1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
12 #include <asm/unaligned.h>
14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START
15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
18 struct kobject *dmi_kobj;
19 EXPORT_SYMBOL_GPL(dmi_kobj);
22 * DMI stands for "Desktop Management Interface". It is part
23 * of and an antecedent to, SMBIOS, which stands for System
24 * Management BIOS. See further: https://www.dmtf.org/standards
26 static const char dmi_empty_string[] = "";
28 static u32 dmi_ver __initdata;
31 static u8 smbios_entry_point[32];
32 static int smbios_entry_point_size;
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
37 static struct dmi_memdev_info {
42 u8 type; /* DDR2, DDR3, DDR4 etc */
44 static int dmi_memdev_nr;
45 static int dmi_memdev_populated_nr __initdata;
47 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
49 const u8 *bp = ((u8 *) dm) + dm->length;
53 while (--s > 0 && *bp)
56 /* Strings containing only spaces are considered empty */
64 return dmi_empty_string;
67 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
69 const char *bp = dmi_string_nosave(dm, s);
73 if (bp == dmi_empty_string)
74 return dmi_empty_string;
85 * We have to be cautious here. We have seen BIOSes with DMI pointers
86 * pointing to completely the wrong place for example
88 static void dmi_decode_table(u8 *buf,
89 void (*decode)(const struct dmi_header *, void *),
96 * Stop when we have seen all the items the table claimed to have
97 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
98 * >= 3.0 only) OR we run off the end of the table (should never
99 * happen but sometimes does on bogus implementations.)
101 while ((!dmi_num || i < dmi_num) &&
102 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
103 const struct dmi_header *dm = (const struct dmi_header *)data;
106 * If a short entry is found (less than 4 bytes), not only it
107 * is invalid, but we cannot reliably locate the next entry.
109 if (dm->length < sizeof(struct dmi_header)) {
111 "Corrupted DMI table, offset %zd (only %d entries processed)\n",
117 * We want to know the total length (formatted area and
118 * strings) before decoding to make sure we won't run off the
119 * table in dmi_decode or dmi_string
122 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
124 if (data - buf < dmi_len - 1)
125 decode(dm, private_data);
131 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
132 * For tables behind a 64-bit entry point, we have no item
133 * count and no exact table length, so stop on end-of-table
134 * marker. For tables behind a 32-bit entry point, we have
135 * seen OEM structures behind the end-of-table marker on
136 * some systems, so don't trust it.
138 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
142 /* Trim DMI table length if needed */
143 if (dmi_len > data - buf)
144 dmi_len = data - buf;
147 static phys_addr_t dmi_base;
149 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
153 u32 orig_dmi_len = dmi_len;
155 buf = dmi_early_remap(dmi_base, orig_dmi_len);
159 dmi_decode_table(buf, decode, NULL);
161 add_device_randomness(buf, dmi_len);
163 dmi_early_unmap(buf, orig_dmi_len);
167 static int __init dmi_checksum(const u8 *buf, u8 len)
172 for (a = 0; a < len; a++)
178 static const char *dmi_ident[DMI_STRING_MAX];
179 static LIST_HEAD(dmi_devices);
181 EXPORT_SYMBOL_GPL(dmi_available);
186 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
189 const char *d = (const char *) dm;
192 if (dmi_ident[slot] || dm->length <= string)
195 p = dmi_string(dm, d[string]);
202 static void __init dmi_save_release(const struct dmi_header *dm, int slot,
205 const u8 *minor, *major;
208 /* If the table doesn't have the field, let's return */
209 if (dmi_ident[slot] || dm->length < index)
212 minor = (u8 *) dm + index;
213 major = (u8 *) dm + index - 1;
215 /* As per the spec, if the system doesn't support this field,
218 if (*major == 0xFF && *minor == 0xFF)
225 sprintf(s, "%u.%u", *major, *minor);
230 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
235 int is_ff = 1, is_00 = 1, i;
237 if (dmi_ident[slot] || dm->length < index + 16)
240 d = (u8 *) dm + index;
241 for (i = 0; i < 16 && (is_ff || is_00); i++) {
251 s = dmi_alloc(16*2+4+1);
256 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
257 * the UUID are supposed to be little-endian encoded. The specification
258 * says that this is the defacto standard.
