1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "print-tree.h"
29 #include "compression.h"
30 #include "delalloc-space.h"
34 static struct kmem_cache *btrfs_inode_defrag_cachep;
36 * when auto defrag is enabled we
37 * queue up these defrag structs to remember which
38 * inodes need defragging passes
41 struct rb_node rb_node;
45 * transid where the defrag was added, we search for
46 * extents newer than this
54 * The extent size threshold for autodefrag.
56 * This value is different for compressed/non-compressed extents,
57 * thus needs to be passed from higher layer.
58 * (aka, inode_should_defrag())
63 static int __compare_inode_defrag(struct inode_defrag *defrag1,
64 struct inode_defrag *defrag2)
66 if (defrag1->root > defrag2->root)
68 else if (defrag1->root < defrag2->root)
70 else if (defrag1->ino > defrag2->ino)
72 else if (defrag1->ino < defrag2->ino)
78 /* pop a record for an inode into the defrag tree. The lock
79 * must be held already
81 * If you're inserting a record for an older transid than an
82 * existing record, the transid already in the tree is lowered
84 * If an existing record is found the defrag item you
87 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
88 struct inode_defrag *defrag)
90 struct btrfs_fs_info *fs_info = inode->root->fs_info;
91 struct inode_defrag *entry;
93 struct rb_node *parent = NULL;
96 p = &fs_info->defrag_inodes.rb_node;
99 entry = rb_entry(parent, struct inode_defrag, rb_node);
101 ret = __compare_inode_defrag(defrag, entry);
103 p = &parent->rb_left;
105 p = &parent->rb_right;
107 /* if we're reinserting an entry for
108 * an old defrag run, make sure to
109 * lower the transid of our existing record
111 if (defrag->transid < entry->transid)
112 entry->transid = defrag->transid;
113 entry->extent_thresh = min(defrag->extent_thresh,
114 entry->extent_thresh);
118 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
119 rb_link_node(&defrag->rb_node, parent, p);
120 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
124 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
126 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
129 if (btrfs_fs_closing(fs_info))
136 * insert a defrag record for this inode if auto defrag is
139 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
140 struct btrfs_inode *inode, u32 extent_thresh)
142 struct btrfs_root *root = inode->root;
143 struct btrfs_fs_info *fs_info = root->fs_info;
144 struct inode_defrag *defrag;
148 if (!__need_auto_defrag(fs_info))
151 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
155 transid = trans->transid;
157 transid = inode->root->last_trans;
159 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
163 defrag->ino = btrfs_ino(inode);
164 defrag->transid = transid;
165 defrag->root = root->root_key.objectid;
166 defrag->extent_thresh = extent_thresh;
168 spin_lock(&fs_info->defrag_inodes_lock);
169 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
171 * If we set IN_DEFRAG flag and evict the inode from memory,
172 * and then re-read this inode, this new inode doesn't have
173 * IN_DEFRAG flag. At the case, we may find the existed defrag.
175 ret = __btrfs_add_inode_defrag(inode, defrag);
177 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
179 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
181 spin_unlock(&fs_info->defrag_inodes_lock);
186 * pick the defragable inode that we want, if it doesn't exist, we will get
189 static struct inode_defrag *
190 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
192 struct inode_defrag *entry = NULL;
193 struct inode_defrag tmp;
195 struct rb_node *parent = NULL;
201 spin_lock(&fs_info->defrag_inodes_lock);
202 p = fs_info->defrag_inodes.rb_node;
205 entry = rb_entry(parent, struct inode_defrag, rb_node);
207 ret = __compare_inode_defrag(&tmp, entry);
211 p = parent->rb_right;
216 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
217 parent = rb_next(parent);
219 entry = rb_entry(parent, struct inode_defrag, rb_node);
225 rb_erase(parent, &fs_info->defrag_inodes);
226 spin_unlock(&fs_info->defrag_inodes_lock);
230 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
232 struct inode_defrag *defrag;
233 struct rb_node *node;
235 spin_lock(&fs_info->defrag_inodes_lock);
236 node = rb_first(&fs_info->defrag_inodes);
238 rb_erase(node, &fs_info->defrag_inodes);
239 defrag = rb_entry(node, struct inode_defrag, rb_node);
240 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
242 cond_resched_lock(&fs_info->defrag_inodes_lock);
244 node = rb_first(&fs_info->defrag_inodes);
246 spin_unlock(&fs_info->defrag_inodes_lock);
249 #define BTRFS_DEFRAG_BATCH 1024
251 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
252 struct inode_defrag *defrag)
254 struct btrfs_root *inode_root;
256 struct btrfs_ioctl_defrag_range_args range;
261 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
263 if (!__need_auto_defrag(fs_info))
267 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
268 if (IS_ERR(inode_root)) {
269 ret = PTR_ERR(inode_root);
273 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
274 btrfs_put_root(inode_root);
276 ret = PTR_ERR(inode);
280 if (cur >= i_size_read(inode)) {
285 /* do a chunk of defrag */
286 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
287 memset(&range, 0, sizeof(range));
290 range.extent_thresh = defrag->extent_thresh;
292 sb_start_write(fs_info->sb);
293 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
295 sb_end_write(fs_info->sb);
301 cur = max(cur + fs_info->sectorsize, range.start);
305 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
310 * run through the list of inodes in the FS that need
313 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
315 struct inode_defrag *defrag;
317 u64 root_objectid = 0;
319 atomic_inc(&fs_info->defrag_running);
321 /* Pause the auto defragger. */
322 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
326 if (!__need_auto_defrag(fs_info))
329 /* find an inode to defrag */
330 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
333 if (root_objectid || first_ino) {
342 first_ino = defrag->ino + 1;
343 root_objectid = defrag->root;
345 __btrfs_run_defrag_inode(fs_info, defrag);
347 atomic_dec(&fs_info->defrag_running);
350 * during unmount, we use the transaction_wait queue to
351 * wait for the defragger to stop
353 wake_up(&fs_info->transaction_wait);
357 /* simple helper to fault in pages and copy. This should go away
358 * and be replaced with calls into generic code.
360 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
361 struct page **prepared_pages,
365 size_t total_copied = 0;
367 int offset = offset_in_page(pos);
369 while (write_bytes > 0) {
370 size_t count = min_t(size_t,
371 PAGE_SIZE - offset, write_bytes);
372 struct page *page = prepared_pages[pg];
374 * Copy data from userspace to the current page
376 copied = copy_page_from_iter_atomic(page, offset, count, i);
378 /* Flush processor's dcache for this page */
379 flush_dcache_page(page);
382 * if we get a partial write, we can end up with
383 * partially up to date pages. These add
384 * a lot of complexity, so make sure they don't
385 * happen by forcing this copy to be retried.
387 * The rest of the btrfs_file_write code will fall
388 * back to page at a time copies after we return 0.
390 if (unlikely(copied < count)) {
391 if (!PageUptodate(page)) {
392 iov_iter_revert(i, copied);
399 write_bytes -= copied;
400 total_copied += copied;
402 if (offset == PAGE_SIZE) {
411 * unlocks pages after btrfs_file_write is done with them
413 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
414 struct page **pages, size_t num_pages,
418 u64 block_start = round_down(pos, fs_info->sectorsize);
419 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
421 ASSERT(block_len <= U32_MAX);
422 for (i = 0; i < num_pages; i++) {
423 /* page checked is some magic around finding pages that
424 * have been modified without going through btrfs_set_page_dirty
425 * clear it here. There should be no need to mark the pages
426 * accessed as prepare_pages should have marked them accessed
427 * in prepare_pages via find_or_create_page()
429 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
431 unlock_page(pages[i]);
437 * After btrfs_copy_from_user(), update the following things for delalloc:
438 * - Mark newly dirtied pages as DELALLOC in the io tree.
439 * Used to advise which range is to be written back.
440 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
441 * - Update inode size for past EOF write
443 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
444 size_t num_pages, loff_t pos, size_t write_bytes,
445 struct extent_state **cached, bool noreserve)
447 struct btrfs_fs_info *fs_info = inode->root->fs_info;
452 u64 end_of_last_block;
453 u64 end_pos = pos + write_bytes;
454 loff_t isize = i_size_read(&inode->vfs_inode);
455 unsigned int extra_bits = 0;
457 if (write_bytes == 0)
461 extra_bits |= EXTENT_NORESERVE;
463 start_pos = round_down(pos, fs_info->sectorsize);
464 num_bytes = round_up(write_bytes + pos - start_pos,
465 fs_info->sectorsize);
466 ASSERT(num_bytes <= U32_MAX);
468 end_of_last_block = start_pos + num_bytes - 1;
471 * The pages may have already been dirty, clear out old accounting so
472 * we can set things up properly
474 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
475 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
478 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
483 for (i = 0; i < num_pages; i++) {
484 struct page *p = pages[i];
486 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
487 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
488 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
492 * we've only changed i_size in ram, and we haven't updated
493 * the disk i_size. There is no need to log the inode
497 i_size_write(&inode->vfs_inode, end_pos);
502 * this is very complex, but the basic idea is to drop all extents
503 * in the range start - end. hint_block is filled in with a block number
504 * that would be a good hint to the block allocator for this file.
506 * If an extent intersects the range but is not entirely inside the range
507 * it is either truncated or split. Anything entirely inside the range
508 * is deleted from the tree.
510 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
511 * to deal with that. We set the field 'bytes_found' of the arguments structure
512 * with the number of allocated bytes found in the target range, so that the
513 * caller can update the inode's number of bytes in an atomic way when
514 * replacing extents in a range to avoid races with stat(2).
