2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
59 return obj->pin_global; /* currently in use by HW, keep flushed */
63 insert_mappable_node(struct i915_ggtt *ggtt,
64 struct drm_mm_node *node, u32 size)
66 memset(node, 0, sizeof(*node));
67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 size, 0, I915_COLOR_UNEVICTABLE,
69 0, ggtt->mappable_end,
74 remove_mappable_node(struct drm_mm_node *node)
76 drm_mm_remove_node(node);
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 spin_lock(&dev_priv->mm.object_stat_lock);
84 dev_priv->mm.object_count++;
85 dev_priv->mm.object_memory += size;
86 spin_unlock(&dev_priv->mm.object_stat_lock);
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 spin_lock(&dev_priv->mm.object_stat_lock);
93 dev_priv->mm.object_count--;
94 dev_priv->mm.object_memory -= size;
95 spin_unlock(&dev_priv->mm.object_stat_lock);
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
110 ret = wait_event_interruptible_timeout(error->reset_queue,
111 !i915_reset_backoff(error),
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 } else if (ret < 0) {
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 struct drm_i915_private *dev_priv = to_i915(dev);
128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141 struct drm_file *file)
143 struct drm_i915_private *dev_priv = to_i915(dev);
144 struct i915_ggtt *ggtt = &dev_priv->ggtt;
145 struct drm_i915_gem_get_aperture *args = data;
146 struct i915_vma *vma;
149 pinned = ggtt->base.reserved;
150 mutex_lock(&dev->struct_mutex);
151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152 if (i915_vma_is_pinned(vma))
153 pinned += vma->node.size;
154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155 if (i915_vma_is_pinned(vma))
156 pinned += vma->node.size;
157 mutex_unlock(&dev->struct_mutex);
159 args->aper_size = ggtt->base.total;
160 args->aper_available_size = args->aper_size - pinned;
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
170 struct scatterlist *sg;
175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
182 phys = drm_pci_alloc(obj->base.dev,
183 roundup_pow_of_two(obj->base.size),
184 roundup_pow_of_two(obj->base.size));
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
193 page = shmem_read_mapping_page(mapping, i);
199 src = kmap_atomic(page);
200 memcpy(vaddr, src, PAGE_SIZE);
201 drm_clflush_virt_range(vaddr, PAGE_SIZE);
208 i915_gem_chipset_flush(to_i915(obj->base.dev));
210 st = kmalloc(sizeof(*st), GFP_KERNEL);
216 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
224 sg->length = obj->base.size;
226 sg_dma_address(sg) = phys->busaddr;
227 sg_dma_len(sg) = obj->base.size;
229 obj->phys_handle = phys;
231 __i915_gem_object_set_pages(obj, st, sg->length);
236 drm_pci_free(obj->base.dev, phys);
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
243 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245 if (cpu_write_needs_clflush(obj))
246 obj->cache_dirty = true;
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 struct sg_table *pages,
254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
256 if (obj->mm.madv == I915_MADV_DONTNEED)
257 obj->mm.dirty = false;
260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262 drm_clflush_sg(pages);
264 __start_cpu_write(obj);
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 struct sg_table *pages)
271 __i915_gem_object_release_shmem(obj, pages, false);
274 struct address_space *mapping = obj->base.filp->f_mapping;
275 char *vaddr = obj->phys_handle->vaddr;
278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
282 page = shmem_read_mapping_page(mapping, i);
286 dst = kmap_atomic(page);
287 drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 memcpy(dst, vaddr, PAGE_SIZE);
291 set_page_dirty(page);
292 if (obj->mm.madv == I915_MADV_WILLNEED)
293 mark_page_accessed(page);
297 obj->mm.dirty = false;
300 sg_free_table(pages);
303 drm_pci_free(obj->base.dev, obj->phys_handle);
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
309 i915_gem_object_unpin_pages(obj);
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 .get_pages = i915_gem_object_get_pages_phys,
314 .put_pages = i915_gem_object_put_pages_phys,
315 .release = i915_gem_object_release_phys,
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
322 struct i915_vma *vma;
323 LIST_HEAD(still_in_list);
326 lockdep_assert_held(&obj->base.dev->struct_mutex);
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
333 ret = i915_gem_object_set_to_cpu_domain(obj, false);
337 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 list_move_tail(&vma->obj_link, &still_in_list);
341 ret = i915_vma_unbind(vma);
345 list_splice(&still_in_list, &obj->vma_list);
351 i915_gem_object_wait_fence(struct dma_fence *fence,
354 struct intel_rps_client *rps_client)
356 struct drm_i915_gem_request *rq;
358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 if (!dma_fence_is_i915(fence))
364 return dma_fence_wait_timeout(fence,
365 flags & I915_WAIT_INTERRUPTIBLE,
368 rq = to_request(fence);
369 if (i915_gem_request_completed(rq))
372 /* This client is about to stall waiting for the GPU. In many cases
373 * this is undesirable and limits the throughput of the system, as
374 * many clients cannot continue processing user input/output whilst
375 * blocked. RPS autotuning may take tens of milliseconds to respond
376 * to the GPU load and thus incurs additional latency for the client.
377 * We can circumvent that by promoting the GPU frequency to maximum
378 * before we wait. This makes the GPU throttle up much more quickly
379 * (good for benchmarks and user experience, e.g. window animations),
380 * but at a cost of spending more power processing the workload
381 * (bad for battery). Not all clients even want their results
382 * immediately and for them we should just let the GPU select its own
383 * frequency to maximise efficiency. To prevent a single client from
384 * forcing the clocks too high for the whole system, we only allow
385 * each client to waitboost once in a busy period.
388 if (INTEL_GEN(rq->i915) >= 6)
389 gen6_rps_boost(rq, rps_client);
394 timeout = i915_wait_request(rq, flags, timeout);
397 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398 i915_gem_request_retire_upto(rq);
404 i915_gem_object_wait_reservation(struct reservation_object *resv,
407 struct intel_rps_client *rps_client)
409 unsigned int seq = __read_seqcount_begin(&resv->seq);
410 struct dma_fence *excl;
411 bool prune_fences = false;
413 if (flags & I915_WAIT_ALL) {
414 struct dma_fence **shared;
415 unsigned int count, i;
418 ret = reservation_object_get_fences_rcu(resv,
419 &excl, &count, &shared);
423 for (i = 0; i < count; i++) {
424 timeout = i915_gem_object_wait_fence(shared[i],
430 dma_fence_put(shared[i]);
433 for (; i < count; i++)
434 dma_fence_put(shared[i]);
437 prune_fences = count && timeout >= 0;
439 excl = reservation_object_get_excl_rcu(resv);
442 if (excl && timeout >= 0) {
443 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
445 prune_fences = timeout >= 0;
450 /* Oportunistically prune the fences iff we know they have *all* been
451 * signaled and that the reservation object has not been changed (i.e.
452 * no new fences have been added).
454 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
455 if (reservation_object_trylock(resv)) {
456 if (!__read_seqcount_retry(&resv->seq, seq))
457 reservation_object_add_excl_fence(resv, NULL);
458 reservation_object_unlock(resv);
465 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 struct drm_i915_gem_request *rq;
468 struct intel_engine_cs *engine;
470 if (!dma_fence_is_i915(fence))
473 rq = to_request(fence);
475 if (!engine->schedule)
478 engine->schedule(rq, prio);
481 static void fence_set_priority(struct dma_fence *fence, int prio)
483 /* Recurse once into a fence-array */
484 if (dma_fence_is_array(fence)) {
485 struct dma_fence_array *array = to_dma_fence_array(fence);
488 for (i = 0; i < array->num_fences; i++)
489 __fence_set_priority(array->fences[i], prio);
491 __fence_set_priority(fence, prio);
496 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
500 struct dma_fence *excl;
502 if (flags & I915_WAIT_ALL) {
503 struct dma_fence **shared;
504 unsigned int count, i;
507 ret = reservation_object_get_fences_rcu(obj->resv,
508 &excl, &count, &shared);
512 for (i = 0; i < count; i++) {
513 fence_set_priority(shared[i], prio);
514 dma_fence_put(shared[i]);
519 excl = reservation_object_get_excl_rcu(obj->resv);
523 fence_set_priority(excl, prio);
530 * Waits for rendering to the object to be completed
531 * @obj: i915 gem object
532 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
533 * @timeout: how long to wait
534 * @rps: client (user process) to charge for any waitboosting
537 i915_gem_object_wait(struct drm_i915_gem_object *obj,
540 struct intel_rps_client *rps_client)
543 #if IS_ENABLED(CONFIG_LOCKDEP)
544 GEM_BUG_ON(debug_locks &&
545 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
546 !!(flags & I915_WAIT_LOCKED));
548 GEM_BUG_ON(timeout < 0);
550 timeout = i915_gem_object_wait_reservation(obj->resv,
553 return timeout < 0 ? timeout : 0;
556 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 struct drm_i915_file_private *fpriv = file->driver_priv;
560 return &fpriv->rps_client;
564 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
565 struct drm_i915_gem_pwrite *args,
566 struct drm_file *file)
568 void *vaddr = obj->phys_handle->vaddr + args->offset;
569 char __user *user_data = u64_to_user_ptr(args->data_ptr);
571 /* We manually control the domain here and pretend that it
572 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
575 if (copy_from_user(vaddr, user_data, args->size))
578 drm_clflush_virt_range(vaddr, args->size);
579 i915_gem_chipset_flush(to_i915(obj->base.dev));
581 intel_fb_obj_flush(obj, ORIGIN_CPU);
585 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
590 void i915_gem_object_free(struct drm_i915_gem_object *obj)
592 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
593 kmem_cache_free(dev_priv->objects, obj);
597 i915_gem_create(struct drm_file *file,
598 struct drm_i915_private *dev_priv,
602 struct drm_i915_gem_object *obj;
606 size = roundup(size, PAGE_SIZE);
610 /* Allocate the new object */
611 obj = i915_gem_object_create(dev_priv, size);
615 ret = drm_gem_handle_create(file, &obj->base, &handle);
616 /* drop reference from allocate - handle holds it now */
617 i915_gem_object_put(obj);
626 i915_gem_dumb_create(struct drm_file *file,
627 struct drm_device *dev,
628 struct drm_mode_create_dumb *args)
630 /* have to work out size/pitch and return them */
631 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
632 args->size = args->pitch * args->height;
633 return i915_gem_create(file, to_i915(dev),
634 args->size, &args->handle);
637 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639 return !(obj->cache_level == I915_CACHE_NONE ||
640 obj->cache_level == I915_CACHE_WT);
644 * Creates a new mm object and returns a handle to it.
645 * @dev: drm device pointer
646 * @data: ioctl data blob
647 * @file: drm file pointer
650 i915_gem_create_ioctl(struct drm_device *dev, void *data,
651 struct drm_file *file)
653 struct drm_i915_private *dev_priv = to_i915(dev);
654 struct drm_i915_gem_create *args = data;
656 i915_gem_flush_free_objects(dev_priv);
658 return i915_gem_create(file, dev_priv,
659 args->size, &args->handle);
662 static inline enum fb_op_origin
663 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665 return (domain == I915_GEM_DOMAIN_GTT ?
666 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
670 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674 if (!(obj->base.write_domain & flush_domains))
677 /* No actual flushing is required for the GTT write domain. Writes
678 * to it "immediately" go to main memory as far as we know, so there's
679 * no chipset flush. It also doesn't land in render cache.
681 * However, we do have to enforce the order so that all writes through
682 * the GTT land before any writes to the device, such as updates to
685 * We also have to wait a bit for the writes to land from the GTT.
686 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
687 * timing. This issue has only been observed when switching quickly
688 * between GTT writes and CPU reads from inside the kernel on recent hw,
689 * and it appears to only affect discrete GTT blocks (i.e. on LLC
690 * system agents we cannot reproduce this behaviour).
694 switch (obj->base.write_domain) {
695 case I915_GEM_DOMAIN_GTT:
696 if (!HAS_LLC(dev_priv)) {
697 intel_runtime_pm_get(dev_priv);
698 spin_lock_irq(&dev_priv->uncore.lock);
699 POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
700 spin_unlock_irq(&dev_priv->uncore.lock);
701 intel_runtime_pm_put(dev_priv);
704 intel_fb_obj_flush(obj,
705 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
708 case I915_GEM_DOMAIN_CPU:
709 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
712 case I915_GEM_DOMAIN_RENDER:
713 if (gpu_write_needs_clflush(obj))
714 obj->cache_dirty = true;
718 obj->base.write_domain = 0;
722 __copy_to_user_swizzled(char __user *cpu_vaddr,
723 const char *gpu_vaddr, int gpu_offset,
726 int ret, cpu_offset = 0;
729 int cacheline_end = ALIGN(gpu_offset + 1, 64);
730 int this_length = min(cacheline_end - gpu_offset, length);
731 int swizzled_gpu_offset = gpu_offset ^ 64;
733 ret = __copy_to_user(cpu_vaddr + cpu_offset,
734 gpu_vaddr + swizzled_gpu_offset,
739 cpu_offset += this_length;
740 gpu_offset += this_length;
741 length -= this_length;
748 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
749 const char __user *cpu_vaddr,
752 int ret, cpu_offset = 0;
755 int cacheline_end = ALIGN(gpu_offset + 1, 64);
756 int this_length = min(cacheline_end - gpu_offset, length);
757 int swizzled_gpu_offset = gpu_offset ^ 64;
759 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
760 cpu_vaddr + cpu_offset,
765 cpu_offset += this_length;
766 gpu_offset += this_length;
767 length -= this_length;
774 * Pins the specified object's pages and synchronizes the object with
775 * GPU accesses. Sets needs_clflush to non-zero if the caller should
776 * flush the object from the CPU cache.
778 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
779 unsigned int *needs_clflush)
783 lockdep_assert_held(&obj->base.dev->struct_mutex);
786 if (!i915_gem_object_has_struct_page(obj))
789 ret = i915_gem_object_wait(obj,
790 I915_WAIT_INTERRUPTIBLE |
792 MAX_SCHEDULE_TIMEOUT,
797 ret = i915_gem_object_pin_pages(obj);
801 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
802 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
803 ret = i915_gem_object_set_to_cpu_domain(obj, false);
810 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812 /* If we're not in the cpu read domain, set ourself into the gtt
813 * read domain and manually flush cachelines (if required). This
814 * optimizes for the case when the gpu will dirty the data
815 * anyway again before the next pread happens.
817 if (!obj->cache_dirty &&
818 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
819 *needs_clflush = CLFLUSH_BEFORE;
822 /* return with the pages pinned */
826 i915_gem_object_unpin_pages(obj);
830 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
831 unsigned int *needs_clflush)
835 lockdep_assert_held(&obj->base.dev->struct_mutex);
838 if (!i915_gem_object_has_struct_page(obj))
841 ret = i915_gem_object_wait(obj,
842 I915_WAIT_INTERRUPTIBLE |
845 MAX_SCHEDULE_TIMEOUT,
850 ret = i915_gem_object_pin_pages(obj);
854 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
855 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
856 ret = i915_gem_object_set_to_cpu_domain(obj, true);
863 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
865 /* If we're not in the cpu write domain, set ourself into the
866 * gtt write domain and manually flush cachelines (as required).
867 * This optimizes for the case when the gpu will use the data
868 * right away and we therefore have to clflush anyway.
870 if (!obj->cache_dirty) {
871 *needs_clflush |= CLFLUSH_AFTER;
874 * Same trick applies to invalidate partially written
875 * cachelines read before writing.
