1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
50 * FIXME: remove all knowledge of the buffer layer from the core VM
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
57 * Shared mappings implemented 30.11.1994. It's not fully working yet,
60 * Shared mappings now work. 15.8.1995 Bruno.
62 * finished 'unifying' the page and buffer cache and SMP-threaded the
71 * ->i_mmap_rwsem (truncate_pagecache)
72 * ->private_lock (__free_pte->__set_page_dirty_buffers)
73 * ->swap_lock (exclusive_swap_page, others)
77 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
81 * ->page_table_lock or pte_lock (various, mainly in memory.c)
82 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
85 * ->lock_page (access_process_vm)
87 * ->i_mutex (generic_perform_write)
88 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
91 * sb_lock (fs/fs-writeback.c)
92 * ->i_pages lock (__sync_single_inode)
95 * ->anon_vma.lock (vma_adjust)
98 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
100 * ->page_table_lock or pte_lock
101 * ->swap_lock (try_to_unmap_one)
102 * ->private_lock (try_to_unmap_one)
103 * ->i_pages lock (try_to_unmap_one)
104 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
105 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
106 * ->private_lock (page_remove_rmap->set_page_dirty)
107 * ->i_pages lock (page_remove_rmap->set_page_dirty)
108 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
109 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
110 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
111 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
112 * ->inode->i_lock (zap_pte_range->set_page_dirty)
113 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
116 * ->tasklist_lock (memory_failure, collect_procs_ao)
119 static void page_cache_delete(struct address_space *mapping,
120 struct page *page, void *shadow)
122 XA_STATE(xas, &mapping->i_pages, page->index);
125 mapping_set_update(&xas, mapping);
127 /* hugetlb pages are represented by a single entry in the xarray */
128 if (!PageHuge(page)) {
129 xas_set_order(&xas, page->index, compound_order(page));
130 nr = compound_nr(page);
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE(PageTail(page), page);
135 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
137 xas_store(&xas, shadow);
138 xas_init_marks(&xas);
140 page->mapping = NULL;
141 /* Leave page->index set: truncation lookup relies upon it */
144 mapping->nrexceptional += nr;
146 * Make sure the nrexceptional update is committed before
147 * the nrpages update so that final truncate racing
148 * with reclaim does not see both counters 0 at the
149 * same time and miss a shadow entry.
153 mapping->nrpages -= nr;
156 static void unaccount_page_cache_page(struct address_space *mapping,
162 * if we're uptodate, flush out into the cleancache, otherwise
163 * invalidate any existing cleancache entries. We can't leave
164 * stale data around in the cleancache once our page is gone
166 if (PageUptodate(page) && PageMappedToDisk(page))
167 cleancache_put_page(page);
169 cleancache_invalidate_page(mapping, page);
171 VM_BUG_ON_PAGE(PageTail(page), page);
172 VM_BUG_ON_PAGE(page_mapped(page), page);
173 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
176 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
177 current->comm, page_to_pfn(page));
178 dump_page(page, "still mapped when deleted");
180 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
182 mapcount = page_mapcount(page);
183 if (mapping_exiting(mapping) &&
184 page_count(page) >= mapcount + 2) {
186 * All vmas have already been torn down, so it's
187 * a good bet that actually the page is unmapped,
188 * and we'd prefer not to leak it: if we're wrong,
189 * some other bad page check should catch it later.
191 page_mapcount_reset(page);
192 page_ref_sub(page, mapcount);
196 /* hugetlb pages do not participate in page cache accounting. */
200 nr = hpage_nr_pages(page);
202 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
203 if (PageSwapBacked(page)) {
204 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
205 if (PageTransHuge(page))
206 __dec_node_page_state(page, NR_SHMEM_THPS);
207 } else if (PageTransHuge(page)) {
208 __dec_node_page_state(page, NR_FILE_THPS);
209 filemap_nr_thps_dec(mapping);
213 * At this point page must be either written or cleaned by
214 * truncate. Dirty page here signals a bug and loss of
217 * This fixes dirty accounting after removing the page entirely
218 * but leaves PageDirty set: it has no effect for truncated
219 * page and anyway will be cleared before returning page into
222 if (WARN_ON_ONCE(PageDirty(page)))
223 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
227 * Delete a page from the page cache and free it. Caller has to make
228 * sure the page is locked and that nobody else uses it - or that usage
229 * is safe. The caller must hold the i_pages lock.
231 void __delete_from_page_cache(struct page *page, void *shadow)
233 struct address_space *mapping = page->mapping;
235 trace_mm_filemap_delete_from_page_cache(page);
237 unaccount_page_cache_page(mapping, page);
238 page_cache_delete(mapping, page, shadow);
241 static void page_cache_free_page(struct address_space *mapping,
244 void (*freepage)(struct page *);
246 freepage = mapping->a_ops->freepage;
250 if (PageTransHuge(page) && !PageHuge(page)) {
251 page_ref_sub(page, HPAGE_PMD_NR);
252 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
259 * delete_from_page_cache - delete page from page cache
260 * @page: the page which the kernel is trying to remove from page cache
262 * This must be called only on pages that have been verified to be in the page
263 * cache and locked. It will never put the page into the free list, the caller
264 * has a reference on the page.
266 void delete_from_page_cache(struct page *page)
268 struct address_space *mapping = page_mapping(page);
271 BUG_ON(!PageLocked(page));
272 xa_lock_irqsave(&mapping->i_pages, flags);
273 __delete_from_page_cache(page, NULL);
274 xa_unlock_irqrestore(&mapping->i_pages, flags);
276 page_cache_free_page(mapping, page);
278 EXPORT_SYMBOL(delete_from_page_cache);
281 * page_cache_delete_batch - delete several pages from page cache
282 * @mapping: the mapping to which pages belong
283 * @pvec: pagevec with pages to delete
285 * The function walks over mapping->i_pages and removes pages passed in @pvec
286 * from the mapping. The function expects @pvec to be sorted by page index
287 * and is optimised for it to be dense.
288 * It tolerates holes in @pvec (mapping entries at those indices are not
289 * modified). The function expects only THP head pages to be present in the
292 * The function expects the i_pages lock to be held.
294 static void page_cache_delete_batch(struct address_space *mapping,
295 struct pagevec *pvec)
297 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
302 mapping_set_update(&xas, mapping);
303 xas_for_each(&xas, page, ULONG_MAX) {
304 if (i >= pagevec_count(pvec))
307 /* A swap/dax/shadow entry got inserted? Skip it. */
308 if (xa_is_value(page))
311 * A page got inserted in our range? Skip it. We have our
312 * pages locked so they are protected from being removed.
313 * If we see a page whose index is higher than ours, it
314 * means our page has been removed, which shouldn't be
315 * possible because we're holding the PageLock.
317 if (page != pvec->pages[i]) {
318 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
323 WARN_ON_ONCE(!PageLocked(page));
325 if (page->index == xas.xa_index)
326 page->mapping = NULL;
327 /* Leave page->index set: truncation lookup relies on it */
330 * Move to the next page in the vector if this is a regular
331 * page or the index is of the last sub-page of this compound
334 if (page->index + compound_nr(page) - 1 == xas.xa_index)
336 xas_store(&xas, NULL);
339 mapping->nrpages -= total_pages;
342 void delete_from_page_cache_batch(struct address_space *mapping,
343 struct pagevec *pvec)
348 if (!pagevec_count(pvec))
351 xa_lock_irqsave(&mapping->i_pages, flags);
352 for (i = 0; i < pagevec_count(pvec); i++) {
353 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
355 unaccount_page_cache_page(mapping, pvec->pages[i]);
357 page_cache_delete_batch(mapping, pvec);
358 xa_unlock_irqrestore(&mapping->i_pages, flags);
360 for (i = 0; i < pagevec_count(pvec); i++)
361 page_cache_free_page(mapping, pvec->pages[i]);
364 int filemap_check_errors(struct address_space *mapping)
367 /* Check for outstanding write errors */
368 if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
371 if (test_bit(AS_EIO, &mapping->flags) &&
372 test_and_clear_bit(AS_EIO, &mapping->flags))
376 EXPORT_SYMBOL(filemap_check_errors);
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
380 /* Check for outstanding write errors */
381 if (test_bit(AS_EIO, &mapping->flags))
383 if (test_bit(AS_ENOSPC, &mapping->flags))
389 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390 * @mapping: address space structure to write
391 * @start: offset in bytes where the range starts
392 * @end: offset in bytes where the range ends (inclusive)
393 * @sync_mode: enable synchronous operation
395 * Start writeback against all of a mapping's dirty pages that lie
396 * within the byte offsets <start, end> inclusive.
398 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399 * opposed to a regular memory cleansing writeback. The difference between
400 * these two operations is that if a dirty page/buffer is encountered, it must
401 * be waited upon, and not just skipped over.
403 * Return: %0 on success, negative error code otherwise.
405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 loff_t end, int sync_mode)
409 struct writeback_control wbc = {
410 .sync_mode = sync_mode,
411 .nr_to_write = LONG_MAX,
412 .range_start = start,
416 if (!mapping_cap_writeback_dirty(mapping) ||
417 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
420 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421 ret = do_writepages(mapping, &wbc);
422 wbc_detach_inode(&wbc);
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
432 int filemap_fdatawrite(struct address_space *mapping)
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
436 EXPORT_SYMBOL(filemap_fdatawrite);
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
452 * Return: %0 on success, negative error code otherwise.
454 int filemap_flush(struct address_space *mapping)
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
458 EXPORT_SYMBOL(filemap_flush);
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
469 * Return: %true if at least one page exists in the specified range,
472 bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
479 if (end_byte < start_byte)
484 page = xas_find(&xas, max);
485 if (xas_retry(&xas, page))
487 /* Shadow entries don't count */
488 if (xa_is_value(page))
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
501 EXPORT_SYMBOL(filemap_range_has_page);
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 loff_t start_byte, loff_t end_byte)
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
511 if (end_byte < start_byte)
515 while (index <= end) {
518 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519 end, PAGECACHE_TAG_WRITEBACK);
523 for (i = 0; i < nr_pages; i++) {
524 struct page *page = pvec.pages[i];
526 wait_on_page_writeback(page);
527 ClearPageError(page);
529 pagevec_release(&pvec);
535 * filemap_fdatawait_range - wait for writeback to complete
536 * @mapping: address space structure to wait for
537 * @start_byte: offset in bytes where the range starts
538 * @end_byte: offset in bytes where the range ends (inclusive)
540 * Walk the list of under-writeback pages of the given address space
541 * in the given range and wait for all of them. Check error status of
542 * the address space and return it.
