]> Git Repo - linux.git/blob - drivers/base/regmap/regmap.c
zstd: import usptream v1.5.2
[linux.git] / drivers / base / regmap / regmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <[email protected]>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38         return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46                                unsigned int mask, unsigned int val,
47                                bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50                                 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52                             unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54                                        unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56                                  unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58                                  unsigned int val);
59
60 bool regmap_reg_in_ranges(unsigned int reg,
61                           const struct regmap_range *ranges,
62                           unsigned int nranges)
63 {
64         const struct regmap_range *r;
65         int i;
66
67         for (i = 0, r = ranges; i < nranges; i++, r++)
68                 if (regmap_reg_in_range(reg, r))
69                         return true;
70         return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75                               const struct regmap_access_table *table)
76 {
77         /* Check "no ranges" first */
78         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79                 return false;
80
81         /* In case zero "yes ranges" are supplied, any reg is OK */
82         if (!table->n_yes_ranges)
83                 return true;
84
85         return regmap_reg_in_ranges(reg, table->yes_ranges,
86                                     table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92         if (map->max_register && reg > map->max_register)
93                 return false;
94
95         if (map->writeable_reg)
96                 return map->writeable_reg(map->dev, reg);
97
98         if (map->wr_table)
99                 return regmap_check_range_table(map, reg, map->wr_table);
100
101         return true;
102 }
103
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106         int ret;
107         unsigned int val;
108
109         if (map->cache_type == REGCACHE_NONE)
110                 return false;
111
112         if (!map->cache_ops)
113                 return false;
114
115         if (map->max_register && reg > map->max_register)
116                 return false;
117
118         map->lock(map->lock_arg);
119         ret = regcache_read(map, reg, &val);
120         map->unlock(map->lock_arg);
121         if (ret)
122                 return false;
123
124         return true;
125 }
126
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129         if (!map->reg_read)
130                 return false;
131
132         if (map->max_register && reg > map->max_register)
133                 return false;
134
135         if (map->format.format_write)
136                 return false;
137
138         if (map->readable_reg)
139                 return map->readable_reg(map->dev, reg);
140
141         if (map->rd_table)
142                 return regmap_check_range_table(map, reg, map->rd_table);
143
144         return true;
145 }
146
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149         if (!map->format.format_write && !regmap_readable(map, reg))
150                 return false;
151
152         if (map->volatile_reg)
153                 return map->volatile_reg(map->dev, reg);
154
155         if (map->volatile_table)
156                 return regmap_check_range_table(map, reg, map->volatile_table);
157
158         if (map->cache_ops)
159                 return false;
160         else
161                 return true;
162 }
163
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166         if (!regmap_readable(map, reg))
167                 return false;
168
169         if (map->precious_reg)
170                 return map->precious_reg(map->dev, reg);
171
172         if (map->precious_table)
173                 return regmap_check_range_table(map, reg, map->precious_table);
174
175         return false;
176 }
177
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180         if (map->writeable_noinc_reg)
181                 return map->writeable_noinc_reg(map->dev, reg);
182
183         if (map->wr_noinc_table)
184                 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186         return true;
187 }
188
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191         if (map->readable_noinc_reg)
192                 return map->readable_noinc_reg(map->dev, reg);
193
194         if (map->rd_noinc_table)
195                 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197         return true;
198 }
199
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201         size_t num)
202 {
203         unsigned int i;
204
205         for (i = 0; i < num; i++)
206                 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207                         return false;
208
209         return true;
210 }
211
212 static void regmap_format_12_20_write(struct regmap *map,
213                                      unsigned int reg, unsigned int val)
214 {
215         u8 *out = map->work_buf;
216
217         out[0] = reg >> 4;
218         out[1] = (reg << 4) | (val >> 16);
219         out[2] = val >> 8;
220         out[3] = val;
221 }
222
223
224 static void regmap_format_2_6_write(struct regmap *map,
225                                      unsigned int reg, unsigned int val)
226 {
227         u8 *out = map->work_buf;
228
229         *out = (reg << 6) | val;
230 }
231
232 static void regmap_format_4_12_write(struct regmap *map,
233                                      unsigned int reg, unsigned int val)
234 {
235         __be16 *out = map->work_buf;
236         *out = cpu_to_be16((reg << 12) | val);
237 }
238
239 static void regmap_format_7_9_write(struct regmap *map,
240                                     unsigned int reg, unsigned int val)
241 {
242         __be16 *out = map->work_buf;
243         *out = cpu_to_be16((reg << 9) | val);
244 }
245
246 static void regmap_format_7_17_write(struct regmap *map,
247                                     unsigned int reg, unsigned int val)
248 {
249         u8 *out = map->work_buf;
250
251         out[2] = val;
252         out[1] = val >> 8;
253         out[0] = (val >> 16) | (reg << 1);
254 }
255
256 static void regmap_format_10_14_write(struct regmap *map,
257                                     unsigned int reg, unsigned int val)
258 {
259         u8 *out = map->work_buf;
260
261         out[2] = val;
262         out[1] = (val >> 8) | (reg << 6);
263         out[0] = reg >> 2;
264 }
265
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268         u8 *b = buf;
269
270         b[0] = val << shift;
271 }
272
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275         put_unaligned_be16(val << shift, buf);
276 }
277
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280         put_unaligned_le16(val << shift, buf);
281 }
282
283 static void regmap_format_16_native(void *buf, unsigned int val,
284                                     unsigned int shift)
285 {
286         u16 v = val << shift;
287
288         memcpy(buf, &v, sizeof(v));
289 }
290
291 static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292 {
293         put_unaligned_be24(val << shift, buf);
294 }
295
296 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297 {
298         put_unaligned_be32(val << shift, buf);
299 }
300
301 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302 {
303         put_unaligned_le32(val << shift, buf);
304 }
305
306 static void regmap_format_32_native(void *buf, unsigned int val,
307                                     unsigned int shift)
308 {
309         u32 v = val << shift;
310
311         memcpy(buf, &v, sizeof(v));
312 }
313
314 #ifdef CONFIG_64BIT
315 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
316 {
317         put_unaligned_be64((u64) val << shift, buf);
318 }
319
320 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
321 {
322         put_unaligned_le64((u64) val << shift, buf);
323 }
324
325 static void regmap_format_64_native(void *buf, unsigned int val,
326                                     unsigned int shift)
327 {
328         u64 v = (u64) val << shift;
329
330         memcpy(buf, &v, sizeof(v));
331 }
332 #endif
333
334 static void regmap_parse_inplace_noop(void *buf)
335 {
336 }
337
338 static unsigned int regmap_parse_8(const void *buf)
339 {
340         const u8 *b = buf;
341
342         return b[0];
343 }
344
345 static unsigned int regmap_parse_16_be(const void *buf)
346 {
347         return get_unaligned_be16(buf);
348 }
349
350 static unsigned int regmap_parse_16_le(const void *buf)
351 {
352         return get_unaligned_le16(buf);
353 }
354
355 static void regmap_parse_16_be_inplace(void *buf)
356 {
357         u16 v = get_unaligned_be16(buf);
358
359         memcpy(buf, &v, sizeof(v));
360 }
361
362 static void regmap_parse_16_le_inplace(void *buf)
363 {
364         u16 v = get_unaligned_le16(buf);
365
366         memcpy(buf, &v, sizeof(v));
367 }
368
369 static unsigned int regmap_parse_16_native(const void *buf)
370 {
371         u16 v;
372
373         memcpy(&v, buf, sizeof(v));
374         return v;
375 }
376
377 static unsigned int regmap_parse_24_be(const void *buf)
378 {
379         return get_unaligned_be24(buf);
380 }
381
382 static unsigned int regmap_parse_32_be(const void *buf)
383 {
384         return get_unaligned_be32(buf);
385 }
386
387 static unsigned int regmap_parse_32_le(const void *buf)
388 {
389         return get_unaligned_le32(buf);
390 }
391
392 static void regmap_parse_32_be_inplace(void *buf)
393 {
394         u32 v = get_unaligned_be32(buf);
395
396         memcpy(buf, &v, sizeof(v));
397 }
398
399 static void regmap_parse_32_le_inplace(void *buf)
400 {
401         u32 v = get_unaligned_le32(buf);
402
403         memcpy(buf, &v, sizeof(v));
404 }
405
406 static unsigned int regmap_parse_32_native(const void *buf)
407 {
408         u32 v;
409
410         memcpy(&v, buf, sizeof(v));
411         return v;
412 }
413
414 #ifdef CONFIG_64BIT
415 static unsigned int regmap_parse_64_be(const void *buf)
416 {
417         return get_unaligned_be64(buf);
418 }
419
420 static unsigned int regmap_parse_64_le(const void *buf)
421 {
422         return get_unaligned_le64(buf);
423 }
424
425 static void regmap_parse_64_be_inplace(void *buf)
426 {
427         u64 v =  get_unaligned_be64(buf);
428
429         memcpy(buf, &v, sizeof(v));
430 }
431
432 static void regmap_parse_64_le_inplace(void *buf)
433 {
434         u64 v = get_unaligned_le64(buf);
435
436         memcpy(buf, &v, sizeof(v));
437 }
438
439 static unsigned int regmap_parse_64_native(const void *buf)
440 {
441         u64 v;
442
443         memcpy(&v, buf, sizeof(v));
444         return v;
445 }
446 #endif
447
448 static void regmap_lock_hwlock(void *__map)
449 {
450         struct regmap *map = __map;
451
452         hwspin_lock_timeout(map->hwlock, UINT_MAX);
453 }
454
455 static void regmap_lock_hwlock_irq(void *__map)
456 {
457         struct regmap *map = __map;
458
459         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
460 }
461
462 static void regmap_lock_hwlock_irqsave(void *__map)
463 {
464         struct regmap *map = __map;
465
466         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
467                                     &map->spinlock_flags);
468 }
469
470 static void regmap_unlock_hwlock(void *__map)
471 {
472         struct regmap *map = __map;
473
474         hwspin_unlock(map->hwlock);
475 }
476
477 static void regmap_unlock_hwlock_irq(void *__map)
478 {
479         struct regmap *map = __map;
480
481         hwspin_unlock_irq(map->hwlock);
482 }
483
484 static void regmap_unlock_hwlock_irqrestore(void *__map)
485 {
486         struct regmap *map = __map;
487
488         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
489 }
490
491 static void regmap_lock_unlock_none(void *__map)
492 {
493
494 }
495
496 static void regmap_lock_mutex(void *__map)
497 {
498         struct regmap *map = __map;
499         mutex_lock(&map->mutex);
500 }
501
502 static void regmap_unlock_mutex(void *__map)
503 {
504         struct regmap *map = __map;
505         mutex_unlock(&map->mutex);
506 }
507
508 static void regmap_lock_spinlock(void *__map)
509 __acquires(&map->spinlock)
510 {
511         struct regmap *map = __map;
512         unsigned long flags;
513
514         spin_lock_irqsave(&map->spinlock, flags);
515         map->spinlock_flags = flags;
516 }
517
518 static void regmap_unlock_spinlock(void *__map)
519 __releases(&map->spinlock)
520 {
521         struct regmap *map = __map;
522         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
523 }
524
525 static void regmap_lock_raw_spinlock(void *__map)
526 __acquires(&map->raw_spinlock)
527 {
528         struct regmap *map = __map;
529         unsigned long flags;
530
531         raw_spin_lock_irqsave(&map->raw_spinlock, flags);
532         map->raw_spinlock_flags = flags;
533 }
534
535 static void regmap_unlock_raw_spinlock(void *__map)
536 __releases(&map->raw_spinlock)
537 {
538         struct regmap *map = __map;
539         raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
540 }
541
542 static void dev_get_regmap_release(struct device *dev, void *res)
543 {
544         /*
545          * We don't actually have anything to do here; the goal here
546          * is not to manage the regmap but to provide a simple way to
547          * get the regmap back given a struct device.
