reference taken on that queue (and others in
2741 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2743 __cfqq = cfqq->new_cfqq;
2745 if (__cfqq == cfqq) {
2746 WARN(1, "cfqq->new_cfqq loop detected\n");
2749 next = __cfqq->new_cfqq;
2750 cfq_put_queue(__cfqq);
2755 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2757 if (unlikely(cfqq == cfqd->active_queue)) {
2758 __cfq_slice_expired(cfqd, cfqq, 0);
2759 cfq_schedule_dispatch(cfqd);
2762 cfq_put_cooperator(cfqq);
2764 cfq_put_queue(cfqq);
2767 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2768 struct cfq_io_context *cic)
2770 struct io_context *ioc = cic->ioc;
2772 list_del_init(&cic->queue_list);
2775 * Make sure dead mark is seen for dead queues
2778 cic->key = cfqd_dead_key(cfqd);
2780 if (ioc->ioc_data == cic)
2781 rcu_assign_pointer(ioc->ioc_data, NULL);
2783 if (cic->cfqq[BLK_RW_ASYNC]) {
2784 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2785 cic->cfqq[BLK_RW_ASYNC] = NULL;
2788 if (cic->cfqq[BLK_RW_SYNC]) {
2789 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2790 cic->cfqq[BLK_RW_SYNC] = NULL;
2794 static void cfq_exit_single_io_context(struct io_context *ioc,
2795 struct cfq_io_context *cic)
2797 struct cfq_data *cfqd = cic_to_cfqd(cic);
2800 struct request_queue *q = cfqd->queue;
2801 unsigned long flags;
2803 spin_lock_irqsave(q->queue_lock, flags);
2806 * Ensure we get a fresh copy of the ->key to prevent
2807 * race between exiting task and queue
2809 smp_read_barrier_depends();
2810 if (cic->key == cfqd)
2811 __cfq_exit_single_io_context(cfqd, cic);
2813 spin_unlock_irqrestore(q->queue_lock, flags);
2818 * The process that ioc belongs to has exited, we need to clean up
2819 * and put the internal structures we have that belongs to that process.
2821 static void cfq_exit_io_context(struct io_context *ioc)
2823 call_for_each_cic(ioc, cfq_exit_single_io_context);
2826 static struct cfq_io_context *
2827 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2829 struct cfq_io_context *cic;
2831 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2834 cic->last_end_request = jiffies;
2835 INIT_LIST_HEAD(&cic->queue_list);
2836 INIT_HLIST_NODE(&cic->cic_list);
2837 cic->dtor = cfq_free_io_context;
2838 cic->exit = cfq_exit_io_context;
2839 elv_ioc_count_inc(cfq_ioc_count);
2845 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2847 struct task_struct *tsk = current;
2850 if (!cfq_cfqq_prio_changed(cfqq))
2853 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2854 switch (ioprio_class) {
2856 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2857 case IOPRIO_CLASS_NONE:
2859 * no prio set, inherit CPU scheduling settings
2861 cfqq->ioprio = task_nice_ioprio(tsk);
2862 cfqq->ioprio_class = task_nice_ioclass(tsk);
2864 case IOPRIO_CLASS_RT:
2865 cfqq->ioprio = task_ioprio(ioc);
2866 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2868 case IOPRIO_CLASS_BE:
2869 cfqq->ioprio = task_ioprio(ioc);
2870 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2872 case IOPRIO_CLASS_IDLE:
2873 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2875 cfq_clear_cfqq_idle_window(cfqq);
2880 * keep track of original prio settings in case we have to temporarily
2881 * elevate the priority of this queue
2883 cfqq->org_ioprio = cfqq->ioprio;
2884 cfqq->org_ioprio_class = cfqq->ioprio_class;
2885 cfq_clear_cfqq_prio_changed(cfqq);
2888 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2890 struct cfq_data *cfqd = cic_to_cfqd(cic);
2891 struct cfq_queue *cfqq;
2892 unsigned long flags;
2894 if (unlikely(!cfqd))
2897 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2899 cfqq = cic->cfqq[BLK_RW_ASYNC];
2901 struct cfq_queue *new_cfqq;
2902 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2905 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2906 cfq_put_queue(cfqq);
2910 cfqq = cic->cfqq[BLK_RW_SYNC];
2912 cfq_mark_cfqq_prio_changed(cfqq);
2914 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2917 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2919 call_for_each_cic(ioc, changed_ioprio);
2920 ioc->ioprio_changed = 0;
2923 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2924 pid_t pid, bool is_sync)
2926 RB_CLEAR_NODE(&cfqq->rb_node);
2927 RB_CLEAR_NODE(&cfqq->p_node);
2928 INIT_LIST_HEAD(&cfqq->fifo);
2933 cfq_mark_cfqq_prio_changed(cfqq);
2936 if (!cfq_class_idle(cfqq))
2937 cfq_mark_cfqq_idle_window(cfqq);
2938 cfq_mark_cfqq_sync(cfqq);
2943 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2944 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2946 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2947 struct cfq_data *cfqd = cic_to_cfqd(cic);
2948 unsigned long flags;
2949 struct request_queue *q;
2951 if (unlikely(!cfqd))
2956 spin_lock_irqsave(q->queue_lock, flags);
2960 * Drop reference to sync queue. A new sync queue will be
2961 * assigned in new group upon arrival of a fresh request.