877 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
878 *needs_clflush |= CLFLUSH_BEFORE;
882 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
883 obj->mm.dirty = true;
884 /* return with the pages pinned */
888 i915_gem_object_unpin_pages(obj);
893 shmem_clflush_swizzled_range(char *addr, unsigned long length,
896 if (unlikely(swizzled)) {
897 unsigned long start = (unsigned long) addr;
898 unsigned long end = (unsigned long) addr + length;
900 /* For swizzling simply ensure that we always flush both
901 * channels. Lame, but simple and it works. Swizzled
902 * pwrite/pread is far from a hotpath - current userspace
903 * doesn't use it at all. */
904 start = round_down(start, 128);
905 end = round_up(end, 128);
907 drm_clflush_virt_range((void *)start, end - start);
909 drm_clflush_virt_range(addr, length);
914 /* Only difference to the fast-path function is that this can handle bit17
915 * and uses non-atomic copy and kmap functions. */
917 shmem_pread_slow(struct page *page, int offset, int length,
918 char __user *user_data,
919 bool page_do_bit17_swizzling, bool needs_clflush)
926 shmem_clflush_swizzled_range(vaddr + offset, length,
927 page_do_bit17_swizzling);
929 if (page_do_bit17_swizzling)
930 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
932 ret = __copy_to_user(user_data, vaddr + offset, length);
935 return ret ? - EFAULT : 0;
939 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
940 bool page_do_bit17_swizzling, bool needs_clflush)
945 if (!page_do_bit17_swizzling) {
946 char *vaddr = kmap_atomic(page);
949 drm_clflush_virt_range(vaddr + offset, length);
950 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
951 kunmap_atomic(vaddr);
956 return shmem_pread_slow(page, offset, length, user_data,
957 page_do_bit17_swizzling, needs_clflush);
961 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
962 struct drm_i915_gem_pread *args)
964 char __user *user_data;
966 unsigned int obj_do_bit17_swizzling;
967 unsigned int needs_clflush;
968 unsigned int idx, offset;
971 obj_do_bit17_swizzling = 0;
972 if (i915_gem_object_needs_bit17_swizzle(obj))
973 obj_do_bit17_swizzling = BIT(17);
975 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
979 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
980 mutex_unlock(&obj->base.dev->struct_mutex);
985 user_data = u64_to_user_ptr(args->data_ptr);
986 offset = offset_in_page(args->offset);
987 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
988 struct page *page = i915_gem_object_get_page(obj, idx);
992 if (offset + length > PAGE_SIZE)
993 length = PAGE_SIZE - offset;
995 ret = shmem_pread(page, offset, length, user_data,
996 page_to_phys(page) & obj_do_bit17_swizzling,
1002 user_data += length;
1006 i915_gem_obj_finish_shmem_access(obj);
1011 gtt_user_read(struct io_mapping *mapping,
1012 loff_t base, int offset,
1013 char __user *user_data, int length)
1015 void __iomem *vaddr;
1016 unsigned long unwritten;
1018 /* We can use the cpu mem copy function because this is X86. */
1019 vaddr = io_mapping_map_atomic_wc(mapping, base);
1020 unwritten = __copy_to_user_inatomic(user_data,
1021 (void __force *)vaddr + offset,
1023 io_mapping_unmap_atomic(vaddr);
1025 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1026 unwritten = copy_to_user(user_data,
1027 (void __force *)vaddr + offset,
1029 io_mapping_unmap(vaddr);
1035 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1036 const struct drm_i915_gem_pread *args)
1038 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1039 struct i915_ggtt *ggtt = &i915->ggtt;
1040 struct drm_mm_node node;
1041 struct i915_vma *vma;
1042 void __user *user_data;
1046 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1050 intel_runtime_pm_get(i915);
1051 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1056 node.start = i915_ggtt_offset(vma);
1057 node.allocated = false;
1058 ret = i915_vma_put_fence(vma);
1060 i915_vma_unpin(vma);
1065 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1068 GEM_BUG_ON(!node.allocated);
1071 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1075 mutex_unlock(&i915->drm.struct_mutex);
1077 user_data = u64_to_user_ptr(args->data_ptr);
1078 remain = args->size;
1079 offset = args->offset;
1081 while (remain > 0) {
1082 /* Operation in this page
1084 * page_base = page offset within aperture
1085 * page_offset = offset within page
1086 * page_length = bytes to copy for this page
1088 u32 page_base = node.start;
1089 unsigned page_offset = offset_in_page(offset);
1090 unsigned page_length = PAGE_SIZE - page_offset;
1091 page_length = remain < page_length ? remain : page_length;
1092 if (node.allocated) {
1094 ggtt->base.insert_page(&ggtt->base,
1095 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1096 node.start, I915_CACHE_NONE, 0);
1099 page_base += offset & PAGE_MASK;
1102 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1103 user_data, page_length)) {
1108 remain -= page_length;
1109 user_data += page_length;
1110 offset += page_length;
1113 mutex_lock(&i915->drm.struct_mutex);
1115 if (node.allocated) {
1117 ggtt->base.clear_range(&ggtt->base,
1118 node.start, node.size);
1119 remove_mappable_node(&node);
1121 i915_vma_unpin(vma);
1124 intel_runtime_pm_put(i915);
1125 mutex_unlock(&i915->drm.struct_mutex);
1131 * Reads data from the object referenced by handle.
1132 * @dev: drm device pointer
1133 * @data: ioctl data blob
1134 * @file: drm file pointer
1136 * On error, the contents of *data are undefined.
1139 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1140 struct drm_file *file)
1142 struct drm_i915_gem_pread *args = data;
1143 struct drm_i915_gem_object *obj;
1146 if (args->size == 0)
1149 if (!access_ok(VERIFY_WRITE,
1150 u64_to_user_ptr(args->data_ptr),
1154 obj = i915_gem_object_lookup(file, args->handle);
1158 /* Bounds check source. */
1159 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1164 trace_i915_gem_object_pread(obj, args->offset, args->size);
1166 ret = i915_gem_object_wait(obj,
1167 I915_WAIT_INTERRUPTIBLE,
1168 MAX_SCHEDULE_TIMEOUT,
1169 to_rps_client(file));
1173 ret = i915_gem_object_pin_pages(obj);
1177 ret = i915_gem_shmem_pread(obj, args);
1178 if (ret == -EFAULT || ret == -ENODEV)
1179 ret = i915_gem_gtt_pread(obj, args);
1181 i915_gem_object_unpin_pages(obj);
1183 i915_gem_object_put(obj);
1187 /* This is the fast write path which cannot handle
1188 * page faults in the source data
1192 ggtt_write(struct io_mapping *mapping,
1193 loff_t base, int offset,
1194 char __user *user_data, int length)
1196 void __iomem *vaddr;
1197 unsigned long unwritten;
1199 /* We can use the cpu mem copy function because this is X86. */
1200 vaddr = io_mapping_map_atomic_wc(mapping, base);
1201 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1203 io_mapping_unmap_atomic(vaddr);
1205 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1206 unwritten = copy_from_user((void __force *)vaddr + offset,
1208 io_mapping_unmap(vaddr);
1215 * This is the fast pwrite path, where we copy the data directly from the
1216 * user into the GTT, uncached.
1217 * @obj: i915 GEM object
1218 * @args: pwrite arguments structure
1221 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1222 const struct drm_i915_gem_pwrite *args)
1224 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1225 struct i915_ggtt *ggtt = &i915->ggtt;
1226 struct drm_mm_node node;
1227 struct i915_vma *vma;
1229 void __user *user_data;
1232 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1236 if (i915_gem_object_has_struct_page(obj)) {
1238 * Avoid waking the device up if we can fallback, as
1239 * waking/resuming is very slow (worst-case 10-100 ms
1240 * depending on PCI sleeps and our own resume time).
1241 * This easily dwarfs any performance advantage from
1242 * using the cache bypass of indirect GGTT access.
1244 if (!intel_runtime_pm_get_if_in_use(i915)) {
1249 /* No backing pages, no fallback, we must force GGTT access */
1250 intel_runtime_pm_get(i915);
1253 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1258 node.start = i915_ggtt_offset(vma);
1259 node.allocated = false;
1260 ret = i915_vma_put_fence(vma);
1262 i915_vma_unpin(vma);
1267 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1270 GEM_BUG_ON(!node.allocated);
1273 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1277 mutex_unlock(&i915->drm.struct_mutex);
1279 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1281 user_data = u64_to_user_ptr(args->data_ptr);
1282 offset = args->offset;
1283 remain = args->size;
1285 /* Operation in this page
1287 * page_base = page offset within aperture
1288 * page_offset = offset within page
1289 * page_length = bytes to copy for this page
1291 u32 page_base = node.start;
1292 unsigned int page_offset = offset_in_page(offset);
1293 unsigned int page_length = PAGE_SIZE - page_offset;
1294 page_length = remain < page_length ? remain : page_length;
1295 if (node.allocated) {
1296 wmb(); /* flush the write before we modify the GGTT */
1297 ggtt->base.insert_page(&ggtt->base,
1298 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1299 node.start, I915_CACHE_NONE, 0);
1300 wmb(); /* flush modifications to the GGTT (insert_page) */
1302 page_base += offset & PAGE_MASK;
1304 /* If we get a fault while copying data, then (presumably) our
1305 * source page isn't available. Return the error and we'll
1306 * retry in the slow path.
1307 * If the object is non-shmem backed, we retry again with the
1308 * path that handles page fault.
1310 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1311 user_data, page_length)) {
1316 remain -= page_length;
1317 user_data += page_length;
1318 offset += page_length;
1320 intel_fb_obj_flush(obj, ORIGIN_CPU);
1322 mutex_lock(&i915->drm.struct_mutex);
1324 if (node.allocated) {
1326 ggtt->base.clear_range(&ggtt->base,
1327 node.start, node.size);
1328 remove_mappable_node(&node);
1330 i915_vma_unpin(vma);
1333 intel_runtime_pm_put(i915);
1335 mutex_unlock(&i915->drm.struct_mutex);
1340 shmem_pwrite_slow(struct page *page, int offset, int length,
1341 char __user *user_data,
1342 bool page_do_bit17_swizzling,
1343 bool needs_clflush_before,
1344 bool needs_clflush_after)
1350 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1351 shmem_clflush_swizzled_range(vaddr + offset, length,
1352 page_do_bit17_swizzling);
1353 if (page_do_bit17_swizzling)
1354 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1357 ret = __copy_from_user(vaddr + offset, user_data, length);
1358 if (needs_clflush_after)
1359 shmem_clflush_swizzled_range(vaddr + offset, length,
1360 page_do_bit17_swizzling);
1363 return ret ? -EFAULT : 0;
1366 /* Per-page copy function for the shmem pwrite fastpath.
1367 * Flushes invalid cachelines before writing to the target if
1368 * needs_clflush_before is set and flushes out any written cachelines after
1369 * writing if needs_clflush is set.
1372 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1373 bool page_do_bit17_swizzling,
1374 bool needs_clflush_before,
1375 bool needs_clflush_after)
1380 if (!page_do_bit17_swizzling) {
1381 char *vaddr = kmap_atomic(page);
1383 if (needs_clflush_before)
1384 drm_clflush_virt_range(vaddr + offset, len);
1385 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1386 if (needs_clflush_after)
1387 drm_clflush_virt_range(vaddr + offset, len);
1389 kunmap_atomic(vaddr);
1394 return shmem_pwrite_slow(page, offset, len, user_data,
1395 page_do_bit17_swizzling,
1396 needs_clflush_before,
1397 needs_clflush_after);
1401 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1402 const struct drm_i915_gem_pwrite *args)
1404 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1405 void __user *user_data;
1407 unsigned int obj_do_bit17_swizzling;
1408 unsigned int partial_cacheline_write;
1409 unsigned int needs_clflush;
1410 unsigned int offset, idx;
1413 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1417 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1418 mutex_unlock(&i915->drm.struct_mutex);
1422 obj_do_bit17_swizzling = 0;
1423 if (i915_gem_object_needs_bit17_swizzle(obj))
1424 obj_do_bit17_swizzling = BIT(17);
1426 /* If we don't overwrite a cacheline completely we need to be
1427 * careful to have up-to-date data by first clflushing. Don't
1428 * overcomplicate things and flush the entire patch.
1430 partial_cacheline_write = 0;
1431 if (needs_clflush & CLFLUSH_BEFORE)
1432 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1434 user_data = u64_to_user_ptr(args->data_ptr);
1435 remain = args->size;
1436 offset = offset_in_page(args->offset);
1437 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1438 struct page *page = i915_gem_object_get_page(obj, idx);
1442 if (offset + length > PAGE_SIZE)
1443 length = PAGE_SIZE - offset;
1445 ret = shmem_pwrite(page, offset, length, user_data,
1446 page_to_phys(page) & obj_do_bit17_swizzling,
1447 (offset | length) & partial_cacheline_write,
1448 needs_clflush & CLFLUSH_AFTER);
1453 user_data += length;
1457 intel_fb_obj_flush(obj, ORIGIN_CPU);
1458 i915_gem_obj_finish_shmem_access(obj);
1463 * Writes data to the object referenced by handle.
1465 * @data: ioctl data blob
1468 * On error, the contents of the buffer that were to be modified are undefined.
1471 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1472 struct drm_file *file)
1474 struct drm_i915_gem_pwrite *args = data;
1475 struct drm_i915_gem_object *obj;
1478 if (args->size == 0)
1481 if (!access_ok(VERIFY_READ,
1482 u64_to_user_ptr(args->data_ptr),
1486 obj = i915_gem_object_lookup(file, args->handle);
1490 /* Bounds check destination. */
1491 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1496 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1499 if (obj->ops->pwrite)
1500 ret = obj->ops->pwrite(obj, args);
1504 ret = i915_gem_object_wait(obj,
1505 I915_WAIT_INTERRUPTIBLE |
1507 MAX_SCHEDULE_TIMEOUT,
1508 to_rps_client(file));
1512 ret = i915_gem_object_pin_pages(obj);
1517 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1518 * it would end up going through the fenced access, and we'll get
1519 * different detiling behavior between reading and writing.
1520 * pread/pwrite currently are reading and writing from the CPU
1521 * perspective, requiring manual detiling by the client.
1523 if (!i915_gem_object_has_struct_page(obj) ||
1524 cpu_write_needs_clflush(obj))
1525 /* Note that the gtt paths might fail with non-page-backed user
1526 * pointers (e.g. gtt mappings when moving data between
1527 * textures). Fallback to the shmem path in that case.
1529 ret = i915_gem_gtt_pwrite_fast(obj, args);
1531 if (ret == -EFAULT || ret == -ENOSPC) {
1532 if (obj->phys_handle)
1533 ret = i915_gem_phys_pwrite(obj, args, file);
1535 ret = i915_gem_shmem_pwrite(obj, args);
1538 i915_gem_object_unpin_pages(obj);
1540 i915_gem_object_put(obj);
1544 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1546 struct drm_i915_private *i915;
1547 struct list_head *list;
1548 struct i915_vma *vma;
1550 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1552 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1553 if (!i915_vma_is_ggtt(vma))
1556 if (i915_vma_is_active(vma))
1559 if (!drm_mm_node_allocated(&vma->node))
1562 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1565 i915 = to_i915(obj->base.dev);
1566 spin_lock(&i915->mm.obj_lock);
1567 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1568 list_move_tail(&obj->mm.link, list);
1569 spin_unlock(&i915->mm.obj_lock);
1573 * Called when user space prepares to use an object with the CPU, either
1574 * through the mmap ioctl's mapping or a GTT mapping.
1576 * @data: ioctl data blob
1580 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1581 struct drm_file *file)
1583 struct drm_i915_gem_set_domain *args = data;
1584 struct drm_i915_gem_object *obj;
1585 uint32_t read_domains = args->read_domains;
1586 uint32_t write_domain = args->write_domain;
1589 /* Only handle setting domains to types used by the CPU. */
1590 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1593 /* Having something in the write domain implies it's in the read
1594 * domain, and only that read domain. Enforce that in the request.
