1 // SPDX-License-Identifier: GPL-2.0
3 * Driver for the Intel SCU IPC mechanism
5 * (C) Copyright 2008-2010,2015 Intel Corporation
8 * SCU running in ARC processor communicates with other entity running in IA
9 * core through IPC mechanism which in turn messaging between IA core ad SCU.
10 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
11 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
12 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
13 * along with other APIs.
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
26 #include <asm/intel_scu_ipc.h>
28 /* IPC defines the following message types */
29 #define IPCMSG_PCNTRL 0xff /* Power controller unit read/write */
31 /* Command id associated with message IPCMSG_PCNTRL */
32 #define IPC_CMD_PCNTRL_W 0 /* Register write */
33 #define IPC_CMD_PCNTRL_R 1 /* Register read */
34 #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
37 * IPC register summary
39 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
40 * To read or write information to the SCU, driver writes to IPC-1 memory
41 * mapped registers. The following is the IPC mechanism
43 * 1. IA core cDMI interface claims this transaction and converts it to a
44 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
46 * 2. South Complex cDMI block receives this message and writes it to
47 * the IPC-1 register block, causing an interrupt to the SCU
49 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
50 * message handler is called within firmware.
53 #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
54 #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
55 #define IPC_IOC 0x100 /* IPC command register IOC bit */
57 struct intel_scu_ipc_dev {
62 void __iomem *ipc_base;
63 struct completion cmd_complete;
66 #define IPC_STATUS 0x04
67 #define IPC_STATUS_IRQ BIT(2)
68 #define IPC_STATUS_ERR BIT(1)
69 #define IPC_STATUS_BUSY BIT(0)
72 * IPC Write/Read Buffers:
73 * 16 byte buffer for sending and receiving data to and from SCU.
75 #define IPC_WRITE_BUFFER 0x80
76 #define IPC_READ_BUFFER 0x90
78 /* Timeout in jiffies */
79 #define IPC_TIMEOUT (10 * HZ)
81 static struct intel_scu_ipc_dev *ipcdev; /* Only one for now */
82 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
84 static struct class intel_scu_ipc_class = {
85 .name = "intel_scu_ipc",
89 * intel_scu_ipc_dev_get() - Get SCU IPC instance
91 * The recommended new API takes SCU IPC instance as parameter and this
92 * function can be called by driver to get the instance. This also makes
93 * sure the driver providing the IPC functionality cannot be unloaded
94 * while the caller has the instance.
96 * Call intel_scu_ipc_dev_put() to release the instance.
98 * Returns %NULL if SCU IPC is not currently available.
100 struct intel_scu_ipc_dev *intel_scu_ipc_dev_get(void)
102 struct intel_scu_ipc_dev *scu = NULL;
104 mutex_lock(&ipclock);
106 get_device(&ipcdev->dev);
108 * Prevent the IPC provider from being unloaded while it
111 if (!try_module_get(ipcdev->owner))
112 put_device(&ipcdev->dev);
117 mutex_unlock(&ipclock);
120 EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_get);
123 * intel_scu_ipc_dev_put() - Put SCU IPC instance
124 * @scu: SCU IPC instance
126 * This function releases the SCU IPC instance retrieved from
127 * intel_scu_ipc_dev_get() and allows the driver providing IPC to be
130 void intel_scu_ipc_dev_put(struct intel_scu_ipc_dev *scu)
133 module_put(scu->owner);
134 put_device(&scu->dev);
137 EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_put);
139 struct intel_scu_ipc_devres {
140 struct intel_scu_ipc_dev *scu;
143 static void devm_intel_scu_ipc_dev_release(struct device *dev, void *res)
145 struct intel_scu_ipc_devres *dr = res;
146 struct intel_scu_ipc_dev *scu = dr->scu;
148 intel_scu_ipc_dev_put(scu);
152 * devm_intel_scu_ipc_dev_get() - Allocate managed SCU IPC device
153 * @dev: Device requesting the SCU IPC device
155 * The recommended new API takes SCU IPC instance as parameter and this
156 * function can be called by driver to get the instance. This also makes
157 * sure the driver providing the IPC functionality cannot be unloaded
158 * while the caller has the instance.
160 * Returns %NULL if SCU IPC is not currently available.
