]> Git Repo - linux.git/blob - drivers/usb/host/xhci.c
zstd: import usptream v1.5.2
[linux.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, timeout_us);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123
124         xhci->xhc_state |= XHCI_STATE_HALTED;
125         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret) {
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157                 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
158         }
159
160         return ret;
161 }
162
163 /*
164  * Reset a halted HC.
165  *
166  * This resets pipelines, timers, counters, state machines, etc.
167  * Transactions will be terminated immediately, and operational registers
168  * will be set to their defaults.
169  */
170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
171 {
172         u32 command;
173         u32 state;
174         int ret;
175
176         state = readl(&xhci->op_regs->status);
177
178         if (state == ~(u32)0) {
179                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
180                 return -ENODEV;
181         }
182
183         if ((state & STS_HALT) == 0) {
184                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
185                 return 0;
186         }
187
188         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
189         command = readl(&xhci->op_regs->command);
190         command |= CMD_RESET;
191         writel(command, &xhci->op_regs->command);
192
193         /* Existing Intel xHCI controllers require a delay of 1 mS,
194          * after setting the CMD_RESET bit, and before accessing any
195          * HC registers. This allows the HC to complete the
196          * reset operation and be ready for HC register access.
197          * Without this delay, the subsequent HC register access,
198          * may result in a system hang very rarely.
199          */
200         if (xhci->quirks & XHCI_INTEL_HOST)
201                 udelay(1000);
202
203         ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
204         if (ret)
205                 return ret;
206
207         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
208                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209
210         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
211                          "Wait for controller to be ready for doorbell rings");
212         /*
213          * xHCI cannot write to any doorbells or operational registers other
214          * than status until the "Controller Not Ready" flag is cleared.
215          */
216         ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
217
218         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb2_rhub.bus_state.suspended_ports = 0;
220         xhci->usb2_rhub.bus_state.resuming_ports = 0;
221         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222         xhci->usb3_rhub.bus_state.suspended_ports = 0;
223         xhci->usb3_rhub.bus_state.resuming_ports = 0;
224
225         return ret;
226 }
227
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229 {
230         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231         int err, i;
232         u64 val;
233         u32 intrs;
234
235         /*
236          * Some Renesas controllers get into a weird state if they are
237          * reset while programmed with 64bit addresses (they will preserve
238          * the top half of the address in internal, non visible
239          * registers). You end up with half the address coming from the
240          * kernel, and the other half coming from the firmware. Also,
241          * changing the programming leads to extra accesses even if the
242          * controller is supposed to be halted. The controller ends up with
243          * a fatal fault, and is then ripe for being properly reset.
244          *
245          * Special care is taken to only apply this if the device is behind
246          * an iommu. Doing anything when there is no iommu is definitely
247          * unsafe...
248          */
249         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
250                 return;
251
252         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
253
254         /* Clear HSEIE so that faults do not get signaled */
255         val = readl(&xhci->op_regs->command);
256         val &= ~CMD_HSEIE;
257         writel(val, &xhci->op_regs->command);
258
259         /* Clear HSE (aka FATAL) */
260         val = readl(&xhci->op_regs->status);
261         val |= STS_FATAL;
262         writel(val, &xhci->op_regs->status);
263
264         /* Now zero the registers, and brace for impact */
265         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
268         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
269         if (upper_32_bits(val))
270                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
271
272         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
273                       ARRAY_SIZE(xhci->run_regs->ir_set));
274
275         for (i = 0; i < intrs; i++) {
276                 struct xhci_intr_reg __iomem *ir;
277
278                 ir = &xhci->run_regs->ir_set[i];
279                 val = xhci_read_64(xhci, &ir->erst_base);
280                 if (upper_32_bits(val))
281                         xhci_write_64(xhci, 0, &ir->erst_base);
282                 val= xhci_read_64(xhci, &ir->erst_dequeue);
283                 if (upper_32_bits(val))
284                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
285         }
286
287         /* Wait for the fault to appear. It will be cleared on reset */
288         err = xhci_handshake(&xhci->op_regs->status,
289                              STS_FATAL, STS_FATAL,
290                              XHCI_MAX_HALT_USEC);
291         if (!err)
292                 xhci_info(xhci, "Fault detected\n");
293 }
294
295 #ifdef CONFIG_USB_PCI
296 /*
297  * Set up MSI
298  */
299 static int xhci_setup_msi(struct xhci_hcd *xhci)
300 {
301         int ret;
302         /*
303          * TODO:Check with MSI Soc for sysdev
304          */
305         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
306
307         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
308         if (ret < 0) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "failed to allocate MSI entry");
311                 return ret;
312         }
313
314         ret = request_irq(pdev->irq, xhci_msi_irq,
315                                 0, "xhci_hcd", xhci_to_hcd(xhci));
316         if (ret) {
317                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
318                                 "disable MSI interrupt");
319                 pci_free_irq_vectors(pdev);
320         }
321
322         return ret;
323 }
324
325 /*
326  * Set up MSI-X
327  */
328 static int xhci_setup_msix(struct xhci_hcd *xhci)
329 {
330         int i, ret;
331         struct usb_hcd *hcd = xhci_to_hcd(xhci);
332         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
333
334         /*
335          * calculate number of msi-x vectors supported.
336          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
337          *   with max number of interrupters based on the xhci HCSPARAMS1.
338          * - num_online_cpus: maximum msi-x vectors per CPUs core.
339          *   Add additional 1 vector to ensure always available interrupt.
340          */
341         xhci->msix_count = min(num_online_cpus() + 1,
342                                 HCS_MAX_INTRS(xhci->hcs_params1));
343
344         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
345                         PCI_IRQ_MSIX);
346         if (ret < 0) {
347                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348                                 "Failed to enable MSI-X");
349                 return ret;
350         }
351
352         for (i = 0; i < xhci->msix_count; i++) {
353                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
354                                 "xhci_hcd", xhci_to_hcd(xhci));
355                 if (ret)
356                         goto disable_msix;
357         }
358
359         hcd->msix_enabled = 1;
360         return ret;
361
362 disable_msix:
363         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
364         while (--i >= 0)
365                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
366         pci_free_irq_vectors(pdev);
367         return ret;
368 }
369
370 /* Free any IRQs and disable MSI-X */
371 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
372 {
373         struct usb_hcd *hcd = xhci_to_hcd(xhci);
374         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
375
376         if (xhci->quirks & XHCI_PLAT)
377                 return;
378
379         /* return if using legacy interrupt */
380         if (hcd->irq > 0)
381                 return;
382
383         if (hcd->msix_enabled) {
384                 int i;
385
386                 for (i = 0; i < xhci->msix_count; i++)
387                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
388         } else {
389                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
390         }
391
392         pci_free_irq_vectors(pdev);
393         hcd->msix_enabled = 0;
394 }
395
396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397 {
398         struct usb_hcd *hcd = xhci_to_hcd(xhci);
399
400         if (hcd->msix_enabled) {
401                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
402                 int i;
403
404                 for (i = 0; i < xhci->msix_count; i++)
405                         synchronize_irq(pci_irq_vector(pdev, i));
406         }
407 }
408
409 static int xhci_try_enable_msi(struct usb_hcd *hcd)
410 {
411         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
412         struct pci_dev  *pdev;
413         int ret;
414
415         /* The xhci platform device has set up IRQs through usb_add_hcd. */
416         if (xhci->quirks & XHCI_PLAT)
417                 return 0;
418
419         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
420         /*
421          * Some Fresco Logic host controllers advertise MSI, but fail to
422          * generate interrupts.  Don't even try to enable MSI.
423          */
424         if (xhci->quirks & XHCI_BROKEN_MSI)
425                 goto legacy_irq;
426
427         /* unregister the legacy interrupt */
428         if (hcd->irq)
429                 free_irq(hcd->irq, hcd);
430         hcd->irq = 0;
431
432         ret = xhci_setup_msix(xhci);
433         if (ret)
434                 /* fall back to msi*/
435                 ret = xhci_setup_msi(xhci);
436
437         if (!ret) {
438                 hcd->msi_enabled = 1;
439                 return 0;
440         }
441
442         if (!pdev->irq) {
443                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
444                 return -EINVAL;
445         }
446
447  legacy_irq:
448         if (!strlen(hcd->irq_descr))
449                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
450                          hcd->driver->description, hcd->self.busnum);
451
452         /* fall back to legacy interrupt*/
453         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
454                         hcd->irq_descr, hcd);
455         if (ret) {
456                 xhci_err(xhci, "request interrupt %d failed\n",
457                                 pdev->irq);
458                 return ret;
459         }
460         hcd->irq = pdev->irq;
461         return 0;
462 }
463
464 #else
465
466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
467 {
468         return 0;
469 }
470
471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
472 {
473 }
474
475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
476 {
477 }
478
479 #endif
480
481 static void compliance_mode_recovery(struct timer_list *t)
482 {
483         struct xhci_hcd *xhci;
484         struct usb_hcd *hcd;
485         struct xhci_hub *rhub;
486         u32 temp;
487         int i;
488
489         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
490         rhub = &xhci->usb3_rhub;
491         hcd = rhub->hcd;
492
493         if (!hcd)
494                 return;
495
496         for (i = 0; i < rhub->num_ports; i++) {
497                 temp = readl(rhub->ports[i]->addr);
498                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
499                         /*
500                          * Compliance Mode Detected. Letting USB Core
501                          * handle the Warm Reset
502                          */
503                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
504                                         "Compliance mode detected->port %d",
505                                         i + 1);
506                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
507                                         "Attempting compliance mode recovery");
508
509                         if (hcd->state == HC_STATE_SUSPENDED)
510                                 usb_hcd_resume_root_hub(hcd);
511
512                         usb_hcd_poll_rh_status(hcd);
513                 }
514         }
515
516         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
517                 mod_timer(&xhci->comp_mode_recovery_timer,
518                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
519 }
520
521 /*
522  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
523  * that causes ports behind that hardware to enter compliance mode sometimes.
524  * The quirk creates a timer that polls every 2 seconds the link state of
525  * each host controller's port and recovers it by issuing a Warm reset
526  * if Compliance mode is detected, otherwise the port will become "dead" (no
527  * device connections or disconnections will be detected anymore). Becasue no
528  * status event is generated when entering compliance mode (per xhci spec),
529  * this quirk is needed on systems that have the failing hardware installed.
530  */
531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
532 {
533         xhci->port_status_u0 = 0;
534         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
535                     0);
536         xhci->comp_mode_recovery_timer.expires = jiffies +
537                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
538
539         add_timer(&xhci->comp_mode_recovery_timer);
540         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
541                         "Compliance mode recovery timer initialized");
542 }
543
544 /*
545  * This function identifies the systems that have installed the SN65LVPE502CP
546  * USB3.0 re-driver and that need the Compliance Mode Quirk.
547  * Systems:
548  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
549  */
550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
551 {
552         const char *dmi_product_name, *dmi_sys_vendor;
553
554         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
555         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
556         if (!dmi_product_name || !dmi_sys_vendor)
557                 return false;
558
559         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
560                 return false;
561
562         if (strstr(dmi_product_name, "Z420") ||
563                         strstr(dmi_product_name, "Z620") ||
564                         strstr(dmi_product_name, "Z820") ||
565                         strstr(dmi_product_name, "Z1 Workstation"))
566                 return true;
567
568         return false;
569 }
570
571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
572 {
573         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
574 }
575
576
577 /*
578  * Initialize memory for HCD and xHC (one-time init).
579  *
580  * Program the PAGESIZE register, initialize the device context array, create
581  * device contexts (?), set up a command ring segment (or two?), create event
582  * ring (one for now).
583  */
584 static int xhci_init(struct usb_hcd *hcd)
585 {
586         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
587         int retval;
588
589         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
590         spin_lock_init(&xhci->lock);
591         if (xhci->hci_version == 0x95 && link_quirk) {
592                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
593                                 "QUIRK: Not clearing Link TRB chain bits.");
594                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
595         } else {
596                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597                                 "xHCI doesn't need link TRB QUIRK");
598         }
599         retval = xhci_mem_init(xhci, GFP_KERNEL);
600         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
601
602         /* Initializing Compliance Mode Recovery Data If Needed */
603         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
604                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
605                 compliance_mode_recovery_timer_init(xhci);
606         }
607
608         return retval;
609 }
610
611 /*-------------------------------------------------------------------------*/
612
613
614 static int xhci_run_finished(struct xhci_hcd *xhci)
615 {
616         unsigned long   flags;
617         u32             temp;
618
619         /*
620          * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
621          * Protect the short window before host is running with a lock
622          */
623         spin_lock_irqsave(&xhci->lock, flags);
624
625         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
626         temp = readl(&xhci->op_regs->command);
627         temp |= (CMD_EIE);
628         writel(temp, &xhci->op_regs->command);
629
630         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
631         temp = readl(&xhci->ir_set->irq_pending);
632         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
633
634         if (xhci_start(xhci)) {
635                 xhci_halt(xhci);
636                 spin_unlock_irqrestore(&xhci->lock, flags);
637                 return -ENODEV;
638         }
639
640         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
641
642         if (xhci->quirks & XHCI_NEC_HOST)
643                 xhci_ring_cmd_db(xhci);
644
645         spin_unlock_irqrestore(&xhci->lock, flags);
646
647         return 0;
648 }
649
650 /*
651  * Start the HC after it was halted.
652  *
653  * This function is called by the USB core when the HC driver is added.
654  * Its opposite is xhci_stop().
655  *
656  * xhci_init() must be called once before this function can be called.
657  * Reset the HC, enable device slot contexts, program DCBAAP, and
658  * set command ring pointer and event ring pointer.
659  *
660  * Setup MSI-X vectors and enable interrupts.
661  */
662 int xhci_run(struct usb_hcd *hcd)
663 {
664         u32 temp;
665         u64 temp_64;
666         int ret;
667         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
668
669         /* Start the xHCI host controller running only after the USB 2.0 roothub
670          * is setup.
671          */
672
673         hcd->uses_new_polling = 1;
674         if (!usb_hcd_is_primary_hcd(hcd))
675                 return xhci_run_finished(xhci);
676
677         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
678
679         ret = xhci_try_enable_msi(hcd);
680         if (ret)
681                 return ret;
682
683         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
684         temp_64 &= ~ERST_PTR_MASK;
685         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
686                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
687
688         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689                         "// Set the interrupt modulation register");
690         temp = readl(&xhci->ir_set->irq_control);
691         temp &= ~ER_IRQ_INTERVAL_MASK;
692         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
693         writel(temp, &xhci->ir_set->irq_control);
694
695         if (xhci->quirks & XHCI_NEC_HOST) {
696                 struct xhci_command *command;
697
698                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
699                 if (!command)
700                         return -ENOMEM;
701
702                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
703                                 TRB_TYPE(TRB_NEC_GET_FW));
704                 if (ret)
705                         xhci_free_command(xhci, command);
706         }
707         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708                         "Finished %s for main hcd", __func__);
709
710         xhci_create_dbc_dev(xhci);
711
712         xhci_debugfs_init(xhci);
713
714         if (xhci_has_one_roothub(xhci))
715                 return xhci_run_finished(xhci);
716
717         set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
718
719         return 0;
720 }
721 EXPORT_SYMBOL_GPL(xhci_run);
722
723 /*
724  * Stop xHCI driver.
725  *
726  * This function is called by the USB core when the HC driver is removed.
727  * Its opposite is xhci_run().
728  *
729  * Disable device contexts, disable IRQs, and quiesce the HC.
730  * Reset the HC, finish any completed transactions, and cleanup memory.
731  */
732 static void xhci_stop(struct usb_hcd *hcd)
733 {
734         u32 temp;
735         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736
737         mutex_lock(&xhci->mutex);
738
739         /* Only halt host and free memory after both hcds are removed */
740         if (!usb_hcd_is_primary_hcd(hcd)) {
741                 mutex_unlock(&xhci->mutex);
742                 return;
743         }
744
745         xhci_remove_dbc_dev(xhci);
746
747         spin_lock_irq(&xhci->lock);
748         xhci->xhc_state |= XHCI_STATE_HALTED;
749         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
750         xhci_halt(xhci);
751         xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
752         spin_unlock_irq(&xhci->lock);
753
754         xhci_cleanup_msix(xhci);
755
756         /* Deleting Compliance Mode Recovery Timer */
757         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
758                         (!(xhci_all_ports_seen_u0(xhci)))) {
759                 del_timer_sync(&xhci->comp_mode_recovery_timer);
760                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
761                                 "%s: compliance mode recovery timer deleted",
762                                 __func__);
763         }
764
765         if (xhci->quirks & XHCI_AMD_PLL_FIX)
766                 usb_amd_dev_put();
767
768         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769                         "// Disabling event ring interrupts");
770         temp = readl(&xhci->op_regs->status);
771         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
772         temp = readl(&xhci->ir_set->irq_pending);
773         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
774
775         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
776         xhci_mem_cleanup(xhci);
777         xhci_debugfs_exit(xhci);
778         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
779                         "xhci_stop completed - status = %x",
780                         readl(&xhci->op_regs->status));
781         mutex_unlock(&xhci->mutex);
782 }
783
784 /*
785  * Shutdown HC (not bus-specific)
786  *
787  * This is called when the machine is rebooting or halting.  We assume that the
788  * machine will be powered off, and the HC's internal state will be reset.
789  * Don't bother to free memory.
790  *
791  * This will only ever be called with the main usb_hcd (the USB3 roothub).
792  */
793 void xhci_shutdown(struct usb_hcd *hcd)
794 {
795         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
796
797         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
799
800         /* Don't poll the roothubs after shutdown. */
801         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802                         __func__, hcd->self.busnum);
803         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804         del_timer_sync(&hcd->rh_timer);
805
806         if (xhci->shared_hcd) {
807                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808                 del_timer_sync(&xhci->shared_hcd->rh_timer);
809         }
810
811         spin_lock_irq(&xhci->lock);
812         xhci_halt(xhci);
813         /* Workaround for spurious wakeups at shutdown with HSW */
814         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
815                 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
816         spin_unlock_irq(&xhci->lock);
817
818         xhci_cleanup_msix(xhci);
819
820         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
821                         "xhci_shutdown completed - status = %x",
822                         readl(&xhci->op_regs->status));
823 }
824 EXPORT_SYMBOL_GPL(xhci_shutdown);
825
826 #ifdef CONFIG_PM
827 static void xhci_save_registers(struct xhci_hcd *xhci)
828 {
829         xhci->s3.command = readl(&xhci->op_regs->command);
830         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
831         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
832         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
833         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
834         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
835         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
836         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
837         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
838 }
839
840 static void xhci_restore_registers(struct xhci_hcd *xhci)
841 {
842         writel(xhci->s3.command, &xhci->op_regs->command);
843         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
844         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
845         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
846         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
847         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
848         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
849         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
850         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
851 }
852
853 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
854 {
855         u64     val_64;
856
857         /* step 2: initialize command ring buffer */
858         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
859         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
860                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
861                                       xhci->cmd_ring->dequeue) &
862                  (u64) ~CMD_RING_RSVD_BITS) |
863                 xhci->cmd_ring->cycle_state;
864         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
865                         "// Setting command ring address to 0x%llx",
866                         (long unsigned long) val_64);
867         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
868 }
869
870 /*
871  * The whole command ring must be cleared to zero when we suspend the host.
872  *
873  * The host doesn't save the command ring pointer in the suspend well, so we
874  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
875  * aligned, because of the reserved bits in the command ring dequeue pointer
876  * register.  Therefore, we can't just set the dequeue pointer back in the
877  * middle of the ring (TRBs are 16-byte aligned).
878  */
879 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
880 {
881         struct xhci_ring *ring;
882         struct xhci_segment *seg;
883
884         ring = xhci->cmd_ring;
885         seg = ring->deq_seg;
886         do {
887                 memset(seg->trbs, 0,
888                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
889                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
890                         cpu_to_le32(~TRB_CYCLE);
891                 seg = seg->next;
892         } while (seg != ring->deq_seg);
893
894         /* Reset the software enqueue and dequeue pointers */
895         ring->deq_seg = ring->first_seg;
896         ring->dequeue = ring->first_seg->trbs;
897         ring->enq_seg = ring->deq_seg;
898         ring->enqueue = ring->dequeue;
899
900         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
901         /*
902          * Ring is now zeroed, so the HW should look for change of ownership
903          * when the cycle bit is set to 1.
904          */
905         ring->cycle_state = 1;
906
907         /*
908          * Reset the hardware dequeue pointer.
909          * Yes, this will need to be re-written after resume, but we're paranoid
910          * and want to make sure the hardware doesn't access bogus memory
911          * because, say, the BIOS or an SMI started the host without changing
912          * the command ring pointers.