1596 if (write_domain != 0 && read_domains != write_domain)
1599 obj = i915_gem_object_lookup(file, args->handle);
1603 /* Try to flush the object off the GPU without holding the lock.
1604 * We will repeat the flush holding the lock in the normal manner
1605 * to catch cases where we are gazumped.
1607 err = i915_gem_object_wait(obj,
1608 I915_WAIT_INTERRUPTIBLE |
1609 (write_domain ? I915_WAIT_ALL : 0),
1610 MAX_SCHEDULE_TIMEOUT,
1611 to_rps_client(file));
1615 /* Flush and acquire obj->pages so that we are coherent through
1616 * direct access in memory with previous cached writes through
1617 * shmemfs and that our cache domain tracking remains valid.
1618 * For example, if the obj->filp was moved to swap without us
1619 * being notified and releasing the pages, we would mistakenly
1620 * continue to assume that the obj remained out of the CPU cached
1623 err = i915_gem_object_pin_pages(obj);
1627 err = i915_mutex_lock_interruptible(dev);
1631 if (read_domains & I915_GEM_DOMAIN_WC)
1632 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1633 else if (read_domains & I915_GEM_DOMAIN_GTT)
1634 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1636 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1638 /* And bump the LRU for this access */
1639 i915_gem_object_bump_inactive_ggtt(obj);
1641 mutex_unlock(&dev->struct_mutex);
1643 if (write_domain != 0)
1644 intel_fb_obj_invalidate(obj,
1645 fb_write_origin(obj, write_domain));
1648 i915_gem_object_unpin_pages(obj);
1650 i915_gem_object_put(obj);
1655 * Called when user space has done writes to this buffer
1657 * @data: ioctl data blob
1661 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1662 struct drm_file *file)
1664 struct drm_i915_gem_sw_finish *args = data;
1665 struct drm_i915_gem_object *obj;
1667 obj = i915_gem_object_lookup(file, args->handle);
1671 /* Pinned buffers may be scanout, so flush the cache */
1672 i915_gem_object_flush_if_display(obj);
1673 i915_gem_object_put(obj);
1679 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1682 * @data: ioctl data blob
1685 * While the mapping holds a reference on the contents of the object, it doesn't
1686 * imply a ref on the object itself.
1690 * DRM driver writers who look a this function as an example for how to do GEM
1691 * mmap support, please don't implement mmap support like here. The modern way
1692 * to implement DRM mmap support is with an mmap offset ioctl (like
1693 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1694 * That way debug tooling like valgrind will understand what's going on, hiding
1695 * the mmap call in a driver private ioctl will break that. The i915 driver only
1696 * does cpu mmaps this way because we didn't know better.
1699 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1700 struct drm_file *file)
1702 struct drm_i915_gem_mmap *args = data;
1703 struct drm_i915_gem_object *obj;
1706 if (args->flags & ~(I915_MMAP_WC))
1709 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1712 obj = i915_gem_object_lookup(file, args->handle);
1716 /* prime objects have no backing filp to GEM mmap
1719 if (!obj->base.filp) {
1720 i915_gem_object_put(obj);
1724 addr = vm_mmap(obj->base.filp, 0, args->size,
1725 PROT_READ | PROT_WRITE, MAP_SHARED,
1727 if (args->flags & I915_MMAP_WC) {
1728 struct mm_struct *mm = current->mm;
1729 struct vm_area_struct *vma;
1731 if (down_write_killable(&mm->mmap_sem)) {
1732 i915_gem_object_put(obj);
1735 vma = find_vma(mm, addr);
1738 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1741 up_write(&mm->mmap_sem);
1743 /* This may race, but that's ok, it only gets set */
1744 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1746 i915_gem_object_put(obj);
1747 if (IS_ERR((void *)addr))
1750 args->addr_ptr = (uint64_t) addr;
1755 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1757 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1761 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1763 * A history of the GTT mmap interface:
1765 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1766 * aligned and suitable for fencing, and still fit into the available
1767 * mappable space left by the pinned display objects. A classic problem
1768 * we called the page-fault-of-doom where we would ping-pong between
1769 * two objects that could not fit inside the GTT and so the memcpy
1770 * would page one object in at the expense of the other between every
1773 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1774 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1775 * object is too large for the available space (or simply too large
1776 * for the mappable aperture!), a view is created instead and faulted
1777 * into userspace. (This view is aligned and sized appropriately for
1780 * 2 - Recognise WC as a separate cache domain so that we can flush the
1781 * delayed writes via GTT before performing direct access via WC.
1785 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1786 * hangs on some architectures, corruption on others. An attempt to service
1787 * a GTT page fault from a snoopable object will generate a SIGBUS.
1789 * * the object must be able to fit into RAM (physical memory, though no
1790 * limited to the mappable aperture).
1795 * * a new GTT page fault will synchronize rendering from the GPU and flush
1796 * all data to system memory. Subsequent access will not be synchronized.
1798 * * all mappings are revoked on runtime device suspend.
1800 * * there are only 8, 16 or 32 fence registers to share between all users
1801 * (older machines require fence register for display and blitter access
1802 * as well). Contention of the fence registers will cause the previous users
1803 * to be unmapped and any new access will generate new page faults.
1805 * * running out of memory while servicing a fault may generate a SIGBUS,
1806 * rather than the expected SIGSEGV.
1808 int i915_gem_mmap_gtt_version(void)
1813 static inline struct i915_ggtt_view
1814 compute_partial_view(struct drm_i915_gem_object *obj,
1815 pgoff_t page_offset,
1818 struct i915_ggtt_view view;
1820 if (i915_gem_object_is_tiled(obj))
1821 chunk = roundup(chunk, tile_row_pages(obj));
1823 view.type = I915_GGTT_VIEW_PARTIAL;
1824 view.partial.offset = rounddown(page_offset, chunk);
1826 min_t(unsigned int, chunk,
1827 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1829 /* If the partial covers the entire object, just create a normal VMA. */
1830 if (chunk >= obj->base.size >> PAGE_SHIFT)
1831 view.type = I915_GGTT_VIEW_NORMAL;
1837 * i915_gem_fault - fault a page into the GTT
1840 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1841 * from userspace. The fault handler takes care of binding the object to
1842 * the GTT (if needed), allocating and programming a fence register (again,
1843 * only if needed based on whether the old reg is still valid or the object
1844 * is tiled) and inserting a new PTE into the faulting process.
1846 * Note that the faulting process may involve evicting existing objects
1847 * from the GTT and/or fence registers to make room. So performance may
1848 * suffer if the GTT working set is large or there are few fence registers
1851 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1852 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1854 int i915_gem_fault(struct vm_fault *vmf)
1856 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1857 struct vm_area_struct *area = vmf->vma;
1858 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1859 struct drm_device *dev = obj->base.dev;
1860 struct drm_i915_private *dev_priv = to_i915(dev);
1861 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1862 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1863 struct i915_vma *vma;
1864 pgoff_t page_offset;
1868 /* We don't use vmf->pgoff since that has the fake offset */
1869 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1871 trace_i915_gem_object_fault(obj, page_offset, true, write);
1873 /* Try to flush the object off the GPU first without holding the lock.
1874 * Upon acquiring the lock, we will perform our sanity checks and then
1875 * repeat the flush holding the lock in the normal manner to catch cases
1876 * where we are gazumped.
1878 ret = i915_gem_object_wait(obj,
1879 I915_WAIT_INTERRUPTIBLE,
1880 MAX_SCHEDULE_TIMEOUT,
1885 ret = i915_gem_object_pin_pages(obj);
1889 intel_runtime_pm_get(dev_priv);
1891 ret = i915_mutex_lock_interruptible(dev);
1895 /* Access to snoopable pages through the GTT is incoherent. */
1896 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1901 /* If the object is smaller than a couple of partial vma, it is
1902 * not worth only creating a single partial vma - we may as well
1903 * clear enough space for the full object.
1905 flags = PIN_MAPPABLE;
1906 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1907 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1909 /* Now pin it into the GTT as needed */
1910 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1912 /* Use a partial view if it is bigger than available space */
1913 struct i915_ggtt_view view =
1914 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1916 /* Userspace is now writing through an untracked VMA, abandon
1917 * all hope that the hardware is able to track future writes.
1919 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1921 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1928 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1932 ret = i915_vma_pin_fence(vma);
1936 /* Finally, remap it using the new GTT offset */
1937 ret = remap_io_mapping(area,
1938 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1939 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1940 min_t(u64, vma->size, area->vm_end - area->vm_start),
1945 /* Mark as being mmapped into userspace for later revocation */
1946 assert_rpm_wakelock_held(dev_priv);
1947 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1948 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1949 GEM_BUG_ON(!obj->userfault_count);
1952 i915_vma_unpin_fence(vma);
1954 __i915_vma_unpin(vma);
1956 mutex_unlock(&dev->struct_mutex);
1958 intel_runtime_pm_put(dev_priv);
1959 i915_gem_object_unpin_pages(obj);
1964 * We eat errors when the gpu is terminally wedged to avoid
1965 * userspace unduly crashing (gl has no provisions for mmaps to
1966 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1967 * and so needs to be reported.
1969 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1970 ret = VM_FAULT_SIGBUS;
1975 * EAGAIN means the gpu is hung and we'll wait for the error
1976 * handler to reset everything when re-faulting in
1977 * i915_mutex_lock_interruptible.
1984 * EBUSY is ok: this just means that another thread
1985 * already did the job.
1987 ret = VM_FAULT_NOPAGE;
1994 ret = VM_FAULT_SIGBUS;
1997 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1998 ret = VM_FAULT_SIGBUS;
2004 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2006 struct i915_vma *vma;
2008 GEM_BUG_ON(!obj->userfault_count);
2010 obj->userfault_count = 0;
2011 list_del(&obj->userfault_link);
2012 drm_vma_node_unmap(&obj->base.vma_node,
2013 obj->base.dev->anon_inode->i_mapping);
2015 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2016 if (!i915_vma_is_ggtt(vma))
2019 i915_vma_unset_userfault(vma);
2024 * i915_gem_release_mmap - remove physical page mappings
2025 * @obj: obj in question
2027 * Preserve the reservation of the mmapping with the DRM core code, but
2028 * relinquish ownership of the pages back to the system.
2030 * It is vital that we remove the page mapping if we have mapped a tiled
2031 * object through the GTT and then lose the fence register due to
2032 * resource pressure. Similarly if the object has been moved out of the
2033 * aperture, than pages mapped into userspace must be revoked. Removing the
2034 * mapping will then trigger a page fault on the next user access, allowing
2035 * fixup by i915_gem_fault().
2038 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2040 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2042 /* Serialisation between user GTT access and our code depends upon
2043 * revoking the CPU's PTE whilst the mutex is held. The next user
2044 * pagefault then has to wait until we release the mutex.
2046 * Note that RPM complicates somewhat by adding an additional
2047 * requirement that operations to the GGTT be made holding the RPM
2050 lockdep_assert_held(&i915->drm.struct_mutex);
2051 intel_runtime_pm_get(i915);
2053 if (!obj->userfault_count)
2056 __i915_gem_object_release_mmap(obj);
2058 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2059 * memory transactions from userspace before we return. The TLB
2060 * flushing implied above by changing the PTE above *should* be
2061 * sufficient, an extra barrier here just provides us with a bit
2062 * of paranoid documentation about our requirement to serialise
2063 * memory writes before touching registers / GSM.
2068 intel_runtime_pm_put(i915);
2071 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2073 struct drm_i915_gem_object *obj, *on;
2077 * Only called during RPM suspend. All users of the userfault_list
2078 * must be holding an RPM wakeref to ensure that this can not
2079 * run concurrently with themselves (and use the struct_mutex for
2080 * protection between themselves).
2083 list_for_each_entry_safe(obj, on,
2084 &dev_priv->mm.userfault_list, userfault_link)
2085 __i915_gem_object_release_mmap(obj);
2087 /* The fence will be lost when the device powers down. If any were
2088 * in use by hardware (i.e. they are pinned), we should not be powering
2089 * down! All other fences will be reacquired by the user upon waking.
2091 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2092 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2094 /* Ideally we want to assert that the fence register is not
2095 * live at this point (i.e. that no piece of code will be
2096 * trying to write through fence + GTT, as that both violates
2097 * our tracking of activity and associated locking/barriers,
2098 * but also is illegal given that the hw is powered down).
2100 * Previously we used reg->pin_count as a "liveness" indicator.
2101 * That is not sufficient, and we need a more fine-grained
2102 * tool if we want to have a sanity check here.
2108 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2113 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2115 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2118 err = drm_gem_create_mmap_offset(&obj->base);
2122 /* Attempt to reap some mmap space from dead objects */
2124 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2128 i915_gem_drain_freed_objects(dev_priv);
2129 err = drm_gem_create_mmap_offset(&obj->base);
2133 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2138 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2140 drm_gem_free_mmap_offset(&obj->base);
2144 i915_gem_mmap_gtt(struct drm_file *file,
2145 struct drm_device *dev,
2149 struct drm_i915_gem_object *obj;
2152 obj = i915_gem_object_lookup(file, handle);
2156 ret = i915_gem_object_create_mmap_offset(obj);
2158 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2160 i915_gem_object_put(obj);
2165 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2167 * @data: GTT mapping ioctl data
2168 * @file: GEM object info
2170 * Simply returns the fake offset to userspace so it can mmap it.
2171 * The mmap call will end up in drm_gem_mmap(), which will set things
2172 * up so we can get faults in the handler above.
2174 * The fault handler will take care of binding the object into the GTT
2175 * (since it may have been evicted to make room for something), allocating
2176 * a fence register, and mapping the appropriate aperture address into
2180 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2181 struct drm_file *file)
2183 struct drm_i915_gem_mmap_gtt *args = data;
2185 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2188 /* Immediately discard the backing storage */
2190 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2192 i915_gem_object_free_mmap_offset(obj);
2194 if (obj->base.filp == NULL)
2197 /* Our goal here is to return as much of the memory as
2198 * is possible back to the system as we are called from OOM.
2199 * To do this we must instruct the shmfs to drop all of its
2200 * backing pages, *now*.