162 struct intel_scu_ipc_dev *devm_intel_scu_ipc_dev_get(struct device *dev)
164 struct intel_scu_ipc_devres *dr;
165 struct intel_scu_ipc_dev *scu;
167 dr = devres_alloc(devm_intel_scu_ipc_dev_release, sizeof(*dr), GFP_KERNEL);
171 scu = intel_scu_ipc_dev_get();
182 EXPORT_SYMBOL_GPL(devm_intel_scu_ipc_dev_get);
186 * Command Register (Write Only):
187 * A write to this register results in an interrupt to the SCU core processor
189 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
191 static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
193 reinit_completion(&scu->cmd_complete);
194 writel(cmd | IPC_IOC, scu->ipc_base);
199 * IPC Write Buffer (Write Only):
200 * 16-byte buffer for sending data associated with IPC command to
201 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
203 static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
205 writel(data, scu->ipc_base + IPC_WRITE_BUFFER + offset);
209 * Status Register (Read Only):
210 * Driver will read this register to get the ready/busy status of the IPC
211 * block and error status of the IPC command that was just processed by SCU
213 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
215 static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
217 return __raw_readl(scu->ipc_base + IPC_STATUS);
220 /* Read ipc byte data */
221 static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
223 return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
226 /* Read ipc u32 data */
227 static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
229 return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
232 /* Wait till scu status is busy */
233 static inline int busy_loop(struct intel_scu_ipc_dev *scu)
238 err = readx_poll_timeout(ipc_read_status, scu, status, !(status & IPC_STATUS_BUSY),
239 100, jiffies_to_usecs(IPC_TIMEOUT));
243 return (status & IPC_STATUS_ERR) ? -EIO : 0;
246 /* Wait till ipc ioc interrupt is received or timeout in 10 HZ */
247 static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
251 wait_for_completion_timeout(&scu->cmd_complete, IPC_TIMEOUT);
253 status = ipc_read_status(scu);
254 if (status & IPC_STATUS_BUSY)
257 if (status & IPC_STATUS_ERR)
263 static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
265 return scu->irq > 0 ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
268 static struct intel_scu_ipc_dev *intel_scu_ipc_get(struct intel_scu_ipc_dev *scu)
275 return ERR_PTR(-ENODEV);
277 status = ipc_read_status(scu);
278 if (status & IPC_STATUS_BUSY) {
279 dev_dbg(&scu->dev, "device is busy\n");
280 return ERR_PTR(-EBUSY);
286 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
287 static int pwr_reg_rdwr(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
288 u32 count, u32 op, u32 id)
293 u8 cbuf[IPC_WWBUF_SIZE];
294 u32 *wbuf = (u32 *)&cbuf;
296 memset(cbuf, 0, sizeof(cbuf));
298 mutex_lock(&ipclock);
299 scu = intel_scu_ipc_get(scu);
301 mutex_unlock(&ipclock);
305 for (nc = 0; nc < count; nc++, offset += 2) {
306 cbuf[offset] = addr[nc];
307 cbuf[offset + 1] = addr[nc] >> 8;
310 if (id == IPC_CMD_PCNTRL_R) {
311 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
312 ipc_data_writel(scu, wbuf[nc], offset);
313 ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
314 } else if (id == IPC_CMD_PCNTRL_W) {
315 for (nc = 0; nc < count; nc++, offset += 1)
316 cbuf[offset] = data[nc];
317 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
318 ipc_data_writel(scu, wbuf[nc], offset);
319 ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
320 } else if (id == IPC_CMD_PCNTRL_M) {
321 cbuf[offset] = data[0];
322 cbuf[offset + 1] = data[1];
323 ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
324 ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
327 err = intel_scu_ipc_check_status(scu);
328 if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
329 /* Workaround: values are read as 0 without memcpy_fromio */
330 memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
331 for (nc = 0; nc < count; nc++)
332 data[nc] = ipc_data_readb(scu, nc);
334 mutex_unlock(&ipclock);
339 * intel_scu_ipc_dev_ioread8() - Read a byte via the SCU
340 * @scu: Optional SCU IPC instance
341 * @addr: Register on SCU
342 * @data: Return pointer for read byte
344 * Read a single register. Returns %0 on success or an error code. All
345 * locking between SCU accesses is handled for the caller.
347 * This function may sleep.
349 int intel_scu_ipc_dev_ioread8(struct intel_scu_ipc_dev *scu, u16 addr, u8 *data)
351 return pwr_reg_rdwr(scu, &addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
353 EXPORT_SYMBOL(intel_scu_ipc_dev_ioread8);
356 * intel_scu_ipc_dev_iowrite8() - Write a byte via the SCU
357 * @scu: Optional SCU IPC instance
358 * @addr: Register on SCU
359 * @data: Byte to write
361 * Write a single register. Returns %0 on success or an error code. All
362 * locking between SCU accesses is handled for the caller.
364 * This function may sleep.
366 int intel_scu_ipc_dev_iowrite8(struct intel_scu_ipc_dev *scu, u16 addr, u8 data)
368 return pwr_reg_rdwr(scu, &addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
370 EXPORT_SYMBOL(intel_scu_ipc_dev_iowrite8);
373 * intel_scu_ipc_dev_readv() - Read a set of registers
374 * @scu: Optional SCU IPC instance
375 * @addr: Register list
376 * @data: Bytes to return
377 * @len: Length of array
379 * Read registers. Returns %0 on success or an error code. All locking
380 * between SCU accesses is handled for the caller.