548          */
549 }
550
551 static bool _regmap_range_add(struct regmap *map,
552                               struct regmap_range_node *data)
553 {
554         struct rb_root *root = &map->range_tree;
555         struct rb_node **new = &(root->rb_node), *parent = NULL;
556
557         while (*new) {
558                 struct regmap_range_node *this =
559                         rb_entry(*new, struct regmap_range_node, node);
560
561                 parent = *new;
562                 if (data->range_max < this->range_min)
563                         new = &((*new)->rb_left);
564                 else if (data->range_min > this->range_max)
565                         new = &((*new)->rb_right);
566                 else
567                         return false;
568         }
569
570         rb_link_node(&data->node, parent, new);
571         rb_insert_color(&data->node, root);
572
573         return true;
574 }
575
576 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
577                                                       unsigned int reg)
578 {
579         struct rb_node *node = map->range_tree.rb_node;
580
581         while (node) {
582                 struct regmap_range_node *this =
583                         rb_entry(node, struct regmap_range_node, node);
584
585                 if (reg < this->range_min)
586                         node = node->rb_left;
587                 else if (reg > this->range_max)
588                         node = node->rb_right;
589                 else
590                         return this;
591         }
592
593         return NULL;
594 }
595
596 static void regmap_range_exit(struct regmap *map)
597 {
598         struct rb_node *next;
599         struct regmap_range_node *range_node;
600
601         next = rb_first(&map->range_tree);
602         while (next) {
603                 range_node = rb_entry(next, struct regmap_range_node, node);
604                 next = rb_next(&range_node->node);
605                 rb_erase(&range_node->node, &map->range_tree);
606                 kfree(range_node);
607         }
608
609         kfree(map->selector_work_buf);
610 }
611
612 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
613 {
614         if (config->name) {
615                 const char *name = kstrdup_const(config->name, GFP_KERNEL);
616
617                 if (!name)
618                         return -ENOMEM;
619
620                 kfree_const(map->name);
621                 map->name = name;
622         }
623
624         return 0;
625 }
626
627 int regmap_attach_dev(struct device *dev, struct regmap *map,
628                       const struct regmap_config *config)
629 {
630         struct regmap **m;
631         int ret;
632
633         map->dev = dev;
634
635         ret = regmap_set_name(map, config);
636         if (ret)
637                 return ret;
638
639         regmap_debugfs_exit(map);
640         regmap_debugfs_init(map);
641
642         /* Add a devres resource for dev_get_regmap() */
643         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
644         if (!m) {
645                 regmap_debugfs_exit(map);
646                 return -ENOMEM;
647         }
648         *m = map;
649         devres_add(dev, m);
650
651         return 0;
652 }
653 EXPORT_SYMBOL_GPL(regmap_attach_dev);
654
655 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
656                                         const struct regmap_config *config)
657 {
658         enum regmap_endian endian;
659
660         /* Retrieve the endianness specification from the regmap config */
661         endian = config->reg_format_endian;
662
663         /* If the regmap config specified a non-default value, use that */
664         if (endian != REGMAP_ENDIAN_DEFAULT)
665                 return endian;
666
667         /* Retrieve the endianness specification from the bus config */
668         if (bus && bus->reg_format_endian_default)
669                 endian = bus->reg_format_endian_default;
670
671         /* If the bus specified a non-default value, use that */
672         if (endian != REGMAP_ENDIAN_DEFAULT)
673                 return endian;
674
675         /* Use this if no other value was found */
676         return REGMAP_ENDIAN_BIG;
677 }
678
679 enum regmap_endian regmap_get_val_endian(struct device *dev,
680                                          const struct regmap_bus *bus,
681                                          const struct regmap_config *config)
682 {
683         struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
684         enum regmap_endian endian;
685
686         /* Retrieve the endianness specification from the regmap config */
687         endian = config->val_format_endian;
688
689         /* If the regmap config specified a non-default value, use that */
690         if (endian != REGMAP_ENDIAN_DEFAULT)
691                 return endian;
692
693         /* If the firmware node exist try to get endianness from it */
694         if (fwnode_property_read_bool(fwnode, "big-endian"))
695                 endian = REGMAP_ENDIAN_BIG;
696         else if (fwnode_property_read_bool(fwnode, "little-endian"))
697                 endian = REGMAP_ENDIAN_LITTLE;
698         else if (fwnode_property_read_bool(fwnode, "native-endian"))
699                 endian = REGMAP_ENDIAN_NATIVE;
700
701         /* If the endianness was specified in fwnode, use that */
702         if (endian != REGMAP_ENDIAN_DEFAULT)
703                 return endian;
704
705         /* Retrieve the endianness specification from the bus config */
706         if (bus && bus->val_format_endian_default)
707                 endian = bus->val_format_endian_default;
708
709         /* If the bus specified a non-default value, use that */
710         if (endian != REGMAP_ENDIAN_DEFAULT)
711                 return endian;
712
713         /* Use this if no other value was found */
714         return REGMAP_ENDIAN_BIG;
715 }
716 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
717
718 struct regmap *__regmap_init(struct device *dev,
719                              const struct regmap_bus *bus,
720                              void *bus_context,
721                              const struct regmap_config *config,
722                              struct lock_class_key *lock_key,
723                              const char *lock_name)
724 {
725         struct regmap *map;
726         int ret = -EINVAL;
727         enum regmap_endian reg_endian, val_endian;
728         int i, j;
729
730         if (!config)
731                 goto err;
732
733         map = kzalloc(sizeof(*map), GFP_KERNEL);
734         if (map == NULL) {
735                 ret = -ENOMEM;
736                 goto err;
737         }
738
739         ret = regmap_set_name(map, config);
740         if (ret)
741                 goto err_map;
742
743         ret = -EINVAL; /* Later error paths rely on this */
744
745         if (config->disable_locking) {
746                 map->lock = map->unlock = regmap_lock_unlock_none;
747                 map->can_sleep = config->can_sleep;
748                 regmap_debugfs_disable(map);
749         } else if (config->lock && config->unlock) {
750                 map->lock = config->lock;
751                 map->unlock = config->unlock;
752                 map->lock_arg = config->lock_arg;
753                 map->can_sleep = config->can_sleep;
754         } else if (config->use_hwlock) {
755                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
756                 if (!map->hwlock) {
757                         ret = -ENXIO;
758                         goto err_name;
759                 }
760
761                 switch (config->hwlock_mode) {
762                 case HWLOCK_IRQSTATE:
763                         map->lock = regmap_lock_hwlock_irqsave;
764                         map->unlock = regmap_unlock_hwlock_irqrestore;
765                         break;
766                 case HWLOCK_IRQ:
767                         map->lock = regmap_lock_hwlock_irq;
768                         map->unlock = regmap_unlock_hwlock_irq;
769                         break;
770                 default:
771                         map->lock = regmap_lock_hwlock;
772                         map->unlock = regmap_unlock_hwlock;
773                         break;
774                 }
775
776                 map->lock_arg = map;
777         } else {
778                 if ((bus && bus->fast_io) ||
779                     config->fast_io) {
780                         if (config->use_raw_spinlock) {
781                                 raw_spin_lock_init(&map->raw_spinlock);
782                                 map->lock = regmap_lock_raw_spinlock;
783                                 map->unlock = regmap_unlock_raw_spinlock;
784                                 lockdep_set_class_and_name(&map->raw_spinlock,
785                                                            lock_key, lock_name);
786                         } else {
787                                 spin_lock_init(&map->spinlock);
788                                 map->lock = regmap_lock_spinlock;
789                                 map->unlock = regmap_unlock_spinlock;
790                                 lockdep_set_class_and_name(&map->spinlock,
791                                                            lock_key, lock_name);
792                         }
793                 } else {
794                         mutex_init(&map->mutex);
795                         map->lock = regmap_lock_mutex;
796                         map->unlock = regmap_unlock_mutex;
797                         map->can_sleep = true;
798                         lockdep_set_class_and_name(&map->mutex,
799                                                    lock_key, lock_name);
800                 }
801                 map->lock_arg = map;
802         }
803
804         /*
805          * When we write in fast-paths with regmap_bulk_write() don't allocate
806          * scratch buffers with sleeping allocations.
807          */
808         if ((bus && bus->fast_io) || config->fast_io)
809                 map->alloc_flags = GFP_ATOMIC;
810         else
811                 map->alloc_flags = GFP_KERNEL;
812
813         map->reg_base = config->reg_base;
814
815         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
816         map->format.pad_bytes = config->pad_bits / 8;
817         map->format.reg_downshift = config->reg_downshift;
818         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
819         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
820                         config->val_bits + config->pad_bits, 8);
821         map->reg_shift = config->pad_bits % 8;
822         if (config->reg_stride)
823                 map->reg_stride = config->reg_stride;
824         else
825                 map->reg_stride = 1;
826         if (is_power_of_2(map->reg_stride))
827                 map->reg_stride_order = ilog2(map->reg_stride);
828         else
829                 map->reg_stride_order = -1;
830         map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
831         map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
832         map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
833         if (bus) {
834                 map->max_raw_read = bus->max_raw_read;
835                 map->max_raw_write = bus->max_raw_write;
836         } else if (config->max_raw_read && config->max_raw_write) {
837                 map->max_raw_read = config->max_raw_read;
838                 map->max_raw_write = config->max_raw_write;
839         }
840         map->dev = dev;
841         map->bus = bus;
842         map->bus_context = bus_context;
843         map->max_register = config->max_register;
844         map->wr_table = config->wr_table;
845         map->rd_table = config->rd_table;
846         map->volatile_table = config->volatile_table;
847         map->precious_table = config->precious_table;
848         map->wr_noinc_table = config->wr_noinc_table;
849         map->rd_noinc_table = config->rd_noinc_table;
850         map->writeable_reg = config->writeable_reg;
851         map->readable_reg = config->readable_reg;
852         map->volatile_reg = config->volatile_reg;
853         map->precious_reg = config->precious_reg;
854         map->writeable_noinc_reg = config->writeable_noinc_reg;
855         map->readable_noinc_reg = config->readable_noinc_reg;
856         map->cache_type = config->cache_type;
857
858         spin_lock_init(&map->async_lock);
859         INIT_LIST_HEAD(&map->async_list);
860         INIT_LIST_HEAD(&map->async_free);
861         init_waitqueue_head(&map->async_waitq);
862
863         if (config->read_flag_mask ||
864             config->write_flag_mask ||
865             config->zero_flag_mask) {
866                 map->read_flag_mask = config->read_flag_mask;
867                 map->write_flag_mask = config->write_flag_mask;
868         } else if (bus) {
869                 map->read_flag_mask = bus->read_flag_mask;
870         }
871
872         if (config && config->read && config->write) {
873                 map->reg_read  = _regmap_bus_read;
874                 if (config->reg_update_bits)
875                         map->reg_update_bits = config->reg_update_bits;
876
877                 /* Bulk read/write */
878                 map->read = config->read;
879                 map->write = config->write;
880
881                 reg_endian = REGMAP_ENDIAN_NATIVE;
882                 val_endian = REGMAP_ENDIAN_NATIVE;
883         } else if (!bus) {
884                 map->reg_read  = config->reg_read;
885                 map->reg_write = config->reg_write;
886                 map->reg_update_bits = config->reg_update_bits;
887
888                 map->defer_caching = false;
889                 goto skip_format_initialization;
890         } else if (!bus->read || !bus->write) {
891                 map->reg_read = _regmap_bus_reg_read;
892                 map->reg_write = _regmap_bus_reg_write;
893                 map->reg_update_bits = bus->reg_update_bits;
894
895                 map->defer_caching = false;
896                 goto skip_format_initialization;
897         } else {
898                 map->reg_read  = _regmap_bus_read;
899                 map->reg_update_bits = bus->reg_update_bits;
900                 /* Bulk read/write */
901                 map->read = bus->read;
902                 map->write = bus->write;
903
904                 reg_endian = regmap_get_reg_endian(bus, config);
905                 val_endian = regmap_get_val_endian(dev, bus, config);
906         }
907
908         switch (config->reg_bits + map->reg_shift) {
909         case 2:
910                 switch (config->val_bits) {
911                 case 6:
912                         map->format.format_write = regmap_format_2_6_write;
913                         break;
914                 default:
915                         goto err_hwlock;
916                 }
917                 break;
918
919         case 4:
920                 switch (config->val_bits) {
921                 case 12:
922                         map->format.format_write = regmap_format_4_12_write;
923                         break;
924                 default:
925                         goto err_hwlock;
926                 }
927                 break;
928
929         case 7:
930                 switch (config->val_bits) {
931                 case 9:
932                         map->format.format_write = regmap_format_7_9_write;
933                         break;
934                 case 17:
935                         map->format.format_write = regmap_format_7_17_write;
936                         break;
937                 default:
938                         goto err_hwlock;
939                 }
940                 break;
941
942         case 10:
943                 switch (config->val_bits) {
944                 case 14:
945                         map->format.format_write = regmap_format_10_14_write;
946                         break;
947                 default:
948                         goto err_hwlock;
949                 }
950                 break;
951
952         case 12:
953                 switch (config->val_bits) {
954                 case 20:
955                         map->format.format_write = regmap_format_12_20_write;
956                         break;
957                 default:
958                         goto err_hwlock;
959                 }
960                 break;
961
962         case 8:
963                 map->format.format_reg = regmap_format_8;
964                 break;
965
966         case 16:
