1 // SPDX-License-Identifier: GPL-2.0
3 * xHCI host controller driver
5 * Copyright (C) 2008 Intel Corp.
8 * Some code borrowed from the Linux EHCI driver.
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 struct xhci_segment *seg = ring->first_seg;
44 if (!td || !td->start_seg)
47 if (seg == td->start_seg)
50 } while (seg && seg != ring->first_seg);
56 * xhci_handshake - spin reading hc until handshake completes or fails
57 * @ptr: address of hc register to be read
58 * @mask: bits to look at in result of read
59 * @done: value of those bits when handshake succeeds
60 * @usec: timeout in microseconds
62 * Returns negative errno, or zero on success
64 * Success happens when the "mask" bits have the specified value (hardware
65 * handshake done). There are two failure modes: "usec" have passed (major
66 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
73 ret = readl_poll_timeout_atomic(ptr, result,
74 (result & mask) == done ||
77 if (result == U32_MAX) /* card removed */
84 * Disable interrupts and begin the xHCI halting process.
86 void xhci_quiesce(struct xhci_hcd *xhci)
93 halted = readl(&xhci->op_regs->status) & STS_HALT;
97 cmd = readl(&xhci->op_regs->command);
99 writel(cmd, &xhci->op_regs->command);
103 * Force HC into halt state.
105 * Disable any IRQs and clear the run/stop bit.
106 * HC will complete any current and actively pipelined transactions, and
107 * should halt within 16 ms of the run/stop bit being cleared.
108 * Read HC Halted bit in the status register to see when the HC is finished.
110 int xhci_halt(struct xhci_hcd *xhci)
114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117 ret = xhci_handshake(&xhci->op_regs->status,
118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
120 xhci_warn(xhci, "Host halt failed, %d\n", ret);
124 xhci->xhc_state |= XHCI_STATE_HALTED;
125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
131 * Set the run bit and wait for the host to be running.
133 int xhci_start(struct xhci_hcd *xhci)
138 temp = readl(&xhci->op_regs->command);
140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
142 writel(temp, &xhci->op_regs->command);
145 * Wait for the HCHalted Status bit to be 0 to indicate the host is
148 ret = xhci_handshake(&xhci->op_regs->status,
149 STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 if (ret == -ETIMEDOUT)
151 xhci_err(xhci, "Host took too long to start, "
152 "waited %u microseconds.\n",
155 /* clear state flags. Including dying, halted or removing */
157 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
166 * This resets pipelines, timers, counters, state machines, etc.
167 * Transactions will be terminated immediately, and operational registers
168 * will be set to their defaults.
170 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
176 state = readl(&xhci->op_regs->status);
178 if (state == ~(u32)0) {
179 xhci_warn(xhci, "Host not accessible, reset failed.\n");
183 if ((state & STS_HALT) == 0) {
184 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
188 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
189 command = readl(&xhci->op_regs->command);
190 command |= CMD_RESET;
191 writel(command, &xhci->op_regs->command);
193 /* Existing Intel xHCI controllers require a delay of 1 mS,
194 * after setting the CMD_RESET bit, and before accessing any
195 * HC registers. This allows the HC to complete the
196 * reset operation and be ready for HC register access.
197 * Without this delay, the subsequent HC register access,
198 * may result in a system hang very rarely.
200 if (xhci->quirks & XHCI_INTEL_HOST)
203 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
207 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
208 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
210 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
211 "Wait for controller to be ready for doorbell rings");
213 * xHCI cannot write to any doorbells or operational registers other
214 * than status until the "Controller Not Ready" flag is cleared.
216 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
218 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219 xhci->usb2_rhub.bus_state.suspended_ports = 0;
220 xhci->usb2_rhub.bus_state.resuming_ports = 0;
221 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222 xhci->usb3_rhub.bus_state.suspended_ports = 0;
223 xhci->usb3_rhub.bus_state.resuming_ports = 0;
228 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
236 * Some Renesas controllers get into a weird state if they are
237 * reset while programmed with 64bit addresses (they will preserve
238 * the top half of the address in internal, non visible
239 * registers). You end up with half the address coming from the
240 * kernel, and the other half coming from the firmware. Also,
241 * changing the programming leads to extra accesses even if the
242 * controller is supposed to be halted. The controller ends up with
243 * a fatal fault, and is then ripe for being properly reset.
245 * Special care is taken to only apply this if the device is behind
246 * an iommu. Doing anything when there is no iommu is definitely
249 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
252 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
254 /* Clear HSEIE so that faults do not get signaled */
255 val = readl(&xhci->op_regs->command);
257 writel(val, &xhci->op_regs->command);
259 /* Clear HSE (aka FATAL) */
260 val = readl(&xhci->op_regs->status);
262 writel(val, &xhci->op_regs->status);
264 /* Now zero the registers, and brace for impact */
265 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
268 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
269 if (upper_32_bits(val))
270 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
272 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
273 ARRAY_SIZE(xhci->run_regs->ir_set));
275 for (i = 0; i < intrs; i++) {
276 struct xhci_intr_reg __iomem *ir;
278 ir = &xhci->run_regs->ir_set[i];
279 val = xhci_read_64(xhci, &ir->erst_base);
280 if (upper_32_bits(val))
281 xhci_write_64(xhci, 0, &ir->erst_base);
282 val= xhci_read_64(xhci, &ir->erst_dequeue);
283 if (upper_32_bits(val))
284 xhci_write_64(xhci, 0, &ir->erst_dequeue);
287 /* Wait for the fault to appear. It will be cleared on reset */
288 err = xhci_handshake(&xhci->op_regs->status,
289 STS_FATAL, STS_FATAL,
292 xhci_info(xhci, "Fault detected\n");
295 #ifdef CONFIG_USB_PCI
299 static int xhci_setup_msi(struct xhci_hcd *xhci)
303 * TODO:Check with MSI Soc for sysdev
305 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
307 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 "failed to allocate MSI entry");
314 ret = request_irq(pdev->irq, xhci_msi_irq,
315 0, "xhci_hcd", xhci_to_hcd(xhci));
317 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
318 "disable MSI interrupt");
319 pci_free_irq_vectors(pdev);
328 static int xhci_setup_msix(struct xhci_hcd *xhci)
331 struct usb_hcd *hcd = xhci_to_hcd(xhci);
332 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
335 * calculate number of msi-x vectors supported.
336 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
337 * with max number of interrupters based on the xhci HCSPARAMS1.
338 * - num_online_cpus: maximum msi-x vectors per CPUs core.
339 * Add additional 1 vector to ensure always available interrupt.
341 xhci->msix_count = min(num_online_cpus() + 1,
342 HCS_MAX_INTRS(xhci->hcs_params1));
344 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
347 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348 "Failed to enable MSI-X");
352 for (i = 0; i < xhci->msix_count; i++) {
353 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
354 "xhci_hcd", xhci_to_hcd(xhci));
359 hcd->msix_enabled = 1;
363 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
365 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
366 pci_free_irq_vectors(pdev);
370 /* Free any IRQs and disable MSI-X */
371 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
373 struct usb_hcd *hcd = xhci_to_hcd(xhci);
374 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
376 if (xhci->quirks & XHCI_PLAT)
379 /* return if using legacy interrupt */
383 if (hcd->msix_enabled) {
386 for (i = 0; i < xhci->msix_count; i++)
387 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
389 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
392 pci_free_irq_vectors(pdev);
393 hcd->msix_enabled = 0;
396 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398 struct usb_hcd *hcd = xhci_to_hcd(xhci);
400 if (hcd->msix_enabled) {
401 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
404 for (i = 0; i < xhci->msix_count; i++)
405 synchronize_irq(pci_irq_vector(pdev, i));
409 static int xhci_try_enable_msi(struct usb_hcd *hcd)
411 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
412 struct pci_dev *pdev;
415 /* The xhci platform device has set up IRQs through usb_add_hcd. */
416 if (xhci->quirks & XHCI_PLAT)
419 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
421 * Some Fresco Logic host controllers advertise MSI, but fail to
422 * generate interrupts. Don't even try to enable MSI.
424 if (xhci->quirks & XHCI_BROKEN_MSI)
427 /* unregister the legacy interrupt */
429 free_irq(hcd->irq, hcd);
432 ret = xhci_setup_msix(xhci);
434 /* fall back to msi*/
435 ret = xhci_setup_msi(xhci);
438 hcd->msi_enabled = 1;
443 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
448 if (!strlen(hcd->irq_descr))
449 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
450 hcd->driver->description, hcd->self.busnum);
452 /* fall back to legacy interrupt*/
453 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
454 hcd->irq_descr, hcd);
456 xhci_err(xhci, "request interrupt %d failed\n",
460 hcd->irq = pdev->irq;
466 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
471 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
475 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
481 static void compliance_mode_recovery(struct timer_list *t)
483 struct xhci_hcd *xhci;
485 struct xhci_hub *rhub;
489 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
490 rhub = &xhci->usb3_rhub;
496 for (i = 0; i < rhub->num_ports; i++) {
497 temp = readl(rhub->ports[i]->addr);
498 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
500 * Compliance Mode Detected. Letting USB Core
501 * handle the Warm Reset
503 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
504 "Compliance mode detected->port %d",
506 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
507 "Attempting compliance mode recovery");
509 if (hcd->state == HC_STATE_SUSPENDED)
510 usb_hcd_resume_root_hub(hcd);
512 usb_hcd_poll_rh_status(hcd);
516 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
517 mod_timer(&xhci->comp_mode_recovery_timer,
518 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
522 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
523 * that causes ports behind that hardware to enter compliance mode sometimes.
524 * The quirk creates a timer that polls every 2 seconds the link state of
525 * each host controller's port and recovers it by issuing a Warm reset
526 * if Compliance mode is detected, otherwise the port will become "dead" (no
527 * device connections or disconnections will be detected anymore). Becasue no
528 * status event is generated when entering compliance mode (per xhci spec),
529 * this quirk is needed on systems that have the failing hardware installed.
531 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
533 xhci->port_status_u0 = 0;
534 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
536 xhci->comp_mode_recovery_timer.expires = jiffies +
537 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
539 add_timer(&xhci->comp_mode_recovery_timer);
540 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
541 "Compliance mode recovery timer initialized");
545 * This function identifies the systems that have installed the SN65LVPE502CP
546 * USB3.0 re-driver and that need the Compliance Mode Quirk.
548 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
550 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
552 const char *dmi_product_name, *dmi_sys_vendor;
554 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
555 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
556 if (!dmi_product_name || !dmi_sys_vendor)
559 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
562 if (strstr(dmi_product_name, "Z420") ||
563 strstr(dmi_product_name, "Z620") ||
564 strstr(dmi_product_name, "Z820") ||
565 strstr(dmi_product_name, "Z1 Workstation"))
571 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
573 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
578 * Initialize memory for HCD and xHC (one-time init).
580 * Program the PAGESIZE register, initialize the device context array, create
581 * device contexts (?), set up a command ring segment (or two?), create event
582 * ring (one for now).
584 static int xhci_init(struct usb_hcd *hcd)
586 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
590 spin_lock_init(&xhci->lock);
591 if (xhci->hci_version == 0x95 && link_quirk) {
592 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
593 "QUIRK: Not clearing Link TRB chain bits.");
594 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
596 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 "xHCI doesn't need link TRB QUIRK");
599 retval = xhci_mem_init(xhci, GFP_KERNEL);
600 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
602 /* Initializing Compliance Mode Recovery Data If Needed */
603 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
604 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
605 compliance_mode_recovery_timer_init(xhci);
611 /*-------------------------------------------------------------------------*/
614 static int xhci_run_finished(struct xhci_hcd *xhci)
620 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
621 * Protect the short window before host is running with a lock
623 spin_lock_irqsave(&xhci->lock, flags);
625 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
626 temp = readl(&xhci->op_regs->command);
628 writel(temp, &xhci->op_regs->command);
630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
631 temp = readl(&xhci->ir_set->irq_pending);
632 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
634 if (xhci_start(xhci)) {
636 spin_unlock_irqrestore(&xhci->lock, flags);
640 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
642 if (xhci->quirks & XHCI_NEC_HOST)
643 xhci_ring_cmd_db(xhci);
645 spin_unlock_irqrestore(&xhci->lock, flags);
651 * Start the HC after it was halted.
653 * This function is called by the USB core when the HC driver is added.
654 * Its opposite is xhci_stop().
656 * xhci_init() must be called once before this function can be called.
657 * Reset the HC, enable device slot contexts, program DCBAAP, and
658 * set command ring pointer and event ring pointer.
660 * Setup MSI-X vectors and enable interrupts.
662 int xhci_run(struct usb_hcd *hcd)
667 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
669 /* Start the xHCI host controller running only after the USB 2.0 roothub
673 hcd->uses_new_polling = 1;
674 if (!usb_hcd_is_primary_hcd(hcd))
675 return xhci_run_finished(xhci);
677 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
679 ret = xhci_try_enable_msi(hcd);
683 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
684 temp_64 &= ~ERST_PTR_MASK;
685 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
686 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
688 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689 "// Set the interrupt modulation register");
690 temp = readl(&xhci->ir_set->irq_control);
691 temp &= ~ER_IRQ_INTERVAL_MASK;
692 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
693 writel(temp, &xhci->ir_set->irq_control);
695 if (xhci->quirks & XHCI_NEC_HOST) {
696 struct xhci_command *command;
698 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
702 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
703 TRB_TYPE(TRB_NEC_GET_FW));
705 xhci_free_command(xhci, command);
707 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708 "Finished %s for main hcd", __func__);
710 xhci_create_dbc_dev(xhci);
712 xhci_debugfs_init(xhci);
714 if (xhci_has_one_roothub(xhci))
715 return xhci_run_finished(xhci);
717 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
721 EXPORT_SYMBOL_GPL(xhci_run);
726 * This function is called by the USB core when the HC driver is removed.
727 * Its opposite is xhci_run().
729 * Disable device contexts, disable IRQs, and quiesce the HC.
730 * Reset the HC, finish any completed transactions, and cleanup memory.
732 static void xhci_stop(struct usb_hcd *hcd)
735 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
737 mutex_lock(&xhci->mutex);
739 /* Only halt host and free memory after both hcds are removed */
740 if (!usb_hcd_is_primary_hcd(hcd)) {
741 mutex_unlock(&xhci->mutex);
745 xhci_remove_dbc_dev(xhci);
747 spin_lock_irq(&xhci->lock);
748 xhci->xhc_state |= XHCI_STATE_HALTED;
749 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
751 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
752 spin_unlock_irq(&xhci->lock);
754 xhci_cleanup_msix(xhci);
756 /* Deleting Compliance Mode Recovery Timer */
757 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
758 (!(xhci_all_ports_seen_u0(xhci)))) {
759 del_timer_sync(&xhci->comp_mode_recovery_timer);
760 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
761 "%s: compliance mode recovery timer deleted",
765 if (xhci->quirks & XHCI_AMD_PLL_FIX)
768 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769 "// Disabling event ring interrupts");
770 temp = readl(&xhci->op_regs->status);
771 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
772 temp = readl(&xhci->ir_set->irq_pending);
773 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
775 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
776 xhci_mem_cleanup(xhci);
777 xhci_debugfs_exit(xhci);
778 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
779 "xhci_stop completed - status = %x",
780 readl(&xhci->op_regs->status));
781 mutex_unlock(&xhci->mutex);
785 * Shutdown HC (not bus-specific)
787 * This is called when the machine is rebooting or halting. We assume that the
788 * machine will be powered off, and the HC's internal state will be reset.
789 * Don't bother to free memory.
791 * This will only ever be called with the main usb_hcd (the USB3 roothub).