260 if (dmi_ver >= 0x020600)
261 sprintf(s, "%pUl", d);
263 sprintf(s, "%pUb", d);
268 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
274 if (dmi_ident[slot] || dm->length <= index)
281 d = (u8 *) dm + index;
282 sprintf(s, "%u", *d & 0x7F);
286 static void __init dmi_save_one_device(int type, const char *name)
288 struct dmi_device *dev;
290 /* No duplicate device */
291 if (dmi_find_device(type, name, NULL))
294 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
299 strcpy((char *)(dev + 1), name);
300 dev->name = (char *)(dev + 1);
301 dev->device_data = NULL;
302 list_add(&dev->list, &dmi_devices);
305 static void __init dmi_save_devices(const struct dmi_header *dm)
307 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
309 for (i = 0; i < count; i++) {
310 const char *d = (char *)(dm + 1) + (i * 2);
312 /* Skip disabled device */
313 if ((*d & 0x80) == 0)
316 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
320 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
323 struct dmi_device *dev;
325 if (dm->length < 0x05)
328 count = *(u8 *)(dm + 1);
329 for (i = 1; i <= count; i++) {
330 const char *devname = dmi_string(dm, i);
332 if (devname == dmi_empty_string)
335 dev = dmi_alloc(sizeof(*dev));
339 dev->type = DMI_DEV_TYPE_OEM_STRING;
341 dev->device_data = NULL;
343 list_add(&dev->list, &dmi_devices);
347 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
349 struct dmi_device *dev;
352 data = dmi_alloc(dm->length);
356 memcpy(data, dm, dm->length);
358 dev = dmi_alloc(sizeof(*dev));
362 dev->type = DMI_DEV_TYPE_IPMI;
363 dev->name = "IPMI controller";
364 dev->device_data = data;
366 list_add_tail(&dev->list, &dmi_devices);
369 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
370 int devfn, const char *name, int type)
372 struct dmi_dev_onboard *dev;
374 /* Ignore invalid values */
375 if (type == DMI_DEV_TYPE_DEV_SLOT &&
376 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
379 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
383 dev->instance = instance;
384 dev->segment = segment;
388 strcpy((char *)&dev[1], name);
389 dev->dev.type = type;
390 dev->dev.name = (char *)&dev[1];
391 dev->dev.device_data = dev;
393 list_add(&dev->dev.list, &dmi_devices);
396 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
399 const u8 *d = (u8 *)dm;
401 if (dm->length < 0x0B)
404 /* Skip disabled device */
405 if ((d[0x5] & 0x80) == 0)
408 name = dmi_string_nosave(dm, d[0x4]);
409 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
410 DMI_DEV_TYPE_DEV_ONBOARD);
411 dmi_save_one_device(d[0x5] & 0x7f, name);
414 static void __init dmi_save_system_slot(const struct dmi_header *dm)
416 const u8 *d = (u8 *)dm;
418 /* Need SMBIOS 2.6+ structure */
419 if (dm->length < 0x11)
421 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
422 d[0x10], dmi_string_nosave(dm, d[0x4]),
423 DMI_DEV_TYPE_DEV_SLOT);
426 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
428 if (dm->type != DMI_ENTRY_MEM_DEVICE)
433 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
435 const char *d = (const char *)dm;
440 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
442 if (nr >= dmi_memdev_nr) {
443 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
446 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
447 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
448 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
449 dmi_memdev[nr].type = d[0x12];
451 size = get_unaligned((u16 *)&d[0xC]);
454 else if (size == 0xffff)
456 else if (size & 0x8000)
457 bytes = (u64)(size & 0x7fff) << 10;
458 else if (size != 0x7fff || dm->length < 0x20)
459 bytes = (u64)size << 20;
461 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
464 dmi_memdev_populated_nr++;
466 dmi_memdev[nr].size = bytes;
470 static void __init dmi_memdev_walk(void)
472 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
473 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
475 dmi_walk_early(save_mem_devices);
480 * Process a DMI table entry. Right now all we care about are the BIOS
481 * and machine entries. For 2.5 we should pull the smbus controller info
484 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
487 case 0: /* BIOS Information */
488 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
489 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
490 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
491 dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
492 dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
494 case 1: /* System Information */
495 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
496 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
497 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
498 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
499 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
500 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
501 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
503 case 2: /* Base Board Information */
504 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
505 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
506 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
507 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
508 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
