1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
35 * The support of additional filter rules compares (>, <, >=, <=) was
39 * filesystem information.
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
51 #include <linux/namei.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
93 /* number of audit rules */
96 /* determines whether we collect data for signals sent */
99 struct audit_aux_data {
100 struct audit_aux_data *next;
104 #define AUDIT_AUX_IPCPERM 0
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
133 struct audit_nfcfgop_tab {
134 enum audit_nfcfgop op;
138 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
139 { AUDIT_XT_OP_REGISTER, "register" },
140 { AUDIT_XT_OP_REPLACE, "replace" },
141 { AUDIT_XT_OP_UNREGISTER, "unregister" },
144 static int audit_match_perm(struct audit_context *ctx, int mask)
151 switch (audit_classify_syscall(ctx->arch, n)) {
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE, n))
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ, n))
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR, n))
163 case 1: /* 32bit on biarch */
164 if ((mask & AUDIT_PERM_WRITE) &&
165 audit_match_class(AUDIT_CLASS_WRITE_32, n))
167 if ((mask & AUDIT_PERM_READ) &&
168 audit_match_class(AUDIT_CLASS_READ_32, n))
170 if ((mask & AUDIT_PERM_ATTR) &&
171 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
175 return mask & ACC_MODE(ctx->argv[1]);
177 return mask & ACC_MODE(ctx->argv[2]);
178 case 4: /* socketcall */
179 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
181 return mask & AUDIT_PERM_EXEC;
187 static int audit_match_filetype(struct audit_context *ctx, int val)
189 struct audit_names *n;
190 umode_t mode = (umode_t)val;
195 list_for_each_entry(n, &ctx->names_list, list) {
196 if ((n->ino != AUDIT_INO_UNSET) &&
197 ((n->mode & S_IFMT) == mode))
205 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
206 * ->first_trees points to its beginning, ->trees - to the current end of data.
207 * ->tree_count is the number of free entries in array pointed to by ->trees.
208 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
209 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
210 * it's going to remain 1-element for almost any setup) until we free context itself.
211 * References in it _are_ dropped - at the same time we free/drop aux stuff.
214 static void audit_set_auditable(struct audit_context *ctx)
218 ctx->current_state = AUDIT_RECORD_CONTEXT;
222 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
224 struct audit_tree_refs *p = ctx->trees;
225 int left = ctx->tree_count;
227 p->c[--left] = chunk;
228 ctx->tree_count = left;
237 ctx->tree_count = 30;
243 static int grow_tree_refs(struct audit_context *ctx)
245 struct audit_tree_refs *p = ctx->trees;
246 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
252 p->next = ctx->trees;
254 ctx->first_trees = ctx->trees;
255 ctx->tree_count = 31;
259 static void unroll_tree_refs(struct audit_context *ctx,
260 struct audit_tree_refs *p, int count)
262 struct audit_tree_refs *q;
265 /* we started with empty chain */
266 p = ctx->first_trees;
268 /* if the very first allocation has failed, nothing to do */
273 for (q = p; q != ctx->trees; q = q->next, n = 31) {
275 audit_put_chunk(q->c[n]);
279 while (n-- > ctx->tree_count) {
280 audit_put_chunk(q->c[n]);
284 ctx->tree_count = count;
287 static void free_tree_refs(struct audit_context *ctx)
289 struct audit_tree_refs *p, *q;
290 for (p = ctx->first_trees; p; p = q) {
296 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
298 struct audit_tree_refs *p;
303 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
304 for (n = 0; n < 31; n++)
305 if (audit_tree_match(p->c[n], tree))
310 for (n = ctx->tree_count; n < 31; n++)
311 if (audit_tree_match(p->c[n], tree))
317 static int audit_compare_uid(kuid_t uid,
318 struct audit_names *name,
319 struct audit_field *f,
320 struct audit_context *ctx)
322 struct audit_names *n;
326 rc = audit_uid_comparator(uid, f->op, name->uid);
332 list_for_each_entry(n, &ctx->names_list, list) {
333 rc = audit_uid_comparator(uid, f->op, n->uid);
341 static int audit_compare_gid(kgid_t gid,
342 struct audit_names *name,
343 struct audit_field *f,
344 struct audit_context *ctx)
346 struct audit_names *n;
350 rc = audit_gid_comparator(gid, f->op, name->gid);
356 list_for_each_entry(n, &ctx->names_list, list) {
357 rc = audit_gid_comparator(gid, f->op, n->gid);
365 static int audit_field_compare(struct task_struct *tsk,
366 const struct cred *cred,
367 struct audit_field *f,
368 struct audit_context *ctx,
369 struct audit_names *name)
372 /* process to file object comparisons */
373 case AUDIT_COMPARE_UID_TO_OBJ_UID:
374 return audit_compare_uid(cred->uid, name, f, ctx);
375 case AUDIT_COMPARE_GID_TO_OBJ_GID:
376 return audit_compare_gid(cred->gid, name, f, ctx);
377 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
378 return audit_compare_uid(cred->euid, name, f, ctx);
379 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
380 return audit_compare_gid(cred->egid, name, f, ctx);
381 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
382 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
383 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
384 return audit_compare_uid(cred->suid, name, f, ctx);
385 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
386 return audit_compare_gid(cred->sgid, name, f, ctx);
387 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
388 return audit_compare_uid(cred->fsuid, name, f, ctx);
389 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
390 return audit_compare_gid(cred->fsgid, name, f, ctx);
391 /* uid comparisons */
392 case AUDIT_COMPARE_UID_TO_AUID:
393 return audit_uid_comparator(cred->uid, f->op,
394 audit_get_loginuid(tsk));
395 case AUDIT_COMPARE_UID_TO_EUID:
396 return audit_uid_comparator(cred->uid, f->op, cred->euid);
397 case AUDIT_COMPARE_UID_TO_SUID:
398 return audit_uid_comparator(cred->uid, f->op, cred->suid);
399 case AUDIT_COMPARE_UID_TO_FSUID:
400 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
401 /* auid comparisons */
402 case AUDIT_COMPARE_AUID_TO_EUID:
403 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
405 case AUDIT_COMPARE_AUID_TO_SUID:
406 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
408 case AUDIT_COMPARE_AUID_TO_FSUID:
409 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
411 /* euid comparisons */
412 case AUDIT_COMPARE_EUID_TO_SUID:
413 return audit_uid_comparator(cred->euid, f->op, cred->suid);
414 case AUDIT_COMPARE_EUID_TO_FSUID:
415 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
416 /* suid comparisons */
417 case AUDIT_COMPARE_SUID_TO_FSUID:
418 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
419 /* gid comparisons */
420 case AUDIT_COMPARE_GID_TO_EGID:
421 return audit_gid_comparator(cred->gid, f->op, cred->egid);
422 case AUDIT_COMPARE_GID_TO_SGID:
423 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
424 case AUDIT_COMPARE_GID_TO_FSGID:
425 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
426 /* egid comparisons */
427 case AUDIT_COMPARE_EGID_TO_SGID:
428 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
429 case AUDIT_COMPARE_EGID_TO_FSGID:
430 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
431 /* sgid comparison */
432 case AUDIT_COMPARE_SGID_TO_FSGID:
433 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
435 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
441 /* Determine if any context name data matches a rule's watch data */
442 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
445 * If task_creation is true, this is an explicit indication that we are
446 * filtering a task rule at task creation time. This and tsk == current are
447 * the only situations where tsk->cred may be accessed without an rcu read lock.