793 void xhci_shutdown(struct usb_hcd *hcd)
795 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
797 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
800 /* Don't poll the roothubs after shutdown. */
801 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802 __func__, hcd->self.busnum);
803 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804 del_timer_sync(&hcd->rh_timer);
806 if (xhci->shared_hcd) {
807 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808 del_timer_sync(&xhci->shared_hcd->rh_timer);
811 spin_lock_irq(&xhci->lock);
813 /* Workaround for spurious wakeups at shutdown with HSW */
814 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
815 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
816 spin_unlock_irq(&xhci->lock);
818 xhci_cleanup_msix(xhci);
820 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
821 "xhci_shutdown completed - status = %x",
822 readl(&xhci->op_regs->status));
824 EXPORT_SYMBOL_GPL(xhci_shutdown);
827 static void xhci_save_registers(struct xhci_hcd *xhci)
829 xhci->s3.command = readl(&xhci->op_regs->command);
830 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
831 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
832 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
833 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
834 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
835 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
836 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
837 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
840 static void xhci_restore_registers(struct xhci_hcd *xhci)
842 writel(xhci->s3.command, &xhci->op_regs->command);
843 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
844 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
845 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
846 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
847 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
848 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
849 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
850 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
853 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
857 /* step 2: initialize command ring buffer */
858 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
859 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
860 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
861 xhci->cmd_ring->dequeue) &
862 (u64) ~CMD_RING_RSVD_BITS) |
863 xhci->cmd_ring->cycle_state;
864 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
865 "// Setting command ring address to 0x%llx",
866 (long unsigned long) val_64);
867 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
871 * The whole command ring must be cleared to zero when we suspend the host.
873 * The host doesn't save the command ring pointer in the suspend well, so we
874 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
875 * aligned, because of the reserved bits in the command ring dequeue pointer
876 * register. Therefore, we can't just set the dequeue pointer back in the
877 * middle of the ring (TRBs are 16-byte aligned).
879 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
881 struct xhci_ring *ring;
882 struct xhci_segment *seg;
884 ring = xhci->cmd_ring;
888 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
889 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
890 cpu_to_le32(~TRB_CYCLE);
892 } while (seg != ring->deq_seg);
894 /* Reset the software enqueue and dequeue pointers */
895 ring->deq_seg = ring->first_seg;
896 ring->dequeue = ring->first_seg->trbs;
897 ring->enq_seg = ring->deq_seg;
898 ring->enqueue = ring->dequeue;
900 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
902 * Ring is now zeroed, so the HW should look for change of ownership
903 * when the cycle bit is set to 1.
905 ring->cycle_state = 1;
908 * Reset the hardware dequeue pointer.
909 * Yes, this will need to be re-written after resume, but we're paranoid
910 * and want to make sure the hardware doesn't access bogus memory
911 * because, say, the BIOS or an SMI started the host without changing
912 * the command ring pointers.
914 xhci_set_cmd_ring_deq(xhci);
918 * Disable port wake bits if do_wakeup is not set.
920 * Also clear a possible internal port wake state left hanging for ports that
921 * detected termination but never successfully enumerated (trained to 0U).
922 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
923 * at enumeration clears this wake, force one here as well for unconnected ports
926 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
927 struct xhci_hub *rhub,
934 spin_lock_irqsave(&xhci->lock, flags);
936 for (i = 0; i < rhub->num_ports; i++) {
937 portsc = readl(rhub->ports[i]->addr);
938 t1 = xhci_port_state_to_neutral(portsc);
941 /* clear wake bits if do_wake is not set */
943 t2 &= ~PORT_WAKE_BITS;
945 /* Don't touch csc bit if connected or connect change is set */
946 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
950 writel(t2, rhub->ports[i]->addr);
951 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
952 rhub->hcd->self.busnum, i + 1, portsc, t2);
955 spin_unlock_irqrestore(&xhci->lock, flags);
958 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
960 struct xhci_port **ports;
965 status = readl(&xhci->op_regs->status);
966 if (status & STS_EINT)
969 * Checking STS_EINT is not enough as there is a lag between a change
970 * bit being set and the Port Status Change Event that it generated
971 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
974 port_index = xhci->usb2_rhub.num_ports;
975 ports = xhci->usb2_rhub.ports;
976 while (port_index--) {
977 portsc = readl(ports[port_index]->addr);
978 if (portsc & PORT_CHANGE_MASK ||
979 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
982 port_index = xhci->usb3_rhub.num_ports;
983 ports = xhci->usb3_rhub.ports;
984 while (port_index--) {
985 portsc = readl(ports[port_index]->addr);
986 if (portsc & PORT_CHANGE_MASK ||
987 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
994 * Stop HC (not bus-specific)
996 * This is called when the machine transition into S3/S4 mode.
999 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1002 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
1003 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1010 if (hcd->state != HC_STATE_SUSPENDED ||
1011 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1014 /* Clear root port wake on bits if wakeup not allowed. */
1015 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1016 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1018 if (!HCD_HW_ACCESSIBLE(hcd))
1021 xhci_dbc_suspend(xhci);
1023 /* Don't poll the roothubs on bus suspend. */
1024 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1025 __func__, hcd->self.busnum);
1026 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1027 del_timer_sync(&hcd->rh_timer);
1028 if (xhci->shared_hcd) {
1029 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1030 del_timer_sync(&xhci->shared_hcd->rh_timer);
1033 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1034 usleep_range(1000, 1500);
1036 spin_lock_irq(&xhci->lock);
1037 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1038 if (xhci->shared_hcd)
1039 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1040 /* step 1: stop endpoint */
1041 /* skipped assuming that port suspend has done */
1043 /* step 2: clear Run/Stop bit */
1044 command = readl(&xhci->op_regs->command);
1045 command &= ~CMD_RUN;
1046 writel(command, &xhci->op_regs->command);
1048 /* Some chips from Fresco Logic need an extraordinary delay */
1049 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1051 if (xhci_handshake(&xhci->op_regs->status,
1052 STS_HALT, STS_HALT, delay)) {
1053 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1054 spin_unlock_irq(&xhci->lock);
1057 xhci_clear_command_ring(xhci);
1059 /* step 3: save registers */
1060 xhci_save_registers(xhci);
1062 /* step 4: set CSS flag */
1063 command = readl(&xhci->op_regs->command);
1065 writel(command, &xhci->op_regs->command);
1066 xhci->broken_suspend = 0;
1067 if (xhci_handshake(&xhci->op_regs->status,
1068 STS_SAVE, 0, 20 * 1000)) {
1070 * AMD SNPS xHC 3.0 occasionally does not clear the
1071 * SSS bit of USBSTS and when driver tries to poll
1072 * to see if the xHC clears BIT(8) which never happens
1073 * and driver assumes that controller is not responding
1074 * and times out. To workaround this, its good to check
1075 * if SRE and HCE bits are not set (as per xhci
1076 * Section 5.4.2) and bypass the timeout.
1078 res = readl(&xhci->op_regs->status);
1079 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1080 (((res & STS_SRE) == 0) &&
1081 ((res & STS_HCE) == 0))) {
1082 xhci->broken_suspend = 1;
1084 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1085 spin_unlock_irq(&xhci->lock);
1089 spin_unlock_irq(&xhci->lock);
1092 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1093 * is about to be suspended.
1095 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1096 (!(xhci_all_ports_seen_u0(xhci)))) {
1097 del_timer_sync(&xhci->comp_mode_recovery_timer);
1098 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1099 "%s: compliance mode recovery timer deleted",
1103 /* step 5: remove core well power */
1104 /* synchronize irq when using MSI-X */
1105 xhci_msix_sync_irqs(xhci);
1109 EXPORT_SYMBOL_GPL(xhci_suspend);
1112 * start xHC (not bus-specific)
1114 * This is called when the machine transition from S3/S4 mode.
1117 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1119 u32 command, temp = 0;
1120 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1122 bool comp_timer_running = false;
1123 bool pending_portevent = false;
1124 bool reinit_xhc = false;
1129 /* Wait a bit if either of the roothubs need to settle from the
1130 * transition into bus suspend.
1133 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1134 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1137 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1138 if (xhci->shared_hcd)
1139 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1141 spin_lock_irq(&xhci->lock);
1143 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1148 * Some controllers might lose power during suspend, so wait
1149 * for controller not ready bit to clear, just as in xHC init.
1151 retval = xhci_handshake(&xhci->op_regs->status,
1152 STS_CNR, 0, 10 * 1000 * 1000);
1154 xhci_warn(xhci, "Controller not ready at resume %d\n",
1156 spin_unlock_irq(&xhci->lock);
1159 /* step 1: restore register */
1160 xhci_restore_registers(xhci);
1161 /* step 2: initialize command ring buffer */
1162 xhci_set_cmd_ring_deq(xhci);
1163 /* step 3: restore state and start state*/
1164 /* step 3: set CRS flag */
1165 command = readl(&xhci->op_regs->command);
1167 writel(command, &xhci->op_regs->command);
1169 * Some controllers take up to 55+ ms to complete the controller
1170 * restore so setting the timeout to 100ms. Xhci specification
1171 * doesn't mention any timeout value.
1173 if (xhci_handshake(&xhci->op_regs->status,
1174 STS_RESTORE, 0, 100 * 1000)) {
1175 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1176 spin_unlock_irq(&xhci->lock);
1181 temp = readl(&xhci->op_regs->status);
1183 /* re-initialize the HC on Restore Error, or Host Controller Error */
1184 if (temp & (STS_SRE | STS_HCE)) {
1186 if (!xhci->broken_suspend)
1187 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1191 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1192 !(xhci_all_ports_seen_u0(xhci))) {
1193 del_timer_sync(&xhci->comp_mode_recovery_timer);
1194 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1195 "Compliance Mode Recovery Timer deleted!");
1198 /* Let the USB core know _both_ roothubs lost power. */
1199 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1200 if (xhci->shared_hcd)
1201 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1203 xhci_dbg(xhci, "Stop HCD\n");
1205 xhci_zero_64b_regs(xhci);
1206 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1207 spin_unlock_irq(&xhci->lock);
1210 xhci_cleanup_msix(xhci);
1212 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1213 temp = readl(&xhci->op_regs->status);
1214 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1215 temp = readl(&xhci->ir_set->irq_pending);
1216 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1218 xhci_dbg(xhci, "cleaning up memory\n");
1219 xhci_mem_cleanup(xhci);
1220 xhci_debugfs_exit(xhci);
1221 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1222 readl(&xhci->op_regs->status));
1224 /* USB core calls the PCI reinit and start functions twice:
1225 * first with the primary HCD, and then with the secondary HCD.
1226 * If we don't do the same, the host will never be started.
1228 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1229 retval = xhci_init(hcd);
1232 comp_timer_running = true;
1234 xhci_dbg(xhci, "Start the primary HCD\n");
1235 retval = xhci_run(hcd);
1236 if (!retval && xhci->shared_hcd) {
1237 xhci_dbg(xhci, "Start the secondary HCD\n");
1238 retval = xhci_run(xhci->shared_hcd);
1241 hcd->state = HC_STATE_SUSPENDED;
1242 if (xhci->shared_hcd)
1243 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1247 /* step 4: set Run/Stop bit */
1248 command = readl(&xhci->op_regs->command);
1250 writel(command, &xhci->op_regs->command);
1251 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1254 /* step 5: walk topology and initialize portsc,
1255 * portpmsc and portli
1257 /* this is done in bus_resume */
1259 /* step 6: restart each of the previously
1260 * Running endpoints by ringing their doorbells
1263 spin_unlock_irq(&xhci->lock);
1265 xhci_dbc_resume(xhci);
1270 * Resume roothubs only if there are pending events.
1271 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1272 * the first wake signalling failed, give it that chance.
1274 pending_portevent = xhci_pending_portevent(xhci);
1275 if (!pending_portevent) {
1277 pending_portevent = xhci_pending_portevent(xhci);
1280 if (pending_portevent) {
1281 if (xhci->shared_hcd)
1282 usb_hcd_resume_root_hub(xhci->shared_hcd);
1283 usb_hcd_resume_root_hub(hcd);
1287 * If system is subject to the Quirk, Compliance Mode Timer needs to
1288 * be re-initialized Always after a system resume. Ports are subject
1289 * to suffer the Compliance Mode issue again. It doesn't matter if
1290 * ports have entered previously to U0 before system's suspension.
1292 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1293 compliance_mode_recovery_timer_init(xhci);
1295 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1296 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1298 /* Re-enable port polling. */
1299 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1300 __func__, hcd->self.busnum);
1301 if (xhci->shared_hcd) {
1302 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1303 usb_hcd_poll_rh_status(xhci->shared_hcd);
1305 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1306 usb_hcd_poll_rh_status(hcd);
1310 EXPORT_SYMBOL_GPL(xhci_resume);
1311 #endif /* CONFIG_PM */
1313 /*-------------------------------------------------------------------------*/
1315 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1319 unsigned int buf_len;
1320 enum dma_data_direction dir;
1322 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1323 buf_len = urb->transfer_buffer_length;
1325 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1326 dev_to_node(hcd->self.sysdev));
1328 if (usb_urb_dir_out(urb))
1329 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1332 urb->transfer_buffer = temp;
1333 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1334 urb->transfer_buffer,
1335 urb->transfer_buffer_length,
1338 if (dma_mapping_error(hcd->self.sysdev,
1339 urb->transfer_dma)) {
1343 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1349 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1354 unsigned int len = 0;
1355 unsigned int trb_size;
1356 unsigned int max_pkt;
1357 struct scatterlist *sg;
1358 struct scatterlist *tail_sg;
1361 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1366 if (urb->dev->speed >= USB_SPEED_SUPER)
1367 trb_size = TRB_CACHE_SIZE_SS;
1369 trb_size = TRB_CACHE_SIZE_HS;
1371 if (urb->transfer_buffer_length != 0 &&
1372 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1373 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1374 len = len + sg->length;
1375 if (i > trb_size - 2) {
1376 len = len - tail_sg->length;
1377 if (len < max_pkt) {
1382 tail_sg = sg_next(tail_sg);
1389 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1392 unsigned int buf_len;
1393 enum dma_data_direction dir;
1395 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1397 buf_len = urb->transfer_buffer_length;
1399 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1400 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1401 dma_unmap_single(hcd->self.sysdev,
1403 urb->transfer_buffer_length,
1406 if (usb_urb_dir_in(urb)) {
1407 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1408 urb->transfer_buffer,
1411 if (len != buf_len) {
1412 xhci_dbg(hcd_to_xhci(hcd),
1413 "Copy from tmp buf to urb sg list failed\n");
1414 urb->actual_length = len;
1417 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1418 kfree(urb->transfer_buffer);
1419 urb->transfer_buffer = NULL;
1423 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1424 * we'll copy the actual data into the TRB address register. This is limited to
1425 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1426 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1428 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1431 struct xhci_hcd *xhci;
1433 xhci = hcd_to_xhci(hcd);
1435 if (xhci_urb_suitable_for_idt(urb))
1438 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1439 if (xhci_urb_temp_buffer_required(hcd, urb))
1440 return xhci_map_temp_buffer(hcd, urb);
1442 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1445 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1447 struct xhci_hcd *xhci;
1448 bool unmap_temp_buf = false;
1450 xhci = hcd_to_xhci(hcd);
1452 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1453 unmap_temp_buf = true;
1455 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1456 xhci_unmap_temp_buf(hcd, urb);
1458 usb_hcd_unmap_urb_for_dma(hcd, urb);
1462 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1463 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1464 * value to right shift 1 for the bitmask.
1466 * Index = (epnum * 2) + direction - 1,
1467 * where direction = 0 for OUT, 1 for IN.
1468 * For control endpoints, the IN index is used (OUT index is unused), so
1469 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1471 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1474 if (usb_endpoint_xfer_control(desc))
1475 index = (unsigned int) (usb_endpoint_num(desc)*2);
1477 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1478 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1481 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1483 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1484 * address from the XHCI endpoint index.
1486 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1488 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1489 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1490 return direction | number;
1493 /* Find the flag for this endpoint (for use in the control context). Use the
1494 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1497 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1499 return 1 << (xhci_get_endpoint_index(desc) + 1);
1502 /* Compute the last valid endpoint context index. Basically, this is the
1503 * endpoint index plus one. For slot contexts with more than valid endpoint,
1504 * we find the most significant bit set in the added contexts flags.