516 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
517 struct btrfs_root *root, struct btrfs_inode *inode,
518 struct btrfs_drop_extents_args *args)
520 struct btrfs_fs_info *fs_info = root->fs_info;
521 struct extent_buffer *leaf;
522 struct btrfs_file_extent_item *fi;
523 struct btrfs_ref ref = { 0 };
524 struct btrfs_key key;
525 struct btrfs_key new_key;
526 u64 ino = btrfs_ino(inode);
527 u64 search_start = args->start;
530 u64 extent_offset = 0;
532 u64 last_end = args->start;
538 int modify_tree = -1;
541 struct btrfs_path *path = args->path;
543 args->bytes_found = 0;
544 args->extent_inserted = false;
546 /* Must always have a path if ->replace_extent is true */
547 ASSERT(!(args->replace_extent && !args->path));
550 path = btrfs_alloc_path();
557 if (args->drop_cache)
558 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
560 if (args->start >= inode->disk_i_size && !args->replace_extent)
563 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
566 ret = btrfs_lookup_file_extent(trans, root, path, ino,
567 search_start, modify_tree);
570 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
571 leaf = path->nodes[0];
572 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
573 if (key.objectid == ino &&
574 key.type == BTRFS_EXTENT_DATA_KEY)
579 leaf = path->nodes[0];
580 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
582 ret = btrfs_next_leaf(root, path);
589 leaf = path->nodes[0];
593 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
595 if (key.objectid > ino)
597 if (WARN_ON_ONCE(key.objectid < ino) ||
598 key.type < BTRFS_EXTENT_DATA_KEY) {
603 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
606 fi = btrfs_item_ptr(leaf, path->slots[0],
607 struct btrfs_file_extent_item);
608 extent_type = btrfs_file_extent_type(leaf, fi);
610 if (extent_type == BTRFS_FILE_EXTENT_REG ||
611 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
612 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
613 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
614 extent_offset = btrfs_file_extent_offset(leaf, fi);
615 extent_end = key.offset +
616 btrfs_file_extent_num_bytes(leaf, fi);
617 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
618 extent_end = key.offset +
619 btrfs_file_extent_ram_bytes(leaf, fi);
626 * Don't skip extent items representing 0 byte lengths. They
627 * used to be created (bug) if while punching holes we hit
628 * -ENOSPC condition. So if we find one here, just ensure we
629 * delete it, otherwise we would insert a new file extent item
630 * with the same key (offset) as that 0 bytes length file
631 * extent item in the call to setup_items_for_insert() later
634 if (extent_end == key.offset && extent_end >= search_start) {
635 last_end = extent_end;
636 goto delete_extent_item;
639 if (extent_end <= search_start) {
645 search_start = max(key.offset, args->start);
646 if (recow || !modify_tree) {
648 btrfs_release_path(path);
653 * | - range to drop - |
654 * | -------- extent -------- |
656 if (args->start > key.offset && args->end < extent_end) {
658 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
663 memcpy(&new_key, &key, sizeof(new_key));
664 new_key.offset = args->start;
665 ret = btrfs_duplicate_item(trans, root, path,
667 if (ret == -EAGAIN) {
668 btrfs_release_path(path);
674 leaf = path->nodes[0];
675 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
676 struct btrfs_file_extent_item);
677 btrfs_set_file_extent_num_bytes(leaf, fi,
678 args->start - key.offset);
680 fi = btrfs_item_ptr(leaf, path->slots[0],
681 struct btrfs_file_extent_item);
683 extent_offset += args->start - key.offset;
684 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
685 btrfs_set_file_extent_num_bytes(leaf, fi,
686 extent_end - args->start);
687 btrfs_mark_buffer_dirty(leaf);
689 if (update_refs && disk_bytenr > 0) {
690 btrfs_init_generic_ref(&ref,
691 BTRFS_ADD_DELAYED_REF,
692 disk_bytenr, num_bytes, 0);
693 btrfs_init_data_ref(&ref,
694 root->root_key.objectid,
696 args->start - extent_offset,
698 ret = btrfs_inc_extent_ref(trans, &ref);
699 BUG_ON(ret); /* -ENOMEM */
701 key.offset = args->start;
704 * From here on out we will have actually dropped something, so
705 * last_end can be updated.
707 last_end = extent_end;
710 * | ---- range to drop ----- |
711 * | -------- extent -------- |
713 if (args->start <= key.offset && args->end < extent_end) {
714 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
719 memcpy(&new_key, &key, sizeof(new_key));
720 new_key.offset = args->end;
721 btrfs_set_item_key_safe(fs_info, path, &new_key);
723 extent_offset += args->end - key.offset;
724 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
725 btrfs_set_file_extent_num_bytes(leaf, fi,
726 extent_end - args->end);
727 btrfs_mark_buffer_dirty(leaf);
728 if (update_refs && disk_bytenr > 0)
729 args->bytes_found += args->end - key.offset;
733 search_start = extent_end;
735 * | ---- range to drop ----- |
736 * | -------- extent -------- |
738 if (args->start > key.offset && args->end >= extent_end) {
740 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
745 btrfs_set_file_extent_num_bytes(leaf, fi,
746 args->start - key.offset);
747 btrfs_mark_buffer_dirty(leaf);
748 if (update_refs && disk_bytenr > 0)
749 args->bytes_found += extent_end - args->start;
750 if (args->end == extent_end)
758 * | ---- range to drop ----- |
759 * | ------ extent ------ |
761 if (args->start <= key.offset && args->end >= extent_end) {
764 del_slot = path->slots[0];
767 BUG_ON(del_slot + del_nr != path->slots[0]);
772 extent_type == BTRFS_FILE_EXTENT_INLINE) {
773 args->bytes_found += extent_end - key.offset;
774 extent_end = ALIGN(extent_end,
775 fs_info->sectorsize);
776 } else if (update_refs && disk_bytenr > 0) {
777 btrfs_init_generic_ref(&ref,
778 BTRFS_DROP_DELAYED_REF,
779 disk_bytenr, num_bytes, 0);
780 btrfs_init_data_ref(&ref,
781 root->root_key.objectid,
783 key.offset - extent_offset, 0,
785 ret = btrfs_free_extent(trans, &ref);
786 BUG_ON(ret); /* -ENOMEM */
787 args->bytes_found += extent_end - key.offset;
790 if (args->end == extent_end)
793 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
798 ret = btrfs_del_items(trans, root, path, del_slot,
801 btrfs_abort_transaction(trans, ret);
808 btrfs_release_path(path);
815 if (!ret && del_nr > 0) {
817 * Set path->slots[0] to first slot, so that after the delete
818 * if items are move off from our leaf to its immediate left or
819 * right neighbor leafs, we end up with a correct and adjusted
820 * path->slots[0] for our insertion (if args->replace_extent).
822 path->slots[0] = del_slot;
823 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
825 btrfs_abort_transaction(trans, ret);
828 leaf = path->nodes[0];
830 * If btrfs_del_items() was called, it might have deleted a leaf, in
831 * which case it unlocked our path, so check path->locks[0] matches a
834 if (!ret && args->replace_extent &&
835 path->locks[0] == BTRFS_WRITE_LOCK &&
836 btrfs_leaf_free_space(leaf) >=
837 sizeof(struct btrfs_item) + args->extent_item_size) {
840 key.type = BTRFS_EXTENT_DATA_KEY;
841 key.offset = args->start;
842 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
843 struct btrfs_key slot_key;
845 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
846 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
849 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
850 args->extent_inserted = true;
854 btrfs_free_path(path);
855 else if (!args->extent_inserted)
856 btrfs_release_path(path);
858 args->drop_end = found ? min(args->end, last_end) : args->end;
863 static int extent_mergeable(struct extent_buffer *leaf, int slot,
864 u64 objectid, u64 bytenr, u64 orig_offset,
865 u64 *start, u64 *end)
867 struct btrfs_file_extent_item *fi;
868 struct btrfs_key key;
871 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
874 btrfs_item_key_to_cpu(leaf, &key, slot);
875 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
878 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
879 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
880 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
881 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
882 btrfs_file_extent_compression(leaf, fi) ||
883 btrfs_file_extent_encryption(leaf, fi) ||
884 btrfs_file_extent_other_encoding(leaf, fi))
887 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
888 if ((*start && *start != key.offset) || (*end && *end != extent_end))
897 * Mark extent in the range start - end as written.
899 * This changes extent type from 'pre-allocated' to 'regular'. If only
900 * part of extent is marked as written, the extent will be split into
903 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
904 struct btrfs_inode *inode, u64 start, u64 end)
906 struct btrfs_fs_info *fs_info = trans->fs_info;
907 struct btrfs_root *root = inode->root;
908 struct extent_buffer *leaf;
909 struct btrfs_path *path;
910 struct btrfs_file_extent_item *fi;
911 struct btrfs_ref ref = { 0 };
912 struct btrfs_key key;
913 struct btrfs_key new_key;
925 u64 ino = btrfs_ino(inode);
927 path = btrfs_alloc_path();
934 key.type = BTRFS_EXTENT_DATA_KEY;
937 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
940 if (ret > 0 && path->slots[0] > 0)
943 leaf = path->nodes[0];
944 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
945 if (key.objectid != ino ||
946 key.type != BTRFS_EXTENT_DATA_KEY) {
948 btrfs_abort_transaction(trans, ret);
951 fi = btrfs_item_ptr(leaf, path->slots[0],
952 struct btrfs_file_extent_item);
953 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
955 btrfs_abort_transaction(trans, ret);
958 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
959 if (key.offset > start || extent_end < end) {
961 btrfs_abort_transaction(trans, ret);
965 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
966 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
967 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
968 memcpy(&new_key, &key, sizeof(new_key));
970 if (start == key.offset && end < extent_end) {
973 if (extent_mergeable(leaf, path->slots[0] - 1,
974 ino, bytenr, orig_offset,
975 &other_start, &other_end)) {
976 new_key.offset = end;
977 btrfs_set_item_key_safe(fs_info, path, &new_key);
978 fi = btrfs_item_ptr(leaf, path->slots[0],
979 struct btrfs_file_extent_item);
980 btrfs_set_file_extent_generation(leaf, fi,
982 btrfs_set_file_extent_num_bytes(leaf, fi,
984 btrfs_set_file_extent_offset(leaf, fi,
986 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
987 struct btrfs_file_extent_item);
988 btrfs_set_file_extent_generation(leaf, fi,
990 btrfs_set_file_extent_num_bytes(leaf, fi,
992 btrfs_mark_buffer_dirty(leaf);
997 if (start > key.offset && end == extent_end) {
1000 if (extent_mergeable(leaf, path->slots[0] + 1,
1001 ino, bytenr, orig_offset,
1002 &other_start, &other_end)) {
1003 fi = btrfs_item_ptr(leaf, path->slots[0],
1004 struct btrfs_file_extent_item);
1005 btrfs_set_file_extent_num_bytes(leaf, fi,
1006 start - key.offset);
1007 btrfs_set_file_extent_generation(leaf, fi,
1010 new_key.offset = start;
1011 btrfs_set_item_key_safe(fs_info, path, &new_key);
1013 fi = btrfs_item_ptr(leaf, path->slots[0],
1014 struct btrfs_file_extent_item);
1015 btrfs_set_file_extent_generation(leaf, fi,
1017 btrfs_set_file_extent_num_bytes(leaf, fi,
1019 btrfs_set_file_extent_offset(leaf, fi,
1020 start - orig_offset);
1021 btrfs_mark_buffer_dirty(leaf);
1026 while (start > key.offset || end < extent_end) {
1027 if (key.offset == start)
1030 new_key.offset = split;
1031 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1032 if (ret == -EAGAIN) {
1033 btrfs_release_path(path);
1037 btrfs_abort_transaction(trans, ret);
1041 leaf = path->nodes[0];
1042 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1043 struct btrfs_file_extent_item);
1044 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1045 btrfs_set_file_extent_num_bytes(leaf, fi,
1046 split - key.offset);
1048 fi = btrfs_item_ptr(leaf, path->slots[0],
1049 struct btrfs_file_extent_item);
1051 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1052 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1053 btrfs_set_file_extent_num_bytes(leaf, fi,
1054 extent_end - split);
1055 btrfs_mark_buffer_dirty(leaf);
1057 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1059 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1060 orig_offset, 0, false);
1061 ret = btrfs_inc_extent_ref(trans, &ref);
1063 btrfs_abort_transaction(trans, ret);
1067 if (split == start) {
1070 if (start != key.offset) {
1072 btrfs_abort_transaction(trans, ret);
1083 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1085 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1087 if (extent_mergeable(leaf, path->slots[0] + 1,
1088 ino, bytenr, orig_offset,
1089 &other_start, &other_end)) {
1091 btrfs_release_path(path);
1094 extent_end = other_end;
1095 del_slot = path->slots[0] + 1;
1097 ret = btrfs_free_extent(trans, &ref);
1099 btrfs_abort_transaction(trans, ret);
1105 if (extent_mergeable(leaf, path->slots[0] - 1,
1106 ino, bytenr, orig_offset,
1107 &other_start, &other_end)) {
1109 btrfs_release_path(path);
1112 key.offset = other_start;
1113 del_slot = path->slots[0];
1115 ret = btrfs_free_extent(trans, &ref);
1117 btrfs_abort_transaction(trans, ret);
1122 fi = btrfs_item_ptr(leaf, path->slots[0],
1123 struct btrfs_file_extent_item);
1124 btrfs_set_file_extent_type(leaf, fi,
1125 BTRFS_FILE_EXTENT_REG);
1126 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1127 btrfs_mark_buffer_dirty(leaf);
1129 fi = btrfs_item_ptr(leaf, del_slot - 1,
1130 struct btrfs_file_extent_item);
1131 btrfs_set_file_extent_type(leaf, fi,
1132 BTRFS_FILE_EXTENT_REG);
1133 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1134 btrfs_set_file_extent_num_bytes(leaf, fi,
1135 extent_end - key.offset);
1136 btrfs_mark_buffer_dirty(leaf);
1138 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1140 btrfs_abort_transaction(trans, ret);
1145 btrfs_free_path(path);
1150 * on error we return an unlocked page and the error value
1151 * on success we return a locked page and 0
1153 static int prepare_uptodate_page(struct inode *inode,
1154 struct page *page, u64 pos,
1155 bool force_uptodate)
1157 struct folio *folio = page_folio(page);
1160 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1161 !PageUptodate(page)) {
1162 ret = btrfs_read_folio(NULL, folio);
1166 if (!PageUptodate(page)) {
1172 * Since btrfs_read_folio() will unlock the folio before it
1173 * returns, there is a window where btrfs_release_folio() can be
1174 * called to release the page. Here we check both inode
1175 * mapping and PagePrivate() to make sure the page was not
1178 * The private flag check is essential for subpage as we need
1179 * to store extra bitmap using page->private.