449 static int audit_filter_rules(struct task_struct *tsk,
450 struct audit_krule *rule,
451 struct audit_context *ctx,
452 struct audit_names *name,
453 enum audit_state *state,
456 const struct cred *cred;
459 unsigned int sessionid;
461 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
463 for (i = 0; i < rule->field_count; i++) {
464 struct audit_field *f = &rule->fields[i];
465 struct audit_names *n;
471 pid = task_tgid_nr(tsk);
472 result = audit_comparator(pid, f->op, f->val);
477 ctx->ppid = task_ppid_nr(tsk);
478 result = audit_comparator(ctx->ppid, f->op, f->val);
482 result = audit_exe_compare(tsk, rule->exe);
483 if (f->op == Audit_not_equal)
487 result = audit_uid_comparator(cred->uid, f->op, f->uid);
490 result = audit_uid_comparator(cred->euid, f->op, f->uid);
493 result = audit_uid_comparator(cred->suid, f->op, f->uid);
496 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
499 result = audit_gid_comparator(cred->gid, f->op, f->gid);
500 if (f->op == Audit_equal) {
502 result = groups_search(cred->group_info, f->gid);
503 } else if (f->op == Audit_not_equal) {
505 result = !groups_search(cred->group_info, f->gid);
509 result = audit_gid_comparator(cred->egid, f->op, f->gid);
510 if (f->op == Audit_equal) {
512 result = groups_search(cred->group_info, f->gid);
513 } else if (f->op == Audit_not_equal) {
515 result = !groups_search(cred->group_info, f->gid);
519 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
522 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
524 case AUDIT_SESSIONID:
525 sessionid = audit_get_sessionid(tsk);
526 result = audit_comparator(sessionid, f->op, f->val);
529 result = audit_comparator(tsk->personality, f->op, f->val);
533 result = audit_comparator(ctx->arch, f->op, f->val);
537 if (ctx && ctx->return_valid)
538 result = audit_comparator(ctx->return_code, f->op, f->val);
541 if (ctx && ctx->return_valid) {
543 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
545 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
550 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
551 audit_comparator(MAJOR(name->rdev), f->op, f->val))
554 list_for_each_entry(n, &ctx->names_list, list) {
555 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
556 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
565 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
566 audit_comparator(MINOR(name->rdev), f->op, f->val))
569 list_for_each_entry(n, &ctx->names_list, list) {
570 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
571 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
580 result = audit_comparator(name->ino, f->op, f->val);
582 list_for_each_entry(n, &ctx->names_list, list) {
583 if (audit_comparator(n->ino, f->op, f->val)) {
592 result = audit_uid_comparator(name->uid, f->op, f->uid);
594 list_for_each_entry(n, &ctx->names_list, list) {
595 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
604 result = audit_gid_comparator(name->gid, f->op, f->gid);
606 list_for_each_entry(n, &ctx->names_list, list) {
607 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
616 result = audit_watch_compare(rule->watch,
619 if (f->op == Audit_not_equal)
625 result = match_tree_refs(ctx, rule->tree);
626 if (f->op == Audit_not_equal)
631 result = audit_uid_comparator(audit_get_loginuid(tsk),
634 case AUDIT_LOGINUID_SET:
635 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
637 case AUDIT_SADDR_FAM:
639 result = audit_comparator(ctx->sockaddr->ss_family,
642 case AUDIT_SUBJ_USER:
643 case AUDIT_SUBJ_ROLE:
644 case AUDIT_SUBJ_TYPE:
647 /* NOTE: this may return negative values indicating
648 a temporary error. We simply treat this as a
649 match for now to avoid losing information that
650 may be wanted. An error message will also be
654 security_task_getsecid(tsk, &sid);
657 result = security_audit_rule_match(sid, f->type,
665 case AUDIT_OBJ_LEV_LOW:
666 case AUDIT_OBJ_LEV_HIGH:
667 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
670 /* Find files that match */
672 result = security_audit_rule_match(
678 list_for_each_entry(n, &ctx->names_list, list) {
679 if (security_audit_rule_match(
689 /* Find ipc objects that match */
690 if (!ctx || ctx->type != AUDIT_IPC)
692 if (security_audit_rule_match(ctx->ipc.osid,
703 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
705 case AUDIT_FILTERKEY:
706 /* ignore this field for filtering */
710 result = audit_match_perm(ctx, f->val);
711 if (f->op == Audit_not_equal)
715 result = audit_match_filetype(ctx, f->val);
716 if (f->op == Audit_not_equal)
719 case AUDIT_FIELD_COMPARE:
720 result = audit_field_compare(tsk, cred, f, ctx, name);
728 if (rule->prio <= ctx->prio)
730 if (rule->filterkey) {
731 kfree(ctx->filterkey);
732 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
734 ctx->prio = rule->prio;
736 switch (rule->action) {
738 *state = AUDIT_DISABLED;
741 *state = AUDIT_RECORD_CONTEXT;
747 /* At process creation time, we can determine if system-call auditing is
748 * completely disabled for this task. Since we only have the task
749 * structure at this point, we can only check uid and gid.
751 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
753 struct audit_entry *e;
754 enum audit_state state;
757 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
758 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
760 if (state == AUDIT_RECORD_CONTEXT)
761 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
767 return AUDIT_BUILD_CONTEXT;
770 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
774 if (val > 0xffffffff)
777 word = AUDIT_WORD(val);
778 if (word >= AUDIT_BITMASK_SIZE)
781 bit = AUDIT_BIT(val);
783 return rule->mask[word] & bit;
786 /* At syscall entry and exit time, this filter is called if the
787 * audit_state is not low enough that auditing cannot take place, but is
788 * also not high enough that we already know we have to write an audit
789 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
791 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
792 struct audit_context *ctx,
793 struct list_head *list)
795 struct audit_entry *e;
796 enum audit_state state;
798 if (auditd_test_task(tsk))
799 return AUDIT_DISABLED;
802 list_for_each_entry_rcu(e, list, list) {
803 if (audit_in_mask(&e->rule, ctx->major) &&
804 audit_filter_rules(tsk, &e->rule, ctx, NULL,
807 ctx->current_state = state;
812 return AUDIT_BUILD_CONTEXT;
816 * Given an audit_name check the inode hash table to see if they match.
817 * Called holding the rcu read lock to protect the use of audit_inode_hash
819 static int audit_filter_inode_name(struct task_struct *tsk,
820 struct audit_names *n,
821 struct audit_context *ctx) {
822 int h = audit_hash_ino((u32)n->ino);
823 struct list_head *list = &audit_inode_hash[h];
824 struct audit_entry *e;
825 enum audit_state state;
827 list_for_each_entry_rcu(e, list, list) {
828 if (audit_in_mask(&e->rule, ctx->major) &&
829 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
830 ctx->current_state = state;
837 /* At syscall exit time, this filter is called if any audit_names have been
838 * collected during syscall processing. We only check rules in sublists at hash
839 * buckets applicable to the inode numbers in audit_names.