2963 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2964 cic_set_cfqq(cic, NULL, 1);
2965 cfq_put_queue(sync_cfqq);
2968 spin_unlock_irqrestore(q->queue_lock, flags);
2971 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2973 call_for_each_cic(ioc, changed_cgroup);
2974 ioc->cgroup_changed = 0;
2976 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2978 static struct cfq_queue *
2979 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2980 struct io_context *ioc, gfp_t gfp_mask)
2982 struct cfq_queue *cfqq, *new_cfqq = NULL;
2983 struct cfq_io_context *cic;
2984 struct cfq_group *cfqg;
2987 cfqg = cfq_get_cfqg(cfqd);
2988 cic = cfq_cic_lookup(cfqd, ioc);
2989 /* cic always exists here */
2990 cfqq = cic_to_cfqq(cic, is_sync);
2993 * Always try a new alloc if we fell back to the OOM cfqq
2994 * originally, since it should just be a temporary situation.
2996 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3001 } else if (gfp_mask & __GFP_WAIT) {
3002 spin_unlock_irq(cfqd->queue->queue_lock);
3003 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3004 gfp_mask | __GFP_ZERO,
3006 spin_lock_irq(cfqd->queue->queue_lock);
3010 cfqq = kmem_cache_alloc_node(cfq_pool,
3011 gfp_mask | __GFP_ZERO,
3016 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3017 cfq_init_prio_data(cfqq, ioc);
3018 cfq_link_cfqq_cfqg(cfqq, cfqg);
3019 cfq_log_cfqq(cfqd, cfqq, "alloced");
3021 cfqq = &cfqd->oom_cfqq;
3025 kmem_cache_free(cfq_pool, new_cfqq);
3030 static struct cfq_queue **
3031 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3033 switch (ioprio_class) {
3034 case IOPRIO_CLASS_RT:
3035 return &cfqd->async_cfqq[0][ioprio];
3036 case IOPRIO_CLASS_BE:
3037 return &cfqd->async_cfqq[1][ioprio];
3038 case IOPRIO_CLASS_IDLE:
3039 return &cfqd->async_idle_cfqq;
3045 static struct cfq_queue *
3046 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3049 const int ioprio = task_ioprio(ioc);
3050 const int ioprio_class = task_ioprio_class(ioc);
3051 struct cfq_queue **async_cfqq = NULL;
3052 struct cfq_queue *cfqq = NULL;
3055 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3060 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3063 * pin the queue now that it's allocated, scheduler exit will prune it
3065 if (!is_sync && !(*async_cfqq)) {
3075 * We drop cfq io contexts lazily, so we may find a dead one.
3078 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3079 struct cfq_io_context *cic)
3081 unsigned long flags;
3083 WARN_ON(!list_empty(&cic->queue_list));
3084 BUG_ON(cic->key != cfqd_dead_key(cfqd));
3086 spin_lock_irqsave(&ioc->lock, flags);
3088 BUG_ON(ioc->ioc_data == cic);
3090 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3091 hlist_del_rcu(&cic->cic_list);
3092 spin_unlock_irqrestore(&ioc->lock, flags);
3097 static struct cfq_io_context *
3098 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3100 struct cfq_io_context *cic;
3101 unsigned long flags;
3109 * we maintain a last-hit cache, to avoid browsing over the tree
3111 cic = rcu_dereference(ioc->ioc_data);
3112 if (cic && cic->key == cfqd) {
3118 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3122 if (unlikely(cic->key != cfqd)) {
3123 cfq_drop_dead_cic(cfqd, ioc, cic);
3128 spin_lock_irqsave(&ioc->lock, flags);
3129 rcu_assign_pointer(ioc->ioc_data, cic);
3130 spin_unlock_irqrestore(&ioc->lock, flags);
3138 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3139 * the process specific cfq io context when entered from the block layer.