382 * The largest array length permitted by the hardware is 5 items.
384 * This function may sleep.
386 int intel_scu_ipc_dev_readv(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
389 return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
391 EXPORT_SYMBOL(intel_scu_ipc_dev_readv);
394 * intel_scu_ipc_dev_writev() - Write a set of registers
395 * @scu: Optional SCU IPC instance
396 * @addr: Register list
397 * @data: Bytes to write
398 * @len: Length of array
400 * Write registers. Returns %0 on success or an error code. All locking
401 * between SCU accesses is handled for the caller.
403 * The largest array length permitted by the hardware is 5 items.
405 * This function may sleep.
407 int intel_scu_ipc_dev_writev(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
410 return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
412 EXPORT_SYMBOL(intel_scu_ipc_dev_writev);
415 * intel_scu_ipc_dev_update() - Update a register
416 * @scu: Optional SCU IPC instance
417 * @addr: Register address
418 * @data: Bits to update
419 * @mask: Mask of bits to update
421 * Read-modify-write power control unit register. The first data argument
422 * must be register value and second is mask value mask is a bitmap that
423 * indicates which bits to update. %0 = masked. Don't modify this bit, %1 =
424 * modify this bit. returns %0 on success or an error code.
426 * This function may sleep. Locking between SCU accesses is handled
429 int intel_scu_ipc_dev_update(struct intel_scu_ipc_dev *scu, u16 addr, u8 data,
432 u8 tmp[2] = { data, mask };
433 return pwr_reg_rdwr(scu, &addr, tmp, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
435 EXPORT_SYMBOL(intel_scu_ipc_dev_update);
438 * intel_scu_ipc_dev_simple_command() - Send a simple command
439 * @scu: Optional SCU IPC instance
443 * Issue a simple command to the SCU. Do not use this interface if you must
444 * then access data as any data values may be overwritten by another SCU
445 * access by the time this function returns.
447 * This function may sleep. Locking for SCU accesses is handled for the
450 int intel_scu_ipc_dev_simple_command(struct intel_scu_ipc_dev *scu, int cmd,
456 mutex_lock(&ipclock);
457 scu = intel_scu_ipc_get(scu);
459 mutex_unlock(&ipclock);
463 cmdval = sub << 12 | cmd;
464 ipc_command(scu, cmdval);
465 err = intel_scu_ipc_check_status(scu);
466 mutex_unlock(&ipclock);
468 dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
471 EXPORT_SYMBOL(intel_scu_ipc_dev_simple_command);
474 * intel_scu_ipc_dev_command_with_size() - Command with data
475 * @scu: Optional SCU IPC instance
479 * @inlen: Input length in bytes
480 * @size: Input size written to the IPC command register in whatever
481 * units (dword, byte) the particular firmware requires. Normally
482 * should be the same as @inlen.
484 * @outlen: Output length in bytes
486 * Issue a command to the SCU which involves data transfers. Do the
487 * data copies under the lock but leave it for the caller to interpret.
489 int intel_scu_ipc_dev_command_with_size(struct intel_scu_ipc_dev *scu, int cmd,
490 int sub, const void *in, size_t inlen,
491 size_t size, void *out, size_t outlen)
493 size_t outbuflen = DIV_ROUND_UP(outlen, sizeof(u32));
494 size_t inbuflen = DIV_ROUND_UP(inlen, sizeof(u32));
495 u32 cmdval, inbuf[4] = {};
498 if (inbuflen > 4 || outbuflen > 4)
501 mutex_lock(&ipclock);
502 scu = intel_scu_ipc_get(scu);
504 mutex_unlock(&ipclock);
508 memcpy(inbuf, in, inlen);
509 for (i = 0; i < inbuflen; i++)
510 ipc_data_writel(scu, inbuf[i], 4 * i);
512 cmdval = (size << 16) | (sub << 12) | cmd;
513 ipc_command(scu, cmdval);
514 err = intel_scu_ipc_check_status(scu);
519 for (i = 0; i < outbuflen; i++)
520 outbuf[i] = ipc_data_readl(scu, 4 * i);
522 memcpy(out, outbuf, outlen);
525 mutex_unlock(&ipclock);
527 dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
530 EXPORT_SYMBOL(intel_scu_ipc_dev_command_with_size);
533 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
534 * When ioc bit is set to 1, caller api must wait for interrupt handler called
535 * which in turn unlocks the caller api. Currently this is not used
537 * This is edge triggered so we need take no action to clear anything
539 static irqreturn_t ioc(int irq, void *dev_id)
541 struct intel_scu_ipc_dev *scu = dev_id;
542 int status = ipc_read_status(scu);
544 writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS);
545 complete(&scu->cmd_complete);
550 static void intel_scu_ipc_release(struct device *dev)
552 struct intel_scu_ipc_dev *scu;
554 scu = container_of(dev, struct intel_scu_ipc_dev, dev);
556 free_irq(scu->irq, scu);
557 iounmap(scu->ipc_base);
558 release_mem_region(scu->mem.start, resource_size(&scu->mem));
563 * __intel_scu_ipc_register() - Register SCU IPC device
564 * @parent: Parent device
565 * @scu_data: Data used to configure SCU IPC
566 * @owner: Module registering the SCU IPC device
568 * Call this function to register SCU IPC mechanism under @parent.