1181 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
1189 static unsigned int get_prepare_fgp_flags(bool nowait)
1191 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
1194 fgp_flags |= FGP_NOWAIT;
1199 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
1203 gfp = btrfs_alloc_write_mask(inode->i_mapping);
1205 gfp &= ~__GFP_DIRECT_RECLAIM;
1213 * this just gets pages into the page cache and locks them down.
1215 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1216 size_t num_pages, loff_t pos,
1217 size_t write_bytes, bool force_uptodate,
1221 unsigned long index = pos >> PAGE_SHIFT;
1222 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
1223 unsigned int fgp_flags = get_prepare_fgp_flags(nowait);
1227 for (i = 0; i < num_pages; i++) {
1229 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
1230 fgp_flags, mask | __GFP_WRITE);
1240 err = set_page_extent_mapped(pages[i]);
1247 err = prepare_uptodate_page(inode, pages[i], pos,
1249 if (!err && i == num_pages - 1)
1250 err = prepare_uptodate_page(inode, pages[i],
1251 pos + write_bytes, false);
1254 if (!nowait && err == -EAGAIN) {
1261 wait_on_page_writeback(pages[i]);
1266 while (faili >= 0) {
1267 unlock_page(pages[faili]);
1268 put_page(pages[faili]);
1276 * This function locks the extent and properly waits for data=ordered extents
1277 * to finish before allowing the pages to be modified if need.
1280 * 1 - the extent is locked
1281 * 0 - the extent is not locked, and everything is OK
1282 * -EAGAIN - need re-prepare the pages
1283 * the other < 0 number - Something wrong happens
1286 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1287 size_t num_pages, loff_t pos,
1289 u64 *lockstart, u64 *lockend, bool nowait,
1290 struct extent_state **cached_state)
1292 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1298 start_pos = round_down(pos, fs_info->sectorsize);
1299 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1301 if (start_pos < inode->vfs_inode.i_size) {
1302 struct btrfs_ordered_extent *ordered;
1305 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos)) {
1306 for (i = 0; i < num_pages; i++) {
1307 unlock_page(pages[i]);
1315 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1318 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1319 last_pos - start_pos + 1);
1321 ordered->file_offset + ordered->num_bytes > start_pos &&
1322 ordered->file_offset <= last_pos) {
1323 unlock_extent(&inode->io_tree, start_pos, last_pos,
1325 for (i = 0; i < num_pages; i++) {
1326 unlock_page(pages[i]);
1329 btrfs_start_ordered_extent(ordered, 1);
1330 btrfs_put_ordered_extent(ordered);
1334 btrfs_put_ordered_extent(ordered);
1336 *lockstart = start_pos;
1337 *lockend = last_pos;
1342 * We should be called after prepare_pages() which should have locked
1343 * all pages in the range.
1345 for (i = 0; i < num_pages; i++)
1346 WARN_ON(!PageLocked(pages[i]));
1352 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1354 * @pos: File offset.
1355 * @write_bytes: The length to write, will be updated to the nocow writeable
1358 * This function will flush ordered extents in the range to ensure proper
1362 * > 0 If we can nocow, and updates @write_bytes.
1363 * 0 If we can't do a nocow write.
1364 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1365 * root is in progress.
1366 * < 0 If an error happened.
1368 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1370 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1371 size_t *write_bytes, bool nowait)
1373 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1374 struct btrfs_root *root = inode->root;
1375 u64 lockstart, lockend;
1379 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1382 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1385 lockstart = round_down(pos, fs_info->sectorsize);
1386 lockend = round_up(pos + *write_bytes,
1387 fs_info->sectorsize) - 1;
1388 num_bytes = lockend - lockstart + 1;
1391 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend)) {
1392 btrfs_drew_write_unlock(&root->snapshot_lock);
1396 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend, NULL);
1398 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1399 NULL, NULL, NULL, nowait, false);
1401 btrfs_drew_write_unlock(&root->snapshot_lock);
1403 *write_bytes = min_t(size_t, *write_bytes ,
1404 num_bytes - pos + lockstart);
1405 unlock_extent(&inode->io_tree, lockstart, lockend, NULL);
1410 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1412 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1415 static void update_time_for_write(struct inode *inode)
1417 struct timespec64 now;
1419 if (IS_NOCMTIME(inode))
1422 now = current_time(inode);
1423 if (!timespec64_equal(&inode->i_mtime, &now))
1424 inode->i_mtime = now;
1426 if (!timespec64_equal(&inode->i_ctime, &now))
1427 inode->i_ctime = now;
1429 if (IS_I_VERSION(inode))
1430 inode_inc_iversion(inode);
1433 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1436 struct file *file = iocb->ki_filp;
1437 struct inode *inode = file_inode(file);
1438 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1439 loff_t pos = iocb->ki_pos;
1445 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1446 * prealloc flags, as without those flags we always have to COW. We will
1447 * later check if we can really COW into the target range (using
1448 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1450 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1451 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1454 current->backing_dev_info = inode_to_bdi(inode);
1455 ret = file_remove_privs(file);
1460 * We reserve space for updating the inode when we reserve space for the
1461 * extent we are going to write, so we will enospc out there. We don't
1462 * need to start yet another transaction to update the inode as we will
1463 * update the inode when we finish writing whatever data we write.
1465 update_time_for_write(inode);
1467 start_pos = round_down(pos, fs_info->sectorsize);
1468 oldsize = i_size_read(inode);
1469 if (start_pos > oldsize) {
1470 /* Expand hole size to cover write data, preventing empty gap */
1471 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1473 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1475 current->backing_dev_info = NULL;
1483 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1486 struct file *file = iocb->ki_filp;
1488 struct inode *inode = file_inode(file);
1489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1490 struct page **pages = NULL;
1491 struct extent_changeset *data_reserved = NULL;
1492 u64 release_bytes = 0;
1495 size_t num_written = 0;
1498 bool only_release_metadata = false;
1499 bool force_page_uptodate = false;
1500 loff_t old_isize = i_size_read(inode);
1501 unsigned int ilock_flags = 0;
1502 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1503 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1506 ilock_flags |= BTRFS_ILOCK_TRY;
1508 ret = btrfs_inode_lock(inode, ilock_flags);
1512 ret = generic_write_checks(iocb, i);
1516 ret = btrfs_write_check(iocb, i, ret);
1521 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1522 PAGE_SIZE / (sizeof(struct page *)));
1523 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1524 nrptrs = max(nrptrs, 8);
1525 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1531 while (iov_iter_count(i) > 0) {
1532 struct extent_state *cached_state = NULL;
1533 size_t offset = offset_in_page(pos);
1534 size_t sector_offset;
1535 size_t write_bytes = min(iov_iter_count(i),
1536 nrptrs * (size_t)PAGE_SIZE -
1539 size_t reserve_bytes;
1542 size_t dirty_sectors;
1547 * Fault pages before locking them in prepare_pages
1548 * to avoid recursive lock
1550 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1555 only_release_metadata = false;
1556 sector_offset = pos & (fs_info->sectorsize - 1);
1558 extent_changeset_release(data_reserved);
1559 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1560 &data_reserved, pos,
1561 write_bytes, nowait);
1565 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1571 * If we don't have to COW at the offset, reserve
1572 * metadata only. write_bytes may get smaller than
1575 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1576 &write_bytes, nowait);
1583 only_release_metadata = true;
1586 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1587 WARN_ON(num_pages > nrptrs);
1588 reserve_bytes = round_up(write_bytes + sector_offset,
1589 fs_info->sectorsize);
1590 WARN_ON(reserve_bytes == 0);
1591 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1593 reserve_bytes, nowait);
1595 if (!only_release_metadata)
1596 btrfs_free_reserved_data_space(BTRFS_I(inode),
1600 btrfs_check_nocow_unlock(BTRFS_I(inode));
1604 release_bytes = reserve_bytes;
1606 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1611 * This is going to setup the pages array with the number of
1612 * pages we want, so we don't really need to worry about the
1613 * contents of pages from loop to loop
1615 ret = prepare_pages(inode, pages, num_pages,
1616 pos, write_bytes, force_page_uptodate, false);
1618 btrfs_delalloc_release_extents(BTRFS_I(inode),
1623 extents_locked = lock_and_cleanup_extent_if_need(
1624 BTRFS_I(inode), pages,
1625 num_pages, pos, write_bytes, &lockstart,
1626 &lockend, nowait, &cached_state);
1627 if (extents_locked < 0) {
1628 if (!nowait && extents_locked == -EAGAIN)
1631 btrfs_delalloc_release_extents(BTRFS_I(inode),
1633 ret = extents_locked;
1637 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1639 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1640 dirty_sectors = round_up(copied + sector_offset,
1641 fs_info->sectorsize);
1642 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1645 * if we have trouble faulting in the pages, fall
1646 * back to one page at a time
1648 if (copied < write_bytes)
1652 force_page_uptodate = true;
1656 force_page_uptodate = false;
1657 dirty_pages = DIV_ROUND_UP(copied + offset,
1661 if (num_sectors > dirty_sectors) {
1662 /* release everything except the sectors we dirtied */
1663 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1664 if (only_release_metadata) {
1665 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1666 release_bytes, true);
1670 __pos = round_down(pos,
1671 fs_info->sectorsize) +
1672 (dirty_pages << PAGE_SHIFT);
1673 btrfs_delalloc_release_space(BTRFS_I(inode),
1674 data_reserved, __pos,
1675 release_bytes, true);
1679 release_bytes = round_up(copied + sector_offset,
1680 fs_info->sectorsize);
1682 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1683 dirty_pages, pos, copied,
1684 &cached_state, only_release_metadata);
1687 * If we have not locked the extent range, because the range's
1688 * start offset is >= i_size, we might still have a non-NULL
1689 * cached extent state, acquired while marking the extent range
1690 * as delalloc through btrfs_dirty_pages(). Therefore free any
1691 * possible cached extent state to avoid a memory leak.