544 * Since the error status of the address space is cleared by this function,
545 * callers are responsible for checking the return value and handling and/or
546 * reporting the error.
548 * Return: error status of the address space.
550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
553 __filemap_fdatawait_range(mapping, start_byte, end_byte);
554 return filemap_check_errors(mapping);
556 EXPORT_SYMBOL(filemap_fdatawait_range);
559 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560 * @mapping: address space structure to wait for
561 * @start_byte: offset in bytes where the range starts
562 * @end_byte: offset in bytes where the range ends (inclusive)
564 * Walk the list of under-writeback pages of the given address space in the
565 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
566 * this function does not clear error status of the address space.
568 * Use this function if callers don't handle errors themselves. Expected
569 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 loff_t start_byte, loff_t end_byte)
575 __filemap_fdatawait_range(mapping, start_byte, end_byte);
576 return filemap_check_and_keep_errors(mapping);
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
581 * file_fdatawait_range - wait for writeback to complete
582 * @file: file pointing to address space structure to wait for
583 * @start_byte: offset in bytes where the range starts
584 * @end_byte: offset in bytes where the range ends (inclusive)
586 * Walk the list of under-writeback pages of the address space that file
587 * refers to, in the given range and wait for all of them. Check error
588 * status of the address space vs. the file->f_wb_err cursor and return it.
590 * Since the error status of the file is advanced by this function,
591 * callers are responsible for checking the return value and handling and/or
592 * reporting the error.
594 * Return: error status of the address space vs. the file->f_wb_err cursor.
596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
598 struct address_space *mapping = file->f_mapping;
600 __filemap_fdatawait_range(mapping, start_byte, end_byte);
601 return file_check_and_advance_wb_err(file);
603 EXPORT_SYMBOL(file_fdatawait_range);
606 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607 * @mapping: address space structure to wait for
609 * Walk the list of under-writeback pages of the given address space
610 * and wait for all of them. Unlike filemap_fdatawait(), this function
611 * does not clear error status of the address space.
613 * Use this function if callers don't handle errors themselves. Expected
614 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
617 * Return: error status of the address space.
619 int filemap_fdatawait_keep_errors(struct address_space *mapping)
621 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622 return filemap_check_and_keep_errors(mapping);
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space *mapping)
629 if (dax_mapping(mapping))
630 return mapping->nrexceptional;
632 return mapping->nrpages;
636 * filemap_write_and_wait_range - write out & wait on a file range
637 * @mapping: the address_space for the pages
638 * @lstart: offset in bytes where the range starts
639 * @lend: offset in bytes where the range ends (inclusive)
641 * Write out and wait upon file offsets lstart->lend, inclusive.
643 * Note that @lend is inclusive (describes the last byte to be written) so
644 * that this function can be used to write to the very end-of-file (end = -1).
646 * Return: error status of the address space.
648 int filemap_write_and_wait_range(struct address_space *mapping,
649 loff_t lstart, loff_t lend)
653 if (mapping_needs_writeback(mapping)) {
654 err = __filemap_fdatawrite_range(mapping, lstart, lend,
657 * Even if the above returned error, the pages may be
658 * written partially (e.g. -ENOSPC), so we wait for it.
659 * But the -EIO is special case, it may indicate the worst
660 * thing (e.g. bug) happened, so we avoid waiting for it.
663 int err2 = filemap_fdatawait_range(mapping,
668 /* Clear any previously stored errors */
669 filemap_check_errors(mapping);
672 err = filemap_check_errors(mapping);
676 EXPORT_SYMBOL(filemap_write_and_wait_range);
678 void __filemap_set_wb_err(struct address_space *mapping, int err)
680 errseq_t eseq = errseq_set(&mapping->wb_err, err);
682 trace_filemap_set_wb_err(mapping, eseq);
684 EXPORT_SYMBOL(__filemap_set_wb_err);
687 * file_check_and_advance_wb_err - report wb error (if any) that was previously
688 * and advance wb_err to current one
689 * @file: struct file on which the error is being reported
691 * When userland calls fsync (or something like nfsd does the equivalent), we
692 * want to report any writeback errors that occurred since the last fsync (or
693 * since the file was opened if there haven't been any).
695 * Grab the wb_err from the mapping. If it matches what we have in the file,
696 * then just quickly return 0. The file is all caught up.
698 * If it doesn't match, then take the mapping value, set the "seen" flag in
699 * it and try to swap it into place. If it works, or another task beat us
700 * to it with the new value, then update the f_wb_err and return the error
701 * portion. The error at this point must be reported via proper channels
702 * (a'la fsync, or NFS COMMIT operation, etc.).
704 * While we handle mapping->wb_err with atomic operations, the f_wb_err
705 * value is protected by the f_lock since we must ensure that it reflects
706 * the latest value swapped in for this file descriptor.
708 * Return: %0 on success, negative error code otherwise.
710 int file_check_and_advance_wb_err(struct file *file)
713 errseq_t old = READ_ONCE(file->f_wb_err);
714 struct address_space *mapping = file->f_mapping;
716 /* Locklessly handle the common case where nothing has changed */
717 if (errseq_check(&mapping->wb_err, old)) {
718 /* Something changed, must use slow path */
719 spin_lock(&file->f_lock);
720 old = file->f_wb_err;
721 err = errseq_check_and_advance(&mapping->wb_err,
723 trace_file_check_and_advance_wb_err(file, old);
724 spin_unlock(&file->f_lock);
728 * We're mostly using this function as a drop in replacement for
729 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
730 * that the legacy code would have had on these flags.
732 clear_bit(AS_EIO, &mapping->flags);
733 clear_bit(AS_ENOSPC, &mapping->flags);
736 EXPORT_SYMBOL(file_check_and_advance_wb_err);
739 * file_write_and_wait_range - write out & wait on a file range
740 * @file: file pointing to address_space with pages
741 * @lstart: offset in bytes where the range starts
742 * @lend: offset in bytes where the range ends (inclusive)
744 * Write out and wait upon file offsets lstart->lend, inclusive.
746 * Note that @lend is inclusive (describes the last byte to be written) so
747 * that this function can be used to write to the very end-of-file (end = -1).
749 * After writing out and waiting on the data, we check and advance the
750 * f_wb_err cursor to the latest value, and return any errors detected there.
752 * Return: %0 on success, negative error code otherwise.
754 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
757 struct address_space *mapping = file->f_mapping;
759 if (mapping_needs_writeback(mapping)) {
760 err = __filemap_fdatawrite_range(mapping, lstart, lend,
762 /* See comment of filemap_write_and_wait() */
764 __filemap_fdatawait_range(mapping, lstart, lend);
766 err2 = file_check_and_advance_wb_err(file);
771 EXPORT_SYMBOL(file_write_and_wait_range);
774 * replace_page_cache_page - replace a pagecache page with a new one
775 * @old: page to be replaced
776 * @new: page to replace with
777 * @gfp_mask: allocation mode
779 * This function replaces a page in the pagecache with a new one. On
780 * success it acquires the pagecache reference for the new page and
781 * drops it for the old page. Both the old and new pages must be
782 * locked. This function does not add the new page to the LRU, the
783 * caller must do that.
785 * The remove + add is atomic. This function cannot fail.
789 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
802 new->mapping = mapping;
805 mem_cgroup_migrate(old, new);
807 xas_lock_irqsave(&xas, flags);
808 xas_store(&xas, new);
811 /* hugetlb pages do not participate in page cache accounting. */
813 __dec_lruvec_page_state(old, NR_FILE_PAGES);
815 __inc_lruvec_page_state(new, NR_FILE_PAGES);
816 if (PageSwapBacked(old))
817 __dec_lruvec_page_state(old, NR_SHMEM);
818 if (PageSwapBacked(new))
819 __inc_lruvec_page_state(new, NR_SHMEM);
820 xas_unlock_irqrestore(&xas, flags);
827 EXPORT_SYMBOL_GPL(replace_page_cache_page);
829 static int __add_to_page_cache_locked(struct page *page,
830 struct address_space *mapping,
831 pgoff_t offset, gfp_t gfp_mask,
834 XA_STATE(xas, &mapping->i_pages, offset);
835 int huge = PageHuge(page);
839 VM_BUG_ON_PAGE(!PageLocked(page), page);
840 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
841 mapping_set_update(&xas, mapping);
844 page->mapping = mapping;
845 page->index = offset;
848 error = mem_cgroup_charge(page, current->mm, gfp_mask);
855 old = xas_load(&xas);
856 if (old && !xa_is_value(old))
857 xas_set_err(&xas, -EEXIST);
858 xas_store(&xas, page);
862 if (xa_is_value(old)) {
863 mapping->nrexceptional--;
869 /* hugetlb pages do not participate in page cache accounting */
871 __inc_lruvec_page_state(page, NR_FILE_PAGES);
873 xas_unlock_irq(&xas);
874 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
876 if (xas_error(&xas)) {
877 error = xas_error(&xas);
881 trace_mm_filemap_add_to_page_cache(page);
884 page->mapping = NULL;
885 /* Leave page->index set: truncation relies upon it */
889 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
892 * add_to_page_cache_locked - add a locked page to the pagecache
894 * @mapping: the page's address_space
895 * @offset: page index
896 * @gfp_mask: page allocation mode
898 * This function is used to add a page to the pagecache. It must be locked.
899 * This function does not add the page to the LRU. The caller must do that.
901 * Return: %0 on success, negative error code otherwise.
903 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
904 pgoff_t offset, gfp_t gfp_mask)
906 return __add_to_page_cache_locked(page, mapping, offset,
909 EXPORT_SYMBOL(add_to_page_cache_locked);
911 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
912 pgoff_t offset, gfp_t gfp_mask)
917 __SetPageLocked(page);
918 ret = __add_to_page_cache_locked(page, mapping, offset,
921 __ClearPageLocked(page);
924 * The page might have been evicted from cache only
925 * recently, in which case it should be activated like
926 * any other repeatedly accessed page.
927 * The exception is pages getting rewritten; evicting other
928 * data from the working set, only to cache data that will
929 * get overwritten with something else, is a waste of memory.