1505 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1506 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1508 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1510 return fls(added_ctxs) - 1;
1513 /* Returns 1 if the arguments are OK;
1514 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1516 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1517 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1519 struct xhci_hcd *xhci;
1520 struct xhci_virt_device *virt_dev;
1522 if (!hcd || (check_ep && !ep) || !udev) {
1523 pr_debug("xHCI %s called with invalid args\n", func);
1526 if (!udev->parent) {
1527 pr_debug("xHCI %s called for root hub\n", func);
1531 xhci = hcd_to_xhci(hcd);
1532 if (check_virt_dev) {
1533 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1534 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1539 virt_dev = xhci->devs[udev->slot_id];
1540 if (virt_dev->udev != udev) {
1541 xhci_dbg(xhci, "xHCI %s called with udev and "
1542 "virt_dev does not match\n", func);
1547 if (xhci->xhc_state & XHCI_STATE_HALTED)
1553 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1554 struct usb_device *udev, struct xhci_command *command,
1555 bool ctx_change, bool must_succeed);
1558 * Full speed devices may have a max packet size greater than 8 bytes, but the
1559 * USB core doesn't know that until it reads the first 8 bytes of the
1560 * descriptor. If the usb_device's max packet size changes after that point,
1561 * we need to issue an evaluate context command and wait on it.
1563 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1564 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1566 struct xhci_container_ctx *out_ctx;
1567 struct xhci_input_control_ctx *ctrl_ctx;
1568 struct xhci_ep_ctx *ep_ctx;
1569 struct xhci_command *command;
1570 int max_packet_size;
1571 int hw_max_packet_size;
1574 out_ctx = xhci->devs[slot_id]->out_ctx;
1575 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1577 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1578 if (hw_max_packet_size != max_packet_size) {
1579 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1580 "Max Packet Size for ep 0 changed.");
1581 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1582 "Max packet size in usb_device = %d",
1584 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1585 "Max packet size in xHCI HW = %d",
1586 hw_max_packet_size);
1587 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1588 "Issuing evaluate context command.");
1590 /* Set up the input context flags for the command */
1591 /* FIXME: This won't work if a non-default control endpoint
1592 * changes max packet sizes.
1595 command = xhci_alloc_command(xhci, true, mem_flags);
1599 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1600 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1602 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1605 goto command_cleanup;
1607 /* Set up the modified control endpoint 0 */
1608 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1609 xhci->devs[slot_id]->out_ctx, ep_index);
1611 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1612 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1613 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1614 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1616 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1617 ctrl_ctx->drop_flags = 0;
1619 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1622 /* Clean up the input context for later use by bandwidth
1625 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1627 kfree(command->completion);
1634 * non-error returns are a promise to giveback() the urb later
1635 * we drop ownership so next owner (or urb unlink) can get it
1637 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1639 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1640 unsigned long flags;
1642 unsigned int slot_id, ep_index;
1643 unsigned int *ep_state;
1644 struct urb_priv *urb_priv;
1649 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1650 true, true, __func__);
1652 return ret ? ret : -EINVAL;
1654 slot_id = urb->dev->slot_id;
1655 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1656 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1658 if (!HCD_HW_ACCESSIBLE(hcd))
1661 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1662 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1666 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1667 num_tds = urb->number_of_packets;
1668 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1669 urb->transfer_buffer_length > 0 &&
1670 urb->transfer_flags & URB_ZERO_PACKET &&
1671 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1676 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1680 urb_priv->num_tds = num_tds;
1681 urb_priv->num_tds_done = 0;
1682 urb->hcpriv = urb_priv;
1684 trace_xhci_urb_enqueue(urb);
1686 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1687 /* Check to see if the max packet size for the default control
1688 * endpoint changed during FS device enumeration
1690 if (urb->dev->speed == USB_SPEED_FULL) {
1691 ret = xhci_check_maxpacket(xhci, slot_id,
1692 ep_index, urb, mem_flags);
1694 xhci_urb_free_priv(urb_priv);
1701 spin_lock_irqsave(&xhci->lock, flags);
1703 if (xhci->xhc_state & XHCI_STATE_DYING) {
1704 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1705 urb->ep->desc.bEndpointAddress, urb);
1709 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1710 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1715 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1716 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1721 switch (usb_endpoint_type(&urb->ep->desc)) {
1723 case USB_ENDPOINT_XFER_CONTROL:
1724 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1727 case USB_ENDPOINT_XFER_BULK:
1728 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1731 case USB_ENDPOINT_XFER_INT:
1732 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1735 case USB_ENDPOINT_XFER_ISOC:
1736 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1742 xhci_urb_free_priv(urb_priv);
1745 spin_unlock_irqrestore(&xhci->lock, flags);
1750 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1751 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1752 * should pick up where it left off in the TD, unless a Set Transfer Ring
1753 * Dequeue Pointer is issued.
1755 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1756 * the ring. Since the ring is a contiguous structure, they can't be physically
1757 * removed. Instead, there are two options:
1759 * 1) If the HC is in the middle of processing the URB to be canceled, we
1760 * simply move the ring's dequeue pointer past those TRBs using the Set
1761 * Transfer Ring Dequeue Pointer command. This will be the common case,
1762 * when drivers timeout on the last submitted URB and attempt to cancel.
1764 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1765 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1766 * HC will need to invalidate the any TRBs it has cached after the stop
1767 * endpoint command, as noted in the xHCI 0.95 errata.
1769 * 3) The TD may have completed by the time the Stop Endpoint Command
1770 * completes, so software needs to handle that case too.
1772 * This function should protect against the TD enqueueing code ringing the
1773 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1774 * It also needs to account for multiple cancellations on happening at the same
1775 * time for the same endpoint.
1777 * Note that this function can be called in any context, or so says
1778 * usb_hcd_unlink_urb()
1780 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1782 unsigned long flags;
1785 struct xhci_hcd *xhci;
1786 struct urb_priv *urb_priv;
1788 unsigned int ep_index;
1789 struct xhci_ring *ep_ring;
1790 struct xhci_virt_ep *ep;
1791 struct xhci_command *command;
1792 struct xhci_virt_device *vdev;
1794 xhci = hcd_to_xhci(hcd);
1795 spin_lock_irqsave(&xhci->lock, flags);
1797 trace_xhci_urb_dequeue(urb);
1799 /* Make sure the URB hasn't completed or been unlinked already */
1800 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1804 /* give back URB now if we can't queue it for cancel */
1805 vdev = xhci->devs[urb->dev->slot_id];
1806 urb_priv = urb->hcpriv;
1807 if (!vdev || !urb_priv)
1810 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1811 ep = &vdev->eps[ep_index];
1812 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1813 if (!ep || !ep_ring)
1816 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1817 temp = readl(&xhci->op_regs->status);
1818 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1824 * check ring is not re-allocated since URB was enqueued. If it is, then
1825 * make sure none of the ring related pointers in this URB private data
1826 * are touched, such as td_list, otherwise we overwrite freed data
1828 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1829 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1830 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1831 td = &urb_priv->td[i];
1832 if (!list_empty(&td->cancelled_td_list))
1833 list_del_init(&td->cancelled_td_list);
1838 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1839 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1840 "HC halted, freeing TD manually.");
1841 for (i = urb_priv->num_tds_done;
1842 i < urb_priv->num_tds;
1844 td = &urb_priv->td[i];
1845 if (!list_empty(&td->td_list))
1846 list_del_init(&td->td_list);
1847 if (!list_empty(&td->cancelled_td_list))
1848 list_del_init(&td->cancelled_td_list);
1853 i = urb_priv->num_tds_done;
1854 if (i < urb_priv->num_tds)
1855 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1856 "Cancel URB %p, dev %s, ep 0x%x, "
1857 "starting at offset 0x%llx",
1858 urb, urb->dev->devpath,
1859 urb->ep->desc.bEndpointAddress,
1860 (unsigned long long) xhci_trb_virt_to_dma(
1861 urb_priv->td[i].start_seg,
1862 urb_priv->td[i].first_trb));
1864 for (; i < urb_priv->num_tds; i++) {
1865 td = &urb_priv->td[i];
1866 /* TD can already be on cancelled list if ep halted on it */
1867 if (list_empty(&td->cancelled_td_list)) {
1868 td->cancel_status = TD_DIRTY;
1869 list_add_tail(&td->cancelled_td_list,
1870 &ep->cancelled_td_list);
1874 /* Queue a stop endpoint command, but only if this is
1875 * the first cancellation to be handled.
1877 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1878 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1883 ep->ep_state |= EP_STOP_CMD_PENDING;
1884 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1886 xhci_ring_cmd_db(xhci);
1889 spin_unlock_irqrestore(&xhci->lock, flags);
1894 xhci_urb_free_priv(urb_priv);
1895 usb_hcd_unlink_urb_from_ep(hcd, urb);
1896 spin_unlock_irqrestore(&xhci->lock, flags);
1897 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1901 /* Drop an endpoint from a new bandwidth configuration for this device.
1902 * Only one call to this function is allowed per endpoint before
1903 * check_bandwidth() or reset_bandwidth() must be called.
1904 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1905 * add the endpoint to the schedule with possibly new parameters denoted by a
1906 * different endpoint descriptor in usb_host_endpoint.
1907 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1910 * The USB core will not allow URBs to be queued to an endpoint that is being
1911 * disabled, so there's no need for mutual exclusion to protect
1912 * the xhci->devs[slot_id] structure.
1914 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1915 struct usb_host_endpoint *ep)
1917 struct xhci_hcd *xhci;
1918 struct xhci_container_ctx *in_ctx, *out_ctx;
1919 struct xhci_input_control_ctx *ctrl_ctx;
1920 unsigned int ep_index;
1921 struct xhci_ep_ctx *ep_ctx;
1923 u32 new_add_flags, new_drop_flags;
1926 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1929 xhci = hcd_to_xhci(hcd);
1930 if (xhci->xhc_state & XHCI_STATE_DYING)
1933 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1934 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1935 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1936 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1937 __func__, drop_flag);
1941 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1942 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1943 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1945 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1950 ep_index = xhci_get_endpoint_index(&ep->desc);
1951 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1952 /* If the HC already knows the endpoint is disabled,
1953 * or the HCD has noted it is disabled, ignore this request
1955 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1956 le32_to_cpu(ctrl_ctx->drop_flags) &
1957 xhci_get_endpoint_flag(&ep->desc)) {
1958 /* Do not warn when called after a usb_device_reset */
1959 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1960 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1965 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1966 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1968 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1969 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1971 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1973 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1975 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1976 (unsigned int) ep->desc.bEndpointAddress,
1978 (unsigned int) new_drop_flags,
1979 (unsigned int) new_add_flags);
1982 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1984 /* Add an endpoint to a new possible bandwidth configuration for this device.
1985 * Only one call to this function is allowed per endpoint before
1986 * check_bandwidth() or reset_bandwidth() must be called.
1987 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1988 * add the endpoint to the schedule with possibly new parameters denoted by a
1989 * different endpoint descriptor in usb_host_endpoint.
1990 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1993 * The USB core will not allow URBs to be queued to an endpoint until the
1994 * configuration or alt setting is installed in the device, so there's no need
1995 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1997 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1998 struct usb_host_endpoint *ep)
2000 struct xhci_hcd *xhci;
2001 struct xhci_container_ctx *in_ctx;
2002 unsigned int ep_index;
2003 struct xhci_input_control_ctx *ctrl_ctx;
2004 struct xhci_ep_ctx *ep_ctx;
2006 u32 new_add_flags, new_drop_flags;
2007 struct xhci_virt_device *virt_dev;
2010 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2012 /* So we won't queue a reset ep command for a root hub */
2016 xhci = hcd_to_xhci(hcd);
2017 if (xhci->xhc_state & XHCI_STATE_DYING)
2020 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2021 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2022 /* FIXME when we have to issue an evaluate endpoint command to
2023 * deal with ep0 max packet size changing once we get the
2026 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2027 __func__, added_ctxs);
2031 virt_dev = xhci->devs[udev->slot_id];
2032 in_ctx = virt_dev->in_ctx;
2033 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2035 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2040 ep_index = xhci_get_endpoint_index(&ep->desc);
2041 /* If this endpoint is already in use, and the upper layers are trying
2042 * to add it again without dropping it, reject the addition.
2044 if (virt_dev->eps[ep_index].ring &&
2045 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2046 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2047 "without dropping it.\n",
2048 (unsigned int) ep->desc.bEndpointAddress);
2052 /* If the HCD has already noted the endpoint is enabled,
2053 * ignore this request.
2055 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2056 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2062 * Configuration and alternate setting changes must be done in
2063 * process context, not interrupt context (or so documenation
2064 * for usb_set_interface() and usb_set_configuration() claim).
2066 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2067 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2068 __func__, ep->desc.bEndpointAddress);
2072 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2073 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2075 /* If xhci_endpoint_disable() was called for this endpoint, but the
2076 * xHC hasn't been notified yet through the check_bandwidth() call,
2077 * this re-adds a new state for the endpoint from the new endpoint
2078 * descriptors. We must drop and re-add this endpoint, so we leave the
2081 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2083 /* Store the usb_device pointer for later use */
2086 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2087 trace_xhci_add_endpoint(ep_ctx);
2089 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2090 (unsigned int) ep->desc.bEndpointAddress,
2092 (unsigned int) new_drop_flags,
2093 (unsigned int) new_add_flags);
2096 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2098 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2100 struct xhci_input_control_ctx *ctrl_ctx;
2101 struct xhci_ep_ctx *ep_ctx;
2102 struct xhci_slot_ctx *slot_ctx;
2105 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2107 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2112 /* When a device's add flag and drop flag are zero, any subsequent
2113 * configure endpoint command will leave that endpoint's state
2114 * untouched. Make sure we don't leave any old state in the input
2115 * endpoint contexts.
2117 ctrl_ctx->drop_flags = 0;
2118 ctrl_ctx->add_flags = 0;
2119 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2120 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2121 /* Endpoint 0 is always valid */
2122 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2123 for (i = 1; i < 31; i++) {
2124 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2125 ep_ctx->ep_info = 0;
2126 ep_ctx->ep_info2 = 0;
2128 ep_ctx->tx_info = 0;
2132 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2133 struct usb_device *udev, u32 *cmd_status)
2137 switch (*cmd_status) {
2138 case COMP_COMMAND_ABORTED:
2139 case COMP_COMMAND_RING_STOPPED:
2140 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2143 case COMP_RESOURCE_ERROR:
2144 dev_warn(&udev->dev,
2145 "Not enough host controller resources for new device state.\n");
2147 /* FIXME: can we allocate more resources for the HC? */
2149 case COMP_BANDWIDTH_ERROR:
2150 case COMP_SECONDARY_BANDWIDTH_ERROR:
2151 dev_warn(&udev->dev,
2152 "Not enough bandwidth for new device state.\n");
2154 /* FIXME: can we go back to the old state? */
2156 case COMP_TRB_ERROR:
2157 /* the HCD set up something wrong */
2158 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2160 "and endpoint is not disabled.\n");
2163 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2164 dev_warn(&udev->dev,
2165 "ERROR: Incompatible device for endpoint configure command.\n");
2169 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2170 "Successful Endpoint Configure command");
2174 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2182 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2183 struct usb_device *udev, u32 *cmd_status)
2187 switch (*cmd_status) {
2188 case COMP_COMMAND_ABORTED:
2189 case COMP_COMMAND_RING_STOPPED:
2190 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2193 case COMP_PARAMETER_ERROR:
2194 dev_warn(&udev->dev,
2195 "WARN: xHCI driver setup invalid evaluate context command.\n");
2198 case COMP_SLOT_NOT_ENABLED_ERROR:
2199 dev_warn(&udev->dev,
2200 "WARN: slot not enabled for evaluate context command.\n");
2203 case COMP_CONTEXT_STATE_ERROR:
2204 dev_warn(&udev->dev,
2205 "WARN: invalid context state for evaluate context command.\n");
2208 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2209 dev_warn(&udev->dev,
2210 "ERROR: Incompatible device for evaluate context command.\n");
2213 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2214 /* Max Exit Latency too large error */
2215 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2219 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2220 "Successful evaluate context command");
2224 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2232 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2233 struct xhci_input_control_ctx *ctrl_ctx)
2235 u32 valid_add_flags;
2236 u32 valid_drop_flags;
2238 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2239 * (bit 1). The default control endpoint is added during the Address
2240 * Device command and is never removed until the slot is disabled.
2242 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2243 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2245 /* Use hweight32 to count the number of ones in the add flags, or
2246 * number of endpoints added. Don't count endpoints that are changed
2247 * (both added and dropped).