967                 switch (reg_endian) {
968                 case REGMAP_ENDIAN_BIG:
969                         map->format.format_reg = regmap_format_16_be;
970                         break;
971                 case REGMAP_ENDIAN_LITTLE:
972                         map->format.format_reg = regmap_format_16_le;
973                         break;
974                 case REGMAP_ENDIAN_NATIVE:
975                         map->format.format_reg = regmap_format_16_native;
976                         break;
977                 default:
978                         goto err_hwlock;
979                 }
980                 break;
981
982         case 24:
983                 switch (reg_endian) {
984                 case REGMAP_ENDIAN_BIG:
985                         map->format.format_reg = regmap_format_24_be;
986                         break;
987                 default:
988                         goto err_hwlock;
989                 }
990                 break;
991
992         case 32:
993                 switch (reg_endian) {
994                 case REGMAP_ENDIAN_BIG:
995                         map->format.format_reg = regmap_format_32_be;
996                         break;
997                 case REGMAP_ENDIAN_LITTLE:
998                         map->format.format_reg = regmap_format_32_le;
999                         break;
1000                 case REGMAP_ENDIAN_NATIVE:
1001                         map->format.format_reg = regmap_format_32_native;
1002                         break;
1003                 default:
1004                         goto err_hwlock;
1005                 }
1006                 break;
1007
1008 #ifdef CONFIG_64BIT
1009         case 64:
1010                 switch (reg_endian) {
1011                 case REGMAP_ENDIAN_BIG:
1012                         map->format.format_reg = regmap_format_64_be;
1013                         break;
1014                 case REGMAP_ENDIAN_LITTLE:
1015                         map->format.format_reg = regmap_format_64_le;
1016                         break;
1017                 case REGMAP_ENDIAN_NATIVE:
1018                         map->format.format_reg = regmap_format_64_native;
1019                         break;
1020                 default:
1021                         goto err_hwlock;
1022                 }
1023                 break;
1024 #endif
1025
1026         default:
1027                 goto err_hwlock;
1028         }
1029
1030         if (val_endian == REGMAP_ENDIAN_NATIVE)
1031                 map->format.parse_inplace = regmap_parse_inplace_noop;
1032
1033         switch (config->val_bits) {
1034         case 8:
1035                 map->format.format_val = regmap_format_8;
1036                 map->format.parse_val = regmap_parse_8;
1037                 map->format.parse_inplace = regmap_parse_inplace_noop;
1038                 break;
1039         case 16:
1040                 switch (val_endian) {
1041                 case REGMAP_ENDIAN_BIG:
1042                         map->format.format_val = regmap_format_16_be;
1043                         map->format.parse_val = regmap_parse_16_be;
1044                         map->format.parse_inplace = regmap_parse_16_be_inplace;
1045                         break;
1046                 case REGMAP_ENDIAN_LITTLE:
1047                         map->format.format_val = regmap_format_16_le;
1048                         map->format.parse_val = regmap_parse_16_le;
1049                         map->format.parse_inplace = regmap_parse_16_le_inplace;
1050                         break;
1051                 case REGMAP_ENDIAN_NATIVE:
1052                         map->format.format_val = regmap_format_16_native;
1053                         map->format.parse_val = regmap_parse_16_native;
1054                         break;
1055                 default:
1056                         goto err_hwlock;
1057                 }
1058                 break;
1059         case 24:
1060                 switch (val_endian) {
1061                 case REGMAP_ENDIAN_BIG:
1062                         map->format.format_val = regmap_format_24_be;
1063                         map->format.parse_val = regmap_parse_24_be;
1064                         break;
1065                 default:
1066                         goto err_hwlock;
1067                 }
1068                 break;
1069         case 32:
1070                 switch (val_endian) {
1071                 case REGMAP_ENDIAN_BIG:
1072                         map->format.format_val = regmap_format_32_be;
1073                         map->format.parse_val = regmap_parse_32_be;
1074                         map->format.parse_inplace = regmap_parse_32_be_inplace;
1075                         break;
1076                 case REGMAP_ENDIAN_LITTLE:
1077                         map->format.format_val = regmap_format_32_le;
1078                         map->format.parse_val = regmap_parse_32_le;
1079                         map->format.parse_inplace = regmap_parse_32_le_inplace;
1080                         break;
1081                 case REGMAP_ENDIAN_NATIVE:
1082                         map->format.format_val = regmap_format_32_native;
1083                         map->format.parse_val = regmap_parse_32_native;
1084                         break;
1085                 default:
1086                         goto err_hwlock;
1087                 }
1088                 break;
1089 #ifdef CONFIG_64BIT
1090         case 64:
1091                 switch (val_endian) {
1092                 case REGMAP_ENDIAN_BIG:
1093                         map->format.format_val = regmap_format_64_be;
1094                         map->format.parse_val = regmap_parse_64_be;
1095                         map->format.parse_inplace = regmap_parse_64_be_inplace;
1096                         break;
1097                 case REGMAP_ENDIAN_LITTLE:
1098                         map->format.format_val = regmap_format_64_le;
1099                         map->format.parse_val = regmap_parse_64_le;
1100                         map->format.parse_inplace = regmap_parse_64_le_inplace;
1101                         break;
1102                 case REGMAP_ENDIAN_NATIVE:
1103                         map->format.format_val = regmap_format_64_native;
1104                         map->format.parse_val = regmap_parse_64_native;
1105                         break;
1106                 default:
1107                         goto err_hwlock;
1108                 }
1109                 break;
1110 #endif
1111         }
1112
1113         if (map->format.format_write) {
1114                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115                     (val_endian != REGMAP_ENDIAN_BIG))
1116                         goto err_hwlock;
1117                 map->use_single_write = true;
1118         }
1119
1120         if (!map->format.format_write &&
1121             !(map->format.format_reg && map->format.format_val))
1122                 goto err_hwlock;
1123
1124         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125         if (map->work_buf == NULL) {
1126                 ret = -ENOMEM;
1127                 goto err_hwlock;
1128         }
1129
1130         if (map->format.format_write) {
1131                 map->defer_caching = false;
1132                 map->reg_write = _regmap_bus_formatted_write;
1133         } else if (map->format.format_val) {
1134                 map->defer_caching = true;
1135                 map->reg_write = _regmap_bus_raw_write;
1136         }
1137
1138 skip_format_initialization:
1139
1140         map->range_tree = RB_ROOT;
1141         for (i = 0; i < config->num_ranges; i++) {
1142                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143                 struct regmap_range_node *new;
1144
1145                 /* Sanity check */
1146                 if (range_cfg->range_max < range_cfg->range_min) {
1147                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148                                 range_cfg->range_max, range_cfg->range_min);
1149                         goto err_range;
1150                 }
1151
1152                 if (range_cfg->range_max > map->max_register) {
1153                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154                                 range_cfg->range_max, map->max_register);
1155                         goto err_range;
1156                 }
1157
1158                 if (range_cfg->selector_reg > map->max_register) {
1159                         dev_err(map->dev,
1160                                 "Invalid range %d: selector out of map\n", i);
1161                         goto err_range;
1162                 }
1163
1164                 if (range_cfg->window_len == 0) {
1165                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166                                 i);
1167                         goto err_range;
1168                 }
1169
1170                 /* Make sure, that this register range has no selector
1171                    or data window within its boundary */
1172                 for (j = 0; j < config->num_ranges; j++) {
1173                         unsigned int sel_reg = config->ranges[j].selector_reg;
1174                         unsigned int win_min = config->ranges[j].window_start;
1175                         unsigned int win_max = win_min +
1176                                                config->ranges[j].window_len - 1;
1177
1178                         /* Allow data window inside its own virtual range */
1179                         if (j == i)
1180                                 continue;
1181
1182                         if (range_cfg->range_min <= sel_reg &&
1183                             sel_reg <= range_cfg->range_max) {
1184                                 dev_err(map->dev,
1185                                         "Range %d: selector for %d in window\n",
1186                                         i, j);
1187                                 goto err_range;
1188                         }
1189
1190                         if (!(win_max < range_cfg->range_min ||
1191                               win_min > range_cfg->range_max)) {
1192                                 dev_err(map->dev,
1193                                         "Range %d: window for %d in window\n",
1194                                         i, j);
1195                                 goto err_range;
1196                         }
1197                 }
1198
1199                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1200                 if (new == NULL) {
1201                         ret = -ENOMEM;
1202                         goto err_range;
1203                 }
1204
1205                 new->map = map;
1206                 new->name = range_cfg->name;
1207                 new->range_min = range_cfg->range_min;
1208                 new->range_max = range_cfg->range_max;
1209                 new->selector_reg = range_cfg->selector_reg;
1210                 new->selector_mask = range_cfg->selector_mask;
1211                 new->selector_shift = range_cfg->selector_shift;
1212                 new->window_start = range_cfg->window_start;
1213                 new->window_len = range_cfg->window_len;
1214
1215                 if (!_regmap_range_add(map, new)) {
1216                         dev_err(map->dev, "Failed to add range %d\n", i);
1217                         kfree(new);
1218                         goto err_range;
1219                 }
1220
1221                 if (map->selector_work_buf == NULL) {
1222                         map->selector_work_buf =
1223                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1224                         if (map->selector_work_buf == NULL) {
1225                                 ret = -ENOMEM;
1226                                 goto err_range;
1227                         }
1228                 }
1229         }
1230
1231         ret = regcache_init(map, config);
1232         if (ret != 0)
1233                 goto err_range;
1234
1235         if (dev) {
1236                 ret = regmap_attach_dev(dev, map, config);
1237                 if (ret != 0)
1238                         goto err_regcache;
1239         } else {
1240                 regmap_debugfs_init(map);
1241         }
1242
1243         return map;
1244
1245 err_regcache:
1246         regcache_exit(map);
1247 err_range:
1248         regmap_range_exit(map);
1249         kfree(map->work_buf);
1250 err_hwlock:
1251         if (map->hwlock)
1252                 hwspin_lock_free(map->hwlock);
1253 err_name:
1254         kfree_const(map->name);
1255 err_map:
1256         kfree(map);
1257 err:
1258         return ERR_PTR(ret);
1259 }
1260 EXPORT_SYMBOL_GPL(__regmap_init);
1261
1262 static void devm_regmap_release(struct device *dev, void *res)
1263 {
1264         regmap_exit(*(struct regmap **)res);
1265 }
1266
1267 struct regmap *__devm_regmap_init(struct device *dev,
1268                                   const struct regmap_bus *bus,
1269                                   void *bus_context,
1270                                   const struct regmap_config *config,
1271                                   struct lock_class_key *lock_key,
1272                                   const char *lock_name)
1273 {
1274         struct regmap **ptr, *regmap;
1275
1276         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277         if (!ptr)
1278                 return ERR_PTR(-ENOMEM);
1279
1280         regmap = __regmap_init(dev, bus, bus_context, config,
1281                                lock_key, lock_name);
1282         if (!IS_ERR(regmap)) {
1283                 *ptr = regmap;
1284                 devres_add(dev, ptr);
1285         } else {
1286                 devres_free(ptr);
1287         }
1288
1289         return regmap;
1290 }
1291 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292
1293 static void regmap_field_init(struct regmap_field *rm_field,
1294         struct regmap *regmap, struct reg_field reg_field)
1295 {
1296         rm_field->regmap = regmap;
1297         rm_field->reg = reg_field.reg;
1298         rm_field->shift = reg_field.lsb;
1299         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300
1301         WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302
1303         rm_field->id_size = reg_field.id_size;
1304         rm_field->id_offset = reg_field.id_offset;
1305 }
1306
1307 /**
1308  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1309  *
1310  * @dev: Device that will be interacted with
1311  * @regmap: regmap bank in which this register field is located.
1312  * @reg_field: Register field with in the bank.
1313  *
1314  * The return value will be an ERR_PTR() on error or a valid pointer
1315  * to a struct regmap_field. The regmap_field will be automatically freed
1316  * by the device management code.
1317  */
1318 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319                 struct regmap *regmap, struct reg_field reg_field)
1320 {
1321         struct regmap_field *rm_field = devm_kzalloc(dev,
1322                                         sizeof(*rm_field), GFP_KERNEL);
1323         if (!rm_field)
1324                 return ERR_PTR(-ENOMEM);
1325
1326         regmap_field_init(rm_field, regmap, reg_field);
1327
1328         return rm_field;
1329
1330 }
1331 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332
1333
1334 /**
1335  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336  *
1337  * @regmap: regmap bank in which this register field is located.
1338  * @rm_field: regmap register fields within the bank.
1339  * @reg_field: Register fields within the bank.
1340  * @num_fields: Number of register fields.
1341  *
1342  * The return value will be an -ENOMEM on error or zero for success.
1343  * Newly allocated regmap_fields should be freed by calling
1344  * regmap_field_bulk_free()
1345  */
1346 int regmap_field_bulk_alloc(struct regmap *regmap,
1347                             struct regmap_field **rm_field,
1348                             const struct reg_field *reg_field,
1349                             int num_fields)
1350 {
1351         struct regmap_field *rf;
1352         int i;
1353
1354         rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355         if (!rf)
1356                 return -ENOMEM;
1357
1358         for (i = 0; i < num_fields; i++) {
1359                 regmap_field_init(&rf[i], regmap, reg_field[i]);
1360                 rm_field[i] = &rf[i];
1361         }
1362
1363         return 0;
1364 }
1365 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366
1367 /**
1368  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369  * fields.