3140 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3142 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3143 struct cfq_io_context *cic, gfp_t gfp_mask)
3145 unsigned long flags;
3148 ret = radix_tree_preload(gfp_mask);
3153 spin_lock_irqsave(&ioc->lock, flags);
3154 ret = radix_tree_insert(&ioc->radix_root,
3155 cfqd->cic_index, cic);
3157 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3158 spin_unlock_irqrestore(&ioc->lock, flags);
3160 radix_tree_preload_end();
3163 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3164 list_add(&cic->queue_list, &cfqd->cic_list);
3165 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3170 printk(KERN_ERR "cfq: cic link failed!\n");
3176 * Setup general io context and cfq io context. There can be several cfq
3177 * io contexts per general io context, if this process is doing io to more
3178 * than one device managed by cfq.
3180 static struct cfq_io_context *
3181 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3183 struct io_context *ioc = NULL;
3184 struct cfq_io_context *cic;
3186 might_sleep_if(gfp_mask & __GFP_WAIT);
3188 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3192 cic = cfq_cic_lookup(cfqd, ioc);
3196 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3200 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3204 smp_read_barrier_depends();
3205 if (unlikely(ioc->ioprio_changed))
3206 cfq_ioc_set_ioprio(ioc);
3208 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3209 if (unlikely(ioc->cgroup_changed))
3210 cfq_ioc_set_cgroup(ioc);
3216 put_io_context(ioc);
3221 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3223 unsigned long elapsed = jiffies - cic->last_end_request;
3224 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3226 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3227 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3228 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3232 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3236 sector_t n_sec = blk_rq_sectors(rq);
3237 if (cfqq->last_request_pos) {
3238 if (cfqq->last_request_pos < blk_rq_pos(rq))
3239 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3241 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3244 cfqq->seek_history <<= 1;
3245 if (blk_queue_nonrot(cfqd->queue))
3246 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3248 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3252 * Disable idle window if the process thinks too long or seeks so much that
3256 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3257 struct cfq_io_context *cic)
3259 int old_idle, enable_idle;
3262 * Don't idle for async or idle io prio class
3264 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3267 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3269 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3270 cfq_mark_cfqq_deep(cfqq);
3272 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3274 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3275 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3277 else if (sample_valid(cic->ttime_samples)) {
3278 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3284 if (old_idle != enable_idle) {
3285 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3287 cfq_mark_cfqq_idle_window(cfqq);
3289 cfq_clear_cfqq_idle_window(cfqq);
3294 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3295 * no or if we aren't sure, a 1 will cause a preempt.
3298 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3301 struct cfq_queue *cfqq;
3303 cfqq = cfqd->active_queue;
3307 if (cfq_class_idle(new_cfqq))
3310 if (cfq_class_idle(cfqq))
3314 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3316 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3320 * if the new request is sync, but the currently running queue is
3321 * not, let the sync request have priority.
3323 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3326 if (new_cfqq->cfqg != cfqq->cfqg)
3329 if (cfq_slice_used(cfqq))
3332 /* Allow preemption only if we are idling on sync-noidle tree */
3333 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3334 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3335 new_cfqq->service_tree->count == 2 &&
3336 RB_EMPTY_ROOT(&cfqq->sort_list))
3340 * So both queues are sync. Let the new request get disk time if
3341 * it's a metadata request and the current queue is doing regular IO.
3343 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3347 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3349 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3352 /* An idle queue should not be idle now for some reason */
3353 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3356 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3360 * if this request is as-good as one we would expect from the
3361 * current cfqq, let it preempt
3363 if (cfq_rq_close(cfqd, cfqq, rq))
3370 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3371 * let it have half of its nominal slice.