931 WARN_ON_ONCE(PageActive(page));
932 if (!(gfp_mask & __GFP_WRITE) && shadow)
933 workingset_refault(page, shadow);
938 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
941 struct page *__page_cache_alloc(gfp_t gfp)
946 if (cpuset_do_page_mem_spread()) {
947 unsigned int cpuset_mems_cookie;
949 cpuset_mems_cookie = read_mems_allowed_begin();
950 n = cpuset_mem_spread_node();
951 page = __alloc_pages_node(n, gfp, 0);
952 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
956 return alloc_pages(gfp, 0);
958 EXPORT_SYMBOL(__page_cache_alloc);
962 * In order to wait for pages to become available there must be
963 * waitqueues associated with pages. By using a hash table of
964 * waitqueues where the bucket discipline is to maintain all
965 * waiters on the same queue and wake all when any of the pages
966 * become available, and for the woken contexts to check to be
967 * sure the appropriate page became available, this saves space
968 * at a cost of "thundering herd" phenomena during rare hash
971 #define PAGE_WAIT_TABLE_BITS 8
972 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
973 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
975 static wait_queue_head_t *page_waitqueue(struct page *page)
977 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
980 void __init pagecache_init(void)
984 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
985 init_waitqueue_head(&page_wait_table[i]);
987 page_writeback_init();
990 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
991 struct wait_page_key {
997 struct wait_page_queue {
1000 wait_queue_entry_t wait;
1003 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1006 struct wait_page_key *key = arg;
1007 struct wait_page_queue *wait_page
1008 = container_of(wait, struct wait_page_queue, wait);
1010 if (wait_page->page != key->page)
1012 key->page_match = 1;
1014 if (wait_page->bit_nr != key->bit_nr)
1018 * If it's an exclusive wait, we get the bit for it, and
1019 * stop walking if we can't.
1021 * If it's a non-exclusive wait, then the fact that this
1022 * wake function was called means that the bit already
1023 * was cleared, and we don't care if somebody then
1027 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1028 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1032 wait->flags |= WQ_FLAG_WOKEN;
1034 wake_up_state(wait->private, mode);
1037 * Ok, we have successfully done what we're waiting for,
1038 * and we can unconditionally remove the wait entry.
1040 * Note that this has to be the absolute last thing we do,
1041 * since after list_del_init(&wait->entry) the wait entry
1042 * might be de-allocated and the process might even have
1045 * We _really_ should have a "list_del_init_careful()" to
1046 * properly pair with the unlocked "list_empty_careful()"
1050 list_del_init(&wait->entry);
1054 static void wake_up_page_bit(struct page *page, int bit_nr)
1056 wait_queue_head_t *q = page_waitqueue(page);
1057 struct wait_page_key key;
1058 unsigned long flags;
1059 wait_queue_entry_t bookmark;
1062 key.bit_nr = bit_nr;
1066 bookmark.private = NULL;
1067 bookmark.func = NULL;
1068 INIT_LIST_HEAD(&bookmark.entry);
1070 spin_lock_irqsave(&q->lock, flags);
1071 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1073 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1075 * Take a breather from holding the lock,
1076 * allow pages that finish wake up asynchronously
1077 * to acquire the lock and remove themselves
1080 spin_unlock_irqrestore(&q->lock, flags);
1082 spin_lock_irqsave(&q->lock, flags);
1083 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1087 * It is possible for other pages to have collided on the waitqueue
1088 * hash, so in that case check for a page match. That prevents a long-
1091 * It is still possible to miss a case here, when we woke page waiters
1092 * and removed them from the waitqueue, but there are still other
1095 if (!waitqueue_active(q) || !key.page_match) {
1096 ClearPageWaiters(page);
1098 * It's possible to miss clearing Waiters here, when we woke
1099 * our page waiters, but the hashed waitqueue has waiters for
1100 * other pages on it.
1102 * That's okay, it's a rare case. The next waker will clear it.
1105 spin_unlock_irqrestore(&q->lock, flags);
1108 static void wake_up_page(struct page *page, int bit)
1110 if (!PageWaiters(page))
1112 wake_up_page_bit(page, bit);
1116 * A choice of three behaviors for wait_on_page_bit_common():
1119 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1120 * __lock_page() waiting on then setting PG_locked.
1122 SHARED, /* Hold ref to page and check the bit when woken, like
1123 * wait_on_page_writeback() waiting on PG_writeback.
1125 DROP, /* Drop ref to page before wait, no check when woken,
1126 * like put_and_wait_on_page_locked() on PG_locked.
1131 * Attempt to check (or get) the page bit, and mark the
1132 * waiter woken if successful.
1134 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1135 struct wait_queue_entry *wait)
1137 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1138 if (test_and_set_bit(bit_nr, &page->flags))
1140 } else if (test_bit(bit_nr, &page->flags))
1143 wait->flags |= WQ_FLAG_WOKEN;
1147 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1148 struct page *page, int bit_nr, int state, enum behavior behavior)
1150 struct wait_page_queue wait_page;
1151 wait_queue_entry_t *wait = &wait_page.wait;
1152 bool thrashing = false;
1153 bool delayacct = false;
1154 unsigned long pflags;
1156 if (bit_nr == PG_locked &&
1157 !PageUptodate(page) && PageWorkingset(page)) {
1158 if (!PageSwapBacked(page)) {
1159 delayacct_thrashing_start();
1162 psi_memstall_enter(&pflags);
1167 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1168 wait->func = wake_page_function;
1169 wait_page.page = page;
1170 wait_page.bit_nr = bit_nr;
1173 * Do one last check whether we can get the
1174 * page bit synchronously.
1176 * Do the SetPageWaiters() marking before that
1177 * to let any waker we _just_ missed know they
1178 * need to wake us up (otherwise they'll never
1179 * even go to the slow case that looks at the
1180 * page queue), and add ourselves to the wait
1181 * queue if we need to sleep.
1183 * This part needs to be done under the queue
1184 * lock to avoid races.
1186 spin_lock_irq(&q->lock);
1187 SetPageWaiters(page);
1188 if (!trylock_page_bit_common(page, bit_nr, wait))
1189 __add_wait_queue_entry_tail(q, wait);
1190 spin_unlock_irq(&q->lock);
1193 * From now on, all the logic will be based on
1194 * the WQ_FLAG_WOKEN flag, and the and the page
1195 * bit testing (and setting) will be - or has
1196 * already been - done by the wake function.
1198 * We can drop our reference to the page.
1200 if (behavior == DROP)
1204 set_current_state(state);
1206 if (signal_pending_state(state, current))
1209 if (wait->flags & WQ_FLAG_WOKEN)
1215 finish_wait(q, wait);
1219 delayacct_thrashing_end();
1220 psi_memstall_leave(&pflags);
1224 * A signal could leave PageWaiters set. Clearing it here if
1225 * !waitqueue_active would be possible (by open-coding finish_wait),
1226 * but still fail to catch it in the case of wait hash collision. We
1227 * already can fail to clear wait hash collision cases, so don't
1228 * bother with signals either.
1231 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1234 void wait_on_page_bit(struct page *page, int bit_nr)
1236 wait_queue_head_t *q = page_waitqueue(page);
1237 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1239 EXPORT_SYMBOL(wait_on_page_bit);
1241 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1243 wait_queue_head_t *q = page_waitqueue(page);
1244 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1246 EXPORT_SYMBOL(wait_on_page_bit_killable);
1249 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1250 * @page: The page to wait for.
1252 * The caller should hold a reference on @page. They expect the page to
1253 * become unlocked relatively soon, but do not wish to hold up migration
1254 * (for example) by holding the reference while waiting for the page to
1255 * come unlocked. After this function returns, the caller should not
1256 * dereference @page.
1258 void put_and_wait_on_page_locked(struct page *page)
1260 wait_queue_head_t *q;
1262 page = compound_head(page);
1263 q = page_waitqueue(page);
1264 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1268 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1269 * @page: Page defining the wait queue of interest
1270 * @waiter: Waiter to add to the queue
1272 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1274 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1276 wait_queue_head_t *q = page_waitqueue(page);
1277 unsigned long flags;
1279 spin_lock_irqsave(&q->lock, flags);
1280 __add_wait_queue_entry_tail(q, waiter);
1281 SetPageWaiters(page);
1282 spin_unlock_irqrestore(&q->lock, flags);
1284 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1286 #ifndef clear_bit_unlock_is_negative_byte
1289 * PG_waiters is the high bit in the same byte as PG_lock.
1291 * On x86 (and on many other architectures), we can clear PG_lock and
1292 * test the sign bit at the same time. But if the architecture does
1293 * not support that special operation, we just do this all by hand
1296 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1297 * being cleared, but a memory barrier should be unnecessary since it is
1298 * in the same byte as PG_locked.
1300 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1302 clear_bit_unlock(nr, mem);
1303 /* smp_mb__after_atomic(); */
1304 return test_bit(PG_waiters, mem);
1310 * unlock_page - unlock a locked page
1313 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1314 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1315 * mechanism between PageLocked pages and PageWriteback pages is shared.
1316 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1318 * Note that this depends on PG_waiters being the sign bit in the byte
1319 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1320 * clear the PG_locked bit and test PG_waiters at the same time fairly
1321 * portably (architectures that do LL/SC can test any bit, while x86 can
1322 * test the sign bit).
1324 void unlock_page(struct page *page)
1326 BUILD_BUG_ON(PG_waiters != 7);
1327 page = compound_head(page);
1328 VM_BUG_ON_PAGE(!PageLocked(page), page);
1329 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1330 wake_up_page_bit(page, PG_locked);
1332 EXPORT_SYMBOL(unlock_page);
1335 * end_page_writeback - end writeback against a page
1338 void end_page_writeback(struct page *page)
1341 * TestClearPageReclaim could be used here but it is an atomic
1342 * operation and overkill in this particular case. Failing to
1343 * shuffle a page marked for immediate reclaim is too mild to
1344 * justify taking an atomic operation penalty at the end of
1345 * ever page writeback.