840 * Regarding audit_state, same rules apply as for audit_filter_syscall().
842 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
844 struct audit_names *n;
846 if (auditd_test_task(tsk))
851 list_for_each_entry(n, &ctx->names_list, list) {
852 if (audit_filter_inode_name(tsk, n, ctx))
858 static inline void audit_proctitle_free(struct audit_context *context)
860 kfree(context->proctitle.value);
861 context->proctitle.value = NULL;
862 context->proctitle.len = 0;
865 static inline void audit_free_module(struct audit_context *context)
867 if (context->type == AUDIT_KERN_MODULE) {
868 kfree(context->module.name);
869 context->module.name = NULL;
872 static inline void audit_free_names(struct audit_context *context)
874 struct audit_names *n, *next;
876 list_for_each_entry_safe(n, next, &context->names_list, list) {
883 context->name_count = 0;
884 path_put(&context->pwd);
885 context->pwd.dentry = NULL;
886 context->pwd.mnt = NULL;
889 static inline void audit_free_aux(struct audit_context *context)
891 struct audit_aux_data *aux;
893 while ((aux = context->aux)) {
894 context->aux = aux->next;
897 while ((aux = context->aux_pids)) {
898 context->aux_pids = aux->next;
903 static inline struct audit_context *audit_alloc_context(enum audit_state state)
905 struct audit_context *context;
907 context = kzalloc(sizeof(*context), GFP_KERNEL);
910 context->state = state;
911 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
912 INIT_LIST_HEAD(&context->killed_trees);
913 INIT_LIST_HEAD(&context->names_list);
918 * audit_alloc - allocate an audit context block for a task
921 * Filter on the task information and allocate a per-task audit context
922 * if necessary. Doing so turns on system call auditing for the
923 * specified task. This is called from copy_process, so no lock is
926 int audit_alloc(struct task_struct *tsk)
928 struct audit_context *context;
929 enum audit_state state;
932 if (likely(!audit_ever_enabled))
933 return 0; /* Return if not auditing. */
935 state = audit_filter_task(tsk, &key);
936 if (state == AUDIT_DISABLED) {
937 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
941 if (!(context = audit_alloc_context(state))) {
943 audit_log_lost("out of memory in audit_alloc");
946 context->filterkey = key;
948 audit_set_context(tsk, context);
949 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
953 static inline void audit_free_context(struct audit_context *context)
955 audit_free_module(context);
956 audit_free_names(context);
957 unroll_tree_refs(context, NULL, 0);
958 free_tree_refs(context);
959 audit_free_aux(context);
960 kfree(context->filterkey);
961 kfree(context->sockaddr);
962 audit_proctitle_free(context);
966 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
967 kuid_t auid, kuid_t uid, unsigned int sessionid,
970 struct audit_buffer *ab;
975 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
979 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
980 from_kuid(&init_user_ns, auid),
981 from_kuid(&init_user_ns, uid), sessionid);
983 if (security_secid_to_secctx(sid, &ctx, &len)) {
984 audit_log_format(ab, " obj=(none)");
987 audit_log_format(ab, " obj=%s", ctx);
988 security_release_secctx(ctx, len);
991 audit_log_format(ab, " ocomm=");
992 audit_log_untrustedstring(ab, comm);
998 static void audit_log_execve_info(struct audit_context *context,
999 struct audit_buffer **ab)
1013 const char __user *p = (const char __user *)current->mm->arg_start;
1015 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1016 * data we put in the audit record for this argument (see the
1017 * code below) ... at this point in time 96 is plenty */
1020 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1021 * current value of 7500 is not as important as the fact that it
1022 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1023 * room if we go over a little bit in the logging below */
1024 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1025 len_max = MAX_EXECVE_AUDIT_LEN;
1027 /* scratch buffer to hold the userspace args */
1028 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1030 audit_panic("out of memory for argv string");
1035 audit_log_format(*ab, "argc=%d", context->execve.argc);
1040 require_data = true;
1045 /* NOTE: we don't ever want to trust this value for anything
1046 * serious, but the audit record format insists we
1047 * provide an argument length for really long arguments,
1048 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1049 * to use strncpy_from_user() to obtain this value for
1050 * recording in the log, although we don't use it
1051 * anywhere here to avoid a double-fetch problem */
1053 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1055 /* read more data from userspace */
1057 /* can we make more room in the buffer? */
1058 if (buf != buf_head) {
1059 memmove(buf_head, buf, len_buf);
1063 /* fetch as much as we can of the argument */
1064 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1066 if (len_tmp == -EFAULT) {
1067 /* unable to copy from userspace */
1068 send_sig(SIGKILL, current, 0);
1070 } else if (len_tmp == (len_max - len_buf)) {
1071 /* buffer is not large enough */
1072 require_data = true;
1073 /* NOTE: if we are going to span multiple
1074 * buffers force the encoding so we stand
1075 * a chance at a sane len_full value and
1076 * consistent record encoding */
1078 len_full = len_full * 2;
1081 require_data = false;
1083 encode = audit_string_contains_control(
1085 /* try to use a trusted value for len_full */
1086 if (len_full < len_max)
1087 len_full = (encode ?