913          */
914         xhci_set_cmd_ring_deq(xhci);
915 }
916
917 /*
918  * Disable port wake bits if do_wakeup is not set.
919  *
920  * Also clear a possible internal port wake state left hanging for ports that
921  * detected termination but never successfully enumerated (trained to 0U).
922  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
923  * at enumeration clears this wake, force one here as well for unconnected ports
924  */
925
926 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
927                                        struct xhci_hub *rhub,
928                                        bool do_wakeup)
929 {
930         unsigned long flags;
931         u32 t1, t2, portsc;
932         int i;
933
934         spin_lock_irqsave(&xhci->lock, flags);
935
936         for (i = 0; i < rhub->num_ports; i++) {
937                 portsc = readl(rhub->ports[i]->addr);
938                 t1 = xhci_port_state_to_neutral(portsc);
939                 t2 = t1;
940
941                 /* clear wake bits if do_wake is not set */
942                 if (!do_wakeup)
943                         t2 &= ~PORT_WAKE_BITS;
944
945                 /* Don't touch csc bit if connected or connect change is set */
946                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
947                         t2 |= PORT_CSC;
948
949                 if (t1 != t2) {
950                         writel(t2, rhub->ports[i]->addr);
951                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
952                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
953                 }
954         }
955         spin_unlock_irqrestore(&xhci->lock, flags);
956 }
957
958 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
959 {
960         struct xhci_port        **ports;
961         int                     port_index;
962         u32                     status;
963         u32                     portsc;
964
965         status = readl(&xhci->op_regs->status);
966         if (status & STS_EINT)
967                 return true;
968         /*
969          * Checking STS_EINT is not enough as there is a lag between a change
970          * bit being set and the Port Status Change Event that it generated
971          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
972          */
973
974         port_index = xhci->usb2_rhub.num_ports;
975         ports = xhci->usb2_rhub.ports;
976         while (port_index--) {
977                 portsc = readl(ports[port_index]->addr);
978                 if (portsc & PORT_CHANGE_MASK ||
979                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
980                         return true;
981         }
982         port_index = xhci->usb3_rhub.num_ports;
983         ports = xhci->usb3_rhub.ports;
984         while (port_index--) {
985                 portsc = readl(ports[port_index]->addr);
986                 if (portsc & PORT_CHANGE_MASK ||
987                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
988                         return true;
989         }
990         return false;
991 }
992
993 /*
994  * Stop HC (not bus-specific)
995  *
996  * This is called when the machine transition into S3/S4 mode.
997  *
998  */
999 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1000 {
1001         int                     rc = 0;
1002         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
1003         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1004         u32                     command;
1005         u32                     res;
1006
1007         if (!hcd->state)
1008                 return 0;
1009
1010         if (hcd->state != HC_STATE_SUSPENDED ||
1011             (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1012                 return -EINVAL;
1013
1014         /* Clear root port wake on bits if wakeup not allowed. */
1015         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1016         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1017
1018         if (!HCD_HW_ACCESSIBLE(hcd))
1019                 return 0;
1020
1021         xhci_dbc_suspend(xhci);
1022
1023         /* Don't poll the roothubs on bus suspend. */
1024         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1025                  __func__, hcd->self.busnum);
1026         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1027         del_timer_sync(&hcd->rh_timer);
1028         if (xhci->shared_hcd) {
1029                 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1030                 del_timer_sync(&xhci->shared_hcd->rh_timer);
1031         }
1032
1033         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1034                 usleep_range(1000, 1500);
1035
1036         spin_lock_irq(&xhci->lock);
1037         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1038         if (xhci->shared_hcd)
1039                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1040         /* step 1: stop endpoint */
1041         /* skipped assuming that port suspend has done */
1042
1043         /* step 2: clear Run/Stop bit */
1044         command = readl(&xhci->op_regs->command);
1045         command &= ~CMD_RUN;
1046         writel(command, &xhci->op_regs->command);
1047
1048         /* Some chips from Fresco Logic need an extraordinary delay */
1049         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1050
1051         if (xhci_handshake(&xhci->op_regs->status,
1052                       STS_HALT, STS_HALT, delay)) {
1053                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1054                 spin_unlock_irq(&xhci->lock);
1055                 return -ETIMEDOUT;
1056         }
1057         xhci_clear_command_ring(xhci);
1058
1059         /* step 3: save registers */
1060         xhci_save_registers(xhci);
1061
1062         /* step 4: set CSS flag */
1063         command = readl(&xhci->op_regs->command);
1064         command |= CMD_CSS;
1065         writel(command, &xhci->op_regs->command);
1066         xhci->broken_suspend = 0;
1067         if (xhci_handshake(&xhci->op_regs->status,
1068                                 STS_SAVE, 0, 20 * 1000)) {
1069         /*
1070          * AMD SNPS xHC 3.0 occasionally does not clear the
1071          * SSS bit of USBSTS and when driver tries to poll
1072          * to see if the xHC clears BIT(8) which never happens
1073          * and driver assumes that controller is not responding
1074          * and times out. To workaround this, its good to check
1075          * if SRE and HCE bits are not set (as per xhci
1076          * Section 5.4.2) and bypass the timeout.
1077          */
1078                 res = readl(&xhci->op_regs->status);
1079                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1080                     (((res & STS_SRE) == 0) &&
1081                                 ((res & STS_HCE) == 0))) {
1082                         xhci->broken_suspend = 1;
1083                 } else {
1084                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1085                         spin_unlock_irq(&xhci->lock);
1086                         return -ETIMEDOUT;
1087                 }
1088         }
1089         spin_unlock_irq(&xhci->lock);
1090
1091         /*
1092          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1093          * is about to be suspended.
1094          */
1095         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1096                         (!(xhci_all_ports_seen_u0(xhci)))) {
1097                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1098                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1099                                 "%s: compliance mode recovery timer deleted",
1100                                 __func__);
1101         }
1102
1103         /* step 5: remove core well power */
1104         /* synchronize irq when using MSI-X */
1105         xhci_msix_sync_irqs(xhci);
1106
1107         return rc;
1108 }
1109 EXPORT_SYMBOL_GPL(xhci_suspend);
1110
1111 /*
1112  * start xHC (not bus-specific)
1113  *
1114  * This is called when the machine transition from S3/S4 mode.
1115  *
1116  */
1117 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1118 {
1119         u32                     command, temp = 0;
1120         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1121         int                     retval = 0;
1122         bool                    comp_timer_running = false;
1123         bool                    pending_portevent = false;
1124         bool                    reinit_xhc = false;
1125
1126         if (!hcd->state)
1127                 return 0;
1128
1129         /* Wait a bit if either of the roothubs need to settle from the
1130          * transition into bus suspend.
1131          */
1132
1133         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1134             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1135                 msleep(100);
1136
1137         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1138         if (xhci->shared_hcd)
1139                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1140
1141         spin_lock_irq(&xhci->lock);
1142
1143         if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1144                 reinit_xhc = true;
1145
1146         if (!reinit_xhc) {
1147                 /*
1148                  * Some controllers might lose power during suspend, so wait
1149                  * for controller not ready bit to clear, just as in xHC init.
1150                  */
1151                 retval = xhci_handshake(&xhci->op_regs->status,
1152                                         STS_CNR, 0, 10 * 1000 * 1000);
1153                 if (retval) {
1154                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1155                                   retval);
1156                         spin_unlock_irq(&xhci->lock);
1157                         return retval;
1158                 }
1159                 /* step 1: restore register */
1160                 xhci_restore_registers(xhci);
1161                 /* step 2: initialize command ring buffer */
1162                 xhci_set_cmd_ring_deq(xhci);
1163                 /* step 3: restore state and start state*/
1164                 /* step 3: set CRS flag */
1165                 command = readl(&xhci->op_regs->command);
1166                 command |= CMD_CRS;
1167                 writel(command, &xhci->op_regs->command);
1168                 /*
1169                  * Some controllers take up to 55+ ms to complete the controller
1170                  * restore so setting the timeout to 100ms. Xhci specification
1171                  * doesn't mention any timeout value.
1172                  */
1173                 if (xhci_handshake(&xhci->op_regs->status,
1174                               STS_RESTORE, 0, 100 * 1000)) {
1175                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1176                         spin_unlock_irq(&xhci->lock);
1177                         return -ETIMEDOUT;
1178                 }
1179         }
1180
1181         temp = readl(&xhci->op_regs->status);
1182
1183         /* re-initialize the HC on Restore Error, or Host Controller Error */
1184         if (temp & (STS_SRE | STS_HCE)) {
1185                 reinit_xhc = true;
1186                 if (!xhci->broken_suspend)
1187                         xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1188         }
1189
1190         if (reinit_xhc) {
1191                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1192                                 !(xhci_all_ports_seen_u0(xhci))) {
1193                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1194                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1195                                 "Compliance Mode Recovery Timer deleted!");
1196                 }
1197
1198                 /* Let the USB core know _both_ roothubs lost power. */
1199                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1200                 if (xhci->shared_hcd)
1201                         usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1202
1203                 xhci_dbg(xhci, "Stop HCD\n");
1204                 xhci_halt(xhci);
1205                 xhci_zero_64b_regs(xhci);
1206                 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1207                 spin_unlock_irq(&xhci->lock);
1208                 if (retval)
1209                         return retval;
1210                 xhci_cleanup_msix(xhci);
1211
1212                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1213                 temp = readl(&xhci->op_regs->status);
1214                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1215                 temp = readl(&xhci->ir_set->irq_pending);
1216                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1217
1218                 xhci_dbg(xhci, "cleaning up memory\n");
1219                 xhci_mem_cleanup(xhci);
1220                 xhci_debugfs_exit(xhci);
1221                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1222                             readl(&xhci->op_regs->status));
1223
1224                 /* USB core calls the PCI reinit and start functions twice:
1225                  * first with the primary HCD, and then with the secondary HCD.
1226                  * If we don't do the same, the host will never be started.
1227                  */
1228                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1229                 retval = xhci_init(hcd);
1230                 if (retval)
1231                         return retval;
1232                 comp_timer_running = true;
1233
1234                 xhci_dbg(xhci, "Start the primary HCD\n");
1235                 retval = xhci_run(hcd);
1236                 if (!retval && xhci->shared_hcd) {
1237                         xhci_dbg(xhci, "Start the secondary HCD\n");
1238                         retval = xhci_run(xhci->shared_hcd);
1239                 }
1240
1241                 hcd->state = HC_STATE_SUSPENDED;
1242                 if (xhci->shared_hcd)
1243                         xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1244                 goto done;
1245         }
1246
1247         /* step 4: set Run/Stop bit */
1248         command = readl(&xhci->op_regs->command);
1249         command |= CMD_RUN;
1250         writel(command, &xhci->op_regs->command);
1251         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1252                   0, 250 * 1000);
1253
1254         /* step 5: walk topology and initialize portsc,
1255          * portpmsc and portli
1256          */
1257         /* this is done in bus_resume */
1258
1259         /* step 6: restart each of the previously
1260          * Running endpoints by ringing their doorbells
1261          */
1262
1263         spin_unlock_irq(&xhci->lock);
1264
1265         xhci_dbc_resume(xhci);
1266
1267  done:
1268         if (retval == 0) {
1269                 /*
1270                  * Resume roothubs only if there are pending events.
1271                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1272                  * the first wake signalling failed, give it that chance.
1273                  */
1274                 pending_portevent = xhci_pending_portevent(xhci);
1275                 if (!pending_portevent) {
1276                         msleep(120);
1277                         pending_portevent = xhci_pending_portevent(xhci);
1278                 }
1279
1280                 if (pending_portevent) {
1281                         if (xhci->shared_hcd)
1282                                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1283                         usb_hcd_resume_root_hub(hcd);
1284                 }
1285         }
1286         /*
1287          * If system is subject to the Quirk, Compliance Mode Timer needs to
1288          * be re-initialized Always after a system resume. Ports are subject
1289          * to suffer the Compliance Mode issue again. It doesn't matter if
1290          * ports have entered previously to U0 before system's suspension.
1291          */
1292         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1293                 compliance_mode_recovery_timer_init(xhci);
1294
1295         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1296                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1297
1298         /* Re-enable port polling. */
1299         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1300                  __func__, hcd->self.busnum);
1301         if (xhci->shared_hcd) {
1302                 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1303                 usb_hcd_poll_rh_status(xhci->shared_hcd);
1304         }
1305         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1306         usb_hcd_poll_rh_status(hcd);
1307
1308         return retval;
1309 }
1310 EXPORT_SYMBOL_GPL(xhci_resume);
1311 #endif  /* CONFIG_PM */
1312
1313 /*-------------------------------------------------------------------------*/
1314
1315 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1316 {
1317         void *temp;
1318         int ret = 0;
1319         unsigned int buf_len;
1320         enum dma_data_direction dir;
1321
1322         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1323         buf_len = urb->transfer_buffer_length;
1324
1325         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1326                             dev_to_node(hcd->self.sysdev));
1327
1328         if (usb_urb_dir_out(urb))
1329                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1330                                    temp, buf_len, 0);
1331
1332         urb->transfer_buffer = temp;
1333         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1334                                            urb->transfer_buffer,
1335                                            urb->transfer_buffer_length,
1336                                            dir);
1337
1338         if (dma_mapping_error(hcd->self.sysdev,
1339                               urb->transfer_dma)) {
1340                 ret = -EAGAIN;
1341                 kfree(temp);
1342         } else {
1343                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1344         }
1345
1346         return ret;
1347 }
1348
1349 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1350                                           struct urb *urb)
1351 {
1352         bool ret = false;
1353         unsigned int i;
1354         unsigned int len = 0;
1355         unsigned int trb_size;
1356         unsigned int max_pkt;
1357         struct scatterlist *sg;
1358         struct scatterlist *tail_sg;
1359
1360         tail_sg = urb->sg;
1361         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1362
1363         if (!urb->num_sgs)
1364                 return ret;
1365
1366         if (urb->dev->speed >= USB_SPEED_SUPER)
1367                 trb_size = TRB_CACHE_SIZE_SS;
1368         else
1369                 trb_size = TRB_CACHE_SIZE_HS;
1370
1371         if (urb->transfer_buffer_length != 0 &&
1372             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1373                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1374                         len = len + sg->length;
1375                         if (i > trb_size - 2) {
1376                                 len = len - tail_sg->length;
1377                                 if (len < max_pkt) {
1378                                         ret = true;
1379                                         break;
1380                                 }
1381
1382                                 tail_sg = sg_next(tail_sg);
1383                         }
1384                 }
1385         }
1386         return ret;
1387 }
1388
1389 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1390 {
1391         unsigned int len;
1392         unsigned int buf_len;
1393         enum dma_data_direction dir;
1394
1395         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1396
1397         buf_len = urb->transfer_buffer_length;
1398
1399         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1400             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1401                 dma_unmap_single(hcd->self.sysdev,
1402                                  urb->transfer_dma,
1403                                  urb->transfer_buffer_length,
1404                                  dir);
1405
1406         if (usb_urb_dir_in(urb)) {
1407                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1408                                            urb->transfer_buffer,
1409                                            buf_len,
1410                                            0);
1411                 if (len != buf_len) {
1412                         xhci_dbg(hcd_to_xhci(hcd),
1413                                  "Copy from tmp buf to urb sg list failed\n");
1414                         urb->actual_length = len;
1415                 }
1416         }
1417         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1418         kfree(urb->transfer_buffer);
1419         urb->transfer_buffer = NULL;
1420 }
1421
1422 /*
1423  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1424  * we'll copy the actual data into the TRB address register. This is limited to
1425  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1426  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1427  */
1428 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1429                                 gfp_t mem_flags)
1430 {
1431         struct xhci_hcd *xhci;
1432
1433         xhci = hcd_to_xhci(hcd);
1434
1435         if (xhci_urb_suitable_for_idt(urb))
1436                 return 0;
1437
1438         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1439                 if (xhci_urb_temp_buffer_required(hcd, urb))
1440                         return xhci_map_temp_buffer(hcd, urb);
1441         }
1442         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1443 }
1444
1445 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1446 {
1447         struct xhci_hcd *xhci;
1448         bool unmap_temp_buf = false;
1449
1450         xhci = hcd_to_xhci(hcd);
1451
1452         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1453                 unmap_temp_buf = true;
1454
1455         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1456                 xhci_unmap_temp_buf(hcd, urb);
1457         else
1458                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1459 }
1460
1461 /**
1462  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1463  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1464  * value to right shift 1 for the bitmask.
1465  *
1466  * Index  = (epnum * 2) + direction - 1,
1467  * where direction = 0 for OUT, 1 for IN.
1468  * For control endpoints, the IN index is used (OUT index is unused), so
1469  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1470  */
1471 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1472 {
1473         unsigned int index;
1474         if (usb_endpoint_xfer_control(desc))
1475                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1476         else
1477                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1478                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1479         return index;
1480 }
1481 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1482
1483 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1484  * address from the XHCI endpoint index.
1485  */
1486 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1487 {
1488         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1489         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1490         return direction | number;
1491 }
1492
1493 /* Find the flag for this endpoint (for use in the control context).  Use the
1494  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1495  * bit 1, etc.
1496  */
1497 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1498 {
1499         return 1 << (xhci_get_endpoint_index(desc) + 1);
1500 }
1501
1502 /* Compute the last valid endpoint context index.  Basically, this is the
1503  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1504  * we find the most significant bit set in the added contexts flags.
1505  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1506  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1507  */
1508 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1509 {
1510         return fls(added_ctxs) - 1;
1511 }
1512
1513 /* Returns 1 if the arguments are OK;
1514  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1515  */
1516 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1517                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1518                 const char *func) {
1519         struct xhci_hcd *xhci;
1520         struct xhci_virt_device *virt_dev;
1521
1522         if (!hcd || (check_ep && !ep) || !udev) {
1523                 pr_debug("xHCI %s called with invalid args\n", func);
1524                 return -EINVAL;
1525         }
1526         if (!udev->parent) {
1527                 pr_debug("xHCI %s called for root hub\n", func);
1528                 return 0;
1529         }
1530
1531         xhci = hcd_to_xhci(hcd);
1532         if (check_virt_dev) {
1533                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1534                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1535                                         func);
1536                         return -EINVAL;
1537                 }
1538
1539                 virt_dev = xhci->devs[udev->slot_id];
1540                 if (virt_dev->udev != udev) {
1541                         xhci_dbg(xhci, "xHCI %s called with udev and "
1542                                           "virt_dev does not match\n", func);
1543                         return -EINVAL;
1544                 }
1545         }
1546
1547         if (xhci->xhc_state & XHCI_STATE_HALTED)
1548                 return -ENODEV;
1549
1550         return 1;
1551 }
1552
1553 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1554                 struct usb_device *udev, struct xhci_command *command,
1555                 bool ctx_change, bool must_succeed);
1556
1557 /*
1558  * Full speed devices may have a max packet size greater than 8 bytes, but the
1559  * USB core doesn't know that until it reads the first 8 bytes of the
1560  * descriptor.  If the usb_device's max packet size changes after that point,
1561  * we need to issue an evaluate context command and wait on it.
1562  */
1563 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1564                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1565 {
1566         struct xhci_container_ctx *out_ctx;
1567         struct xhci_input_control_ctx *ctrl_ctx;
1568         struct xhci_ep_ctx *ep_ctx;
1569         struct xhci_command *command;
1570         int max_packet_size;
1571         int hw_max_packet_size;
1572         int ret = 0;
1573
1574         out_ctx = xhci->devs[slot_id]->out_ctx;
1575         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1577         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1578         if (hw_max_packet_size != max_packet_size) {
1579                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1580                                 "Max Packet Size for ep 0 changed.");
1581                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1582                                 "Max packet size in usb_device = %d",
1583                                 max_packet_size);
1584                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1585                                 "Max packet size in xHCI HW = %d",
1586                                 hw_max_packet_size);
1587                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1588                                 "Issuing evaluate context command.");
1589
1590                 /* Set up the input context flags for the command */
1591                 /* FIXME: This won't work if a non-default control endpoint
1592                  * changes max packet sizes.
1593                  */
1594
1595                 command = xhci_alloc_command(xhci, true, mem_flags);
1596                 if (!command)
1597                         return -ENOMEM;
1598
1599                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1600                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1601                 if (!ctrl_ctx) {
1602                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1603                                         __func__);
1604                         ret = -ENOMEM;
1605                         goto command_cleanup;
1606                 }
1607                 /* Set up the modified control endpoint 0 */
1608                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1609                                 xhci->devs[slot_id]->out_ctx, ep_index);
1610
1611                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1612                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1613                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1614                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1615
1616                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1617                 ctrl_ctx->drop_flags = 0;
1618
1619                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1620                                 true, false);
1621
1622                 /* Clean up the input context for later use by bandwidth
1623                  * functions.