2202 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2203 obj->mm.madv = __I915_MADV_PURGED;
2204 obj->mm.pages = ERR_PTR(-EFAULT);
2207 /* Try to discard unwanted pages */
2208 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2210 struct address_space *mapping;
2212 lockdep_assert_held(&obj->mm.lock);
2213 GEM_BUG_ON(i915_gem_object_has_pages(obj));
2215 switch (obj->mm.madv) {
2216 case I915_MADV_DONTNEED:
2217 i915_gem_object_truncate(obj);
2218 case __I915_MADV_PURGED:
2222 if (obj->base.filp == NULL)
2225 mapping = obj->base.filp->f_mapping,
2226 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2230 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2231 struct sg_table *pages)
2233 struct sgt_iter sgt_iter;
2236 __i915_gem_object_release_shmem(obj, pages, true);
2238 i915_gem_gtt_finish_pages(obj, pages);
2240 if (i915_gem_object_needs_bit17_swizzle(obj))
2241 i915_gem_object_save_bit_17_swizzle(obj, pages);
2243 for_each_sgt_page(page, sgt_iter, pages) {
2245 set_page_dirty(page);
2247 if (obj->mm.madv == I915_MADV_WILLNEED)
2248 mark_page_accessed(page);
2252 obj->mm.dirty = false;
2254 sg_free_table(pages);
2258 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2260 struct radix_tree_iter iter;
2264 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2265 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2269 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2270 enum i915_mm_subclass subclass)
2272 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2273 struct sg_table *pages;
2275 if (i915_gem_object_has_pinned_pages(obj))
2278 GEM_BUG_ON(obj->bind_count);
2279 if (!i915_gem_object_has_pages(obj))
2282 /* May be called by shrinker from within get_pages() (on another bo) */
2283 mutex_lock_nested(&obj->mm.lock, subclass);
2284 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2287 /* ->put_pages might need to allocate memory for the bit17 swizzle
2288 * array, hence protect them from being reaped by removing them from gtt
2290 pages = fetch_and_zero(&obj->mm.pages);
2293 spin_lock(&i915->mm.obj_lock);
2294 list_del(&obj->mm.link);
2295 spin_unlock(&i915->mm.obj_lock);
2297 if (obj->mm.mapping) {
2300 ptr = page_mask_bits(obj->mm.mapping);
2301 if (is_vmalloc_addr(ptr))
2304 kunmap(kmap_to_page(ptr));
2306 obj->mm.mapping = NULL;
2309 __i915_gem_object_reset_page_iter(obj);
2312 obj->ops->put_pages(obj, pages);
2314 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2317 mutex_unlock(&obj->mm.lock);
2320 static bool i915_sg_trim(struct sg_table *orig_st)
2322 struct sg_table new_st;
2323 struct scatterlist *sg, *new_sg;
2326 if (orig_st->nents == orig_st->orig_nents)
2329 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2332 new_sg = new_st.sgl;
2333 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2334 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2335 /* called before being DMA mapped, no need to copy sg->dma_* */
2336 new_sg = sg_next(new_sg);
2338 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2340 sg_free_table(orig_st);
2346 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2348 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2349 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2351 struct address_space *mapping;
2352 struct sg_table *st;
2353 struct scatterlist *sg;
2354 struct sgt_iter sgt_iter;
2356 unsigned long last_pfn = 0; /* suppress gcc warning */
2357 unsigned int max_segment = i915_sg_segment_size();
2358 unsigned int sg_page_sizes;
2362 /* Assert that the object is not currently in any GPU domain. As it
2363 * wasn't in the GTT, there shouldn't be any way it could have been in
2366 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2367 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2369 st = kmalloc(sizeof(*st), GFP_KERNEL);
2374 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2379 /* Get the list of pages out of our struct file. They'll be pinned
2380 * at this point until we release them.
2382 * Fail silently without starting the shrinker
2384 mapping = obj->base.filp->f_mapping;
2385 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2386 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2391 for (i = 0; i < page_count; i++) {
2392 const unsigned int shrink[] = {
2393 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2396 gfp_t gfp = noreclaim;
2399 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2400 if (likely(!IS_ERR(page)))
2404 ret = PTR_ERR(page);
2408 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2411 /* We've tried hard to allocate the memory by reaping
2412 * our own buffer, now let the real VM do its job and
2413 * go down in flames if truly OOM.
2415 * However, since graphics tend to be disposable,
2416 * defer the oom here by reporting the ENOMEM back
2420 /* reclaim and warn, but no oom */
2421 gfp = mapping_gfp_mask(mapping);
2423 /* Our bo are always dirty and so we require
2424 * kswapd to reclaim our pages (direct reclaim
2425 * does not effectively begin pageout of our
2426 * buffers on its own). However, direct reclaim
2427 * only waits for kswapd when under allocation
2428 * congestion. So as a result __GFP_RECLAIM is
2429 * unreliable and fails to actually reclaim our
2430 * dirty pages -- unless you try over and over
2431 * again with !__GFP_NORETRY. However, we still
2432 * want to fail this allocation rather than
2433 * trigger the out-of-memory killer and for
2434 * this we want __GFP_RETRY_MAYFAIL.
2436 gfp |= __GFP_RETRY_MAYFAIL;
2441 sg->length >= max_segment ||
2442 page_to_pfn(page) != last_pfn + 1) {
2444 sg_page_sizes |= sg->length;
2448 sg_set_page(sg, page, PAGE_SIZE, 0);
2450 sg->length += PAGE_SIZE;
2452 last_pfn = page_to_pfn(page);
2454 /* Check that the i965g/gm workaround works. */
2455 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2457 if (sg) { /* loop terminated early; short sg table */
2458 sg_page_sizes |= sg->length;
2462 /* Trim unused sg entries to avoid wasting memory. */
2465 ret = i915_gem_gtt_prepare_pages(obj, st);
2467 /* DMA remapping failed? One possible cause is that
2468 * it could not reserve enough large entries, asking
2469 * for PAGE_SIZE chunks instead may be helpful.
2471 if (max_segment > PAGE_SIZE) {
2472 for_each_sgt_page(page, sgt_iter, st)
2476 max_segment = PAGE_SIZE;
2479 dev_warn(&dev_priv->drm.pdev->dev,
2480 "Failed to DMA remap %lu pages\n",
2486 if (i915_gem_object_needs_bit17_swizzle(obj))
2487 i915_gem_object_do_bit_17_swizzle(obj, st);
2489 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2496 for_each_sgt_page(page, sgt_iter, st)
2501 /* shmemfs first checks if there is enough memory to allocate the page
2502 * and reports ENOSPC should there be insufficient, along with the usual
2503 * ENOMEM for a genuine allocation failure.
2505 * We use ENOSPC in our driver to mean that we have run out of aperture
2506 * space and so want to translate the error from shmemfs back to our
2507 * usual understanding of ENOMEM.
2515 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2516 struct sg_table *pages,
2517 unsigned int sg_page_sizes)
2519 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2520 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2523 lockdep_assert_held(&obj->mm.lock);
2525 obj->mm.get_page.sg_pos = pages->sgl;
2526 obj->mm.get_page.sg_idx = 0;
2528 obj->mm.pages = pages;
2530 if (i915_gem_object_is_tiled(obj) &&
2531 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2532 GEM_BUG_ON(obj->mm.quirked);
2533 __i915_gem_object_pin_pages(obj);
2534 obj->mm.quirked = true;
2537 GEM_BUG_ON(!sg_page_sizes);
2538 obj->mm.page_sizes.phys = sg_page_sizes;
2541 * Calculate the supported page-sizes which fit into the given
2542 * sg_page_sizes. This will give us the page-sizes which we may be able
2543 * to use opportunistically when later inserting into the GTT. For
2544 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2545 * 64K or 4K pages, although in practice this will depend on a number of
2548 obj->mm.page_sizes.sg = 0;
2549 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2550 if (obj->mm.page_sizes.phys & ~0u << i)
2551 obj->mm.page_sizes.sg |= BIT(i);
2553 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2555 spin_lock(&i915->mm.obj_lock);
2556 list_add(&obj->mm.link, &i915->mm.unbound_list);
2557 spin_unlock(&i915->mm.obj_lock);
2560 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2564 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2565 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2569 err = obj->ops->get_pages(obj);
2570 GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
2575 /* Ensure that the associated pages are gathered from the backing storage
2576 * and pinned into our object. i915_gem_object_pin_pages() may be called
2577 * multiple times before they are released by a single call to
2578 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2579 * either as a result of memory pressure (reaping pages under the shrinker)
2580 * or as the object is itself released.
2582 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2586 err = mutex_lock_interruptible(&obj->mm.lock);
2590 if (unlikely(!i915_gem_object_has_pages(obj))) {
2591 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2593 err = ____i915_gem_object_get_pages(obj);
2597 smp_mb__before_atomic();
2599 atomic_inc(&obj->mm.pages_pin_count);
2602 mutex_unlock(&obj->mm.lock);
2606 /* The 'mapping' part of i915_gem_object_pin_map() below */
2607 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2608 enum i915_map_type type)
2610 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2611 struct sg_table *sgt = obj->mm.pages;
2612 struct sgt_iter sgt_iter;
2614 struct page *stack_pages[32];
2615 struct page **pages = stack_pages;
2616 unsigned long i = 0;
2620 /* A single page can always be kmapped */
2621 if (n_pages == 1 && type == I915_MAP_WB)
2622 return kmap(sg_page(sgt->sgl));
2624 if (n_pages > ARRAY_SIZE(stack_pages)) {
2625 /* Too big for stack -- allocate temporary array instead */
2626 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2631 for_each_sgt_page(page, sgt_iter, sgt)
2634 /* Check that we have the expected number of pages */
2635 GEM_BUG_ON(i != n_pages);
2640 /* fallthrough to use PAGE_KERNEL anyway */
2642 pgprot = PAGE_KERNEL;
2645 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2648 addr = vmap(pages, n_pages, 0, pgprot);
2650 if (pages != stack_pages)
2656 /* get, pin, and map the pages of the object into kernel space */
2657 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2658 enum i915_map_type type)
2660 enum i915_map_type has_type;
2665 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2667 ret = mutex_lock_interruptible(&obj->mm.lock);
2669 return ERR_PTR(ret);
2671 pinned = !(type & I915_MAP_OVERRIDE);
2672 type &= ~I915_MAP_OVERRIDE;
2674 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2675 if (unlikely(!i915_gem_object_has_pages(obj))) {
2676 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2678 ret = ____i915_gem_object_get_pages(obj);
2682 smp_mb__before_atomic();
2684 atomic_inc(&obj->mm.pages_pin_count);
2687 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2689 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2690 if (ptr && has_type != type) {
2696 if (is_vmalloc_addr(ptr))
2699 kunmap(kmap_to_page(ptr));
2701 ptr = obj->mm.mapping = NULL;
2705 ptr = i915_gem_object_map(obj, type);
2711 obj->mm.mapping = page_pack_bits(ptr, type);
2715 mutex_unlock(&obj->mm.lock);
2719 atomic_dec(&obj->mm.pages_pin_count);
2726 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2727 const struct drm_i915_gem_pwrite *arg)
2729 struct address_space *mapping = obj->base.filp->f_mapping;
2730 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2734 /* Before we instantiate/pin the backing store for our use, we
2735 * can prepopulate the shmemfs filp efficiently using a write into
2736 * the pagecache. We avoid the penalty of instantiating all the
2737 * pages, important if the user is just writing to a few and never
2738 * uses the object on the GPU, and using a direct write into shmemfs
2739 * allows it to avoid the cost of retrieving a page (either swapin
2740 * or clearing-before-use) before it is overwritten.
2742 if (i915_gem_object_has_pages(obj))
2745 if (obj->mm.madv != I915_MADV_WILLNEED)
2748 /* Before the pages are instantiated the object is treated as being
2749 * in the CPU domain. The pages will be clflushed as required before
2750 * use, and we can freely write into the pages directly. If userspace
2751 * races pwrite with any other operation; corruption will ensue -
2752 * that is userspace's prerogative!
2756 offset = arg->offset;
2757 pg = offset_in_page(offset);
2760 unsigned int len, unwritten;
2765 len = PAGE_SIZE - pg;
2769 err = pagecache_write_begin(obj->base.filp, mapping,
2776 unwritten = copy_from_user(vaddr + pg, user_data, len);
2779 err = pagecache_write_end(obj->base.filp, mapping,
2780 offset, len, len - unwritten,
2797 static bool ban_context(const struct i915_gem_context *ctx,
2800 return (i915_gem_context_is_bannable(ctx) &&
2801 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2804 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2809 atomic_inc(&ctx->guilty_count);
2811 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2812 banned = ban_context(ctx, score);
2813 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2814 ctx->name, score, yesno(banned));
2818 i915_gem_context_set_banned(ctx);
2819 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2820 atomic_inc(&ctx->file_priv->context_bans);
2821 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2822 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2826 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2828 atomic_inc(&ctx->active_count);
2831 struct drm_i915_gem_request *
2832 i915_gem_find_active_request(struct intel_engine_cs *engine)
2834 struct drm_i915_gem_request *request, *active = NULL;
2835 unsigned long flags;
2837 /* We are called by the error capture and reset at a random
2838 * point in time. In particular, note that neither is crucially
2839 * ordered with an interrupt. After a hang, the GPU is dead and we
2840 * assume that no more writes can happen (we waited long enough for
2841 * all writes that were in transaction to be flushed) - adding an
2842 * extra delay for a recent interrupt is pointless. Hence, we do
2843 * not need an engine->irq_seqno_barrier() before the seqno reads.
2845 spin_lock_irqsave(&engine->timeline->lock, flags);
2846 list_for_each_entry(request, &engine->timeline->requests, link) {
2847 if (__i915_gem_request_completed(request,
2848 request->global_seqno))
2851 GEM_BUG_ON(request->engine != engine);
2852 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2853 &request->fence.flags));
2858 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2863 static bool engine_stalled(struct intel_engine_cs *engine)
2865 if (!engine->hangcheck.stalled)
2868 /* Check for possible seqno movement after hang declaration */
2869 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2870 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2878 * Ensure irq handler finishes, and not run again.
2879 * Also return the active request so that we only search for it once.
2881 struct drm_i915_gem_request *
2882 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2884 struct drm_i915_gem_request *request = NULL;
2887 * During the reset sequence, we must prevent the engine from
2888 * entering RC6. As the context state is undefined until we restart
2889 * the engine, if it does enter RC6 during the reset, the state
2890 * written to the powercontext is undefined and so we may lose
2891 * GPU state upon resume, i.e. fail to restart after a reset.
2893 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2896 * Prevent the signaler thread from updating the request
2897 * state (by calling dma_fence_signal) as we are processing
2898 * the reset. The write from the GPU of the seqno is
2899 * asynchronous and the signaler thread may see a different
2900 * value to us and declare the request complete, even though
2901 * the reset routine have picked that request as the active
2902 * (incomplete) request. This conflict is not handled
2905 kthread_park(engine->breadcrumbs.signaler);
2908 * Prevent request submission to the hardware until we have
2909 * completed the reset in i915_gem_reset_finish(). If a request
2910 * is completed by one engine, it may then queue a request
2911 * to a second via its engine->irq_tasklet *just* as we are
2912 * calling engine->init_hw() and also writing the ELSP.
2913 * Turning off the engine->irq_tasklet until the reset is over
2914 * prevents the race.
2916 tasklet_kill(&engine->execlists.irq_tasklet);
2917 tasklet_disable(&engine->execlists.irq_tasklet);
2919 if (engine->irq_seqno_barrier)
2920 engine->irq_seqno_barrier(engine);
2922 request = i915_gem_find_active_request(engine);
2923 if (request && request->fence.error == -EIO)
2924 request = ERR_PTR(-EIO); /* Previous reset failed! */
2929 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2931 struct intel_engine_cs *engine;
2932 struct drm_i915_gem_request *request;
2933 enum intel_engine_id id;
2936 for_each_engine(engine, dev_priv, id) {
2937 request = i915_gem_reset_prepare_engine(engine);
2938 if (IS_ERR(request)) {
2939 err = PTR_ERR(request);
2943 engine->hangcheck.active_request = request;
2946 i915_gem_revoke_fences(dev_priv);
2951 static void skip_request(struct drm_i915_gem_request *request)
2953 void *vaddr = request->ring->vaddr;
2956 /* As this request likely depends on state from the lost
2957 * context, clear out all the user operations leaving the
2958 * breadcrumb at the end (so we get the fence notifications).
2960 head = request->head;
2961 if (request->postfix < head) {
2962 memset(vaddr + head, 0, request->ring->size - head);
2965 memset(vaddr + head, 0, request->postfix - head);
2967 dma_fence_set_error(&request->fence, -EIO);
2970 static void engine_skip_context(struct drm_i915_gem_request *request)
2972 struct intel_engine_cs *engine = request->engine;
2973 struct i915_gem_context *hung_ctx = request->ctx;
2974 struct intel_timeline *timeline;
2975 unsigned long flags;
2977 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2979 spin_lock_irqsave(&engine->timeline->lock, flags);
2980 spin_lock(&timeline->lock);
2982 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2983 if (request->ctx == hung_ctx)
2984 skip_request(request);
2986 list_for_each_entry(request, &timeline->requests, link)
2987 skip_request(request);
2989 spin_unlock(&timeline->lock);
2990 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2993 /* Returns the request if it was guilty of the hang */
2994 static struct drm_i915_gem_request *
2995 i915_gem_reset_request(struct intel_engine_cs *engine,
2996 struct drm_i915_gem_request *request)
2998 /* The guilty request will get skipped on a hung engine.