510 case 3: /* Chassis Information */
511 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
512 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
513 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
514 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
515 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
517 case 9: /* System Slots */
518 dmi_save_system_slot(dm);
520 case 10: /* Onboard Devices Information */
521 dmi_save_devices(dm);
523 case 11: /* OEM Strings */
524 dmi_save_oem_strings_devices(dm);
526 case 38: /* IPMI Device Information */
527 dmi_save_ipmi_device(dm);
529 case 41: /* Onboard Devices Extended Information */
530 dmi_save_extended_devices(dm);
534 static int __init print_filtered(char *buf, size_t len, const char *info)
542 for (p = info; *p; p++)
544 c += scnprintf(buf + c, len - c, "%c", *p);
546 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
550 static void __init dmi_format_ids(char *buf, size_t len)
553 const char *board; /* Board Name is optional */
555 c += print_filtered(buf + c, len - c,
556 dmi_get_system_info(DMI_SYS_VENDOR));
557 c += scnprintf(buf + c, len - c, " ");
558 c += print_filtered(buf + c, len - c,
559 dmi_get_system_info(DMI_PRODUCT_NAME));
561 board = dmi_get_system_info(DMI_BOARD_NAME);
563 c += scnprintf(buf + c, len - c, "/");
564 c += print_filtered(buf + c, len - c, board);
566 c += scnprintf(buf + c, len - c, ", BIOS ");
567 c += print_filtered(buf + c, len - c,
568 dmi_get_system_info(DMI_BIOS_VERSION));
569 c += scnprintf(buf + c, len - c, " ");
570 c += print_filtered(buf + c, len - c,
571 dmi_get_system_info(DMI_BIOS_DATE));
575 * Check for DMI/SMBIOS headers in the system firmware image. Any
576 * SMBIOS header must start 16 bytes before the DMI header, so take a
577 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
578 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
579 * takes precedence) and return 0. Otherwise return 1.
581 static int __init dmi_present(const u8 *buf)
586 * The size of this structure is 31 bytes, but we also accept value
587 * 30 due to a mistake in SMBIOS specification version 2.1.
589 if (memcmp(buf, "_SM_", 4) == 0 &&
590 buf[5] >= 30 && buf[5] <= 32 &&
591 dmi_checksum(buf, buf[5])) {
592 smbios_ver = get_unaligned_be16(buf + 6);
593 smbios_entry_point_size = buf[5];
594 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
596 /* Some BIOS report weird SMBIOS version, fix that up */
597 switch (smbios_ver) {
600 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
601 smbios_ver & 0xFF, 3);
605 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
615 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
617 dmi_ver = smbios_ver;
619 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
621 dmi_num = get_unaligned_le16(buf + 12);
622 dmi_len = get_unaligned_le16(buf + 6);
623 dmi_base = get_unaligned_le32(buf + 8);
625 if (dmi_walk_early(dmi_decode) == 0) {
627 pr_info("SMBIOS %d.%d present.\n",
628 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
630 smbios_entry_point_size = 15;
631 memcpy(smbios_entry_point, buf,
632 smbios_entry_point_size);
633 pr_info("Legacy DMI %d.%d present.\n",
634 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
636 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
637 pr_info("DMI: %s\n", dmi_ids_string);
646 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
647 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
649 static int __init dmi_smbios3_present(const u8 *buf)
651 if (memcmp(buf, "_SM3_", 5) == 0 &&
652 buf[6] >= 24 && buf[6] <= 32 &&
653 dmi_checksum(buf, buf[6])) {
654 dmi_ver = get_unaligned_be24(buf + 7);
655 dmi_num = 0; /* No longer specified */
656 dmi_len = get_unaligned_le32(buf + 12);
657 dmi_base = get_unaligned_le64(buf + 16);
658 smbios_entry_point_size = buf[6];
659 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
661 if (dmi_walk_early(dmi_decode) == 0) {
662 pr_info("SMBIOS %d.%d.%d present.\n",
663 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
665 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
666 pr_info("DMI: %s\n", dmi_ids_string);
673 static void __init dmi_scan_machine(void)
678 if (efi_enabled(EFI_CONFIG_TABLES)) {
680 * According to the DMTF SMBIOS reference spec v3.0.0, it is
681 * allowed to define both the 64-bit entry point (smbios3) and
682 * the 32-bit entry point (smbios), in which case they should
683 * either both point to the same SMBIOS structure table, or the
684 * table pointed to by the 64-bit entry point should contain a
685 * superset of the table contents pointed to by the 32-bit entry
686 * point (section 5.2)
687 * This implies that the 64-bit entry point should have
688 * precedence if it is defined and supported by the OS. If we
689 * have the 64-bit entry point, but fail to decode it, fall
690 * back to the legacy one (if available)
692 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
693 p = dmi_early_remap(efi.smbios3, 32);
696 memcpy_fromio(buf, p, 32);
697 dmi_early_unmap(p, 32);
699 if (!dmi_smbios3_present(buf)) {
704 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
707 /* This is called as a core_initcall() because it isn't
708 * needed during early boot. This also means we can
709 * iounmap the space when we're done with it.