3373 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3375 struct cfq_queue *old_cfqq = cfqd->active_queue;
3377 cfq_log_cfqq(cfqd, cfqq, "preempt");
3378 cfq_slice_expired(cfqd, 1);
3381 * workload type is changed, don't save slice, otherwise preempt
3384 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3385 cfqq->cfqg->saved_workload_slice = 0;
3388 * Put the new queue at the front of the of the current list,
3389 * so we know that it will be selected next.
3391 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3393 cfq_service_tree_add(cfqd, cfqq, 1);
3395 cfqq->slice_end = 0;
3396 cfq_mark_cfqq_slice_new(cfqq);
3400 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3401 * something we should do about it
3404 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3407 struct cfq_io_context *cic = RQ_CIC(rq);
3410 if (rq->cmd_flags & REQ_META)
3411 cfqq->meta_pending++;
3413 cfq_update_io_thinktime(cfqd, cic);
3414 cfq_update_io_seektime(cfqd, cfqq, rq);
3415 cfq_update_idle_window(cfqd, cfqq, cic);
3417 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3419 if (cfqq == cfqd->active_queue) {
3421 * Remember that we saw a request from this process, but
3422 * don't start queuing just yet. Otherwise we risk seeing lots
3423 * of tiny requests, because we disrupt the normal plugging
3424 * and merging. If the request is already larger than a single
3425 * page, let it rip immediately. For that case we assume that
3426 * merging is already done. Ditto for a busy system that
3427 * has other work pending, don't risk delaying until the
3428 * idle timer unplug to continue working.
3430 if (cfq_cfqq_wait_request(cfqq)) {
3431 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3432 cfqd->busy_queues > 1) {
3433 cfq_del_timer(cfqd, cfqq);
3434 cfq_clear_cfqq_wait_request(cfqq);
3435 __blk_run_queue(cfqd->queue);
3437 cfq_blkiocg_update_idle_time_stats(
3439 cfq_mark_cfqq_must_dispatch(cfqq);
3442 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3444 * not the active queue - expire current slice if it is
3445 * idle and has expired it's mean thinktime or this new queue
3446 * has some old slice time left and is of higher priority or
3447 * this new queue is RT and the current one is BE
3449 cfq_preempt_queue(cfqd, cfqq);
3450 __blk_run_queue(cfqd->queue);
3454 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3456 struct cfq_data *cfqd = q->elevator->elevator_data;
3457 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3459 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3460 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3462 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3463 list_add_tail(&rq->queuelist, &cfqq->fifo);
3465 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3466 &cfqd->serving_group->blkg, rq_data_dir(rq),
3468 cfq_rq_enqueued(cfqd, cfqq, rq);
3472 * Update hw_tag based on peak queue depth over 50 samples under
3475 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3477 struct cfq_queue *cfqq = cfqd->active_queue;
3479 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3480 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3482 if (cfqd->hw_tag == 1)
3485 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3486 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3490 * If active queue hasn't enough requests and can idle, cfq might not
3491 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3494 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3495 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3496 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3499 if (cfqd->hw_tag_samples++ < 50)
3502 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3508 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3510 struct cfq_io_context *cic = cfqd->active_cic;
3512 /* If the queue already has requests, don't wait */
3513 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3516 /* If there are other queues in the group, don't wait */
3517 if (cfqq->cfqg->nr_cfqq > 1)
3520 if (cfq_slice_used(cfqq))
3523 /* if slice left is less than think time, wait busy */
3524 if (cic && sample_valid(cic->ttime_samples)
3525 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3529 * If think times is less than a jiffy than ttime_mean=0 and above
3530 * will not be true. It might happen that slice has not expired yet
3531 * but will expire soon (4-5 ns) during select_queue(). To cover the
3532 * case where think time is less than a jiffy, mark the queue wait
3533 * busy if only 1 jiffy is left in the slice.
3535 if (cfqq->slice_end - jiffies == 1)
3541 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3543 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3544 struct cfq_data *cfqd = cfqq->cfqd;
3545 const int sync = rq_is_sync(rq);
3549 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3550 !!(rq->cmd_flags & REQ_NOIDLE));
3552 cfq_update_hw_tag(cfqd);
3554 WARN_ON(!cfqd->rq_in_driver);
3555 WARN_ON(!cfqq->dispatched);
3556 cfqd->rq_in_driver--;
3558 (RQ_CFQG(rq))->dispatched--;
3559 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3560 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3561 rq_data_dir(rq), rq_is_sync(rq));
3563 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3566 RQ_CIC(rq)->last_end_request = now;
3567 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3568 cfqd->last_delayed_sync = now;
3572 * If this is the active queue, check if it needs to be expired,
3573 * or if we want to idle in case it has no pending requests.