1347 if (PageReclaim(page)) {
1348 ClearPageReclaim(page);
1349 rotate_reclaimable_page(page);
1352 if (!test_clear_page_writeback(page))
1355 smp_mb__after_atomic();
1356 wake_up_page(page, PG_writeback);
1358 EXPORT_SYMBOL(end_page_writeback);
1361 * After completing I/O on a page, call this routine to update the page
1362 * flags appropriately
1364 void page_endio(struct page *page, bool is_write, int err)
1368 SetPageUptodate(page);
1370 ClearPageUptodate(page);
1376 struct address_space *mapping;
1379 mapping = page_mapping(page);
1381 mapping_set_error(mapping, err);
1383 end_page_writeback(page);
1386 EXPORT_SYMBOL_GPL(page_endio);
1389 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1390 * @__page: the page to lock
1392 void __lock_page(struct page *__page)
1394 struct page *page = compound_head(__page);
1395 wait_queue_head_t *q = page_waitqueue(page);
1396 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1399 EXPORT_SYMBOL(__lock_page);
1401 int __lock_page_killable(struct page *__page)
1403 struct page *page = compound_head(__page);
1404 wait_queue_head_t *q = page_waitqueue(page);
1405 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1408 EXPORT_SYMBOL_GPL(__lock_page_killable);
1412 * 1 - page is locked; mmap_lock is still held.
1413 * 0 - page is not locked.
1414 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1415 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1416 * which case mmap_lock is still held.
1418 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1419 * with the page locked and the mmap_lock unperturbed.
1421 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1424 if (fault_flag_allow_retry_first(flags)) {
1426 * CAUTION! In this case, mmap_lock is not released
1427 * even though return 0.
1429 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1432 mmap_read_unlock(mm);
1433 if (flags & FAULT_FLAG_KILLABLE)
1434 wait_on_page_locked_killable(page);
1436 wait_on_page_locked(page);
1439 if (flags & FAULT_FLAG_KILLABLE) {
1442 ret = __lock_page_killable(page);
1444 mmap_read_unlock(mm);
1454 * page_cache_next_miss() - Find the next gap in the page cache.
1455 * @mapping: Mapping.
1457 * @max_scan: Maximum range to search.
1459 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1460 * gap with the lowest index.
1462 * This function may be called under the rcu_read_lock. However, this will
1463 * not atomically search a snapshot of the cache at a single point in time.
1464 * For example, if a gap is created at index 5, then subsequently a gap is
1465 * created at index 10, page_cache_next_miss covering both indices may
1466 * return 10 if called under the rcu_read_lock.
1468 * Return: The index of the gap if found, otherwise an index outside the
1469 * range specified (in which case 'return - index >= max_scan' will be true).
1470 * In the rare case of index wrap-around, 0 will be returned.
1472 pgoff_t page_cache_next_miss(struct address_space *mapping,
1473 pgoff_t index, unsigned long max_scan)
1475 XA_STATE(xas, &mapping->i_pages, index);
1477 while (max_scan--) {
1478 void *entry = xas_next(&xas);
1479 if (!entry || xa_is_value(entry))
1481 if (xas.xa_index == 0)
1485 return xas.xa_index;
1487 EXPORT_SYMBOL(page_cache_next_miss);
1490 * page_cache_prev_miss() - Find the previous gap in the page cache.
1491 * @mapping: Mapping.
1493 * @max_scan: Maximum range to search.
1495 * Search the range [max(index - max_scan + 1, 0), index] for the
1496 * gap with the highest index.
1498 * This function may be called under the rcu_read_lock. However, this will
1499 * not atomically search a snapshot of the cache at a single point in time.
1500 * For example, if a gap is created at index 10, then subsequently a gap is
1501 * created at index 5, page_cache_prev_miss() covering both indices may
1502 * return 5 if called under the rcu_read_lock.
1504 * Return: The index of the gap if found, otherwise an index outside the
1505 * range specified (in which case 'index - return >= max_scan' will be true).
1506 * In the rare case of wrap-around, ULONG_MAX will be returned.
1508 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1509 pgoff_t index, unsigned long max_scan)
1511 XA_STATE(xas, &mapping->i_pages, index);
1513 while (max_scan--) {
1514 void *entry = xas_prev(&xas);
1515 if (!entry || xa_is_value(entry))
1517 if (xas.xa_index == ULONG_MAX)
1521 return xas.xa_index;
1523 EXPORT_SYMBOL(page_cache_prev_miss);
1526 * find_get_entry - find and get a page cache entry
1527 * @mapping: the address_space to search
1528 * @offset: the page cache index
1530 * Looks up the page cache slot at @mapping & @offset. If there is a
1531 * page cache page, it is returned with an increased refcount.
1533 * If the slot holds a shadow entry of a previously evicted page, or a
1534 * swap entry from shmem/tmpfs, it is returned.
1536 * Return: the found page or shadow entry, %NULL if nothing is found.
1538 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1540 XA_STATE(xas, &mapping->i_pages, offset);
1546 page = xas_load(&xas);
1547 if (xas_retry(&xas, page))
1550 * A shadow entry of a recently evicted page, or a swap entry from
1551 * shmem/tmpfs. Return it without attempting to raise page count.
1553 if (!page || xa_is_value(page))
1556 if (!page_cache_get_speculative(page))
1560 * Has the page moved or been split?
1561 * This is part of the lockless pagecache protocol. See
1562 * include/linux/pagemap.h for details.
1564 if (unlikely(page != xas_reload(&xas))) {
1568 page = find_subpage(page, offset);
1576 * find_lock_entry - locate, pin and lock a page cache entry
1577 * @mapping: the address_space to search
1578 * @offset: the page cache index
1580 * Looks up the page cache slot at @mapping & @offset. If there is a
1581 * page cache page, it is returned locked and with an increased
1584 * If the slot holds a shadow entry of a previously evicted page, or a
1585 * swap entry from shmem/tmpfs, it is returned.
1587 * find_lock_entry() may sleep.
1589 * Return: the found page or shadow entry, %NULL if nothing is found.
1591 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1596 page = find_get_entry(mapping, offset);
1597 if (page && !xa_is_value(page)) {
1599 /* Has the page been truncated? */
1600 if (unlikely(page_mapping(page) != mapping)) {
1605 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1609 EXPORT_SYMBOL(find_lock_entry);
1612 * pagecache_get_page - Find and get a reference to a page.
1613 * @mapping: The address_space to search.
1614 * @index: The page index.
1615 * @fgp_flags: %FGP flags modify how the page is returned.
1616 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1618 * Looks up the page cache entry at @mapping & @index.
1620 * @fgp_flags can be zero or more of these flags:
1622 * * %FGP_ACCESSED - The page will be marked accessed.
1623 * * %FGP_LOCK - The page is returned locked.
1624 * * %FGP_CREAT - If no page is present then a new page is allocated using
1625 * @gfp_mask and added to the page cache and the VM's LRU list.
1626 * The page is returned locked and with an increased refcount.
1627 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1628 * page is already in cache. If the page was allocated, unlock it before
1629 * returning so the caller can do the same dance.
1631 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1632 * if the %GFP flags specified for %FGP_CREAT are atomic.
1634 * If there is a page cache page, it is returned with an increased refcount.
1636 * Return: The found page or %NULL otherwise.
1638 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1639 int fgp_flags, gfp_t gfp_mask)
1644 page = find_get_entry(mapping, index);
1645 if (xa_is_value(page))
1650 if (fgp_flags & FGP_LOCK) {
1651 if (fgp_flags & FGP_NOWAIT) {
1652 if (!trylock_page(page)) {
1660 /* Has the page been truncated? */
1661 if (unlikely(compound_head(page)->mapping != mapping)) {
1666 VM_BUG_ON_PAGE(page->index != index, page);
1669 if (fgp_flags & FGP_ACCESSED)
1670 mark_page_accessed(page);
1673 if (!page && (fgp_flags & FGP_CREAT)) {
1675 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1676 gfp_mask |= __GFP_WRITE;
1677 if (fgp_flags & FGP_NOFS)
1678 gfp_mask &= ~__GFP_FS;
1680 page = __page_cache_alloc(gfp_mask);
1684 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1685 fgp_flags |= FGP_LOCK;
1687 /* Init accessed so avoid atomic mark_page_accessed later */
1688 if (fgp_flags & FGP_ACCESSED)
1689 __SetPageReferenced(page);
1691 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1692 if (unlikely(err)) {
1700 * add_to_page_cache_lru locks the page, and for mmap we expect
1703 if (page && (fgp_flags & FGP_FOR_MMAP))
1709 EXPORT_SYMBOL(pagecache_get_page);
1712 * find_get_entries - gang pagecache lookup
1713 * @mapping: The address_space to search
1714 * @start: The starting page cache index
1715 * @nr_entries: The maximum number of entries
1716 * @entries: Where the resulting entries are placed
1717 * @indices: The cache indices corresponding to the entries in @entries
1719 * find_get_entries() will search for and return a group of up to
1720 * @nr_entries entries in the mapping. The entries are placed at
1721 * @entries. find_get_entries() takes a reference against any actual
1724 * The search returns a group of mapping-contiguous page cache entries
1725 * with ascending indexes. There may be holes in the indices due to
1726 * not-present pages.
1728 * Any shadow entries of evicted pages, or swap entries from
1729 * shmem/tmpfs, are included in the returned array.
1731 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1732 * stops at that page: the caller is likely to have a better way to handle
1733 * the compound page as a whole, and then skip its extent, than repeatedly
1734 * calling find_get_entries() to return all its tails.
1736 * Return: the number of pages and shadow entries which were found.
1738 unsigned find_get_entries(struct address_space *mapping,
1739 pgoff_t start, unsigned int nr_entries,
1740 struct page **entries, pgoff_t *indices)
1742 XA_STATE(xas, &mapping->i_pages, start);
1744 unsigned int ret = 0;
1750 xas_for_each(&xas, page, ULONG_MAX) {
1751 if (xas_retry(&xas, page))
1754 * A shadow entry of a recently evicted page, a swap
1755 * entry from shmem/tmpfs or a DAX entry. Return it
1756 * without attempting to raise page count.
1758 if (xa_is_value(page))
1761 if (!page_cache_get_speculative(page))
1764 /* Has the page moved or been split? */
1765 if (unlikely(page != xas_reload(&xas)))
1769 * Terminate early on finding a THP, to allow the caller to
1770 * handle it all at once; but continue if this is hugetlbfs.