1088 len_tmp * 2 : len_tmp);
1092 buf_head[len_buf] = '\0';
1094 /* length of the buffer in the audit record? */
1095 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1098 /* write as much as we can to the audit log */
1100 /* NOTE: some magic numbers here - basically if we
1101 * can't fit a reasonable amount of data into the
1102 * existing audit buffer, flush it and start with
1104 if ((sizeof(abuf) + 8) > len_rem) {
1107 *ab = audit_log_start(context,
1108 GFP_KERNEL, AUDIT_EXECVE);
1113 /* create the non-arg portion of the arg record */
1115 if (require_data || (iter > 0) ||
1116 ((len_abuf + sizeof(abuf)) > len_rem)) {
1118 len_tmp += snprintf(&abuf[len_tmp],
1119 sizeof(abuf) - len_tmp,
1123 len_tmp += snprintf(&abuf[len_tmp],
1124 sizeof(abuf) - len_tmp,
1125 " a%d[%d]=", arg, iter++);
1127 len_tmp += snprintf(&abuf[len_tmp],
1128 sizeof(abuf) - len_tmp,
1130 WARN_ON(len_tmp >= sizeof(abuf));
1131 abuf[sizeof(abuf) - 1] = '\0';
1133 /* log the arg in the audit record */
1134 audit_log_format(*ab, "%s", abuf);
1138 if (len_abuf > len_rem)
1139 len_tmp = len_rem / 2; /* encoding */
1140 audit_log_n_hex(*ab, buf, len_tmp);
1141 len_rem -= len_tmp * 2;
1142 len_abuf -= len_tmp * 2;
1144 if (len_abuf > len_rem)
1145 len_tmp = len_rem - 2; /* quotes */
1146 audit_log_n_string(*ab, buf, len_tmp);
1147 len_rem -= len_tmp + 2;
1148 /* don't subtract the "2" because we still need
1149 * to add quotes to the remaining string */
1150 len_abuf -= len_tmp;
1156 /* ready to move to the next argument? */
1157 if ((len_buf == 0) && !require_data) {
1161 require_data = true;
1164 } while (arg < context->execve.argc);
1166 /* NOTE: the caller handles the final audit_log_end() call */
1172 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1177 if (cap_isclear(*cap)) {
1178 audit_log_format(ab, " %s=0", prefix);
1181 audit_log_format(ab, " %s=", prefix);
1183 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1186 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1188 if (name->fcap_ver == -1) {
1189 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1192 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1193 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1194 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1195 name->fcap.fE, name->fcap_ver,
1196 from_kuid(&init_user_ns, name->fcap.rootid));
1199 static void show_special(struct audit_context *context, int *call_panic)
1201 struct audit_buffer *ab;
1204 ab = audit_log_start(context, GFP_KERNEL, context->type);
1208 switch (context->type) {
1209 case AUDIT_SOCKETCALL: {
1210 int nargs = context->socketcall.nargs;
1211 audit_log_format(ab, "nargs=%d", nargs);
1212 for (i = 0; i < nargs; i++)
1213 audit_log_format(ab, " a%d=%lx", i,
1214 context->socketcall.args[i]);
1217 u32 osid = context->ipc.osid;
1219 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1220 from_kuid(&init_user_ns, context->ipc.uid),
1221 from_kgid(&init_user_ns, context->ipc.gid),
1226 if (security_secid_to_secctx(osid, &ctx, &len)) {
1227 audit_log_format(ab, " osid=%u", osid);
1230 audit_log_format(ab, " obj=%s", ctx);
1231 security_release_secctx(ctx, len);
1234 if (context->ipc.has_perm) {
1236 ab = audit_log_start(context, GFP_KERNEL,
1237 AUDIT_IPC_SET_PERM);
1240 audit_log_format(ab,
1241 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1242 context->ipc.qbytes,
1243 context->ipc.perm_uid,
1244 context->ipc.perm_gid,
1245 context->ipc.perm_mode);
1249 audit_log_format(ab,
1250 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1251 "mq_msgsize=%ld mq_curmsgs=%ld",
1252 context->mq_open.oflag, context->mq_open.mode,
1253 context->mq_open.attr.mq_flags,
1254 context->mq_open.attr.mq_maxmsg,
1255 context->mq_open.attr.mq_msgsize,
1256 context->mq_open.attr.mq_curmsgs);
1258 case AUDIT_MQ_SENDRECV:
1259 audit_log_format(ab,
1260 "mqdes=%d msg_len=%zd msg_prio=%u "
1261 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1262 context->mq_sendrecv.mqdes,
1263 context->mq_sendrecv.msg_len,
1264 context->mq_sendrecv.msg_prio,
1265 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1266 context->mq_sendrecv.abs_timeout.tv_nsec);
1268 case AUDIT_MQ_NOTIFY:
1269 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1270 context->mq_notify.mqdes,
1271 context->mq_notify.sigev_signo);
1273 case AUDIT_MQ_GETSETATTR: {
1274 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1275 audit_log_format(ab,
1276 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1278 context->mq_getsetattr.mqdes,
1279 attr->mq_flags, attr->mq_maxmsg,
1280 attr->mq_msgsize, attr->mq_curmsgs);
1283 audit_log_format(ab, "pid=%d", context->capset.pid);
1284 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1285 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1286 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1287 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1290 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1291 context->mmap.flags);
1294 audit_log_execve_info(context, &ab);
1296 case AUDIT_KERN_MODULE:
1297 audit_log_format(ab, "name=");
1298 if (context->module.name) {
1299 audit_log_untrustedstring(ab, context->module.name);
1301 audit_log_format(ab, "(null)");
1308 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1310 char *end = proctitle + len - 1;
1311 while (end > proctitle && !isprint(*end))
1314 /* catch the case where proctitle is only 1 non-print character */
1315 len = end - proctitle + 1;
1316 len -= isprint(proctitle[len-1]) == 0;
1321 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1322 * @context: audit_context for the task
1323 * @n: audit_names structure with reportable details
1324 * @path: optional path to report instead of audit_names->name
1325 * @record_num: record number to report when handling a list of names
1326 * @call_panic: optional pointer to int that will be updated if secid fails
1328 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1329 const struct path *path, int record_num, int *call_panic)
1331 struct audit_buffer *ab;
1333 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1337 audit_log_format(ab, "item=%d", record_num);
1340 audit_log_d_path(ab, " name=", path);
1342 switch (n->name_len) {
1343 case AUDIT_NAME_FULL:
1344 /* log the full path */
1345 audit_log_format(ab, " name=");
1346 audit_log_untrustedstring(ab, n->name->name);
1349 /* name was specified as a relative path and the
1350 * directory component is the cwd
1352 audit_log_d_path(ab, " name=", &context->pwd);
1355 /* log the name's directory component */
1356 audit_log_format(ab, " name=");
1357 audit_log_n_untrustedstring(ab, n->name->name,
1361 audit_log_format(ab, " name=(null)");
1363 if (n->ino != AUDIT_INO_UNSET)
1364 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1369 from_kuid(&init_user_ns, n->uid),
1370 from_kgid(&init_user_ns, n->gid),
1377 if (security_secid_to_secctx(
1378 n->osid, &ctx, &len)) {
1379 audit_log_format(ab, " osid=%u", n->osid);
1383 audit_log_format(ab, " obj=%s", ctx);
1384 security_release_secctx(ctx, len);
1388 /* log the audit_names record type */
1390 case AUDIT_TYPE_NORMAL:
1391 audit_log_format(ab, " nametype=NORMAL");
1393 case AUDIT_TYPE_PARENT:
1394 audit_log_format(ab, " nametype=PARENT");
1396 case AUDIT_TYPE_CHILD_DELETE:
1397 audit_log_format(ab, " nametype=DELETE");
1399 case AUDIT_TYPE_CHILD_CREATE:
1400 audit_log_format(ab, " nametype=CREATE");
1403 audit_log_format(ab, " nametype=UNKNOWN");
1407 audit_log_fcaps(ab, n);
1411 static void audit_log_proctitle(void)
1415 char *msg = "(null)";
1416 int len = strlen(msg);
1417 struct audit_context *context = audit_context();
1418 struct audit_buffer *ab;
1420 if (!context || context->dummy)
1423 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1425 return; /* audit_panic or being filtered */
1427 audit_log_format(ab, "proctitle=");
1430 if (!context->proctitle.value) {
1431 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1434 /* Historically called this from procfs naming */
1435 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1440 res = audit_proctitle_rtrim(buf, res);
1445 context->proctitle.value = buf;
1446 context->proctitle.len = res;
1448 msg = context->proctitle.value;
1449 len = context->proctitle.len;
1451 audit_log_n_untrustedstring(ab, msg, len);
1455 static void audit_log_exit(void)
1457 int i, call_panic = 0;
1458 struct audit_context *context = audit_context();
1459 struct audit_buffer *ab;
1460 struct audit_aux_data *aux;
1461 struct audit_names *n;
1463 context->personality = current->personality;
1465 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1467 return; /* audit_panic has been called */
1468 audit_log_format(ab, "arch=%x syscall=%d",
1469 context->arch, context->major);
1470 if (context->personality != PER_LINUX)
1471 audit_log_format(ab, " per=%lx", context->personality);
1472 if (context->return_valid)
1473 audit_log_format(ab, " success=%s exit=%ld",
1474 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1475 context->return_code);
1477 audit_log_format(ab,
1478 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1483 context->name_count);
1485 audit_log_task_info(ab);
1486 audit_log_key(ab, context->filterkey);
1489 for (aux = context->aux; aux; aux = aux->next) {
1491 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1493 continue; /* audit_panic has been called */