711 p = dmi_early_remap(efi.smbios, 32);
714 memcpy_fromio(buf, p, 32);
715 dmi_early_unmap(p, 32);
717 if (!dmi_present(buf)) {
721 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
722 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
727 * Same logic as above, look for a 64-bit entry point
728 * first, and if not found, fall back to 32-bit entry point.
730 memcpy_fromio(buf, p, 16);
731 for (q = p + 16; q < p + 0x10000; q += 16) {
732 memcpy_fromio(buf + 16, q, 16);
733 if (!dmi_smbios3_present(buf)) {
735 dmi_early_unmap(p, 0x10000);
738 memcpy(buf, buf + 16, 16);
742 * Iterate over all possible DMI header addresses q.
743 * Maintain the 32 bytes around q in buf. On the
744 * first iteration, substitute zero for the
745 * out-of-range bytes so there is no chance of falsely
746 * detecting an SMBIOS header.
749 for (q = p; q < p + 0x10000; q += 16) {
750 memcpy_fromio(buf + 16, q, 16);
751 if (!dmi_present(buf)) {
753 dmi_early_unmap(p, 0x10000);
756 memcpy(buf, buf + 16, 16);
758 dmi_early_unmap(p, 0x10000);
761 pr_info("DMI not present or invalid.\n");
764 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
765 struct bin_attribute *attr, char *buf,
766 loff_t pos, size_t count)
768 memcpy(buf, attr->private + pos, count);
772 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
773 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
775 static int __init dmi_init(void)
777 struct kobject *tables_kobj;
785 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
786 * even after farther error, as it can be used by other modules like
789 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
793 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
797 dmi_table = dmi_remap(dmi_base, dmi_len);
801 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
802 bin_attr_smbios_entry_point.private = smbios_entry_point;
803 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
807 bin_attr_DMI.size = dmi_len;
808 bin_attr_DMI.private = dmi_table;
809 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
813 sysfs_remove_bin_file(tables_kobj,
814 &bin_attr_smbios_entry_point);
816 dmi_unmap(dmi_table);
818 kobject_del(tables_kobj);
819 kobject_put(tables_kobj);
821 pr_err("dmi: Firmware registration failed.\n");
825 subsys_initcall(dmi_init);
828 * dmi_setup - scan and setup DMI system information
830 * Scan the DMI system information. This setups DMI identifiers
831 * (dmi_system_id) for printing it out on task dumps and prepares
832 * DIMM entry information (dmi_memdev_info) from the SMBIOS table
833 * for using this when reporting memory errors.