2249 return hweight32(valid_add_flags) -
2250 hweight32(valid_add_flags & valid_drop_flags);
2253 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2254 struct xhci_input_control_ctx *ctrl_ctx)
2256 u32 valid_add_flags;
2257 u32 valid_drop_flags;
2259 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2260 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2262 return hweight32(valid_drop_flags) -
2263 hweight32(valid_add_flags & valid_drop_flags);
2267 * We need to reserve the new number of endpoints before the configure endpoint
2268 * command completes. We can't subtract the dropped endpoints from the number
2269 * of active endpoints until the command completes because we can oversubscribe
2270 * the host in this case:
2272 * - the first configure endpoint command drops more endpoints than it adds
2273 * - a second configure endpoint command that adds more endpoints is queued
2274 * - the first configure endpoint command fails, so the config is unchanged
2275 * - the second command may succeed, even though there isn't enough resources
2277 * Must be called with xhci->lock held.
2279 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2280 struct xhci_input_control_ctx *ctrl_ctx)
2284 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2285 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2286 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2287 "Not enough ep ctxs: "
2288 "%u active, need to add %u, limit is %u.",
2289 xhci->num_active_eps, added_eps,
2290 xhci->limit_active_eps);
2293 xhci->num_active_eps += added_eps;
2294 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295 "Adding %u ep ctxs, %u now active.", added_eps,
2296 xhci->num_active_eps);
2301 * The configure endpoint was failed by the xHC for some other reason, so we
2302 * need to revert the resources that failed configuration would have used.
2304 * Must be called with xhci->lock held.
2306 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2307 struct xhci_input_control_ctx *ctrl_ctx)
2311 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2312 xhci->num_active_eps -= num_failed_eps;
2313 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2314 "Removing %u failed ep ctxs, %u now active.",
2316 xhci->num_active_eps);
2320 * Now that the command has completed, clean up the active endpoint count by
2321 * subtracting out the endpoints that were dropped (but not changed).
2323 * Must be called with xhci->lock held.
2325 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2326 struct xhci_input_control_ctx *ctrl_ctx)
2328 u32 num_dropped_eps;
2330 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2331 xhci->num_active_eps -= num_dropped_eps;
2332 if (num_dropped_eps)
2333 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2334 "Removing %u dropped ep ctxs, %u now active.",
2336 xhci->num_active_eps);
2339 static unsigned int xhci_get_block_size(struct usb_device *udev)
2341 switch (udev->speed) {
2343 case USB_SPEED_FULL:
2345 case USB_SPEED_HIGH:
2347 case USB_SPEED_SUPER:
2348 case USB_SPEED_SUPER_PLUS:
2350 case USB_SPEED_UNKNOWN:
2351 case USB_SPEED_WIRELESS:
2353 /* Should never happen */
2359 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2361 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2363 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2368 /* If we are changing a LS/FS device under a HS hub,
2369 * make sure (if we are activating a new TT) that the HS bus has enough
2370 * bandwidth for this new TT.
2372 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2373 struct xhci_virt_device *virt_dev,
2376 struct xhci_interval_bw_table *bw_table;
2377 struct xhci_tt_bw_info *tt_info;
2379 /* Find the bandwidth table for the root port this TT is attached to. */
2380 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2381 tt_info = virt_dev->tt_info;
2382 /* If this TT already had active endpoints, the bandwidth for this TT
2383 * has already been added. Removing all periodic endpoints (and thus
2384 * making the TT enactive) will only decrease the bandwidth used.
2388 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2389 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2393 /* Not sure why we would have no new active endpoints...
2395 * Maybe because of an Evaluate Context change for a hub update or a
2396 * control endpoint 0 max packet size change?
2397 * FIXME: skip the bandwidth calculation in that case.
2402 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2403 struct xhci_virt_device *virt_dev)
2405 unsigned int bw_reserved;
2407 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2408 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2411 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2412 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2419 * This algorithm is a very conservative estimate of the worst-case scheduling
2420 * scenario for any one interval. The hardware dynamically schedules the
2421 * packets, so we can't tell which microframe could be the limiting factor in
2422 * the bandwidth scheduling. This only takes into account periodic endpoints.
2424 * Obviously, we can't solve an NP complete problem to find the minimum worst
2425 * case scenario. Instead, we come up with an estimate that is no less than
2426 * the worst case bandwidth used for any one microframe, but may be an
2429 * We walk the requirements for each endpoint by interval, starting with the
2430 * smallest interval, and place packets in the schedule where there is only one
2431 * possible way to schedule packets for that interval. In order to simplify
2432 * this algorithm, we record the largest max packet size for each interval, and
2433 * assume all packets will be that size.
2435 * For interval 0, we obviously must schedule all packets for each interval.
2436 * The bandwidth for interval 0 is just the amount of data to be transmitted
2437 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2438 * the number of packets).
2440 * For interval 1, we have two possible microframes to schedule those packets
2441 * in. For this algorithm, if we can schedule the same number of packets for
2442 * each possible scheduling opportunity (each microframe), we will do so. The
2443 * remaining number of packets will be saved to be transmitted in the gaps in
2444 * the next interval's scheduling sequence.
2446 * As we move those remaining packets to be scheduled with interval 2 packets,
2447 * we have to double the number of remaining packets to transmit. This is
2448 * because the intervals are actually powers of 2, and we would be transmitting
2449 * the previous interval's packets twice in this interval. We also have to be
2450 * sure that when we look at the largest max packet size for this interval, we
2451 * also look at the largest max packet size for the remaining packets and take
2452 * the greater of the two.
2454 * The algorithm continues to evenly distribute packets in each scheduling
2455 * opportunity, and push the remaining packets out, until we get to the last
2456 * interval. Then those packets and their associated overhead are just added
2457 * to the bandwidth used.
2459 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2460 struct xhci_virt_device *virt_dev,
2463 unsigned int bw_reserved;
2464 unsigned int max_bandwidth;
2465 unsigned int bw_used;
2466 unsigned int block_size;
2467 struct xhci_interval_bw_table *bw_table;
2468 unsigned int packet_size = 0;
2469 unsigned int overhead = 0;
2470 unsigned int packets_transmitted = 0;
2471 unsigned int packets_remaining = 0;
2474 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2475 return xhci_check_ss_bw(xhci, virt_dev);
2477 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2478 max_bandwidth = HS_BW_LIMIT;
2479 /* Convert percent of bus BW reserved to blocks reserved */
2480 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2482 max_bandwidth = FS_BW_LIMIT;
2483 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2486 bw_table = virt_dev->bw_table;
2487 /* We need to translate the max packet size and max ESIT payloads into
2488 * the units the hardware uses.
2490 block_size = xhci_get_block_size(virt_dev->udev);
2492 /* If we are manipulating a LS/FS device under a HS hub, double check
2493 * that the HS bus has enough bandwidth if we are activing a new TT.
2495 if (virt_dev->tt_info) {
2496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2497 "Recalculating BW for rootport %u",
2498 virt_dev->real_port);
2499 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2500 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2501 "newly activated TT.\n");
2504 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2505 "Recalculating BW for TT slot %u port %u",
2506 virt_dev->tt_info->slot_id,
2507 virt_dev->tt_info->ttport);
2509 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2510 "Recalculating BW for rootport %u",
2511 virt_dev->real_port);
2514 /* Add in how much bandwidth will be used for interval zero, or the
2515 * rounded max ESIT payload + number of packets * largest overhead.
2517 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2518 bw_table->interval_bw[0].num_packets *
2519 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2521 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2522 unsigned int bw_added;
2523 unsigned int largest_mps;
2524 unsigned int interval_overhead;
2527 * How many packets could we transmit in this interval?
2528 * If packets didn't fit in the previous interval, we will need
2529 * to transmit that many packets twice within this interval.
2531 packets_remaining = 2 * packets_remaining +
2532 bw_table->interval_bw[i].num_packets;
2534 /* Find the largest max packet size of this or the previous
2537 if (list_empty(&bw_table->interval_bw[i].endpoints))
2540 struct xhci_virt_ep *virt_ep;
2541 struct list_head *ep_entry;
2543 ep_entry = bw_table->interval_bw[i].endpoints.next;
2544 virt_ep = list_entry(ep_entry,
2545 struct xhci_virt_ep, bw_endpoint_list);
2546 /* Convert to blocks, rounding up */
2547 largest_mps = DIV_ROUND_UP(
2548 virt_ep->bw_info.max_packet_size,
2551 if (largest_mps > packet_size)
2552 packet_size = largest_mps;
2554 /* Use the larger overhead of this or the previous interval. */
2555 interval_overhead = xhci_get_largest_overhead(
2556 &bw_table->interval_bw[i]);
2557 if (interval_overhead > overhead)
2558 overhead = interval_overhead;
2560 /* How many packets can we evenly distribute across
2561 * (1 << (i + 1)) possible scheduling opportunities?
2563 packets_transmitted = packets_remaining >> (i + 1);
2565 /* Add in the bandwidth used for those scheduled packets */
2566 bw_added = packets_transmitted * (overhead + packet_size);
2568 /* How many packets do we have remaining to transmit? */
2569 packets_remaining = packets_remaining % (1 << (i + 1));
2571 /* What largest max packet size should those packets have? */
2572 /* If we've transmitted all packets, don't carry over the
2573 * largest packet size.
2575 if (packets_remaining == 0) {
2578 } else if (packets_transmitted > 0) {
2579 /* Otherwise if we do have remaining packets, and we've
2580 * scheduled some packets in this interval, take the
2581 * largest max packet size from endpoints with this
2584 packet_size = largest_mps;
2585 overhead = interval_overhead;
2587 /* Otherwise carry over packet_size and overhead from the last
2588 * time we had a remainder.
2590 bw_used += bw_added;
2591 if (bw_used > max_bandwidth) {
2592 xhci_warn(xhci, "Not enough bandwidth. "
2593 "Proposed: %u, Max: %u\n",
2594 bw_used, max_bandwidth);
2599 * Ok, we know we have some packets left over after even-handedly
2600 * scheduling interval 15. We don't know which microframes they will
2601 * fit into, so we over-schedule and say they will be scheduled every
2604 if (packets_remaining > 0)
2605 bw_used += overhead + packet_size;
2607 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2608 unsigned int port_index = virt_dev->real_port - 1;
2610 /* OK, we're manipulating a HS device attached to a
2611 * root port bandwidth domain. Include the number of active TTs
2612 * in the bandwidth used.
2614 bw_used += TT_HS_OVERHEAD *
2615 xhci->rh_bw[port_index].num_active_tts;
2618 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2619 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2620 "Available: %u " "percent",
2621 bw_used, max_bandwidth, bw_reserved,
2622 (max_bandwidth - bw_used - bw_reserved) * 100 /
2625 bw_used += bw_reserved;
2626 if (bw_used > max_bandwidth) {
2627 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2628 bw_used, max_bandwidth);
2632 bw_table->bw_used = bw_used;
2636 static bool xhci_is_async_ep(unsigned int ep_type)
2638 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2639 ep_type != ISOC_IN_EP &&
2640 ep_type != INT_IN_EP);
2643 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2645 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2648 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2650 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2652 if (ep_bw->ep_interval == 0)
2653 return SS_OVERHEAD_BURST +
2654 (ep_bw->mult * ep_bw->num_packets *
2655 (SS_OVERHEAD + mps));
2656 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2657 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2658 1 << ep_bw->ep_interval);
2662 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2663 struct xhci_bw_info *ep_bw,
2664 struct xhci_interval_bw_table *bw_table,
2665 struct usb_device *udev,
2666 struct xhci_virt_ep *virt_ep,
2667 struct xhci_tt_bw_info *tt_info)
2669 struct xhci_interval_bw *interval_bw;
2670 int normalized_interval;
2672 if (xhci_is_async_ep(ep_bw->type))
2675 if (udev->speed >= USB_SPEED_SUPER) {
2676 if (xhci_is_sync_in_ep(ep_bw->type))
2677 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2678 xhci_get_ss_bw_consumed(ep_bw);
2680 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2681 xhci_get_ss_bw_consumed(ep_bw);
2685 /* SuperSpeed endpoints never get added to intervals in the table, so
2686 * this check is only valid for HS/FS/LS devices.
2688 if (list_empty(&virt_ep->bw_endpoint_list))
2690 /* For LS/FS devices, we need to translate the interval expressed in
2691 * microframes to frames.
2693 if (udev->speed == USB_SPEED_HIGH)
2694 normalized_interval = ep_bw->ep_interval;
2696 normalized_interval = ep_bw->ep_interval - 3;
2698 if (normalized_interval == 0)
2699 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2700 interval_bw = &bw_table->interval_bw[normalized_interval];
2701 interval_bw->num_packets -= ep_bw->num_packets;
2702 switch (udev->speed) {
2704 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2706 case USB_SPEED_FULL:
2707 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2709 case USB_SPEED_HIGH:
2710 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2712 case USB_SPEED_SUPER:
2713 case USB_SPEED_SUPER_PLUS:
2714 case USB_SPEED_UNKNOWN:
2715 case USB_SPEED_WIRELESS:
2716 /* Should never happen because only LS/FS/HS endpoints will get
2717 * added to the endpoint list.
2722 tt_info->active_eps -= 1;
2723 list_del_init(&virt_ep->bw_endpoint_list);
2726 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2727 struct xhci_bw_info *ep_bw,
2728 struct xhci_interval_bw_table *bw_table,
2729 struct usb_device *udev,
2730 struct xhci_virt_ep *virt_ep,
2731 struct xhci_tt_bw_info *tt_info)
2733 struct xhci_interval_bw *interval_bw;
2734 struct xhci_virt_ep *smaller_ep;
2735 int normalized_interval;
2737 if (xhci_is_async_ep(ep_bw->type))
2740 if (udev->speed == USB_SPEED_SUPER) {
2741 if (xhci_is_sync_in_ep(ep_bw->type))
2742 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2743 xhci_get_ss_bw_consumed(ep_bw);
2745 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2746 xhci_get_ss_bw_consumed(ep_bw);
2750 /* For LS/FS devices, we need to translate the interval expressed in
2751 * microframes to frames.
2753 if (udev->speed == USB_SPEED_HIGH)
2754 normalized_interval = ep_bw->ep_interval;
2756 normalized_interval = ep_bw->ep_interval - 3;
2758 if (normalized_interval == 0)
2759 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2760 interval_bw = &bw_table->interval_bw[normalized_interval];
2761 interval_bw->num_packets += ep_bw->num_packets;
2762 switch (udev->speed) {
2764 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2766 case USB_SPEED_FULL:
2767 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2769 case USB_SPEED_HIGH:
2770 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2772 case USB_SPEED_SUPER:
2773 case USB_SPEED_SUPER_PLUS:
2774 case USB_SPEED_UNKNOWN:
2775 case USB_SPEED_WIRELESS:
2776 /* Should never happen because only LS/FS/HS endpoints will get
2777 * added to the endpoint list.
2783 tt_info->active_eps += 1;
2784 /* Insert the endpoint into the list, largest max packet size first. */
2785 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2787 if (ep_bw->max_packet_size >=
2788 smaller_ep->bw_info.max_packet_size) {
2789 /* Add the new ep before the smaller endpoint */
2790 list_add_tail(&virt_ep->bw_endpoint_list,
2791 &smaller_ep->bw_endpoint_list);
2795 /* Add the new endpoint at the end of the list. */
2796 list_add_tail(&virt_ep->bw_endpoint_list,
2797 &interval_bw->endpoints);
2800 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2801 struct xhci_virt_device *virt_dev,
2804 struct xhci_root_port_bw_info *rh_bw_info;
2805 if (!virt_dev->tt_info)
2808 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2809 if (old_active_eps == 0 &&
2810 virt_dev->tt_info->active_eps != 0) {
2811 rh_bw_info->num_active_tts += 1;
2812 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2813 } else if (old_active_eps != 0 &&
2814 virt_dev->tt_info->active_eps == 0) {
2815 rh_bw_info->num_active_tts -= 1;
2816 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2820 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2821 struct xhci_virt_device *virt_dev,
2822 struct xhci_container_ctx *in_ctx)
2824 struct xhci_bw_info ep_bw_info[31];
2826 struct xhci_input_control_ctx *ctrl_ctx;
2827 int old_active_eps = 0;
2829 if (virt_dev->tt_info)
2830 old_active_eps = virt_dev->tt_info->active_eps;
2832 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2834 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2839 for (i = 0; i < 31; i++) {
2840 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2843 /* Make a copy of the BW info in case we need to revert this */
2844 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2845 sizeof(ep_bw_info[i]));
2846 /* Drop the endpoint from the interval table if the endpoint is
2847 * being dropped or changed.