1624                  */
1625                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1626 command_cleanup:
1627                 kfree(command->completion);
1628                 kfree(command);
1629         }
1630         return ret;
1631 }
1632
1633 /*
1634  * non-error returns are a promise to giveback() the urb later
1635  * we drop ownership so next owner (or urb unlink) can get it
1636  */
1637 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1638 {
1639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1640         unsigned long flags;
1641         int ret = 0;
1642         unsigned int slot_id, ep_index;
1643         unsigned int *ep_state;
1644         struct urb_priv *urb_priv;
1645         int num_tds;
1646
1647         if (!urb)
1648                 return -EINVAL;
1649         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1650                                         true, true, __func__);
1651         if (ret <= 0)
1652                 return ret ? ret : -EINVAL;
1653
1654         slot_id = urb->dev->slot_id;
1655         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1656         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1657
1658         if (!HCD_HW_ACCESSIBLE(hcd))
1659                 return -ESHUTDOWN;
1660
1661         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1662                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1663                 return -ENODEV;
1664         }
1665
1666         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1667                 num_tds = urb->number_of_packets;
1668         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1669             urb->transfer_buffer_length > 0 &&
1670             urb->transfer_flags & URB_ZERO_PACKET &&
1671             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1672                 num_tds = 2;
1673         else
1674                 num_tds = 1;
1675
1676         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1677         if (!urb_priv)
1678                 return -ENOMEM;
1679
1680         urb_priv->num_tds = num_tds;
1681         urb_priv->num_tds_done = 0;
1682         urb->hcpriv = urb_priv;
1683
1684         trace_xhci_urb_enqueue(urb);
1685
1686         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1687                 /* Check to see if the max packet size for the default control
1688                  * endpoint changed during FS device enumeration
1689                  */
1690                 if (urb->dev->speed == USB_SPEED_FULL) {
1691                         ret = xhci_check_maxpacket(xhci, slot_id,
1692                                         ep_index, urb, mem_flags);
1693                         if (ret < 0) {
1694                                 xhci_urb_free_priv(urb_priv);
1695                                 urb->hcpriv = NULL;
1696                                 return ret;
1697                         }
1698                 }
1699         }
1700
1701         spin_lock_irqsave(&xhci->lock, flags);
1702
1703         if (xhci->xhc_state & XHCI_STATE_DYING) {
1704                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1705                          urb->ep->desc.bEndpointAddress, urb);
1706                 ret = -ESHUTDOWN;
1707                 goto free_priv;
1708         }
1709         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1710                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1711                           *ep_state);
1712                 ret = -EINVAL;
1713                 goto free_priv;
1714         }
1715         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1716                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1717                 ret = -EINVAL;
1718                 goto free_priv;
1719         }
1720
1721         switch (usb_endpoint_type(&urb->ep->desc)) {
1722
1723         case USB_ENDPOINT_XFER_CONTROL:
1724                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1725                                          slot_id, ep_index);
1726                 break;
1727         case USB_ENDPOINT_XFER_BULK:
1728                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1729                                          slot_id, ep_index);
1730                 break;
1731         case USB_ENDPOINT_XFER_INT:
1732                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1733                                 slot_id, ep_index);
1734                 break;
1735         case USB_ENDPOINT_XFER_ISOC:
1736                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1737                                 slot_id, ep_index);
1738         }
1739
1740         if (ret) {
1741 free_priv:
1742                 xhci_urb_free_priv(urb_priv);
1743                 urb->hcpriv = NULL;
1744         }
1745         spin_unlock_irqrestore(&xhci->lock, flags);
1746         return ret;
1747 }
1748
1749 /*
1750  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1751  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1752  * should pick up where it left off in the TD, unless a Set Transfer Ring
1753  * Dequeue Pointer is issued.
1754  *
1755  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1756  * the ring.  Since the ring is a contiguous structure, they can't be physically
1757  * removed.  Instead, there are two options:
1758  *
1759  *  1) If the HC is in the middle of processing the URB to be canceled, we
1760  *     simply move the ring's dequeue pointer past those TRBs using the Set
1761  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1762  *     when drivers timeout on the last submitted URB and attempt to cancel.
1763  *
1764  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1765  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1766  *     HC will need to invalidate the any TRBs it has cached after the stop
1767  *     endpoint command, as noted in the xHCI 0.95 errata.
1768  *
1769  *  3) The TD may have completed by the time the Stop Endpoint Command
1770  *     completes, so software needs to handle that case too.
1771  *
1772  * This function should protect against the TD enqueueing code ringing the
1773  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1774  * It also needs to account for multiple cancellations on happening at the same
1775  * time for the same endpoint.
1776  *
1777  * Note that this function can be called in any context, or so says
1778  * usb_hcd_unlink_urb()
1779  */
1780 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1781 {
1782         unsigned long flags;
1783         int ret, i;
1784         u32 temp;
1785         struct xhci_hcd *xhci;
1786         struct urb_priv *urb_priv;
1787         struct xhci_td *td;
1788         unsigned int ep_index;
1789         struct xhci_ring *ep_ring;
1790         struct xhci_virt_ep *ep;
1791         struct xhci_command *command;
1792         struct xhci_virt_device *vdev;
1793
1794         xhci = hcd_to_xhci(hcd);
1795         spin_lock_irqsave(&xhci->lock, flags);
1796
1797         trace_xhci_urb_dequeue(urb);
1798
1799         /* Make sure the URB hasn't completed or been unlinked already */
1800         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1801         if (ret)
1802                 goto done;
1803
1804         /* give back URB now if we can't queue it for cancel */
1805         vdev = xhci->devs[urb->dev->slot_id];
1806         urb_priv = urb->hcpriv;
1807         if (!vdev || !urb_priv)
1808                 goto err_giveback;
1809
1810         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1811         ep = &vdev->eps[ep_index];
1812         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1813         if (!ep || !ep_ring)
1814                 goto err_giveback;
1815
1816         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1817         temp = readl(&xhci->op_regs->status);
1818         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1819                 xhci_hc_died(xhci);
1820                 goto done;
1821         }
1822
1823         /*
1824          * check ring is not re-allocated since URB was enqueued. If it is, then
1825          * make sure none of the ring related pointers in this URB private data
1826          * are touched, such as td_list, otherwise we overwrite freed data
1827          */
1828         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1829                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1830                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1831                         td = &urb_priv->td[i];
1832                         if (!list_empty(&td->cancelled_td_list))
1833                                 list_del_init(&td->cancelled_td_list);
1834                 }
1835                 goto err_giveback;
1836         }
1837
1838         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1839                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1840                                 "HC halted, freeing TD manually.");
1841                 for (i = urb_priv->num_tds_done;
1842                      i < urb_priv->num_tds;
1843                      i++) {
1844                         td = &urb_priv->td[i];
1845                         if (!list_empty(&td->td_list))
1846                                 list_del_init(&td->td_list);
1847                         if (!list_empty(&td->cancelled_td_list))
1848                                 list_del_init(&td->cancelled_td_list);
1849                 }
1850                 goto err_giveback;
1851         }
1852
1853         i = urb_priv->num_tds_done;
1854         if (i < urb_priv->num_tds)
1855                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1856                                 "Cancel URB %p, dev %s, ep 0x%x, "
1857                                 "starting at offset 0x%llx",
1858                                 urb, urb->dev->devpath,
1859                                 urb->ep->desc.bEndpointAddress,
1860                                 (unsigned long long) xhci_trb_virt_to_dma(
1861                                         urb_priv->td[i].start_seg,
1862                                         urb_priv->td[i].first_trb));
1863
1864         for (; i < urb_priv->num_tds; i++) {
1865                 td = &urb_priv->td[i];
1866                 /* TD can already be on cancelled list if ep halted on it */
1867                 if (list_empty(&td->cancelled_td_list)) {
1868                         td->cancel_status = TD_DIRTY;
1869                         list_add_tail(&td->cancelled_td_list,
1870                                       &ep->cancelled_td_list);
1871                 }
1872         }
1873
1874         /* Queue a stop endpoint command, but only if this is
1875          * the first cancellation to be handled.
1876          */
1877         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1878                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1879                 if (!command) {
1880                         ret = -ENOMEM;
1881                         goto done;
1882                 }
1883                 ep->ep_state |= EP_STOP_CMD_PENDING;
1884                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1885                                          ep_index, 0);
1886                 xhci_ring_cmd_db(xhci);
1887         }
1888 done:
1889         spin_unlock_irqrestore(&xhci->lock, flags);
1890         return ret;
1891
1892 err_giveback:
1893         if (urb_priv)
1894                 xhci_urb_free_priv(urb_priv);
1895         usb_hcd_unlink_urb_from_ep(hcd, urb);
1896         spin_unlock_irqrestore(&xhci->lock, flags);
1897         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1898         return ret;
1899 }
1900
1901 /* Drop an endpoint from a new bandwidth configuration for this device.
1902  * Only one call to this function is allowed per endpoint before
1903  * check_bandwidth() or reset_bandwidth() must be called.
1904  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1905  * add the endpoint to the schedule with possibly new parameters denoted by a
1906  * different endpoint descriptor in usb_host_endpoint.
1907  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1908  * not allowed.
1909  *
1910  * The USB core will not allow URBs to be queued to an endpoint that is being
1911  * disabled, so there's no need for mutual exclusion to protect
1912  * the xhci->devs[slot_id] structure.
1913  */
1914 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1915                        struct usb_host_endpoint *ep)
1916 {
1917         struct xhci_hcd *xhci;
1918         struct xhci_container_ctx *in_ctx, *out_ctx;
1919         struct xhci_input_control_ctx *ctrl_ctx;
1920         unsigned int ep_index;
1921         struct xhci_ep_ctx *ep_ctx;
1922         u32 drop_flag;
1923         u32 new_add_flags, new_drop_flags;
1924         int ret;
1925
1926         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1927         if (ret <= 0)
1928                 return ret;
1929         xhci = hcd_to_xhci(hcd);
1930         if (xhci->xhc_state & XHCI_STATE_DYING)
1931                 return -ENODEV;
1932
1933         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1934         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1935         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1936                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1937                                 __func__, drop_flag);
1938                 return 0;
1939         }
1940
1941         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1942         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1943         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1944         if (!ctrl_ctx) {
1945                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1946                                 __func__);
1947                 return 0;
1948         }
1949
1950         ep_index = xhci_get_endpoint_index(&ep->desc);
1951         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1952         /* If the HC already knows the endpoint is disabled,
1953          * or the HCD has noted it is disabled, ignore this request
1954          */
1955         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1956             le32_to_cpu(ctrl_ctx->drop_flags) &
1957             xhci_get_endpoint_flag(&ep->desc)) {
1958                 /* Do not warn when called after a usb_device_reset */
1959                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1960                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1961                                   __func__, ep);
1962                 return 0;
1963         }
1964
1965         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1966         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1967
1968         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1969         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1970
1971         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1972
1973         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1974
1975         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1976                         (unsigned int) ep->desc.bEndpointAddress,
1977                         udev->slot_id,
1978                         (unsigned int) new_drop_flags,
1979                         (unsigned int) new_add_flags);
1980         return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1983
1984 /* Add an endpoint to a new possible bandwidth configuration for this device.
1985  * Only one call to this function is allowed per endpoint before
1986  * check_bandwidth() or reset_bandwidth() must be called.
1987  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1988  * add the endpoint to the schedule with possibly new parameters denoted by a
1989  * different endpoint descriptor in usb_host_endpoint.
1990  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1991  * not allowed.
1992  *
1993  * The USB core will not allow URBs to be queued to an endpoint until the
1994  * configuration or alt setting is installed in the device, so there's no need
1995  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1996  */
1997 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1998                       struct usb_host_endpoint *ep)
1999 {
2000         struct xhci_hcd *xhci;
2001         struct xhci_container_ctx *in_ctx;
2002         unsigned int ep_index;
2003         struct xhci_input_control_ctx *ctrl_ctx;
2004         struct xhci_ep_ctx *ep_ctx;
2005         u32 added_ctxs;
2006         u32 new_add_flags, new_drop_flags;
2007         struct xhci_virt_device *virt_dev;
2008         int ret = 0;
2009
2010         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2011         if (ret <= 0) {
2012                 /* So we won't queue a reset ep command for a root hub */
2013                 ep->hcpriv = NULL;
2014                 return ret;
2015         }
2016         xhci = hcd_to_xhci(hcd);
2017         if (xhci->xhc_state & XHCI_STATE_DYING)
2018                 return -ENODEV;
2019
2020         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2021         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2022                 /* FIXME when we have to issue an evaluate endpoint command to
2023                  * deal with ep0 max packet size changing once we get the
2024                  * descriptors
2025                  */
2026                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2027                                 __func__, added_ctxs);
2028                 return 0;
2029         }
2030
2031         virt_dev = xhci->devs[udev->slot_id];
2032         in_ctx = virt_dev->in_ctx;
2033         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2034         if (!ctrl_ctx) {
2035                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2036                                 __func__);
2037                 return 0;
2038         }
2039
2040         ep_index = xhci_get_endpoint_index(&ep->desc);
2041         /* If this endpoint is already in use, and the upper layers are trying
2042          * to add it again without dropping it, reject the addition.
2043          */
2044         if (virt_dev->eps[ep_index].ring &&
2045                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2046                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2047                                 "without dropping it.\n",
2048                                 (unsigned int) ep->desc.bEndpointAddress);
2049                 return -EINVAL;
2050         }
2051
2052         /* If the HCD has already noted the endpoint is enabled,
2053          * ignore this request.
2054          */
2055         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2056                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2057                                 __func__, ep);
2058                 return 0;
2059         }
2060
2061         /*
2062          * Configuration and alternate setting changes must be done in
2063          * process context, not interrupt context (or so documenation
2064          * for usb_set_interface() and usb_set_configuration() claim).
2065          */
2066         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2067                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2068                                 __func__, ep->desc.bEndpointAddress);
2069                 return -ENOMEM;
2070         }
2071
2072         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2073         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2074
2075         /* If xhci_endpoint_disable() was called for this endpoint, but the
2076          * xHC hasn't been notified yet through the check_bandwidth() call,
2077          * this re-adds a new state for the endpoint from the new endpoint
2078          * descriptors.  We must drop and re-add this endpoint, so we leave the
2079          * drop flags alone.
2080          */
2081         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2082
2083         /* Store the usb_device pointer for later use */
2084         ep->hcpriv = udev;
2085
2086         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2087         trace_xhci_add_endpoint(ep_ctx);
2088
2089         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2090                         (unsigned int) ep->desc.bEndpointAddress,
2091                         udev->slot_id,
2092                         (unsigned int) new_drop_flags,
2093                         (unsigned int) new_add_flags);
2094         return 0;
2095 }
2096 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2097
2098 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2099 {
2100         struct xhci_input_control_ctx *ctrl_ctx;
2101         struct xhci_ep_ctx *ep_ctx;
2102         struct xhci_slot_ctx *slot_ctx;
2103         int i;
2104
2105         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2106         if (!ctrl_ctx) {
2107                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2108                                 __func__);
2109                 return;
2110         }
2111
2112         /* When a device's add flag and drop flag are zero, any subsequent
2113          * configure endpoint command will leave that endpoint's state
2114          * untouched.  Make sure we don't leave any old state in the input
2115          * endpoint contexts.
2116          */
2117         ctrl_ctx->drop_flags = 0;
2118         ctrl_ctx->add_flags = 0;
2119         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2120         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2121         /* Endpoint 0 is always valid */
2122         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2123         for (i = 1; i < 31; i++) {
2124                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2125                 ep_ctx->ep_info = 0;
2126                 ep_ctx->ep_info2 = 0;
2127                 ep_ctx->deq = 0;
2128                 ep_ctx->tx_info = 0;
2129         }
2130 }
2131
2132 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2133                 struct usb_device *udev, u32 *cmd_status)
2134 {
2135         int ret;
2136
2137         switch (*cmd_status) {
2138         case COMP_COMMAND_ABORTED:
2139         case COMP_COMMAND_RING_STOPPED:
2140                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2141                 ret = -ETIME;
2142                 break;
2143         case COMP_RESOURCE_ERROR:
2144                 dev_warn(&udev->dev,
2145                          "Not enough host controller resources for new device state.\n");
2146                 ret = -ENOMEM;
2147                 /* FIXME: can we allocate more resources for the HC? */
2148                 break;
2149         case COMP_BANDWIDTH_ERROR:
2150         case COMP_SECONDARY_BANDWIDTH_ERROR:
2151                 dev_warn(&udev->dev,
2152                          "Not enough bandwidth for new device state.\n");
2153                 ret = -ENOSPC;
2154                 /* FIXME: can we go back to the old state? */
2155                 break;
2156         case COMP_TRB_ERROR:
2157                 /* the HCD set up something wrong */
2158                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2159                                 "add flag = 1, "
2160                                 "and endpoint is not disabled.\n");
2161                 ret = -EINVAL;
2162                 break;
2163         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2164                 dev_warn(&udev->dev,
2165                          "ERROR: Incompatible device for endpoint configure command.\n");
2166                 ret = -ENODEV;
2167                 break;
2168         case COMP_SUCCESS:
2169                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2170                                 "Successful Endpoint Configure command");
2171                 ret = 0;
2172                 break;
2173         default:
2174                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2175                                 *cmd_status);
2176                 ret = -EINVAL;
2177                 break;
2178         }
2179         return ret;
2180 }
2181
2182 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2183                 struct usb_device *udev, u32 *cmd_status)
2184 {
2185         int ret;
2186
2187         switch (*cmd_status) {
2188         case COMP_COMMAND_ABORTED:
2189         case COMP_COMMAND_RING_STOPPED:
2190                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2191                 ret = -ETIME;
2192                 break;
2193         case COMP_PARAMETER_ERROR:
2194                 dev_warn(&udev->dev,
2195                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2196                 ret = -EINVAL;
2197                 break;
2198         case COMP_SLOT_NOT_ENABLED_ERROR:
2199                 dev_warn(&udev->dev,
2200                         "WARN: slot not enabled for evaluate context command.\n");
2201                 ret = -EINVAL;
2202                 break;
2203         case COMP_CONTEXT_STATE_ERROR:
2204                 dev_warn(&udev->dev,
2205                         "WARN: invalid context state for evaluate context command.\n");
2206                 ret = -EINVAL;
2207                 break;
2208         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2209                 dev_warn(&udev->dev,
2210                         "ERROR: Incompatible device for evaluate context command.\n");
2211                 ret = -ENODEV;
2212                 break;
2213         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2214                 /* Max Exit Latency too large error */
2215                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2216                 ret = -EINVAL;
2217                 break;
2218         case COMP_SUCCESS:
2219                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2220                                 "Successful evaluate context command");
2221                 ret = 0;
2222                 break;
2223         default:
2224                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2225                         *cmd_status);
2226                 ret = -EINVAL;
2227                 break;
2228         }
2229         return ret;
2230 }
2231
2232 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2233                 struct xhci_input_control_ctx *ctrl_ctx)
2234 {
2235         u32 valid_add_flags;
2236         u32 valid_drop_flags;
2237
2238         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2239          * (bit 1).  The default control endpoint is added during the Address
2240          * Device command and is never removed until the slot is disabled.
2241          */
2242         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2243         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2244
2245         /* Use hweight32 to count the number of ones in the add flags, or
2246          * number of endpoints added.  Don't count endpoints that are changed
2247          * (both added and dropped).
2248          */
2249         return hweight32(valid_add_flags) -
2250                 hweight32(valid_add_flags & valid_drop_flags);
2251 }
2252
2253 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2254                 struct xhci_input_control_ctx *ctrl_ctx)
2255 {
2256         u32 valid_add_flags;
2257         u32 valid_drop_flags;
2258
2259         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2260         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2261
2262         return hweight32(valid_drop_flags) -
2263                 hweight32(valid_add_flags & valid_drop_flags);
2264 }
2265
2266 /*
2267  * We need to reserve the new number of endpoints before the configure endpoint
2268  * command completes.  We can't subtract the dropped endpoints from the number
2269  * of active endpoints until the command completes because we can oversubscribe
2270  * the host in this case:
2271  *
2272  *  - the first configure endpoint command drops more endpoints than it adds
2273  *  - a second configure endpoint command that adds more endpoints is queued
2274  *  - the first configure endpoint command fails, so the config is unchanged
2275  *  - the second command may succeed, even though there isn't enough resources
2276  *
2277  * Must be called with xhci->lock held.