3575 if (cfqd->active_queue == cfqq) {
3576 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3578 if (cfq_cfqq_slice_new(cfqq)) {
3579 cfq_set_prio_slice(cfqd, cfqq);
3580 cfq_clear_cfqq_slice_new(cfqq);
3584 * Should we wait for next request to come in before we expire
3587 if (cfq_should_wait_busy(cfqd, cfqq)) {
3588 unsigned long extend_sl = cfqd->cfq_slice_idle;
3589 if (!cfqd->cfq_slice_idle)
3590 extend_sl = cfqd->cfq_group_idle;
3591 cfqq->slice_end = jiffies + extend_sl;
3592 cfq_mark_cfqq_wait_busy(cfqq);
3593 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3597 * Idling is not enabled on:
3599 * - idle-priority queues
3601 * - queues with still some requests queued
3602 * - when there is a close cooperator
3604 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3605 cfq_slice_expired(cfqd, 1);
3606 else if (sync && cfqq_empty &&
3607 !cfq_close_cooperator(cfqd, cfqq)) {
3608 cfq_arm_slice_timer(cfqd);
3612 if (!cfqd->rq_in_driver)
3613 cfq_schedule_dispatch(cfqd);
3617 * we temporarily boost lower priority queues if they are holding fs exclusive
3618 * resources. they are boosted to normal prio (CLASS_BE/4)
3620 static void cfq_prio_boost(struct cfq_queue *cfqq)
3622 if (has_fs_excl()) {
3624 * boost idle prio on transactions that would lock out other
3625 * users of the filesystem
3627 if (cfq_class_idle(cfqq))
3628 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3629 if (cfqq->ioprio > IOPRIO_NORM)
3630 cfqq->ioprio = IOPRIO_NORM;
3633 * unboost the queue (if needed)
3635 cfqq->ioprio_class = cfqq->org_ioprio_class;
3636 cfqq->ioprio = cfqq->org_ioprio;
3640 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3642 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3643 cfq_mark_cfqq_must_alloc_slice(cfqq);
3644 return ELV_MQUEUE_MUST;
3647 return ELV_MQUEUE_MAY;
3650 static int cfq_may_queue(struct request_queue *q, int rw)
3652 struct cfq_data *cfqd = q->elevator->elevator_data;
3653 struct task_struct *tsk = current;
3654 struct cfq_io_context *cic;
3655 struct cfq_queue *cfqq;
3658 * don't force setup of a queue from here, as a call to may_queue
3659 * does not necessarily imply that a request actually will be queued.
3660 * so just lookup a possibly existing queue, or return 'may queue'
3663 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3665 return ELV_MQUEUE_MAY;
3667 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3669 cfq_init_prio_data(cfqq, cic->ioc);
3670 cfq_prio_boost(cfqq);
3672 return __cfq_may_queue(cfqq);
3675 return ELV_MQUEUE_MAY;
3679 * queue lock held here
3681 static void cfq_put_request(struct request *rq)
3683 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3686 const int rw = rq_data_dir(rq);
3688 BUG_ON(!cfqq->allocated[rw]);
3689 cfqq->allocated[rw]--;
3691 put_io_context(RQ_CIC(rq)->ioc);
3693 rq->elevator_private[0] = NULL;
3694 rq->elevator_private[1] = NULL;
3696 /* Put down rq reference on cfqg */
3697 cfq_put_cfqg(RQ_CFQG(rq));
3698 rq->elevator_private[2] = NULL;
3700 cfq_put_queue(cfqq);
3704 static struct cfq_queue *
3705 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3706 struct cfq_queue *cfqq)
3708 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3709 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3710 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3711 cfq_put_queue(cfqq);
3712 return cic_to_cfqq(cic, 1);
3716 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3717 * was the last process referring to said cfqq.
3719 static struct cfq_queue *
3720 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3722 if (cfqq_process_refs(cfqq) == 1) {
3723 cfqq->pid = current->pid;
3724 cfq_clear_cfqq_coop(cfqq);
3725 cfq_clear_cfqq_split_coop(cfqq);
3729 cic_set_cfqq(cic, NULL, 1);
3731 cfq_put_cooperator(cfqq);
3733 cfq_put_queue(cfqq);
3737 * Allocate cfq data structures associated with this request.