2849 if (EP_IS_DROPPED(ctrl_ctx, i))
2850 xhci_drop_ep_from_interval_table(xhci,
2851 &virt_dev->eps[i].bw_info,
2857 /* Overwrite the information stored in the endpoints' bw_info */
2858 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2859 for (i = 0; i < 31; i++) {
2860 /* Add any changed or added endpoints to the interval table */
2861 if (EP_IS_ADDED(ctrl_ctx, i))
2862 xhci_add_ep_to_interval_table(xhci,
2863 &virt_dev->eps[i].bw_info,
2870 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2871 /* Ok, this fits in the bandwidth we have.
2872 * Update the number of active TTs.
2874 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2878 /* We don't have enough bandwidth for this, revert the stored info. */
2879 for (i = 0; i < 31; i++) {
2880 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2883 /* Drop the new copies of any added or changed endpoints from
2884 * the interval table.
2886 if (EP_IS_ADDED(ctrl_ctx, i)) {
2887 xhci_drop_ep_from_interval_table(xhci,
2888 &virt_dev->eps[i].bw_info,
2894 /* Revert the endpoint back to its old information */
2895 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2896 sizeof(ep_bw_info[i]));
2897 /* Add any changed or dropped endpoints back into the table */
2898 if (EP_IS_DROPPED(ctrl_ctx, i))
2899 xhci_add_ep_to_interval_table(xhci,
2900 &virt_dev->eps[i].bw_info,
2910 /* Issue a configure endpoint command or evaluate context command
2911 * and wait for it to finish.
2913 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2914 struct usb_device *udev,
2915 struct xhci_command *command,
2916 bool ctx_change, bool must_succeed)
2919 unsigned long flags;
2920 struct xhci_input_control_ctx *ctrl_ctx;
2921 struct xhci_virt_device *virt_dev;
2922 struct xhci_slot_ctx *slot_ctx;
2927 spin_lock_irqsave(&xhci->lock, flags);
2929 if (xhci->xhc_state & XHCI_STATE_DYING) {
2930 spin_unlock_irqrestore(&xhci->lock, flags);
2934 virt_dev = xhci->devs[udev->slot_id];
2936 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2938 spin_unlock_irqrestore(&xhci->lock, flags);
2939 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2944 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2945 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2946 spin_unlock_irqrestore(&xhci->lock, flags);
2947 xhci_warn(xhci, "Not enough host resources, "
2948 "active endpoint contexts = %u\n",
2949 xhci->num_active_eps);
2952 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2953 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2954 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2955 xhci_free_host_resources(xhci, ctrl_ctx);
2956 spin_unlock_irqrestore(&xhci->lock, flags);
2957 xhci_warn(xhci, "Not enough bandwidth\n");
2961 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2963 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2964 trace_xhci_configure_endpoint(slot_ctx);
2967 ret = xhci_queue_configure_endpoint(xhci, command,
2968 command->in_ctx->dma,
2969 udev->slot_id, must_succeed);
2971 ret = xhci_queue_evaluate_context(xhci, command,
2972 command->in_ctx->dma,
2973 udev->slot_id, must_succeed);
2975 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2976 xhci_free_host_resources(xhci, ctrl_ctx);
2977 spin_unlock_irqrestore(&xhci->lock, flags);
2978 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2979 "FIXME allocate a new ring segment");
2982 xhci_ring_cmd_db(xhci);
2983 spin_unlock_irqrestore(&xhci->lock, flags);
2985 /* Wait for the configure endpoint command to complete */
2986 wait_for_completion(command->completion);
2989 ret = xhci_configure_endpoint_result(xhci, udev,
2992 ret = xhci_evaluate_context_result(xhci, udev,
2995 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2996 spin_lock_irqsave(&xhci->lock, flags);
2997 /* If the command failed, remove the reserved resources.
2998 * Otherwise, clean up the estimate to include dropped eps.
3001 xhci_free_host_resources(xhci, ctrl_ctx);
3003 xhci_finish_resource_reservation(xhci, ctrl_ctx);
3004 spin_unlock_irqrestore(&xhci->lock, flags);
3009 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3010 struct xhci_virt_device *vdev, int i)
3012 struct xhci_virt_ep *ep = &vdev->eps[i];
3014 if (ep->ep_state & EP_HAS_STREAMS) {
3015 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3016 xhci_get_endpoint_address(i));
3017 xhci_free_stream_info(xhci, ep->stream_info);
3018 ep->stream_info = NULL;
3019 ep->ep_state &= ~EP_HAS_STREAMS;
3023 /* Called after one or more calls to xhci_add_endpoint() or
3024 * xhci_drop_endpoint(). If this call fails, the USB core is expected
3025 * to call xhci_reset_bandwidth().
3027 * Since we are in the middle of changing either configuration or
3028 * installing a new alt setting, the USB core won't allow URBs to be
3029 * enqueued for any endpoint on the old config or interface. Nothing
3030 * else should be touching the xhci->devs[slot_id] structure, so we
3031 * don't need to take the xhci->lock for manipulating that.
3033 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3037 struct xhci_hcd *xhci;
3038 struct xhci_virt_device *virt_dev;
3039 struct xhci_input_control_ctx *ctrl_ctx;
3040 struct xhci_slot_ctx *slot_ctx;
3041 struct xhci_command *command;
3043 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3046 xhci = hcd_to_xhci(hcd);
3047 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3048 (xhci->xhc_state & XHCI_STATE_REMOVING))
3051 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3052 virt_dev = xhci->devs[udev->slot_id];
3054 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3058 command->in_ctx = virt_dev->in_ctx;
3060 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3061 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3063 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3066 goto command_cleanup;
3068 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3069 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3070 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3072 /* Don't issue the command if there's no endpoints to update. */
3073 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3074 ctrl_ctx->drop_flags == 0) {
3076 goto command_cleanup;
3078 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3079 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3080 for (i = 31; i >= 1; i--) {
3081 __le32 le32 = cpu_to_le32(BIT(i));
3083 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3084 || (ctrl_ctx->add_flags & le32) || i == 1) {
3085 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3086 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3091 ret = xhci_configure_endpoint(xhci, udev, command,
3094 /* Callee should call reset_bandwidth() */
3095 goto command_cleanup;
3097 /* Free any rings that were dropped, but not changed. */
3098 for (i = 1; i < 31; i++) {
3099 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3100 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3101 xhci_free_endpoint_ring(xhci, virt_dev, i);
3102 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3105 xhci_zero_in_ctx(xhci, virt_dev);
3107 * Install any rings for completely new endpoints or changed endpoints,
3108 * and free any old rings from changed endpoints.
3110 for (i = 1; i < 31; i++) {
3111 if (!virt_dev->eps[i].new_ring)
3113 /* Only free the old ring if it exists.
3114 * It may not if this is the first add of an endpoint.
3116 if (virt_dev->eps[i].ring) {
3117 xhci_free_endpoint_ring(xhci, virt_dev, i);
3119 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3120 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3121 virt_dev->eps[i].new_ring = NULL;
3122 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3125 kfree(command->completion);
3130 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3132 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3134 struct xhci_hcd *xhci;
3135 struct xhci_virt_device *virt_dev;
3138 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3141 xhci = hcd_to_xhci(hcd);
3143 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3144 virt_dev = xhci->devs[udev->slot_id];
3145 /* Free any rings allocated for added endpoints */
3146 for (i = 0; i < 31; i++) {
3147 if (virt_dev->eps[i].new_ring) {
3148 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3149 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3150 virt_dev->eps[i].new_ring = NULL;
3153 xhci_zero_in_ctx(xhci, virt_dev);
3155 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3157 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3158 struct xhci_container_ctx *in_ctx,
3159 struct xhci_container_ctx *out_ctx,
3160 struct xhci_input_control_ctx *ctrl_ctx,
3161 u32 add_flags, u32 drop_flags)
3163 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3164 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3165 xhci_slot_copy(xhci, in_ctx, out_ctx);
3166 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3169 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3170 struct usb_host_endpoint *host_ep)
3172 struct xhci_hcd *xhci;
3173 struct xhci_virt_device *vdev;
3174 struct xhci_virt_ep *ep;
3175 struct usb_device *udev;
3176 unsigned long flags;
3177 unsigned int ep_index;
3179 xhci = hcd_to_xhci(hcd);
3181 spin_lock_irqsave(&xhci->lock, flags);
3183 udev = (struct usb_device *)host_ep->hcpriv;
3184 if (!udev || !udev->slot_id)
3187 vdev = xhci->devs[udev->slot_id];
3191 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3192 ep = &vdev->eps[ep_index];
3194 /* wait for hub_tt_work to finish clearing hub TT */
3195 if (ep->ep_state & EP_CLEARING_TT) {
3196 spin_unlock_irqrestore(&xhci->lock, flags);
3197 schedule_timeout_uninterruptible(1);
3202 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3205 host_ep->hcpriv = NULL;
3206 spin_unlock_irqrestore(&xhci->lock, flags);
3210 * Called after usb core issues a clear halt control message.
3211 * The host side of the halt should already be cleared by a reset endpoint
3212 * command issued when the STALL event was received.
3214 * The reset endpoint command may only be issued to endpoints in the halted
3215 * state. For software that wishes to reset the data toggle or sequence number
3216 * of an endpoint that isn't in the halted state this function will issue a
3217 * configure endpoint command with the Drop and Add bits set for the target
3218 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3221 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3222 struct usb_host_endpoint *host_ep)
3224 struct xhci_hcd *xhci;
3225 struct usb_device *udev;
3226 struct xhci_virt_device *vdev;
3227 struct xhci_virt_ep *ep;
3228 struct xhci_input_control_ctx *ctrl_ctx;
3229 struct xhci_command *stop_cmd, *cfg_cmd;
3230 unsigned int ep_index;
3231 unsigned long flags;
3235 xhci = hcd_to_xhci(hcd);
3236 if (!host_ep->hcpriv)
3238 udev = (struct usb_device *) host_ep->hcpriv;
3239 vdev = xhci->devs[udev->slot_id];
3242 * vdev may be lost due to xHC restore error and re-initialization
3243 * during S3/S4 resume. A new vdev will be allocated later by
3244 * xhci_discover_or_reset_device()
3246 if (!udev->slot_id || !vdev)
3248 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3249 ep = &vdev->eps[ep_index];
3251 /* Bail out if toggle is already being cleared by a endpoint reset */
3252 spin_lock_irqsave(&xhci->lock, flags);
3253 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3254 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3255 spin_unlock_irqrestore(&xhci->lock, flags);
3258 spin_unlock_irqrestore(&xhci->lock, flags);
3259 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3260 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3261 usb_endpoint_xfer_isoc(&host_ep->desc))
3264 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3266 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3269 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3273 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3277 spin_lock_irqsave(&xhci->lock, flags);
3279 /* block queuing new trbs and ringing ep doorbell */
3280 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3283 * Make sure endpoint ring is empty before resetting the toggle/seq.
3284 * Driver is required to synchronously cancel all transfer request.
3285 * Stop the endpoint to force xHC to update the output context
3288 if (!list_empty(&ep->ring->td_list)) {
3289 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3290 spin_unlock_irqrestore(&xhci->lock, flags);
3291 xhci_free_command(xhci, cfg_cmd);
3295 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3298 spin_unlock_irqrestore(&xhci->lock, flags);
3299 xhci_free_command(xhci, cfg_cmd);
3300 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3305 xhci_ring_cmd_db(xhci);
3306 spin_unlock_irqrestore(&xhci->lock, flags);
3308 wait_for_completion(stop_cmd->completion);
3310 spin_lock_irqsave(&xhci->lock, flags);
3312 /* config ep command clears toggle if add and drop ep flags are set */
3313 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3315 spin_unlock_irqrestore(&xhci->lock, flags);
3316 xhci_free_command(xhci, cfg_cmd);
3317 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3322 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3323 ctrl_ctx, ep_flag, ep_flag);
3324 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3326 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3327 udev->slot_id, false);
3329 spin_unlock_irqrestore(&xhci->lock, flags);
3330 xhci_free_command(xhci, cfg_cmd);
3331 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3336 xhci_ring_cmd_db(xhci);
3337 spin_unlock_irqrestore(&xhci->lock, flags);
3339 wait_for_completion(cfg_cmd->completion);
3341 xhci_free_command(xhci, cfg_cmd);
3343 xhci_free_command(xhci, stop_cmd);
3344 spin_lock_irqsave(&xhci->lock, flags);
3345 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3346 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3347 spin_unlock_irqrestore(&xhci->lock, flags);
3350 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3351 struct usb_device *udev, struct usb_host_endpoint *ep,
3352 unsigned int slot_id)
3355 unsigned int ep_index;
3356 unsigned int ep_state;
3360 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3362 return ret ? ret : -EINVAL;
3363 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3364 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3365 " descriptor for ep 0x%x does not support streams\n",
3366 ep->desc.bEndpointAddress);
3370 ep_index = xhci_get_endpoint_index(&ep->desc);
3371 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3372 if (ep_state & EP_HAS_STREAMS ||
3373 ep_state & EP_GETTING_STREAMS) {
3374 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3375 "already has streams set up.\n",
3376 ep->desc.bEndpointAddress);
3377 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3378 "dynamic stream context array reallocation.\n");
3381 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3382 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3383 "endpoint 0x%x; URBs are pending.\n",
3384 ep->desc.bEndpointAddress);
3390 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3391 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3393 unsigned int max_streams;
3395 /* The stream context array size must be a power of two */
3396 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3398 * Find out how many primary stream array entries the host controller
3399 * supports. Later we may use secondary stream arrays (similar to 2nd
3400 * level page entries), but that's an optional feature for xHCI host
3401 * controllers. xHCs must support at least 4 stream IDs.
3403 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3404 if (*num_stream_ctxs > max_streams) {
3405 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3407 *num_stream_ctxs = max_streams;
3408 *num_streams = max_streams;
3412 /* Returns an error code if one of the endpoint already has streams.
3413 * This does not change any data structures, it only checks and gathers
3416 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3417 struct usb_device *udev,
3418 struct usb_host_endpoint **eps, unsigned int num_eps,
3419 unsigned int *num_streams, u32 *changed_ep_bitmask)
3421 unsigned int max_streams;
3422 unsigned int endpoint_flag;
3426 for (i = 0; i < num_eps; i++) {
3427 ret = xhci_check_streams_endpoint(xhci, udev,
3428 eps[i], udev->slot_id);
3432 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3433 if (max_streams < (*num_streams - 1)) {
3434 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3435 eps[i]->desc.bEndpointAddress,
3437 *num_streams = max_streams+1;
3440 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3441 if (*changed_ep_bitmask & endpoint_flag)
3443 *changed_ep_bitmask |= endpoint_flag;
3448 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3449 struct usb_device *udev,
3450 struct usb_host_endpoint **eps, unsigned int num_eps)
3452 u32 changed_ep_bitmask = 0;
3453 unsigned int slot_id;
3454 unsigned int ep_index;
3455 unsigned int ep_state;
3458 slot_id = udev->slot_id;
3459 if (!xhci->devs[slot_id])
3462 for (i = 0; i < num_eps; i++) {
3463 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3464 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3465 /* Are streams already being freed for the endpoint? */
3466 if (ep_state & EP_GETTING_NO_STREAMS) {
3467 xhci_warn(xhci, "WARN Can't disable streams for "
3469 "streams are being disabled already\n",
3470 eps[i]->desc.bEndpointAddress);
3473 /* Are there actually any streams to free? */
3474 if (!(ep_state & EP_HAS_STREAMS) &&
3475 !(ep_state & EP_GETTING_STREAMS)) {
3476 xhci_warn(xhci, "WARN Can't disable streams for "
3478 "streams are already disabled!\n",
3479 eps[i]->desc.bEndpointAddress);
3480 xhci_warn(xhci, "WARN xhci_free_streams() called "
3481 "with non-streams endpoint\n");
3484 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3486 return changed_ep_bitmask;
3490 * The USB device drivers use this function (through the HCD interface in USB
3491 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3492 * coordinate mass storage command queueing across multiple endpoints (basically
3493 * a stream ID == a task ID).