2278  */
2279 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2280                 struct xhci_input_control_ctx *ctrl_ctx)
2281 {
2282         u32 added_eps;
2283
2284         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2285         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2286                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2287                                 "Not enough ep ctxs: "
2288                                 "%u active, need to add %u, limit is %u.",
2289                                 xhci->num_active_eps, added_eps,
2290                                 xhci->limit_active_eps);
2291                 return -ENOMEM;
2292         }
2293         xhci->num_active_eps += added_eps;
2294         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295                         "Adding %u ep ctxs, %u now active.", added_eps,
2296                         xhci->num_active_eps);
2297         return 0;
2298 }
2299
2300 /*
2301  * The configure endpoint was failed by the xHC for some other reason, so we
2302  * need to revert the resources that failed configuration would have used.
2303  *
2304  * Must be called with xhci->lock held.
2305  */
2306 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2307                 struct xhci_input_control_ctx *ctrl_ctx)
2308 {
2309         u32 num_failed_eps;
2310
2311         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2312         xhci->num_active_eps -= num_failed_eps;
2313         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2314                         "Removing %u failed ep ctxs, %u now active.",
2315                         num_failed_eps,
2316                         xhci->num_active_eps);
2317 }
2318
2319 /*
2320  * Now that the command has completed, clean up the active endpoint count by
2321  * subtracting out the endpoints that were dropped (but not changed).
2322  *
2323  * Must be called with xhci->lock held.
2324  */
2325 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2326                 struct xhci_input_control_ctx *ctrl_ctx)
2327 {
2328         u32 num_dropped_eps;
2329
2330         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2331         xhci->num_active_eps -= num_dropped_eps;
2332         if (num_dropped_eps)
2333                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2334                                 "Removing %u dropped ep ctxs, %u now active.",
2335                                 num_dropped_eps,
2336                                 xhci->num_active_eps);
2337 }
2338
2339 static unsigned int xhci_get_block_size(struct usb_device *udev)
2340 {
2341         switch (udev->speed) {
2342         case USB_SPEED_LOW:
2343         case USB_SPEED_FULL:
2344                 return FS_BLOCK;
2345         case USB_SPEED_HIGH:
2346                 return HS_BLOCK;
2347         case USB_SPEED_SUPER:
2348         case USB_SPEED_SUPER_PLUS:
2349                 return SS_BLOCK;
2350         case USB_SPEED_UNKNOWN:
2351         case USB_SPEED_WIRELESS:
2352         default:
2353                 /* Should never happen */
2354                 return 1;
2355         }
2356 }
2357
2358 static unsigned int
2359 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2360 {
2361         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2362                 return LS_OVERHEAD;
2363         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2364                 return FS_OVERHEAD;
2365         return HS_OVERHEAD;
2366 }
2367
2368 /* If we are changing a LS/FS device under a HS hub,
2369  * make sure (if we are activating a new TT) that the HS bus has enough
2370  * bandwidth for this new TT.
2371  */
2372 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2373                 struct xhci_virt_device *virt_dev,
2374                 int old_active_eps)
2375 {
2376         struct xhci_interval_bw_table *bw_table;
2377         struct xhci_tt_bw_info *tt_info;
2378
2379         /* Find the bandwidth table for the root port this TT is attached to. */
2380         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2381         tt_info = virt_dev->tt_info;
2382         /* If this TT already had active endpoints, the bandwidth for this TT
2383          * has already been added.  Removing all periodic endpoints (and thus
2384          * making the TT enactive) will only decrease the bandwidth used.
2385          */
2386         if (old_active_eps)
2387                 return 0;
2388         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2389                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2390                         return -ENOMEM;
2391                 return 0;
2392         }
2393         /* Not sure why we would have no new active endpoints...
2394          *
2395          * Maybe because of an Evaluate Context change for a hub update or a
2396          * control endpoint 0 max packet size change?
2397          * FIXME: skip the bandwidth calculation in that case.
2398          */
2399         return 0;
2400 }
2401
2402 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2403                 struct xhci_virt_device *virt_dev)
2404 {
2405         unsigned int bw_reserved;
2406
2407         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2408         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2409                 return -ENOMEM;
2410
2411         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2412         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2413                 return -ENOMEM;
2414
2415         return 0;
2416 }
2417
2418 /*
2419  * This algorithm is a very conservative estimate of the worst-case scheduling
2420  * scenario for any one interval.  The hardware dynamically schedules the
2421  * packets, so we can't tell which microframe could be the limiting factor in
2422  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2423  *
2424  * Obviously, we can't solve an NP complete problem to find the minimum worst
2425  * case scenario.  Instead, we come up with an estimate that is no less than
2426  * the worst case bandwidth used for any one microframe, but may be an
2427  * over-estimate.
2428  *
2429  * We walk the requirements for each endpoint by interval, starting with the
2430  * smallest interval, and place packets in the schedule where there is only one
2431  * possible way to schedule packets for that interval.  In order to simplify
2432  * this algorithm, we record the largest max packet size for each interval, and
2433  * assume all packets will be that size.
2434  *
2435  * For interval 0, we obviously must schedule all packets for each interval.
2436  * The bandwidth for interval 0 is just the amount of data to be transmitted
2437  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2438  * the number of packets).
2439  *
2440  * For interval 1, we have two possible microframes to schedule those packets
2441  * in.  For this algorithm, if we can schedule the same number of packets for
2442  * each possible scheduling opportunity (each microframe), we will do so.  The
2443  * remaining number of packets will be saved to be transmitted in the gaps in
2444  * the next interval's scheduling sequence.
2445  *
2446  * As we move those remaining packets to be scheduled with interval 2 packets,
2447  * we have to double the number of remaining packets to transmit.  This is
2448  * because the intervals are actually powers of 2, and we would be transmitting
2449  * the previous interval's packets twice in this interval.  We also have to be
2450  * sure that when we look at the largest max packet size for this interval, we
2451  * also look at the largest max packet size for the remaining packets and take
2452  * the greater of the two.
2453  *
2454  * The algorithm continues to evenly distribute packets in each scheduling
2455  * opportunity, and push the remaining packets out, until we get to the last
2456  * interval.  Then those packets and their associated overhead are just added
2457  * to the bandwidth used.
2458  */
2459 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2460                 struct xhci_virt_device *virt_dev,
2461                 int old_active_eps)
2462 {
2463         unsigned int bw_reserved;
2464         unsigned int max_bandwidth;
2465         unsigned int bw_used;
2466         unsigned int block_size;
2467         struct xhci_interval_bw_table *bw_table;
2468         unsigned int packet_size = 0;
2469         unsigned int overhead = 0;
2470         unsigned int packets_transmitted = 0;
2471         unsigned int packets_remaining = 0;
2472         unsigned int i;
2473
2474         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2475                 return xhci_check_ss_bw(xhci, virt_dev);
2476
2477         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2478                 max_bandwidth = HS_BW_LIMIT;
2479                 /* Convert percent of bus BW reserved to blocks reserved */
2480                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2481         } else {
2482                 max_bandwidth = FS_BW_LIMIT;
2483                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2484         }
2485
2486         bw_table = virt_dev->bw_table;
2487         /* We need to translate the max packet size and max ESIT payloads into
2488          * the units the hardware uses.
2489          */
2490         block_size = xhci_get_block_size(virt_dev->udev);
2491
2492         /* If we are manipulating a LS/FS device under a HS hub, double check
2493          * that the HS bus has enough bandwidth if we are activing a new TT.
2494          */
2495         if (virt_dev->tt_info) {
2496                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2497                                 "Recalculating BW for rootport %u",
2498                                 virt_dev->real_port);
2499                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2500                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2501                                         "newly activated TT.\n");
2502                         return -ENOMEM;
2503                 }
2504                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2505                                 "Recalculating BW for TT slot %u port %u",
2506                                 virt_dev->tt_info->slot_id,
2507                                 virt_dev->tt_info->ttport);
2508         } else {
2509                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2510                                 "Recalculating BW for rootport %u",
2511                                 virt_dev->real_port);
2512         }
2513
2514         /* Add in how much bandwidth will be used for interval zero, or the
2515          * rounded max ESIT payload + number of packets * largest overhead.
2516          */
2517         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2518                 bw_table->interval_bw[0].num_packets *
2519                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2520
2521         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2522                 unsigned int bw_added;
2523                 unsigned int largest_mps;
2524                 unsigned int interval_overhead;
2525
2526                 /*
2527                  * How many packets could we transmit in this interval?
2528                  * If packets didn't fit in the previous interval, we will need
2529                  * to transmit that many packets twice within this interval.
2530                  */
2531                 packets_remaining = 2 * packets_remaining +
2532                         bw_table->interval_bw[i].num_packets;
2533
2534                 /* Find the largest max packet size of this or the previous
2535                  * interval.
2536                  */
2537                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2538                         largest_mps = 0;
2539                 else {
2540                         struct xhci_virt_ep *virt_ep;
2541                         struct list_head *ep_entry;
2542
2543                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2544                         virt_ep = list_entry(ep_entry,
2545                                         struct xhci_virt_ep, bw_endpoint_list);
2546                         /* Convert to blocks, rounding up */
2547                         largest_mps = DIV_ROUND_UP(
2548                                         virt_ep->bw_info.max_packet_size,
2549                                         block_size);
2550                 }
2551                 if (largest_mps > packet_size)
2552                         packet_size = largest_mps;
2553
2554                 /* Use the larger overhead of this or the previous interval. */
2555                 interval_overhead = xhci_get_largest_overhead(
2556                                 &bw_table->interval_bw[i]);
2557                 if (interval_overhead > overhead)
2558                         overhead = interval_overhead;
2559
2560                 /* How many packets can we evenly distribute across
2561                  * (1 << (i + 1)) possible scheduling opportunities?
2562                  */
2563                 packets_transmitted = packets_remaining >> (i + 1);
2564
2565                 /* Add in the bandwidth used for those scheduled packets */
2566                 bw_added = packets_transmitted * (overhead + packet_size);
2567
2568                 /* How many packets do we have remaining to transmit? */
2569                 packets_remaining = packets_remaining % (1 << (i + 1));
2570
2571                 /* What largest max packet size should those packets have? */
2572                 /* If we've transmitted all packets, don't carry over the
2573                  * largest packet size.
2574                  */
2575                 if (packets_remaining == 0) {
2576                         packet_size = 0;
2577                         overhead = 0;
2578                 } else if (packets_transmitted > 0) {
2579                         /* Otherwise if we do have remaining packets, and we've
2580                          * scheduled some packets in this interval, take the
2581                          * largest max packet size from endpoints with this
2582                          * interval.
2583                          */
2584                         packet_size = largest_mps;
2585                         overhead = interval_overhead;
2586                 }
2587                 /* Otherwise carry over packet_size and overhead from the last
2588                  * time we had a remainder.
2589                  */
2590                 bw_used += bw_added;
2591                 if (bw_used > max_bandwidth) {
2592                         xhci_warn(xhci, "Not enough bandwidth. "
2593                                         "Proposed: %u, Max: %u\n",
2594                                 bw_used, max_bandwidth);
2595                         return -ENOMEM;
2596                 }
2597         }
2598         /*
2599          * Ok, we know we have some packets left over after even-handedly
2600          * scheduling interval 15.  We don't know which microframes they will
2601          * fit into, so we over-schedule and say they will be scheduled every
2602          * microframe.
2603          */
2604         if (packets_remaining > 0)
2605                 bw_used += overhead + packet_size;
2606
2607         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2608                 unsigned int port_index = virt_dev->real_port - 1;
2609
2610                 /* OK, we're manipulating a HS device attached to a
2611                  * root port bandwidth domain.  Include the number of active TTs
2612                  * in the bandwidth used.
2613                  */
2614                 bw_used += TT_HS_OVERHEAD *
2615                         xhci->rh_bw[port_index].num_active_tts;
2616         }
2617
2618         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2619                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2620                 "Available: %u " "percent",
2621                 bw_used, max_bandwidth, bw_reserved,
2622                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2623                 max_bandwidth);
2624
2625         bw_used += bw_reserved;
2626         if (bw_used > max_bandwidth) {
2627                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2628                                 bw_used, max_bandwidth);
2629                 return -ENOMEM;
2630         }
2631
2632         bw_table->bw_used = bw_used;
2633         return 0;
2634 }
2635
2636 static bool xhci_is_async_ep(unsigned int ep_type)
2637 {
2638         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2639                                         ep_type != ISOC_IN_EP &&
2640                                         ep_type != INT_IN_EP);
2641 }
2642
2643 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2644 {
2645         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2646 }
2647
2648 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2649 {
2650         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2651
2652         if (ep_bw->ep_interval == 0)
2653                 return SS_OVERHEAD_BURST +
2654                         (ep_bw->mult * ep_bw->num_packets *
2655                                         (SS_OVERHEAD + mps));
2656         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2657                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2658                                 1 << ep_bw->ep_interval);
2659
2660 }
2661
2662 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2663                 struct xhci_bw_info *ep_bw,
2664                 struct xhci_interval_bw_table *bw_table,
2665                 struct usb_device *udev,
2666                 struct xhci_virt_ep *virt_ep,
2667                 struct xhci_tt_bw_info *tt_info)
2668 {
2669         struct xhci_interval_bw *interval_bw;
2670         int normalized_interval;
2671
2672         if (xhci_is_async_ep(ep_bw->type))
2673                 return;
2674
2675         if (udev->speed >= USB_SPEED_SUPER) {
2676                 if (xhci_is_sync_in_ep(ep_bw->type))
2677                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2678                                 xhci_get_ss_bw_consumed(ep_bw);
2679                 else
2680                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2681                                 xhci_get_ss_bw_consumed(ep_bw);
2682                 return;
2683         }
2684
2685         /* SuperSpeed endpoints never get added to intervals in the table, so
2686          * this check is only valid for HS/FS/LS devices.
2687          */
2688         if (list_empty(&virt_ep->bw_endpoint_list))
2689                 return;
2690         /* For LS/FS devices, we need to translate the interval expressed in
2691          * microframes to frames.
2692          */
2693         if (udev->speed == USB_SPEED_HIGH)
2694                 normalized_interval = ep_bw->ep_interval;
2695         else
2696                 normalized_interval = ep_bw->ep_interval - 3;
2697
2698         if (normalized_interval == 0)
2699                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2700         interval_bw = &bw_table->interval_bw[normalized_interval];
2701         interval_bw->num_packets -= ep_bw->num_packets;
2702         switch (udev->speed) {
2703         case USB_SPEED_LOW:
2704                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2705                 break;
2706         case USB_SPEED_FULL:
2707                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2708                 break;
2709         case USB_SPEED_HIGH:
2710                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2711                 break;
2712         case USB_SPEED_SUPER:
2713         case USB_SPEED_SUPER_PLUS:
2714         case USB_SPEED_UNKNOWN:
2715         case USB_SPEED_WIRELESS:
2716                 /* Should never happen because only LS/FS/HS endpoints will get
2717                  * added to the endpoint list.
2718                  */
2719                 return;
2720         }
2721         if (tt_info)
2722                 tt_info->active_eps -= 1;
2723         list_del_init(&virt_ep->bw_endpoint_list);
2724 }
2725
2726 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2727                 struct xhci_bw_info *ep_bw,
2728                 struct xhci_interval_bw_table *bw_table,
2729                 struct usb_device *udev,
2730                 struct xhci_virt_ep *virt_ep,
2731                 struct xhci_tt_bw_info *tt_info)
2732 {
2733         struct xhci_interval_bw *interval_bw;
2734         struct xhci_virt_ep *smaller_ep;
2735         int normalized_interval;
2736
2737         if (xhci_is_async_ep(ep_bw->type))
2738                 return;
2739
2740         if (udev->speed == USB_SPEED_SUPER) {
2741                 if (xhci_is_sync_in_ep(ep_bw->type))
2742                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2743                                 xhci_get_ss_bw_consumed(ep_bw);
2744                 else
2745                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2746                                 xhci_get_ss_bw_consumed(ep_bw);
2747                 return;
2748         }
2749
2750         /* For LS/FS devices, we need to translate the interval expressed in
2751          * microframes to frames.
2752          */
2753         if (udev->speed == USB_SPEED_HIGH)
2754                 normalized_interval = ep_bw->ep_interval;
2755         else
2756                 normalized_interval = ep_bw->ep_interval - 3;
2757
2758         if (normalized_interval == 0)
2759                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2760         interval_bw = &bw_table->interval_bw[normalized_interval];
2761         interval_bw->num_packets += ep_bw->num_packets;
2762         switch (udev->speed) {
2763         case USB_SPEED_LOW:
2764                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2765                 break;
2766         case USB_SPEED_FULL:
2767                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2768                 break;
2769         case USB_SPEED_HIGH:
2770                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2771                 break;
2772         case USB_SPEED_SUPER:
2773         case USB_SPEED_SUPER_PLUS:
2774         case USB_SPEED_UNKNOWN:
2775         case USB_SPEED_WIRELESS:
2776                 /* Should never happen because only LS/FS/HS endpoints will get
2777                  * added to the endpoint list.
2778                  */
2779                 return;
2780         }
2781
2782         if (tt_info)
2783                 tt_info->active_eps += 1;
2784         /* Insert the endpoint into the list, largest max packet size first. */
2785         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2786                         bw_endpoint_list) {
2787                 if (ep_bw->max_packet_size >=
2788                                 smaller_ep->bw_info.max_packet_size) {
2789                         /* Add the new ep before the smaller endpoint */
2790                         list_add_tail(&virt_ep->bw_endpoint_list,
2791                                         &smaller_ep->bw_endpoint_list);
2792                         return;
2793                 }
2794         }
2795         /* Add the new endpoint at the end of the list. */
2796         list_add_tail(&virt_ep->bw_endpoint_list,
2797                         &interval_bw->endpoints);
2798 }
2799
2800 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2801                 struct xhci_virt_device *virt_dev,
2802                 int old_active_eps)
2803 {
2804         struct xhci_root_port_bw_info *rh_bw_info;
2805         if (!virt_dev->tt_info)
2806                 return;
2807
2808         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2809         if (old_active_eps == 0 &&
2810                                 virt_dev->tt_info->active_eps != 0) {
2811                 rh_bw_info->num_active_tts += 1;
2812                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2813         } else if (old_active_eps != 0 &&
2814                                 virt_dev->tt_info->active_eps == 0) {
2815                 rh_bw_info->num_active_tts -= 1;
2816                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2817         }
2818 }
2819
2820 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2821                 struct xhci_virt_device *virt_dev,
2822                 struct xhci_container_ctx *in_ctx)
2823 {
2824         struct xhci_bw_info ep_bw_info[31];
2825         int i;
2826         struct xhci_input_control_ctx *ctrl_ctx;
2827         int old_active_eps = 0;
2828
2829         if (virt_dev->tt_info)
2830                 old_active_eps = virt_dev->tt_info->active_eps;
2831
2832         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2833         if (!ctrl_ctx) {
2834                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2835                                 __func__);
2836                 return -ENOMEM;
2837         }
2838
2839         for (i = 0; i < 31; i++) {
2840                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2841                         continue;
2842
2843                 /* Make a copy of the BW info in case we need to revert this */
2844                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2845                                 sizeof(ep_bw_info[i]));
2846                 /* Drop the endpoint from the interval table if the endpoint is
2847                  * being dropped or changed.
2848                  */
2849                 if (EP_IS_DROPPED(ctrl_ctx, i))
2850                         xhci_drop_ep_from_interval_table(xhci,
2851                                         &virt_dev->eps[i].bw_info,
2852                                         virt_dev->bw_table,
2853                                         virt_dev->udev,
2854                                         &virt_dev->eps[i],
2855                                         virt_dev->tt_info);
2856         }
2857         /* Overwrite the information stored in the endpoints' bw_info */
2858         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2859         for (i = 0; i < 31; i++) {
2860                 /* Add any changed or added endpoints to the interval table */
2861                 if (EP_IS_ADDED(ctrl_ctx, i))
2862                         xhci_add_ep_to_interval_table(xhci,
2863                                         &virt_dev->eps[i].bw_info,
2864                                         virt_dev->bw_table,
2865                                         virt_dev->udev,
2866                                         &virt_dev->eps[i],
2867                                         virt_dev->tt_info);
2868         }
2869
2870         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2871                 /* Ok, this fits in the bandwidth we have.
2872                  * Update the number of active TTs.