1370  *
1371  * @dev: Device that will be interacted with
1372  * @regmap: regmap bank in which this register field is located.
1373  * @rm_field: regmap register fields within the bank.
1374  * @reg_field: Register fields within the bank.
1375  * @num_fields: Number of register fields.
1376  *
1377  * The return value will be an -ENOMEM on error or zero for success.
1378  * Newly allocated regmap_fields will be automatically freed by the
1379  * device management code.
1380  */
1381 int devm_regmap_field_bulk_alloc(struct device *dev,
1382                                  struct regmap *regmap,
1383                                  struct regmap_field **rm_field,
1384                                  const struct reg_field *reg_field,
1385                                  int num_fields)
1386 {
1387         struct regmap_field *rf;
1388         int i;
1389
1390         rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391         if (!rf)
1392                 return -ENOMEM;
1393
1394         for (i = 0; i < num_fields; i++) {
1395                 regmap_field_init(&rf[i], regmap, reg_field[i]);
1396                 rm_field[i] = &rf[i];
1397         }
1398
1399         return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402
1403 /**
1404  * regmap_field_bulk_free() - Free register field allocated using
1405  *                       regmap_field_bulk_alloc.
1406  *
1407  * @field: regmap fields which should be freed.
1408  */
1409 void regmap_field_bulk_free(struct regmap_field *field)
1410 {
1411         kfree(field);
1412 }
1413 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414
1415 /**
1416  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417  *                            devm_regmap_field_bulk_alloc.
1418  *
1419  * @dev: Device that will be interacted with
1420  * @field: regmap field which should be freed.
1421  *
1422  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423  * drivers need not call this function, as the memory allocated via devm
1424  * will be freed as per device-driver life-cycle.
1425  */
1426 void devm_regmap_field_bulk_free(struct device *dev,
1427                                  struct regmap_field *field)
1428 {
1429         devm_kfree(dev, field);
1430 }
1431 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432
1433 /**
1434  * devm_regmap_field_free() - Free a register field allocated using
1435  *                            devm_regmap_field_alloc.
1436  *
1437  * @dev: Device that will be interacted with
1438  * @field: regmap field which should be freed.
1439  *
1440  * Free register field allocated using devm_regmap_field_alloc(). Usually
1441  * drivers need not call this function, as the memory allocated via devm
1442  * will be freed as per device-driver life-cyle.
1443  */
1444 void devm_regmap_field_free(struct device *dev,
1445         struct regmap_field *field)
1446 {
1447         devm_kfree(dev, field);
1448 }
1449 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450
1451 /**
1452  * regmap_field_alloc() - Allocate and initialise a register field.
1453  *
1454  * @regmap: regmap bank in which this register field is located.
1455  * @reg_field: Register field with in the bank.
1456  *
1457  * The return value will be an ERR_PTR() on error or a valid pointer
1458  * to a struct regmap_field. The regmap_field should be freed by the
1459  * user once its finished working with it using regmap_field_free().
1460  */
1461 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462                 struct reg_field reg_field)
1463 {
1464         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465
1466         if (!rm_field)
1467                 return ERR_PTR(-ENOMEM);
1468
1469         regmap_field_init(rm_field, regmap, reg_field);
1470
1471         return rm_field;
1472 }
1473 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474
1475 /**
1476  * regmap_field_free() - Free register field allocated using
1477  *                       regmap_field_alloc.
1478  *
1479  * @field: regmap field which should be freed.
1480  */
1481 void regmap_field_free(struct regmap_field *field)
1482 {
1483         kfree(field);
1484 }
1485 EXPORT_SYMBOL_GPL(regmap_field_free);
1486
1487 /**
1488  * regmap_reinit_cache() - Reinitialise the current register cache
1489  *
1490  * @map: Register map to operate on.
1491  * @config: New configuration.  Only the cache data will be used.
1492  *
1493  * Discard any existing register cache for the map and initialize a
1494  * new cache.  This can be used to restore the cache to defaults or to
1495  * update the cache configuration to reflect runtime discovery of the
1496  * hardware.
1497  *
1498  * No explicit locking is done here, the user needs to ensure that
1499  * this function will not race with other calls to regmap.
1500  */
1501 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502 {
1503         int ret;
1504
1505         regcache_exit(map);
1506         regmap_debugfs_exit(map);
1507
1508         map->max_register = config->max_register;
1509         map->writeable_reg = config->writeable_reg;
1510         map->readable_reg = config->readable_reg;
1511         map->volatile_reg = config->volatile_reg;
1512         map->precious_reg = config->precious_reg;
1513         map->writeable_noinc_reg = config->writeable_noinc_reg;
1514         map->readable_noinc_reg = config->readable_noinc_reg;
1515         map->cache_type = config->cache_type;
1516
1517         ret = regmap_set_name(map, config);
1518         if (ret)
1519                 return ret;
1520
1521         regmap_debugfs_init(map);
1522
1523         map->cache_bypass = false;
1524         map->cache_only = false;
1525
1526         return regcache_init(map, config);
1527 }
1528 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529
1530 /**
1531  * regmap_exit() - Free a previously allocated register map
1532  *
1533  * @map: Register map to operate on.
1534  */
1535 void regmap_exit(struct regmap *map)
1536 {
1537         struct regmap_async *async;
1538
1539         regcache_exit(map);
1540         regmap_debugfs_exit(map);
1541         regmap_range_exit(map);
1542         if (map->bus && map->bus->free_context)
1543                 map->bus->free_context(map->bus_context);
1544         kfree(map->work_buf);
1545         while (!list_empty(&map->async_free)) {
1546                 async = list_first_entry_or_null(&map->async_free,
1547                                                  struct regmap_async,
1548                                                  list);
1549                 list_del(&async->list);
1550                 kfree(async->work_buf);
1551                 kfree(async);
1552         }
1553         if (map->hwlock)
1554                 hwspin_lock_free(map->hwlock);
1555         if (map->lock == regmap_lock_mutex)
1556                 mutex_destroy(&map->mutex);
1557         kfree_const(map->name);
1558         kfree(map->patch);
1559         if (map->bus && map->bus->free_on_exit)
1560                 kfree(map->bus);
1561         kfree(map);
1562 }
1563 EXPORT_SYMBOL_GPL(regmap_exit);
1564
1565 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566 {
1567         struct regmap **r = res;
1568         if (!r || !*r) {
1569                 WARN_ON(!r || !*r);
1570                 return 0;
1571         }
1572
1573         /* If the user didn't specify a name match any */
1574         if (data)
1575                 return !strcmp((*r)->name, data);
1576         else
1577                 return 1;
1578 }
1579
1580 /**
1581  * dev_get_regmap() - Obtain the regmap (if any) for a device
1582  *
1583  * @dev: Device to retrieve the map for
1584  * @name: Optional name for the register map, usually NULL.
1585  *
1586  * Returns the regmap for the device if one is present, or NULL.  If
1587  * name is specified then it must match the name specified when
1588  * registering the device, if it is NULL then the first regmap found
1589  * will be used.  Devices with multiple register maps are very rare,
1590  * generic code should normally not need to specify a name.
1591  */
1592 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593 {
1594         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595                                         dev_get_regmap_match, (void *)name);
1596
1597         if (!r)
1598                 return NULL;
1599         return *r;
1600 }
1601 EXPORT_SYMBOL_GPL(dev_get_regmap);
1602
1603 /**
1604  * regmap_get_device() - Obtain the device from a regmap
1605  *
1606  * @map: Register map to operate on.
1607  *
1608  * Returns the underlying device that the regmap has been created for.
1609  */
1610 struct device *regmap_get_device(struct regmap *map)
1611 {
1612         return map->dev;
1613 }
1614 EXPORT_SYMBOL_GPL(regmap_get_device);
1615
1616 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617                                struct regmap_range_node *range,
1618                                unsigned int val_num)
1619 {
1620         void *orig_work_buf;
1621         unsigned int win_offset;
1622         unsigned int win_page;
1623         bool page_chg;
1624         int ret;
1625
1626         win_offset = (*reg - range->range_min) % range->window_len;
1627         win_page = (*reg - range->range_min) / range->window_len;
1628
1629         if (val_num > 1) {
1630                 /* Bulk write shouldn't cross range boundary */
1631                 if (*reg + val_num - 1 > range->range_max)
1632                         return -EINVAL;
1633
1634                 /* ... or single page boundary */
1635                 if (val_num > range->window_len - win_offset)
1636                         return -EINVAL;
1637         }
1638
1639         /* It is possible to have selector register inside data window.
1640            In that case, selector register is located on every page and
1641            it needs no page switching, when accessed alone. */
1642         if (val_num > 1 ||
1643             range->window_start + win_offset != range->selector_reg) {
1644                 /* Use separate work_buf during page switching */
1645                 orig_work_buf = map->work_buf;
1646                 map->work_buf = map->selector_work_buf;
1647
1648                 ret = _regmap_update_bits(map, range->selector_reg,
1649                                           range->selector_mask,
1650                                           win_page << range->selector_shift,
1651                                           &page_chg, false);
1652
1653                 map->work_buf = orig_work_buf;
1654
1655                 if (ret != 0)
1656                         return ret;
1657         }
1658
1659         *reg = range->window_start + win_offset;
1660
1661         return 0;
1662 }
1663
1664 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665                                           unsigned long mask)
1666 {
1667         u8 *buf;
1668         int i;
1669
1670         if (!mask || !map->work_buf)
1671                 return;
1672
1673         buf = map->work_buf;
1674
1675         for (i = 0; i < max_bytes; i++)
1676                 buf[i] |= (mask >> (8 * i)) & 0xff;
1677 }
1678
1679 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1680                                   const void *val, size_t val_len, bool noinc)
1681 {
1682         struct regmap_range_node *range;
1683         unsigned long flags;
1684         void *work_val = map->work_buf + map->format.reg_bytes +
1685                 map->format.pad_bytes;
1686         void *buf;
1687         int ret = -ENOTSUPP;
1688         size_t len;
1689         int i;
1690
1691         /* Check for unwritable or noinc registers in range
1692          * before we start
1693          */
1694         if (!regmap_writeable_noinc(map, reg)) {
1695                 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1696                         unsigned int element =
1697                                 reg + regmap_get_offset(map, i);
1698                         if (!regmap_writeable(map, element) ||
1699                                 regmap_writeable_noinc(map, element))
1700                                 return -EINVAL;
1701                 }
1702         }
1703
1704         if (!map->cache_bypass && map->format.parse_val) {
1705                 unsigned int ival;
1706                 int val_bytes = map->format.val_bytes;
1707                 for (i = 0; i < val_len / val_bytes; i++) {
1708                         ival = map->format.parse_val(val + (i * val_bytes));
1709                         ret = regcache_write(map,
1710                                              reg + regmap_get_offset(map, i),
1711                                              ival);
1712                         if (ret) {
1713                                 dev_err(map->dev,
1714                                         "Error in caching of register: %x ret: %d\n",
1715                                         reg + regmap_get_offset(map, i), ret);
1716                                 return ret;
1717                         }
1718                 }
1719                 if (map->cache_only) {
1720                         map->cache_dirty = true;
1721                         return 0;
1722                 }
1723         }
1724
1725         range = _regmap_range_lookup(map, reg);
1726         if (range) {
1727                 int val_num = val_len / map->format.val_bytes;
1728                 int win_offset = (reg - range->range_min) % range->window_len;
1729                 int win_residue = range->window_len - win_offset;
1730
1731                 /* If the write goes beyond the end of the window split it */
1732                 while (val_num > win_residue) {
1733                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1734                                 win_residue, val_len / map->format.val_bytes);
1735                         ret = _regmap_raw_write_impl(map, reg, val,
1736                                                      win_residue *
1737                                                      map->format.val_bytes, noinc);
1738                         if (ret != 0)
1739                                 return ret;
1740
1741                         reg += win_residue;
1742                         val_num -= win_residue;
1743                         val += win_residue * map->format.val_bytes;
1744                         val_len -= win_residue * map->format.val_bytes;
1745
1746                         win_offset = (reg - range->range_min) %
1747                                 range->window_len;
1748                         win_residue = range->window_len - win_offset;
1749                 }
1750
1751                 ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1752                 if (ret != 0)
1753                         return ret;
1754         }
1755
1756         reg += map->reg_base;
1757         reg >>= map->format.reg_downshift;
1758         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1759         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1760                                       map->write_flag_mask);
1761
1762         /*
1763          * Essentially all I/O mechanisms will be faster with a single
1764          * buffer to write.  Since register syncs often generate raw
1765          * writes of single registers optimise that case.