835 void __init dmi_setup(void)
842 pr_info("DMI: Memory slots populated: %d/%d\n",
843 dmi_memdev_populated_nr, dmi_memdev_nr);
844 dump_stack_set_arch_desc("%s", dmi_ids_string);
848 * dmi_matches - check if dmi_system_id structure matches system DMI data
849 * @dmi: pointer to the dmi_system_id structure to check
851 static bool dmi_matches(const struct dmi_system_id *dmi)
855 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
856 int s = dmi->matches[i].slot;
859 if (s == DMI_OEM_STRING) {
860 /* DMI_OEM_STRING must be exact match */
861 const struct dmi_device *valid;
863 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
864 dmi->matches[i].substr, NULL);
867 } else if (dmi_ident[s]) {
868 if (dmi->matches[i].exact_match) {
869 if (!strcmp(dmi_ident[s],
870 dmi->matches[i].substr))
873 if (strstr(dmi_ident[s],
874 dmi->matches[i].substr))
886 * dmi_is_end_of_table - check for end-of-table marker
887 * @dmi: pointer to the dmi_system_id structure to check
889 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
891 return dmi->matches[0].slot == DMI_NONE;
895 * dmi_check_system - check system DMI data
896 * @list: array of dmi_system_id structures to match against
897 * All non-null elements of the list must match
898 * their slot's (field index's) data (i.e., each
899 * list string must be a substring of the specified
900 * DMI slot's string data) to be considered a
903 * Walk the blacklist table running matching functions until someone
904 * returns non zero or we hit the end. Callback function is called for
905 * each successful match. Returns the number of matches.
907 * dmi_setup must be called before this function is called.
909 int dmi_check_system(const struct dmi_system_id *list)
912 const struct dmi_system_id *d;
914 for (d = list; !dmi_is_end_of_table(d); d++)
915 if (dmi_matches(d)) {
917 if (d->callback && d->callback(d))
923 EXPORT_SYMBOL(dmi_check_system);
926 * dmi_first_match - find dmi_system_id structure matching system DMI data
927 * @list: array of dmi_system_id structures to match against
928 * All non-null elements of the list must match
929 * their slot's (field index's) data (i.e., each
930 * list string must be a substring of the specified
931 * DMI slot's string data) to be considered a
934 * Walk the blacklist table until the first match is found. Return the
935 * pointer to the matching entry or NULL if there's no match.
937 * dmi_setup must be called before this function is called.
939 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
941 const struct dmi_system_id *d;
943 for (d = list; !dmi_is_end_of_table(d); d++)
949 EXPORT_SYMBOL(dmi_first_match);
952 * dmi_get_system_info - return DMI data value
953 * @field: data index (see enum dmi_field)
955 * Returns one DMI data value, can be used to perform
956 * complex DMI data checks.
958 const char *dmi_get_system_info(int field)
960 return dmi_ident[field];
962 EXPORT_SYMBOL(dmi_get_system_info);
965 * dmi_name_in_serial - Check if string is in the DMI product serial information
966 * @str: string to check for
968 int dmi_name_in_serial(const char *str)
970 int f = DMI_PRODUCT_SERIAL;
971 if (dmi_ident[f] && strstr(dmi_ident[f], str))
977 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
978 * @str: Case sensitive Name
980 int dmi_name_in_vendors(const char *str)
982 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
984 for (i = 0; fields[i] != DMI_NONE; i++) {
986 if (dmi_ident[f] && strstr(dmi_ident[f], str))
991 EXPORT_SYMBOL(dmi_name_in_vendors);
994 * dmi_find_device - find onboard device by type/name
995 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
996 * @name: device name string or %NULL to match all
997 * @from: previous device found in search, or %NULL for new search.
999 * Iterates through the list of known onboard devices. If a device is
1000 * found with a matching @type and @name, a pointer to its device
1001 * structure is returned. Otherwise, %NULL is returned.
1002 * A new search is initiated by passing %NULL as the @from argument.
1003 * If @from is not %NULL, searches continue from next device.
1005 const struct dmi_device *dmi_find_device(int type, const char *name,
1006 const struct dmi_device *from)
1008 const struct list_head *head = from ? &from->list : &dmi_devices;
1009 struct list_head *d;
1011 for (d = head->next; d != &dmi_devices; d = d->next) {
1012 const struct dmi_device *dev =
1013 list_entry(d, struct dmi_device, list);
1015 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
1016 ((name == NULL) || (strcmp(dev->name, name) == 0)))
1022 EXPORT_SYMBOL(dmi_find_device);
1025 * dmi_get_date - parse a DMI date
1026 * @field: data index (see enum dmi_field)
1027 * @yearp: optional out parameter for the year
1028 * @monthp: optional out parameter for the month
1029 * @dayp: optional out parameter for the day
1031 * The date field is assumed to be in the form resembling
1032 * [mm[/dd]]/yy[yy] and the result is stored in the out
1033 * parameters any or all of which can be omitted.