3495 * Setting up streams involves allocating the same size stream context array
3496 * for each endpoint and issuing a configure endpoint command for all endpoints.
3498 * Don't allow the call to succeed if one endpoint only supports one stream
3499 * (which means it doesn't support streams at all).
3501 * Drivers may get less stream IDs than they asked for, if the host controller
3502 * hardware or endpoints claim they can't support the number of requested
3505 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3506 struct usb_host_endpoint **eps, unsigned int num_eps,
3507 unsigned int num_streams, gfp_t mem_flags)
3510 struct xhci_hcd *xhci;
3511 struct xhci_virt_device *vdev;
3512 struct xhci_command *config_cmd;
3513 struct xhci_input_control_ctx *ctrl_ctx;
3514 unsigned int ep_index;
3515 unsigned int num_stream_ctxs;
3516 unsigned int max_packet;
3517 unsigned long flags;
3518 u32 changed_ep_bitmask = 0;
3523 /* Add one to the number of streams requested to account for
3524 * stream 0 that is reserved for xHCI usage.
3527 xhci = hcd_to_xhci(hcd);
3528 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3531 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3532 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3533 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3534 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3538 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3542 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3544 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3546 xhci_free_command(xhci, config_cmd);
3550 /* Check to make sure all endpoints are not already configured for
3551 * streams. While we're at it, find the maximum number of streams that
3552 * all the endpoints will support and check for duplicate endpoints.
3554 spin_lock_irqsave(&xhci->lock, flags);
3555 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3556 num_eps, &num_streams, &changed_ep_bitmask);
3558 xhci_free_command(xhci, config_cmd);
3559 spin_unlock_irqrestore(&xhci->lock, flags);
3562 if (num_streams <= 1) {
3563 xhci_warn(xhci, "WARN: endpoints can't handle "
3564 "more than one stream.\n");
3565 xhci_free_command(xhci, config_cmd);
3566 spin_unlock_irqrestore(&xhci->lock, flags);
3569 vdev = xhci->devs[udev->slot_id];
3570 /* Mark each endpoint as being in transition, so
3571 * xhci_urb_enqueue() will reject all URBs.
3573 for (i = 0; i < num_eps; i++) {
3574 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3575 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3577 spin_unlock_irqrestore(&xhci->lock, flags);
3579 /* Setup internal data structures and allocate HW data structures for
3580 * streams (but don't install the HW structures in the input context
3581 * until we're sure all memory allocation succeeded).
3583 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3584 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3585 num_stream_ctxs, num_streams);
3587 for (i = 0; i < num_eps; i++) {
3588 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3589 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3590 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3593 max_packet, mem_flags);
3594 if (!vdev->eps[ep_index].stream_info)
3596 /* Set maxPstreams in endpoint context and update deq ptr to
3597 * point to stream context array. FIXME
3601 /* Set up the input context for a configure endpoint command. */
3602 for (i = 0; i < num_eps; i++) {
3603 struct xhci_ep_ctx *ep_ctx;
3605 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3608 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3609 vdev->out_ctx, ep_index);
3610 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3611 vdev->eps[ep_index].stream_info);
3613 /* Tell the HW to drop its old copy of the endpoint context info
3614 * and add the updated copy from the input context.
3616 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3617 vdev->out_ctx, ctrl_ctx,
3618 changed_ep_bitmask, changed_ep_bitmask);
3620 /* Issue and wait for the configure endpoint command */
3621 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3624 /* xHC rejected the configure endpoint command for some reason, so we
3625 * leave the old ring intact and free our internal streams data
3631 spin_lock_irqsave(&xhci->lock, flags);
3632 for (i = 0; i < num_eps; i++) {
3633 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3634 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3635 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3636 udev->slot_id, ep_index);
3637 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3639 xhci_free_command(xhci, config_cmd);
3640 spin_unlock_irqrestore(&xhci->lock, flags);
3642 for (i = 0; i < num_eps; i++) {
3643 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3644 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3646 /* Subtract 1 for stream 0, which drivers can't use */
3647 return num_streams - 1;
3650 /* If it didn't work, free the streams! */
3651 for (i = 0; i < num_eps; i++) {
3652 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3653 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3654 vdev->eps[ep_index].stream_info = NULL;
3655 /* FIXME Unset maxPstreams in endpoint context and
3656 * update deq ptr to point to normal string ring.
3658 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3659 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3660 xhci_endpoint_zero(xhci, vdev, eps[i]);
3662 xhci_free_command(xhci, config_cmd);
3666 /* Transition the endpoint from using streams to being a "normal" endpoint
3669 * Modify the endpoint context state, submit a configure endpoint command,
3670 * and free all endpoint rings for streams if that completes successfully.
3672 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3673 struct usb_host_endpoint **eps, unsigned int num_eps,
3677 struct xhci_hcd *xhci;
3678 struct xhci_virt_device *vdev;
3679 struct xhci_command *command;
3680 struct xhci_input_control_ctx *ctrl_ctx;
3681 unsigned int ep_index;
3682 unsigned long flags;
3683 u32 changed_ep_bitmask;
3685 xhci = hcd_to_xhci(hcd);
3686 vdev = xhci->devs[udev->slot_id];
3688 /* Set up a configure endpoint command to remove the streams rings */
3689 spin_lock_irqsave(&xhci->lock, flags);
3690 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3691 udev, eps, num_eps);
3692 if (changed_ep_bitmask == 0) {
3693 spin_unlock_irqrestore(&xhci->lock, flags);
3697 /* Use the xhci_command structure from the first endpoint. We may have
3698 * allocated too many, but the driver may call xhci_free_streams() for
3699 * each endpoint it grouped into one call to xhci_alloc_streams().
3701 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3702 command = vdev->eps[ep_index].stream_info->free_streams_command;
3703 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3705 spin_unlock_irqrestore(&xhci->lock, flags);
3706 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3711 for (i = 0; i < num_eps; i++) {
3712 struct xhci_ep_ctx *ep_ctx;
3714 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3715 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3716 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3717 EP_GETTING_NO_STREAMS;
3719 xhci_endpoint_copy(xhci, command->in_ctx,
3720 vdev->out_ctx, ep_index);
3721 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3722 &vdev->eps[ep_index]);
3724 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3725 vdev->out_ctx, ctrl_ctx,
3726 changed_ep_bitmask, changed_ep_bitmask);
3727 spin_unlock_irqrestore(&xhci->lock, flags);
3729 /* Issue and wait for the configure endpoint command,
3730 * which must succeed.
3732 ret = xhci_configure_endpoint(xhci, udev, command,
3735 /* xHC rejected the configure endpoint command for some reason, so we
3736 * leave the streams rings intact.
3741 spin_lock_irqsave(&xhci->lock, flags);
3742 for (i = 0; i < num_eps; i++) {
3743 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3744 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3745 vdev->eps[ep_index].stream_info = NULL;
3746 /* FIXME Unset maxPstreams in endpoint context and
3747 * update deq ptr to point to normal string ring.
3749 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3750 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3752 spin_unlock_irqrestore(&xhci->lock, flags);
3758 * Deletes endpoint resources for endpoints that were active before a Reset
3759 * Device command, or a Disable Slot command. The Reset Device command leaves
3760 * the control endpoint intact, whereas the Disable Slot command deletes it.
3762 * Must be called with xhci->lock held.
3764 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3765 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3768 unsigned int num_dropped_eps = 0;
3769 unsigned int drop_flags = 0;
3771 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3772 if (virt_dev->eps[i].ring) {
3773 drop_flags |= 1 << i;
3777 xhci->num_active_eps -= num_dropped_eps;
3778 if (num_dropped_eps)
3779 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3780 "Dropped %u ep ctxs, flags = 0x%x, "
3782 num_dropped_eps, drop_flags,
3783 xhci->num_active_eps);
3787 * This submits a Reset Device Command, which will set the device state to 0,
3788 * set the device address to 0, and disable all the endpoints except the default
3789 * control endpoint. The USB core should come back and call
3790 * xhci_address_device(), and then re-set up the configuration. If this is
3791 * called because of a usb_reset_and_verify_device(), then the old alternate
3792 * settings will be re-installed through the normal bandwidth allocation
3795 * Wait for the Reset Device command to finish. Remove all structures
3796 * associated with the endpoints that were disabled. Clear the input device
3797 * structure? Reset the control endpoint 0 max packet size?
3799 * If the virt_dev to be reset does not exist or does not match the udev,
3800 * it means the device is lost, possibly due to the xHC restore error and
3801 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3802 * re-allocate the device.
3804 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3805 struct usb_device *udev)
3808 unsigned long flags;
3809 struct xhci_hcd *xhci;
3810 unsigned int slot_id;
3811 struct xhci_virt_device *virt_dev;
3812 struct xhci_command *reset_device_cmd;
3813 struct xhci_slot_ctx *slot_ctx;
3814 int old_active_eps = 0;
3816 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3819 xhci = hcd_to_xhci(hcd);
3820 slot_id = udev->slot_id;
3821 virt_dev = xhci->devs[slot_id];
3823 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3824 "not exist. Re-allocate the device\n", slot_id);
3825 ret = xhci_alloc_dev(hcd, udev);
3832 if (virt_dev->tt_info)
3833 old_active_eps = virt_dev->tt_info->active_eps;
3835 if (virt_dev->udev != udev) {
3836 /* If the virt_dev and the udev does not match, this virt_dev
3837 * may belong to another udev.
3838 * Re-allocate the device.
3840 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3841 "not match the udev. Re-allocate the device\n",
3843 ret = xhci_alloc_dev(hcd, udev);
3850 /* If device is not setup, there is no point in resetting it */
3851 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3852 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3853 SLOT_STATE_DISABLED)
3856 trace_xhci_discover_or_reset_device(slot_ctx);
3858 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3859 /* Allocate the command structure that holds the struct completion.
3860 * Assume we're in process context, since the normal device reset
3861 * process has to wait for the device anyway. Storage devices are
3862 * reset as part of error handling, so use GFP_NOIO instead of
3865 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3866 if (!reset_device_cmd) {
3867 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3871 /* Attempt to submit the Reset Device command to the command ring */
3872 spin_lock_irqsave(&xhci->lock, flags);
3874 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3876 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3877 spin_unlock_irqrestore(&xhci->lock, flags);
3878 goto command_cleanup;
3880 xhci_ring_cmd_db(xhci);
3881 spin_unlock_irqrestore(&xhci->lock, flags);
3883 /* Wait for the Reset Device command to finish */
3884 wait_for_completion(reset_device_cmd->completion);
3886 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3887 * unless we tried to reset a slot ID that wasn't enabled,
3888 * or the device wasn't in the addressed or configured state.
3890 ret = reset_device_cmd->status;
3892 case COMP_COMMAND_ABORTED:
3893 case COMP_COMMAND_RING_STOPPED:
3894 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3896 goto command_cleanup;
3897 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3898 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3899 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3901 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3902 xhci_dbg(xhci, "Not freeing device rings.\n");
3903 /* Don't treat this as an error. May change my mind later. */
3905 goto command_cleanup;
3907 xhci_dbg(xhci, "Successful reset device command.\n");
3910 if (xhci_is_vendor_info_code(xhci, ret))
3912 xhci_warn(xhci, "Unknown completion code %u for "
3913 "reset device command.\n", ret);
3915 goto command_cleanup;
3918 /* Free up host controller endpoint resources */
3919 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3920 spin_lock_irqsave(&xhci->lock, flags);
3921 /* Don't delete the default control endpoint resources */
3922 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3923 spin_unlock_irqrestore(&xhci->lock, flags);
3926 /* Everything but endpoint 0 is disabled, so free the rings. */
3927 for (i = 1; i < 31; i++) {
3928 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3930 if (ep->ep_state & EP_HAS_STREAMS) {
3931 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3932 xhci_get_endpoint_address(i));
3933 xhci_free_stream_info(xhci, ep->stream_info);
3934 ep->stream_info = NULL;
3935 ep->ep_state &= ~EP_HAS_STREAMS;
3939 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3940 xhci_free_endpoint_ring(xhci, virt_dev, i);
3942 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3943 xhci_drop_ep_from_interval_table(xhci,
3944 &virt_dev->eps[i].bw_info,
3949 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3951 /* If necessary, update the number of active TTs on this root port */
3952 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3953 virt_dev->flags = 0;
3957 xhci_free_command(xhci, reset_device_cmd);
3962 * At this point, the struct usb_device is about to go away, the device has
3963 * disconnected, and all traffic has been stopped and the endpoints have been
3964 * disabled. Free any HC data structures associated with that device.
3966 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3968 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3969 struct xhci_virt_device *virt_dev;
3970 struct xhci_slot_ctx *slot_ctx;
3974 * We called pm_runtime_get_noresume when the device was attached.
3975 * Decrement the counter here to allow controller to runtime suspend
3976 * if no devices remain.
3978 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3979 pm_runtime_put_noidle(hcd->self.controller);
3981 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3982 /* If the host is halted due to driver unload, we still need to free the
3985 if (ret <= 0 && ret != -ENODEV)
3988 virt_dev = xhci->devs[udev->slot_id];
3989 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3990 trace_xhci_free_dev(slot_ctx);
3992 /* Stop any wayward timer functions (which may grab the lock) */
3993 for (i = 0; i < 31; i++)
3994 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3995 virt_dev->udev = NULL;
3996 xhci_disable_slot(xhci, udev->slot_id);
3997 xhci_free_virt_device(xhci, udev->slot_id);
4000 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4002 struct xhci_command *command;
4003 unsigned long flags;
4007 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4011 xhci_debugfs_remove_slot(xhci, slot_id);
4013 spin_lock_irqsave(&xhci->lock, flags);
4014 /* Don't disable the slot if the host controller is dead. */
4015 state = readl(&xhci->op_regs->status);
4016 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4017 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4018 spin_unlock_irqrestore(&xhci->lock, flags);
4023 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4026 spin_unlock_irqrestore(&xhci->lock, flags);
4030 xhci_ring_cmd_db(xhci);
4031 spin_unlock_irqrestore(&xhci->lock, flags);
4033 wait_for_completion(command->completion);
4035 if (command->status != COMP_SUCCESS)
4036 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4037 slot_id, command->status);
4039 xhci_free_command(xhci, command);
4045 * Checks if we have enough host controller resources for the default control
4048 * Must be called with xhci->lock held.
4050 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4052 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4053 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4054 "Not enough ep ctxs: "
4055 "%u active, need to add 1, limit is %u.",
4056 xhci->num_active_eps, xhci->limit_active_eps);
4059 xhci->num_active_eps += 1;
4060 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4061 "Adding 1 ep ctx, %u now active.",
4062 xhci->num_active_eps);
4068 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4069 * timed out, or allocating memory failed. Returns 1 on success.
4071 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4073 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4074 struct xhci_virt_device *vdev;
4075 struct xhci_slot_ctx *slot_ctx;
4076 unsigned long flags;
4078 struct xhci_command *command;
4080 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4084 spin_lock_irqsave(&xhci->lock, flags);
4085 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4087 spin_unlock_irqrestore(&xhci->lock, flags);
4088 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4089 xhci_free_command(xhci, command);
4092 xhci_ring_cmd_db(xhci);
4093 spin_unlock_irqrestore(&xhci->lock, flags);
4095 wait_for_completion(command->completion);
4096 slot_id = command->slot_id;
4098 if (!slot_id || command->status != COMP_SUCCESS) {
4099 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4100 xhci_trb_comp_code_string(command->status));
4101 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4103 readl(&xhci->cap_regs->hcs_params1)));
4104 xhci_free_command(xhci, command);
4108 xhci_free_command(xhci, command);
4110 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4111 spin_lock_irqsave(&xhci->lock, flags);
4112 ret = xhci_reserve_host_control_ep_resources(xhci);
4114 spin_unlock_irqrestore(&xhci->lock, flags);
4115 xhci_warn(xhci, "Not enough host resources, "
4116 "active endpoint contexts = %u\n",
4117 xhci->num_active_eps);
4120 spin_unlock_irqrestore(&xhci->lock, flags);
4122 /* Use GFP_NOIO, since this function can be called from
4123 * xhci_discover_or_reset_device(), which may be called as part of
4124 * mass storage driver error handling.