1766          */
1767         if (val != work_val && val_len == map->format.val_bytes) {
1768                 memcpy(work_val, val, map->format.val_bytes);
1769                 val = work_val;
1770         }
1771
1772         if (map->async && map->bus && map->bus->async_write) {
1773                 struct regmap_async *async;
1774
1775                 trace_regmap_async_write_start(map, reg, val_len);
1776
1777                 spin_lock_irqsave(&map->async_lock, flags);
1778                 async = list_first_entry_or_null(&map->async_free,
1779                                                  struct regmap_async,
1780                                                  list);
1781                 if (async)
1782                         list_del(&async->list);
1783                 spin_unlock_irqrestore(&map->async_lock, flags);
1784
1785                 if (!async) {
1786                         async = map->bus->async_alloc();
1787                         if (!async)
1788                                 return -ENOMEM;
1789
1790                         async->work_buf = kzalloc(map->format.buf_size,
1791                                                   GFP_KERNEL | GFP_DMA);
1792                         if (!async->work_buf) {
1793                                 kfree(async);
1794                                 return -ENOMEM;
1795                         }
1796                 }
1797
1798                 async->map = map;
1799
1800                 /* If the caller supplied the value we can use it safely. */
1801                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1802                        map->format.reg_bytes + map->format.val_bytes);
1803
1804                 spin_lock_irqsave(&map->async_lock, flags);
1805                 list_add_tail(&async->list, &map->async_list);
1806                 spin_unlock_irqrestore(&map->async_lock, flags);
1807
1808                 if (val != work_val)
1809                         ret = map->bus->async_write(map->bus_context,
1810                                                     async->work_buf,
1811                                                     map->format.reg_bytes +
1812                                                     map->format.pad_bytes,
1813                                                     val, val_len, async);
1814                 else
1815                         ret = map->bus->async_write(map->bus_context,
1816                                                     async->work_buf,
1817                                                     map->format.reg_bytes +
1818                                                     map->format.pad_bytes +
1819                                                     val_len, NULL, 0, async);
1820
1821                 if (ret != 0) {
1822                         dev_err(map->dev, "Failed to schedule write: %d\n",
1823                                 ret);
1824
1825                         spin_lock_irqsave(&map->async_lock, flags);
1826                         list_move(&async->list, &map->async_free);
1827                         spin_unlock_irqrestore(&map->async_lock, flags);
1828                 }
1829
1830                 return ret;
1831         }
1832
1833         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1834
1835         /* If we're doing a single register write we can probably just
1836          * send the work_buf directly, otherwise try to do a gather
1837          * write.
1838          */
1839         if (val == work_val)
1840                 ret = map->write(map->bus_context, map->work_buf,
1841                                  map->format.reg_bytes +
1842                                  map->format.pad_bytes +
1843                                  val_len);
1844         else if (map->bus && map->bus->gather_write)
1845                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1846                                              map->format.reg_bytes +
1847                                              map->format.pad_bytes,
1848                                              val, val_len);
1849         else
1850                 ret = -ENOTSUPP;
1851
1852         /* If that didn't work fall back on linearising by hand. */
1853         if (ret == -ENOTSUPP) {
1854                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1855                 buf = kzalloc(len, GFP_KERNEL);
1856                 if (!buf)
1857                         return -ENOMEM;
1858
1859                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1860                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1861                        val, val_len);
1862                 ret = map->write(map->bus_context, buf, len);
1863
1864                 kfree(buf);
1865         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1866                 /* regcache_drop_region() takes lock that we already have,
1867                  * thus call map->cache_ops->drop() directly
1868                  */
1869                 if (map->cache_ops && map->cache_ops->drop)
1870                         map->cache_ops->drop(map, reg, reg + 1);
1871         }
1872
1873         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1874
1875         return ret;
1876 }
1877
1878 /**
1879  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1880  *
1881  * @map: Map to check.
1882  */
1883 bool regmap_can_raw_write(struct regmap *map)
1884 {
1885         return map->write && map->format.format_val && map->format.format_reg;
1886 }
1887 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1888
1889 /**
1890  * regmap_get_raw_read_max - Get the maximum size we can read
1891  *
1892  * @map: Map to check.
1893  */
1894 size_t regmap_get_raw_read_max(struct regmap *map)
1895 {
1896         return map->max_raw_read;
1897 }
1898 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1899
1900 /**
1901  * regmap_get_raw_write_max - Get the maximum size we can read
1902  *
1903  * @map: Map to check.
1904  */
1905 size_t regmap_get_raw_write_max(struct regmap *map)
1906 {
1907         return map->max_raw_write;
1908 }
1909 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1910
1911 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1912                                        unsigned int val)
1913 {
1914         int ret;
1915         struct regmap_range_node *range;
1916         struct regmap *map = context;
1917
1918         WARN_ON(!map->format.format_write);
1919
1920         range = _regmap_range_lookup(map, reg);
1921         if (range) {
1922                 ret = _regmap_select_page(map, &reg, range, 1);
1923                 if (ret != 0)
1924                         return ret;
1925         }
1926
1927         reg += map->reg_base;
1928         reg >>= map->format.reg_downshift;
1929         map->format.format_write(map, reg, val);
1930
1931         trace_regmap_hw_write_start(map, reg, 1);
1932
1933         ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1934
1935         trace_regmap_hw_write_done(map, reg, 1);
1936
1937         return ret;
1938 }
1939
1940 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1941                                  unsigned int val)
1942 {
1943         struct regmap *map = context;
1944
1945         return map->bus->reg_write(map->bus_context, reg, val);
1946 }
1947
1948 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1949                                  unsigned int val)
1950 {
1951         struct regmap *map = context;
1952
1953         WARN_ON(!map->format.format_val);
1954
1955         map->format.format_val(map->work_buf + map->format.reg_bytes
1956                                + map->format.pad_bytes, val, 0);
1957         return _regmap_raw_write_impl(map, reg,
1958                                       map->work_buf +
1959                                       map->format.reg_bytes +
1960                                       map->format.pad_bytes,
1961                                       map->format.val_bytes,
1962                                       false);
1963 }
1964
1965 static inline void *_regmap_map_get_context(struct regmap *map)
1966 {
1967         return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1968 }
1969
1970 int _regmap_write(struct regmap *map, unsigned int reg,
1971                   unsigned int val)
1972 {
1973         int ret;
1974         void *context = _regmap_map_get_context(map);
1975
1976         if (!regmap_writeable(map, reg))
1977                 return -EIO;
1978
1979         if (!map->cache_bypass && !map->defer_caching) {
1980                 ret = regcache_write(map, reg, val);
1981                 if (ret != 0)
1982                         return ret;
1983                 if (map->cache_only) {
1984                         map->cache_dirty = true;
1985                         return 0;
1986                 }
1987         }
1988
1989         ret = map->reg_write(context, reg, val);
1990         if (ret == 0) {
1991                 if (regmap_should_log(map))
1992                         dev_info(map->dev, "%x <= %x\n", reg, val);
1993
1994                 trace_regmap_reg_write(map, reg, val);
1995         }
1996
1997         return ret;
1998 }
1999
2000 /**
2001  * regmap_write() - Write a value to a single register
2002  *
2003  * @map: Register map to write to
2004  * @reg: Register to write to
2005  * @val: Value to be written
2006  *
2007  * A value of zero will be returned on success, a negative errno will
2008  * be returned in error cases.
2009  */
2010 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2011 {
2012         int ret;
2013
2014         if (!IS_ALIGNED(reg, map->reg_stride))
2015                 return -EINVAL;
2016
2017         map->lock(map->lock_arg);
2018
2019         ret = _regmap_write(map, reg, val);
2020
2021         map->unlock(map->lock_arg);
2022
2023         return ret;
2024 }
2025 EXPORT_SYMBOL_GPL(regmap_write);
2026
2027 /**
2028  * regmap_write_async() - Write a value to a single register asynchronously
2029  *
2030  * @map: Register map to write to
2031  * @reg: Register to write to
2032  * @val: Value to be written
2033  *
2034  * A value of zero will be returned on success, a negative errno will
2035  * be returned in error cases.
2036  */
2037 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2038 {
2039         int ret;
2040
2041         if (!IS_ALIGNED(reg, map->reg_stride))
2042                 return -EINVAL;
2043
2044         map->lock(map->lock_arg);
2045
2046         map->async = true;
2047
2048         ret = _regmap_write(map, reg, val);
2049
2050         map->async = false;
2051
2052         map->unlock(map->lock_arg);
2053
2054         return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(regmap_write_async);
2057
2058 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2059                       const void *val, size_t val_len, bool noinc)
2060 {
2061         size_t val_bytes = map->format.val_bytes;
2062         size_t val_count = val_len / val_bytes;
2063         size_t chunk_count, chunk_bytes;
2064         size_t chunk_regs = val_count;
2065         int ret, i;
2066
2067         if (!val_count)
2068                 return -EINVAL;
2069
2070         if (map->use_single_write)
2071                 chunk_regs = 1;
2072         else if (map->max_raw_write && val_len > map->max_raw_write)
2073                 chunk_regs = map->max_raw_write / val_bytes;
2074
2075         chunk_count = val_count / chunk_regs;
2076         chunk_bytes = chunk_regs * val_bytes;
2077
2078         /* Write as many bytes as possible with chunk_size */
2079         for (i = 0; i < chunk_count; i++) {
2080                 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2081                 if (ret)
2082                         return ret;
2083
2084                 reg += regmap_get_offset(map, chunk_regs);
2085                 val += chunk_bytes;
2086                 val_len -= chunk_bytes;
2087         }
2088
2089         /* Write remaining bytes */
2090         if (val_len)
2091                 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2092
2093         return ret;
2094 }
2095
2096 /**
2097  * regmap_raw_write() - Write raw values to one or more registers
2098  *
2099  * @map: Register map to write to
2100  * @reg: Initial register to write to
2101  * @val: Block of data to be written, laid out for direct transmission to the
2102  *       device
2103  * @val_len: Length of data pointed to by val.
2104  *
2105  * This function is intended to be used for things like firmware
2106  * download where a large block of data needs to be transferred to the
2107  * device.  No formatting will be done on the data provided.
2108  *
2109  * A value of zero will be returned on success, a negative errno will
2110  * be returned in error cases.
2111  */
2112 int regmap_raw_write(struct regmap *map, unsigned int reg,
2113                      const void *val, size_t val_len)
2114 {
2115         int ret;
2116
2117         if (!regmap_can_raw_write(map))
2118                 return -EINVAL;
2119         if (val_len % map->format.val_bytes)
2120                 return -EINVAL;
2121
2122         map->lock(map->lock_arg);
2123
2124         ret = _regmap_raw_write(map, reg, val, val_len, false);
2125
2126         map->unlock(map->lock_arg);
2127
2128         return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(regmap_raw_write);
2131
2132 static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2133                                   void *val, unsigned int val_len, bool write)
2134 {
2135         size_t val_bytes = map->format.val_bytes;
2136         size_t val_count = val_len / val_bytes;
2137         unsigned int lastval;
2138         u8 *u8p;
2139         u16 *u16p;
2140         u32 *u32p;
2141 #ifdef CONFIG_64BIT
2142         u64 *u64p;
2143 #endif
2144         int ret;
2145         int i;
2146
2147         switch (val_bytes) {
2148         case 1:
2149                 u8p = val;
2150                 if (write)
2151                         lastval = (unsigned int)u8p[val_count - 1];
2152                 break;
2153         case 2:
2154                 u16p = val;
2155                 if (write)
2156                         lastval = (unsigned int)u16p[val_count - 1];
2157                 break;
2158         case 4:
2159                 u32p = val;
2160                 if (write)
2161                         lastval = (unsigned int)u32p[val_count - 1];
2162                 break;
2163 #ifdef CONFIG_64BIT
2164         case 8:
2165                 u64p = val;
2166                 if (write)
2167                         lastval = (unsigned int)u64p[val_count - 1];
2168                 break;
2169 #endif
2170         default:
2171                 return -EINVAL;
2172         }
2173
2174         /*
2175          * Update the cache with the last value we write, the rest is just
2176          * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2177          * sure a single read from the cache will work.