2873                  */
2874                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2875                 return 0;
2876         }
2877
2878         /* We don't have enough bandwidth for this, revert the stored info. */
2879         for (i = 0; i < 31; i++) {
2880                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2881                         continue;
2882
2883                 /* Drop the new copies of any added or changed endpoints from
2884                  * the interval table.
2885                  */
2886                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2887                         xhci_drop_ep_from_interval_table(xhci,
2888                                         &virt_dev->eps[i].bw_info,
2889                                         virt_dev->bw_table,
2890                                         virt_dev->udev,
2891                                         &virt_dev->eps[i],
2892                                         virt_dev->tt_info);
2893                 }
2894                 /* Revert the endpoint back to its old information */
2895                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2896                                 sizeof(ep_bw_info[i]));
2897                 /* Add any changed or dropped endpoints back into the table */
2898                 if (EP_IS_DROPPED(ctrl_ctx, i))
2899                         xhci_add_ep_to_interval_table(xhci,
2900                                         &virt_dev->eps[i].bw_info,
2901                                         virt_dev->bw_table,
2902                                         virt_dev->udev,
2903                                         &virt_dev->eps[i],
2904                                         virt_dev->tt_info);
2905         }
2906         return -ENOMEM;
2907 }
2908
2909
2910 /* Issue a configure endpoint command or evaluate context command
2911  * and wait for it to finish.
2912  */
2913 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2914                 struct usb_device *udev,
2915                 struct xhci_command *command,
2916                 bool ctx_change, bool must_succeed)
2917 {
2918         int ret;
2919         unsigned long flags;
2920         struct xhci_input_control_ctx *ctrl_ctx;
2921         struct xhci_virt_device *virt_dev;
2922         struct xhci_slot_ctx *slot_ctx;
2923
2924         if (!command)
2925                 return -EINVAL;
2926
2927         spin_lock_irqsave(&xhci->lock, flags);
2928
2929         if (xhci->xhc_state & XHCI_STATE_DYING) {
2930                 spin_unlock_irqrestore(&xhci->lock, flags);
2931                 return -ESHUTDOWN;
2932         }
2933
2934         virt_dev = xhci->devs[udev->slot_id];
2935
2936         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2937         if (!ctrl_ctx) {
2938                 spin_unlock_irqrestore(&xhci->lock, flags);
2939                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2940                                 __func__);
2941                 return -ENOMEM;
2942         }
2943
2944         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2945                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2946                 spin_unlock_irqrestore(&xhci->lock, flags);
2947                 xhci_warn(xhci, "Not enough host resources, "
2948                                 "active endpoint contexts = %u\n",
2949                                 xhci->num_active_eps);
2950                 return -ENOMEM;
2951         }
2952         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2953             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2954                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2955                         xhci_free_host_resources(xhci, ctrl_ctx);
2956                 spin_unlock_irqrestore(&xhci->lock, flags);
2957                 xhci_warn(xhci, "Not enough bandwidth\n");
2958                 return -ENOMEM;
2959         }
2960
2961         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2962
2963         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2964         trace_xhci_configure_endpoint(slot_ctx);
2965
2966         if (!ctx_change)
2967                 ret = xhci_queue_configure_endpoint(xhci, command,
2968                                 command->in_ctx->dma,
2969                                 udev->slot_id, must_succeed);
2970         else
2971                 ret = xhci_queue_evaluate_context(xhci, command,
2972                                 command->in_ctx->dma,
2973                                 udev->slot_id, must_succeed);
2974         if (ret < 0) {
2975                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2976                         xhci_free_host_resources(xhci, ctrl_ctx);
2977                 spin_unlock_irqrestore(&xhci->lock, flags);
2978                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2979                                 "FIXME allocate a new ring segment");
2980                 return -ENOMEM;
2981         }
2982         xhci_ring_cmd_db(xhci);
2983         spin_unlock_irqrestore(&xhci->lock, flags);
2984
2985         /* Wait for the configure endpoint command to complete */
2986         wait_for_completion(command->completion);
2987
2988         if (!ctx_change)
2989                 ret = xhci_configure_endpoint_result(xhci, udev,
2990                                                      &command->status);
2991         else
2992                 ret = xhci_evaluate_context_result(xhci, udev,
2993                                                    &command->status);
2994
2995         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2996                 spin_lock_irqsave(&xhci->lock, flags);
2997                 /* If the command failed, remove the reserved resources.
2998                  * Otherwise, clean up the estimate to include dropped eps.
2999                  */
3000                 if (ret)
3001                         xhci_free_host_resources(xhci, ctrl_ctx);
3002                 else
3003                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
3004                 spin_unlock_irqrestore(&xhci->lock, flags);
3005         }
3006         return ret;
3007 }
3008
3009 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3010         struct xhci_virt_device *vdev, int i)
3011 {
3012         struct xhci_virt_ep *ep = &vdev->eps[i];
3013
3014         if (ep->ep_state & EP_HAS_STREAMS) {
3015                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3016                                 xhci_get_endpoint_address(i));
3017                 xhci_free_stream_info(xhci, ep->stream_info);
3018                 ep->stream_info = NULL;
3019                 ep->ep_state &= ~EP_HAS_STREAMS;
3020         }
3021 }
3022
3023 /* Called after one or more calls to xhci_add_endpoint() or
3024  * xhci_drop_endpoint().  If this call fails, the USB core is expected
3025  * to call xhci_reset_bandwidth().
3026  *
3027  * Since we are in the middle of changing either configuration or
3028  * installing a new alt setting, the USB core won't allow URBs to be
3029  * enqueued for any endpoint on the old config or interface.  Nothing
3030  * else should be touching the xhci->devs[slot_id] structure, so we
3031  * don't need to take the xhci->lock for manipulating that.
3032  */
3033 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3034 {
3035         int i;
3036         int ret = 0;
3037         struct xhci_hcd *xhci;
3038         struct xhci_virt_device *virt_dev;
3039         struct xhci_input_control_ctx *ctrl_ctx;
3040         struct xhci_slot_ctx *slot_ctx;
3041         struct xhci_command *command;
3042
3043         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3044         if (ret <= 0)
3045                 return ret;
3046         xhci = hcd_to_xhci(hcd);
3047         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3048                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3049                 return -ENODEV;
3050
3051         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3052         virt_dev = xhci->devs[udev->slot_id];
3053
3054         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3055         if (!command)
3056                 return -ENOMEM;
3057
3058         command->in_ctx = virt_dev->in_ctx;
3059
3060         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3061         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3062         if (!ctrl_ctx) {
3063                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3064                                 __func__);
3065                 ret = -ENOMEM;
3066                 goto command_cleanup;
3067         }
3068         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3069         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3070         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3071
3072         /* Don't issue the command if there's no endpoints to update. */
3073         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3074             ctrl_ctx->drop_flags == 0) {
3075                 ret = 0;
3076                 goto command_cleanup;
3077         }
3078         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3079         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3080         for (i = 31; i >= 1; i--) {
3081                 __le32 le32 = cpu_to_le32(BIT(i));
3082
3083                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3084                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3085                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3086                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3087                         break;
3088                 }
3089         }
3090
3091         ret = xhci_configure_endpoint(xhci, udev, command,
3092                         false, false);
3093         if (ret)
3094                 /* Callee should call reset_bandwidth() */
3095                 goto command_cleanup;
3096
3097         /* Free any rings that were dropped, but not changed. */
3098         for (i = 1; i < 31; i++) {
3099                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3100                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3101                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3102                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3103                 }
3104         }
3105         xhci_zero_in_ctx(xhci, virt_dev);
3106         /*
3107          * Install any rings for completely new endpoints or changed endpoints,
3108          * and free any old rings from changed endpoints.
3109          */
3110         for (i = 1; i < 31; i++) {
3111                 if (!virt_dev->eps[i].new_ring)
3112                         continue;
3113                 /* Only free the old ring if it exists.
3114                  * It may not if this is the first add of an endpoint.
3115                  */
3116                 if (virt_dev->eps[i].ring) {
3117                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3118                 }
3119                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3120                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3121                 virt_dev->eps[i].new_ring = NULL;
3122                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3123         }
3124 command_cleanup:
3125         kfree(command->completion);
3126         kfree(command);
3127
3128         return ret;
3129 }
3130 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3131
3132 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3133 {
3134         struct xhci_hcd *xhci;
3135         struct xhci_virt_device *virt_dev;
3136         int i, ret;
3137
3138         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3139         if (ret <= 0)
3140                 return;
3141         xhci = hcd_to_xhci(hcd);
3142
3143         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3144         virt_dev = xhci->devs[udev->slot_id];
3145         /* Free any rings allocated for added endpoints */
3146         for (i = 0; i < 31; i++) {
3147                 if (virt_dev->eps[i].new_ring) {
3148                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3149                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3150                         virt_dev->eps[i].new_ring = NULL;
3151                 }
3152         }
3153         xhci_zero_in_ctx(xhci, virt_dev);
3154 }
3155 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3156
3157 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3158                 struct xhci_container_ctx *in_ctx,
3159                 struct xhci_container_ctx *out_ctx,
3160                 struct xhci_input_control_ctx *ctrl_ctx,
3161                 u32 add_flags, u32 drop_flags)
3162 {
3163         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3164         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3165         xhci_slot_copy(xhci, in_ctx, out_ctx);
3166         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3167 }
3168
3169 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3170                                   struct usb_host_endpoint *host_ep)
3171 {
3172         struct xhci_hcd         *xhci;
3173         struct xhci_virt_device *vdev;
3174         struct xhci_virt_ep     *ep;
3175         struct usb_device       *udev;
3176         unsigned long           flags;
3177         unsigned int            ep_index;
3178
3179         xhci = hcd_to_xhci(hcd);
3180 rescan:
3181         spin_lock_irqsave(&xhci->lock, flags);
3182
3183         udev = (struct usb_device *)host_ep->hcpriv;
3184         if (!udev || !udev->slot_id)
3185                 goto done;
3186
3187         vdev = xhci->devs[udev->slot_id];
3188         if (!vdev)
3189                 goto done;
3190
3191         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3192         ep = &vdev->eps[ep_index];
3193
3194         /* wait for hub_tt_work to finish clearing hub TT */
3195         if (ep->ep_state & EP_CLEARING_TT) {
3196                 spin_unlock_irqrestore(&xhci->lock, flags);
3197                 schedule_timeout_uninterruptible(1);
3198                 goto rescan;
3199         }
3200
3201         if (ep->ep_state)
3202                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3203                          ep->ep_state);
3204 done:
3205         host_ep->hcpriv = NULL;
3206         spin_unlock_irqrestore(&xhci->lock, flags);
3207 }
3208
3209 /*
3210  * Called after usb core issues a clear halt control message.
3211  * The host side of the halt should already be cleared by a reset endpoint
3212  * command issued when the STALL event was received.
3213  *
3214  * The reset endpoint command may only be issued to endpoints in the halted
3215  * state. For software that wishes to reset the data toggle or sequence number
3216  * of an endpoint that isn't in the halted state this function will issue a
3217  * configure endpoint command with the Drop and Add bits set for the target
3218  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3219  */
3220
3221 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3222                 struct usb_host_endpoint *host_ep)
3223 {
3224         struct xhci_hcd *xhci;
3225         struct usb_device *udev;
3226         struct xhci_virt_device *vdev;
3227         struct xhci_virt_ep *ep;
3228         struct xhci_input_control_ctx *ctrl_ctx;
3229         struct xhci_command *stop_cmd, *cfg_cmd;
3230         unsigned int ep_index;
3231         unsigned long flags;
3232         u32 ep_flag;
3233         int err;
3234
3235         xhci = hcd_to_xhci(hcd);
3236         if (!host_ep->hcpriv)
3237                 return;
3238         udev = (struct usb_device *) host_ep->hcpriv;
3239         vdev = xhci->devs[udev->slot_id];
3240
3241         /*
3242          * vdev may be lost due to xHC restore error and re-initialization
3243          * during S3/S4 resume. A new vdev will be allocated later by
3244          * xhci_discover_or_reset_device()
3245          */
3246         if (!udev->slot_id || !vdev)
3247                 return;
3248         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3249         ep = &vdev->eps[ep_index];
3250
3251         /* Bail out if toggle is already being cleared by a endpoint reset */
3252         spin_lock_irqsave(&xhci->lock, flags);
3253         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3254                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3255                 spin_unlock_irqrestore(&xhci->lock, flags);
3256                 return;
3257         }
3258         spin_unlock_irqrestore(&xhci->lock, flags);
3259         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3260         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3261             usb_endpoint_xfer_isoc(&host_ep->desc))
3262                 return;
3263
3264         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3265
3266         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3267                 return;
3268
3269         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3270         if (!stop_cmd)
3271                 return;
3272
3273         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3274         if (!cfg_cmd)
3275                 goto cleanup;
3276
3277         spin_lock_irqsave(&xhci->lock, flags);
3278
3279         /* block queuing new trbs and ringing ep doorbell */
3280         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3281
3282         /*
3283          * Make sure endpoint ring is empty before resetting the toggle/seq.
3284          * Driver is required to synchronously cancel all transfer request.
3285          * Stop the endpoint to force xHC to update the output context
3286          */
3287
3288         if (!list_empty(&ep->ring->td_list)) {
3289                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3290                 spin_unlock_irqrestore(&xhci->lock, flags);
3291                 xhci_free_command(xhci, cfg_cmd);
3292                 goto cleanup;
3293         }
3294
3295         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3296                                         ep_index, 0);
3297         if (err < 0) {
3298                 spin_unlock_irqrestore(&xhci->lock, flags);
3299                 xhci_free_command(xhci, cfg_cmd);
3300                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3301                                 __func__, err);
3302                 goto cleanup;
3303         }
3304
3305         xhci_ring_cmd_db(xhci);
3306         spin_unlock_irqrestore(&xhci->lock, flags);
3307
3308         wait_for_completion(stop_cmd->completion);
3309
3310         spin_lock_irqsave(&xhci->lock, flags);
3311
3312         /* config ep command clears toggle if add and drop ep flags are set */
3313         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3314         if (!ctrl_ctx) {
3315                 spin_unlock_irqrestore(&xhci->lock, flags);
3316                 xhci_free_command(xhci, cfg_cmd);
3317                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3318                                 __func__);
3319                 goto cleanup;
3320         }
3321
3322         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3323                                            ctrl_ctx, ep_flag, ep_flag);
3324         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3325
3326         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3327                                       udev->slot_id, false);
3328         if (err < 0) {
3329                 spin_unlock_irqrestore(&xhci->lock, flags);
3330                 xhci_free_command(xhci, cfg_cmd);
3331                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3332                                 __func__, err);
3333                 goto cleanup;
3334         }
3335
3336         xhci_ring_cmd_db(xhci);
3337         spin_unlock_irqrestore(&xhci->lock, flags);
3338
3339         wait_for_completion(cfg_cmd->completion);
3340
3341         xhci_free_command(xhci, cfg_cmd);
3342 cleanup:
3343         xhci_free_command(xhci, stop_cmd);
3344         spin_lock_irqsave(&xhci->lock, flags);
3345         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3346                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3347         spin_unlock_irqrestore(&xhci->lock, flags);
3348 }
3349
3350 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3351                 struct usb_device *udev, struct usb_host_endpoint *ep,
3352                 unsigned int slot_id)
3353 {
3354         int ret;
3355         unsigned int ep_index;
3356         unsigned int ep_state;
3357
3358         if (!ep)
3359                 return -EINVAL;
3360         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3361         if (ret <= 0)
3362                 return ret ? ret : -EINVAL;
3363         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3364                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3365                                 " descriptor for ep 0x%x does not support streams\n",
3366                                 ep->desc.bEndpointAddress);
3367                 return -EINVAL;
3368         }
3369
3370         ep_index = xhci_get_endpoint_index(&ep->desc);
3371         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3372         if (ep_state & EP_HAS_STREAMS ||
3373                         ep_state & EP_GETTING_STREAMS) {
3374                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3375                                 "already has streams set up.\n",
3376                                 ep->desc.bEndpointAddress);
3377                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3378                                 "dynamic stream context array reallocation.\n");
3379                 return -EINVAL;
3380         }
3381         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3382                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3383                                 "endpoint 0x%x; URBs are pending.\n",
3384                                 ep->desc.bEndpointAddress);
3385                 return -EINVAL;
3386         }
3387         return 0;
3388 }
3389
3390 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3391                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3392 {
3393         unsigned int max_streams;
3394
3395         /* The stream context array size must be a power of two */
3396         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3397         /*
3398          * Find out how many primary stream array entries the host controller
3399          * supports.  Later we may use secondary stream arrays (similar to 2nd
3400          * level page entries), but that's an optional feature for xHCI host
3401          * controllers. xHCs must support at least 4 stream IDs.
3402          */
3403         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3404         if (*num_stream_ctxs > max_streams) {
3405                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3406                                 max_streams);
3407                 *num_stream_ctxs = max_streams;
3408                 *num_streams = max_streams;
3409         }
3410 }
3411
3412 /* Returns an error code if one of the endpoint already has streams.
3413  * This does not change any data structures, it only checks and gathers
3414  * information.
3415  */
3416 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3417                 struct usb_device *udev,
3418                 struct usb_host_endpoint **eps, unsigned int num_eps,
3419                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3420 {
3421         unsigned int max_streams;
3422         unsigned int endpoint_flag;
3423         int i;
3424         int ret;
3425
3426         for (i = 0; i < num_eps; i++) {
3427                 ret = xhci_check_streams_endpoint(xhci, udev,
3428                                 eps[i], udev->slot_id);
3429                 if (ret < 0)
3430                         return ret;
3431
3432                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3433                 if (max_streams < (*num_streams - 1)) {
3434                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3435                                         eps[i]->desc.bEndpointAddress,
3436                                         max_streams);
3437                         *num_streams = max_streams+1;
3438                 }
3439
3440                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3441                 if (*changed_ep_bitmask & endpoint_flag)
3442                         return -EINVAL;
3443                 *changed_ep_bitmask |= endpoint_flag;
3444         }
3445         return 0;
3446 }
3447
3448 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3449                 struct usb_device *udev,
3450                 struct usb_host_endpoint **eps, unsigned int num_eps)
3451 {
3452         u32 changed_ep_bitmask = 0;
3453         unsigned int slot_id;
3454         unsigned int ep_index;
3455         unsigned int ep_state;
3456         int i;
3457
3458         slot_id = udev->slot_id;
3459         if (!xhci->devs[slot_id])
3460                 return 0;
3461
3462         for (i = 0; i < num_eps; i++) {
3463                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3464                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3465                 /* Are streams already being freed for the endpoint? */
3466                 if (ep_state & EP_GETTING_NO_STREAMS) {
3467                         xhci_warn(xhci, "WARN Can't disable streams for "
3468                                         "endpoint 0x%x, "
3469                                         "streams are being disabled already\n",
3470                                         eps[i]->desc.bEndpointAddress);
3471                         return 0;
3472                 }
3473                 /* Are there actually any streams to free? */
3474                 if (!(ep_state & EP_HAS_STREAMS) &&
3475                                 !(ep_state & EP_GETTING_STREAMS)) {
3476                         xhci_warn(xhci, "WARN Can't disable streams for "
3477                                         "endpoint 0x%x, "
3478                                         "streams are already disabled!\n",
3479                                         eps[i]->desc.bEndpointAddress);
3480                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3481                                         "with non-streams endpoint\n");
3482                         return 0;
3483                 }
3484                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3485         }
3486         return changed_ep_bitmask;
3487 }
3488
3489 /*
3490  * The USB device drivers use this function (through the HCD interface in USB
3491  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3492  * coordinate mass storage command queueing across multiple endpoints (basically
3493  * a stream ID == a task ID).
3494  *
3495  * Setting up streams involves allocating the same size stream context array
3496  * for each endpoint and issuing a configure endpoint command for all endpoints.
3497  *
3498  * Don't allow the call to succeed if one endpoint only supports one stream
3499  * (which means it doesn't support streams at all).
3500  *
3501  * Drivers may get less stream IDs than they asked for, if the host controller
3502  * hardware or endpoints claim they can't support the number of requested
3503  * stream IDs.
3504  */
3505 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3506                 struct usb_host_endpoint **eps, unsigned int num_eps,
3507                 unsigned int num_streams, gfp_t mem_flags)
3508 {
3509         int i, ret;
3510         struct xhci_hcd *xhci;
3511         struct xhci_virt_device *vdev;
3512         struct xhci_command *config_cmd;
3513         struct xhci_input_control_ctx *ctrl_ctx;
3514         unsigned int ep_index;
3515         unsigned int num_stream_ctxs;
3516         unsigned int max_packet;
3517         unsigned long flags;
3518         u32 changed_ep_bitmask = 0;
3519
3520         if (!eps)
3521                 return -EINVAL;
3522
3523         /* Add one to the number of streams requested to account for
3524          * stream 0 that is reserved for xHCI usage.