1495 switch (aux->type) {
1497 case AUDIT_BPRM_FCAPS: {
1498 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1499 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1500 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1501 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1502 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1503 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1504 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1505 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1506 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1507 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1508 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1509 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1510 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1511 audit_log_format(ab, " frootid=%d",
1512 from_kuid(&init_user_ns,
1521 show_special(context, &call_panic);
1523 if (context->fds[0] >= 0) {
1524 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1526 audit_log_format(ab, "fd0=%d fd1=%d",
1527 context->fds[0], context->fds[1]);
1532 if (context->sockaddr_len) {
1533 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1535 audit_log_format(ab, "saddr=");
1536 audit_log_n_hex(ab, (void *)context->sockaddr,
1537 context->sockaddr_len);
1542 for (aux = context->aux_pids; aux; aux = aux->next) {
1543 struct audit_aux_data_pids *axs = (void *)aux;
1545 for (i = 0; i < axs->pid_count; i++)
1546 if (audit_log_pid_context(context, axs->target_pid[i],
1547 axs->target_auid[i],
1549 axs->target_sessionid[i],
1551 axs->target_comm[i]))
1555 if (context->target_pid &&
1556 audit_log_pid_context(context, context->target_pid,
1557 context->target_auid, context->target_uid,
1558 context->target_sessionid,
1559 context->target_sid, context->target_comm))
1562 if (context->pwd.dentry && context->pwd.mnt) {
1563 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1565 audit_log_d_path(ab, "cwd=", &context->pwd);
1571 list_for_each_entry(n, &context->names_list, list) {
1574 audit_log_name(context, n, NULL, i++, &call_panic);
1577 audit_log_proctitle();
1579 /* Send end of event record to help user space know we are finished */
1580 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1584 audit_panic("error converting sid to string");
1588 * __audit_free - free a per-task audit context
1589 * @tsk: task whose audit context block to free
1591 * Called from copy_process and do_exit
1593 void __audit_free(struct task_struct *tsk)
1595 struct audit_context *context = tsk->audit_context;
1600 if (!list_empty(&context->killed_trees))
1601 audit_kill_trees(context);
1603 /* We are called either by do_exit() or the fork() error handling code;
1604 * in the former case tsk == current and in the latter tsk is a
1605 * random task_struct that doesn't doesn't have any meaningful data we
1606 * need to log via audit_log_exit().
1608 if (tsk == current && !context->dummy && context->in_syscall) {
1609 context->return_valid = 0;
1610 context->return_code = 0;
1612 audit_filter_syscall(tsk, context,
1613 &audit_filter_list[AUDIT_FILTER_EXIT]);
1614 audit_filter_inodes(tsk, context);
1615 if (context->current_state == AUDIT_RECORD_CONTEXT)
1619 audit_set_context(tsk, NULL);
1620 audit_free_context(context);
1624 * __audit_syscall_entry - fill in an audit record at syscall entry
1625 * @major: major syscall type (function)
1626 * @a1: additional syscall register 1
1627 * @a2: additional syscall register 2
1628 * @a3: additional syscall register 3
1629 * @a4: additional syscall register 4
1631 * Fill in audit context at syscall entry. This only happens if the
1632 * audit context was created when the task was created and the state or
1633 * filters demand the audit context be built. If the state from the
1634 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1635 * then the record will be written at syscall exit time (otherwise, it
1636 * will only be written if another part of the kernel requests that it
1639 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1640 unsigned long a3, unsigned long a4)
1642 struct audit_context *context = audit_context();
1643 enum audit_state state;
1645 if (!audit_enabled || !context)
1648 BUG_ON(context->in_syscall || context->name_count);
1650 state = context->state;
1651 if (state == AUDIT_DISABLED)
1654 context->dummy = !audit_n_rules;
1655 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1657 if (auditd_test_task(current))
1661 context->arch = syscall_get_arch(current);
1662 context->major = major;
1663 context->argv[0] = a1;
1664 context->argv[1] = a2;
1665 context->argv[2] = a3;
1666 context->argv[3] = a4;
1667 context->serial = 0;
1668 context->in_syscall = 1;
1669 context->current_state = state;
1671 ktime_get_coarse_real_ts64(&context->ctime);
1675 * __audit_syscall_exit - deallocate audit context after a system call
1676 * @success: success value of the syscall
1677 * @return_code: return value of the syscall
1679 * Tear down after system call. If the audit context has been marked as
1680 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1681 * filtering, or because some other part of the kernel wrote an audit
1682 * message), then write out the syscall information. In call cases,
1683 * free the names stored from getname().
1685 void __audit_syscall_exit(int success, long return_code)
1687 struct audit_context *context;
1689 context = audit_context();
1693 if (!list_empty(&context->killed_trees))
1694 audit_kill_trees(context);
1696 if (!context->dummy && context->in_syscall) {
1698 context->return_valid = AUDITSC_SUCCESS;
1700 context->return_valid = AUDITSC_FAILURE;
1703 * we need to fix up the return code in the audit logs if the
1704 * actual return codes are later going to be fixed up by the
1705 * arch specific signal handlers
1707 * This is actually a test for:
1708 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1709 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1711 * but is faster than a bunch of ||
1713 if (unlikely(return_code <= -ERESTARTSYS) &&
1714 (return_code >= -ERESTART_RESTARTBLOCK) &&
1715 (return_code != -ENOIOCTLCMD))
1716 context->return_code = -EINTR;
1718 context->return_code = return_code;
1720 audit_filter_syscall(current, context,
1721 &audit_filter_list[AUDIT_FILTER_EXIT]);
1722 audit_filter_inodes(current, context);
1723 if (context->current_state == AUDIT_RECORD_CONTEXT)
1727 context->in_syscall = 0;
1728 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1730 audit_free_module(context);
1731 audit_free_names(context);
1732 unroll_tree_refs(context, NULL, 0);
1733 audit_free_aux(context);
1734 context->aux = NULL;
1735 context->aux_pids = NULL;
1736 context->target_pid = 0;
1737 context->target_sid = 0;
1738 context->sockaddr_len = 0;
1740 context->fds[0] = -1;
1741 if (context->state != AUDIT_RECORD_CONTEXT) {
1742 kfree(context->filterkey);
1743 context->filterkey = NULL;
1747 static inline void handle_one(const struct inode *inode)
1749 struct audit_context *context;
1750 struct audit_tree_refs *p;
1751 struct audit_chunk *chunk;
1753 if (likely(!inode->i_fsnotify_marks))
1755 context = audit_context();
1757 count = context->tree_count;
1759 chunk = audit_tree_lookup(inode);
1763 if (likely(put_tree_ref(context, chunk)))
1765 if (unlikely(!grow_tree_refs(context))) {
1766 pr_warn("out of memory, audit has lost a tree reference\n");
1767 audit_set_auditable(context);
1768 audit_put_chunk(chunk);
1769 unroll_tree_refs(context, p, count);
1772 put_tree_ref(context, chunk);
1775 static void handle_path(const struct dentry *dentry)
1777 struct audit_context *context;
1778 struct audit_tree_refs *p;
1779 const struct dentry *d, *parent;
1780 struct audit_chunk *drop;
1784 context = audit_context();
1786 count = context->tree_count;
1791 seq = read_seqbegin(&rename_lock);
1793 struct inode *inode = d_backing_inode(d);
1794 if (inode && unlikely(inode->i_fsnotify_marks)) {
1795 struct audit_chunk *chunk;
1796 chunk = audit_tree_lookup(inode);
1798 if (unlikely(!put_tree_ref(context, chunk))) {
1804 parent = d->d_parent;
1809 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1812 /* just a race with rename */
1813 unroll_tree_refs(context, p, count);
1816 audit_put_chunk(drop);
1817 if (grow_tree_refs(context)) {
1818 /* OK, got more space */
1819 unroll_tree_refs(context, p, count);
1823 pr_warn("out of memory, audit has lost a tree reference\n");
1824 unroll_tree_refs(context, p, count);
1825 audit_set_auditable(context);
1831 static struct audit_names *audit_alloc_name(struct audit_context *context,
1834 struct audit_names *aname;
1836 if (context->name_count < AUDIT_NAMES) {
1837 aname = &context->preallocated_names[context->name_count];
1838 memset(aname, 0, sizeof(*aname));
1840 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1843 aname->should_free = true;
1846 aname->ino = AUDIT_INO_UNSET;
1848 list_add_tail(&aname->list, &context->names_list);
1850 context->name_count++;
1855 * __audit_reusename - fill out filename with info from existing entry
1856 * @uptr: userland ptr to pathname
1858 * Search the audit_names list for the current audit context. If there is an
1859 * existing entry with a matching "uptr" then return the filename
1860 * associated with that audit_name. If not, return NULL.