2178          */
2179         if (write) {
2180                 if (!map->cache_bypass && !map->defer_caching) {
2181                         ret = regcache_write(map, reg, lastval);
2182                         if (ret != 0)
2183                                 return ret;
2184                         if (map->cache_only) {
2185                                 map->cache_dirty = true;
2186                                 return 0;
2187                         }
2188                 }
2189                 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2190         } else {
2191                 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2192         }
2193
2194         if (!ret && regmap_should_log(map)) {
2195                 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2196                 for (i = 0; i < val_count; i++) {
2197                         switch (val_bytes) {
2198                         case 1:
2199                                 pr_cont("%x", u8p[i]);
2200                                 break;
2201                         case 2:
2202                                 pr_cont("%x", u16p[i]);
2203                                 break;
2204                         case 4:
2205                                 pr_cont("%x", u32p[i]);
2206                                 break;
2207 #ifdef CONFIG_64BIT
2208                         case 8:
2209                                 pr_cont("%llx", u64p[i]);
2210                                 break;
2211 #endif
2212                         default:
2213                                 break;
2214                         }
2215                         if (i == (val_count - 1))
2216                                 pr_cont("]\n");
2217                         else
2218                                 pr_cont(",");
2219                 }
2220         }
2221
2222         return 0;
2223 }
2224
2225 /**
2226  * regmap_noinc_write(): Write data from a register without incrementing the
2227  *                      register number
2228  *
2229  * @map: Register map to write to
2230  * @reg: Register to write to
2231  * @val: Pointer to data buffer
2232  * @val_len: Length of output buffer in bytes.
2233  *
2234  * The regmap API usually assumes that bulk bus write operations will write a
2235  * range of registers. Some devices have certain registers for which a write
2236  * operation can write to an internal FIFO.
2237  *
2238  * The target register must be volatile but registers after it can be
2239  * completely unrelated cacheable registers.
2240  *
2241  * This will attempt multiple writes as required to write val_len bytes.
2242  *
2243  * A value of zero will be returned on success, a negative errno will be
2244  * returned in error cases.
2245  */
2246 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2247                       const void *val, size_t val_len)
2248 {
2249         size_t write_len;
2250         int ret;
2251
2252         if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2253                 return -EINVAL;
2254         if (val_len % map->format.val_bytes)
2255                 return -EINVAL;
2256         if (!IS_ALIGNED(reg, map->reg_stride))
2257                 return -EINVAL;
2258         if (val_len == 0)
2259                 return -EINVAL;
2260
2261         map->lock(map->lock_arg);
2262
2263         if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2264                 ret = -EINVAL;
2265                 goto out_unlock;
2266         }
2267
2268         /*
2269          * Use the accelerated operation if we can. The val drops the const
2270          * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2271          */
2272         if (map->bus->reg_noinc_write) {
2273                 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2274                 goto out_unlock;
2275         }
2276
2277         while (val_len) {
2278                 if (map->max_raw_write && map->max_raw_write < val_len)
2279                         write_len = map->max_raw_write;
2280                 else
2281                         write_len = val_len;
2282                 ret = _regmap_raw_write(map, reg, val, write_len, true);
2283                 if (ret)
2284                         goto out_unlock;
2285                 val = ((u8 *)val) + write_len;
2286                 val_len -= write_len;
2287         }
2288
2289 out_unlock:
2290         map->unlock(map->lock_arg);
2291         return ret;
2292 }
2293 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2294
2295 /**
2296  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2297  *                                   register field.
2298  *
2299  * @field: Register field to write to
2300  * @mask: Bitmask to change
2301  * @val: Value to be written
2302  * @change: Boolean indicating if a write was done
2303  * @async: Boolean indicating asynchronously
2304  * @force: Boolean indicating use force update
2305  *
2306  * Perform a read/modify/write cycle on the register field with change,
2307  * async, force option.
2308  *
2309  * A value of zero will be returned on success, a negative errno will
2310  * be returned in error cases.
2311  */
2312 int regmap_field_update_bits_base(struct regmap_field *field,
2313                                   unsigned int mask, unsigned int val,
2314                                   bool *change, bool async, bool force)
2315 {
2316         mask = (mask << field->shift) & field->mask;
2317
2318         return regmap_update_bits_base(field->regmap, field->reg,
2319                                        mask, val << field->shift,
2320                                        change, async, force);
2321 }
2322 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2323
2324 /**
2325  * regmap_field_test_bits() - Check if all specified bits are set in a
2326  *                            register field.
2327  *
2328  * @field: Register field to operate on
2329  * @bits: Bits to test
2330  *
2331  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2332  * tested bits is not set and 1 if all tested bits are set.
2333  */
2334 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2335 {
2336         unsigned int val, ret;
2337
2338         ret = regmap_field_read(field, &val);
2339         if (ret)
2340                 return ret;
2341
2342         return (val & bits) == bits;
2343 }
2344 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2345
2346 /**
2347  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2348  *                                    register field with port ID
2349  *
2350  * @field: Register field to write to
2351  * @id: port ID
2352  * @mask: Bitmask to change
2353  * @val: Value to be written
2354  * @change: Boolean indicating if a write was done
2355  * @async: Boolean indicating asynchronously
2356  * @force: Boolean indicating use force update
2357  *
2358  * A value of zero will be returned on success, a negative errno will
2359  * be returned in error cases.
2360  */
2361 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2362                                    unsigned int mask, unsigned int val,
2363                                    bool *change, bool async, bool force)
2364 {
2365         if (id >= field->id_size)
2366                 return -EINVAL;
2367
2368         mask = (mask << field->shift) & field->mask;
2369
2370         return regmap_update_bits_base(field->regmap,
2371                                        field->reg + (field->id_offset * id),
2372                                        mask, val << field->shift,
2373                                        change, async, force);
2374 }
2375 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2376
2377 /**
2378  * regmap_bulk_write() - Write multiple registers to the device
2379  *
2380  * @map: Register map to write to
2381  * @reg: First register to be write from
2382  * @val: Block of data to be written, in native register size for device
2383  * @val_count: Number of registers to write
2384  *
2385  * This function is intended to be used for writing a large block of
2386  * data to the device either in single transfer or multiple transfer.
2387  *
2388  * A value of zero will be returned on success, a negative errno will
2389  * be returned in error cases.
2390  */
2391 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2392                      size_t val_count)
2393 {
2394         int ret = 0, i;
2395         size_t val_bytes = map->format.val_bytes;
2396
2397         if (!IS_ALIGNED(reg, map->reg_stride))
2398                 return -EINVAL;
2399
2400         /*
2401          * Some devices don't support bulk write, for them we have a series of
2402          * single write operations.
2403          */
2404         if (!map->write || !map->format.parse_inplace) {
2405                 map->lock(map->lock_arg);
2406                 for (i = 0; i < val_count; i++) {
2407                         unsigned int ival;
2408
2409                         switch (val_bytes) {
2410                         case 1:
2411                                 ival = *(u8 *)(val + (i * val_bytes));
2412                                 break;
2413                         case 2:
2414                                 ival = *(u16 *)(val + (i * val_bytes));
2415                                 break;
2416                         case 4:
2417                                 ival = *(u32 *)(val + (i * val_bytes));
2418                                 break;
2419 #ifdef CONFIG_64BIT
2420                         case 8:
2421                                 ival = *(u64 *)(val + (i * val_bytes));
2422                                 break;
2423 #endif
2424                         default:
2425                                 ret = -EINVAL;
2426                                 goto out;
2427                         }
2428
2429                         ret = _regmap_write(map,
2430                                             reg + regmap_get_offset(map, i),
2431                                             ival);
2432                         if (ret != 0)
2433                                 goto out;
2434                 }
2435 out:
2436                 map->unlock(map->lock_arg);
2437         } else {
2438                 void *wval;
2439
2440                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2441                 if (!wval)
2442                         return -ENOMEM;
2443
2444                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2445                         map->format.parse_inplace(wval + i);
2446
2447                 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2448
2449                 kfree(wval);
2450         }
2451
2452         if (!ret)
2453                 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2454
2455         return ret;
2456 }
2457 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2458
2459 /*
2460  * _regmap_raw_multi_reg_write()
2461  *
2462  * the (register,newvalue) pairs in regs have not been formatted, but
2463  * they are all in the same page and have been changed to being page
2464  * relative. The page register has been written if that was necessary.
2465  */
2466 static int _regmap_raw_multi_reg_write(struct regmap *map,
2467                                        const struct reg_sequence *regs,
2468                                        size_t num_regs)
2469 {
2470         int ret;
2471         void *buf;
2472         int i;
2473         u8 *u8;
2474         size_t val_bytes = map->format.val_bytes;
2475         size_t reg_bytes = map->format.reg_bytes;
2476         size_t pad_bytes = map->format.pad_bytes;
2477         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2478         size_t len = pair_size * num_regs;
2479
2480         if (!len)
2481                 return -EINVAL;
2482
2483         buf = kzalloc(len, GFP_KERNEL);
2484         if (!buf)
2485                 return -ENOMEM;
2486
2487         /* We have to linearise by hand. */
2488
2489         u8 = buf;
2490
2491         for (i = 0; i < num_regs; i++) {
2492                 unsigned int reg = regs[i].reg;
2493                 unsigned int val = regs[i].def;
2494                 trace_regmap_hw_write_start(map, reg, 1);
2495                 reg += map->reg_base;
2496                 reg >>= map->format.reg_downshift;
2497                 map->format.format_reg(u8, reg, map->reg_shift);
2498                 u8 += reg_bytes + pad_bytes;
2499                 map->format.format_val(u8, val, 0);
2500                 u8 += val_bytes;
2501         }
2502         u8 = buf;
2503         *u8 |= map->write_flag_mask;
2504
2505         ret = map->write(map->bus_context, buf, len);
2506
2507         kfree(buf);
2508
2509         for (i = 0; i < num_regs; i++) {
2510                 int reg = regs[i].reg;
2511                 trace_regmap_hw_write_done(map, reg, 1);
2512         }
2513         return ret;
2514 }
2515
2516 static unsigned int _regmap_register_page(struct regmap *map,
2517                                           unsigned int reg,
2518                                           struct regmap_range_node *range)
2519 {
2520         unsigned int win_page = (reg - range->range_min) / range->window_len;
2521
2522         return win_page;
2523 }
2524
2525 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2526                                                struct reg_sequence *regs,
2527                                                size_t num_regs)
2528 {
2529         int ret;
2530         int i, n;
2531         struct reg_sequence *base;
2532         unsigned int this_page = 0;
2533         unsigned int page_change = 0;
2534         /*
2535          * the set of registers are not neccessarily in order, but
2536          * since the order of write must be preserved this algorithm
2537          * chops the set each time the page changes. This also applies
2538          * if there is a delay required at any point in the sequence.
2539          */
2540         base = regs;
2541         for (i = 0, n = 0; i < num_regs; i++, n++) {
2542                 unsigned int reg = regs[i].reg;
2543                 struct regmap_range_node *range;
2544
2545                 range = _regmap_range_lookup(map, reg);
2546                 if (range) {
2547                         unsigned int win_page = _regmap_register_page(map, reg,
2548                                                                       range);
2549
2550                         if (i == 0)
2551                                 this_page = win_page;
2552                         if (win_page != this_page) {
2553                                 this_page = win_page;
2554                                 page_change = 1;
2555                         }
2556                 }
2557
2558                 /* If we have both a page change and a delay make sure to
2559                  * write the regs and apply the delay before we change the
2560                  * page.