3000 * Users of client default contexts do not rely on logical
3001 * state preserved between batches so it is safe to execute
3002 * queued requests following the hang. Non default contexts
3003 * rely on preserved state, so skipping a batch loses the
3004 * evolution of the state and it needs to be considered corrupted.
3005 * Executing more queued batches on top of corrupted state is
3006 * risky. But we take the risk by trying to advance through
3007 * the queued requests in order to make the client behaviour
3008 * more predictable around resets, by not throwing away random
3009 * amount of batches it has prepared for execution. Sophisticated
3010 * clients can use gem_reset_stats_ioctl and dma fence status
3011 * (exported via sync_file info ioctl on explicit fences) to observe
3012 * when it loses the context state and should rebuild accordingly.
3014 * The context ban, and ultimately the client ban, mechanism are safety
3015 * valves if client submission ends up resulting in nothing more than
3019 if (engine_stalled(engine)) {
3020 i915_gem_context_mark_guilty(request->ctx);
3021 skip_request(request);
3023 /* If this context is now banned, skip all pending requests. */
3024 if (i915_gem_context_is_banned(request->ctx))
3025 engine_skip_context(request);
3028 * Since this is not the hung engine, it may have advanced
3029 * since the hang declaration. Double check by refinding
3030 * the active request at the time of the reset.
3032 request = i915_gem_find_active_request(engine);
3034 i915_gem_context_mark_innocent(request->ctx);
3035 dma_fence_set_error(&request->fence, -EAGAIN);
3037 /* Rewind the engine to replay the incomplete rq */
3038 spin_lock_irq(&engine->timeline->lock);
3039 request = list_prev_entry(request, link);
3040 if (&request->link == &engine->timeline->requests)
3042 spin_unlock_irq(&engine->timeline->lock);
3049 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3050 struct drm_i915_gem_request *request)
3052 engine->irq_posted = 0;
3055 request = i915_gem_reset_request(engine, request);
3058 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3059 engine->name, request->global_seqno);
3062 /* Setup the CS to resume from the breadcrumb of the hung request */
3063 engine->reset_hw(engine, request);
3066 void i915_gem_reset(struct drm_i915_private *dev_priv)
3068 struct intel_engine_cs *engine;
3069 enum intel_engine_id id;
3071 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3073 i915_gem_retire_requests(dev_priv);
3075 for_each_engine(engine, dev_priv, id) {
3076 struct i915_gem_context *ctx;
3078 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3079 ctx = fetch_and_zero(&engine->last_retired_context);
3081 engine->context_unpin(engine, ctx);
3084 i915_gem_restore_fences(dev_priv);
3086 if (dev_priv->gt.awake) {
3087 intel_sanitize_gt_powersave(dev_priv);
3088 intel_enable_gt_powersave(dev_priv);
3089 if (INTEL_GEN(dev_priv) >= 6)
3090 gen6_rps_busy(dev_priv);
3094 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3096 tasklet_enable(&engine->execlists.irq_tasklet);
3097 kthread_unpark(engine->breadcrumbs.signaler);
3099 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3102 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3104 struct intel_engine_cs *engine;
3105 enum intel_engine_id id;
3107 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3109 for_each_engine(engine, dev_priv, id) {
3110 engine->hangcheck.active_request = NULL;
3111 i915_gem_reset_finish_engine(engine);
3115 static void nop_submit_request(struct drm_i915_gem_request *request)
3117 dma_fence_set_error(&request->fence, -EIO);
3119 i915_gem_request_submit(request);
3122 static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3124 unsigned long flags;
3126 dma_fence_set_error(&request->fence, -EIO);
3128 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3129 __i915_gem_request_submit(request);
3130 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3131 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3134 void i915_gem_set_wedged(struct drm_i915_private *i915)
3136 struct intel_engine_cs *engine;
3137 enum intel_engine_id id;
3140 * First, stop submission to hw, but do not yet complete requests by
3141 * rolling the global seqno forward (since this would complete requests
3142 * for which we haven't set the fence error to EIO yet).
3144 for_each_engine(engine, i915, id)
3145 engine->submit_request = nop_submit_request;
3148 * Make sure no one is running the old callback before we proceed with
3149 * cancelling requests and resetting the completion tracking. Otherwise
3150 * we might submit a request to the hardware which never completes.
3154 for_each_engine(engine, i915, id) {
3155 /* Mark all executing requests as skipped */
3156 engine->cancel_requests(engine);
3159 * Only once we've force-cancelled all in-flight requests can we
3160 * start to complete all requests.
3162 engine->submit_request = nop_complete_submit_request;
3166 * Make sure no request can slip through without getting completed by
3167 * either this call here to intel_engine_init_global_seqno, or the one
3168 * in nop_complete_submit_request.
3172 for_each_engine(engine, i915, id) {
3173 unsigned long flags;
3175 /* Mark all pending requests as complete so that any concurrent
3176 * (lockless) lookup doesn't try and wait upon the request as we
3179 spin_lock_irqsave(&engine->timeline->lock, flags);
3180 intel_engine_init_global_seqno(engine,
3181 intel_engine_last_submit(engine));
3182 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3185 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3186 wake_up_all(&i915->gpu_error.reset_queue);
3189 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3191 struct i915_gem_timeline *tl;
3194 lockdep_assert_held(&i915->drm.struct_mutex);
3195 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3198 /* Before unwedging, make sure that all pending operations
3199 * are flushed and errored out - we may have requests waiting upon
3200 * third party fences. We marked all inflight requests as EIO, and
3201 * every execbuf since returned EIO, for consistency we want all
3202 * the currently pending requests to also be marked as EIO, which
3203 * is done inside our nop_submit_request - and so we must wait.
3205 * No more can be submitted until we reset the wedged bit.
3207 list_for_each_entry(tl, &i915->gt.timelines, link) {
3208 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3209 struct drm_i915_gem_request *rq;
3211 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3212 &i915->drm.struct_mutex);
3216 /* We can't use our normal waiter as we want to
3217 * avoid recursively trying to handle the current
3218 * reset. The basic dma_fence_default_wait() installs
3219 * a callback for dma_fence_signal(), which is
3220 * triggered by our nop handler (indirectly, the
3221 * callback enables the signaler thread which is
3222 * woken by the nop_submit_request() advancing the seqno
3223 * and when the seqno passes the fence, the signaler
3224 * then signals the fence waking us up).
3226 if (dma_fence_default_wait(&rq->fence, true,
3227 MAX_SCHEDULE_TIMEOUT) < 0)
3232 /* Undo nop_submit_request. We prevent all new i915 requests from
3233 * being queued (by disallowing execbuf whilst wedged) so having
3234 * waited for all active requests above, we know the system is idle
3235 * and do not have to worry about a thread being inside
3236 * engine->submit_request() as we swap over. So unlike installing
3237 * the nop_submit_request on reset, we can do this from normal
3238 * context and do not require stop_machine().
3240 intel_engines_reset_default_submission(i915);
3241 i915_gem_contexts_lost(i915);
3243 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3244 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3250 i915_gem_retire_work_handler(struct work_struct *work)
3252 struct drm_i915_private *dev_priv =
3253 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3254 struct drm_device *dev = &dev_priv->drm;
3256 /* Come back later if the device is busy... */
3257 if (mutex_trylock(&dev->struct_mutex)) {
3258 i915_gem_retire_requests(dev_priv);
3259 mutex_unlock(&dev->struct_mutex);
3262 /* Keep the retire handler running until we are finally idle.
3263 * We do not need to do this test under locking as in the worst-case
3264 * we queue the retire worker once too often.
3266 if (READ_ONCE(dev_priv->gt.awake)) {
3267 i915_queue_hangcheck(dev_priv);
3268 queue_delayed_work(dev_priv->wq,
3269 &dev_priv->gt.retire_work,
3270 round_jiffies_up_relative(HZ));
3275 i915_gem_idle_work_handler(struct work_struct *work)
3277 struct drm_i915_private *dev_priv =
3278 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3279 struct drm_device *dev = &dev_priv->drm;
3280 bool rearm_hangcheck;
3282 if (!READ_ONCE(dev_priv->gt.awake))
3286 * Wait for last execlists context complete, but bail out in case a
3287 * new request is submitted.
3289 wait_for(intel_engines_are_idle(dev_priv), 10);
3290 if (READ_ONCE(dev_priv->gt.active_requests))
3294 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3296 if (!mutex_trylock(&dev->struct_mutex)) {
3297 /* Currently busy, come back later */
3298 mod_delayed_work(dev_priv->wq,
3299 &dev_priv->gt.idle_work,
3300 msecs_to_jiffies(50));
3305 * New request retired after this work handler started, extend active
3306 * period until next instance of the work.
3308 if (work_pending(work))
3311 if (dev_priv->gt.active_requests)
3314 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3315 DRM_ERROR("Timeout waiting for engines to idle\n");
3317 intel_engines_mark_idle(dev_priv);
3318 i915_gem_timelines_mark_idle(dev_priv);
3320 GEM_BUG_ON(!dev_priv->gt.awake);
3321 dev_priv->gt.awake = false;
3322 rearm_hangcheck = false;
3324 if (INTEL_GEN(dev_priv) >= 6)
3325 gen6_rps_idle(dev_priv);
3326 intel_runtime_pm_put(dev_priv);
3328 mutex_unlock(&dev->struct_mutex);
3331 if (rearm_hangcheck) {
3332 GEM_BUG_ON(!dev_priv->gt.awake);
3333 i915_queue_hangcheck(dev_priv);
3337 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3339 struct drm_i915_private *i915 = to_i915(gem->dev);
3340 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3341 struct drm_i915_file_private *fpriv = file->driver_priv;
3342 struct i915_lut_handle *lut, *ln;
3344 mutex_lock(&i915->drm.struct_mutex);
3346 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3347 struct i915_gem_context *ctx = lut->ctx;
3348 struct i915_vma *vma;
3350 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3351 if (ctx->file_priv != fpriv)
3354 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3355 GEM_BUG_ON(vma->obj != obj);
3357 /* We allow the process to have multiple handles to the same
3358 * vma, in the same fd namespace, by virtue of flink/open.
3360 GEM_BUG_ON(!vma->open_count);
3361 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3362 i915_vma_close(vma);
3364 list_del(&lut->obj_link);
3365 list_del(&lut->ctx_link);
3367 kmem_cache_free(i915->luts, lut);
3368 __i915_gem_object_release_unless_active(obj);
3371 mutex_unlock(&i915->drm.struct_mutex);
3374 static unsigned long to_wait_timeout(s64 timeout_ns)
3377 return MAX_SCHEDULE_TIMEOUT;
3379 if (timeout_ns == 0)
3382 return nsecs_to_jiffies_timeout(timeout_ns);
3386 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3387 * @dev: drm device pointer
3388 * @data: ioctl data blob
3389 * @file: drm file pointer
3391 * Returns 0 if successful, else an error is returned with the remaining time in
3392 * the timeout parameter.
3393 * -ETIME: object is still busy after timeout
3394 * -ERESTARTSYS: signal interrupted the wait
3395 * -ENONENT: object doesn't exist
3396 * Also possible, but rare:
3397 * -EAGAIN: incomplete, restart syscall
3399 * -ENODEV: Internal IRQ fail
3400 * -E?: The add request failed
3402 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3403 * non-zero timeout parameter the wait ioctl will wait for the given number of
3404 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3405 * without holding struct_mutex the object may become re-busied before this
3406 * function completes. A similar but shorter * race condition exists in the busy
3410 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3412 struct drm_i915_gem_wait *args = data;
3413 struct drm_i915_gem_object *obj;
3417 if (args->flags != 0)
3420 obj = i915_gem_object_lookup(file, args->bo_handle);
3424 start = ktime_get();
3426 ret = i915_gem_object_wait(obj,
3427 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3428 to_wait_timeout(args->timeout_ns),
3429 to_rps_client(file));
3431 if (args->timeout_ns > 0) {
3432 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3433 if (args->timeout_ns < 0)
3434 args->timeout_ns = 0;
3437 * Apparently ktime isn't accurate enough and occasionally has a
3438 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3439 * things up to make the test happy. We allow up to 1 jiffy.
3441 * This is a regression from the timespec->ktime conversion.
3443 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3444 args->timeout_ns = 0;
3446 /* Asked to wait beyond the jiffie/scheduler precision? */
3447 if (ret == -ETIME && args->timeout_ns)
3451 i915_gem_object_put(obj);
3455 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3459 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3460 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3468 static int wait_for_engines(struct drm_i915_private *i915)
3470 if (wait_for(intel_engines_are_idle(i915), 50)) {
3471 DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3472 i915_gem_set_wedged(i915);
3479 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3483 /* If the device is asleep, we have no requests outstanding */
3484 if (!READ_ONCE(i915->gt.awake))
3487 if (flags & I915_WAIT_LOCKED) {
3488 struct i915_gem_timeline *tl;
3490 lockdep_assert_held(&i915->drm.struct_mutex);
3492 list_for_each_entry(tl, &i915->gt.timelines, link) {
3493 ret = wait_for_timeline(tl, flags);
3498 i915_gem_retire_requests(i915);
3499 GEM_BUG_ON(i915->gt.active_requests);
3501 ret = wait_for_engines(i915);
3503 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3509 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3512 * We manually flush the CPU domain so that we can override and
3513 * force the flush for the display, and perform it asyncrhonously.
3515 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3516 if (obj->cache_dirty)
3517 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3518 obj->base.write_domain = 0;
3521 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3523 if (!READ_ONCE(obj->pin_global))
3526 mutex_lock(&obj->base.dev->struct_mutex);
3527 __i915_gem_object_flush_for_display(obj);
3528 mutex_unlock(&obj->base.dev->struct_mutex);
3532 * Moves a single object to the WC read, and possibly write domain.
3533 * @obj: object to act on
3534 * @write: ask for write access or read only
3536 * This function returns when the move is complete, including waiting on
3540 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3544 lockdep_assert_held(&obj->base.dev->struct_mutex);
3546 ret = i915_gem_object_wait(obj,
3547 I915_WAIT_INTERRUPTIBLE |
3549 (write ? I915_WAIT_ALL : 0),
3550 MAX_SCHEDULE_TIMEOUT,
3555 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3558 /* Flush and acquire obj->pages so that we are coherent through
3559 * direct access in memory with previous cached writes through
3560 * shmemfs and that our cache domain tracking remains valid.
3561 * For example, if the obj->filp was moved to swap without us
3562 * being notified and releasing the pages, we would mistakenly
3563 * continue to assume that the obj remained out of the CPU cached
3566 ret = i915_gem_object_pin_pages(obj);
3570 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3572 /* Serialise direct access to this object with the barriers for
3573 * coherent writes from the GPU, by effectively invalidating the
3574 * WC domain upon first access.
3576 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3579 /* It should now be out of any other write domains, and we can update
3580 * the domain values for our changes.
3582 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3583 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3585 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3586 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3587 obj->mm.dirty = true;
3590 i915_gem_object_unpin_pages(obj);
3595 * Moves a single object to the GTT read, and possibly write domain.
3596 * @obj: object to act on
3597 * @write: ask for write access or read only
3599 * This function returns when the move is complete, including waiting on
3603 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3607 lockdep_assert_held(&obj->base.dev->struct_mutex);
3609 ret = i915_gem_object_wait(obj,
3610 I915_WAIT_INTERRUPTIBLE |
3612 (write ? I915_WAIT_ALL : 0),
3613 MAX_SCHEDULE_TIMEOUT,
3618 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3621 /* Flush and acquire obj->pages so that we are coherent through
3622 * direct access in memory with previous cached writes through
3623 * shmemfs and that our cache domain tracking remains valid.