4126 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4127 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4130 vdev = xhci->devs[slot_id];
4131 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4132 trace_xhci_alloc_dev(slot_ctx);
4134 udev->slot_id = slot_id;
4136 xhci_debugfs_create_slot(xhci, slot_id);
4139 * If resetting upon resume, we can't put the controller into runtime
4140 * suspend if there is a device attached.
4142 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4143 pm_runtime_get_noresume(hcd->self.controller);
4145 /* Is this a LS or FS device under a HS hub? */
4146 /* Hub or peripherial? */
4150 xhci_disable_slot(xhci, udev->slot_id);
4151 xhci_free_virt_device(xhci, udev->slot_id);
4157 * Issue an Address Device command and optionally send a corresponding
4158 * SetAddress request to the device.
4160 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4161 enum xhci_setup_dev setup)
4163 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4164 unsigned long flags;
4165 struct xhci_virt_device *virt_dev;
4167 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4168 struct xhci_slot_ctx *slot_ctx;
4169 struct xhci_input_control_ctx *ctrl_ctx;
4171 struct xhci_command *command = NULL;
4173 mutex_lock(&xhci->mutex);
4175 if (xhci->xhc_state) { /* dying, removing or halted */
4180 if (!udev->slot_id) {
4181 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4182 "Bad Slot ID %d", udev->slot_id);
4187 virt_dev = xhci->devs[udev->slot_id];
4189 if (WARN_ON(!virt_dev)) {
4191 * In plug/unplug torture test with an NEC controller,
4192 * a zero-dereference was observed once due to virt_dev = 0.
4193 * Print useful debug rather than crash if it is observed again!
4195 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4200 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4201 trace_xhci_setup_device_slot(slot_ctx);
4203 if (setup == SETUP_CONTEXT_ONLY) {
4204 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4205 SLOT_STATE_DEFAULT) {
4206 xhci_dbg(xhci, "Slot already in default state\n");
4211 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4217 command->in_ctx = virt_dev->in_ctx;
4219 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4220 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4222 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4228 * If this is the first Set Address since device plug-in or
4229 * virt_device realloaction after a resume with an xHCI power loss,
4230 * then set up the slot context.
4232 if (!slot_ctx->dev_info)
4233 xhci_setup_addressable_virt_dev(xhci, udev);
4234 /* Otherwise, update the control endpoint ring enqueue pointer. */
4236 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4237 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4238 ctrl_ctx->drop_flags = 0;
4240 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4241 le32_to_cpu(slot_ctx->dev_info) >> 27);
4243 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4244 spin_lock_irqsave(&xhci->lock, flags);
4245 trace_xhci_setup_device(virt_dev);
4246 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4247 udev->slot_id, setup);
4249 spin_unlock_irqrestore(&xhci->lock, flags);
4250 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4251 "FIXME: allocate a command ring segment");
4254 xhci_ring_cmd_db(xhci);
4255 spin_unlock_irqrestore(&xhci->lock, flags);
4257 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4258 wait_for_completion(command->completion);
4260 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4261 * the SetAddress() "recovery interval" required by USB and aborting the
4262 * command on a timeout.
4264 switch (command->status) {
4265 case COMP_COMMAND_ABORTED:
4266 case COMP_COMMAND_RING_STOPPED:
4267 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4270 case COMP_CONTEXT_STATE_ERROR:
4271 case COMP_SLOT_NOT_ENABLED_ERROR:
4272 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4273 act, udev->slot_id);
4276 case COMP_USB_TRANSACTION_ERROR:
4277 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4279 mutex_unlock(&xhci->mutex);
4280 ret = xhci_disable_slot(xhci, udev->slot_id);
4281 xhci_free_virt_device(xhci, udev->slot_id);
4283 xhci_alloc_dev(hcd, udev);
4284 kfree(command->completion);
4287 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4288 dev_warn(&udev->dev,
4289 "ERROR: Incompatible device for setup %s command\n", act);
4293 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4294 "Successful setup %s command", act);
4298 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4299 act, command->status);
4300 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4306 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4307 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308 "Op regs DCBAA ptr = %#016llx", temp_64);
4309 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4310 "Slot ID %d dcbaa entry @%p = %#016llx",
4312 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4313 (unsigned long long)
4314 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4315 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4316 "Output Context DMA address = %#08llx",
4317 (unsigned long long)virt_dev->out_ctx->dma);
4318 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4319 le32_to_cpu(slot_ctx->dev_info) >> 27);
4321 * USB core uses address 1 for the roothubs, so we add one to the
4322 * address given back to us by the HC.
4324 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4325 le32_to_cpu(slot_ctx->dev_info) >> 27);
4326 /* Zero the input context control for later use */
4327 ctrl_ctx->add_flags = 0;
4328 ctrl_ctx->drop_flags = 0;
4329 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4330 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4332 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4333 "Internal device address = %d",
4334 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4336 mutex_unlock(&xhci->mutex);
4338 kfree(command->completion);
4344 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4346 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4349 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4351 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4355 * Transfer the port index into real index in the HW port status
4356 * registers. Caculate offset between the port's PORTSC register
4357 * and port status base. Divide the number of per port register
4358 * to get the real index. The raw port number bases 1.
4360 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4362 struct xhci_hub *rhub;
4364 rhub = xhci_get_rhub(hcd);
4365 return rhub->ports[port1 - 1]->hw_portnum + 1;
4369 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4370 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4372 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4373 struct usb_device *udev, u16 max_exit_latency)
4375 struct xhci_virt_device *virt_dev;
4376 struct xhci_command *command;
4377 struct xhci_input_control_ctx *ctrl_ctx;
4378 struct xhci_slot_ctx *slot_ctx;
4379 unsigned long flags;
4382 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4386 spin_lock_irqsave(&xhci->lock, flags);
4388 virt_dev = xhci->devs[udev->slot_id];
4391 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4392 * xHC was re-initialized. Exit latency will be set later after
4393 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4396 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4397 spin_unlock_irqrestore(&xhci->lock, flags);
4401 /* Attempt to issue an Evaluate Context command to change the MEL. */
4402 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4404 spin_unlock_irqrestore(&xhci->lock, flags);
4405 xhci_free_command(xhci, command);
4406 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4411 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4412 spin_unlock_irqrestore(&xhci->lock, flags);
4414 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4415 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4416 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4417 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4418 slot_ctx->dev_state = 0;
4420 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4421 "Set up evaluate context for LPM MEL change.");
4423 /* Issue and wait for the evaluate context command. */
4424 ret = xhci_configure_endpoint(xhci, udev, command,
4428 spin_lock_irqsave(&xhci->lock, flags);
4429 virt_dev->current_mel = max_exit_latency;
4430 spin_unlock_irqrestore(&xhci->lock, flags);
4433 xhci_free_command(xhci, command);
4440 /* BESL to HIRD Encoding array for USB2 LPM */
4441 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4442 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4444 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4445 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4446 struct usb_device *udev)
4448 int u2del, besl, besl_host;
4449 int besl_device = 0;
4452 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4453 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4455 if (field & USB_BESL_SUPPORT) {
4456 for (besl_host = 0; besl_host < 16; besl_host++) {
4457 if (xhci_besl_encoding[besl_host] >= u2del)
4460 /* Use baseline BESL value as default */
4461 if (field & USB_BESL_BASELINE_VALID)
4462 besl_device = USB_GET_BESL_BASELINE(field);
4463 else if (field & USB_BESL_DEEP_VALID)
4464 besl_device = USB_GET_BESL_DEEP(field);
4469 besl_host = (u2del - 51) / 75 + 1;
4472 besl = besl_host + besl_device;
4479 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4480 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4487 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4489 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4490 l1 = udev->l1_params.timeout / 256;
4492 /* device has preferred BESLD */
4493 if (field & USB_BESL_DEEP_VALID) {
4494 besld = USB_GET_BESL_DEEP(field);
4498 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4501 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4502 struct usb_device *udev, int enable)
4504 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4505 struct xhci_port **ports;
4506 __le32 __iomem *pm_addr, *hlpm_addr;
4507 u32 pm_val, hlpm_val, field;
4508 unsigned int port_num;
4509 unsigned long flags;
4510 int hird, exit_latency;
4513 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4516 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4520 if (!udev->parent || udev->parent->parent ||
4521 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4524 if (udev->usb2_hw_lpm_capable != 1)
4527 spin_lock_irqsave(&xhci->lock, flags);
4529 ports = xhci->usb2_rhub.ports;
4530 port_num = udev->portnum - 1;
4531 pm_addr = ports[port_num]->addr + PORTPMSC;
4532 pm_val = readl(pm_addr);
4533 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4535 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4536 enable ? "enable" : "disable", port_num + 1);
4539 /* Host supports BESL timeout instead of HIRD */
4540 if (udev->usb2_hw_lpm_besl_capable) {
4541 /* if device doesn't have a preferred BESL value use a
4542 * default one which works with mixed HIRD and BESL
4543 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4545 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4546 if ((field & USB_BESL_SUPPORT) &&
4547 (field & USB_BESL_BASELINE_VALID))
4548 hird = USB_GET_BESL_BASELINE(field);
4550 hird = udev->l1_params.besl;
4552 exit_latency = xhci_besl_encoding[hird];
4553 spin_unlock_irqrestore(&xhci->lock, flags);
4555 ret = xhci_change_max_exit_latency(xhci, udev,
4559 spin_lock_irqsave(&xhci->lock, flags);
4561 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4562 writel(hlpm_val, hlpm_addr);
4566 hird = xhci_calculate_hird_besl(xhci, udev);
4569 pm_val &= ~PORT_HIRD_MASK;
4570 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4571 writel(pm_val, pm_addr);
4572 pm_val = readl(pm_addr);
4574 writel(pm_val, pm_addr);
4578 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4579 writel(pm_val, pm_addr);
4582 if (udev->usb2_hw_lpm_besl_capable) {
4583 spin_unlock_irqrestore(&xhci->lock, flags);
4584 xhci_change_max_exit_latency(xhci, udev, 0);
4585 readl_poll_timeout(ports[port_num]->addr, pm_val,
4586 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4592 spin_unlock_irqrestore(&xhci->lock, flags);
4596 /* check if a usb2 port supports a given extened capability protocol
4597 * only USB2 ports extended protocol capability values are cached.
4598 * Return 1 if capability is supported
4600 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4601 unsigned capability)
4603 u32 port_offset, port_count;
4606 for (i = 0; i < xhci->num_ext_caps; i++) {
4607 if (xhci->ext_caps[i] & capability) {
4608 /* port offsets starts at 1 */
4609 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4610 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4611 if (port >= port_offset &&
4612 port < port_offset + port_count)
4619 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4621 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4622 int portnum = udev->portnum - 1;
4624 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4627 /* we only support lpm for non-hub device connected to root hub yet */
4628 if (!udev->parent || udev->parent->parent ||
4629 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4632 if (xhci->hw_lpm_support == 1 &&
4633 xhci_check_usb2_port_capability(
4634 xhci, portnum, XHCI_HLC)) {
4635 udev->usb2_hw_lpm_capable = 1;
4636 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4637 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4638 if (xhci_check_usb2_port_capability(xhci, portnum,
4640 udev->usb2_hw_lpm_besl_capable = 1;
4646 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4648 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4649 static unsigned long long xhci_service_interval_to_ns(
4650 struct usb_endpoint_descriptor *desc)
4652 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4655 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4656 enum usb3_link_state state)
4658 unsigned long long sel;
4659 unsigned long long pel;
4660 unsigned int max_sel_pel;
4665 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4666 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4667 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4668 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4672 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4673 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4674 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4678 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4680 return USB3_LPM_DISABLED;
4683 if (sel <= max_sel_pel && pel <= max_sel_pel)
4684 return USB3_LPM_DEVICE_INITIATED;
4686 if (sel > max_sel_pel)
4687 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4688 "due to long SEL %llu ms\n",
4691 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4692 "due to long PEL %llu ms\n",
4694 return USB3_LPM_DISABLED;
4697 /* The U1 timeout should be the maximum of the following values:
4698 * - For control endpoints, U1 system exit latency (SEL) * 3
4699 * - For bulk endpoints, U1 SEL * 5
4700 * - For interrupt endpoints:
4701 * - Notification EPs, U1 SEL * 3
4702 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4703 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4705 static unsigned long long xhci_calculate_intel_u1_timeout(
4706 struct usb_device *udev,
4707 struct usb_endpoint_descriptor *desc)
4709 unsigned long long timeout_ns;
4713 ep_type = usb_endpoint_type(desc);
4715 case USB_ENDPOINT_XFER_CONTROL:
4716 timeout_ns = udev->u1_params.sel * 3;
4718 case USB_ENDPOINT_XFER_BULK:
4719 timeout_ns = udev->u1_params.sel * 5;
4721 case USB_ENDPOINT_XFER_INT:
4722 intr_type = usb_endpoint_interrupt_type(desc);
4723 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4724 timeout_ns = udev->u1_params.sel * 3;
4727 /* Otherwise the calculation is the same as isoc eps */
4729 case USB_ENDPOINT_XFER_ISOC:
4730 timeout_ns = xhci_service_interval_to_ns(desc);
4731 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4732 if (timeout_ns < udev->u1_params.sel * 2)
4733 timeout_ns = udev->u1_params.sel * 2;
4742 /* Returns the hub-encoded U1 timeout value. */
4743 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4744 struct usb_device *udev,
4745 struct usb_endpoint_descriptor *desc)
4747 unsigned long long timeout_ns;
4749 /* Prevent U1 if service interval is shorter than U1 exit latency */
4750 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4751 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4752 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4753 return USB3_LPM_DISABLED;
4757 if (xhci->quirks & XHCI_INTEL_HOST)
4758 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4760 timeout_ns = udev->u1_params.sel;
4762 /* The U1 timeout is encoded in 1us intervals.
4763 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4765 if (timeout_ns == USB3_LPM_DISABLED)
4768 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4770 /* If the necessary timeout value is bigger than what we can set in the
4771 * USB 3.0 hub, we have to disable hub-initiated U1.
4773 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4775 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4776 "due to long timeout %llu ms\n", timeout_ns);
4777 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4780 /* The U2 timeout should be the maximum of:
4781 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4782 * - largest bInterval of any active periodic endpoint (to avoid going
4783 * into lower power link states between intervals).
4784 * - the U2 Exit Latency of the device
4786 static unsigned long long xhci_calculate_intel_u2_timeout(
4787 struct usb_device *udev,
4788 struct usb_endpoint_descriptor *desc)
4790 unsigned long long timeout_ns;
4791 unsigned long long u2_del_ns;
4793 timeout_ns = 10 * 1000 * 1000;
4795 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4796 (xhci_service_interval_to_ns(desc) > timeout_ns))
4797 timeout_ns = xhci_service_interval_to_ns(desc);
4799 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4800 if (u2_del_ns > timeout_ns)
4801 timeout_ns = u2_del_ns;
4806 /* Returns the hub-encoded U2 timeout value. */
4807 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4808 struct usb_device *udev,
4809 struct usb_endpoint_descriptor *desc)
4811 unsigned long long timeout_ns;
4813 /* Prevent U2 if service interval is shorter than U2 exit latency */
4814 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4815 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4816 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4817 return USB3_LPM_DISABLED;
4821 if (xhci->quirks & XHCI_INTEL_HOST)
4822 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4824 timeout_ns = udev->u2_params.sel;
4826 /* The U2 timeout is encoded in 256us intervals */
4827 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4828 /* If the necessary timeout value is bigger than what we can set in the
4829 * USB 3.0 hub, we have to disable hub-initiated U2.