1772 if (PageTransHuge(page) && !PageHuge(page)) {
1773 page = find_subpage(page, xas.xa_index);
1774 nr_entries = ret + 1;
1777 indices[ret] = xas.xa_index;
1778 entries[ret] = page;
1779 if (++ret == nr_entries)
1792 * find_get_pages_range - gang pagecache lookup
1793 * @mapping: The address_space to search
1794 * @start: The starting page index
1795 * @end: The final page index (inclusive)
1796 * @nr_pages: The maximum number of pages
1797 * @pages: Where the resulting pages are placed
1799 * find_get_pages_range() will search for and return a group of up to @nr_pages
1800 * pages in the mapping starting at index @start and up to index @end
1801 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1802 * a reference against the returned pages.
1804 * The search returns a group of mapping-contiguous pages with ascending
1805 * indexes. There may be holes in the indices due to not-present pages.
1806 * We also update @start to index the next page for the traversal.
1808 * Return: the number of pages which were found. If this number is
1809 * smaller than @nr_pages, the end of specified range has been
1812 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1813 pgoff_t end, unsigned int nr_pages,
1814 struct page **pages)
1816 XA_STATE(xas, &mapping->i_pages, *start);
1820 if (unlikely(!nr_pages))
1824 xas_for_each(&xas, page, end) {
1825 if (xas_retry(&xas, page))
1827 /* Skip over shadow, swap and DAX entries */
1828 if (xa_is_value(page))
1831 if (!page_cache_get_speculative(page))
1834 /* Has the page moved or been split? */
1835 if (unlikely(page != xas_reload(&xas)))
1838 pages[ret] = find_subpage(page, xas.xa_index);
1839 if (++ret == nr_pages) {
1840 *start = xas.xa_index + 1;
1851 * We come here when there is no page beyond @end. We take care to not
1852 * overflow the index @start as it confuses some of the callers. This
1853 * breaks the iteration when there is a page at index -1 but that is
1854 * already broken anyway.
1856 if (end == (pgoff_t)-1)
1857 *start = (pgoff_t)-1;
1867 * find_get_pages_contig - gang contiguous pagecache lookup
1868 * @mapping: The address_space to search
1869 * @index: The starting page index
1870 * @nr_pages: The maximum number of pages
1871 * @pages: Where the resulting pages are placed
1873 * find_get_pages_contig() works exactly like find_get_pages(), except
1874 * that the returned number of pages are guaranteed to be contiguous.
1876 * Return: the number of pages which were found.
1878 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1879 unsigned int nr_pages, struct page **pages)
1881 XA_STATE(xas, &mapping->i_pages, index);
1883 unsigned int ret = 0;
1885 if (unlikely(!nr_pages))
1889 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1890 if (xas_retry(&xas, page))
1893 * If the entry has been swapped out, we can stop looking.
1894 * No current caller is looking for DAX entries.
1896 if (xa_is_value(page))
1899 if (!page_cache_get_speculative(page))
1902 /* Has the page moved or been split? */
1903 if (unlikely(page != xas_reload(&xas)))
1906 pages[ret] = find_subpage(page, xas.xa_index);
1907 if (++ret == nr_pages)
1918 EXPORT_SYMBOL(find_get_pages_contig);
1921 * find_get_pages_range_tag - find and return pages in given range matching @tag
1922 * @mapping: the address_space to search
1923 * @index: the starting page index
1924 * @end: The final page index (inclusive)
1925 * @tag: the tag index
1926 * @nr_pages: the maximum number of pages
1927 * @pages: where the resulting pages are placed
1929 * Like find_get_pages, except we only return pages which are tagged with
1930 * @tag. We update @index to index the next page for the traversal.
1932 * Return: the number of pages which were found.
1934 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1935 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1936 struct page **pages)
1938 XA_STATE(xas, &mapping->i_pages, *index);
1942 if (unlikely(!nr_pages))
1946 xas_for_each_marked(&xas, page, end, tag) {
1947 if (xas_retry(&xas, page))
1950 * Shadow entries should never be tagged, but this iteration
1951 * is lockless so there is a window for page reclaim to evict
1952 * a page we saw tagged. Skip over it.
1954 if (xa_is_value(page))
1957 if (!page_cache_get_speculative(page))
1960 /* Has the page moved or been split? */
1961 if (unlikely(page != xas_reload(&xas)))
1964 pages[ret] = find_subpage(page, xas.xa_index);
1965 if (++ret == nr_pages) {
1966 *index = xas.xa_index + 1;
1977 * We come here when we got to @end. We take care to not overflow the
1978 * index @index as it confuses some of the callers. This breaks the
1979 * iteration when there is a page at index -1 but that is already
1982 if (end == (pgoff_t)-1)
1983 *index = (pgoff_t)-1;
1991 EXPORT_SYMBOL(find_get_pages_range_tag);
1994 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1995 * a _large_ part of the i/o request. Imagine the worst scenario:
1997 * ---R__________________________________________B__________
1998 * ^ reading here ^ bad block(assume 4k)
2000 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2001 * => failing the whole request => read(R) => read(R+1) =>
2002 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2003 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2004 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2006 * It is going insane. Fix it by quickly scaling down the readahead size.
2008 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2014 * generic_file_buffered_read - generic file read routine
2015 * @iocb: the iocb to read
2016 * @iter: data destination
2017 * @written: already copied
2019 * This is a generic file read routine, and uses the
2020 * mapping->a_ops->readpage() function for the actual low-level stuff.
2022 * This is really ugly. But the goto's actually try to clarify some
2023 * of the logic when it comes to error handling etc.
2026 * * total number of bytes copied, including those the were already @written
2027 * * negative error code if nothing was copied
2029 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2030 struct iov_iter *iter, ssize_t written)
2032 struct file *filp = iocb->ki_filp;
2033 struct address_space *mapping = filp->f_mapping;
2034 struct inode *inode = mapping->host;
2035 struct file_ra_state *ra = &filp->f_ra;
2036 loff_t *ppos = &iocb->ki_pos;
2040 unsigned long offset; /* offset into pagecache page */
2041 unsigned int prev_offset;
2044 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2046 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2048 index = *ppos >> PAGE_SHIFT;
2049 prev_index = ra->prev_pos >> PAGE_SHIFT;
2050 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2051 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2052 offset = *ppos & ~PAGE_MASK;
2058 unsigned long nr, ret;
2062 if (fatal_signal_pending(current)) {
2067 page = find_get_page(mapping, index);
2069 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2071 page_cache_sync_readahead(mapping,
2073 index, last_index - index);
2074 page = find_get_page(mapping, index);
2075 if (unlikely(page == NULL))
2076 goto no_cached_page;
2078 if (PageReadahead(page)) {
2079 if (iocb->ki_flags & IOCB_NOIO) {
2083 page_cache_async_readahead(mapping,
2085 index, last_index - index);
2087 if (!PageUptodate(page)) {
2088 if (iocb->ki_flags & IOCB_NOWAIT) {
2094 * See comment in do_read_cache_page on why
2095 * wait_on_page_locked is used to avoid unnecessarily
2096 * serialisations and why it's safe.
2098 error = wait_on_page_locked_killable(page);
2099 if (unlikely(error))
2100 goto readpage_error;
2101 if (PageUptodate(page))
2104 if (inode->i_blkbits == PAGE_SHIFT ||
2105 !mapping->a_ops->is_partially_uptodate)
2106 goto page_not_up_to_date;
2107 /* pipes can't handle partially uptodate pages */
2108 if (unlikely(iov_iter_is_pipe(iter)))
2109 goto page_not_up_to_date;
2110 if (!trylock_page(page))
2111 goto page_not_up_to_date;
2112 /* Did it get truncated before we got the lock? */
2114 goto page_not_up_to_date_locked;
2115 if (!mapping->a_ops->is_partially_uptodate(page,
2116 offset, iter->count))
2117 goto page_not_up_to_date_locked;
2122 * i_size must be checked after we know the page is Uptodate.
2124 * Checking i_size after the check allows us to calculate
2125 * the correct value for "nr", which means the zero-filled
2126 * part of the page is not copied back to userspace (unless
2127 * another truncate extends the file - this is desired though).
2130 isize = i_size_read(inode);
2131 end_index = (isize - 1) >> PAGE_SHIFT;
2132 if (unlikely(!isize || index > end_index)) {
2137 /* nr is the maximum number of bytes to copy from this page */
2139 if (index == end_index) {
2140 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2148 /* If users can be writing to this page using arbitrary
2149 * virtual addresses, take care about potential aliasing
2150 * before reading the page on the kernel side.
2152 if (mapping_writably_mapped(mapping))
2153 flush_dcache_page(page);
2156 * When a sequential read accesses a page several times,
2157 * only mark it as accessed the first time.
2159 if (prev_index != index || offset != prev_offset)
2160 mark_page_accessed(page);
2164 * Ok, we have the page, and it's up-to-date, so
2165 * now we can copy it to user space...
2168 ret = copy_page_to_iter(page, offset, nr, iter);
2170 index += offset >> PAGE_SHIFT;
2171 offset &= ~PAGE_MASK;
2172 prev_offset = offset;
2176 if (!iov_iter_count(iter))
2184 page_not_up_to_date:
2185 /* Get exclusive access to the page ... */
2186 error = lock_page_killable(page);
2187 if (unlikely(error))
2188 goto readpage_error;
2190 page_not_up_to_date_locked:
2191 /* Did it get truncated before we got the lock? */
2192 if (!page->mapping) {
2198 /* Did somebody else fill it already? */
2199 if (PageUptodate(page)) {
2205 if (iocb->ki_flags & IOCB_NOIO) {
2211 * A previous I/O error may have been due to temporary
2212 * failures, eg. multipath errors.
2213 * PG_error will be set again if readpage fails.
2215 ClearPageError(page);
2216 /* Start the actual read. The read will unlock the page. */
2217 error = mapping->a_ops->readpage(filp, page);
2219 if (unlikely(error)) {
2220 if (error == AOP_TRUNCATED_PAGE) {
2225 goto readpage_error;
2228 if (!PageUptodate(page)) {
2229 error = lock_page_killable(page);
2230 if (unlikely(error))
2231 goto readpage_error;
2232 if (!PageUptodate(page)) {
2233 if (page->mapping == NULL) {
2235 * invalidate_mapping_pages got it
2242 shrink_readahead_size_eio(ra);
2244 goto readpage_error;
2252 /* UHHUH! A synchronous read error occurred. Report it */
2258 * Ok, it wasn't cached, so we need to create a new
2261 page = page_cache_alloc(mapping);
2266 error = add_to_page_cache_lru(page, mapping, index,
2267 mapping_gfp_constraint(mapping, GFP_KERNEL));
2270 if (error == -EEXIST) {
2282 ra->prev_pos = prev_index;
2283 ra->prev_pos <<= PAGE_SHIFT;
2284 ra->prev_pos |= prev_offset;
2286 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2287 file_accessed(filp);
2288 return written ? written : error;
2290 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2293 * generic_file_read_iter - generic filesystem read routine
2294 * @iocb: kernel I/O control block
2295 * @iter: destination for the data read
2297 * This is the "read_iter()" routine for all filesystems
2298 * that can use the page cache directly.