1694 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1695 lockend, &cached_state);
1697 free_extent_state(cached_state);
1699 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1701 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1706 if (only_release_metadata)
1707 btrfs_check_nocow_unlock(BTRFS_I(inode));
1709 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1714 num_written += copied;
1719 if (release_bytes) {
1720 if (only_release_metadata) {
1721 btrfs_check_nocow_unlock(BTRFS_I(inode));
1722 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1723 release_bytes, true);
1725 btrfs_delalloc_release_space(BTRFS_I(inode),
1727 round_down(pos, fs_info->sectorsize),
1728 release_bytes, true);
1732 extent_changeset_free(data_reserved);
1733 if (num_written > 0) {
1734 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1735 iocb->ki_pos += num_written;
1738 btrfs_inode_unlock(inode, ilock_flags);
1739 return num_written ? num_written : ret;
1742 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1743 const struct iov_iter *iter, loff_t offset)
1745 const u32 blocksize_mask = fs_info->sectorsize - 1;
1747 if (offset & blocksize_mask)
1750 if (iov_iter_alignment(iter) & blocksize_mask)
1756 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1758 struct file *file = iocb->ki_filp;
1759 struct inode *inode = file_inode(file);
1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1762 ssize_t written = 0;
1763 ssize_t written_buffered;
1764 size_t prev_left = 0;
1767 unsigned int ilock_flags = 0;
1769 if (iocb->ki_flags & IOCB_NOWAIT)
1770 ilock_flags |= BTRFS_ILOCK_TRY;
1772 /* If the write DIO is within EOF, use a shared lock */
1773 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1774 ilock_flags |= BTRFS_ILOCK_SHARED;
1777 err = btrfs_inode_lock(inode, ilock_flags);
1781 err = generic_write_checks(iocb, from);
1783 btrfs_inode_unlock(inode, ilock_flags);
1787 err = btrfs_write_check(iocb, from, err);
1789 btrfs_inode_unlock(inode, ilock_flags);
1795 * Re-check since file size may have changed just before taking the
1796 * lock or pos may have changed because of O_APPEND in generic_write_check()
1798 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1799 pos + iov_iter_count(from) > i_size_read(inode)) {
1800 btrfs_inode_unlock(inode, ilock_flags);
1801 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1805 if (check_direct_IO(fs_info, from, pos)) {
1806 btrfs_inode_unlock(inode, ilock_flags);
1811 * The iov_iter can be mapped to the same file range we are writing to.
1812 * If that's the case, then we will deadlock in the iomap code, because
1813 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1814 * an ordered extent, and after that it will fault in the pages that the
1815 * iov_iter refers to. During the fault in we end up in the readahead
1816 * pages code (starting at btrfs_readahead()), which will lock the range,
1817 * find that ordered extent and then wait for it to complete (at
1818 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1819 * obviously the ordered extent can never complete as we didn't submit
1820 * yet the respective bio(s). This always happens when the buffer is
1821 * memory mapped to the same file range, since the iomap DIO code always
1822 * invalidates pages in the target file range (after starting and waiting
1823 * for any writeback).
1825 * So here we disable page faults in the iov_iter and then retry if we
1826 * got -EFAULT, faulting in the pages before the retry.
1829 from->nofault = true;
1830 err = btrfs_dio_rw(iocb, from, written);
1831 from->nofault = false;
1833 /* No increment (+=) because iomap returns a cumulative value. */
1837 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1838 const size_t left = iov_iter_count(from);
1840 * We have more data left to write. Try to fault in as many as
1841 * possible of the remainder pages and retry. We do this without
1842 * releasing and locking again the inode, to prevent races with
1845 * Also, in case the iov refers to pages in the file range of the
1846 * file we want to write to (due to a mmap), we could enter an
1847 * infinite loop if we retry after faulting the pages in, since
1848 * iomap will invalidate any pages in the range early on, before
1849 * it tries to fault in the pages of the iov. So we keep track of
1850 * how much was left of iov in the previous EFAULT and fallback
1851 * to buffered IO in case we haven't made any progress.
1853 if (left == prev_left) {
1856 fault_in_iov_iter_readable(from, left);
1862 btrfs_inode_unlock(inode, ilock_flags);
1865 * If 'err' is -ENOTBLK or we have not written all data, then it means
1866 * we must fallback to buffered IO.
1868 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1873 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1874 * it must retry the operation in a context where blocking is acceptable,
1875 * since we currently don't have NOWAIT semantics support for buffered IO
1876 * and may block there for many reasons (reserving space for example).
1878 if (iocb->ki_flags & IOCB_NOWAIT) {
1884 written_buffered = btrfs_buffered_write(iocb, from);
1885 if (written_buffered < 0) {
1886 err = written_buffered;
1890 * Ensure all data is persisted. We want the next direct IO read to be
1891 * able to read what was just written.
1893 endbyte = pos + written_buffered - 1;
1894 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1897 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1900 written += written_buffered;
1901 iocb->ki_pos = pos + written_buffered;
1902 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1903 endbyte >> PAGE_SHIFT);
1905 return err < 0 ? err : written;
1908 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1909 const struct btrfs_ioctl_encoded_io_args *encoded)
1911 struct file *file = iocb->ki_filp;
1912 struct inode *inode = file_inode(file);
1916 btrfs_inode_lock(inode, 0);
1917 count = encoded->len;
1918 ret = generic_write_checks_count(iocb, &count);
1919 if (ret == 0 && count != encoded->len) {
1921 * The write got truncated by generic_write_checks_count(). We
1922 * can't do a partial encoded write.
1926 if (ret || encoded->len == 0)
1929 ret = btrfs_write_check(iocb, from, encoded->len);
1933 ret = btrfs_do_encoded_write(iocb, from, encoded);
1935 btrfs_inode_unlock(inode, 0);
1939 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1940 const struct btrfs_ioctl_encoded_io_args *encoded)
1942 struct file *file = iocb->ki_filp;
1943 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1944 ssize_t num_written, num_sync;
1945 const bool sync = iocb_is_dsync(iocb);
1948 * If the fs flips readonly due to some impossible error, although we
1949 * have opened a file as writable, we have to stop this write operation
1950 * to ensure consistency.
1952 if (BTRFS_FS_ERROR(inode->root->fs_info))
1955 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1959 atomic_inc(&inode->sync_writers);
1962 num_written = btrfs_encoded_write(iocb, from, encoded);
1963 num_sync = encoded->len;
1964 } else if (iocb->ki_flags & IOCB_DIRECT) {
1965 num_written = btrfs_direct_write(iocb, from);
1966 num_sync = num_written;
1968 num_written = btrfs_buffered_write(iocb, from);
1969 num_sync = num_written;
1972 btrfs_set_inode_last_sub_trans(inode);
1975 num_sync = generic_write_sync(iocb, num_sync);
1977 num_written = num_sync;
1981 atomic_dec(&inode->sync_writers);
1983 current->backing_dev_info = NULL;
1987 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1989 return btrfs_do_write_iter(iocb, from, NULL);
1992 int btrfs_release_file(struct inode *inode, struct file *filp)
1994 struct btrfs_file_private *private = filp->private_data;
1996 if (private && private->filldir_buf)
1997 kfree(private->filldir_buf);
1999 filp->private_data = NULL;
2002 * Set by setattr when we are about to truncate a file from a non-zero
2003 * size to a zero size. This tries to flush down new bytes that may
2004 * have been written if the application were using truncate to replace
2007 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2008 &BTRFS_I(inode)->runtime_flags))
2009 filemap_flush(inode->i_mapping);
2013 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2016 struct blk_plug plug;
2019 * This is only called in fsync, which would do synchronous writes, so
2020 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2021 * multiple disks using raid profile, a large IO can be split to
2022 * several segments of stripe length (currently 64K).
2024 blk_start_plug(&plug);
2025 atomic_inc(&BTRFS_I(inode)->sync_writers);
2026 ret = btrfs_fdatawrite_range(inode, start, end);
2027 atomic_dec(&BTRFS_I(inode)->sync_writers);
2028 blk_finish_plug(&plug);
2033 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2035 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2036 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2038 if (btrfs_inode_in_log(inode, fs_info->generation) &&
2039 list_empty(&ctx->ordered_extents))
2043 * If we are doing a fast fsync we can not bail out if the inode's
2044 * last_trans is <= then the last committed transaction, because we only
2045 * update the last_trans of the inode during ordered extent completion,
2046 * and for a fast fsync we don't wait for that, we only wait for the
2047 * writeback to complete.
2049 if (inode->last_trans <= fs_info->last_trans_committed &&
2050 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2051 list_empty(&ctx->ordered_extents)))
2058 * fsync call for both files and directories. This logs the inode into
2059 * the tree log instead of forcing full commits whenever possible.
2061 * It needs to call filemap_fdatawait so that all ordered extent updates are
2062 * in the metadata btree are up to date for copying to the log.
2064 * It drops the inode mutex before doing the tree log commit. This is an
2065 * important optimization for directories because holding the mutex prevents
2066 * new operations on the dir while we write to disk.
2068 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2070 struct dentry *dentry = file_dentry(file);
2071 struct inode *inode = d_inode(dentry);
2072 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2073 struct btrfs_root *root = BTRFS_I(inode)->root;
2074 struct btrfs_trans_handle *trans;
2075 struct btrfs_log_ctx ctx;
2080 trace_btrfs_sync_file(file, datasync);
2082 btrfs_init_log_ctx(&ctx, inode);
2085 * Always set the range to a full range, otherwise we can get into
2086 * several problems, from missing file extent items to represent holes
2087 * when not using the NO_HOLES feature, to log tree corruption due to
2088 * races between hole detection during logging and completion of ordered
2089 * extents outside the range, to missing checksums due to ordered extents
2090 * for which we flushed only a subset of their pages.
2094 len = (u64)LLONG_MAX + 1;
2097 * We write the dirty pages in the range and wait until they complete
2098 * out of the ->i_mutex. If so, we can flush the dirty pages by
2099 * multi-task, and make the performance up. See
2100 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2102 ret = start_ordered_ops(inode, start, end);
2106 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2108 atomic_inc(&root->log_batch);
2111 * Before we acquired the inode's lock and the mmap lock, someone may
2112 * have dirtied more pages in the target range. We need to make sure
2113 * that writeback for any such pages does not start while we are logging
2114 * the inode, because if it does, any of the following might happen when
2115 * we are not doing a full inode sync:
2117 * 1) We log an extent after its writeback finishes but before its
2118 * checksums are added to the csum tree, leading to -EIO errors
2119 * when attempting to read the extent after a log replay.
2121 * 2) We can end up logging an extent before its writeback finishes.
2122 * Therefore after the log replay we will have a file extent item
2123 * pointing to an unwritten extent (and no data checksums as well).
2125 * So trigger writeback for any eventual new dirty pages and then we
2126 * wait for all ordered extents to complete below.
2128 ret = start_ordered_ops(inode, start, end);
2130 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2135 * Always check for the full sync flag while holding the inode's lock,
2136 * to avoid races with other tasks. The flag must be either set all the
2137 * time during logging or always off all the time while logging.
2138 * We check the flag here after starting delalloc above, because when
2139 * running delalloc the full sync flag may be set if we need to drop
2140 * extra extent map ranges due to temporary memory allocation failures.
2142 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2143 &BTRFS_I(inode)->runtime_flags);
2146 * We have to do this here to avoid the priority inversion of waiting on
2147 * IO of a lower priority task while holding a transaction open.