4831 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4833 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4834 "due to long timeout %llu ms\n", timeout_ns);
4835 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4838 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4839 struct usb_device *udev,
4840 struct usb_endpoint_descriptor *desc,
4841 enum usb3_link_state state,
4844 if (state == USB3_LPM_U1)
4845 return xhci_calculate_u1_timeout(xhci, udev, desc);
4846 else if (state == USB3_LPM_U2)
4847 return xhci_calculate_u2_timeout(xhci, udev, desc);
4849 return USB3_LPM_DISABLED;
4852 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4853 struct usb_device *udev,
4854 struct usb_endpoint_descriptor *desc,
4855 enum usb3_link_state state,
4860 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4861 desc, state, timeout);
4863 /* If we found we can't enable hub-initiated LPM, and
4864 * the U1 or U2 exit latency was too high to allow
4865 * device-initiated LPM as well, then we will disable LPM
4866 * for this device, so stop searching any further.
4868 if (alt_timeout == USB3_LPM_DISABLED) {
4869 *timeout = alt_timeout;
4872 if (alt_timeout > *timeout)
4873 *timeout = alt_timeout;
4877 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4878 struct usb_device *udev,
4879 struct usb_host_interface *alt,
4880 enum usb3_link_state state,
4885 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4886 if (xhci_update_timeout_for_endpoint(xhci, udev,
4887 &alt->endpoint[j].desc, state, timeout))
4893 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4894 enum usb3_link_state state)
4896 struct usb_device *parent;
4897 unsigned int num_hubs;
4899 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4900 for (parent = udev->parent, num_hubs = 0; parent->parent;
4901 parent = parent->parent)
4907 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4908 " below second-tier hub.\n");
4909 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4910 "to decrease power consumption.\n");
4914 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4915 struct usb_device *udev,
4916 enum usb3_link_state state)
4918 if (xhci->quirks & XHCI_INTEL_HOST)
4919 return xhci_check_intel_tier_policy(udev, state);
4924 /* Returns the U1 or U2 timeout that should be enabled.
4925 * If the tier check or timeout setting functions return with a non-zero exit
4926 * code, that means the timeout value has been finalized and we shouldn't look
4927 * at any more endpoints.
4929 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4930 struct usb_device *udev, enum usb3_link_state state)
4932 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4933 struct usb_host_config *config;
4936 u16 timeout = USB3_LPM_DISABLED;
4938 if (state == USB3_LPM_U1)
4940 else if (state == USB3_LPM_U2)
4943 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4948 /* Gather some information about the currently installed configuration
4949 * and alternate interface settings.
4951 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4955 config = udev->actconfig;
4959 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4960 struct usb_driver *driver;
4961 struct usb_interface *intf = config->interface[i];
4966 /* Check if any currently bound drivers want hub-initiated LPM
4969 if (intf->dev.driver) {
4970 driver = to_usb_driver(intf->dev.driver);
4971 if (driver && driver->disable_hub_initiated_lpm) {
4972 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4973 state_name, driver->name);
4974 timeout = xhci_get_timeout_no_hub_lpm(udev,
4976 if (timeout == USB3_LPM_DISABLED)
4981 /* Not sure how this could happen... */
4982 if (!intf->cur_altsetting)
4985 if (xhci_update_timeout_for_interface(xhci, udev,
4986 intf->cur_altsetting,
4993 static int calculate_max_exit_latency(struct usb_device *udev,
4994 enum usb3_link_state state_changed,
4995 u16 hub_encoded_timeout)
4997 unsigned long long u1_mel_us = 0;
4998 unsigned long long u2_mel_us = 0;
4999 unsigned long long mel_us = 0;
5005 disabling_u1 = (state_changed == USB3_LPM_U1 &&
5006 hub_encoded_timeout == USB3_LPM_DISABLED);
5007 disabling_u2 = (state_changed == USB3_LPM_U2 &&
5008 hub_encoded_timeout == USB3_LPM_DISABLED);
5010 enabling_u1 = (state_changed == USB3_LPM_U1 &&
5011 hub_encoded_timeout != USB3_LPM_DISABLED);
5012 enabling_u2 = (state_changed == USB3_LPM_U2 &&
5013 hub_encoded_timeout != USB3_LPM_DISABLED);
5015 /* If U1 was already enabled and we're not disabling it,
5016 * or we're going to enable U1, account for the U1 max exit latency.
5018 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5020 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5021 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5023 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5025 mel_us = max(u1_mel_us, u2_mel_us);
5027 /* xHCI host controller max exit latency field is only 16 bits wide. */
5028 if (mel_us > MAX_EXIT) {
5029 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5030 "is too big.\n", mel_us);
5036 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5037 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5038 struct usb_device *udev, enum usb3_link_state state)
5040 struct xhci_hcd *xhci;
5041 u16 hub_encoded_timeout;
5045 xhci = hcd_to_xhci(hcd);
5046 /* The LPM timeout values are pretty host-controller specific, so don't
5047 * enable hub-initiated timeouts unless the vendor has provided
5048 * information about their timeout algorithm.
5050 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5051 !xhci->devs[udev->slot_id])
5052 return USB3_LPM_DISABLED;
5054 if (xhci_check_tier_policy(xhci, udev, state) < 0)
5055 return USB3_LPM_DISABLED;
5057 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5058 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5060 /* Max Exit Latency is too big, disable LPM. */
5061 hub_encoded_timeout = USB3_LPM_DISABLED;
5065 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5068 return hub_encoded_timeout;
5071 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5072 struct usb_device *udev, enum usb3_link_state state)
5074 struct xhci_hcd *xhci;
5077 xhci = hcd_to_xhci(hcd);
5078 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5079 !xhci->devs[udev->slot_id])
5082 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5083 return xhci_change_max_exit_latency(xhci, udev, mel);
5085 #else /* CONFIG_PM */
5087 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5088 struct usb_device *udev, int enable)
5093 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5098 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5099 struct usb_device *udev, enum usb3_link_state state)
5101 return USB3_LPM_DISABLED;
5104 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5105 struct usb_device *udev, enum usb3_link_state state)
5109 #endif /* CONFIG_PM */
5111 /*-------------------------------------------------------------------------*/
5113 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5114 * internal data structures for the device.
5116 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5117 struct usb_tt *tt, gfp_t mem_flags)
5119 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5120 struct xhci_virt_device *vdev;
5121 struct xhci_command *config_cmd;
5122 struct xhci_input_control_ctx *ctrl_ctx;
5123 struct xhci_slot_ctx *slot_ctx;
5124 unsigned long flags;
5125 unsigned think_time;
5128 /* Ignore root hubs */
5132 vdev = xhci->devs[hdev->slot_id];
5134 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5138 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5142 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5144 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5146 xhci_free_command(xhci, config_cmd);
5150 spin_lock_irqsave(&xhci->lock, flags);
5151 if (hdev->speed == USB_SPEED_HIGH &&
5152 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5153 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5154 xhci_free_command(xhci, config_cmd);
5155 spin_unlock_irqrestore(&xhci->lock, flags);
5159 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5160 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5161 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5162 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5164 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5165 * but it may be already set to 1 when setup an xHCI virtual
5166 * device, so clear it anyway.
5169 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5170 else if (hdev->speed == USB_SPEED_FULL)
5171 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5173 if (xhci->hci_version > 0x95) {
5174 xhci_dbg(xhci, "xHCI version %x needs hub "
5175 "TT think time and number of ports\n",
5176 (unsigned int) xhci->hci_version);
5177 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5178 /* Set TT think time - convert from ns to FS bit times.
5179 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5180 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5182 * xHCI 1.0: this field shall be 0 if the device is not a
5185 think_time = tt->think_time;
5186 if (think_time != 0)
5187 think_time = (think_time / 666) - 1;
5188 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5189 slot_ctx->tt_info |=
5190 cpu_to_le32(TT_THINK_TIME(think_time));
5192 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5193 "TT think time or number of ports\n",
5194 (unsigned int) xhci->hci_version);
5196 slot_ctx->dev_state = 0;
5197 spin_unlock_irqrestore(&xhci->lock, flags);
5199 xhci_dbg(xhci, "Set up %s for hub device.\n",
5200 (xhci->hci_version > 0x95) ?
5201 "configure endpoint" : "evaluate context");
5203 /* Issue and wait for the configure endpoint or
5204 * evaluate context command.
5206 if (xhci->hci_version > 0x95)
5207 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5210 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5213 xhci_free_command(xhci, config_cmd);
5217 static int xhci_get_frame(struct usb_hcd *hcd)
5219 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5220 /* EHCI mods by the periodic size. Why? */
5221 return readl(&xhci->run_regs->microframe_index) >> 3;
5224 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5226 xhci->usb2_rhub.hcd = hcd;
5227 hcd->speed = HCD_USB2;
5228 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5230 * USB 2.0 roothub under xHCI has an integrated TT,
5231 * (rate matching hub) as opposed to having an OHCI/UHCI
5232 * companion controller.
5237 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5239 unsigned int minor_rev;
5242 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5243 * should return 0x31 for sbrn, or that the minor revision
5244 * is a two digit BCD containig minor and sub-minor numbers.
5245 * This was later clarified in xHCI 1.2.
5247 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5248 * minor revision set to 0x1 instead of 0x10.
5250 if (xhci->usb3_rhub.min_rev == 0x1)
5253 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5255 switch (minor_rev) {
5257 hcd->speed = HCD_USB32;
5258 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5259 hcd->self.root_hub->rx_lanes = 2;
5260 hcd->self.root_hub->tx_lanes = 2;
5261 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5264 hcd->speed = HCD_USB31;
5265 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5266 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5269 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5270 minor_rev, minor_rev ? "Enhanced " : "");
5272 xhci->usb3_rhub.hcd = hcd;
5275 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5277 struct xhci_hcd *xhci;
5279 * TODO: Check with DWC3 clients for sysdev according to
5282 struct device *dev = hcd->self.sysdev;
5285 /* Accept arbitrarily long scatter-gather lists */
5286 hcd->self.sg_tablesize = ~0;
5288 /* support to build packet from discontinuous buffers */
5289 hcd->self.no_sg_constraint = 1;
5291 /* XHCI controllers don't stop the ep queue on short packets :| */
5292 hcd->self.no_stop_on_short = 1;
5294 xhci = hcd_to_xhci(hcd);
5296 if (!usb_hcd_is_primary_hcd(hcd)) {
5297 xhci_hcd_init_usb3_data(xhci, hcd);
5301 mutex_init(&xhci->mutex);
5302 xhci->main_hcd = hcd;
5303 xhci->cap_regs = hcd->regs;
5304 xhci->op_regs = hcd->regs +
5305 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5306 xhci->run_regs = hcd->regs +
5307 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5308 /* Cache read-only capability registers */
5309 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5310 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5311 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5312 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5313 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5314 if (xhci->hci_version > 0x100)
5315 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5317 xhci->quirks |= quirks;
5319 get_quirks(dev, xhci);
5321 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5322 * success event after a short transfer. This quirk will ignore such
5325 if (xhci->hci_version > 0x96)
5326 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5328 /* Make sure the HC is halted. */
5329 retval = xhci_halt(xhci);
5333 xhci_zero_64b_regs(xhci);
5335 xhci_dbg(xhci, "Resetting HCD\n");
5336 /* Reset the internal HC memory state and registers. */
5337 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5340 xhci_dbg(xhci, "Reset complete\n");
5343 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5344 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5345 * address memory pointers actually. So, this driver clears the AC64
5346 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5347 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5349 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5350 xhci->hcc_params &= ~BIT(0);
5352 /* Set dma_mask and coherent_dma_mask to 64-bits,
5353 * if xHC supports 64-bit addressing */
5354 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5355 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5356 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5357 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5360 * This is to avoid error in cases where a 32-bit USB
5361 * controller is used on a 64-bit capable system.
5363 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5366 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5367 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5370 xhci_dbg(xhci, "Calling HCD init\n");
5371 /* Initialize HCD and host controller data structures. */
5372 retval = xhci_init(hcd);
5375 xhci_dbg(xhci, "Called HCD init\n");
5377 if (xhci_hcd_is_usb3(hcd))
5378 xhci_hcd_init_usb3_data(xhci, hcd);
5380 xhci_hcd_init_usb2_data(xhci, hcd);
5382 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5383 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5387 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5389 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5390 struct usb_host_endpoint *ep)
5392 struct xhci_hcd *xhci;
5393 struct usb_device *udev;
5394 unsigned int slot_id;
5395 unsigned int ep_index;
5396 unsigned long flags;
5398 xhci = hcd_to_xhci(hcd);
5400 spin_lock_irqsave(&xhci->lock, flags);
5401 udev = (struct usb_device *)ep->hcpriv;
5402 slot_id = udev->slot_id;
5403 ep_index = xhci_get_endpoint_index(&ep->desc);
5405 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5406 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5407 spin_unlock_irqrestore(&xhci->lock, flags);
5410 static const struct hc_driver xhci_hc_driver = {
5411 .description = "xhci-hcd",
5412 .product_desc = "xHCI Host Controller",
5413 .hcd_priv_size = sizeof(struct xhci_hcd),
5416 * generic hardware linkage
5419 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5423 * basic lifecycle operations
5425 .reset = NULL, /* set in xhci_init_driver() */
5428 .shutdown = xhci_shutdown,
5431 * managing i/o requests and associated device resources
5433 .map_urb_for_dma = xhci_map_urb_for_dma,
5434 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5435 .urb_enqueue = xhci_urb_enqueue,
5436 .urb_dequeue = xhci_urb_dequeue,
5437 .alloc_dev = xhci_alloc_dev,
5438 .free_dev = xhci_free_dev,
5439 .alloc_streams = xhci_alloc_streams,
5440 .free_streams = xhci_free_streams,
5441 .add_endpoint = xhci_add_endpoint,
5442 .drop_endpoint = xhci_drop_endpoint,
5443 .endpoint_disable = xhci_endpoint_disable,
5444 .endpoint_reset = xhci_endpoint_reset,
5445 .check_bandwidth = xhci_check_bandwidth,
5446 .reset_bandwidth = xhci_reset_bandwidth,
5447 .address_device = xhci_address_device,
5448 .enable_device = xhci_enable_device,
5449 .update_hub_device = xhci_update_hub_device,
5450 .reset_device = xhci_discover_or_reset_device,
5453 * scheduling support
5455 .get_frame_number = xhci_get_frame,
5460 .hub_control = xhci_hub_control,
5461 .hub_status_data = xhci_hub_status_data,
5462 .bus_suspend = xhci_bus_suspend,
5463 .bus_resume = xhci_bus_resume,
5464 .get_resuming_ports = xhci_get_resuming_ports,
5467 * call back when device connected and addressed
5469 .update_device = xhci_update_device,
5470 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5471 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5472 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5473 .find_raw_port_number = xhci_find_raw_port_number,
5474 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5477 void xhci_init_driver(struct hc_driver *drv,
5478 const struct xhci_driver_overrides *over)
5482 /* Copy the generic table to drv then apply the overrides */
5483 *drv = xhci_hc_driver;
5486 drv->hcd_priv_size += over->extra_priv_size;
5488 drv->reset = over->reset;
5490 drv->start = over->start;
5491 if (over->add_endpoint)
5492 drv->add_endpoint = over->add_endpoint;
5493 if (over->drop_endpoint)
5494 drv->drop_endpoint = over->drop_endpoint;
5495 if (over->check_bandwidth)
5496 drv->check_bandwidth = over->check_bandwidth;
5497 if (over->reset_bandwidth)
5498 drv->reset_bandwidth = over->reset_bandwidth;
5501 EXPORT_SYMBOL_GPL(xhci_init_driver);
5503 MODULE_DESCRIPTION(DRIVER_DESC);
5504 MODULE_AUTHOR(DRIVER_AUTHOR);
5505 MODULE_LICENSE("GPL");
5507 static int __init xhci_hcd_init(void)
5510 * Check the compiler generated sizes of structures that must be laid
5511 * out in specific ways for hardware access.
5513 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5514 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5515 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5516 /* xhci_device_control has eight fields, and also
5517 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5519 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5520 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5521 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5522 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5523 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5524 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5525 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5530 xhci_debugfs_create_root();
5537 * If an init function is provided, an exit function must also be provided
5538 * to allow module unload.
5540 static void __exit xhci_hcd_fini(void)
5542 xhci_debugfs_remove_root();
5546 module_init(xhci_hcd_init);
5547 module_exit(xhci_hcd_fini);