2300 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2301 * be returned when no data can be read without waiting for I/O requests
2302 * to complete; it doesn't prevent readahead.
2304 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2305 * requests shall be made for the read or for readahead. When no data
2306 * can be read, -EAGAIN shall be returned. When readahead would be
2307 * triggered, a partial, possibly empty read shall be returned.
2310 * * number of bytes copied, even for partial reads
2311 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2314 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2316 size_t count = iov_iter_count(iter);
2320 goto out; /* skip atime */
2322 if (iocb->ki_flags & IOCB_DIRECT) {
2323 struct file *file = iocb->ki_filp;
2324 struct address_space *mapping = file->f_mapping;
2325 struct inode *inode = mapping->host;
2328 size = i_size_read(inode);
2329 if (iocb->ki_flags & IOCB_NOWAIT) {
2330 if (filemap_range_has_page(mapping, iocb->ki_pos,
2331 iocb->ki_pos + count - 1))
2334 retval = filemap_write_and_wait_range(mapping,
2336 iocb->ki_pos + count - 1);
2341 file_accessed(file);
2343 retval = mapping->a_ops->direct_IO(iocb, iter);
2345 iocb->ki_pos += retval;
2348 iov_iter_revert(iter, count - iov_iter_count(iter));
2351 * Btrfs can have a short DIO read if we encounter
2352 * compressed extents, so if there was an error, or if
2353 * we've already read everything we wanted to, or if
2354 * there was a short read because we hit EOF, go ahead
2355 * and return. Otherwise fallthrough to buffered io for
2356 * the rest of the read. Buffered reads will not work for
2357 * DAX files, so don't bother trying.
2359 if (retval < 0 || !count || iocb->ki_pos >= size ||
2364 retval = generic_file_buffered_read(iocb, iter, retval);
2368 EXPORT_SYMBOL(generic_file_read_iter);
2371 #define MMAP_LOTSAMISS (100)
2373 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2374 * @vmf - the vm_fault for this fault.
2375 * @page - the page to lock.
2376 * @fpin - the pointer to the file we may pin (or is already pinned).
2378 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2379 * It differs in that it actually returns the page locked if it returns 1 and 0
2380 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2381 * will point to the pinned file and needs to be fput()'ed at a later point.
2383 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2386 if (trylock_page(page))
2390 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2391 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2392 * is supposed to work. We have way too many special cases..
2394 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2397 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2398 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2399 if (__lock_page_killable(page)) {
2401 * We didn't have the right flags to drop the mmap_lock,
2402 * but all fault_handlers only check for fatal signals
2403 * if we return VM_FAULT_RETRY, so we need to drop the
2404 * mmap_lock here and return 0 if we don't have a fpin.
2407 mmap_read_unlock(vmf->vma->vm_mm);
2417 * Synchronous readahead happens when we don't even find a page in the page
2418 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2419 * to drop the mmap sem we return the file that was pinned in order for us to do
2420 * that. If we didn't pin a file then we return NULL. The file that is
2421 * returned needs to be fput()'ed when we're done with it.
2423 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2425 struct file *file = vmf->vma->vm_file;
2426 struct file_ra_state *ra = &file->f_ra;
2427 struct address_space *mapping = file->f_mapping;
2428 struct file *fpin = NULL;
2429 pgoff_t offset = vmf->pgoff;
2431 /* If we don't want any read-ahead, don't bother */
2432 if (vmf->vma->vm_flags & VM_RAND_READ)
2437 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2438 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2439 page_cache_sync_readahead(mapping, ra, file, offset,
2444 /* Avoid banging the cache line if not needed */
2445 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2449 * Do we miss much more than hit in this file? If so,
2450 * stop bothering with read-ahead. It will only hurt.
2452 if (ra->mmap_miss > MMAP_LOTSAMISS)
2458 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2459 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2460 ra->size = ra->ra_pages;
2461 ra->async_size = ra->ra_pages / 4;
2462 ra_submit(ra, mapping, file);
2467 * Asynchronous readahead happens when we find the page and PG_readahead,
2468 * so we want to possibly extend the readahead further. We return the file that
2469 * was pinned if we have to drop the mmap_lock in order to do IO.
2471 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2474 struct file *file = vmf->vma->vm_file;
2475 struct file_ra_state *ra = &file->f_ra;
2476 struct address_space *mapping = file->f_mapping;
2477 struct file *fpin = NULL;
2478 pgoff_t offset = vmf->pgoff;
2480 /* If we don't want any read-ahead, don't bother */
2481 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2483 if (ra->mmap_miss > 0)
2485 if (PageReadahead(page)) {
2486 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2487 page_cache_async_readahead(mapping, ra, file,
2488 page, offset, ra->ra_pages);
2494 * filemap_fault - read in file data for page fault handling
2495 * @vmf: struct vm_fault containing details of the fault
2497 * filemap_fault() is invoked via the vma operations vector for a
2498 * mapped memory region to read in file data during a page fault.
2500 * The goto's are kind of ugly, but this streamlines the normal case of having
2501 * it in the page cache, and handles the special cases reasonably without
2502 * having a lot of duplicated code.
2504 * vma->vm_mm->mmap_lock must be held on entry.
2506 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2507 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2509 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2510 * has not been released.
2512 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2514 * Return: bitwise-OR of %VM_FAULT_ codes.
2516 vm_fault_t filemap_fault(struct vm_fault *vmf)
2519 struct file *file = vmf->vma->vm_file;
2520 struct file *fpin = NULL;
2521 struct address_space *mapping = file->f_mapping;
2522 struct file_ra_state *ra = &file->f_ra;
2523 struct inode *inode = mapping->host;
2524 pgoff_t offset = vmf->pgoff;
2529 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2530 if (unlikely(offset >= max_off))
2531 return VM_FAULT_SIGBUS;
2534 * Do we have something in the page cache already?
2536 page = find_get_page(mapping, offset);
2537 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2539 * We found the page, so try async readahead before
2540 * waiting for the lock.
2542 fpin = do_async_mmap_readahead(vmf, page);
2544 /* No page in the page cache at all */
2545 count_vm_event(PGMAJFAULT);
2546 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2547 ret = VM_FAULT_MAJOR;
2548 fpin = do_sync_mmap_readahead(vmf);
2550 page = pagecache_get_page(mapping, offset,
2551 FGP_CREAT|FGP_FOR_MMAP,
2556 return VM_FAULT_OOM;
2560 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2563 /* Did it get truncated? */
2564 if (unlikely(compound_head(page)->mapping != mapping)) {
2569 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2572 * We have a locked page in the page cache, now we need to check
2573 * that it's up-to-date. If not, it is going to be due to an error.
2575 if (unlikely(!PageUptodate(page)))
2576 goto page_not_uptodate;
2579 * We've made it this far and we had to drop our mmap_lock, now is the
2580 * time to return to the upper layer and have it re-find the vma and
2589 * Found the page and have a reference on it.
2590 * We must recheck i_size under page lock.
2592 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2593 if (unlikely(offset >= max_off)) {
2596 return VM_FAULT_SIGBUS;
2600 return ret | VM_FAULT_LOCKED;
2604 * Umm, take care of errors if the page isn't up-to-date.
2605 * Try to re-read it _once_. We do this synchronously,
2606 * because there really aren't any performance issues here
2607 * and we need to check for errors.
2609 ClearPageError(page);
2610 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2611 error = mapping->a_ops->readpage(file, page);
2613 wait_on_page_locked(page);
2614 if (!PageUptodate(page))
2621 if (!error || error == AOP_TRUNCATED_PAGE)
2624 shrink_readahead_size_eio(ra);
2625 return VM_FAULT_SIGBUS;
2629 * We dropped the mmap_lock, we need to return to the fault handler to
2630 * re-find the vma and come back and find our hopefully still populated
2637 return ret | VM_FAULT_RETRY;
2639 EXPORT_SYMBOL(filemap_fault);
2641 void filemap_map_pages(struct vm_fault *vmf,
2642 pgoff_t start_pgoff, pgoff_t end_pgoff)
2644 struct file *file = vmf->vma->vm_file;
2645 struct address_space *mapping = file->f_mapping;
2646 pgoff_t last_pgoff = start_pgoff;
2647 unsigned long max_idx;
2648 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2652 xas_for_each(&xas, page, end_pgoff) {
2653 if (xas_retry(&xas, page))
2655 if (xa_is_value(page))
2659 * Check for a locked page first, as a speculative
2660 * reference may adversely influence page migration.
2662 if (PageLocked(page))
2664 if (!page_cache_get_speculative(page))
2667 /* Has the page moved or been split? */
2668 if (unlikely(page != xas_reload(&xas)))
2670 page = find_subpage(page, xas.xa_index);
2672 if (!PageUptodate(page) ||
2673 PageReadahead(page) ||
2676 if (!trylock_page(page))
2679 if (page->mapping != mapping || !PageUptodate(page))
2682 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2683 if (page->index >= max_idx)
2686 if (file->f_ra.mmap_miss > 0)
2687 file->f_ra.mmap_miss--;
2689 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2691 vmf->pte += xas.xa_index - last_pgoff;
2692 last_pgoff = xas.xa_index;
2693 if (alloc_set_pte(vmf, page))
2702 /* Huge page is mapped? No need to proceed. */
2703 if (pmd_trans_huge(*vmf->pmd))
2708 EXPORT_SYMBOL(filemap_map_pages);
2710 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2712 struct page *page = vmf->page;
2713 struct inode *inode = file_inode(vmf->vma->vm_file);
2714 vm_fault_t ret = VM_FAULT_LOCKED;
2716 sb_start_pagefault(inode->i_sb);
2717 file_update_time(vmf->vma->vm_file);
2719 if (page->mapping != inode->i_mapping) {
2721 ret = VM_FAULT_NOPAGE;
2725 * We mark the page dirty already here so that when freeze is in
2726 * progress, we are guaranteed that writeback during freezing will
2727 * see the dirty page and writeprotect it again.