3740 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3742 struct cfq_data *cfqd = q->elevator->elevator_data;
3743 struct cfq_io_context *cic;
3744 const int rw = rq_data_dir(rq);
3745 const bool is_sync = rq_is_sync(rq);
3746 struct cfq_queue *cfqq;
3747 unsigned long flags;
3749 might_sleep_if(gfp_mask & __GFP_WAIT);
3751 cic = cfq_get_io_context(cfqd, gfp_mask);
3753 spin_lock_irqsave(q->queue_lock, flags);
3759 cfqq = cic_to_cfqq(cic, is_sync);
3760 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3761 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3762 cic_set_cfqq(cic, cfqq, is_sync);
3765 * If the queue was seeky for too long, break it apart.
3767 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3768 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3769 cfqq = split_cfqq(cic, cfqq);
3775 * Check to see if this queue is scheduled to merge with
3776 * another, closely cooperating queue. The merging of
3777 * queues happens here as it must be done in process context.
3778 * The reference on new_cfqq was taken in merge_cfqqs.
3781 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3784 cfqq->allocated[rw]++;
3787 rq->elevator_private[0] = cic;
3788 rq->elevator_private[1] = cfqq;
3789 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3790 spin_unlock_irqrestore(q->queue_lock, flags);
3795 put_io_context(cic->ioc);
3797 cfq_schedule_dispatch(cfqd);
3798 spin_unlock_irqrestore(q->queue_lock, flags);
3799 cfq_log(cfqd, "set_request fail");
3803 static void cfq_kick_queue(struct work_struct *work)
3805 struct cfq_data *cfqd =
3806 container_of(work, struct cfq_data, unplug_work);
3807 struct request_queue *q = cfqd->queue;
3809 spin_lock_irq(q->queue_lock);
3810 __blk_run_queue(cfqd->queue);
3811 spin_unlock_irq(q->queue_lock);
3815 * Timer running if the active_queue is currently idling inside its time slice
3817 static void cfq_idle_slice_timer(unsigned long data)
3819 struct cfq_data *cfqd = (struct cfq_data *) data;
3820 struct cfq_queue *cfqq;
3821 unsigned long flags;
3824 cfq_log(cfqd, "idle timer fired");
3826 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3828 cfqq = cfqd->active_queue;
3833 * We saw a request before the queue expired, let it through
3835 if (cfq_cfqq_must_dispatch(cfqq))
3841 if (cfq_slice_used(cfqq))
3845 * only expire and reinvoke request handler, if there are
3846 * other queues with pending requests
3848 if (!cfqd->busy_queues)
3852 * not expired and it has a request pending, let it dispatch
3854 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3858 * Queue depth flag is reset only when the idle didn't succeed
3860 cfq_clear_cfqq_deep(cfqq);
3863 cfq_slice_expired(cfqd, timed_out);
3865 cfq_schedule_dispatch(cfqd);
3867 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3870 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3872 del_timer_sync(&cfqd->idle_slice_timer);
3873 cancel_work_sync(&cfqd->unplug_work);
3876 static void cfq_put_async_queues(struct cfq_data *cfqd)
3880 for (i = 0; i < IOPRIO_BE_NR; i++) {
3881 if (cfqd->async_cfqq[0][i])
3882 cfq_put_queue(cfqd->async_cfqq[0][i]);
3883 if (cfqd->async_cfqq[1][i])
3884 cfq_put_queue(cfqd->async_cfqq[1][i]);
3887 if (cfqd->async_idle_cfqq)
3888 cfq_put_queue(cfqd->async_idle_cfqq);
3891 static void cfq_exit_queue(struct elevator_queue *e)
3893 struct cfq_data *cfqd = e->elevator_data;
3894 struct request_queue *q = cfqd->queue;
3897 cfq_shutdown_timer_wq(cfqd);
3899 spin_lock_irq(q->queue_lock);
3901 if (cfqd->active_queue)
3902 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3904 while (!list_empty(&cfqd->cic_list)) {
3905 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3906 struct cfq_io_context,
3909 __cfq_exit_single_io_context(cfqd, cic);
3912 cfq_put_async_queues(cfqd);
3913 cfq_release_cfq_groups(cfqd);
3916 * If there are groups which we could not unlink from blkcg list,
3917 * wait for a rcu period for them to be freed.