1863 __audit_reusename(const __user char *uptr)
1865 struct audit_context *context = audit_context();
1866 struct audit_names *n;
1868 list_for_each_entry(n, &context->names_list, list) {
1871 if (n->name->uptr == uptr) {
1880 * __audit_getname - add a name to the list
1881 * @name: name to add
1883 * Add a name to the list of audit names for this context.
1884 * Called from fs/namei.c:getname().
1886 void __audit_getname(struct filename *name)
1888 struct audit_context *context = audit_context();
1889 struct audit_names *n;
1891 if (!context->in_syscall)
1894 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1899 n->name_len = AUDIT_NAME_FULL;
1903 if (!context->pwd.dentry)
1904 get_fs_pwd(current->fs, &context->pwd);
1907 static inline int audit_copy_fcaps(struct audit_names *name,
1908 const struct dentry *dentry)
1910 struct cpu_vfs_cap_data caps;
1916 rc = get_vfs_caps_from_disk(dentry, &caps);
1920 name->fcap.permitted = caps.permitted;
1921 name->fcap.inheritable = caps.inheritable;
1922 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1923 name->fcap.rootid = caps.rootid;
1924 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1925 VFS_CAP_REVISION_SHIFT;
1930 /* Copy inode data into an audit_names. */
1931 static void audit_copy_inode(struct audit_names *name,
1932 const struct dentry *dentry,
1933 struct inode *inode, unsigned int flags)
1935 name->ino = inode->i_ino;
1936 name->dev = inode->i_sb->s_dev;
1937 name->mode = inode->i_mode;
1938 name->uid = inode->i_uid;
1939 name->gid = inode->i_gid;
1940 name->rdev = inode->i_rdev;
1941 security_inode_getsecid(inode, &name->osid);
1942 if (flags & AUDIT_INODE_NOEVAL) {
1943 name->fcap_ver = -1;
1946 audit_copy_fcaps(name, dentry);
1950 * __audit_inode - store the inode and device from a lookup
1951 * @name: name being audited
1952 * @dentry: dentry being audited
1953 * @flags: attributes for this particular entry
1955 void __audit_inode(struct filename *name, const struct dentry *dentry,
1958 struct audit_context *context = audit_context();
1959 struct inode *inode = d_backing_inode(dentry);
1960 struct audit_names *n;
1961 bool parent = flags & AUDIT_INODE_PARENT;
1962 struct audit_entry *e;
1963 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1966 if (!context->in_syscall)
1970 list_for_each_entry_rcu(e, list, list) {
1971 for (i = 0; i < e->rule.field_count; i++) {
1972 struct audit_field *f = &e->rule.fields[i];
1974 if (f->type == AUDIT_FSTYPE
1975 && audit_comparator(inode->i_sb->s_magic,
1977 && e->rule.action == AUDIT_NEVER) {
1989 * If we have a pointer to an audit_names entry already, then we can
1990 * just use it directly if the type is correct.
1995 if (n->type == AUDIT_TYPE_PARENT ||
1996 n->type == AUDIT_TYPE_UNKNOWN)
1999 if (n->type != AUDIT_TYPE_PARENT)
2004 list_for_each_entry_reverse(n, &context->names_list, list) {
2006 /* valid inode number, use that for the comparison */
2007 if (n->ino != inode->i_ino ||
2008 n->dev != inode->i_sb->s_dev)
2010 } else if (n->name) {
2011 /* inode number has not been set, check the name */
2012 if (strcmp(n->name->name, name->name))
2015 /* no inode and no name (?!) ... this is odd ... */
2018 /* match the correct record type */
2020 if (n->type == AUDIT_TYPE_PARENT ||
2021 n->type == AUDIT_TYPE_UNKNOWN)
2024 if (n->type != AUDIT_TYPE_PARENT)
2030 /* unable to find an entry with both a matching name and type */
2031 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2041 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2042 n->type = AUDIT_TYPE_PARENT;
2043 if (flags & AUDIT_INODE_HIDDEN)
2046 n->name_len = AUDIT_NAME_FULL;
2047 n->type = AUDIT_TYPE_NORMAL;
2049 handle_path(dentry);
2050 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2053 void __audit_file(const struct file *file)
2055 __audit_inode(NULL, file->f_path.dentry, 0);
2059 * __audit_inode_child - collect inode info for created/removed objects
2060 * @parent: inode of dentry parent
2061 * @dentry: dentry being audited
2062 * @type: AUDIT_TYPE_* value that we're looking for
2064 * For syscalls that create or remove filesystem objects, audit_inode
2065 * can only collect information for the filesystem object's parent.
2066 * This call updates the audit context with the child's information.
2067 * Syscalls that create a new filesystem object must be hooked after
2068 * the object is created. Syscalls that remove a filesystem object
2069 * must be hooked prior, in order to capture the target inode during
2070 * unsuccessful attempts.