1035 * If the field doesn't exist, all out parameters are set to zero
1036 * and false is returned. Otherwise, true is returned with any
1037 * invalid part of date set to zero.
1039 * On return, year, month and day are guaranteed to be in the
1040 * range of [0,9999], [0,12] and [0,31] respectively.
1042 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1044 int year = 0, month = 0, day = 0;
1049 s = dmi_get_system_info(field);
1055 * Determine year first. We assume the date string resembles
1056 * mm/dd/yy[yy] but the original code extracted only the year
1057 * from the end. Keep the behavior in the spirit of no
1060 y = strrchr(s, '/');
1065 year = simple_strtoul(y, &e, 10);
1066 if (y != e && year < 100) { /* 2-digit year */
1068 if (year < 1996) /* no dates < spec 1.0 */
1071 if (year > 9999) /* year should fit in %04d */
1074 /* parse the mm and dd */
1075 month = simple_strtoul(s, &e, 10);
1076 if (s == e || *e != '/' || !month || month > 12) {
1082 day = simple_strtoul(s, &e, 10);
1083 if (s == y || s == e || *e != '/' || day > 31)
1094 EXPORT_SYMBOL(dmi_get_date);
1097 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1099 * Returns year on success, -ENXIO if DMI is not selected,
1100 * or a different negative error code if DMI field is not present
1103 int dmi_get_bios_year(void)
1108 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1112 return year ? year : -ERANGE;
1114 EXPORT_SYMBOL(dmi_get_bios_year);
1117 * dmi_walk - Walk the DMI table and get called back for every record
1118 * @decode: Callback function
1119 * @private_data: Private data to be passed to the callback function
1121 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1122 * or a different negative error code if DMI walking fails.
1124 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1132 buf = dmi_remap(dmi_base, dmi_len);
1136 dmi_decode_table(buf, decode, private_data);
1141 EXPORT_SYMBOL_GPL(dmi_walk);
1144 * dmi_match - compare a string to the dmi field (if exists)
1145 * @f: DMI field identifier
1146 * @str: string to compare the DMI field to
1148 * Returns true if the requested field equals to the str (including NULL).
1150 bool dmi_match(enum dmi_field f, const char *str)
1152 const char *info = dmi_get_system_info(f);
1154 if (info == NULL || str == NULL)
1157 return !strcmp(info, str);
1159 EXPORT_SYMBOL_GPL(dmi_match);
1161 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1165 if (dmi_memdev == NULL)
1168 for (n = 0; n < dmi_memdev_nr; n++) {
1169 if (handle == dmi_memdev[n].handle) {
1170 *bank = dmi_memdev[n].bank;
1171 *device = dmi_memdev[n].device;
1176 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1178 u64 dmi_memdev_size(u16 handle)
1183 for (n = 0; n < dmi_memdev_nr; n++) {
1184 if (handle == dmi_memdev[n].handle)
1185 return dmi_memdev[n].size;
1190 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1193 * dmi_memdev_type - get the memory type
1194 * @handle: DMI structure handle
1196 * Return the DMI memory type of the module in the slot associated with the
1197 * given DMI handle, or 0x0 if no such DMI handle exists.
1199 u8 dmi_memdev_type(u16 handle)
1204 for (n = 0; n < dmi_memdev_nr; n++) {
1205 if (handle == dmi_memdev[n].handle)
1206 return dmi_memdev[n].type;
1209 return 0x0; /* Not a valid value */
1211 EXPORT_SYMBOL_GPL(dmi_memdev_type);
1214 * dmi_memdev_handle - get the DMI handle of a memory slot
1215 * @slot: slot number
1217 * Return the DMI handle associated with a given memory slot, or %0xFFFF
1218 * if there is no such slot.
1220 u16 dmi_memdev_handle(int slot)
1222 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1223 return dmi_memdev[slot].handle;
1225 return 0xffff; /* Not a valid value */
1227 EXPORT_SYMBOL_GPL(dmi_memdev_handle);