2729 set_page_dirty(page);
2730 wait_for_stable_page(page);
2732 sb_end_pagefault(inode->i_sb);
2736 const struct vm_operations_struct generic_file_vm_ops = {
2737 .fault = filemap_fault,
2738 .map_pages = filemap_map_pages,
2739 .page_mkwrite = filemap_page_mkwrite,
2742 /* This is used for a general mmap of a disk file */
2744 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2746 struct address_space *mapping = file->f_mapping;
2748 if (!mapping->a_ops->readpage)
2750 file_accessed(file);
2751 vma->vm_ops = &generic_file_vm_ops;
2756 * This is for filesystems which do not implement ->writepage.
2758 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2760 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2762 return generic_file_mmap(file, vma);
2765 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2767 return VM_FAULT_SIGBUS;
2769 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2773 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2777 #endif /* CONFIG_MMU */
2779 EXPORT_SYMBOL(filemap_page_mkwrite);
2780 EXPORT_SYMBOL(generic_file_mmap);
2781 EXPORT_SYMBOL(generic_file_readonly_mmap);
2783 static struct page *wait_on_page_read(struct page *page)
2785 if (!IS_ERR(page)) {
2786 wait_on_page_locked(page);
2787 if (!PageUptodate(page)) {
2789 page = ERR_PTR(-EIO);
2795 static struct page *do_read_cache_page(struct address_space *mapping,
2797 int (*filler)(void *, struct page *),
2804 page = find_get_page(mapping, index);
2806 page = __page_cache_alloc(gfp);
2808 return ERR_PTR(-ENOMEM);
2809 err = add_to_page_cache_lru(page, mapping, index, gfp);
2810 if (unlikely(err)) {
2814 /* Presumably ENOMEM for xarray node */
2815 return ERR_PTR(err);
2820 err = filler(data, page);
2822 err = mapping->a_ops->readpage(data, page);
2826 return ERR_PTR(err);
2829 page = wait_on_page_read(page);
2834 if (PageUptodate(page))
2838 * Page is not up to date and may be locked due one of the following
2839 * case a: Page is being filled and the page lock is held
2840 * case b: Read/write error clearing the page uptodate status
2841 * case c: Truncation in progress (page locked)
2842 * case d: Reclaim in progress
2844 * Case a, the page will be up to date when the page is unlocked.
2845 * There is no need to serialise on the page lock here as the page
2846 * is pinned so the lock gives no additional protection. Even if the
2847 * the page is truncated, the data is still valid if PageUptodate as
2848 * it's a race vs truncate race.
2849 * Case b, the page will not be up to date
2850 * Case c, the page may be truncated but in itself, the data may still
2851 * be valid after IO completes as it's a read vs truncate race. The
2852 * operation must restart if the page is not uptodate on unlock but
2853 * otherwise serialising on page lock to stabilise the mapping gives
2854 * no additional guarantees to the caller as the page lock is
2855 * released before return.
2856 * Case d, similar to truncation. If reclaim holds the page lock, it
2857 * will be a race with remove_mapping that determines if the mapping
2858 * is valid on unlock but otherwise the data is valid and there is
2859 * no need to serialise with page lock.
2861 * As the page lock gives no additional guarantee, we optimistically
2862 * wait on the page to be unlocked and check if it's up to date and
2863 * use the page if it is. Otherwise, the page lock is required to
2864 * distinguish between the different cases. The motivation is that we
2865 * avoid spurious serialisations and wakeups when multiple processes
2866 * wait on the same page for IO to complete.
2868 wait_on_page_locked(page);
2869 if (PageUptodate(page))
2872 /* Distinguish between all the cases under the safety of the lock */
2875 /* Case c or d, restart the operation */
2876 if (!page->mapping) {
2882 /* Someone else locked and filled the page in a very small window */
2883 if (PageUptodate(page)) {
2889 * A previous I/O error may have been due to temporary
2891 * Clear page error before actual read, PG_error will be
2892 * set again if read page fails.
2894 ClearPageError(page);
2898 mark_page_accessed(page);
2903 * read_cache_page - read into page cache, fill it if needed
2904 * @mapping: the page's address_space
2905 * @index: the page index
2906 * @filler: function to perform the read
2907 * @data: first arg to filler(data, page) function, often left as NULL
2909 * Read into the page cache. If a page already exists, and PageUptodate() is
2910 * not set, try to fill the page and wait for it to become unlocked.
2912 * If the page does not get brought uptodate, return -EIO.
2914 * Return: up to date page on success, ERR_PTR() on failure.
2916 struct page *read_cache_page(struct address_space *mapping,
2918 int (*filler)(void *, struct page *),
2921 return do_read_cache_page(mapping, index, filler, data,
2922 mapping_gfp_mask(mapping));
2924 EXPORT_SYMBOL(read_cache_page);
2927 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2928 * @mapping: the page's address_space
2929 * @index: the page index
2930 * @gfp: the page allocator flags to use if allocating
2932 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2933 * any new page allocations done using the specified allocation flags.
2935 * If the page does not get brought uptodate, return -EIO.
2937 * Return: up to date page on success, ERR_PTR() on failure.
2939 struct page *read_cache_page_gfp(struct address_space *mapping,
2943 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2945 EXPORT_SYMBOL(read_cache_page_gfp);
2948 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2949 * LFS limits. If pos is under the limit it becomes a short access. If it
2950 * exceeds the limit we return -EFBIG.
2952 static int generic_write_check_limits(struct file *file, loff_t pos,
2955 struct inode *inode = file->f_mapping->host;
2956 loff_t max_size = inode->i_sb->s_maxbytes;
2957 loff_t limit = rlimit(RLIMIT_FSIZE);
2959 if (limit != RLIM_INFINITY) {
2961 send_sig(SIGXFSZ, current, 0);
2964 *count = min(*count, limit - pos);
2967 if (!(file->f_flags & O_LARGEFILE))
2968 max_size = MAX_NON_LFS;
2970 if (unlikely(pos >= max_size))
2973 *count = min(*count, max_size - pos);
2979 * Performs necessary checks before doing a write
2981 * Can adjust writing position or amount of bytes to write.
2982 * Returns appropriate error code that caller should return or
2983 * zero in case that write should be allowed.
2985 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2987 struct file *file = iocb->ki_filp;
2988 struct inode *inode = file->f_mapping->host;
2992 if (IS_SWAPFILE(inode))
2995 if (!iov_iter_count(from))
2998 /* FIXME: this is for backwards compatibility with 2.4 */
2999 if (iocb->ki_flags & IOCB_APPEND)
3000 iocb->ki_pos = i_size_read(inode);
3002 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3005 count = iov_iter_count(from);
3006 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3010 iov_iter_truncate(from, count);
3011 return iov_iter_count(from);
3013 EXPORT_SYMBOL(generic_write_checks);
3016 * Performs necessary checks before doing a clone.
3018 * Can adjust amount of bytes to clone via @req_count argument.
3019 * Returns appropriate error code that caller should return or
3020 * zero in case the clone should be allowed.
3022 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3023 struct file *file_out, loff_t pos_out,
3024 loff_t *req_count, unsigned int remap_flags)
3026 struct inode *inode_in = file_in->f_mapping->host;
3027 struct inode *inode_out = file_out->f_mapping->host;
3028 uint64_t count = *req_count;
3030 loff_t size_in, size_out;
3031 loff_t bs = inode_out->i_sb->s_blocksize;
3034 /* The start of both ranges must be aligned to an fs block. */
3035 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3038 /* Ensure offsets don't wrap. */
3039 if (pos_in + count < pos_in || pos_out + count < pos_out)
3042 size_in = i_size_read(inode_in);
3043 size_out = i_size_read(inode_out);
3045 /* Dedupe requires both ranges to be within EOF. */
3046 if ((remap_flags & REMAP_FILE_DEDUP) &&
3047 (pos_in >= size_in || pos_in + count > size_in ||
3048 pos_out >= size_out || pos_out + count > size_out))
3051 /* Ensure the infile range is within the infile. */
3052 if (pos_in >= size_in)
3054 count = min(count, size_in - (uint64_t)pos_in);
3056 ret = generic_write_check_limits(file_out, pos_out, &count);
3061 * If the user wanted us to link to the infile's EOF, round up to the
3062 * next block boundary for this check.
3064 * Otherwise, make sure the count is also block-aligned, having
3065 * already confirmed the starting offsets' block alignment.
3067 if (pos_in + count == size_in) {
3068 bcount = ALIGN(size_in, bs) - pos_in;
3070 if (!IS_ALIGNED(count, bs))
3071 count = ALIGN_DOWN(count, bs);
3075 /* Don't allow overlapped cloning within the same file. */
3076 if (inode_in == inode_out &&
3077 pos_out + bcount > pos_in &&
3078 pos_out < pos_in + bcount)
3082 * We shortened the request but the caller can't deal with that, so
3083 * bounce the request back to userspace.
3085 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3094 * Performs common checks before doing a file copy/clone
3095 * from @file_in to @file_out.
3097 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3099 struct inode *inode_in = file_inode(file_in);
3100 struct inode *inode_out = file_inode(file_out);
3102 /* Don't copy dirs, pipes, sockets... */
3103 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3105 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3108 if (!(file_in->f_mode & FMODE_READ) ||
3109 !(file_out->f_mode & FMODE_WRITE) ||
3110 (file_out->f_flags & O_APPEND))
3117 * Performs necessary checks before doing a file copy
3119 * Can adjust amount of bytes to copy via @req_count argument.
3120 * Returns appropriate error code that caller should return or
3121 * zero in case the copy should be allowed.