2072 void __audit_inode_child(struct inode *parent,
2073 const struct dentry *dentry,
2074 const unsigned char type)
2076 struct audit_context *context = audit_context();
2077 struct inode *inode = d_backing_inode(dentry);
2078 const struct qstr *dname = &dentry->d_name;
2079 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2080 struct audit_entry *e;
2081 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2084 if (!context->in_syscall)
2088 list_for_each_entry_rcu(e, list, list) {
2089 for (i = 0; i < e->rule.field_count; i++) {
2090 struct audit_field *f = &e->rule.fields[i];
2092 if (f->type == AUDIT_FSTYPE
2093 && audit_comparator(parent->i_sb->s_magic,
2095 && e->rule.action == AUDIT_NEVER) {
2106 /* look for a parent entry first */
2107 list_for_each_entry(n, &context->names_list, list) {
2109 (n->type != AUDIT_TYPE_PARENT &&
2110 n->type != AUDIT_TYPE_UNKNOWN))
2113 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2114 !audit_compare_dname_path(dname,
2115 n->name->name, n->name_len)) {
2116 if (n->type == AUDIT_TYPE_UNKNOWN)
2117 n->type = AUDIT_TYPE_PARENT;
2123 /* is there a matching child entry? */
2124 list_for_each_entry(n, &context->names_list, list) {
2125 /* can only match entries that have a name */
2127 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2130 if (!strcmp(dname->name, n->name->name) ||
2131 !audit_compare_dname_path(dname, n->name->name,
2133 found_parent->name_len :
2135 if (n->type == AUDIT_TYPE_UNKNOWN)
2142 if (!found_parent) {
2143 /* create a new, "anonymous" parent record */
2144 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2147 audit_copy_inode(n, NULL, parent, 0);
2151 found_child = audit_alloc_name(context, type);
2155 /* Re-use the name belonging to the slot for a matching parent
2156 * directory. All names for this context are relinquished in
2157 * audit_free_names() */
2159 found_child->name = found_parent->name;
2160 found_child->name_len = AUDIT_NAME_FULL;
2161 found_child->name->refcnt++;
2166 audit_copy_inode(found_child, dentry, inode, 0);
2168 found_child->ino = AUDIT_INO_UNSET;
2170 EXPORT_SYMBOL_GPL(__audit_inode_child);
2173 * auditsc_get_stamp - get local copies of audit_context values
2174 * @ctx: audit_context for the task
2175 * @t: timespec64 to store time recorded in the audit_context
2176 * @serial: serial value that is recorded in the audit_context
2178 * Also sets the context as auditable.
2180 int auditsc_get_stamp(struct audit_context *ctx,
2181 struct timespec64 *t, unsigned int *serial)
2183 if (!ctx->in_syscall)
2186 ctx->serial = audit_serial();
2187 t->tv_sec = ctx->ctime.tv_sec;
2188 t->tv_nsec = ctx->ctime.tv_nsec;
2189 *serial = ctx->serial;
2192 ctx->current_state = AUDIT_RECORD_CONTEXT;
2198 * __audit_mq_open - record audit data for a POSIX MQ open
2201 * @attr: queue attributes
2204 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2206 struct audit_context *context = audit_context();
2209 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2211 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2213 context->mq_open.oflag = oflag;
2214 context->mq_open.mode = mode;
2216 context->type = AUDIT_MQ_OPEN;
2220 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2221 * @mqdes: MQ descriptor
2222 * @msg_len: Message length
2223 * @msg_prio: Message priority
2224 * @abs_timeout: Message timeout in absolute time
2227 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2228 const struct timespec64 *abs_timeout)
2230 struct audit_context *context = audit_context();
2231 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2234 memcpy(p, abs_timeout, sizeof(*p));
2236 memset(p, 0, sizeof(*p));
2238 context->mq_sendrecv.mqdes = mqdes;
2239 context->mq_sendrecv.msg_len = msg_len;
2240 context->mq_sendrecv.msg_prio = msg_prio;
2242 context->type = AUDIT_MQ_SENDRECV;
2246 * __audit_mq_notify - record audit data for a POSIX MQ notify
2247 * @mqdes: MQ descriptor
2248 * @notification: Notification event
2252 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2254 struct audit_context *context = audit_context();
2257 context->mq_notify.sigev_signo = notification->sigev_signo;
2259 context->mq_notify.sigev_signo = 0;
2261 context->mq_notify.mqdes = mqdes;
2262 context->type = AUDIT_MQ_NOTIFY;
2266 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2267 * @mqdes: MQ descriptor
2271 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2273 struct audit_context *context = audit_context();
2274 context->mq_getsetattr.mqdes = mqdes;
2275 context->mq_getsetattr.mqstat = *mqstat;
2276 context->type = AUDIT_MQ_GETSETATTR;
2280 * __audit_ipc_obj - record audit data for ipc object
2281 * @ipcp: ipc permissions
2284 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2286 struct audit_context *context = audit_context();
2287 context->ipc.uid = ipcp->uid;
2288 context->ipc.gid = ipcp->gid;
2289 context->ipc.mode = ipcp->mode;
2290 context->ipc.has_perm = 0;
2291 security_ipc_getsecid(ipcp, &context->ipc.osid);
2292 context->type = AUDIT_IPC;
2296 * __audit_ipc_set_perm - record audit data for new ipc permissions
2297 * @qbytes: msgq bytes
2298 * @uid: msgq user id
2299 * @gid: msgq group id
2300 * @mode: msgq mode (permissions)
2302 * Called only after audit_ipc_obj().
2304 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2306 struct audit_context *context = audit_context();
2308 context->ipc.qbytes = qbytes;
2309 context->ipc.perm_uid = uid;
2310 context->ipc.perm_gid = gid;
2311 context->ipc.perm_mode = mode;
2312 context->ipc.has_perm = 1;
2315 void __audit_bprm(struct linux_binprm *bprm)
2317 struct audit_context *context = audit_context();
2319 context->type = AUDIT_EXECVE;
2320 context->execve.argc = bprm->argc;
2325 * __audit_socketcall - record audit data for sys_socketcall
2326 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2330 int __audit_socketcall(int nargs, unsigned long *args)
2332 struct audit_context *context = audit_context();
2334 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2336 context->type = AUDIT_SOCKETCALL;
2337 context->socketcall.nargs = nargs;
2338 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2343 * __audit_fd_pair - record audit data for pipe and socketpair
2344 * @fd1: the first file descriptor
2345 * @fd2: the second file descriptor
2348 void __audit_fd_pair(int fd1, int fd2)
2350 struct audit_context *context = audit_context();
2351 context->fds[0] = fd1;
2352 context->fds[1] = fd2;
2356 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2357 * @len: data length in user space
2358 * @a: data address in kernel space
2360 * Returns 0 for success or NULL context or < 0 on error.
2362 int __audit_sockaddr(int len, void *a)
2364 struct audit_context *context = audit_context();
2366 if (!context->sockaddr) {
2367 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2370 context->sockaddr = p;
2373 context->sockaddr_len = len;
2374 memcpy(context->sockaddr, a, len);
2378 void __audit_ptrace(struct task_struct *t)
2380 struct audit_context *context = audit_context();
2382 context->target_pid = task_tgid_nr(t);
2383 context->target_auid = audit_get_loginuid(t);
2384 context->target_uid = task_uid(t);
2385 context->target_sessionid = audit_get_sessionid(t);
2386 security_task_getsecid(t, &context->target_sid);
2387 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2391 * audit_signal_info_syscall - record signal info for syscalls
2392 * @t: task being signaled
2394 * If the audit subsystem is being terminated, record the task (pid)
2395 * and uid that is doing that.