2149 * For a full fsync we wait for the ordered extents to complete while
2150 * for a fast fsync we wait just for writeback to complete, and then
2151 * attach the ordered extents to the transaction so that a transaction
2152 * commit waits for their completion, to avoid data loss if we fsync,
2153 * the current transaction commits before the ordered extents complete
2154 * and a power failure happens right after that.
2156 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2157 * logical address recorded in the ordered extent may change. We need
2158 * to wait for the IO to stabilize the logical address.
2160 if (full_sync || btrfs_is_zoned(fs_info)) {
2161 ret = btrfs_wait_ordered_range(inode, start, len);
2164 * Get our ordered extents as soon as possible to avoid doing
2165 * checksum lookups in the csum tree, and use instead the
2166 * checksums attached to the ordered extents.
2168 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2169 &ctx.ordered_extents);
2170 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2174 goto out_release_extents;
2176 atomic_inc(&root->log_batch);
2179 if (skip_inode_logging(&ctx)) {
2181 * We've had everything committed since the last time we were
2182 * modified so clear this flag in case it was set for whatever
2183 * reason, it's no longer relevant.
2185 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2186 &BTRFS_I(inode)->runtime_flags);
2188 * An ordered extent might have started before and completed
2189 * already with io errors, in which case the inode was not
2190 * updated and we end up here. So check the inode's mapping
2191 * for any errors that might have happened since we last
2192 * checked called fsync.
2194 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2195 goto out_release_extents;
2199 * We use start here because we will need to wait on the IO to complete
2200 * in btrfs_sync_log, which could require joining a transaction (for
2201 * example checking cross references in the nocow path). If we use join
2202 * here we could get into a situation where we're waiting on IO to
2203 * happen that is blocked on a transaction trying to commit. With start
2204 * we inc the extwriter counter, so we wait for all extwriters to exit
2205 * before we start blocking joiners. This comment is to keep somebody
2206 * from thinking they are super smart and changing this to
2207 * btrfs_join_transaction *cough*Josef*cough*.
2209 trans = btrfs_start_transaction(root, 0);
2210 if (IS_ERR(trans)) {
2211 ret = PTR_ERR(trans);
2212 goto out_release_extents;
2214 trans->in_fsync = true;
2216 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2217 btrfs_release_log_ctx_extents(&ctx);
2219 /* Fallthrough and commit/free transaction. */
2220 ret = BTRFS_LOG_FORCE_COMMIT;
2223 /* we've logged all the items and now have a consistent
2224 * version of the file in the log. It is possible that
2225 * someone will come in and modify the file, but that's
2226 * fine because the log is consistent on disk, and we
2227 * have references to all of the file's extents
2229 * It is possible that someone will come in and log the
2230 * file again, but that will end up using the synchronization
2231 * inside btrfs_sync_log to keep things safe.
2233 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2235 if (ret == BTRFS_NO_LOG_SYNC) {
2236 ret = btrfs_end_transaction(trans);
2240 /* We successfully logged the inode, attempt to sync the log. */
2242 ret = btrfs_sync_log(trans, root, &ctx);
2244 ret = btrfs_end_transaction(trans);
2250 * At this point we need to commit the transaction because we had
2251 * btrfs_need_log_full_commit() or some other error.
2253 * If we didn't do a full sync we have to stop the trans handle, wait on
2254 * the ordered extents, start it again and commit the transaction. If
2255 * we attempt to wait on the ordered extents here we could deadlock with
2256 * something like fallocate() that is holding the extent lock trying to
2257 * start a transaction while some other thread is trying to commit the
2258 * transaction while we (fsync) are currently holding the transaction
2262 ret = btrfs_end_transaction(trans);
2265 ret = btrfs_wait_ordered_range(inode, start, len);
2270 * This is safe to use here because we're only interested in
2271 * making sure the transaction that had the ordered extents is
2272 * committed. We aren't waiting on anything past this point,
2273 * we're purely getting the transaction and committing it.
2275 trans = btrfs_attach_transaction_barrier(root);
2276 if (IS_ERR(trans)) {
2277 ret = PTR_ERR(trans);
2280 * We committed the transaction and there's no currently
2281 * running transaction, this means everything we care
2282 * about made it to disk and we are done.
2290 ret = btrfs_commit_transaction(trans);
2292 ASSERT(list_empty(&ctx.list));
2293 ASSERT(list_empty(&ctx.conflict_inodes));
2294 err = file_check_and_advance_wb_err(file);
2297 return ret > 0 ? -EIO : ret;
2299 out_release_extents:
2300 btrfs_release_log_ctx_extents(&ctx);
2301 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2305 static const struct vm_operations_struct btrfs_file_vm_ops = {
2306 .fault = filemap_fault,
2307 .map_pages = filemap_map_pages,
2308 .page_mkwrite = btrfs_page_mkwrite,
2311 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2313 struct address_space *mapping = filp->f_mapping;
2315 if (!mapping->a_ops->read_folio)
2318 file_accessed(filp);
2319 vma->vm_ops = &btrfs_file_vm_ops;
2324 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2325 int slot, u64 start, u64 end)
2327 struct btrfs_file_extent_item *fi;
2328 struct btrfs_key key;
2330 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2333 btrfs_item_key_to_cpu(leaf, &key, slot);
2334 if (key.objectid != btrfs_ino(inode) ||
2335 key.type != BTRFS_EXTENT_DATA_KEY)
2338 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2340 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2343 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2346 if (key.offset == end)
2348 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2353 static int fill_holes(struct btrfs_trans_handle *trans,
2354 struct btrfs_inode *inode,
2355 struct btrfs_path *path, u64 offset, u64 end)
2357 struct btrfs_fs_info *fs_info = trans->fs_info;
2358 struct btrfs_root *root = inode->root;
2359 struct extent_buffer *leaf;
2360 struct btrfs_file_extent_item *fi;
2361 struct extent_map *hole_em;
2362 struct btrfs_key key;
2365 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2368 key.objectid = btrfs_ino(inode);
2369 key.type = BTRFS_EXTENT_DATA_KEY;
2370 key.offset = offset;
2372 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2375 * We should have dropped this offset, so if we find it then
2376 * something has gone horribly wrong.
2383 leaf = path->nodes[0];
2384 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2388 fi = btrfs_item_ptr(leaf, path->slots[0],
2389 struct btrfs_file_extent_item);
2390 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2392 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2393 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2394 btrfs_set_file_extent_offset(leaf, fi, 0);
2395 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2396 btrfs_mark_buffer_dirty(leaf);
2400 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2403 key.offset = offset;
2404 btrfs_set_item_key_safe(fs_info, path, &key);
2405 fi = btrfs_item_ptr(leaf, path->slots[0],
2406 struct btrfs_file_extent_item);
2407 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2409 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2410 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2411 btrfs_set_file_extent_offset(leaf, fi, 0);
2412 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2413 btrfs_mark_buffer_dirty(leaf);
2416 btrfs_release_path(path);
2418 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2424 btrfs_release_path(path);
2426 hole_em = alloc_extent_map();
2428 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2429 btrfs_set_inode_full_sync(inode);
2431 hole_em->start = offset;
2432 hole_em->len = end - offset;
2433 hole_em->ram_bytes = hole_em->len;
2434 hole_em->orig_start = offset;
2436 hole_em->block_start = EXTENT_MAP_HOLE;
2437 hole_em->block_len = 0;
2438 hole_em->orig_block_len = 0;
2439 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2440 hole_em->generation = trans->transid;
2442 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2443 free_extent_map(hole_em);
2445 btrfs_set_inode_full_sync(inode);
2452 * Find a hole extent on given inode and change start/len to the end of hole
2453 * extent.(hole/vacuum extent whose em->start <= start &&
2454 * em->start + em->len > start)
2455 * When a hole extent is found, return 1 and modify start/len.
2457 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2459 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2460 struct extent_map *em;
2463 em = btrfs_get_extent(inode, NULL, 0,
2464 round_down(*start, fs_info->sectorsize),
2465 round_up(*len, fs_info->sectorsize));
2469 /* Hole or vacuum extent(only exists in no-hole mode) */
2470 if (em->block_start == EXTENT_MAP_HOLE) {
2472 *len = em->start + em->len > *start + *len ?
2473 0 : *start + *len - em->start - em->len;
2474 *start = em->start + em->len;
2476 free_extent_map(em);
2480 static void btrfs_punch_hole_lock_range(struct inode *inode,
2481 const u64 lockstart,
2483 struct extent_state **cached_state)
2486 * For subpage case, if the range is not at page boundary, we could
2487 * have pages at the leading/tailing part of the range.
2488 * This could lead to dead loop since filemap_range_has_page()
2489 * will always return true.
2490 * So here we need to do extra page alignment for
2491 * filemap_range_has_page().
2493 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2494 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2497 truncate_pagecache_range(inode, lockstart, lockend);
2499 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2502 * We can't have ordered extents in the range, nor dirty/writeback
2503 * pages, because we have locked the inode's VFS lock in exclusive
2504 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2505 * we have flushed all delalloc in the range and we have waited
2506 * for any ordered extents in the range to complete.
2507 * We can race with anyone reading pages from this range, so after
2508 * locking the range check if we have pages in the range, and if
2509 * we do, unlock the range and retry.
2511 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2515 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2519 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2522 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2523 struct btrfs_inode *inode,
2524 struct btrfs_path *path,
2525 struct btrfs_replace_extent_info *extent_info,
2526 const u64 replace_len,
2527 const u64 bytes_to_drop)
2529 struct btrfs_fs_info *fs_info = trans->fs_info;
2530 struct btrfs_root *root = inode->root;
2531 struct btrfs_file_extent_item *extent;
2532 struct extent_buffer *leaf;
2533 struct btrfs_key key;
2535 struct btrfs_ref ref = { 0 };
2538 if (replace_len == 0)
2541 if (extent_info->disk_offset == 0 &&
2542 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2543 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2547 key.objectid = btrfs_ino(inode);
2548 key.type = BTRFS_EXTENT_DATA_KEY;
2549 key.offset = extent_info->file_offset;
2550 ret = btrfs_insert_empty_item(trans, root, path, &key,
2551 sizeof(struct btrfs_file_extent_item));
2554 leaf = path->nodes[0];
2555 slot = path->slots[0];
2556 write_extent_buffer(leaf, extent_info->extent_buf,
2557 btrfs_item_ptr_offset(leaf, slot),
2558 sizeof(struct btrfs_file_extent_item));
2559 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2560 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2561 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2562 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2563 if (extent_info->is_new_extent)
2564 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2565 btrfs_mark_buffer_dirty(leaf);
2566 btrfs_release_path(path);
2568 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2573 /* If it's a hole, nothing more needs to be done. */
2574 if (extent_info->disk_offset == 0) {
2575 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2579 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2581 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2582 key.objectid = extent_info->disk_offset;
2583 key.type = BTRFS_EXTENT_ITEM_KEY;
2584 key.offset = extent_info->disk_len;
2585 ret = btrfs_alloc_reserved_file_extent(trans, root,
2587 extent_info->file_offset,
2588 extent_info->qgroup_reserved,
2593 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2594 extent_info->disk_offset,
2595 extent_info->disk_len, 0);
2596 ref_offset = extent_info->file_offset - extent_info->data_offset;
2597 btrfs_init_data_ref(&ref, root->root_key.objectid,
2598 btrfs_ino(inode), ref_offset, 0, false);
2599 ret = btrfs_inc_extent_ref(trans, &ref);
2602 extent_info->insertions++;
2608 * The respective range must have been previously locked, as well as the inode.
2609 * The end offset is inclusive (last byte of the range).