3624 * For example, if the obj->filp was moved to swap without us
3625 * being notified and releasing the pages, we would mistakenly
3626 * continue to assume that the obj remained out of the CPU cached
3629 ret = i915_gem_object_pin_pages(obj);
3633 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3635 /* Serialise direct access to this object with the barriers for
3636 * coherent writes from the GPU, by effectively invalidating the
3637 * GTT domain upon first access.
3639 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3642 /* It should now be out of any other write domains, and we can update
3643 * the domain values for our changes.
3645 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3646 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3648 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3649 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3650 obj->mm.dirty = true;
3653 i915_gem_object_unpin_pages(obj);
3658 * Changes the cache-level of an object across all VMA.
3659 * @obj: object to act on
3660 * @cache_level: new cache level to set for the object
3662 * After this function returns, the object will be in the new cache-level
3663 * across all GTT and the contents of the backing storage will be coherent,
3664 * with respect to the new cache-level. In order to keep the backing storage
3665 * coherent for all users, we only allow a single cache level to be set
3666 * globally on the object and prevent it from being changed whilst the
3667 * hardware is reading from the object. That is if the object is currently
3668 * on the scanout it will be set to uncached (or equivalent display
3669 * cache coherency) and all non-MOCS GPU access will also be uncached so
3670 * that all direct access to the scanout remains coherent.
3672 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3673 enum i915_cache_level cache_level)
3675 struct i915_vma *vma;
3678 lockdep_assert_held(&obj->base.dev->struct_mutex);
3680 if (obj->cache_level == cache_level)
3683 /* Inspect the list of currently bound VMA and unbind any that would
3684 * be invalid given the new cache-level. This is principally to
3685 * catch the issue of the CS prefetch crossing page boundaries and
3686 * reading an invalid PTE on older architectures.
3689 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3690 if (!drm_mm_node_allocated(&vma->node))
3693 if (i915_vma_is_pinned(vma)) {
3694 DRM_DEBUG("can not change the cache level of pinned objects\n");
3698 if (i915_gem_valid_gtt_space(vma, cache_level))
3701 ret = i915_vma_unbind(vma);
3705 /* As unbinding may affect other elements in the
3706 * obj->vma_list (due to side-effects from retiring
3707 * an active vma), play safe and restart the iterator.
3712 /* We can reuse the existing drm_mm nodes but need to change the
3713 * cache-level on the PTE. We could simply unbind them all and
3714 * rebind with the correct cache-level on next use. However since
3715 * we already have a valid slot, dma mapping, pages etc, we may as
3716 * rewrite the PTE in the belief that doing so tramples upon less
3717 * state and so involves less work.
3719 if (obj->bind_count) {
3720 /* Before we change the PTE, the GPU must not be accessing it.
3721 * If we wait upon the object, we know that all the bound
3722 * VMA are no longer active.
3724 ret = i915_gem_object_wait(obj,
3725 I915_WAIT_INTERRUPTIBLE |
3728 MAX_SCHEDULE_TIMEOUT,
3733 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3734 cache_level != I915_CACHE_NONE) {
3735 /* Access to snoopable pages through the GTT is
3736 * incoherent and on some machines causes a hard
3737 * lockup. Relinquish the CPU mmaping to force
3738 * userspace to refault in the pages and we can
3739 * then double check if the GTT mapping is still
3740 * valid for that pointer access.
3742 i915_gem_release_mmap(obj);
3744 /* As we no longer need a fence for GTT access,
3745 * we can relinquish it now (and so prevent having
3746 * to steal a fence from someone else on the next
3747 * fence request). Note GPU activity would have
3748 * dropped the fence as all snoopable access is
3749 * supposed to be linear.
3751 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3752 ret = i915_vma_put_fence(vma);
3757 /* We either have incoherent backing store and
3758 * so no GTT access or the architecture is fully
3759 * coherent. In such cases, existing GTT mmaps
3760 * ignore the cache bit in the PTE and we can
3761 * rewrite it without confusing the GPU or having
3762 * to force userspace to fault back in its mmaps.
3766 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3767 if (!drm_mm_node_allocated(&vma->node))
3770 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3776 list_for_each_entry(vma, &obj->vma_list, obj_link)
3777 vma->node.color = cache_level;
3778 i915_gem_object_set_cache_coherency(obj, cache_level);
3779 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3784 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3785 struct drm_file *file)
3787 struct drm_i915_gem_caching *args = data;
3788 struct drm_i915_gem_object *obj;
3792 obj = i915_gem_object_lookup_rcu(file, args->handle);
3798 switch (obj->cache_level) {
3799 case I915_CACHE_LLC:
3800 case I915_CACHE_L3_LLC:
3801 args->caching = I915_CACHING_CACHED;
3805 args->caching = I915_CACHING_DISPLAY;
3809 args->caching = I915_CACHING_NONE;
3817 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3818 struct drm_file *file)
3820 struct drm_i915_private *i915 = to_i915(dev);
3821 struct drm_i915_gem_caching *args = data;
3822 struct drm_i915_gem_object *obj;
3823 enum i915_cache_level level;
3826 switch (args->caching) {
3827 case I915_CACHING_NONE:
3828 level = I915_CACHE_NONE;
3830 case I915_CACHING_CACHED:
3832 * Due to a HW issue on BXT A stepping, GPU stores via a
3833 * snooped mapping may leave stale data in a corresponding CPU
3834 * cacheline, whereas normally such cachelines would get
3837 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3840 level = I915_CACHE_LLC;
3842 case I915_CACHING_DISPLAY:
3843 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3849 obj = i915_gem_object_lookup(file, args->handle);
3853 if (obj->cache_level == level)
3856 ret = i915_gem_object_wait(obj,
3857 I915_WAIT_INTERRUPTIBLE,
3858 MAX_SCHEDULE_TIMEOUT,
3859 to_rps_client(file));
3863 ret = i915_mutex_lock_interruptible(dev);
3867 ret = i915_gem_object_set_cache_level(obj, level);
3868 mutex_unlock(&dev->struct_mutex);
3871 i915_gem_object_put(obj);
3876 * Prepare buffer for display plane (scanout, cursors, etc).
3877 * Can be called from an uninterruptible phase (modesetting) and allows
3878 * any flushes to be pipelined (for pageflips).
3881 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3883 const struct i915_ggtt_view *view)
3885 struct i915_vma *vma;
3888 lockdep_assert_held(&obj->base.dev->struct_mutex);
3890 /* Mark the global pin early so that we account for the
3891 * display coherency whilst setting up the cache domains.
3895 /* The display engine is not coherent with the LLC cache on gen6. As
3896 * a result, we make sure that the pinning that is about to occur is
3897 * done with uncached PTEs. This is lowest common denominator for all
3900 * However for gen6+, we could do better by using the GFDT bit instead
3901 * of uncaching, which would allow us to flush all the LLC-cached data
3902 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3904 ret = i915_gem_object_set_cache_level(obj,
3905 HAS_WT(to_i915(obj->base.dev)) ?
3906 I915_CACHE_WT : I915_CACHE_NONE);
3909 goto err_unpin_global;
3912 /* As the user may map the buffer once pinned in the display plane
3913 * (e.g. libkms for the bootup splash), we have to ensure that we
3914 * always use map_and_fenceable for all scanout buffers. However,
3915 * it may simply be too big to fit into mappable, in which case
3916 * put it anyway and hope that userspace can cope (but always first
3917 * try to preserve the existing ABI).
3919 vma = ERR_PTR(-ENOSPC);
3920 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3921 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3922 PIN_MAPPABLE | PIN_NONBLOCK);
3924 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3927 /* Valleyview is definitely limited to scanning out the first
3928 * 512MiB. Lets presume this behaviour was inherited from the
3929 * g4x display engine and that all earlier gen are similarly
3930 * limited. Testing suggests that it is a little more
3931 * complicated than this. For example, Cherryview appears quite
3932 * happy to scanout from anywhere within its global aperture.
3935 if (HAS_GMCH_DISPLAY(i915))
3936 flags = PIN_MAPPABLE;
3937 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3940 goto err_unpin_global;
3942 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3944 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3945 __i915_gem_object_flush_for_display(obj);
3946 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3948 /* It should now be out of any other write domains, and we can update
3949 * the domain values for our changes.
3951 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3961 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3963 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3965 if (WARN_ON(vma->obj->pin_global == 0))
3968 if (--vma->obj->pin_global == 0)
3969 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3971 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3972 i915_gem_object_bump_inactive_ggtt(vma->obj);
3974 i915_vma_unpin(vma);
3978 * Moves a single object to the CPU read, and possibly write domain.
3979 * @obj: object to act on
3980 * @write: requesting write or read-only access
3982 * This function returns when the move is complete, including waiting on
3986 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3990 lockdep_assert_held(&obj->base.dev->struct_mutex);
3992 ret = i915_gem_object_wait(obj,
3993 I915_WAIT_INTERRUPTIBLE |
3995 (write ? I915_WAIT_ALL : 0),
3996 MAX_SCHEDULE_TIMEOUT,
4001 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4003 /* Flush the CPU cache if it's still invalid. */
4004 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4005 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4006 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4009 /* It should now be out of any other write domains, and we can update
4010 * the domain values for our changes.
4012 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4014 /* If we're writing through the CPU, then the GPU read domains will
4015 * need to be invalidated at next use.
4018 __start_cpu_write(obj);
4023 /* Throttle our rendering by waiting until the ring has completed our requests
4024 * emitted over 20 msec ago.
4026 * Note that if we were to use the current jiffies each time around the loop,
4027 * we wouldn't escape the function with any frames outstanding if the time to
4028 * render a frame was over 20ms.
4030 * This should get us reasonable parallelism between CPU and GPU but also
4031 * relatively low latency when blocking on a particular request to finish.
4034 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4036 struct drm_i915_private *dev_priv = to_i915(dev);
4037 struct drm_i915_file_private *file_priv = file->driver_priv;
4038 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4039 struct drm_i915_gem_request *request, *target = NULL;
4042 /* ABI: return -EIO if already wedged */
4043 if (i915_terminally_wedged(&dev_priv->gpu_error))
4046 spin_lock(&file_priv->mm.lock);
4047 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4048 if (time_after_eq(request->emitted_jiffies, recent_enough))
4052 list_del(&target->client_link);
4053 target->file_priv = NULL;
4059 i915_gem_request_get(target);
4060 spin_unlock(&file_priv->mm.lock);
4065 ret = i915_wait_request(target,
4066 I915_WAIT_INTERRUPTIBLE,
4067 MAX_SCHEDULE_TIMEOUT);
4068 i915_gem_request_put(target);
4070 return ret < 0 ? ret : 0;
4074 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4075 const struct i915_ggtt_view *view,
4080 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4081 struct i915_address_space *vm = &dev_priv->ggtt.base;
4082 struct i915_vma *vma;
4085 lockdep_assert_held(&obj->base.dev->struct_mutex);
4087 if (!view && flags & PIN_MAPPABLE) {
4088 /* If the required space is larger than the available
4089 * aperture, we will not able to find a slot for the
4090 * object and unbinding the object now will be in
4091 * vain. Worse, doing so may cause us to ping-pong
4092 * the object in and out of the Global GTT and
4093 * waste a lot of cycles under the mutex.
4095 if (obj->base.size > dev_priv->ggtt.mappable_end)
4096 return ERR_PTR(-E2BIG);
4098 /* If NONBLOCK is set the caller is optimistically
4099 * trying to cache the full object within the mappable
4100 * aperture, and *must* have a fallback in place for
4101 * situations where we cannot bind the object. We
4102 * can be a little more lax here and use the fallback
4103 * more often to avoid costly migrations of ourselves
4104 * and other objects within the aperture.
4106 * Half-the-aperture is used as a simple heuristic.
4107 * More interesting would to do search for a free
4108 * block prior to making the commitment to unbind.
4109 * That caters for the self-harm case, and with a
4110 * little more heuristics (e.g. NOFAULT, NOEVICT)
4111 * we could try to minimise harm to others.
4113 if (flags & PIN_NONBLOCK &&
4114 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4115 return ERR_PTR(-ENOSPC);
4118 vma = i915_vma_instance(obj, vm, view);
4119 if (unlikely(IS_ERR(vma)))
4122 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4123 if (flags & PIN_NONBLOCK) {
4124 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4125 return ERR_PTR(-ENOSPC);
4127 if (flags & PIN_MAPPABLE &&
4128 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4129 return ERR_PTR(-ENOSPC);
4132 WARN(i915_vma_is_pinned(vma),
4133 "bo is already pinned in ggtt with incorrect alignment:"
4134 " offset=%08x, req.alignment=%llx,"
4135 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4136 i915_ggtt_offset(vma), alignment,
4137 !!(flags & PIN_MAPPABLE),
4138 i915_vma_is_map_and_fenceable(vma));
4139 ret = i915_vma_unbind(vma);
4141 return ERR_PTR(ret);
4144 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4146 return ERR_PTR(ret);
4151 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4153 /* Note that we could alias engines in the execbuf API, but
4154 * that would be very unwise as it prevents userspace from
4155 * fine control over engine selection. Ahem.
4157 * This should be something like EXEC_MAX_ENGINE instead of
4160 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4161 return 0x10000 << id;
4164 static __always_inline unsigned int __busy_write_id(unsigned int id)
4166 /* The uABI guarantees an active writer is also amongst the read
4167 * engines. This would be true if we accessed the activity tracking
4168 * under the lock, but as we perform the lookup of the object and
4169 * its activity locklessly we can not guarantee that the last_write
4170 * being active implies that we have set the same engine flag from
4171 * last_read - hence we always set both read and write busy for
4174 return id | __busy_read_flag(id);
4177 static __always_inline unsigned int
4178 __busy_set_if_active(const struct dma_fence *fence,
4179 unsigned int (*flag)(unsigned int id))
4181 struct drm_i915_gem_request *rq;
4183 /* We have to check the current hw status of the fence as the uABI
4184 * guarantees forward progress. We could rely on the idle worker
4185 * to eventually flush us, but to minimise latency just ask the
4188 * Note we only report on the status of native fences.
4190 if (!dma_fence_is_i915(fence))
4193 /* opencode to_request() in order to avoid const warnings */
4194 rq = container_of(fence, struct drm_i915_gem_request, fence);
4195 if (i915_gem_request_completed(rq))
4198 return flag(rq->engine->uabi_id);
4201 static __always_inline unsigned int
4202 busy_check_reader(const struct dma_fence *fence)
4204 return __busy_set_if_active(fence, __busy_read_flag);
4207 static __always_inline unsigned int
4208 busy_check_writer(const struct dma_fence *fence)
4213 return __busy_set_if_active(fence, __busy_write_id);
4217 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4218 struct drm_file *file)
4220 struct drm_i915_gem_busy *args = data;
4221 struct drm_i915_gem_object *obj;
4222 struct reservation_object_list *list;
4228 obj = i915_gem_object_lookup_rcu(file, args->handle);
4232 /* A discrepancy here is that we do not report the status of
4233 * non-i915 fences, i.e. even though we may report the object as idle,
4234 * a call to set-domain may still stall waiting for foreign rendering.
4235 * This also means that wait-ioctl may report an object as busy,
4236 * where busy-ioctl considers it idle.
4238 * We trade the ability to warn of foreign fences to report on which
4239 * i915 engines are active for the object.
4241 * Alternatively, we can trade that extra information on read/write
4244 * !reservation_object_test_signaled_rcu(obj->resv, true);
4245 * to report the overall busyness. This is what the wait-ioctl does.