3919 if (cfqd->nr_blkcg_linked_grps)
3922 spin_unlock_irq(q->queue_lock);
3924 cfq_shutdown_timer_wq(cfqd);
3926 spin_lock(&cic_index_lock);
3927 ida_remove(&cic_index_ida, cfqd->cic_index);
3928 spin_unlock(&cic_index_lock);
3931 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3932 * Do this wait only if there are other unlinked groups out
3933 * there. This can happen if cgroup deletion path claimed the
3934 * responsibility of cleaning up a group before queue cleanup code
3937 * Do not call synchronize_rcu() unconditionally as there are drivers
3938 * which create/delete request queue hundreds of times during scan/boot
3939 * and synchronize_rcu() can take significant time and slow down boot.
3944 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3945 /* Free up per cpu stats for root group */
3946 free_percpu(cfqd->root_group.blkg.stats_cpu);
3951 static int cfq_alloc_cic_index(void)
3956 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3959 spin_lock(&cic_index_lock);
3960 error = ida_get_new(&cic_index_ida, &index);
3961 spin_unlock(&cic_index_lock);
3962 if (error && error != -EAGAIN)
3969 static void *cfq_init_queue(struct request_queue *q)
3971 struct cfq_data *cfqd;
3973 struct cfq_group *cfqg;
3974 struct cfq_rb_root *st;
3976 i = cfq_alloc_cic_index();
3980 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3985 * Don't need take queue_lock in the routine, since we are
3986 * initializing the ioscheduler, and nobody is using cfqd
3988 cfqd->cic_index = i;
3990 /* Init root service tree */
3991 cfqd->grp_service_tree = CFQ_RB_ROOT;
3993 /* Init root group */
3994 cfqg = &cfqd->root_group;
3995 for_each_cfqg_st(cfqg, i, j, st)
3997 RB_CLEAR_NODE(&cfqg->rb_node);
3999 /* Give preference to root group over other groups */
4000 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4002 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4004 * Set root group reference to 2. One reference will be dropped when
4005 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4006 * Other reference will remain there as we don't want to delete this
4007 * group as it is statically allocated and gets destroyed when
4008 * throtl_data goes away.
4012 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4020 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4023 cfqd->nr_blkcg_linked_grps++;
4025 /* Add group on cfqd->cfqg_list */
4026 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4029 * Not strictly needed (since RB_ROOT just clears the node and we
4030 * zeroed cfqd on alloc), but better be safe in case someone decides
4031 * to add magic to the rb code
4033 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4034 cfqd->prio_trees[i] = RB_ROOT;
4037 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4038 * Grab a permanent reference to it, so that the normal code flow
4039 * will not attempt to free it.
4041 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4042 cfqd->oom_cfqq.ref++;
4043 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4045 INIT_LIST_HEAD(&cfqd->cic_list);
4049 init_timer(&cfqd->idle_slice_timer);
4050 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4051 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4053 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4055 cfqd->cfq_quantum = cfq_quantum;
4056 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4057 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4058 cfqd->cfq_back_max = cfq_back_max;
4059 cfqd->cfq_back_penalty = cfq_back_penalty;
4060 cfqd->cfq_slice[0] = cfq_slice_async;
4061 cfqd->cfq_slice[1] = cfq_slice_sync;
4062 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4063 cfqd->cfq_slice_idle = cfq_slice_idle;
4064 cfqd->cfq_group_idle = cfq_group_idle;
4065 cfqd->cfq_latency = 1;
4068 * we optimistically start assuming sync ops weren't delayed in last
4069 * second, in order to have larger depth for async operations.
4071 cfqd->last_delayed_sync = jiffies - HZ;
4075 static void cfq_slab_kill(void)
4078 * Caller already ensured that pending RCU callbacks are completed,
4079 * so we should have no busy allocations at this point.