2610 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2611 * the file range with an extent.
2612 * When not punching a hole, we don't want to end up in a state where we dropped
2613 * extents without inserting a new one, so we must abort the transaction to avoid
2616 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2617 struct btrfs_path *path, const u64 start,
2619 struct btrfs_replace_extent_info *extent_info,
2620 struct btrfs_trans_handle **trans_out)
2622 struct btrfs_drop_extents_args drop_args = { 0 };
2623 struct btrfs_root *root = inode->root;
2624 struct btrfs_fs_info *fs_info = root->fs_info;
2625 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2626 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2627 struct btrfs_trans_handle *trans = NULL;
2628 struct btrfs_block_rsv *rsv;
2629 unsigned int rsv_count;
2631 u64 len = end - start;
2637 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2642 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2643 rsv->failfast = true;
2646 * 1 - update the inode
2647 * 1 - removing the extents in the range
2648 * 1 - adding the hole extent if no_holes isn't set or if we are
2649 * replacing the range with a new extent
2651 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2656 trans = btrfs_start_transaction(root, rsv_count);
2657 if (IS_ERR(trans)) {
2658 ret = PTR_ERR(trans);
2663 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2667 trans->block_rsv = rsv;
2670 drop_args.path = path;
2671 drop_args.end = end + 1;
2672 drop_args.drop_cache = true;
2673 while (cur_offset < end) {
2674 drop_args.start = cur_offset;
2675 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2676 /* If we are punching a hole decrement the inode's byte count */
2678 btrfs_update_inode_bytes(inode, 0,
2679 drop_args.bytes_found);
2680 if (ret != -ENOSPC) {
2682 * The only time we don't want to abort is if we are
2683 * attempting to clone a partial inline extent, in which
2684 * case we'll get EOPNOTSUPP. However if we aren't
2685 * clone we need to abort no matter what, because if we
2686 * got EOPNOTSUPP via prealloc then we messed up and
2690 (ret != -EOPNOTSUPP ||
2691 (extent_info && extent_info->is_new_extent)))
2692 btrfs_abort_transaction(trans, ret);
2696 trans->block_rsv = &fs_info->trans_block_rsv;
2698 if (!extent_info && cur_offset < drop_args.drop_end &&
2699 cur_offset < ino_size) {
2700 ret = fill_holes(trans, inode, path, cur_offset,
2701 drop_args.drop_end);
2704 * If we failed then we didn't insert our hole
2705 * entries for the area we dropped, so now the
2706 * fs is corrupted, so we must abort the
2709 btrfs_abort_transaction(trans, ret);
2712 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2714 * We are past the i_size here, but since we didn't
2715 * insert holes we need to clear the mapped area so we
2716 * know to not set disk_i_size in this area until a new
2717 * file extent is inserted here.
2719 ret = btrfs_inode_clear_file_extent_range(inode,
2721 drop_args.drop_end - cur_offset);
2724 * We couldn't clear our area, so we could
2725 * presumably adjust up and corrupt the fs, so
2728 btrfs_abort_transaction(trans, ret);
2734 drop_args.drop_end > extent_info->file_offset) {
2735 u64 replace_len = drop_args.drop_end -
2736 extent_info->file_offset;
2738 ret = btrfs_insert_replace_extent(trans, inode, path,
2739 extent_info, replace_len,
2740 drop_args.bytes_found);
2742 btrfs_abort_transaction(trans, ret);
2745 extent_info->data_len -= replace_len;
2746 extent_info->data_offset += replace_len;
2747 extent_info->file_offset += replace_len;
2751 * We are releasing our handle on the transaction, balance the
2752 * dirty pages of the btree inode and flush delayed items, and
2753 * then get a new transaction handle, which may now point to a
2754 * new transaction in case someone else may have committed the
2755 * transaction we used to replace/drop file extent items. So
2756 * bump the inode's iversion and update mtime and ctime except
2757 * if we are called from a dedupe context. This is because a
2758 * power failure/crash may happen after the transaction is
2759 * committed and before we finish replacing/dropping all the
2760 * file extent items we need.
2762 inode_inc_iversion(&inode->vfs_inode);
2764 if (!extent_info || extent_info->update_times) {
2765 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode);
2766 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime;
2769 ret = btrfs_update_inode(trans, root, inode);
2773 btrfs_end_transaction(trans);
2774 btrfs_btree_balance_dirty(fs_info);
2776 trans = btrfs_start_transaction(root, rsv_count);
2777 if (IS_ERR(trans)) {
2778 ret = PTR_ERR(trans);
2783 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2784 rsv, min_size, false);
2787 trans->block_rsv = rsv;
2789 cur_offset = drop_args.drop_end;
2790 len = end - cur_offset;
2791 if (!extent_info && len) {
2792 ret = find_first_non_hole(inode, &cur_offset, &len);
2793 if (unlikely(ret < 0))
2803 * If we were cloning, force the next fsync to be a full one since we
2804 * we replaced (or just dropped in the case of cloning holes when
2805 * NO_HOLES is enabled) file extent items and did not setup new extent
2806 * maps for the replacement extents (or holes).
2808 if (extent_info && !extent_info->is_new_extent)
2809 btrfs_set_inode_full_sync(inode);
2814 trans->block_rsv = &fs_info->trans_block_rsv;
2816 * If we are using the NO_HOLES feature we might have had already an
2817 * hole that overlaps a part of the region [lockstart, lockend] and
2818 * ends at (or beyond) lockend. Since we have no file extent items to
2819 * represent holes, drop_end can be less than lockend and so we must
2820 * make sure we have an extent map representing the existing hole (the
2821 * call to __btrfs_drop_extents() might have dropped the existing extent
2822 * map representing the existing hole), otherwise the fast fsync path
2823 * will not record the existence of the hole region
2824 * [existing_hole_start, lockend].
2826 if (drop_args.drop_end <= end)
2827 drop_args.drop_end = end + 1;
2829 * Don't insert file hole extent item if it's for a range beyond eof
2830 * (because it's useless) or if it represents a 0 bytes range (when
2831 * cur_offset == drop_end).
2833 if (!extent_info && cur_offset < ino_size &&
2834 cur_offset < drop_args.drop_end) {
2835 ret = fill_holes(trans, inode, path, cur_offset,
2836 drop_args.drop_end);
2838 /* Same comment as above. */
2839 btrfs_abort_transaction(trans, ret);
2842 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2843 /* See the comment in the loop above for the reasoning here. */
2844 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2845 drop_args.drop_end - cur_offset);
2847 btrfs_abort_transaction(trans, ret);
2853 ret = btrfs_insert_replace_extent(trans, inode, path,
2854 extent_info, extent_info->data_len,
2855 drop_args.bytes_found);
2857 btrfs_abort_transaction(trans, ret);
2866 trans->block_rsv = &fs_info->trans_block_rsv;
2868 btrfs_end_transaction(trans);
2872 btrfs_free_block_rsv(fs_info, rsv);
2877 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2879 struct inode *inode = file_inode(file);
2880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2881 struct btrfs_root *root = BTRFS_I(inode)->root;
2882 struct extent_state *cached_state = NULL;
2883 struct btrfs_path *path;
2884 struct btrfs_trans_handle *trans = NULL;
2889 u64 orig_start = offset;
2893 bool truncated_block = false;
2894 bool updated_inode = false;
2896 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2898 ret = btrfs_wait_ordered_range(inode, offset, len);
2900 goto out_only_mutex;
2902 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2903 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2905 goto out_only_mutex;
2907 /* Already in a large hole */
2909 goto out_only_mutex;
2912 ret = file_modified(file);
2914 goto out_only_mutex;
2916 lockstart = round_up(offset, fs_info->sectorsize);
2917 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2918 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2919 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2921 * We needn't truncate any block which is beyond the end of the file
2922 * because we are sure there is no data there.
2925 * Only do this if we are in the same block and we aren't doing the
2928 if (same_block && len < fs_info->sectorsize) {
2929 if (offset < ino_size) {
2930 truncated_block = true;
2931 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2936 goto out_only_mutex;
2939 /* zero back part of the first block */
2940 if (offset < ino_size) {
2941 truncated_block = true;
2942 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2944 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
2949 /* Check the aligned pages after the first unaligned page,
2950 * if offset != orig_start, which means the first unaligned page
2951 * including several following pages are already in holes,
2952 * the extra check can be skipped */
2953 if (offset == orig_start) {
2954 /* after truncate page, check hole again */
2955 len = offset + len - lockstart;
2957 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2959 goto out_only_mutex;
2962 goto out_only_mutex;
2967 /* Check the tail unaligned part is in a hole */
2968 tail_start = lockend + 1;
2969 tail_len = offset + len - tail_start;
2971 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2972 if (unlikely(ret < 0))
2973 goto out_only_mutex;
2975 /* zero the front end of the last page */
2976 if (tail_start + tail_len < ino_size) {
2977 truncated_block = true;
2978 ret = btrfs_truncate_block(BTRFS_I(inode),
2979 tail_start + tail_len,
2982 goto out_only_mutex;
2987 if (lockend < lockstart) {
2989 goto out_only_mutex;
2992 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2994 path = btrfs_alloc_path();
3000 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3001 lockend, NULL, &trans);
3002 btrfs_free_path(path);
3006 ASSERT(trans != NULL);
3007 inode_inc_iversion(inode);
3008 inode->i_mtime = current_time(inode);
3009 inode->i_ctime = inode->i_mtime;
3010 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3011 updated_inode = true;
3012 btrfs_end_transaction(trans);
3013 btrfs_btree_balance_dirty(fs_info);
3015 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3018 if (!updated_inode && truncated_block && !ret) {
3020 * If we only end up zeroing part of a page, we still need to
3021 * update the inode item, so that all the time fields are
3022 * updated as well as the necessary btrfs inode in memory fields
3023 * for detecting, at fsync time, if the inode isn't yet in the
3024 * log tree or it's there but not up to date.
3026 struct timespec64 now = current_time(inode);
3028 inode_inc_iversion(inode);
3029 inode->i_mtime = now;
3030 inode->i_ctime = now;
3031 trans = btrfs_start_transaction(root, 1);
3032 if (IS_ERR(trans)) {
3033 ret = PTR_ERR(trans);
3037 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3038 ret2 = btrfs_end_transaction(trans);
3043 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3047 /* Helper structure to record which range is already reserved */
3048 struct falloc_range {
3049 struct list_head list;
3055 * Helper function to add falloc range
3057 * Caller should have locked the larger range of extent containing
3060 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3062 struct falloc_range *range = NULL;
3064 if (!list_empty(head)) {
3066 * As fallocate iterates by bytenr order, we only need to check
3069 range = list_last_entry(head, struct falloc_range, list);
3070 if (range->start + range->len == start) {
3076 range = kmalloc(sizeof(*range), GFP_KERNEL);
3079 range->start = start;
3081 list_add_tail(&range->list, head);
3085 static int btrfs_fallocate_update_isize(struct inode *inode,
3089 struct btrfs_trans_handle *trans;
3090 struct btrfs_root *root = BTRFS_I(inode)->root;
3094 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3097 trans = btrfs_start_transaction(root, 1);
3099 return PTR_ERR(trans);
3101 inode->i_ctime = current_time(inode);
3102 i_size_write(inode, end);
3103 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
3104 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3105 ret2 = btrfs_end_transaction(trans);
3107 return ret ? ret : ret2;
3111 RANGE_BOUNDARY_WRITTEN_EXTENT,
3112 RANGE_BOUNDARY_PREALLOC_EXTENT,
3113 RANGE_BOUNDARY_HOLE,
3116 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3119 const u64 sectorsize = inode->root->fs_info->sectorsize;
3120 struct extent_map *em;
3123 offset = round_down(offset, sectorsize);
3124 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3128 if (em->block_start == EXTENT_MAP_HOLE)
3129 ret = RANGE_BOUNDARY_HOLE;
3130 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3131 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3133 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3135 free_extent_map(em);
3139 static int btrfs_zero_range(struct inode *inode,
3144 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3145 struct extent_map *em;
3146 struct extent_changeset *data_reserved = NULL;
3149 const u64 sectorsize = fs_info->sectorsize;
3150 u64 alloc_start = round_down(offset, sectorsize);
3151 u64 alloc_end = round_up(offset + len, sectorsize);
3152 u64 bytes_to_reserve = 0;
3153 bool space_reserved = false;
3155 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3156 alloc_end - alloc_start);
3163 * Avoid hole punching and extent allocation for some cases. More cases
3164 * could be considered, but these are unlikely common and we keep things
3165 * as simple as possible for now. Also, intentionally, if the target
3166 * range contains one or more prealloc extents together with regular
3167 * extents and holes, we drop all the existing extents and allocate a
3168 * new prealloc extent, so that we get a larger contiguous disk extent.