3123 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3124 struct file *file_out, loff_t pos_out,
3125 size_t *req_count, unsigned int flags)
3127 struct inode *inode_in = file_inode(file_in);
3128 struct inode *inode_out = file_inode(file_out);
3129 uint64_t count = *req_count;
3133 ret = generic_file_rw_checks(file_in, file_out);
3137 /* Don't touch certain kinds of inodes */
3138 if (IS_IMMUTABLE(inode_out))
3141 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3144 /* Ensure offsets don't wrap. */
3145 if (pos_in + count < pos_in || pos_out + count < pos_out)
3148 /* Shorten the copy to EOF */
3149 size_in = i_size_read(inode_in);
3150 if (pos_in >= size_in)
3153 count = min(count, size_in - (uint64_t)pos_in);
3155 ret = generic_write_check_limits(file_out, pos_out, &count);
3159 /* Don't allow overlapped copying within the same file. */
3160 if (inode_in == inode_out &&
3161 pos_out + count > pos_in &&
3162 pos_out < pos_in + count)
3169 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3170 loff_t pos, unsigned len, unsigned flags,
3171 struct page **pagep, void **fsdata)
3173 const struct address_space_operations *aops = mapping->a_ops;
3175 return aops->write_begin(file, mapping, pos, len, flags,
3178 EXPORT_SYMBOL(pagecache_write_begin);
3180 int pagecache_write_end(struct file *file, struct address_space *mapping,
3181 loff_t pos, unsigned len, unsigned copied,
3182 struct page *page, void *fsdata)
3184 const struct address_space_operations *aops = mapping->a_ops;
3186 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3188 EXPORT_SYMBOL(pagecache_write_end);
3191 * Warn about a page cache invalidation failure during a direct I/O write.
3193 void dio_warn_stale_pagecache(struct file *filp)
3195 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3197 struct inode *inode = file_inode(filp);
3200 errseq_set(&inode->i_mapping->wb_err, -EIO);
3201 if (__ratelimit(&_rs)) {
3202 path = file_path(filp, pathname, sizeof(pathname));
3205 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3206 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3212 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3214 struct file *file = iocb->ki_filp;
3215 struct address_space *mapping = file->f_mapping;
3216 struct inode *inode = mapping->host;
3217 loff_t pos = iocb->ki_pos;
3222 write_len = iov_iter_count(from);
3223 end = (pos + write_len - 1) >> PAGE_SHIFT;
3225 if (iocb->ki_flags & IOCB_NOWAIT) {
3226 /* If there are pages to writeback, return */
3227 if (filemap_range_has_page(inode->i_mapping, pos,
3228 pos + write_len - 1))
3231 written = filemap_write_and_wait_range(mapping, pos,
3232 pos + write_len - 1);
3238 * After a write we want buffered reads to be sure to go to disk to get
3239 * the new data. We invalidate clean cached page from the region we're
3240 * about to write. We do this *before* the write so that we can return
3241 * without clobbering -EIOCBQUEUED from ->direct_IO().
3243 written = invalidate_inode_pages2_range(mapping,
3244 pos >> PAGE_SHIFT, end);
3246 * If a page can not be invalidated, return 0 to fall back
3247 * to buffered write.
3250 if (written == -EBUSY)
3255 written = mapping->a_ops->direct_IO(iocb, from);
3258 * Finally, try again to invalidate clean pages which might have been
3259 * cached by non-direct readahead, or faulted in by get_user_pages()
3260 * if the source of the write was an mmap'ed region of the file
3261 * we're writing. Either one is a pretty crazy thing to do,
3262 * so we don't support it 100%. If this invalidation
3263 * fails, tough, the write still worked...
3265 * Most of the time we do not need this since dio_complete() will do
3266 * the invalidation for us. However there are some file systems that
3267 * do not end up with dio_complete() being called, so let's not break
3268 * them by removing it completely.
3270 * Noticeable example is a blkdev_direct_IO().
3272 * Skip invalidation for async writes or if mapping has no pages.
3274 if (written > 0 && mapping->nrpages &&
3275 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3276 dio_warn_stale_pagecache(file);
3280 write_len -= written;
3281 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3282 i_size_write(inode, pos);
3283 mark_inode_dirty(inode);
3287 iov_iter_revert(from, write_len - iov_iter_count(from));
3291 EXPORT_SYMBOL(generic_file_direct_write);
3294 * Find or create a page at the given pagecache position. Return the locked
3295 * page. This function is specifically for buffered writes.
3297 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3298 pgoff_t index, unsigned flags)
3301 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3303 if (flags & AOP_FLAG_NOFS)
3304 fgp_flags |= FGP_NOFS;
3306 page = pagecache_get_page(mapping, index, fgp_flags,
3307 mapping_gfp_mask(mapping));
3309 wait_for_stable_page(page);
3313 EXPORT_SYMBOL(grab_cache_page_write_begin);
3315 ssize_t generic_perform_write(struct file *file,
3316 struct iov_iter *i, loff_t pos)
3318 struct address_space *mapping = file->f_mapping;
3319 const struct address_space_operations *a_ops = mapping->a_ops;
3321 ssize_t written = 0;
3322 unsigned int flags = 0;
3326 unsigned long offset; /* Offset into pagecache page */
3327 unsigned long bytes; /* Bytes to write to page */
3328 size_t copied; /* Bytes copied from user */
3331 offset = (pos & (PAGE_SIZE - 1));
3332 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3337 * Bring in the user page that we will copy from _first_.
3338 * Otherwise there's a nasty deadlock on copying from the
3339 * same page as we're writing to, without it being marked
3342 * Not only is this an optimisation, but it is also required
3343 * to check that the address is actually valid, when atomic
3344 * usercopies are used, below.
3346 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3351 if (fatal_signal_pending(current)) {
3356 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3358 if (unlikely(status < 0))
3361 if (mapping_writably_mapped(mapping))
3362 flush_dcache_page(page);
3364 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3365 flush_dcache_page(page);
3367 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3369 if (unlikely(status < 0))
3375 iov_iter_advance(i, copied);
3376 if (unlikely(copied == 0)) {
3378 * If we were unable to copy any data at all, we must
3379 * fall back to a single segment length write.
3381 * If we didn't fallback here, we could livelock
3382 * because not all segments in the iov can be copied at
3383 * once without a pagefault.
3385 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3386 iov_iter_single_seg_count(i));
3392 balance_dirty_pages_ratelimited(mapping);
3393 } while (iov_iter_count(i));
3395 return written ? written : status;
3397 EXPORT_SYMBOL(generic_perform_write);
3400 * __generic_file_write_iter - write data to a file
3401 * @iocb: IO state structure (file, offset, etc.)
3402 * @from: iov_iter with data to write
3404 * This function does all the work needed for actually writing data to a
3405 * file. It does all basic checks, removes SUID from the file, updates
3406 * modification times and calls proper subroutines depending on whether we
3407 * do direct IO or a standard buffered write.
3409 * It expects i_mutex to be grabbed unless we work on a block device or similar
3410 * object which does not need locking at all.
3412 * This function does *not* take care of syncing data in case of O_SYNC write.
3413 * A caller has to handle it. This is mainly due to the fact that we want to
3414 * avoid syncing under i_mutex.
3417 * * number of bytes written, even for truncated writes
3418 * * negative error code if no data has been written at all
3420 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3422 struct file *file = iocb->ki_filp;
3423 struct address_space * mapping = file->f_mapping;
3424 struct inode *inode = mapping->host;
3425 ssize_t written = 0;
3429 /* We can write back this queue in page reclaim */
3430 current->backing_dev_info = inode_to_bdi(inode);
3431 err = file_remove_privs(file);
3435 err = file_update_time(file);
3439 if (iocb->ki_flags & IOCB_DIRECT) {
3440 loff_t pos, endbyte;
3442 written = generic_file_direct_write(iocb, from);
3444 * If the write stopped short of completing, fall back to
3445 * buffered writes. Some filesystems do this for writes to
3446 * holes, for example. For DAX files, a buffered write will
3447 * not succeed (even if it did, DAX does not handle dirty
3448 * page-cache pages correctly).
3450 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3453 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3455 * If generic_perform_write() returned a synchronous error
3456 * then we want to return the number of bytes which were
3457 * direct-written, or the error code if that was zero. Note
3458 * that this differs from normal direct-io semantics, which
3459 * will return -EFOO even if some bytes were written.
3461 if (unlikely(status < 0)) {
3466 * We need to ensure that the page cache pages are written to
3467 * disk and invalidated to preserve the expected O_DIRECT
3470 endbyte = pos + status - 1;
3471 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3473 iocb->ki_pos = endbyte + 1;
3475 invalidate_mapping_pages(mapping,
3477 endbyte >> PAGE_SHIFT);
3480 * We don't know how much we wrote, so just return
3481 * the number of bytes which were direct-written
3485 written = generic_perform_write(file, from, iocb->ki_pos);
3486 if (likely(written > 0))
3487 iocb->ki_pos += written;
3490 current->backing_dev_info = NULL;
3491 return written ? written : err;
3493 EXPORT_SYMBOL(__generic_file_write_iter);
3496 * generic_file_write_iter - write data to a file
3497 * @iocb: IO state structure
3498 * @from: iov_iter with data to write
3500 * This is a wrapper around __generic_file_write_iter() to be used by most
3501 * filesystems. It takes care of syncing the file in case of O_SYNC file
3502 * and acquires i_mutex as needed.
3504 * * negative error code if no data has been written at all of
3505 * vfs_fsync_range() failed for a synchronous write
3506 * * number of bytes written, even for truncated writes
3508 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3510 struct file *file = iocb->ki_filp;
3511 struct inode *inode = file->f_mapping->host;
3515 ret = generic_write_checks(iocb, from);
3517 ret = __generic_file_write_iter(iocb, from);
3518 inode_unlock(inode);
3521 ret = generic_write_sync(iocb, ret);
3524 EXPORT_SYMBOL(generic_file_write_iter);
3527 * try_to_release_page() - release old fs-specific metadata on a page
3529 * @page: the page which the kernel is trying to free
3530 * @gfp_mask: memory allocation flags (and I/O mode)
3532 * The address_space is to try to release any data against the page
3533 * (presumably at page->private).
3535 * This may also be called if PG_fscache is set on a page, indicating that the
3536 * page is known to the local caching routines.
3538 * The @gfp_mask argument specifies whether I/O may be performed to release
3539 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3541 * Return: %1 if the release was successful, otherwise return zero.
3543 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3545 struct address_space * const mapping = page->mapping;
3547 BUG_ON(!PageLocked(page));
3548 if (PageWriteback(page))
3551 if (mapping && mapping->a_ops->releasepage)
3552 return mapping->a_ops->releasepage(page, gfp_mask);
3553 return try_to_free_buffers(page);
3556 EXPORT_SYMBOL(try_to_release_page);