2561                  */
2562
2563                 if (page_change || regs[i].delay_us) {
2564
2565                                 /* For situations where the first write requires
2566                                  * a delay we need to make sure we don't call
2567                                  * raw_multi_reg_write with n=0
2568                                  * This can't occur with page breaks as we
2569                                  * never write on the first iteration
2570                                  */
2571                                 if (regs[i].delay_us && i == 0)
2572                                         n = 1;
2573
2574                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2575                                 if (ret != 0)
2576                                         return ret;
2577
2578                                 if (regs[i].delay_us) {
2579                                         if (map->can_sleep)
2580                                                 fsleep(regs[i].delay_us);
2581                                         else
2582                                                 udelay(regs[i].delay_us);
2583                                 }
2584
2585                                 base += n;
2586                                 n = 0;
2587
2588                                 if (page_change) {
2589                                         ret = _regmap_select_page(map,
2590                                                                   &base[n].reg,
2591                                                                   range, 1);
2592                                         if (ret != 0)
2593                                                 return ret;
2594
2595                                         page_change = 0;
2596                                 }
2597
2598                 }
2599
2600         }
2601         if (n > 0)
2602                 return _regmap_raw_multi_reg_write(map, base, n);
2603         return 0;
2604 }
2605
2606 static int _regmap_multi_reg_write(struct regmap *map,
2607                                    const struct reg_sequence *regs,
2608                                    size_t num_regs)
2609 {
2610         int i;
2611         int ret;
2612
2613         if (!map->can_multi_write) {
2614                 for (i = 0; i < num_regs; i++) {
2615                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2616                         if (ret != 0)
2617                                 return ret;
2618
2619                         if (regs[i].delay_us) {
2620                                 if (map->can_sleep)
2621                                         fsleep(regs[i].delay_us);
2622                                 else
2623                                         udelay(regs[i].delay_us);
2624                         }
2625                 }
2626                 return 0;
2627         }
2628
2629         if (!map->format.parse_inplace)
2630                 return -EINVAL;
2631
2632         if (map->writeable_reg)
2633                 for (i = 0; i < num_regs; i++) {
2634                         int reg = regs[i].reg;
2635                         if (!map->writeable_reg(map->dev, reg))
2636                                 return -EINVAL;
2637                         if (!IS_ALIGNED(reg, map->reg_stride))
2638                                 return -EINVAL;
2639                 }
2640
2641         if (!map->cache_bypass) {
2642                 for (i = 0; i < num_regs; i++) {
2643                         unsigned int val = regs[i].def;
2644                         unsigned int reg = regs[i].reg;
2645                         ret = regcache_write(map, reg, val);
2646                         if (ret) {
2647                                 dev_err(map->dev,
2648                                 "Error in caching of register: %x ret: %d\n",
2649                                                                 reg, ret);
2650                                 return ret;
2651                         }
2652                 }
2653                 if (map->cache_only) {
2654                         map->cache_dirty = true;
2655                         return 0;
2656                 }
2657         }
2658
2659         WARN_ON(!map->bus);
2660
2661         for (i = 0; i < num_regs; i++) {
2662                 unsigned int reg = regs[i].reg;
2663                 struct regmap_range_node *range;
2664
2665                 /* Coalesce all the writes between a page break or a delay
2666                  * in a sequence
2667                  */
2668                 range = _regmap_range_lookup(map, reg);
2669                 if (range || regs[i].delay_us) {
2670                         size_t len = sizeof(struct reg_sequence)*num_regs;
2671                         struct reg_sequence *base = kmemdup(regs, len,
2672                                                            GFP_KERNEL);
2673                         if (!base)
2674                                 return -ENOMEM;
2675                         ret = _regmap_range_multi_paged_reg_write(map, base,
2676                                                                   num_regs);
2677                         kfree(base);
2678
2679                         return ret;
2680                 }
2681         }
2682         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2683 }
2684
2685 /**
2686  * regmap_multi_reg_write() - Write multiple registers to the device
2687  *
2688  * @map: Register map to write to
2689  * @regs: Array of structures containing register,value to be written
2690  * @num_regs: Number of registers to write
2691  *
2692  * Write multiple registers to the device where the set of register, value
2693  * pairs are supplied in any order, possibly not all in a single range.
2694  *
2695  * The 'normal' block write mode will send ultimately send data on the
2696  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2697  * addressed. However, this alternative block multi write mode will send
2698  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2699  * must of course support the mode.
2700  *
2701  * A value of zero will be returned on success, a negative errno will be
2702  * returned in error cases.
2703  */
2704 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2705                            int num_regs)
2706 {
2707         int ret;
2708
2709         map->lock(map->lock_arg);
2710
2711         ret = _regmap_multi_reg_write(map, regs, num_regs);
2712
2713         map->unlock(map->lock_arg);
2714
2715         return ret;
2716 }
2717 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2718
2719 /**
2720  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2721  *                                     device but not the cache
2722  *
2723  * @map: Register map to write to
2724  * @regs: Array of structures containing register,value to be written
2725  * @num_regs: Number of registers to write
2726  *
2727  * Write multiple registers to the device but not the cache where the set
2728  * of register are supplied in any order.
2729  *
2730  * This function is intended to be used for writing a large block of data
2731  * atomically to the device in single transfer for those I2C client devices
2732  * that implement this alternative block write mode.
2733  *
2734  * A value of zero will be returned on success, a negative errno will
2735  * be returned in error cases.
2736  */
2737 int regmap_multi_reg_write_bypassed(struct regmap *map,
2738                                     const struct reg_sequence *regs,
2739                                     int num_regs)
2740 {
2741         int ret;
2742         bool bypass;
2743
2744         map->lock(map->lock_arg);
2745
2746         bypass = map->cache_bypass;
2747         map->cache_bypass = true;
2748
2749         ret = _regmap_multi_reg_write(map, regs, num_regs);
2750
2751         map->cache_bypass = bypass;
2752
2753         map->unlock(map->lock_arg);
2754
2755         return ret;
2756 }
2757 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2758
2759 /**
2760  * regmap_raw_write_async() - Write raw values to one or more registers
2761  *                            asynchronously
2762  *
2763  * @map: Register map to write to
2764  * @reg: Initial register to write to
2765  * @val: Block of data to be written, laid out for direct transmission to the
2766  *       device.  Must be valid until regmap_async_complete() is called.
2767  * @val_len: Length of data pointed to by val.
2768  *
2769  * This function is intended to be used for things like firmware
2770  * download where a large block of data needs to be transferred to the
2771  * device.  No formatting will be done on the data provided.
2772  *
2773  * If supported by the underlying bus the write will be scheduled
2774  * asynchronously, helping maximise I/O speed on higher speed buses
2775  * like SPI.  regmap_async_complete() can be called to ensure that all
2776  * asynchrnous writes have been completed.
2777  *
2778  * A value of zero will be returned on success, a negative errno will
2779  * be returned in error cases.
2780  */
2781 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2782                            const void *val, size_t val_len)
2783 {
2784         int ret;
2785
2786         if (val_len % map->format.val_bytes)
2787                 return -EINVAL;
2788         if (!IS_ALIGNED(reg, map->reg_stride))
2789                 return -EINVAL;
2790
2791         map->lock(map->lock_arg);
2792
2793         map->async = true;
2794
2795         ret = _regmap_raw_write(map, reg, val, val_len, false);
2796
2797         map->async = false;
2798
2799         map->unlock(map->lock_arg);
2800
2801         return ret;
2802 }
2803 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2804
2805 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2806                             unsigned int val_len, bool noinc)
2807 {
2808         struct regmap_range_node *range;
2809         int ret;
2810
2811         if (!map->read)
2812                 return -EINVAL;
2813
2814         range = _regmap_range_lookup(map, reg);
2815         if (range) {
2816                 ret = _regmap_select_page(map, &reg, range,
2817                                           noinc ? 1 : val_len / map->format.val_bytes);
2818                 if (ret != 0)
2819                         return ret;
2820         }
2821
2822         reg += map->reg_base;
2823         reg >>= map->format.reg_downshift;
2824         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2825         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2826                                       map->read_flag_mask);
2827         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2828
2829         ret = map->read(map->bus_context, map->work_buf,
2830                         map->format.reg_bytes + map->format.pad_bytes,
2831                         val, val_len);
2832
2833         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2834
2835         return ret;
2836 }
2837
2838 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2839                                 unsigned int *val)
2840 {
2841         struct regmap *map = context;
2842
2843         return map->bus->reg_read(map->bus_context, reg, val);
2844 }
2845
2846 static int _regmap_bus_read(void *context, unsigned int reg,
2847                             unsigned int *val)
2848 {
2849         int ret;
2850         struct regmap *map = context;
2851         void *work_val = map->work_buf + map->format.reg_bytes +
2852                 map->format.pad_bytes;
2853
2854         if (!map->format.parse_val)
2855                 return -EINVAL;
2856
2857         ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2858         if (ret == 0)
2859                 *val = map->format.parse_val(work_val);
2860
2861         return ret;
2862 }
2863
2864 static int _regmap_read(struct regmap *map, unsigned int reg,
2865                         unsigned int *val)
2866 {
2867         int ret;
2868         void *context = _regmap_map_get_context(map);
2869
2870         if (!map->cache_bypass) {
2871                 ret = regcache_read(map, reg, val);
2872                 if (ret == 0)
2873                         return 0;
2874         }
2875
2876         if (map->cache_only)
2877                 return -EBUSY;
2878
2879         if (!regmap_readable(map, reg))
2880                 return -EIO;
2881
2882         ret = map->reg_read(context, reg, val);
2883         if (ret == 0) {
2884                 if (regmap_should_log(map))
2885                         dev_info(map->dev, "%x => %x\n", reg, *val);
2886
2887                 trace_regmap_reg_read(map, reg, *val);
2888
2889                 if (!map->cache_bypass)
2890                         regcache_write(map, reg, *val);
2891         }
2892
2893         return ret;
2894 }
2895
2896 /**
2897  * regmap_read() - Read a value from a single register
2898  *
2899  * @map: Register map to read from
2900  * @reg: Register to be read from
2901  * @val: Pointer to store read value
2902  *
2903  * A value of zero will be returned on success, a negative errno will
2904  * be returned in error cases.
2905  */
2906 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2907 {
2908         int ret;
2909
2910         if (!IS_ALIGNED(reg, map->reg_stride))
2911                 return -EINVAL;
2912
2913         map->lock(map->lock_arg);
2914
2915         ret = _regmap_read(map, reg, val);
2916
2917         map->unlock(map->lock_arg);
2918
2919         return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(regmap_read);
2922
2923 /**
2924  * regmap_raw_read() - Read raw data from the device
2925  *
2926  * @map: Register map to read from
2927  * @reg: First register to be read from
2928  * @val: Pointer to store read value
2929  * @val_len: Size of data to read
2930  *
2931  * A value of zero will be returned on success, a negative errno will
2932  * be returned in error cases.
2933  */
2934 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2935                     size_t val_len)
2936 {
2937         size_t val_bytes = map->format.val_bytes;
2938         size_t val_count = val_len / val_bytes;
2939         unsigned int v;
2940         int ret, i;
2941
2942         if (val_len % map->format.val_bytes)
2943                 return -EINVAL;
2944         if (!IS_ALIGNED(reg, map->reg_stride))
2945                 return -EINVAL;
2946         if (val_count == 0)
2947                 return -EINVAL;
2948
2949         map->lock(map->lock_arg);
2950
2951         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2952             map->cache_type == REGCACHE_NONE) {
2953                 size_t chunk_count, chunk_bytes;
2954                 size_t chunk_regs = val_count;
2955
2956                 if (!map->read) {
2957                         ret = -ENOTSUPP;
2958                         goto out;
2959                 }
2960
2961                 if (map->use_single_read)
2962                         chunk_regs = 1;
2963                 else if (map->max_raw_read && val_len > map->max_raw_read)
2964                         chunk_regs = map->max_raw_read / val_bytes;
2965
2966                 chunk_count = val_count / chunk_regs;
2967                 chunk_bytes = chunk_regs * val_bytes;
2968
2969                 /* Read bytes that fit into whole chunks */
2970                 for (i = 0; i < chunk_count; i++) {
2971                         ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2972                         if (ret != 0)
2973                                 goto out;
2974
2975                         reg += regmap_get_offset(map, chunk_regs);
2976                         val += chunk_bytes;
2977                         val_len -= chunk_bytes;
2978                 }
2979
2980                 /* Read remaining bytes */
2981                 if (val_len) {
2982                         ret = _regmap_raw_read(map, reg, val, val_len, false);
2983                         if (ret != 0)
2984                                 goto out;
2985                 }
2986         } else {
2987                 /* Otherwise go word by word for the cache; should be low
2988                  * cost as we expect to hit the cache.
2989                  */
2990                 for (i = 0; i < val_count; i++) {
2991                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2992                                            &v);
2993                         if (ret != 0)
2994                                 goto out;
2995
2996                         map->format.format_val(val + (i * val_bytes), v, 0);
2997                 }
2998         }
2999
3000  out:
3001         map->unlock(map->lock_arg);
3002
3003         return ret;
3004 }
3005 EXPORT_SYMBOL_GPL(regmap_raw_read);
3006
3007 /**
3008  * regmap_noinc_read(): Read data from a register without incrementing the
3009  *                      register number
3010  *
3011  * @map: Register map to read from
3012  * @reg: Register to read from
3013  * @val: Pointer to data buffer
3014  * @val_len: Length of output buffer in bytes.
3015  *
3016  * The regmap API usually assumes that bulk read operations will read a
3017  * range of registers. Some devices have certain registers for which a read
3018  * operation read will read from an internal FIFO.
3019  *
3020  * The target register must be volatile but registers after it can be
3021  * completely unrelated cacheable registers.
3022  *
3023  * This will attempt multiple reads as required to read val_len bytes.
3024  *
3025  * A value of zero will be returned on success, a negative errno will be
3026  * returned in error cases.
3027  */
3028 int regmap_noinc_read(struct regmap *map, unsigned int reg,
3029                       void *val, size_t val_len)
3030 {
3031         size_t read_len;
3032         int ret;
3033
3034         if (!map->read)
3035                 return -ENOTSUPP;
3036
3037         if (val_len % map->format.val_bytes)
3038                 return -EINVAL;
3039         if (!IS_ALIGNED(reg, map->reg_stride))
3040                 return -EINVAL;
3041         if (val_len == 0)
3042                 return -EINVAL;
3043
3044         map->lock(map->lock_arg);
3045
3046         if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3047                 ret = -EINVAL;
3048                 goto out_unlock;
3049         }
3050
3051         /* Use the accelerated operation if we can */
3052         if (map->bus->reg_noinc_read) {
3053                 /*
3054                  * We have not defined the FIFO semantics for cache, as the
3055                  * cache is just one value deep. Should we return the last
3056                  * written value? Just avoid this by always reading the FIFO
3057                  * even when using cache. Cache only will not work.