3170 if (em->start <= alloc_start &&
3171 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3172 const u64 em_end = em->start + em->len;
3174 if (em_end >= offset + len) {
3176 * The whole range is already a prealloc extent,
3177 * do nothing except updating the inode's i_size if
3180 free_extent_map(em);
3181 ret = btrfs_fallocate_update_isize(inode, offset + len,
3186 * Part of the range is already a prealloc extent, so operate
3187 * only on the remaining part of the range.
3189 alloc_start = em_end;
3190 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3191 len = offset + len - alloc_start;
3192 offset = alloc_start;
3193 alloc_hint = em->block_start + em->len;
3195 free_extent_map(em);
3197 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3198 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3199 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3206 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3207 free_extent_map(em);
3208 ret = btrfs_fallocate_update_isize(inode, offset + len,
3212 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3213 free_extent_map(em);
3214 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3217 ret = btrfs_fallocate_update_isize(inode,
3222 free_extent_map(em);
3223 alloc_start = round_down(offset, sectorsize);
3224 alloc_end = alloc_start + sectorsize;
3228 alloc_start = round_up(offset, sectorsize);
3229 alloc_end = round_down(offset + len, sectorsize);
3232 * For unaligned ranges, check the pages at the boundaries, they might
3233 * map to an extent, in which case we need to partially zero them, or
3234 * they might map to a hole, in which case we need our allocation range
3237 if (!IS_ALIGNED(offset, sectorsize)) {
3238 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3242 if (ret == RANGE_BOUNDARY_HOLE) {
3243 alloc_start = round_down(offset, sectorsize);
3245 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3246 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
3254 if (!IS_ALIGNED(offset + len, sectorsize)) {
3255 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3259 if (ret == RANGE_BOUNDARY_HOLE) {
3260 alloc_end = round_up(offset + len, sectorsize);
3262 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3263 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3273 if (alloc_start < alloc_end) {
3274 struct extent_state *cached_state = NULL;
3275 const u64 lockstart = alloc_start;
3276 const u64 lockend = alloc_end - 1;
3278 bytes_to_reserve = alloc_end - alloc_start;
3279 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3283 space_reserved = true;
3284 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3286 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3287 alloc_start, bytes_to_reserve);
3289 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3290 lockend, &cached_state);
3293 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3294 alloc_end - alloc_start,
3296 offset + len, &alloc_hint);
3297 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3299 /* btrfs_prealloc_file_range releases reserved space on error */
3301 space_reserved = false;
3305 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3307 if (ret && space_reserved)
3308 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3309 alloc_start, bytes_to_reserve);
3310 extent_changeset_free(data_reserved);
3315 static long btrfs_fallocate(struct file *file, int mode,
3316 loff_t offset, loff_t len)
3318 struct inode *inode = file_inode(file);
3319 struct extent_state *cached_state = NULL;
3320 struct extent_changeset *data_reserved = NULL;
3321 struct falloc_range *range;
3322 struct falloc_range *tmp;
3323 struct list_head reserve_list;
3331 u64 data_space_needed = 0;
3332 u64 data_space_reserved = 0;
3333 u64 qgroup_reserved = 0;
3334 struct extent_map *em;
3335 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3338 /* Do not allow fallocate in ZONED mode */
3339 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3342 alloc_start = round_down(offset, blocksize);
3343 alloc_end = round_up(offset + len, blocksize);
3344 cur_offset = alloc_start;
3346 /* Make sure we aren't being give some crap mode */
3347 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3348 FALLOC_FL_ZERO_RANGE))
3351 if (mode & FALLOC_FL_PUNCH_HOLE)
3352 return btrfs_punch_hole(file, offset, len);
3354 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
3356 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3357 ret = inode_newsize_ok(inode, offset + len);
3362 ret = file_modified(file);
3367 * TODO: Move these two operations after we have checked
3368 * accurate reserved space, or fallocate can still fail but
3369 * with page truncated or size expanded.
3371 * But that's a minor problem and won't do much harm BTW.
3373 if (alloc_start > inode->i_size) {
3374 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3378 } else if (offset + len > inode->i_size) {
3380 * If we are fallocating from the end of the file onward we
3381 * need to zero out the end of the block if i_size lands in the
3382 * middle of a block.
3384 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3390 * We have locked the inode at the VFS level (in exclusive mode) and we
3391 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3392 * locking the file range, flush all dealloc in the range and wait for
3393 * all ordered extents in the range to complete. After this we can lock
3394 * the file range and, due to the previous locking we did, we know there
3395 * can't be more delalloc or ordered extents in the range.
3397 ret = btrfs_wait_ordered_range(inode, alloc_start,
3398 alloc_end - alloc_start);
3402 if (mode & FALLOC_FL_ZERO_RANGE) {
3403 ret = btrfs_zero_range(inode, offset, len, mode);
3404 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3408 locked_end = alloc_end - 1;
3409 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3412 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3414 /* First, check if we exceed the qgroup limit */
3415 INIT_LIST_HEAD(&reserve_list);
3416 while (cur_offset < alloc_end) {
3417 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3418 alloc_end - cur_offset);
3423 last_byte = min(extent_map_end(em), alloc_end);
3424 actual_end = min_t(u64, extent_map_end(em), offset + len);
3425 last_byte = ALIGN(last_byte, blocksize);
3426 if (em->block_start == EXTENT_MAP_HOLE ||
3427 (cur_offset >= inode->i_size &&
3428 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3429 const u64 range_len = last_byte - cur_offset;
3431 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3433 free_extent_map(em);
3436 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3437 &data_reserved, cur_offset, range_len);
3439 free_extent_map(em);
3442 qgroup_reserved += range_len;
3443 data_space_needed += range_len;
3445 free_extent_map(em);
3446 cur_offset = last_byte;
3449 if (!ret && data_space_needed > 0) {
3451 * We are safe to reserve space here as we can't have delalloc
3452 * in the range, see above.
3454 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3457 data_space_reserved = data_space_needed;
3461 * If ret is still 0, means we're OK to fallocate.
3462 * Or just cleanup the list and exit.
3464 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3466 ret = btrfs_prealloc_file_range(inode, mode,
3468 range->len, i_blocksize(inode),
3469 offset + len, &alloc_hint);
3471 * btrfs_prealloc_file_range() releases space even
3472 * if it returns an error.
3474 data_space_reserved -= range->len;
3475 qgroup_reserved -= range->len;
3476 } else if (data_space_reserved > 0) {
3477 btrfs_free_reserved_data_space(BTRFS_I(inode),
3478 data_reserved, range->start,
3480 data_space_reserved -= range->len;
3481 qgroup_reserved -= range->len;
3482 } else if (qgroup_reserved > 0) {
3483 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3484 range->start, range->len);
3485 qgroup_reserved -= range->len;
3487 list_del(&range->list);
3494 * We didn't need to allocate any more space, but we still extended the
3495 * size of the file so we need to update i_size and the inode item.
3497 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3499 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3502 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
3503 extent_changeset_free(data_reserved);
3508 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3509 * that has unflushed and/or flushing delalloc. There might be other adjacent
3510 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3511 * looping while it gets adjacent subranges, and merging them together.
3513 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3514 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3516 const u64 len = end + 1 - start;
3517 struct extent_map_tree *em_tree = &inode->extent_tree;
3518 struct extent_map *em;
3523 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3524 * means we have delalloc (dirty pages) for which writeback has not
3527 *delalloc_start_ret = start;
3528 delalloc_len = count_range_bits(&inode->io_tree, delalloc_start_ret, end,
3529 len, EXTENT_DELALLOC, 1);
3531 * If delalloc was found then *delalloc_start_ret has a sector size
3532 * aligned value (rounded down).
3534 if (delalloc_len > 0)
3535 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3538 * Now also check if there's any extent map in the range that does not
3539 * map to a hole or prealloc extent. We do this because:
3541 * 1) When delalloc is flushed, the file range is locked, we clear the
3542 * EXTENT_DELALLOC bit from the io tree and create an extent map for
3543 * an allocated extent. So we might just have been called after
3544 * delalloc is flushed and before the ordered extent completes and
3545 * inserts the new file extent item in the subvolume's btree;
3547 * 2) We may have an extent map created by flushing delalloc for a
3548 * subrange that starts before the subrange we found marked with
3549 * EXTENT_DELALLOC in the io tree.
3551 read_lock(&em_tree->lock);
3552 em = lookup_extent_mapping(em_tree, start, len);
3553 read_unlock(&em_tree->lock);
3555 /* extent_map_end() returns a non-inclusive end offset. */
3556 em_end = em ? extent_map_end(em) : 0;
3559 * If we have a hole/prealloc extent map, check the next one if this one
3560 * ends before our range's end.
3562 if (em && (em->block_start == EXTENT_MAP_HOLE ||
3563 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) && em_end < end) {
3564 struct extent_map *next_em;
3566 read_lock(&em_tree->lock);
3567 next_em = lookup_extent_mapping(em_tree, em_end, len - em_end);
3568 read_unlock(&em_tree->lock);
3570 free_extent_map(em);
3571 em_end = next_em ? extent_map_end(next_em) : 0;
3575 if (em && (em->block_start == EXTENT_MAP_HOLE ||
3576 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3577 free_extent_map(em);
3582 * No extent map or one for a hole or prealloc extent. Use the delalloc
3583 * range we found in the io tree if we have one.
3586 return (delalloc_len > 0);
3589 * We don't have any range as EXTENT_DELALLOC in the io tree, so the
3590 * extent map is the only subrange representing delalloc.
3592 if (delalloc_len == 0) {
3593 *delalloc_start_ret = em->start;
3594 *delalloc_end_ret = min(end, em_end - 1);
3595 free_extent_map(em);
3600 * The extent map represents a delalloc range that starts before the
3601 * delalloc range we found in the io tree.
3603 if (em->start < *delalloc_start_ret) {
3604 *delalloc_start_ret = em->start;
3606 * If the ranges are adjacent, return a combined range.
3607 * Otherwise return the extent map's range.
3609 if (em_end < *delalloc_start_ret)
3610 *delalloc_end_ret = min(end, em_end - 1);
3612 free_extent_map(em);
3617 * The extent map starts after the delalloc range we found in the io
3618 * tree. If it's adjacent, return a combined range, otherwise return
3619 * the range found in the io tree.