2397 int audit_signal_info_syscall(struct task_struct *t)
2399 struct audit_aux_data_pids *axp;
2400 struct audit_context *ctx = audit_context();
2401 kuid_t t_uid = task_uid(t);
2403 if (!audit_signals || audit_dummy_context())
2406 /* optimize the common case by putting first signal recipient directly
2407 * in audit_context */
2408 if (!ctx->target_pid) {
2409 ctx->target_pid = task_tgid_nr(t);
2410 ctx->target_auid = audit_get_loginuid(t);
2411 ctx->target_uid = t_uid;
2412 ctx->target_sessionid = audit_get_sessionid(t);
2413 security_task_getsecid(t, &ctx->target_sid);
2414 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2418 axp = (void *)ctx->aux_pids;
2419 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2420 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2424 axp->d.type = AUDIT_OBJ_PID;
2425 axp->d.next = ctx->aux_pids;
2426 ctx->aux_pids = (void *)axp;
2428 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2430 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2431 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2432 axp->target_uid[axp->pid_count] = t_uid;
2433 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2434 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2435 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2442 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2443 * @bprm: pointer to the bprm being processed
2444 * @new: the proposed new credentials
2445 * @old: the old credentials
2447 * Simply check if the proc already has the caps given by the file and if not
2448 * store the priv escalation info for later auditing at the end of the syscall
2452 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2453 const struct cred *new, const struct cred *old)
2455 struct audit_aux_data_bprm_fcaps *ax;
2456 struct audit_context *context = audit_context();
2457 struct cpu_vfs_cap_data vcaps;
2459 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2463 ax->d.type = AUDIT_BPRM_FCAPS;
2464 ax->d.next = context->aux;
2465 context->aux = (void *)ax;
2467 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2469 ax->fcap.permitted = vcaps.permitted;
2470 ax->fcap.inheritable = vcaps.inheritable;
2471 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2472 ax->fcap.rootid = vcaps.rootid;
2473 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2475 ax->old_pcap.permitted = old->cap_permitted;
2476 ax->old_pcap.inheritable = old->cap_inheritable;
2477 ax->old_pcap.effective = old->cap_effective;
2478 ax->old_pcap.ambient = old->cap_ambient;
2480 ax->new_pcap.permitted = new->cap_permitted;
2481 ax->new_pcap.inheritable = new->cap_inheritable;
2482 ax->new_pcap.effective = new->cap_effective;
2483 ax->new_pcap.ambient = new->cap_ambient;
2488 * __audit_log_capset - store information about the arguments to the capset syscall
2489 * @new: the new credentials
2490 * @old: the old (current) credentials
2492 * Record the arguments userspace sent to sys_capset for later printing by the
2493 * audit system if applicable
2495 void __audit_log_capset(const struct cred *new, const struct cred *old)
2497 struct audit_context *context = audit_context();
2498 context->capset.pid = task_tgid_nr(current);
2499 context->capset.cap.effective = new->cap_effective;
2500 context->capset.cap.inheritable = new->cap_effective;
2501 context->capset.cap.permitted = new->cap_permitted;
2502 context->capset.cap.ambient = new->cap_ambient;
2503 context->type = AUDIT_CAPSET;
2506 void __audit_mmap_fd(int fd, int flags)
2508 struct audit_context *context = audit_context();
2509 context->mmap.fd = fd;
2510 context->mmap.flags = flags;
2511 context->type = AUDIT_MMAP;
2514 void __audit_log_kern_module(char *name)
2516 struct audit_context *context = audit_context();
2518 context->module.name = kstrdup(name, GFP_KERNEL);
2519 if (!context->module.name)
2520 audit_log_lost("out of memory in __audit_log_kern_module");
2521 context->type = AUDIT_KERN_MODULE;
2524 void __audit_fanotify(unsigned int response)
2526 audit_log(audit_context(), GFP_KERNEL,
2527 AUDIT_FANOTIFY, "resp=%u", response);
2530 void __audit_tk_injoffset(struct timespec64 offset)
2532 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2533 "sec=%lli nsec=%li",
2534 (long long)offset.tv_sec, offset.tv_nsec);
2537 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2538 const char *op, enum audit_ntp_type type)
2540 const struct audit_ntp_val *val = &ad->vals[type];
2542 if (val->newval == val->oldval)
2545 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2546 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2549 void __audit_ntp_log(const struct audit_ntp_data *ad)
2551 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2552 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2553 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2554 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2555 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2556 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2559 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2560 enum audit_nfcfgop op)
2562 struct audit_buffer *ab;
2563 char comm[sizeof(current->comm)];
2565 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_NETFILTER_CFG);
2568 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2569 name, af, nentries, audit_nfcfgs[op].s);
2571 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2572 audit_log_task_context(ab); /* subj= */
2573 audit_log_format(ab, " comm=");
2574 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2577 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2579 static void audit_log_task(struct audit_buffer *ab)
2583 unsigned int sessionid;
2584 char comm[sizeof(current->comm)];
2586 auid = audit_get_loginuid(current);
2587 sessionid = audit_get_sessionid(current);
2588 current_uid_gid(&uid, &gid);
2590 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2591 from_kuid(&init_user_ns, auid),
2592 from_kuid(&init_user_ns, uid),
2593 from_kgid(&init_user_ns, gid),
2595 audit_log_task_context(ab);
2596 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2597 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2598 audit_log_d_path_exe(ab, current->mm);
2602 * audit_core_dumps - record information about processes that end abnormally
2603 * @signr: signal value
2605 * If a process ends with a core dump, something fishy is going on and we
2606 * should record the event for investigation.
2608 void audit_core_dumps(long signr)
2610 struct audit_buffer *ab;
2615 if (signr == SIGQUIT) /* don't care for those */
2618 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2622 audit_log_format(ab, " sig=%ld res=1", signr);
2627 * audit_seccomp - record information about a seccomp action
2628 * @syscall: syscall number
2629 * @signr: signal value
2630 * @code: the seccomp action
2632 * Record the information associated with a seccomp action. Event filtering for
2633 * seccomp actions that are not to be logged is done in seccomp_log().
2634 * Therefore, this function forces auditing independent of the audit_enabled
2635 * and dummy context state because seccomp actions should be logged even when
2636 * audit is not in use.
2638 void audit_seccomp(unsigned long syscall, long signr, int code)
2640 struct audit_buffer *ab;
2642 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2646 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2647 signr, syscall_get_arch(current), syscall,
2648 in_compat_syscall(), KSTK_EIP(current), code);
2652 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2655 struct audit_buffer *ab;
2660 ab = audit_log_start(audit_context(), GFP_KERNEL,
2661 AUDIT_CONFIG_CHANGE);
2665 audit_log_format(ab,
2666 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2667 names, old_names, res);
2671 struct list_head *audit_killed_trees(void)
2673 struct audit_context *ctx = audit_context();
2674 if (likely(!ctx || !ctx->in_syscall))
2676 return &ctx->killed_trees;