3525          */
3526         num_streams += 1;
3527         xhci = hcd_to_xhci(hcd);
3528         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3529                         num_streams);
3530
3531         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3532         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3533                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3534                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3535                 return -ENOSYS;
3536         }
3537
3538         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3539         if (!config_cmd)
3540                 return -ENOMEM;
3541
3542         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3543         if (!ctrl_ctx) {
3544                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3545                                 __func__);
3546                 xhci_free_command(xhci, config_cmd);
3547                 return -ENOMEM;
3548         }
3549
3550         /* Check to make sure all endpoints are not already configured for
3551          * streams.  While we're at it, find the maximum number of streams that
3552          * all the endpoints will support and check for duplicate endpoints.
3553          */
3554         spin_lock_irqsave(&xhci->lock, flags);
3555         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3556                         num_eps, &num_streams, &changed_ep_bitmask);
3557         if (ret < 0) {
3558                 xhci_free_command(xhci, config_cmd);
3559                 spin_unlock_irqrestore(&xhci->lock, flags);
3560                 return ret;
3561         }
3562         if (num_streams <= 1) {
3563                 xhci_warn(xhci, "WARN: endpoints can't handle "
3564                                 "more than one stream.\n");
3565                 xhci_free_command(xhci, config_cmd);
3566                 spin_unlock_irqrestore(&xhci->lock, flags);
3567                 return -EINVAL;
3568         }
3569         vdev = xhci->devs[udev->slot_id];
3570         /* Mark each endpoint as being in transition, so
3571          * xhci_urb_enqueue() will reject all URBs.
3572          */
3573         for (i = 0; i < num_eps; i++) {
3574                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3575                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3576         }
3577         spin_unlock_irqrestore(&xhci->lock, flags);
3578
3579         /* Setup internal data structures and allocate HW data structures for
3580          * streams (but don't install the HW structures in the input context
3581          * until we're sure all memory allocation succeeded).
3582          */
3583         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3584         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3585                         num_stream_ctxs, num_streams);
3586
3587         for (i = 0; i < num_eps; i++) {
3588                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3589                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3590                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3591                                 num_stream_ctxs,
3592                                 num_streams,
3593                                 max_packet, mem_flags);
3594                 if (!vdev->eps[ep_index].stream_info)
3595                         goto cleanup;
3596                 /* Set maxPstreams in endpoint context and update deq ptr to
3597                  * point to stream context array. FIXME
3598                  */
3599         }
3600
3601         /* Set up the input context for a configure endpoint command. */
3602         for (i = 0; i < num_eps; i++) {
3603                 struct xhci_ep_ctx *ep_ctx;
3604
3605                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3607
3608                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3609                                 vdev->out_ctx, ep_index);
3610                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3611                                 vdev->eps[ep_index].stream_info);
3612         }
3613         /* Tell the HW to drop its old copy of the endpoint context info
3614          * and add the updated copy from the input context.
3615          */
3616         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3617                         vdev->out_ctx, ctrl_ctx,
3618                         changed_ep_bitmask, changed_ep_bitmask);
3619
3620         /* Issue and wait for the configure endpoint command */
3621         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3622                         false, false);
3623
3624         /* xHC rejected the configure endpoint command for some reason, so we
3625          * leave the old ring intact and free our internal streams data
3626          * structure.
3627          */
3628         if (ret < 0)
3629                 goto cleanup;
3630
3631         spin_lock_irqsave(&xhci->lock, flags);
3632         for (i = 0; i < num_eps; i++) {
3633                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3634                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3635                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3636                          udev->slot_id, ep_index);
3637                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3638         }
3639         xhci_free_command(xhci, config_cmd);
3640         spin_unlock_irqrestore(&xhci->lock, flags);
3641
3642         for (i = 0; i < num_eps; i++) {
3643                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3644                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3645         }
3646         /* Subtract 1 for stream 0, which drivers can't use */
3647         return num_streams - 1;
3648
3649 cleanup:
3650         /* If it didn't work, free the streams! */
3651         for (i = 0; i < num_eps; i++) {
3652                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3653                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3654                 vdev->eps[ep_index].stream_info = NULL;
3655                 /* FIXME Unset maxPstreams in endpoint context and
3656                  * update deq ptr to point to normal string ring.
3657                  */
3658                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3659                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3660                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3661         }
3662         xhci_free_command(xhci, config_cmd);
3663         return -ENOMEM;
3664 }
3665
3666 /* Transition the endpoint from using streams to being a "normal" endpoint
3667  * without streams.
3668  *
3669  * Modify the endpoint context state, submit a configure endpoint command,
3670  * and free all endpoint rings for streams if that completes successfully.
3671  */
3672 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3673                 struct usb_host_endpoint **eps, unsigned int num_eps,
3674                 gfp_t mem_flags)
3675 {
3676         int i, ret;
3677         struct xhci_hcd *xhci;
3678         struct xhci_virt_device *vdev;
3679         struct xhci_command *command;
3680         struct xhci_input_control_ctx *ctrl_ctx;
3681         unsigned int ep_index;
3682         unsigned long flags;
3683         u32 changed_ep_bitmask;
3684
3685         xhci = hcd_to_xhci(hcd);
3686         vdev = xhci->devs[udev->slot_id];
3687
3688         /* Set up a configure endpoint command to remove the streams rings */
3689         spin_lock_irqsave(&xhci->lock, flags);
3690         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3691                         udev, eps, num_eps);
3692         if (changed_ep_bitmask == 0) {
3693                 spin_unlock_irqrestore(&xhci->lock, flags);
3694                 return -EINVAL;
3695         }
3696
3697         /* Use the xhci_command structure from the first endpoint.  We may have
3698          * allocated too many, but the driver may call xhci_free_streams() for
3699          * each endpoint it grouped into one call to xhci_alloc_streams().
3700          */
3701         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3702         command = vdev->eps[ep_index].stream_info->free_streams_command;
3703         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3704         if (!ctrl_ctx) {
3705                 spin_unlock_irqrestore(&xhci->lock, flags);
3706                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3707                                 __func__);
3708                 return -EINVAL;
3709         }
3710
3711         for (i = 0; i < num_eps; i++) {
3712                 struct xhci_ep_ctx *ep_ctx;
3713
3714                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3715                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3716                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3717                         EP_GETTING_NO_STREAMS;
3718
3719                 xhci_endpoint_copy(xhci, command->in_ctx,
3720                                 vdev->out_ctx, ep_index);
3721                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3722                                 &vdev->eps[ep_index]);
3723         }
3724         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3725                         vdev->out_ctx, ctrl_ctx,
3726                         changed_ep_bitmask, changed_ep_bitmask);
3727         spin_unlock_irqrestore(&xhci->lock, flags);
3728
3729         /* Issue and wait for the configure endpoint command,
3730          * which must succeed.
3731          */
3732         ret = xhci_configure_endpoint(xhci, udev, command,
3733                         false, true);
3734
3735         /* xHC rejected the configure endpoint command for some reason, so we
3736          * leave the streams rings intact.
3737          */
3738         if (ret < 0)
3739                 return ret;
3740
3741         spin_lock_irqsave(&xhci->lock, flags);
3742         for (i = 0; i < num_eps; i++) {
3743                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3744                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3745                 vdev->eps[ep_index].stream_info = NULL;
3746                 /* FIXME Unset maxPstreams in endpoint context and
3747                  * update deq ptr to point to normal string ring.
3748                  */
3749                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3750                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3751         }
3752         spin_unlock_irqrestore(&xhci->lock, flags);
3753
3754         return 0;
3755 }
3756
3757 /*
3758  * Deletes endpoint resources for endpoints that were active before a Reset
3759  * Device command, or a Disable Slot command.  The Reset Device command leaves
3760  * the control endpoint intact, whereas the Disable Slot command deletes it.
3761  *
3762  * Must be called with xhci->lock held.
3763  */
3764 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3765         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3766 {
3767         int i;
3768         unsigned int num_dropped_eps = 0;
3769         unsigned int drop_flags = 0;
3770
3771         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3772                 if (virt_dev->eps[i].ring) {
3773                         drop_flags |= 1 << i;
3774                         num_dropped_eps++;
3775                 }
3776         }
3777         xhci->num_active_eps -= num_dropped_eps;
3778         if (num_dropped_eps)
3779                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3780                                 "Dropped %u ep ctxs, flags = 0x%x, "
3781                                 "%u now active.",
3782                                 num_dropped_eps, drop_flags,
3783                                 xhci->num_active_eps);
3784 }
3785
3786 /*
3787  * This submits a Reset Device Command, which will set the device state to 0,
3788  * set the device address to 0, and disable all the endpoints except the default
3789  * control endpoint.  The USB core should come back and call
3790  * xhci_address_device(), and then re-set up the configuration.  If this is
3791  * called because of a usb_reset_and_verify_device(), then the old alternate
3792  * settings will be re-installed through the normal bandwidth allocation
3793  * functions.
3794  *
3795  * Wait for the Reset Device command to finish.  Remove all structures
3796  * associated with the endpoints that were disabled.  Clear the input device
3797  * structure? Reset the control endpoint 0 max packet size?
3798  *
3799  * If the virt_dev to be reset does not exist or does not match the udev,
3800  * it means the device is lost, possibly due to the xHC restore error and
3801  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3802  * re-allocate the device.
3803  */
3804 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3805                 struct usb_device *udev)
3806 {
3807         int ret, i;
3808         unsigned long flags;
3809         struct xhci_hcd *xhci;
3810         unsigned int slot_id;
3811         struct xhci_virt_device *virt_dev;
3812         struct xhci_command *reset_device_cmd;
3813         struct xhci_slot_ctx *slot_ctx;
3814         int old_active_eps = 0;
3815
3816         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3817         if (ret <= 0)
3818                 return ret;
3819         xhci = hcd_to_xhci(hcd);
3820         slot_id = udev->slot_id;
3821         virt_dev = xhci->devs[slot_id];
3822         if (!virt_dev) {
3823                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3824                                 "not exist. Re-allocate the device\n", slot_id);
3825                 ret = xhci_alloc_dev(hcd, udev);
3826                 if (ret == 1)
3827                         return 0;
3828                 else
3829                         return -EINVAL;
3830         }
3831
3832         if (virt_dev->tt_info)
3833                 old_active_eps = virt_dev->tt_info->active_eps;
3834
3835         if (virt_dev->udev != udev) {
3836                 /* If the virt_dev and the udev does not match, this virt_dev
3837                  * may belong to another udev.
3838                  * Re-allocate the device.
3839                  */
3840                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3841                                 "not match the udev. Re-allocate the device\n",
3842                                 slot_id);
3843                 ret = xhci_alloc_dev(hcd, udev);
3844                 if (ret == 1)
3845                         return 0;
3846                 else
3847                         return -EINVAL;
3848         }
3849
3850         /* If device is not setup, there is no point in resetting it */
3851         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3852         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3853                                                 SLOT_STATE_DISABLED)
3854                 return 0;
3855
3856         trace_xhci_discover_or_reset_device(slot_ctx);
3857
3858         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3859         /* Allocate the command structure that holds the struct completion.
3860          * Assume we're in process context, since the normal device reset
3861          * process has to wait for the device anyway.  Storage devices are
3862          * reset as part of error handling, so use GFP_NOIO instead of
3863          * GFP_KERNEL.
3864          */
3865         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3866         if (!reset_device_cmd) {
3867                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3868                 return -ENOMEM;
3869         }
3870
3871         /* Attempt to submit the Reset Device command to the command ring */
3872         spin_lock_irqsave(&xhci->lock, flags);
3873
3874         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3875         if (ret) {
3876                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3877                 spin_unlock_irqrestore(&xhci->lock, flags);
3878                 goto command_cleanup;
3879         }
3880         xhci_ring_cmd_db(xhci);
3881         spin_unlock_irqrestore(&xhci->lock, flags);
3882
3883         /* Wait for the Reset Device command to finish */
3884         wait_for_completion(reset_device_cmd->completion);
3885
3886         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3887          * unless we tried to reset a slot ID that wasn't enabled,
3888          * or the device wasn't in the addressed or configured state.
3889          */
3890         ret = reset_device_cmd->status;
3891         switch (ret) {
3892         case COMP_COMMAND_ABORTED:
3893         case COMP_COMMAND_RING_STOPPED:
3894                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3895                 ret = -ETIME;
3896                 goto command_cleanup;
3897         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3898         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3899                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3900                                 slot_id,
3901                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3902                 xhci_dbg(xhci, "Not freeing device rings.\n");
3903                 /* Don't treat this as an error.  May change my mind later. */
3904                 ret = 0;
3905                 goto command_cleanup;
3906         case COMP_SUCCESS:
3907                 xhci_dbg(xhci, "Successful reset device command.\n");
3908                 break;
3909         default:
3910                 if (xhci_is_vendor_info_code(xhci, ret))
3911                         break;
3912                 xhci_warn(xhci, "Unknown completion code %u for "
3913                                 "reset device command.\n", ret);
3914                 ret = -EINVAL;
3915                 goto command_cleanup;
3916         }
3917
3918         /* Free up host controller endpoint resources */
3919         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3920                 spin_lock_irqsave(&xhci->lock, flags);
3921                 /* Don't delete the default control endpoint resources */
3922                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3923                 spin_unlock_irqrestore(&xhci->lock, flags);
3924         }
3925
3926         /* Everything but endpoint 0 is disabled, so free the rings. */
3927         for (i = 1; i < 31; i++) {
3928                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3929
3930                 if (ep->ep_state & EP_HAS_STREAMS) {
3931                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3932                                         xhci_get_endpoint_address(i));
3933                         xhci_free_stream_info(xhci, ep->stream_info);
3934                         ep->stream_info = NULL;
3935                         ep->ep_state &= ~EP_HAS_STREAMS;
3936                 }
3937
3938                 if (ep->ring) {
3939                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3940                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3941                 }
3942                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3943                         xhci_drop_ep_from_interval_table(xhci,
3944                                         &virt_dev->eps[i].bw_info,
3945                                         virt_dev->bw_table,
3946                                         udev,
3947                                         &virt_dev->eps[i],
3948                                         virt_dev->tt_info);
3949                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3950         }
3951         /* If necessary, update the number of active TTs on this root port */
3952         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3953         virt_dev->flags = 0;
3954         ret = 0;
3955
3956 command_cleanup:
3957         xhci_free_command(xhci, reset_device_cmd);
3958         return ret;
3959 }
3960
3961 /*
3962  * At this point, the struct usb_device is about to go away, the device has
3963  * disconnected, and all traffic has been stopped and the endpoints have been
3964  * disabled.  Free any HC data structures associated with that device.
3965  */
3966 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3967 {
3968         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3969         struct xhci_virt_device *virt_dev;
3970         struct xhci_slot_ctx *slot_ctx;
3971         int i, ret;
3972
3973         /*
3974          * We called pm_runtime_get_noresume when the device was attached.
3975          * Decrement the counter here to allow controller to runtime suspend
3976          * if no devices remain.
3977          */
3978         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3979                 pm_runtime_put_noidle(hcd->self.controller);
3980
3981         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3982         /* If the host is halted due to driver unload, we still need to free the
3983          * device.
3984          */
3985         if (ret <= 0 && ret != -ENODEV)
3986                 return;
3987
3988         virt_dev = xhci->devs[udev->slot_id];
3989         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3990         trace_xhci_free_dev(slot_ctx);
3991
3992         /* Stop any wayward timer functions (which may grab the lock) */
3993         for (i = 0; i < 31; i++)
3994                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3995         virt_dev->udev = NULL;
3996         xhci_disable_slot(xhci, udev->slot_id);
3997         xhci_free_virt_device(xhci, udev->slot_id);
3998 }
3999
4000 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4001 {
4002         struct xhci_command *command;
4003         unsigned long flags;
4004         u32 state;
4005         int ret;
4006
4007         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4008         if (!command)
4009                 return -ENOMEM;
4010
4011         xhci_debugfs_remove_slot(xhci, slot_id);
4012
4013         spin_lock_irqsave(&xhci->lock, flags);
4014         /* Don't disable the slot if the host controller is dead. */
4015         state = readl(&xhci->op_regs->status);
4016         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4017                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
4018                 spin_unlock_irqrestore(&xhci->lock, flags);
4019                 kfree(command);
4020                 return -ENODEV;
4021         }
4022
4023         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4024                                 slot_id);
4025         if (ret) {
4026                 spin_unlock_irqrestore(&xhci->lock, flags);
4027                 kfree(command);
4028                 return ret;
4029         }
4030         xhci_ring_cmd_db(xhci);
4031         spin_unlock_irqrestore(&xhci->lock, flags);
4032
4033         wait_for_completion(command->completion);
4034
4035         if (command->status != COMP_SUCCESS)
4036                 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4037                           slot_id, command->status);
4038
4039         xhci_free_command(xhci, command);
4040
4041         return 0;
4042 }
4043
4044 /*
4045  * Checks if we have enough host controller resources for the default control
4046  * endpoint.
4047  *
4048  * Must be called with xhci->lock held.
4049  */
4050 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4051 {
4052         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4053                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4054                                 "Not enough ep ctxs: "
4055                                 "%u active, need to add 1, limit is %u.",
4056                                 xhci->num_active_eps, xhci->limit_active_eps);
4057                 return -ENOMEM;
4058         }
4059         xhci->num_active_eps += 1;
4060         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4061                         "Adding 1 ep ctx, %u now active.",
4062                         xhci->num_active_eps);
4063         return 0;
4064 }
4065
4066
4067 /*
4068  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4069  * timed out, or allocating memory failed.  Returns 1 on success.
4070  */
4071 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4072 {
4073         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4074         struct xhci_virt_device *vdev;
4075         struct xhci_slot_ctx *slot_ctx;
4076         unsigned long flags;
4077         int ret, slot_id;
4078         struct xhci_command *command;
4079
4080         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4081         if (!command)
4082                 return 0;
4083
4084         spin_lock_irqsave(&xhci->lock, flags);
4085         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4086         if (ret) {
4087                 spin_unlock_irqrestore(&xhci->lock, flags);
4088                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4089                 xhci_free_command(xhci, command);
4090                 return 0;
4091         }
4092         xhci_ring_cmd_db(xhci);
4093         spin_unlock_irqrestore(&xhci->lock, flags);
4094
4095         wait_for_completion(command->completion);
4096         slot_id = command->slot_id;
4097
4098         if (!slot_id || command->status != COMP_SUCCESS) {
4099                 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4100                          xhci_trb_comp_code_string(command->status));
4101                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4102                                 HCS_MAX_SLOTS(
4103                                         readl(&xhci->cap_regs->hcs_params1)));
4104                 xhci_free_command(xhci, command);
4105                 return 0;
4106         }
4107
4108         xhci_free_command(xhci, command);
4109
4110         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4111                 spin_lock_irqsave(&xhci->lock, flags);
4112                 ret = xhci_reserve_host_control_ep_resources(xhci);
4113                 if (ret) {
4114                         spin_unlock_irqrestore(&xhci->lock, flags);
4115                         xhci_warn(xhci, "Not enough host resources, "
4116                                         "active endpoint contexts = %u\n",
4117                                         xhci->num_active_eps);
4118                         goto disable_slot;
4119                 }
4120                 spin_unlock_irqrestore(&xhci->lock, flags);
4121         }
4122         /* Use GFP_NOIO, since this function can be called from
4123          * xhci_discover_or_reset_device(), which may be called as part of
4124          * mass storage driver error handling.
4125          */
4126         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4127                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4128                 goto disable_slot;
4129         }
4130         vdev = xhci->devs[slot_id];
4131         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4132         trace_xhci_alloc_dev(slot_ctx);
4133
4134         udev->slot_id = slot_id;
4135
4136         xhci_debugfs_create_slot(xhci, slot_id);
4137
4138         /*
4139          * If resetting upon resume, we can't put the controller into runtime
4140          * suspend if there is a device attached.
4141          */
4142         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4143                 pm_runtime_get_noresume(hcd->self.controller);
4144
4145         /* Is this a LS or FS device under a HS hub? */
4146         /* Hub or peripherial? */
4147         return 1;
4148
4149 disable_slot:
4150         xhci_disable_slot(xhci, udev->slot_id);
4151         xhci_free_virt_device(xhci, udev->slot_id);
4152
4153         return 0;
4154 }
4155
4156 /*
4157  * Issue an Address Device command and optionally send a corresponding
4158  * SetAddress request to the device.