3621 if (*delalloc_end_ret + 1 == em->start)
3622 *delalloc_end_ret = min(end, em_end - 1);
3624 free_extent_map(em);
3629 * Check if there's delalloc in a given range.
3631 * @inode: The inode.
3632 * @start: The start offset of the range. It does not need to be
3633 * sector size aligned.
3634 * @end: The end offset (inclusive value) of the search range.
3635 * It does not need to be sector size aligned.
3636 * @delalloc_start_ret: Output argument, set to the start offset of the
3637 * subrange found with delalloc (may not be sector size
3639 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3640 * of the subrange found with delalloc.
3642 * Returns true if a subrange with delalloc is found within the given range, and
3643 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3644 * end offsets of the subrange.
3646 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3647 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3649 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3650 u64 prev_delalloc_end = 0;
3653 while (cur_offset < end) {
3658 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3664 if (prev_delalloc_end == 0) {
3665 /* First subrange found. */
3666 *delalloc_start_ret = max(delalloc_start, start);
3667 *delalloc_end_ret = delalloc_end;
3669 } else if (delalloc_start == prev_delalloc_end + 1) {
3670 /* Subrange adjacent to the previous one, merge them. */
3671 *delalloc_end_ret = delalloc_end;
3673 /* Subrange not adjacent to the previous one, exit. */
3677 prev_delalloc_end = delalloc_end;
3678 cur_offset = delalloc_end + 1;
3686 * Check if there's a hole or delalloc range in a range representing a hole (or
3687 * prealloc extent) found in the inode's subvolume btree.
3689 * @inode: The inode.
3690 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3691 * @start: Start offset of the hole region. It does not need to be sector
3693 * @end: End offset (inclusive value) of the hole region. It does not
3694 * need to be sector size aligned.
3695 * @start_ret: Return parameter, used to set the start of the subrange in the
3696 * hole that matches the search criteria (seek mode), if such
3697 * subrange is found (return value of the function is true).
3698 * The value returned here may not be sector size aligned.
3700 * Returns true if a subrange matching the given seek mode is found, and if one
3701 * is found, it updates @start_ret with the start of the subrange.
3703 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3704 u64 start, u64 end, u64 *start_ret)
3710 delalloc = btrfs_find_delalloc_in_range(inode, start, end,
3711 &delalloc_start, &delalloc_end);
3712 if (delalloc && whence == SEEK_DATA) {
3713 *start_ret = delalloc_start;
3717 if (delalloc && whence == SEEK_HOLE) {
3719 * We found delalloc but it starts after out start offset. So we
3720 * have a hole between our start offset and the delalloc start.
3722 if (start < delalloc_start) {
3727 * Delalloc range starts at our start offset.
3728 * If the delalloc range's length is smaller than our range,
3729 * then it means we have a hole that starts where the delalloc
3732 if (delalloc_end < end) {
3733 *start_ret = delalloc_end + 1;
3737 /* There's delalloc for the whole range. */
3741 if (!delalloc && whence == SEEK_HOLE) {
3747 * No delalloc in the range and we are seeking for data. The caller has
3748 * to iterate to the next extent item in the subvolume btree.
3753 static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
3756 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3757 struct extent_state *cached_state = NULL;
3758 const loff_t i_size = i_size_read(&inode->vfs_inode);
3759 const u64 ino = btrfs_ino(inode);
3760 struct btrfs_root *root = inode->root;
3761 struct btrfs_path *path;
3762 struct btrfs_key key;
3763 u64 last_extent_end;
3770 if (i_size == 0 || offset >= i_size)
3774 * Quick path. If the inode has no prealloc extents and its number of
3775 * bytes used matches its i_size, then it can not have holes.
3777 if (whence == SEEK_HOLE &&
3778 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3779 inode_get_bytes(&inode->vfs_inode) == i_size)
3783 * offset can be negative, in this case we start finding DATA/HOLE from
3784 * the very start of the file.
3786 start = max_t(loff_t, 0, offset);
3788 lockstart = round_down(start, fs_info->sectorsize);
3789 lockend = round_up(i_size, fs_info->sectorsize);
3790 if (lockend <= lockstart)
3791 lockend = lockstart + fs_info->sectorsize;
3794 path = btrfs_alloc_path();
3797 path->reada = READA_FORWARD;
3800 key.type = BTRFS_EXTENT_DATA_KEY;
3803 last_extent_end = lockstart;
3805 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3807 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3810 } else if (ret > 0 && path->slots[0] > 0) {
3811 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3812 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3816 while (start < i_size) {
3817 struct extent_buffer *leaf = path->nodes[0];
3818 struct btrfs_file_extent_item *extent;
3821 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3822 ret = btrfs_next_leaf(root, path);
3828 leaf = path->nodes[0];
3831 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3832 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3835 extent_end = btrfs_file_extent_end(path);
3838 * In the first iteration we may have a slot that points to an
3839 * extent that ends before our start offset, so skip it.
3841 if (extent_end <= start) {
3846 /* We have an implicit hole, NO_HOLES feature is likely set. */
3847 if (last_extent_end < key.offset) {
3848 u64 search_start = last_extent_end;
3852 * First iteration, @start matches @offset and it's
3855 if (start == offset)
3856 search_start = offset;
3858 found = find_desired_extent_in_hole(inode, whence,
3863 start = found_start;
3867 * Didn't find data or a hole (due to delalloc) in the
3868 * implicit hole range, so need to analyze the extent.
3872 extent = btrfs_item_ptr(leaf, path->slots[0],
3873 struct btrfs_file_extent_item);
3875 if (btrfs_file_extent_disk_bytenr(leaf, extent) == 0 ||
3876 btrfs_file_extent_type(leaf, extent) ==
3877 BTRFS_FILE_EXTENT_PREALLOC) {
3879 * Explicit hole or prealloc extent, search for delalloc.
3880 * A prealloc extent is treated like a hole.
3882 u64 search_start = key.offset;
3886 * First iteration, @start matches @offset and it's
3889 if (start == offset)
3890 search_start = offset;
3892 found = find_desired_extent_in_hole(inode, whence,
3897 start = found_start;
3901 * Didn't find data or a hole (due to delalloc) in the
3902 * implicit hole range, so need to analyze the next
3907 * Found a regular or inline extent.
3908 * If we are seeking for data, adjust the start offset
3909 * and stop, we're done.
3911 if (whence == SEEK_DATA) {
3912 start = max_t(u64, key.offset, offset);
3917 * Else, we are seeking for a hole, check the next file
3923 last_extent_end = extent_end;
3925 if (fatal_signal_pending(current)) {
3932 /* We have an implicit hole from the last extent found up to i_size. */
3933 if (!found && start < i_size) {
3934 found = find_desired_extent_in_hole(inode, whence, start,
3935 i_size - 1, &start);
3941 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3942 btrfs_free_path(path);
3947 if (whence == SEEK_DATA && start >= i_size)
3950 return min_t(loff_t, start, i_size);
3953 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3955 struct inode *inode = file->f_mapping->host;
3959 return generic_file_llseek(file, offset, whence);
3962 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
3963 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
3964 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3971 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3974 static int btrfs_file_open(struct inode *inode, struct file *filp)
3978 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
3980 ret = fsverity_file_open(inode, filp);
3983 return generic_file_open(inode, filp);
3986 static int check_direct_read(struct btrfs_fs_info *fs_info,
3987 const struct iov_iter *iter, loff_t offset)
3992 ret = check_direct_IO(fs_info, iter, offset);
3996 if (!iter_is_iovec(iter))
3999 for (seg = 0; seg < iter->nr_segs; seg++)
4000 for (i = seg + 1; i < iter->nr_segs; i++)
4001 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
4006 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
4008 struct inode *inode = file_inode(iocb->ki_filp);
4009 size_t prev_left = 0;
4013 if (fsverity_active(inode))
4016 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
4019 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
4022 * This is similar to what we do for direct IO writes, see the comment
4023 * at btrfs_direct_write(), but we also disable page faults in addition
4024 * to disabling them only at the iov_iter level. This is because when
4025 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
4026 * which can still trigger page fault ins despite having set ->nofault
4027 * to true of our 'to' iov_iter.
4029 * The difference to direct IO writes is that we deadlock when trying
4030 * to lock the extent range in the inode's tree during he page reads
4031 * triggered by the fault in (while for writes it is due to waiting for
4032 * our own ordered extent). This is because for direct IO reads,
4033 * btrfs_dio_iomap_begin() returns with the extent range locked, which
4034 * is only unlocked in the endio callback (end_bio_extent_readpage()).
4036 pagefault_disable();
4038 ret = btrfs_dio_rw(iocb, to, read);
4039 to->nofault = false;
4042 /* No increment (+=) because iomap returns a cumulative value. */
4046 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
4047 const size_t left = iov_iter_count(to);
4049 if (left == prev_left) {
4051 * We didn't make any progress since the last attempt,
4052 * fallback to a buffered read for the remainder of the
4053 * range. This is just to avoid any possibility of looping
4059 * We made some progress since the last retry or this is
4060 * the first time we are retrying. Fault in as many pages
4061 * as possible and retry.
4063 fault_in_iov_iter_writeable(to, left);
4068 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4069 return ret < 0 ? ret : read;
4072 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4076 if (iocb->ki_flags & IOCB_DIRECT) {
4077 ret = btrfs_direct_read(iocb, to);
4078 if (ret < 0 || !iov_iter_count(to) ||
4079 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
4083 return filemap_read(iocb, to, ret);
4086 const struct file_operations btrfs_file_operations = {
4087 .llseek = btrfs_file_llseek,
4088 .read_iter = btrfs_file_read_iter,
4089 .splice_read = generic_file_splice_read,
4090 .write_iter = btrfs_file_write_iter,
4091 .splice_write = iter_file_splice_write,
4092 .mmap = btrfs_file_mmap,
4093 .open = btrfs_file_open,
4094 .release = btrfs_release_file,
4095 .get_unmapped_area = thp_get_unmapped_area,
4096 .fsync = btrfs_sync_file,
4097 .fallocate = btrfs_fallocate,
4098 .unlocked_ioctl = btrfs_ioctl,
4099 #ifdef CONFIG_COMPAT
4100 .compat_ioctl = btrfs_compat_ioctl,
4102 .remap_file_range = btrfs_remap_file_range,
4105 void __cold btrfs_auto_defrag_exit(void)
4107 kmem_cache_destroy(btrfs_inode_defrag_cachep);
4110 int __init btrfs_auto_defrag_init(void)
4112 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
4113 sizeof(struct inode_defrag), 0,
4116 if (!btrfs_inode_defrag_cachep)
4122 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
4127 * So with compression we will find and lock a dirty page and clear the
4128 * first one as dirty, setup an async extent, and immediately return
4129 * with the entire range locked but with nobody actually marked with
4130 * writeback. So we can't just filemap_write_and_wait_range() and
4131 * expect it to work since it will just kick off a thread to do the
4132 * actual work. So we need to call filemap_fdatawrite_range _again_
4133 * since it will wait on the page lock, which won't be unlocked until
4134 * after the pages have been marked as writeback and so we're good to go
4135 * from there. We have to do this otherwise we'll miss the ordered
4136 * extents and that results in badness. Please Josef, do not think you
4137 * know better and pull this out at some point in the future, it is
4138 * right and you are wrong.
4140 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
4141 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
4142 &BTRFS_I(inode)->runtime_flags))
4143 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);