4249 seq = raw_read_seqcount(&obj->resv->seq);
4251 /* Translate the exclusive fence to the READ *and* WRITE engine */
4252 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4254 /* Translate shared fences to READ set of engines */
4255 list = rcu_dereference(obj->resv->fence);
4257 unsigned int shared_count = list->shared_count, i;
4259 for (i = 0; i < shared_count; ++i) {
4260 struct dma_fence *fence =
4261 rcu_dereference(list->shared[i]);
4263 args->busy |= busy_check_reader(fence);
4267 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4277 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4278 struct drm_file *file_priv)
4280 return i915_gem_ring_throttle(dev, file_priv);
4284 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4285 struct drm_file *file_priv)
4287 struct drm_i915_private *dev_priv = to_i915(dev);
4288 struct drm_i915_gem_madvise *args = data;
4289 struct drm_i915_gem_object *obj;
4292 switch (args->madv) {
4293 case I915_MADV_DONTNEED:
4294 case I915_MADV_WILLNEED:
4300 obj = i915_gem_object_lookup(file_priv, args->handle);
4304 err = mutex_lock_interruptible(&obj->mm.lock);
4308 if (i915_gem_object_has_pages(obj) &&
4309 i915_gem_object_is_tiled(obj) &&
4310 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4311 if (obj->mm.madv == I915_MADV_WILLNEED) {
4312 GEM_BUG_ON(!obj->mm.quirked);
4313 __i915_gem_object_unpin_pages(obj);
4314 obj->mm.quirked = false;
4316 if (args->madv == I915_MADV_WILLNEED) {
4317 GEM_BUG_ON(obj->mm.quirked);
4318 __i915_gem_object_pin_pages(obj);
4319 obj->mm.quirked = true;
4323 if (obj->mm.madv != __I915_MADV_PURGED)
4324 obj->mm.madv = args->madv;
4326 /* if the object is no longer attached, discard its backing storage */
4327 if (obj->mm.madv == I915_MADV_DONTNEED &&
4328 !i915_gem_object_has_pages(obj))
4329 i915_gem_object_truncate(obj);
4331 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4332 mutex_unlock(&obj->mm.lock);
4335 i915_gem_object_put(obj);
4340 frontbuffer_retire(struct i915_gem_active *active,
4341 struct drm_i915_gem_request *request)
4343 struct drm_i915_gem_object *obj =
4344 container_of(active, typeof(*obj), frontbuffer_write);
4346 intel_fb_obj_flush(obj, ORIGIN_CS);
4349 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4350 const struct drm_i915_gem_object_ops *ops)
4352 mutex_init(&obj->mm.lock);
4354 INIT_LIST_HEAD(&obj->vma_list);
4355 INIT_LIST_HEAD(&obj->lut_list);
4356 INIT_LIST_HEAD(&obj->batch_pool_link);
4360 reservation_object_init(&obj->__builtin_resv);
4361 obj->resv = &obj->__builtin_resv;
4363 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4364 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4366 obj->mm.madv = I915_MADV_WILLNEED;
4367 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4368 mutex_init(&obj->mm.get_page.lock);
4370 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4373 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4374 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4375 I915_GEM_OBJECT_IS_SHRINKABLE,
4377 .get_pages = i915_gem_object_get_pages_gtt,
4378 .put_pages = i915_gem_object_put_pages_gtt,
4380 .pwrite = i915_gem_object_pwrite_gtt,
4383 static int i915_gem_object_create_shmem(struct drm_device *dev,
4384 struct drm_gem_object *obj,
4387 struct drm_i915_private *i915 = to_i915(dev);
4388 unsigned long flags = VM_NORESERVE;
4391 drm_gem_private_object_init(dev, obj, size);
4394 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4397 filp = shmem_file_setup("i915", size, flags);
4400 return PTR_ERR(filp);
4407 struct drm_i915_gem_object *
4408 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4410 struct drm_i915_gem_object *obj;
4411 struct address_space *mapping;
4412 unsigned int cache_level;
4416 /* There is a prevalence of the assumption that we fit the object's
4417 * page count inside a 32bit _signed_ variable. Let's document this and
4418 * catch if we ever need to fix it. In the meantime, if you do spot
4419 * such a local variable, please consider fixing!
4421 if (size >> PAGE_SHIFT > INT_MAX)
4422 return ERR_PTR(-E2BIG);
4424 if (overflows_type(size, obj->base.size))
4425 return ERR_PTR(-E2BIG);
4427 obj = i915_gem_object_alloc(dev_priv);
4429 return ERR_PTR(-ENOMEM);
4431 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4435 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4436 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4437 /* 965gm cannot relocate objects above 4GiB. */
4438 mask &= ~__GFP_HIGHMEM;
4439 mask |= __GFP_DMA32;
4442 mapping = obj->base.filp->f_mapping;
4443 mapping_set_gfp_mask(mapping, mask);
4444 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4446 i915_gem_object_init(obj, &i915_gem_object_ops);
4448 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4449 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4451 if (HAS_LLC(dev_priv))
4452 /* On some devices, we can have the GPU use the LLC (the CPU
4453 * cache) for about a 10% performance improvement
4454 * compared to uncached. Graphics requests other than
4455 * display scanout are coherent with the CPU in
4456 * accessing this cache. This means in this mode we
4457 * don't need to clflush on the CPU side, and on the
4458 * GPU side we only need to flush internal caches to
4459 * get data visible to the CPU.
4461 * However, we maintain the display planes as UC, and so
4462 * need to rebind when first used as such.
4464 cache_level = I915_CACHE_LLC;
4466 cache_level = I915_CACHE_NONE;
4468 i915_gem_object_set_cache_coherency(obj, cache_level);
4470 trace_i915_gem_object_create(obj);
4475 i915_gem_object_free(obj);
4476 return ERR_PTR(ret);
4479 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4481 /* If we are the last user of the backing storage (be it shmemfs
4482 * pages or stolen etc), we know that the pages are going to be
4483 * immediately released. In this case, we can then skip copying
4484 * back the contents from the GPU.
4487 if (obj->mm.madv != I915_MADV_WILLNEED)
4490 if (obj->base.filp == NULL)
4493 /* At first glance, this looks racy, but then again so would be
4494 * userspace racing mmap against close. However, the first external
4495 * reference to the filp can only be obtained through the
4496 * i915_gem_mmap_ioctl() which safeguards us against the user
4497 * acquiring such a reference whilst we are in the middle of
4498 * freeing the object.
4500 return atomic_long_read(&obj->base.filp->f_count) == 1;
4503 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4504 struct llist_node *freed)
4506 struct drm_i915_gem_object *obj, *on;
4508 intel_runtime_pm_get(i915);
4509 llist_for_each_entry_safe(obj, on, freed, freed) {
4510 struct i915_vma *vma, *vn;
4512 trace_i915_gem_object_destroy(obj);
4514 mutex_lock(&i915->drm.struct_mutex);
4516 GEM_BUG_ON(i915_gem_object_is_active(obj));
4517 list_for_each_entry_safe(vma, vn,
4518 &obj->vma_list, obj_link) {
4519 GEM_BUG_ON(i915_vma_is_active(vma));
4520 vma->flags &= ~I915_VMA_PIN_MASK;
4521 i915_vma_close(vma);
4523 GEM_BUG_ON(!list_empty(&obj->vma_list));
4524 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4526 /* This serializes freeing with the shrinker. Since the free
4527 * is delayed, first by RCU then by the workqueue, we want the
4528 * shrinker to be able to free pages of unreferenced objects,
4529 * or else we may oom whilst there are plenty of deferred
4532 if (i915_gem_object_has_pages(obj)) {
4533 spin_lock(&i915->mm.obj_lock);
4534 list_del_init(&obj->mm.link);
4535 spin_unlock(&i915->mm.obj_lock);
4538 mutex_unlock(&i915->drm.struct_mutex);
4540 GEM_BUG_ON(obj->bind_count);
4541 GEM_BUG_ON(obj->userfault_count);
4542 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4543 GEM_BUG_ON(!list_empty(&obj->lut_list));
4545 if (obj->ops->release)
4546 obj->ops->release(obj);
4548 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4549 atomic_set(&obj->mm.pages_pin_count, 0);
4550 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4551 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4553 if (obj->base.import_attach)
4554 drm_prime_gem_destroy(&obj->base, NULL);
4556 reservation_object_fini(&obj->__builtin_resv);
4557 drm_gem_object_release(&obj->base);
4558 i915_gem_info_remove_obj(i915, obj->base.size);
4561 i915_gem_object_free(obj);
4566 intel_runtime_pm_put(i915);
4569 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4571 struct llist_node *freed;
4573 /* Free the oldest, most stale object to keep the free_list short */
4575 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4576 /* Only one consumer of llist_del_first() allowed */
4577 spin_lock(&i915->mm.free_lock);
4578 freed = llist_del_first(&i915->mm.free_list);
4579 spin_unlock(&i915->mm.free_lock);
4581 if (unlikely(freed)) {
4583 __i915_gem_free_objects(i915, freed);
4587 static void __i915_gem_free_work(struct work_struct *work)
4589 struct drm_i915_private *i915 =
4590 container_of(work, struct drm_i915_private, mm.free_work);
4591 struct llist_node *freed;
4593 /* All file-owned VMA should have been released by this point through
4594 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4595 * However, the object may also be bound into the global GTT (e.g.
4596 * older GPUs without per-process support, or for direct access through
4597 * the GTT either for the user or for scanout). Those VMA still need to
4601 spin_lock(&i915->mm.free_lock);
4602 while ((freed = llist_del_all(&i915->mm.free_list))) {
4603 spin_unlock(&i915->mm.free_lock);
4605 __i915_gem_free_objects(i915, freed);
4609 spin_lock(&i915->mm.free_lock);
4611 spin_unlock(&i915->mm.free_lock);
4614 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4616 struct drm_i915_gem_object *obj =
4617 container_of(head, typeof(*obj), rcu);
4618 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4620 /* We can't simply use call_rcu() from i915_gem_free_object()
4621 * as we need to block whilst unbinding, and the call_rcu
4622 * task may be called from softirq context. So we take a
4623 * detour through a worker.
4625 if (llist_add(&obj->freed, &i915->mm.free_list))
4626 schedule_work(&i915->mm.free_work);
4629 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4631 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4633 if (obj->mm.quirked)
4634 __i915_gem_object_unpin_pages(obj);
4636 if (discard_backing_storage(obj))
4637 obj->mm.madv = I915_MADV_DONTNEED;
4639 /* Before we free the object, make sure any pure RCU-only
4640 * read-side critical sections are complete, e.g.
4641 * i915_gem_busy_ioctl(). For the corresponding synchronized
4642 * lookup see i915_gem_object_lookup_rcu().
4644 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4647 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4649 lockdep_assert_held(&obj->base.dev->struct_mutex);
4651 if (!i915_gem_object_has_active_reference(obj) &&
4652 i915_gem_object_is_active(obj))
4653 i915_gem_object_set_active_reference(obj);
4655 i915_gem_object_put(obj);
4658 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4660 struct intel_engine_cs *engine;
4661 enum intel_engine_id id;
4663 for_each_engine(engine, dev_priv, id)
4664 GEM_BUG_ON(engine->last_retired_context &&
4665 !i915_gem_context_is_kernel(engine->last_retired_context));
4668 void i915_gem_sanitize(struct drm_i915_private *i915)
4670 if (i915_terminally_wedged(&i915->gpu_error)) {
4671 mutex_lock(&i915->drm.struct_mutex);
4672 i915_gem_unset_wedged(i915);
4673 mutex_unlock(&i915->drm.struct_mutex);
4677 * If we inherit context state from the BIOS or earlier occupants
4678 * of the GPU, the GPU may be in an inconsistent state when we
4679 * try to take over. The only way to remove the earlier state
4680 * is by resetting. However, resetting on earlier gen is tricky as
4681 * it may impact the display and we are uncertain about the stability
4682 * of the reset, so this could be applied to even earlier gen.
4684 if (INTEL_GEN(i915) >= 5) {
4685 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4686 WARN_ON(reset && reset != -ENODEV);
4690 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4692 struct drm_device *dev = &dev_priv->drm;
4695 intel_runtime_pm_get(dev_priv);
4696 intel_suspend_gt_powersave(dev_priv);
4698 mutex_lock(&dev->struct_mutex);
4700 /* We have to flush all the executing contexts to main memory so
4701 * that they can saved in the hibernation image. To ensure the last
4702 * context image is coherent, we have to switch away from it. That
4703 * leaves the dev_priv->kernel_context still active when
4704 * we actually suspend, and its image in memory may not match the GPU
4705 * state. Fortunately, the kernel_context is disposable and we do
4706 * not rely on its state.
4708 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4709 ret = i915_gem_switch_to_kernel_context(dev_priv);
4713 ret = i915_gem_wait_for_idle(dev_priv,
4714 I915_WAIT_INTERRUPTIBLE |
4716 if (ret && ret != -EIO)
4719 assert_kernel_context_is_current(dev_priv);
4721 i915_gem_contexts_lost(dev_priv);
4722 mutex_unlock(&dev->struct_mutex);
4724 intel_guc_suspend(dev_priv);
4726 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4727 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4729 /* As the idle_work is rearming if it detects a race, play safe and
4730 * repeat the flush until it is definitely idle.
4732 drain_delayed_work(&dev_priv->gt.idle_work);
4734 /* Assert that we sucessfully flushed all the work and
4735 * reset the GPU back to its idle, low power state.
4737 WARN_ON(dev_priv->gt.awake);
4738 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4739 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4742 * Neither the BIOS, ourselves or any other kernel
4743 * expects the system to be in execlists mode on startup,
4744 * so we need to reset the GPU back to legacy mode. And the only
4745 * known way to disable logical contexts is through a GPU reset.
4747 * So in order to leave the system in a known default configuration,
4748 * always reset the GPU upon unload and suspend. Afterwards we then
4749 * clean up the GEM state tracking, flushing off the requests and
4750 * leaving the system in a known idle state.
4752 * Note that is of the upmost importance that the GPU is idle and
4753 * all stray writes are flushed *before* we dismantle the backing
4754 * storage for the pinned objects.
4756 * However, since we are uncertain that resetting the GPU on older
4757 * machines is a good idea, we don't - just in case it leaves the
4758 * machine in an unusable condition.
4760 i915_gem_sanitize(dev_priv);
4762 intel_runtime_pm_put(dev_priv);
4766 mutex_unlock(&dev->struct_mutex);
4767 intel_runtime_pm_put(dev_priv);
4771 void i915_gem_resume(struct drm_i915_private *dev_priv)
4773 struct drm_device *dev = &dev_priv->drm;
4775 WARN_ON(dev_priv->gt.awake);
4777 mutex_lock(&dev->struct_mutex);
4778 i915_gem_restore_gtt_mappings(dev_priv);
4779 i915_gem_restore_fences(dev_priv);
4781 /* As we didn't flush the kernel context before suspend, we cannot
4782 * guarantee that the context image is complete. So let's just reset
4783 * it and start again.