569 * Returns pointer to the new SCU IPC device or ERR_PTR() in case of
570 * failure. The caller may use the returned instance if it needs to do
571 * SCU IPC calls itself.
573 struct intel_scu_ipc_dev *
574 __intel_scu_ipc_register(struct device *parent,
575 const struct intel_scu_ipc_data *scu_data,
576 struct module *owner)
579 struct intel_scu_ipc_dev *scu;
580 void __iomem *ipc_base;
582 mutex_lock(&ipclock);
583 /* We support only one IPC */
589 scu = kzalloc(sizeof(*scu), GFP_KERNEL);
596 scu->dev.parent = parent;
597 scu->dev.class = &intel_scu_ipc_class;
598 scu->dev.release = intel_scu_ipc_release;
600 if (!request_mem_region(scu_data->mem.start, resource_size(&scu_data->mem),
606 ipc_base = ioremap(scu_data->mem.start, resource_size(&scu_data->mem));
612 scu->ipc_base = ipc_base;
613 scu->mem = scu_data->mem;
614 scu->irq = scu_data->irq;
615 init_completion(&scu->cmd_complete);
618 err = request_irq(scu->irq, ioc, 0, "intel_scu_ipc", scu);
624 * After this point intel_scu_ipc_release() takes care of
625 * releasing the SCU IPC resources once refcount drops to zero.
627 dev_set_name(&scu->dev, "intel_scu_ipc");
628 err = device_register(&scu->dev);
630 put_device(&scu->dev);
634 /* Assign device at last */
636 mutex_unlock(&ipclock);
643 release_mem_region(scu_data->mem.start, resource_size(&scu_data->mem));
647 mutex_unlock(&ipclock);
651 EXPORT_SYMBOL_GPL(__intel_scu_ipc_register);
654 * intel_scu_ipc_unregister() - Unregister SCU IPC
655 * @scu: SCU IPC handle
657 * This unregisters the SCU IPC device and releases the acquired
658 * resources once the refcount goes to zero.
660 void intel_scu_ipc_unregister(struct intel_scu_ipc_dev *scu)
662 mutex_lock(&ipclock);
663 if (!WARN_ON(!ipcdev)) {
665 device_unregister(&scu->dev);
667 mutex_unlock(&ipclock);
669 EXPORT_SYMBOL_GPL(intel_scu_ipc_unregister);
671 static void devm_intel_scu_ipc_unregister(struct device *dev, void *res)
673 struct intel_scu_ipc_devres *dr = res;
674 struct intel_scu_ipc_dev *scu = dr->scu;
676 intel_scu_ipc_unregister(scu);
680 * __devm_intel_scu_ipc_register() - Register managed SCU IPC device
681 * @parent: Parent device
682 * @scu_data: Data used to configure SCU IPC
683 * @owner: Module registering the SCU IPC device
685 * Call this function to register managed SCU IPC mechanism under
686 * @parent. Returns pointer to the new SCU IPC device or ERR_PTR() in
687 * case of failure. The caller may use the returned instance if it needs
688 * to do SCU IPC calls itself.
690 struct intel_scu_ipc_dev *
691 __devm_intel_scu_ipc_register(struct device *parent,
692 const struct intel_scu_ipc_data *scu_data,
693 struct module *owner)
695 struct intel_scu_ipc_devres *dr;
696 struct intel_scu_ipc_dev *scu;
698 dr = devres_alloc(devm_intel_scu_ipc_unregister, sizeof(*dr), GFP_KERNEL);
702 scu = __intel_scu_ipc_register(parent, scu_data, owner);
709 devres_add(parent, dr);
713 EXPORT_SYMBOL_GPL(__devm_intel_scu_ipc_register);
715 static int __init intel_scu_ipc_init(void)
717 return class_register(&intel_scu_ipc_class);
719 subsys_initcall(intel_scu_ipc_init);
721 static void __exit intel_scu_ipc_exit(void)
723 class_unregister(&intel_scu_ipc_class);
725 module_exit(intel_scu_ipc_exit);