3058                  */
3059                 if (map->cache_only) {
3060                         ret = -EBUSY;
3061                         goto out_unlock;
3062                 }
3063                 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3064                 goto out_unlock;
3065         }
3066
3067         while (val_len) {
3068                 if (map->max_raw_read && map->max_raw_read < val_len)
3069                         read_len = map->max_raw_read;
3070                 else
3071                         read_len = val_len;
3072                 ret = _regmap_raw_read(map, reg, val, read_len, true);
3073                 if (ret)
3074                         goto out_unlock;
3075                 val = ((u8 *)val) + read_len;
3076                 val_len -= read_len;
3077         }
3078
3079 out_unlock:
3080         map->unlock(map->lock_arg);
3081         return ret;
3082 }
3083 EXPORT_SYMBOL_GPL(regmap_noinc_read);
3084
3085 /**
3086  * regmap_field_read(): Read a value to a single register field
3087  *
3088  * @field: Register field to read from
3089  * @val: Pointer to store read value
3090  *
3091  * A value of zero will be returned on success, a negative errno will
3092  * be returned in error cases.
3093  */
3094 int regmap_field_read(struct regmap_field *field, unsigned int *val)
3095 {
3096         int ret;
3097         unsigned int reg_val;
3098         ret = regmap_read(field->regmap, field->reg, &reg_val);
3099         if (ret != 0)
3100                 return ret;
3101
3102         reg_val &= field->mask;
3103         reg_val >>= field->shift;
3104         *val = reg_val;
3105
3106         return ret;
3107 }
3108 EXPORT_SYMBOL_GPL(regmap_field_read);
3109
3110 /**
3111  * regmap_fields_read() - Read a value to a single register field with port ID
3112  *
3113  * @field: Register field to read from
3114  * @id: port ID
3115  * @val: Pointer to store read value
3116  *
3117  * A value of zero will be returned on success, a negative errno will
3118  * be returned in error cases.
3119  */
3120 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3121                        unsigned int *val)
3122 {
3123         int ret;
3124         unsigned int reg_val;
3125
3126         if (id >= field->id_size)
3127                 return -EINVAL;
3128
3129         ret = regmap_read(field->regmap,
3130                           field->reg + (field->id_offset * id),
3131                           &reg_val);
3132         if (ret != 0)
3133                 return ret;
3134
3135         reg_val &= field->mask;
3136         reg_val >>= field->shift;
3137         *val = reg_val;
3138
3139         return ret;
3140 }
3141 EXPORT_SYMBOL_GPL(regmap_fields_read);
3142
3143 /**
3144  * regmap_bulk_read() - Read multiple registers from the device
3145  *
3146  * @map: Register map to read from
3147  * @reg: First register to be read from
3148  * @val: Pointer to store read value, in native register size for device
3149  * @val_count: Number of registers to read
3150  *
3151  * A value of zero will be returned on success, a negative errno will
3152  * be returned in error cases.
3153  */
3154 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3155                      size_t val_count)
3156 {
3157         int ret, i;
3158         size_t val_bytes = map->format.val_bytes;
3159         bool vol = regmap_volatile_range(map, reg, val_count);
3160
3161         if (!IS_ALIGNED(reg, map->reg_stride))
3162                 return -EINVAL;
3163         if (val_count == 0)
3164                 return -EINVAL;
3165
3166         if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3167                 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3168                 if (ret != 0)
3169                         return ret;
3170
3171                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3172                         map->format.parse_inplace(val + i);
3173         } else {
3174 #ifdef CONFIG_64BIT
3175                 u64 *u64 = val;
3176 #endif
3177                 u32 *u32 = val;
3178                 u16 *u16 = val;
3179                 u8 *u8 = val;
3180
3181                 map->lock(map->lock_arg);
3182
3183                 for (i = 0; i < val_count; i++) {
3184                         unsigned int ival;
3185
3186                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3187                                            &ival);
3188                         if (ret != 0)
3189                                 goto out;
3190
3191                         switch (map->format.val_bytes) {
3192 #ifdef CONFIG_64BIT
3193                         case 8:
3194                                 u64[i] = ival;
3195                                 break;
3196 #endif
3197                         case 4:
3198                                 u32[i] = ival;
3199                                 break;
3200                         case 2:
3201                                 u16[i] = ival;
3202                                 break;
3203                         case 1:
3204                                 u8[i] = ival;
3205                                 break;
3206                         default:
3207                                 ret = -EINVAL;
3208                                 goto out;
3209                         }
3210                 }
3211
3212 out:
3213                 map->unlock(map->lock_arg);
3214         }
3215
3216         if (!ret)
3217                 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3218
3219         return ret;
3220 }
3221 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3222
3223 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224                                unsigned int mask, unsigned int val,
3225                                bool *change, bool force_write)
3226 {
3227         int ret;
3228         unsigned int tmp, orig;
3229
3230         if (change)
3231                 *change = false;
3232
3233         if (regmap_volatile(map, reg) && map->reg_update_bits) {
3234                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3235                 if (ret == 0 && change)
3236                         *change = true;
3237         } else {
3238                 ret = _regmap_read(map, reg, &orig);
3239                 if (ret != 0)
3240                         return ret;
3241
3242                 tmp = orig & ~mask;
3243                 tmp |= val & mask;
3244
3245                 if (force_write || (tmp != orig)) {
3246                         ret = _regmap_write(map, reg, tmp);
3247                         if (ret == 0 && change)
3248                                 *change = true;
3249                 }
3250         }
3251
3252         return ret;
3253 }
3254
3255 /**
3256  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3257  *
3258  * @map: Register map to update
3259  * @reg: Register to update
3260  * @mask: Bitmask to change
3261  * @val: New value for bitmask
3262  * @change: Boolean indicating if a write was done
3263  * @async: Boolean indicating asynchronously
3264  * @force: Boolean indicating use force update
3265  *
3266  * Perform a read/modify/write cycle on a register map with change, async, force
3267  * options.
3268  *
3269  * If async is true:
3270  *
3271  * With most buses the read must be done synchronously so this is most useful
3272  * for devices with a cache which do not need to interact with the hardware to
3273  * determine the current register value.
3274  *
3275  * Returns zero for success, a negative number on error.
3276  */
3277 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3278                             unsigned int mask, unsigned int val,
3279                             bool *change, bool async, bool force)
3280 {
3281         int ret;
3282
3283         map->lock(map->lock_arg);
3284
3285         map->async = async;
3286
3287         ret = _regmap_update_bits(map, reg, mask, val, change, force);
3288
3289         map->async = false;
3290
3291         map->unlock(map->lock_arg);
3292
3293         return ret;
3294 }
3295 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3296
3297 /**
3298  * regmap_test_bits() - Check if all specified bits are set in a register.
3299  *
3300  * @map: Register map to operate on
3301  * @reg: Register to read from
3302  * @bits: Bits to test
3303  *
3304  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3305  * bits are set and a negative error number if the underlying regmap_read()
3306  * fails.
3307  */
3308 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3309 {
3310         unsigned int val, ret;
3311
3312         ret = regmap_read(map, reg, &val);
3313         if (ret)
3314                 return ret;
3315
3316         return (val & bits) == bits;
3317 }
3318 EXPORT_SYMBOL_GPL(regmap_test_bits);
3319
3320 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3321 {
3322         struct regmap *map = async->map;
3323         bool wake;
3324
3325         trace_regmap_async_io_complete(map);
3326
3327         spin_lock(&map->async_lock);
3328         list_move(&async->list, &map->async_free);
3329         wake = list_empty(&map->async_list);
3330
3331         if (ret != 0)
3332                 map->async_ret = ret;
3333
3334         spin_unlock(&map->async_lock);
3335
3336         if (wake)
3337                 wake_up(&map->async_waitq);
3338 }
3339 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3340
3341 static int regmap_async_is_done(struct regmap *map)
3342 {
3343         unsigned long flags;
3344         int ret;
3345
3346         spin_lock_irqsave(&map->async_lock, flags);
3347         ret = list_empty(&map->async_list);
3348         spin_unlock_irqrestore(&map->async_lock, flags);
3349
3350         return ret;
3351 }
3352
3353 /**
3354  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3355  *
3356  * @map: Map to operate on.
3357  *
3358  * Blocks until any pending asynchronous I/O has completed.  Returns
3359  * an error code for any failed I/O operations.
3360  */
3361 int regmap_async_complete(struct regmap *map)
3362 {
3363         unsigned long flags;
3364         int ret;
3365
3366         /* Nothing to do with no async support */
3367         if (!map->bus || !map->bus->async_write)
3368                 return 0;
3369
3370         trace_regmap_async_complete_start(map);
3371
3372         wait_event(map->async_waitq, regmap_async_is_done(map));
3373
3374         spin_lock_irqsave(&map->async_lock, flags);
3375         ret = map->async_ret;
3376         map->async_ret = 0;
3377         spin_unlock_irqrestore(&map->async_lock, flags);
3378
3379         trace_regmap_async_complete_done(map);
3380
3381         return ret;
3382 }
3383 EXPORT_SYMBOL_GPL(regmap_async_complete);
3384
3385 /**
3386  * regmap_register_patch - Register and apply register updates to be applied
3387  *                         on device initialistion
3388  *
3389  * @map: Register map to apply updates to.
3390  * @regs: Values to update.
3391  * @num_regs: Number of entries in regs.
3392  *
3393  * Register a set of register updates to be applied to the device
3394  * whenever the device registers are synchronised with the cache and
3395  * apply them immediately.  Typically this is used to apply
3396  * corrections to be applied to the device defaults on startup, such
3397  * as the updates some vendors provide to undocumented registers.
3398  *
3399  * The caller must ensure that this function cannot be called
3400  * concurrently with either itself or regcache_sync().
3401  */
3402 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3403                           int num_regs)
3404 {
3405         struct reg_sequence *p;
3406         int ret;
3407         bool bypass;
3408
3409         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3410             num_regs))
3411                 return 0;
3412
3413         p = krealloc(map->patch,
3414                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3415                      GFP_KERNEL);
3416         if (p) {
3417                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3418                 map->patch = p;
3419                 map->patch_regs += num_regs;
3420         } else {
3421                 return -ENOMEM;
3422         }
3423
3424         map->lock(map->lock_arg);
3425
3426         bypass = map->cache_bypass;
3427
3428         map->cache_bypass = true;
3429         map->async = true;
3430
3431         ret = _regmap_multi_reg_write(map, regs, num_regs);
3432
3433         map->async = false;
3434         map->cache_bypass = bypass;
3435
3436         map->unlock(map->lock_arg);
3437
3438         regmap_async_complete(map);
3439
3440         return ret;
3441 }
3442 EXPORT_SYMBOL_GPL(regmap_register_patch);
3443
3444 /**
3445  * regmap_get_val_bytes() - Report the size of a register value
3446  *
3447  * @map: Register map to operate on.
3448  *
3449  * Report the size of a register value, mainly intended to for use by
3450  * generic infrastructure built on top of regmap.
3451  */
3452 int regmap_get_val_bytes(struct regmap *map)
3453 {
3454         if (map->format.format_write)
3455                 return -EINVAL;
3456
3457         return map->format.val_bytes;
3458 }
3459 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3460
3461 /**
3462  * regmap_get_max_register() - Report the max register value
3463  *
3464  * @map: Register map to operate on.
3465  *
3466  * Report the max register value, mainly intended to for use by
3467  * generic infrastructure built on top of regmap.
3468  */
3469 int regmap_get_max_register(struct regmap *map)
3470 {
3471         return map->max_register ? map->max_register : -EINVAL;
3472 }
3473 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3474
3475 /**
3476  * regmap_get_reg_stride() - Report the register address stride
3477  *
3478  * @map: Register map to operate on.
3479  *
3480  * Report the register address stride, mainly intended to for use by
3481  * generic infrastructure built on top of regmap.
3482  */
3483 int regmap_get_reg_stride(struct regmap *map)
3484 {
3485         return map->reg_stride;
3486 }
3487 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3488
3489 int regmap_parse_val(struct regmap *map, const void *buf,
3490                         unsigned int *val)
3491 {
3492         if (!map->format.parse_val)
3493                 return -EINVAL;
3494
3495         *val = map->format.parse_val(buf);
3496
3497         return 0;
3498 }
3499 EXPORT_SYMBOL_GPL(regmap_parse_val);
3500
3501 static int __init regmap_initcall(void)
3502 {
3503         regmap_debugfs_initcall();
3504
3505         return 0;
3506 }
3507 postcore_initcall(regmap_initcall);
This page took 0.231164 seconds and 4 git commands to generate.