4082 kmem_cache_destroy(cfq_pool);
4084 kmem_cache_destroy(cfq_ioc_pool);
4087 static int __init cfq_slab_setup(void)
4089 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4093 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4104 * sysfs parts below -->
4107 cfq_var_show(unsigned int var, char *page)
4109 return sprintf(page, "%d\n", var);
4113 cfq_var_store(unsigned int *var, const char *page, size_t count)
4115 char *p = (char *) page;
4117 *var = simple_strtoul(p, &p, 10);
4121 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4122 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4124 struct cfq_data *cfqd = e->elevator_data; \
4125 unsigned int __data = __VAR; \
4127 __data = jiffies_to_msecs(__data); \
4128 return cfq_var_show(__data, (page)); \
4130 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4131 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4132 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4133 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4134 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4135 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4136 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4137 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4138 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4139 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4140 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4141 #undef SHOW_FUNCTION
4143 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4144 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4146 struct cfq_data *cfqd = e->elevator_data; \
4147 unsigned int __data; \
4148 int ret = cfq_var_store(&__data, (page), count); \
4149 if (__data < (MIN)) \
4151 else if (__data > (MAX)) \
4154 *(__PTR) = msecs_to_jiffies(__data); \
4156 *(__PTR) = __data; \
4159 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4160 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4162 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4164 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4165 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4167 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4168 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4169 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4170 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4171 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4173 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4174 #undef STORE_FUNCTION
4176 #define CFQ_ATTR(name) \
4177 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4179 static struct elv_fs_entry cfq_attrs[] = {
4181 CFQ_ATTR(fifo_expire_sync),
4182 CFQ_ATTR(fifo_expire_async),
4183 CFQ_ATTR(back_seek_max),
4184 CFQ_ATTR(back_seek_penalty),
4185 CFQ_ATTR(slice_sync),
4186 CFQ_ATTR(slice_async),
4187 CFQ_ATTR(slice_async_rq),
4188 CFQ_ATTR(slice_idle),
4189 CFQ_ATTR(group_idle),
4190 CFQ_ATTR(low_latency),
4194 static struct elevator_type iosched_cfq = {
4196 .elevator_merge_fn = cfq_merge,
4197 .elevator_merged_fn = cfq_merged_request,
4198 .elevator_merge_req_fn = cfq_merged_requests,
4199 .elevator_allow_merge_fn = cfq_allow_merge,
4200 .elevator_bio_merged_fn = cfq_bio_merged,
4201 .elevator_dispatch_fn = cfq_dispatch_requests,
4202 .elevator_add_req_fn = cfq_insert_request,
4203 .elevator_activate_req_fn = cfq_activate_request,
4204 .elevator_deactivate_req_fn = cfq_deactivate_request,
4205 .elevator_completed_req_fn = cfq_completed_request,
4206 .elevator_former_req_fn = elv_rb_former_request,
4207 .elevator_latter_req_fn = elv_rb_latter_request,
4208 .elevator_set_req_fn = cfq_set_request,
4209 .elevator_put_req_fn = cfq_put_request,
4210 .elevator_may_queue_fn = cfq_may_queue,
4211 .elevator_init_fn = cfq_init_queue,
4212 .elevator_exit_fn = cfq_exit_queue,
4213 .trim = cfq_free_io_context,
4215 .elevator_attrs = cfq_attrs,
4216 .elevator_name = "cfq",
4217 .elevator_owner = THIS_MODULE,
4220 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4221 static struct blkio_policy_type blkio_policy_cfq = {
4223 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4224 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4226 .plid = BLKIO_POLICY_PROP,
4229 static struct blkio_policy_type blkio_policy_cfq;
4232 static int __init cfq_init(void)
4235 * could be 0 on HZ < 1000 setups
4237 if (!cfq_slice_async)
4238 cfq_slice_async = 1;
4239 if (!cfq_slice_idle)
4242 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4243 if (!cfq_group_idle)
4248 if (cfq_slab_setup())
4251 elv_register(&iosched_cfq);
4252 blkio_policy_register(&blkio_policy_cfq);
4257 static void __exit cfq_exit(void)
4259 DECLARE_COMPLETION_ONSTACK(all_gone);
4260 blkio_policy_unregister(&blkio_policy_cfq);
4261 elv_unregister(&iosched_cfq);
4262 ioc_gone = &all_gone;
4263 /* ioc_gone's update must be visible before reading ioc_count */
4267 * this also protects us from entering cfq_slab_kill() with
4268 * pending RCU callbacks
4270 if (elv_ioc_count_read(cfq_ioc_count))
4271 wait_for_completion(&all_gone);
4272 ida_destroy(&cic_index_ida);
4276 module_init(cfq_init);
4277 module_exit(cfq_exit);
4279 MODULE_AUTHOR("Jens Axboe");
4280 MODULE_LICENSE("GPL");
4281 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");