4159  */
4160 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4161                              enum xhci_setup_dev setup)
4162 {
4163         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4164         unsigned long flags;
4165         struct xhci_virt_device *virt_dev;
4166         int ret = 0;
4167         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4168         struct xhci_slot_ctx *slot_ctx;
4169         struct xhci_input_control_ctx *ctrl_ctx;
4170         u64 temp_64;
4171         struct xhci_command *command = NULL;
4172
4173         mutex_lock(&xhci->mutex);
4174
4175         if (xhci->xhc_state) {  /* dying, removing or halted */
4176                 ret = -ESHUTDOWN;
4177                 goto out;
4178         }
4179
4180         if (!udev->slot_id) {
4181                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4182                                 "Bad Slot ID %d", udev->slot_id);
4183                 ret = -EINVAL;
4184                 goto out;
4185         }
4186
4187         virt_dev = xhci->devs[udev->slot_id];
4188
4189         if (WARN_ON(!virt_dev)) {
4190                 /*
4191                  * In plug/unplug torture test with an NEC controller,
4192                  * a zero-dereference was observed once due to virt_dev = 0.
4193                  * Print useful debug rather than crash if it is observed again!
4194                  */
4195                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4196                         udev->slot_id);
4197                 ret = -EINVAL;
4198                 goto out;
4199         }
4200         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4201         trace_xhci_setup_device_slot(slot_ctx);
4202
4203         if (setup == SETUP_CONTEXT_ONLY) {
4204                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4205                     SLOT_STATE_DEFAULT) {
4206                         xhci_dbg(xhci, "Slot already in default state\n");
4207                         goto out;
4208                 }
4209         }
4210
4211         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4212         if (!command) {
4213                 ret = -ENOMEM;
4214                 goto out;
4215         }
4216
4217         command->in_ctx = virt_dev->in_ctx;
4218
4219         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4220         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4221         if (!ctrl_ctx) {
4222                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4223                                 __func__);
4224                 ret = -EINVAL;
4225                 goto out;
4226         }
4227         /*
4228          * If this is the first Set Address since device plug-in or
4229          * virt_device realloaction after a resume with an xHCI power loss,
4230          * then set up the slot context.
4231          */
4232         if (!slot_ctx->dev_info)
4233                 xhci_setup_addressable_virt_dev(xhci, udev);
4234         /* Otherwise, update the control endpoint ring enqueue pointer. */
4235         else
4236                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4237         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4238         ctrl_ctx->drop_flags = 0;
4239
4240         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4241                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4242
4243         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4244         spin_lock_irqsave(&xhci->lock, flags);
4245         trace_xhci_setup_device(virt_dev);
4246         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4247                                         udev->slot_id, setup);
4248         if (ret) {
4249                 spin_unlock_irqrestore(&xhci->lock, flags);
4250                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4251                                 "FIXME: allocate a command ring segment");
4252                 goto out;
4253         }
4254         xhci_ring_cmd_db(xhci);
4255         spin_unlock_irqrestore(&xhci->lock, flags);
4256
4257         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4258         wait_for_completion(command->completion);
4259
4260         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4261          * the SetAddress() "recovery interval" required by USB and aborting the
4262          * command on a timeout.
4263          */
4264         switch (command->status) {
4265         case COMP_COMMAND_ABORTED:
4266         case COMP_COMMAND_RING_STOPPED:
4267                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4268                 ret = -ETIME;
4269                 break;
4270         case COMP_CONTEXT_STATE_ERROR:
4271         case COMP_SLOT_NOT_ENABLED_ERROR:
4272                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4273                          act, udev->slot_id);
4274                 ret = -EINVAL;
4275                 break;
4276         case COMP_USB_TRANSACTION_ERROR:
4277                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4278
4279                 mutex_unlock(&xhci->mutex);
4280                 ret = xhci_disable_slot(xhci, udev->slot_id);
4281                 xhci_free_virt_device(xhci, udev->slot_id);
4282                 if (!ret)
4283                         xhci_alloc_dev(hcd, udev);
4284                 kfree(command->completion);
4285                 kfree(command);
4286                 return -EPROTO;
4287         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4288                 dev_warn(&udev->dev,
4289                          "ERROR: Incompatible device for setup %s command\n", act);
4290                 ret = -ENODEV;
4291                 break;
4292         case COMP_SUCCESS:
4293                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4294                                "Successful setup %s command", act);
4295                 break;
4296         default:
4297                 xhci_err(xhci,
4298                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4299                          act, command->status);
4300                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4301                 ret = -EINVAL;
4302                 break;
4303         }
4304         if (ret)
4305                 goto out;
4306         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4307         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308                         "Op regs DCBAA ptr = %#016llx", temp_64);
4309         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4310                 "Slot ID %d dcbaa entry @%p = %#016llx",
4311                 udev->slot_id,
4312                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4313                 (unsigned long long)
4314                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4315         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4316                         "Output Context DMA address = %#08llx",
4317                         (unsigned long long)virt_dev->out_ctx->dma);
4318         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4319                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4320         /*
4321          * USB core uses address 1 for the roothubs, so we add one to the
4322          * address given back to us by the HC.
4323          */
4324         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4325                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4326         /* Zero the input context control for later use */
4327         ctrl_ctx->add_flags = 0;
4328         ctrl_ctx->drop_flags = 0;
4329         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4330         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4331
4332         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4333                        "Internal device address = %d",
4334                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4335 out:
4336         mutex_unlock(&xhci->mutex);
4337         if (command) {
4338                 kfree(command->completion);
4339                 kfree(command);
4340         }
4341         return ret;
4342 }
4343
4344 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4345 {
4346         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4347 }
4348
4349 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4350 {
4351         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4352 }
4353
4354 /*
4355  * Transfer the port index into real index in the HW port status
4356  * registers. Caculate offset between the port's PORTSC register
4357  * and port status base. Divide the number of per port register
4358  * to get the real index. The raw port number bases 1.
4359  */
4360 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4361 {
4362         struct xhci_hub *rhub;
4363
4364         rhub = xhci_get_rhub(hcd);
4365         return rhub->ports[port1 - 1]->hw_portnum + 1;
4366 }
4367
4368 /*
4369  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4370  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4371  */
4372 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4373                         struct usb_device *udev, u16 max_exit_latency)
4374 {
4375         struct xhci_virt_device *virt_dev;
4376         struct xhci_command *command;
4377         struct xhci_input_control_ctx *ctrl_ctx;
4378         struct xhci_slot_ctx *slot_ctx;
4379         unsigned long flags;
4380         int ret;
4381
4382         command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4383         if (!command)
4384                 return -ENOMEM;
4385
4386         spin_lock_irqsave(&xhci->lock, flags);
4387
4388         virt_dev = xhci->devs[udev->slot_id];
4389
4390         /*
4391          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4392          * xHC was re-initialized. Exit latency will be set later after
4393          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4394          */
4395
4396         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4397                 spin_unlock_irqrestore(&xhci->lock, flags);
4398                 return 0;
4399         }
4400
4401         /* Attempt to issue an Evaluate Context command to change the MEL. */
4402         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4403         if (!ctrl_ctx) {
4404                 spin_unlock_irqrestore(&xhci->lock, flags);
4405                 xhci_free_command(xhci, command);
4406                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4407                                 __func__);
4408                 return -ENOMEM;
4409         }
4410
4411         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4412         spin_unlock_irqrestore(&xhci->lock, flags);
4413
4414         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4415         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4416         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4417         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4418         slot_ctx->dev_state = 0;
4419
4420         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4421                         "Set up evaluate context for LPM MEL change.");
4422
4423         /* Issue and wait for the evaluate context command. */
4424         ret = xhci_configure_endpoint(xhci, udev, command,
4425                         true, true);
4426
4427         if (!ret) {
4428                 spin_lock_irqsave(&xhci->lock, flags);
4429                 virt_dev->current_mel = max_exit_latency;
4430                 spin_unlock_irqrestore(&xhci->lock, flags);
4431         }
4432
4433         xhci_free_command(xhci, command);
4434
4435         return ret;
4436 }
4437
4438 #ifdef CONFIG_PM
4439
4440 /* BESL to HIRD Encoding array for USB2 LPM */
4441 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4442         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4443
4444 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4445 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4446                                         struct usb_device *udev)
4447 {
4448         int u2del, besl, besl_host;
4449         int besl_device = 0;
4450         u32 field;
4451
4452         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4453         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4454
4455         if (field & USB_BESL_SUPPORT) {
4456                 for (besl_host = 0; besl_host < 16; besl_host++) {
4457                         if (xhci_besl_encoding[besl_host] >= u2del)
4458                                 break;
4459                 }
4460                 /* Use baseline BESL value as default */
4461                 if (field & USB_BESL_BASELINE_VALID)
4462                         besl_device = USB_GET_BESL_BASELINE(field);
4463                 else if (field & USB_BESL_DEEP_VALID)
4464                         besl_device = USB_GET_BESL_DEEP(field);
4465         } else {
4466                 if (u2del <= 50)
4467                         besl_host = 0;
4468                 else
4469                         besl_host = (u2del - 51) / 75 + 1;
4470         }
4471
4472         besl = besl_host + besl_device;
4473         if (besl > 15)
4474                 besl = 15;
4475
4476         return besl;
4477 }
4478
4479 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4480 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4481 {
4482         u32 field;
4483         int l1;
4484         int besld = 0;
4485         int hirdm = 0;
4486
4487         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4488
4489         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4490         l1 = udev->l1_params.timeout / 256;
4491
4492         /* device has preferred BESLD */
4493         if (field & USB_BESL_DEEP_VALID) {
4494                 besld = USB_GET_BESL_DEEP(field);
4495                 hirdm = 1;
4496         }
4497
4498         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4499 }
4500
4501 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4502                         struct usb_device *udev, int enable)
4503 {
4504         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4505         struct xhci_port **ports;
4506         __le32 __iomem  *pm_addr, *hlpm_addr;
4507         u32             pm_val, hlpm_val, field;
4508         unsigned int    port_num;
4509         unsigned long   flags;
4510         int             hird, exit_latency;
4511         int             ret;
4512
4513         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4514                 return -EPERM;
4515
4516         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4517                         !udev->lpm_capable)
4518                 return -EPERM;
4519
4520         if (!udev->parent || udev->parent->parent ||
4521                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4522                 return -EPERM;
4523
4524         if (udev->usb2_hw_lpm_capable != 1)
4525                 return -EPERM;
4526
4527         spin_lock_irqsave(&xhci->lock, flags);
4528
4529         ports = xhci->usb2_rhub.ports;
4530         port_num = udev->portnum - 1;
4531         pm_addr = ports[port_num]->addr + PORTPMSC;
4532         pm_val = readl(pm_addr);
4533         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4534
4535         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4536                         enable ? "enable" : "disable", port_num + 1);
4537
4538         if (enable) {
4539                 /* Host supports BESL timeout instead of HIRD */
4540                 if (udev->usb2_hw_lpm_besl_capable) {
4541                         /* if device doesn't have a preferred BESL value use a
4542                          * default one which works with mixed HIRD and BESL
4543                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4544                          */
4545                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4546                         if ((field & USB_BESL_SUPPORT) &&
4547                             (field & USB_BESL_BASELINE_VALID))
4548                                 hird = USB_GET_BESL_BASELINE(field);
4549                         else
4550                                 hird = udev->l1_params.besl;
4551
4552                         exit_latency = xhci_besl_encoding[hird];
4553                         spin_unlock_irqrestore(&xhci->lock, flags);
4554
4555                         ret = xhci_change_max_exit_latency(xhci, udev,
4556                                                            exit_latency);
4557                         if (ret < 0)
4558                                 return ret;
4559                         spin_lock_irqsave(&xhci->lock, flags);
4560
4561                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4562                         writel(hlpm_val, hlpm_addr);
4563                         /* flush write */
4564                         readl(hlpm_addr);
4565                 } else {
4566                         hird = xhci_calculate_hird_besl(xhci, udev);
4567                 }
4568
4569                 pm_val &= ~PORT_HIRD_MASK;
4570                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4571                 writel(pm_val, pm_addr);
4572                 pm_val = readl(pm_addr);
4573                 pm_val |= PORT_HLE;
4574                 writel(pm_val, pm_addr);
4575                 /* flush write */
4576                 readl(pm_addr);
4577         } else {
4578                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4579                 writel(pm_val, pm_addr);
4580                 /* flush write */
4581                 readl(pm_addr);
4582                 if (udev->usb2_hw_lpm_besl_capable) {
4583                         spin_unlock_irqrestore(&xhci->lock, flags);
4584                         xhci_change_max_exit_latency(xhci, udev, 0);
4585                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4586                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4587                                            100, 10000);
4588                         return 0;
4589                 }
4590         }
4591
4592         spin_unlock_irqrestore(&xhci->lock, flags);
4593         return 0;
4594 }
4595
4596 /* check if a usb2 port supports a given extened capability protocol
4597  * only USB2 ports extended protocol capability values are cached.
4598  * Return 1 if capability is supported
4599  */
4600 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4601                                            unsigned capability)
4602 {
4603         u32 port_offset, port_count;
4604         int i;
4605
4606         for (i = 0; i < xhci->num_ext_caps; i++) {
4607                 if (xhci->ext_caps[i] & capability) {
4608                         /* port offsets starts at 1 */
4609                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4610                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4611                         if (port >= port_offset &&
4612                             port < port_offset + port_count)
4613                                 return 1;
4614                 }
4615         }
4616         return 0;
4617 }
4618
4619 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4620 {
4621         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4622         int             portnum = udev->portnum - 1;
4623
4624         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4625                 return 0;
4626
4627         /* we only support lpm for non-hub device connected to root hub yet */
4628         if (!udev->parent || udev->parent->parent ||
4629                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4630                 return 0;
4631
4632         if (xhci->hw_lpm_support == 1 &&
4633                         xhci_check_usb2_port_capability(
4634                                 xhci, portnum, XHCI_HLC)) {
4635                 udev->usb2_hw_lpm_capable = 1;
4636                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4637                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4638                 if (xhci_check_usb2_port_capability(xhci, portnum,
4639                                         XHCI_BLC))
4640                         udev->usb2_hw_lpm_besl_capable = 1;
4641         }
4642
4643         return 0;
4644 }
4645
4646 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4647
4648 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4649 static unsigned long long xhci_service_interval_to_ns(
4650                 struct usb_endpoint_descriptor *desc)
4651 {
4652         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4653 }
4654
4655 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4656                 enum usb3_link_state state)
4657 {
4658         unsigned long long sel;
4659         unsigned long long pel;
4660         unsigned int max_sel_pel;
4661         char *state_name;
4662
4663         switch (state) {
4664         case USB3_LPM_U1:
4665                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4666                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4667                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4668                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4669                 state_name = "U1";
4670                 break;
4671         case USB3_LPM_U2:
4672                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4673                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4674                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4675                 state_name = "U2";
4676                 break;
4677         default:
4678                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4679                                 __func__);
4680                 return USB3_LPM_DISABLED;
4681         }
4682
4683         if (sel <= max_sel_pel && pel <= max_sel_pel)
4684                 return USB3_LPM_DEVICE_INITIATED;
4685
4686         if (sel > max_sel_pel)
4687                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4688                                 "due to long SEL %llu ms\n",
4689                                 state_name, sel);
4690         else
4691                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4692                                 "due to long PEL %llu ms\n",
4693                                 state_name, pel);
4694         return USB3_LPM_DISABLED;
4695 }
4696
4697 /* The U1 timeout should be the maximum of the following values:
4698  *  - For control endpoints, U1 system exit latency (SEL) * 3
4699  *  - For bulk endpoints, U1 SEL * 5
4700  *  - For interrupt endpoints:
4701  *    - Notification EPs, U1 SEL * 3
4702  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4703  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4704  */
4705 static unsigned long long xhci_calculate_intel_u1_timeout(
4706                 struct usb_device *udev,
4707                 struct usb_endpoint_descriptor *desc)
4708 {
4709         unsigned long long timeout_ns;
4710         int ep_type;
4711         int intr_type;
4712
4713         ep_type = usb_endpoint_type(desc);
4714         switch (ep_type) {
4715         case USB_ENDPOINT_XFER_CONTROL:
4716                 timeout_ns = udev->u1_params.sel * 3;
4717                 break;
4718         case USB_ENDPOINT_XFER_BULK:
4719                 timeout_ns = udev->u1_params.sel * 5;
4720                 break;
4721         case USB_ENDPOINT_XFER_INT:
4722                 intr_type = usb_endpoint_interrupt_type(desc);
4723                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4724                         timeout_ns = udev->u1_params.sel * 3;
4725                         break;
4726                 }
4727                 /* Otherwise the calculation is the same as isoc eps */
4728                 fallthrough;
4729         case USB_ENDPOINT_XFER_ISOC:
4730                 timeout_ns = xhci_service_interval_to_ns(desc);
4731                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4732                 if (timeout_ns < udev->u1_params.sel * 2)
4733                         timeout_ns = udev->u1_params.sel * 2;
4734                 break;
4735         default:
4736                 return 0;
4737         }
4738
4739         return timeout_ns;
4740 }
4741
4742 /* Returns the hub-encoded U1 timeout value. */
4743 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4744                 struct usb_device *udev,
4745                 struct usb_endpoint_descriptor *desc)
4746 {
4747         unsigned long long timeout_ns;
4748
4749         /* Prevent U1 if service interval is shorter than U1 exit latency */
4750         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4751                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4752                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4753                         return USB3_LPM_DISABLED;
4754                 }
4755         }
4756
4757         if (xhci->quirks & XHCI_INTEL_HOST)
4758                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4759         else
4760                 timeout_ns = udev->u1_params.sel;
4761
4762         /* The U1 timeout is encoded in 1us intervals.
4763          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4764          */
4765         if (timeout_ns == USB3_LPM_DISABLED)
4766                 timeout_ns = 1;
4767         else
4768                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4769
4770         /* If the necessary timeout value is bigger than what we can set in the
4771          * USB 3.0 hub, we have to disable hub-initiated U1.
4772          */
4773         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4774                 return timeout_ns;
4775         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4776                         "due to long timeout %llu ms\n", timeout_ns);
4777         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4778 }
4779
4780 /* The U2 timeout should be the maximum of:
4781  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4782  *  - largest bInterval of any active periodic endpoint (to avoid going
4783  *    into lower power link states between intervals).
4784  *  - the U2 Exit Latency of the device
4785  */
4786 static unsigned long long xhci_calculate_intel_u2_timeout(
4787                 struct usb_device *udev,
4788                 struct usb_endpoint_descriptor *desc)
4789 {
4790         unsigned long long timeout_ns;
4791         unsigned long long u2_del_ns;
4792
4793         timeout_ns = 10 * 1000 * 1000;
4794
4795         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4796                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4797                 timeout_ns = xhci_service_interval_to_ns(desc);
4798
4799         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4800         if (u2_del_ns > timeout_ns)
4801                 timeout_ns = u2_del_ns;
4802
4803         return timeout_ns;
4804 }
4805
4806 /* Returns the hub-encoded U2 timeout value. */
4807 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4808                 struct usb_device *udev,
4809                 struct usb_endpoint_descriptor *desc)
4810 {
4811         unsigned long long timeout_ns;
4812
4813         /* Prevent U2 if service interval is shorter than U2 exit latency */
4814         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4815                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4816                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4817                         return USB3_LPM_DISABLED;
4818                 }
4819         }
4820
4821         if (xhci->quirks & XHCI_INTEL_HOST)
4822                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4823         else
4824                 timeout_ns = udev->u2_params.sel;
4825
4826         /* The U2 timeout is encoded in 256us intervals */
4827         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4828         /* If the necessary timeout value is bigger than what we can set in the
4829          * USB 3.0 hub, we have to disable hub-initiated U2.
4830          */
4831         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4832                 return timeout_ns;
4833         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4834                         "due to long timeout %llu ms\n", timeout_ns);
4835         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4836 }
4837
4838 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4839                 struct usb_device *udev,
4840                 struct usb_endpoint_descriptor *desc,
4841                 enum usb3_link_state state,
4842                 u16 *timeout)
4843 {
4844         if (state == USB3_LPM_U1)
4845                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4846         else if (state == USB3_LPM_U2)
4847                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4848
4849         return USB3_LPM_DISABLED;
4850 }
4851
4852 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4853                 struct usb_device *udev,
4854                 struct usb_endpoint_descriptor *desc,
4855                 enum usb3_link_state state,
4856                 u16 *timeout)
4857 {
4858         u16 alt_timeout;
4859
4860         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4861                 desc, state, timeout);
4862
4863         /* If we found we can't enable hub-initiated LPM, and
4864          * the U1 or U2 exit latency was too high to allow
4865          * device-initiated LPM as well, then we will disable LPM
4866          * for this device, so stop searching any further.