4785 dev_priv->gt.resume(dev_priv);
4787 mutex_unlock(&dev->struct_mutex);
4790 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4792 if (INTEL_GEN(dev_priv) < 5 ||
4793 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4796 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4797 DISP_TILE_SURFACE_SWIZZLING);
4799 if (IS_GEN5(dev_priv))
4802 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4803 if (IS_GEN6(dev_priv))
4804 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4805 else if (IS_GEN7(dev_priv))
4806 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4807 else if (IS_GEN8(dev_priv))
4808 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4813 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4815 I915_WRITE(RING_CTL(base), 0);
4816 I915_WRITE(RING_HEAD(base), 0);
4817 I915_WRITE(RING_TAIL(base), 0);
4818 I915_WRITE(RING_START(base), 0);
4821 static void init_unused_rings(struct drm_i915_private *dev_priv)
4823 if (IS_I830(dev_priv)) {
4824 init_unused_ring(dev_priv, PRB1_BASE);
4825 init_unused_ring(dev_priv, SRB0_BASE);
4826 init_unused_ring(dev_priv, SRB1_BASE);
4827 init_unused_ring(dev_priv, SRB2_BASE);
4828 init_unused_ring(dev_priv, SRB3_BASE);
4829 } else if (IS_GEN2(dev_priv)) {
4830 init_unused_ring(dev_priv, SRB0_BASE);
4831 init_unused_ring(dev_priv, SRB1_BASE);
4832 } else if (IS_GEN3(dev_priv)) {
4833 init_unused_ring(dev_priv, PRB1_BASE);
4834 init_unused_ring(dev_priv, PRB2_BASE);
4838 static int __i915_gem_restart_engines(void *data)
4840 struct drm_i915_private *i915 = data;
4841 struct intel_engine_cs *engine;
4842 enum intel_engine_id id;
4845 for_each_engine(engine, i915, id) {
4846 err = engine->init_hw(engine);
4854 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4858 dev_priv->gt.last_init_time = ktime_get();
4860 /* Double layer security blanket, see i915_gem_init() */
4861 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4863 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4864 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4866 if (IS_HASWELL(dev_priv))
4867 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4868 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4870 if (HAS_PCH_NOP(dev_priv)) {
4871 if (IS_IVYBRIDGE(dev_priv)) {
4872 u32 temp = I915_READ(GEN7_MSG_CTL);
4873 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4874 I915_WRITE(GEN7_MSG_CTL, temp);
4875 } else if (INTEL_GEN(dev_priv) >= 7) {
4876 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4877 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4878 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4882 i915_gem_init_swizzling(dev_priv);
4885 * At least 830 can leave some of the unused rings
4886 * "active" (ie. head != tail) after resume which
4887 * will prevent c3 entry. Makes sure all unused rings
4890 init_unused_rings(dev_priv);
4892 BUG_ON(!dev_priv->kernel_context);
4893 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
4898 ret = i915_ppgtt_init_hw(dev_priv);
4900 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4904 /* Need to do basic initialisation of all rings first: */
4905 ret = __i915_gem_restart_engines(dev_priv);
4909 intel_mocs_init_l3cc_table(dev_priv);
4911 /* We can't enable contexts until all firmware is loaded */
4912 ret = intel_uc_init_hw(dev_priv);
4917 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4921 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4923 if (INTEL_INFO(dev_priv)->gen < 6)
4926 /* TODO: make semaphores and Execlists play nicely together */
4927 if (i915_modparams.enable_execlists)
4933 /* Enable semaphores on SNB when IO remapping is off */
4934 if (IS_GEN6(dev_priv) && intel_vtd_active())
4940 int i915_gem_init(struct drm_i915_private *dev_priv)
4945 * We need to fallback to 4K pages since gvt gtt handling doesn't
4946 * support huge page entries - we will need to check either hypervisor
4947 * mm can support huge guest page or just do emulation in gvt.
4949 if (intel_vgpu_active(dev_priv))
4950 mkwrite_device_info(dev_priv)->page_sizes =
4951 I915_GTT_PAGE_SIZE_4K;
4953 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4955 if (!i915_modparams.enable_execlists) {
4956 dev_priv->gt.resume = intel_legacy_submission_resume;
4957 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4959 dev_priv->gt.resume = intel_lr_context_resume;
4960 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4963 ret = i915_gem_init_userptr(dev_priv);
4967 /* This is just a security blanket to placate dragons.
4968 * On some systems, we very sporadically observe that the first TLBs
4969 * used by the CS may be stale, despite us poking the TLB reset. If
4970 * we hold the forcewake during initialisation these problems
4971 * just magically go away.
4973 mutex_lock(&dev_priv->drm.struct_mutex);
4974 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4976 ret = i915_gem_init_ggtt(dev_priv);
4980 ret = i915_gem_contexts_init(dev_priv);
4984 ret = intel_engines_init(dev_priv);
4988 ret = i915_gem_init_hw(dev_priv);
4990 /* Allow engine initialisation to fail by marking the GPU as
4991 * wedged. But we only want to do this where the GPU is angry,
4992 * for all other failure, such as an allocation failure, bail.
4994 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4995 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4996 i915_gem_set_wedged(dev_priv);
5002 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5003 mutex_unlock(&dev_priv->drm.struct_mutex);
5008 void i915_gem_init_mmio(struct drm_i915_private *i915)
5010 i915_gem_sanitize(i915);
5014 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5016 struct intel_engine_cs *engine;
5017 enum intel_engine_id id;
5019 for_each_engine(engine, dev_priv, id)
5020 dev_priv->gt.cleanup_engine(engine);
5024 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5028 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5029 !IS_CHERRYVIEW(dev_priv))
5030 dev_priv->num_fence_regs = 32;
5031 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5032 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5033 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5034 dev_priv->num_fence_regs = 16;
5036 dev_priv->num_fence_regs = 8;
5038 if (intel_vgpu_active(dev_priv))
5039 dev_priv->num_fence_regs =
5040 I915_READ(vgtif_reg(avail_rs.fence_num));
5042 /* Initialize fence registers to zero */
5043 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5044 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5046 fence->i915 = dev_priv;
5048 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5050 i915_gem_restore_fences(dev_priv);
5052 i915_gem_detect_bit_6_swizzle(dev_priv);
5056 i915_gem_load_init(struct drm_i915_private *dev_priv)
5060 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5061 if (!dev_priv->objects)
5064 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5065 if (!dev_priv->vmas)
5068 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5069 if (!dev_priv->luts)
5072 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5073 SLAB_HWCACHE_ALIGN |
5074 SLAB_RECLAIM_ACCOUNT |
5075 SLAB_TYPESAFE_BY_RCU);
5076 if (!dev_priv->requests)
5079 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5080 SLAB_HWCACHE_ALIGN |
5081 SLAB_RECLAIM_ACCOUNT);
5082 if (!dev_priv->dependencies)
5085 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5086 if (!dev_priv->priorities)
5087 goto err_dependencies;
5089 mutex_lock(&dev_priv->drm.struct_mutex);
5090 INIT_LIST_HEAD(&dev_priv->gt.timelines);
5091 err = i915_gem_timeline_init__global(dev_priv);
5092 mutex_unlock(&dev_priv->drm.struct_mutex);
5094 goto err_priorities;
5096 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
5098 spin_lock_init(&dev_priv->mm.obj_lock);
5099 spin_lock_init(&dev_priv->mm.free_lock);
5100 init_llist_head(&dev_priv->mm.free_list);
5101 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5102 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5103 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5104 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
5106 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5107 i915_gem_retire_work_handler);
5108 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5109 i915_gem_idle_work_handler);
5110 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5111 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5113 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5115 spin_lock_init(&dev_priv->fb_tracking.lock);
5117 err = i915_gemfs_init(dev_priv);
5119 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5124 kmem_cache_destroy(dev_priv->priorities);
5126 kmem_cache_destroy(dev_priv->dependencies);
5128 kmem_cache_destroy(dev_priv->requests);
5130 kmem_cache_destroy(dev_priv->luts);
5132 kmem_cache_destroy(dev_priv->vmas);
5134 kmem_cache_destroy(dev_priv->objects);
5139 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5141 i915_gem_drain_freed_objects(dev_priv);
5142 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5143 WARN_ON(dev_priv->mm.object_count);
5145 mutex_lock(&dev_priv->drm.struct_mutex);
5146 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5147 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5148 mutex_unlock(&dev_priv->drm.struct_mutex);
5150 kmem_cache_destroy(dev_priv->priorities);
5151 kmem_cache_destroy(dev_priv->dependencies);
5152 kmem_cache_destroy(dev_priv->requests);
5153 kmem_cache_destroy(dev_priv->luts);
5154 kmem_cache_destroy(dev_priv->vmas);
5155 kmem_cache_destroy(dev_priv->objects);
5157 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5160 i915_gemfs_fini(dev_priv);
5163 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5165 /* Discard all purgeable objects, let userspace recover those as
5166 * required after resuming.
5168 i915_gem_shrink_all(dev_priv);
5173 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5175 struct drm_i915_gem_object *obj;
5176 struct list_head *phases[] = {
5177 &dev_priv->mm.unbound_list,
5178 &dev_priv->mm.bound_list,
5182 /* Called just before we write the hibernation image.
5184 * We need to update the domain tracking to reflect that the CPU
5185 * will be accessing all the pages to create and restore from the
5186 * hibernation, and so upon restoration those pages will be in the
5189 * To make sure the hibernation image contains the latest state,
5190 * we update that state just before writing out the image.
5192 * To try and reduce the hibernation image, we manually shrink
5193 * the objects as well, see i915_gem_freeze()
5196 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5197 i915_gem_drain_freed_objects(dev_priv);
5199 spin_lock(&dev_priv->mm.obj_lock);
5200 for (p = phases; *p; p++) {
5201 list_for_each_entry(obj, *p, mm.link)
5202 __start_cpu_write(obj);
5204 spin_unlock(&dev_priv->mm.obj_lock);
5209 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5211 struct drm_i915_file_private *file_priv = file->driver_priv;
5212 struct drm_i915_gem_request *request;
5214 /* Clean up our request list when the client is going away, so that
5215 * later retire_requests won't dereference our soon-to-be-gone
5218 spin_lock(&file_priv->mm.lock);
5219 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5220 request->file_priv = NULL;
5221 spin_unlock(&file_priv->mm.lock);
5224 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5226 struct drm_i915_file_private *file_priv;
5231 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5235 file->driver_priv = file_priv;
5236 file_priv->dev_priv = i915;
5237 file_priv->file = file;
5239 spin_lock_init(&file_priv->mm.lock);
5240 INIT_LIST_HEAD(&file_priv->mm.request_list);
5242 file_priv->bsd_engine = -1;
5244 ret = i915_gem_context_open(i915, file);
5252 * i915_gem_track_fb - update frontbuffer tracking
5253 * @old: current GEM buffer for the frontbuffer slots
5254 * @new: new GEM buffer for the frontbuffer slots
5255 * @frontbuffer_bits: bitmask of frontbuffer slots
5257 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5258 * from @old and setting them in @new. Both @old and @new can be NULL.
5260 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5261 struct drm_i915_gem_object *new,
5262 unsigned frontbuffer_bits)
5264 /* Control of individual bits within the mask are guarded by
5265 * the owning plane->mutex, i.e. we can never see concurrent
5266 * manipulation of individual bits. But since the bitfield as a whole
5267 * is updated using RMW, we need to use atomics in order to update
5270 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5271 sizeof(atomic_t) * BITS_PER_BYTE);
5274 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5275 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5279 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5280 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5284 /* Allocate a new GEM object and fill it with the supplied data */
5285 struct drm_i915_gem_object *
5286 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5287 const void *data, size_t size)
5289 struct drm_i915_gem_object *obj;
5294 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5298 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5300 file = obj->base.filp;
5303 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5305 void *pgdata, *vaddr;
5307 err = pagecache_write_begin(file, file->f_mapping,
5314 memcpy(vaddr, data, len);
5317 err = pagecache_write_end(file, file->f_mapping,
5331 i915_gem_object_put(obj);
5332 return ERR_PTR(err);
5335 struct scatterlist *
5336 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5338 unsigned int *offset)
5340 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5341 struct scatterlist *sg;
5342 unsigned int idx, count;
5345 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5346 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5348 /* As we iterate forward through the sg, we record each entry in a
5349 * radixtree for quick repeated (backwards) lookups. If we have seen
5350 * this index previously, we will have an entry for it.
5352 * Initial lookup is O(N), but this is amortized to O(1) for
5353 * sequential page access (where each new request is consecutive
5354 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5355 * i.e. O(1) with a large constant!
5357 if (n < READ_ONCE(iter->sg_idx))
5360 mutex_lock(&iter->lock);
5362 /* We prefer to reuse the last sg so that repeated lookup of this
5363 * (or the subsequent) sg are fast - comparing against the last
5364 * sg is faster than going through the radixtree.
5369 count = __sg_page_count(sg);
5371 while (idx + count <= n) {
5372 unsigned long exception, i;
5375 /* If we cannot allocate and insert this entry, or the
5376 * individual pages from this range, cancel updating the
5377 * sg_idx so that on this lookup we are forced to linearly
5378 * scan onwards, but on future lookups we will try the
5379 * insertion again (in which case we need to be careful of
5380 * the error return reporting that we have already inserted
5383 ret = radix_tree_insert(&iter->radix, idx, sg);
5384 if (ret && ret != -EEXIST)
5388 RADIX_TREE_EXCEPTIONAL_ENTRY |
5389 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5390 for (i = 1; i < count; i++) {
5391 ret = radix_tree_insert(&iter->radix, idx + i,
5393 if (ret && ret != -EEXIST)
5398 sg = ____sg_next(sg);
5399 count = __sg_page_count(sg);
5406 mutex_unlock(&iter->lock);
5408 if (unlikely(n < idx)) /* insertion completed by another thread */
5411 /* In case we failed to insert the entry into the radixtree, we need
5412 * to look beyond the current sg.
5414 while (idx + count <= n) {
5416 sg = ____sg_next(sg);
5417 count = __sg_page_count(sg);
5426 sg = radix_tree_lookup(&iter->radix, n);
5429 /* If this index is in the middle of multi-page sg entry,
5430 * the radixtree will contain an exceptional entry that points
5431 * to the start of that range. We will return the pointer to
5432 * the base page and the offset of this page within the
5436 if (unlikely(radix_tree_exception(sg))) {
5437 unsigned long base =
5438 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5440 sg = radix_tree_lookup(&iter->radix, base);
5452 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5454 struct scatterlist *sg;
5455 unsigned int offset;
5457 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5459 sg = i915_gem_object_get_sg(obj, n, &offset);
5460 return nth_page(sg_page(sg), offset);
5463 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5465 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5470 page = i915_gem_object_get_page(obj, n);
5472 set_page_dirty(page);
5478 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5481 struct scatterlist *sg;
5482 unsigned int offset;
5484 sg = i915_gem_object_get_sg(obj, n, &offset);
5485 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5488 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5490 struct sg_table *pages;
5493 if (align > obj->base.size)
5496 if (obj->ops == &i915_gem_phys_ops)
5499 if (obj->ops != &i915_gem_object_ops)
5502 err = i915_gem_object_unbind(obj);
5506 mutex_lock(&obj->mm.lock);
5508 if (obj->mm.madv != I915_MADV_WILLNEED) {
5513 if (obj->mm.quirked) {
5518 if (obj->mm.mapping) {
5523 pages = fetch_and_zero(&obj->mm.pages);
5525 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5527 __i915_gem_object_reset_page_iter(obj);
5529 spin_lock(&i915->mm.obj_lock);
5530 list_del(&obj->mm.link);
5531 spin_unlock(&i915->mm.obj_lock);
5534 obj->ops = &i915_gem_phys_ops;
5536 err = ____i915_gem_object_get_pages(obj);
5540 /* Perma-pin (until release) the physical set of pages */
5541 __i915_gem_object_pin_pages(obj);
5543 if (!IS_ERR_OR_NULL(pages))
5544 i915_gem_object_ops.put_pages(obj, pages);
5545 mutex_unlock(&obj->mm.lock);
5549 obj->ops = &i915_gem_object_ops;
5550 obj->mm.pages = pages;
5552 mutex_unlock(&obj->mm.lock);
5556 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5557 #include "selftests/scatterlist.c"
5558 #include "selftests/mock_gem_device.c"
5559 #include "selftests/huge_gem_object.c"
5560 #include "selftests/huge_pages.c"
5561 #include "selftests/i915_gem_object.c"
5562 #include "selftests/i915_gem_coherency.c"