4867          */
4868         if (alt_timeout == USB3_LPM_DISABLED) {
4869                 *timeout = alt_timeout;
4870                 return -E2BIG;
4871         }
4872         if (alt_timeout > *timeout)
4873                 *timeout = alt_timeout;
4874         return 0;
4875 }
4876
4877 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4878                 struct usb_device *udev,
4879                 struct usb_host_interface *alt,
4880                 enum usb3_link_state state,
4881                 u16 *timeout)
4882 {
4883         int j;
4884
4885         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4886                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4887                                         &alt->endpoint[j].desc, state, timeout))
4888                         return -E2BIG;
4889         }
4890         return 0;
4891 }
4892
4893 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4894                 enum usb3_link_state state)
4895 {
4896         struct usb_device *parent;
4897         unsigned int num_hubs;
4898
4899         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4900         for (parent = udev->parent, num_hubs = 0; parent->parent;
4901                         parent = parent->parent)
4902                 num_hubs++;
4903
4904         if (num_hubs < 2)
4905                 return 0;
4906
4907         dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4908                         " below second-tier hub.\n");
4909         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4910                         "to decrease power consumption.\n");
4911         return -E2BIG;
4912 }
4913
4914 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4915                 struct usb_device *udev,
4916                 enum usb3_link_state state)
4917 {
4918         if (xhci->quirks & XHCI_INTEL_HOST)
4919                 return xhci_check_intel_tier_policy(udev, state);
4920         else
4921                 return 0;
4922 }
4923
4924 /* Returns the U1 or U2 timeout that should be enabled.
4925  * If the tier check or timeout setting functions return with a non-zero exit
4926  * code, that means the timeout value has been finalized and we shouldn't look
4927  * at any more endpoints.
4928  */
4929 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4930                         struct usb_device *udev, enum usb3_link_state state)
4931 {
4932         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4933         struct usb_host_config *config;
4934         char *state_name;
4935         int i;
4936         u16 timeout = USB3_LPM_DISABLED;
4937
4938         if (state == USB3_LPM_U1)
4939                 state_name = "U1";
4940         else if (state == USB3_LPM_U2)
4941                 state_name = "U2";
4942         else {
4943                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4944                                 state);
4945                 return timeout;
4946         }
4947
4948         /* Gather some information about the currently installed configuration
4949          * and alternate interface settings.
4950          */
4951         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4952                         state, &timeout))
4953                 return timeout;
4954
4955         config = udev->actconfig;
4956         if (!config)
4957                 return timeout;
4958
4959         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4960                 struct usb_driver *driver;
4961                 struct usb_interface *intf = config->interface[i];
4962
4963                 if (!intf)
4964                         continue;
4965
4966                 /* Check if any currently bound drivers want hub-initiated LPM
4967                  * disabled.
4968                  */
4969                 if (intf->dev.driver) {
4970                         driver = to_usb_driver(intf->dev.driver);
4971                         if (driver && driver->disable_hub_initiated_lpm) {
4972                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4973                                         state_name, driver->name);
4974                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4975                                                                       state);
4976                                 if (timeout == USB3_LPM_DISABLED)
4977                                         return timeout;
4978                         }
4979                 }
4980
4981                 /* Not sure how this could happen... */
4982                 if (!intf->cur_altsetting)
4983                         continue;
4984
4985                 if (xhci_update_timeout_for_interface(xhci, udev,
4986                                         intf->cur_altsetting,
4987                                         state, &timeout))
4988                         return timeout;
4989         }
4990         return timeout;
4991 }
4992
4993 static int calculate_max_exit_latency(struct usb_device *udev,
4994                 enum usb3_link_state state_changed,
4995                 u16 hub_encoded_timeout)
4996 {
4997         unsigned long long u1_mel_us = 0;
4998         unsigned long long u2_mel_us = 0;
4999         unsigned long long mel_us = 0;
5000         bool disabling_u1;
5001         bool disabling_u2;
5002         bool enabling_u1;
5003         bool enabling_u2;
5004
5005         disabling_u1 = (state_changed == USB3_LPM_U1 &&
5006                         hub_encoded_timeout == USB3_LPM_DISABLED);
5007         disabling_u2 = (state_changed == USB3_LPM_U2 &&
5008                         hub_encoded_timeout == USB3_LPM_DISABLED);
5009
5010         enabling_u1 = (state_changed == USB3_LPM_U1 &&
5011                         hub_encoded_timeout != USB3_LPM_DISABLED);
5012         enabling_u2 = (state_changed == USB3_LPM_U2 &&
5013                         hub_encoded_timeout != USB3_LPM_DISABLED);
5014
5015         /* If U1 was already enabled and we're not disabling it,
5016          * or we're going to enable U1, account for the U1 max exit latency.
5017          */
5018         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5019                         enabling_u1)
5020                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5021         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5022                         enabling_u2)
5023                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5024
5025         mel_us = max(u1_mel_us, u2_mel_us);
5026
5027         /* xHCI host controller max exit latency field is only 16 bits wide. */
5028         if (mel_us > MAX_EXIT) {
5029                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5030                                 "is too big.\n", mel_us);
5031                 return -E2BIG;
5032         }
5033         return mel_us;
5034 }
5035
5036 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5037 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5038                         struct usb_device *udev, enum usb3_link_state state)
5039 {
5040         struct xhci_hcd *xhci;
5041         u16 hub_encoded_timeout;
5042         int mel;
5043         int ret;
5044
5045         xhci = hcd_to_xhci(hcd);
5046         /* The LPM timeout values are pretty host-controller specific, so don't
5047          * enable hub-initiated timeouts unless the vendor has provided
5048          * information about their timeout algorithm.
5049          */
5050         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5051                         !xhci->devs[udev->slot_id])
5052                 return USB3_LPM_DISABLED;
5053
5054         if (xhci_check_tier_policy(xhci, udev, state) < 0)
5055                 return USB3_LPM_DISABLED;
5056
5057         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5058         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5059         if (mel < 0) {
5060                 /* Max Exit Latency is too big, disable LPM. */
5061                 hub_encoded_timeout = USB3_LPM_DISABLED;
5062                 mel = 0;
5063         }
5064
5065         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5066         if (ret)
5067                 return ret;
5068         return hub_encoded_timeout;
5069 }
5070
5071 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5072                         struct usb_device *udev, enum usb3_link_state state)
5073 {
5074         struct xhci_hcd *xhci;
5075         u16 mel;
5076
5077         xhci = hcd_to_xhci(hcd);
5078         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5079                         !xhci->devs[udev->slot_id])
5080                 return 0;
5081
5082         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5083         return xhci_change_max_exit_latency(xhci, udev, mel);
5084 }
5085 #else /* CONFIG_PM */
5086
5087 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5088                                 struct usb_device *udev, int enable)
5089 {
5090         return 0;
5091 }
5092
5093 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5094 {
5095         return 0;
5096 }
5097
5098 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5099                         struct usb_device *udev, enum usb3_link_state state)
5100 {
5101         return USB3_LPM_DISABLED;
5102 }
5103
5104 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5105                         struct usb_device *udev, enum usb3_link_state state)
5106 {
5107         return 0;
5108 }
5109 #endif  /* CONFIG_PM */
5110
5111 /*-------------------------------------------------------------------------*/
5112
5113 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5114  * internal data structures for the device.
5115  */
5116 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5117                         struct usb_tt *tt, gfp_t mem_flags)
5118 {
5119         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5120         struct xhci_virt_device *vdev;
5121         struct xhci_command *config_cmd;
5122         struct xhci_input_control_ctx *ctrl_ctx;
5123         struct xhci_slot_ctx *slot_ctx;
5124         unsigned long flags;
5125         unsigned think_time;
5126         int ret;
5127
5128         /* Ignore root hubs */
5129         if (!hdev->parent)
5130                 return 0;
5131
5132         vdev = xhci->devs[hdev->slot_id];
5133         if (!vdev) {
5134                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5135                 return -EINVAL;
5136         }
5137
5138         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5139         if (!config_cmd)
5140                 return -ENOMEM;
5141
5142         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5143         if (!ctrl_ctx) {
5144                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5145                                 __func__);
5146                 xhci_free_command(xhci, config_cmd);
5147                 return -ENOMEM;
5148         }
5149
5150         spin_lock_irqsave(&xhci->lock, flags);
5151         if (hdev->speed == USB_SPEED_HIGH &&
5152                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5153                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5154                 xhci_free_command(xhci, config_cmd);
5155                 spin_unlock_irqrestore(&xhci->lock, flags);
5156                 return -ENOMEM;
5157         }
5158
5159         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5160         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5161         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5162         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5163         /*
5164          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5165          * but it may be already set to 1 when setup an xHCI virtual
5166          * device, so clear it anyway.
5167          */
5168         if (tt->multi)
5169                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5170         else if (hdev->speed == USB_SPEED_FULL)
5171                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5172
5173         if (xhci->hci_version > 0x95) {
5174                 xhci_dbg(xhci, "xHCI version %x needs hub "
5175                                 "TT think time and number of ports\n",
5176                                 (unsigned int) xhci->hci_version);
5177                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5178                 /* Set TT think time - convert from ns to FS bit times.
5179                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5180                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5181                  *
5182                  * xHCI 1.0: this field shall be 0 if the device is not a
5183                  * High-spped hub.
5184                  */
5185                 think_time = tt->think_time;
5186                 if (think_time != 0)
5187                         think_time = (think_time / 666) - 1;
5188                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5189                         slot_ctx->tt_info |=
5190                                 cpu_to_le32(TT_THINK_TIME(think_time));
5191         } else {
5192                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5193                                 "TT think time or number of ports\n",
5194                                 (unsigned int) xhci->hci_version);
5195         }
5196         slot_ctx->dev_state = 0;
5197         spin_unlock_irqrestore(&xhci->lock, flags);
5198
5199         xhci_dbg(xhci, "Set up %s for hub device.\n",
5200                         (xhci->hci_version > 0x95) ?
5201                         "configure endpoint" : "evaluate context");
5202
5203         /* Issue and wait for the configure endpoint or
5204          * evaluate context command.
5205          */
5206         if (xhci->hci_version > 0x95)
5207                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5208                                 false, false);
5209         else
5210                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5211                                 true, false);
5212
5213         xhci_free_command(xhci, config_cmd);
5214         return ret;
5215 }
5216
5217 static int xhci_get_frame(struct usb_hcd *hcd)
5218 {
5219         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5220         /* EHCI mods by the periodic size.  Why? */
5221         return readl(&xhci->run_regs->microframe_index) >> 3;
5222 }
5223
5224 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5225 {
5226         xhci->usb2_rhub.hcd = hcd;
5227         hcd->speed = HCD_USB2;
5228         hcd->self.root_hub->speed = USB_SPEED_HIGH;
5229         /*
5230          * USB 2.0 roothub under xHCI has an integrated TT,
5231          * (rate matching hub) as opposed to having an OHCI/UHCI
5232          * companion controller.
5233          */
5234         hcd->has_tt = 1;
5235 }
5236
5237 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5238 {
5239         unsigned int minor_rev;
5240
5241         /*
5242          * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5243          * should return 0x31 for sbrn, or that the minor revision
5244          * is a two digit BCD containig minor and sub-minor numbers.
5245          * This was later clarified in xHCI 1.2.
5246          *
5247          * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5248          * minor revision set to 0x1 instead of 0x10.
5249          */
5250         if (xhci->usb3_rhub.min_rev == 0x1)
5251                 minor_rev = 1;
5252         else
5253                 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5254
5255         switch (minor_rev) {
5256         case 2:
5257                 hcd->speed = HCD_USB32;
5258                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5259                 hcd->self.root_hub->rx_lanes = 2;
5260                 hcd->self.root_hub->tx_lanes = 2;
5261                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5262                 break;
5263         case 1:
5264                 hcd->speed = HCD_USB31;
5265                 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5266                 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5267                 break;
5268         }
5269         xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5270                   minor_rev, minor_rev ? "Enhanced " : "");
5271
5272         xhci->usb3_rhub.hcd = hcd;
5273 }
5274
5275 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5276 {
5277         struct xhci_hcd         *xhci;
5278         /*
5279          * TODO: Check with DWC3 clients for sysdev according to
5280          * quirks
5281          */
5282         struct device           *dev = hcd->self.sysdev;
5283         int                     retval;
5284
5285         /* Accept arbitrarily long scatter-gather lists */
5286         hcd->self.sg_tablesize = ~0;
5287
5288         /* support to build packet from discontinuous buffers */
5289         hcd->self.no_sg_constraint = 1;
5290
5291         /* XHCI controllers don't stop the ep queue on short packets :| */
5292         hcd->self.no_stop_on_short = 1;
5293
5294         xhci = hcd_to_xhci(hcd);
5295
5296         if (!usb_hcd_is_primary_hcd(hcd)) {
5297                 xhci_hcd_init_usb3_data(xhci, hcd);
5298                 return 0;
5299         }
5300
5301         mutex_init(&xhci->mutex);
5302         xhci->main_hcd = hcd;
5303         xhci->cap_regs = hcd->regs;
5304         xhci->op_regs = hcd->regs +
5305                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5306         xhci->run_regs = hcd->regs +
5307                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5308         /* Cache read-only capability registers */
5309         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5310         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5311         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5312         xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5313         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5314         if (xhci->hci_version > 0x100)
5315                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5316
5317         xhci->quirks |= quirks;
5318
5319         get_quirks(dev, xhci);
5320
5321         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5322          * success event after a short transfer. This quirk will ignore such
5323          * spurious event.
5324          */
5325         if (xhci->hci_version > 0x96)
5326                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5327
5328         /* Make sure the HC is halted. */
5329         retval = xhci_halt(xhci);
5330         if (retval)
5331                 return retval;
5332
5333         xhci_zero_64b_regs(xhci);
5334
5335         xhci_dbg(xhci, "Resetting HCD\n");
5336         /* Reset the internal HC memory state and registers. */
5337         retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5338         if (retval)
5339                 return retval;
5340         xhci_dbg(xhci, "Reset complete\n");
5341
5342         /*
5343          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5344          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5345          * address memory pointers actually. So, this driver clears the AC64
5346          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5347          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5348          */
5349         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5350                 xhci->hcc_params &= ~BIT(0);
5351
5352         /* Set dma_mask and coherent_dma_mask to 64-bits,
5353          * if xHC supports 64-bit addressing */
5354         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5355                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5356                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5357                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5358         } else {
5359                 /*
5360                  * This is to avoid error in cases where a 32-bit USB
5361                  * controller is used on a 64-bit capable system.
5362                  */
5363                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5364                 if (retval)
5365                         return retval;
5366                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5367                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5368         }
5369
5370         xhci_dbg(xhci, "Calling HCD init\n");
5371         /* Initialize HCD and host controller data structures. */
5372         retval = xhci_init(hcd);
5373         if (retval)
5374                 return retval;
5375         xhci_dbg(xhci, "Called HCD init\n");
5376
5377         if (xhci_hcd_is_usb3(hcd))
5378                 xhci_hcd_init_usb3_data(xhci, hcd);
5379         else
5380                 xhci_hcd_init_usb2_data(xhci, hcd);
5381
5382         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5383                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5384
5385         return 0;
5386 }
5387 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5388
5389 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5390                 struct usb_host_endpoint *ep)
5391 {
5392         struct xhci_hcd *xhci;
5393         struct usb_device *udev;
5394         unsigned int slot_id;
5395         unsigned int ep_index;
5396         unsigned long flags;
5397
5398         xhci = hcd_to_xhci(hcd);
5399
5400         spin_lock_irqsave(&xhci->lock, flags);
5401         udev = (struct usb_device *)ep->hcpriv;
5402         slot_id = udev->slot_id;
5403         ep_index = xhci_get_endpoint_index(&ep->desc);
5404
5405         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5406         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5407         spin_unlock_irqrestore(&xhci->lock, flags);
5408 }
5409
5410 static const struct hc_driver xhci_hc_driver = {
5411         .description =          "xhci-hcd",
5412         .product_desc =         "xHCI Host Controller",
5413         .hcd_priv_size =        sizeof(struct xhci_hcd),
5414
5415         /*
5416          * generic hardware linkage
5417          */
5418         .irq =                  xhci_irq,
5419         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5420                                 HCD_BH,
5421
5422         /*
5423          * basic lifecycle operations
5424          */
5425         .reset =                NULL, /* set in xhci_init_driver() */
5426         .start =                xhci_run,
5427         .stop =                 xhci_stop,
5428         .shutdown =             xhci_shutdown,
5429
5430         /*
5431          * managing i/o requests and associated device resources
5432          */
5433         .map_urb_for_dma =      xhci_map_urb_for_dma,
5434         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5435         .urb_enqueue =          xhci_urb_enqueue,
5436         .urb_dequeue =          xhci_urb_dequeue,
5437         .alloc_dev =            xhci_alloc_dev,
5438         .free_dev =             xhci_free_dev,
5439         .alloc_streams =        xhci_alloc_streams,
5440         .free_streams =         xhci_free_streams,
5441         .add_endpoint =         xhci_add_endpoint,
5442         .drop_endpoint =        xhci_drop_endpoint,
5443         .endpoint_disable =     xhci_endpoint_disable,
5444         .endpoint_reset =       xhci_endpoint_reset,
5445         .check_bandwidth =      xhci_check_bandwidth,
5446         .reset_bandwidth =      xhci_reset_bandwidth,
5447         .address_device =       xhci_address_device,
5448         .enable_device =        xhci_enable_device,
5449         .update_hub_device =    xhci_update_hub_device,
5450         .reset_device =         xhci_discover_or_reset_device,
5451
5452         /*
5453          * scheduling support
5454          */
5455         .get_frame_number =     xhci_get_frame,
5456
5457         /*
5458          * root hub support
5459          */
5460         .hub_control =          xhci_hub_control,
5461         .hub_status_data =      xhci_hub_status_data,
5462         .bus_suspend =          xhci_bus_suspend,
5463         .bus_resume =           xhci_bus_resume,
5464         .get_resuming_ports =   xhci_get_resuming_ports,
5465
5466         /*
5467          * call back when device connected and addressed
5468          */
5469         .update_device =        xhci_update_device,
5470         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5471         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5472         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5473         .find_raw_port_number = xhci_find_raw_port_number,
5474         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5475 };
5476
5477 void xhci_init_driver(struct hc_driver *drv,
5478                       const struct xhci_driver_overrides *over)
5479 {
5480         BUG_ON(!over);
5481
5482         /* Copy the generic table to drv then apply the overrides */
5483         *drv = xhci_hc_driver;
5484
5485         if (over) {
5486                 drv->hcd_priv_size += over->extra_priv_size;
5487                 if (over->reset)
5488                         drv->reset = over->reset;
5489                 if (over->start)
5490                         drv->start = over->start;
5491                 if (over->add_endpoint)
5492                         drv->add_endpoint = over->add_endpoint;
5493                 if (over->drop_endpoint)
5494                         drv->drop_endpoint = over->drop_endpoint;
5495                 if (over->check_bandwidth)
5496                         drv->check_bandwidth = over->check_bandwidth;
5497                 if (over->reset_bandwidth)
5498                         drv->reset_bandwidth = over->reset_bandwidth;
5499         }
5500 }
5501 EXPORT_SYMBOL_GPL(xhci_init_driver);
5502
5503 MODULE_DESCRIPTION(DRIVER_DESC);
5504 MODULE_AUTHOR(DRIVER_AUTHOR);
5505 MODULE_LICENSE("GPL");
5506
5507 static int __init xhci_hcd_init(void)
5508 {
5509         /*
5510          * Check the compiler generated sizes of structures that must be laid
5511          * out in specific ways for hardware access.
5512          */
5513         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5514         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5515         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5516         /* xhci_device_control has eight fields, and also
5517          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5518          */
5519         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5520         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5521         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5522         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5523         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5524         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5525         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5526
5527         if (usb_disabled())
5528                 return -ENODEV;
5529
5530         xhci_debugfs_create_root();
5531         xhci_dbc_init();
5532
5533         return 0;
5534 }
5535
5536 /*
5537  * If an init function is provided, an exit function must also be provided
5538  * to allow module unload.
5539  */
5540 static void __exit xhci_hcd_fini(void)
5541 {
5542         xhci_debugfs_remove_root();
5543         xhci_dbc_exit();
5544 }
5545
5546 module_init(xhci_hcd_init);
5547 module_exit(xhci_hcd_fini);
This page took 0.355963 seconds and 4 git commands to generate.