1 // SPDX-License-Identifier: GPL-2.0
3 * drivers/base/core.c - core driver model code (device registration, etc)
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
8 * Copyright (c) 2006 Novell, Inc.
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/string_helpers.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
36 #include "physical_location.h"
37 #include "power/power.h"
39 /* Device links support. */
40 static LIST_HEAD(deferred_sync);
41 static unsigned int defer_sync_state_count = 1;
42 static DEFINE_MUTEX(fwnode_link_lock);
43 static bool fw_devlink_is_permissive(void);
44 static void __fw_devlink_link_to_consumers(struct device *dev);
45 static bool fw_devlink_drv_reg_done;
46 static bool fw_devlink_best_effort;
47 static struct workqueue_struct *device_link_wq;
50 * __fwnode_link_add - Create a link between two fwnode_handles.
51 * @con: Consumer end of the link.
52 * @sup: Supplier end of the link.
55 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
56 * represents the detail that the firmware lists @sup fwnode as supplying a
59 * The driver core will use the fwnode link to create a device link between the
60 * two device objects corresponding to @con and @sup when they are created. The
61 * driver core will automatically delete the fwnode link between @con and @sup
64 * Attempts to create duplicate links between the same pair of fwnode handles
65 * are ignored and there is no reference counting.
67 static int __fwnode_link_add(struct fwnode_handle *con,
68 struct fwnode_handle *sup, u8 flags)
70 struct fwnode_link *link;
72 list_for_each_entry(link, &sup->consumers, s_hook)
73 if (link->consumer == con) {
78 link = kzalloc(sizeof(*link), GFP_KERNEL);
83 INIT_LIST_HEAD(&link->s_hook);
85 INIT_LIST_HEAD(&link->c_hook);
88 list_add(&link->s_hook, &sup->consumers);
89 list_add(&link->c_hook, &con->suppliers);
90 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
96 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
101 mutex_lock(&fwnode_link_lock);
102 ret = __fwnode_link_add(con, sup, flags);
103 mutex_unlock(&fwnode_link_lock);
108 * __fwnode_link_del - Delete a link between two fwnode_handles.
109 * @link: the fwnode_link to be deleted
111 * The fwnode_link_lock needs to be held when this function is called.
113 static void __fwnode_link_del(struct fwnode_link *link)
115 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
116 link->consumer, link->supplier);
117 list_del(&link->s_hook);
118 list_del(&link->c_hook);
123 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
124 * @link: the fwnode_link to be marked
126 * The fwnode_link_lock needs to be held when this function is called.
128 static void __fwnode_link_cycle(struct fwnode_link *link)
130 pr_debug("%pfwf: cycle: depends on %pfwf\n",
131 link->consumer, link->supplier);
132 link->flags |= FWLINK_FLAG_CYCLE;
136 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
137 * @fwnode: fwnode whose supplier links need to be deleted
139 * Deletes all supplier links connecting directly to @fwnode.
141 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
143 struct fwnode_link *link, *tmp;
145 mutex_lock(&fwnode_link_lock);
146 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
147 __fwnode_link_del(link);
148 mutex_unlock(&fwnode_link_lock);
152 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
153 * @fwnode: fwnode whose consumer links need to be deleted
155 * Deletes all consumer links connecting directly to @fwnode.
157 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
159 struct fwnode_link *link, *tmp;
161 mutex_lock(&fwnode_link_lock);
162 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
163 __fwnode_link_del(link);
164 mutex_unlock(&fwnode_link_lock);
168 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
169 * @fwnode: fwnode whose links needs to be deleted
171 * Deletes all links connecting directly to a fwnode.
173 void fwnode_links_purge(struct fwnode_handle *fwnode)
175 fwnode_links_purge_suppliers(fwnode);
176 fwnode_links_purge_consumers(fwnode);
179 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
181 struct fwnode_handle *child;
183 /* Don't purge consumer links of an added child */
187 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
188 fwnode_links_purge_consumers(fwnode);
190 fwnode_for_each_available_child_node(fwnode, child)
191 fw_devlink_purge_absent_suppliers(child);
193 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
196 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
197 * @from: move consumers away from this fwnode
198 * @to: move consumers to this fwnode
200 * Move all consumer links from @from fwnode to @to fwnode.
202 static void __fwnode_links_move_consumers(struct fwnode_handle *from,
203 struct fwnode_handle *to)
205 struct fwnode_link *link, *tmp;
207 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
208 __fwnode_link_add(link->consumer, to, link->flags);
209 __fwnode_link_del(link);
214 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
215 * @fwnode: fwnode from which to pick up dangling consumers
216 * @new_sup: fwnode of new supplier
218 * If the @fwnode has a corresponding struct device and the device supports
219 * probing (that is, added to a bus), then we want to let fw_devlink create
220 * MANAGED device links to this device, so leave @fwnode and its descendant's
221 * fwnode links alone.
223 * Otherwise, move its consumers to the new supplier @new_sup.
225 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
226 struct fwnode_handle *new_sup)
228 struct fwnode_handle *child;
230 if (fwnode->dev && fwnode->dev->bus)
233 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
234 __fwnode_links_move_consumers(fwnode, new_sup);
236 fwnode_for_each_available_child_node(fwnode, child)
237 __fw_devlink_pickup_dangling_consumers(child, new_sup);
240 static DEFINE_MUTEX(device_links_lock);
241 DEFINE_STATIC_SRCU(device_links_srcu);
243 static inline void device_links_write_lock(void)
245 mutex_lock(&device_links_lock);
248 static inline void device_links_write_unlock(void)
250 mutex_unlock(&device_links_lock);
253 int device_links_read_lock(void) __acquires(&device_links_srcu)
255 return srcu_read_lock(&device_links_srcu);
258 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
260 srcu_read_unlock(&device_links_srcu, idx);
263 int device_links_read_lock_held(void)
265 return srcu_read_lock_held(&device_links_srcu);
268 static void device_link_synchronize_removal(void)
270 synchronize_srcu(&device_links_srcu);
273 static void device_link_remove_from_lists(struct device_link *link)
275 list_del_rcu(&link->s_node);
276 list_del_rcu(&link->c_node);
279 static bool device_is_ancestor(struct device *dev, struct device *target)
281 while (target->parent) {
282 target = target->parent;
289 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \
292 static inline bool device_link_flag_is_sync_state_only(u32 flags)
294 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
298 * device_is_dependent - Check if one device depends on another one
299 * @dev: Device to check dependencies for.
300 * @target: Device to check against.
302 * Check if @target depends on @dev or any device dependent on it (its child or
303 * its consumer etc). Return 1 if that is the case or 0 otherwise.
305 static int device_is_dependent(struct device *dev, void *target)
307 struct device_link *link;
311 * The "ancestors" check is needed to catch the case when the target
312 * device has not been completely initialized yet and it is still
313 * missing from the list of children of its parent device.
315 if (dev == target || device_is_ancestor(dev, target))
318 ret = device_for_each_child(dev, target, device_is_dependent);
322 list_for_each_entry(link, &dev->links.consumers, s_node) {
323 if (device_link_flag_is_sync_state_only(link->flags))
326 if (link->consumer == target)
329 ret = device_is_dependent(link->consumer, target);
336 static void device_link_init_status(struct device_link *link,
337 struct device *consumer,
338 struct device *supplier)
340 switch (supplier->links.status) {
342 switch (consumer->links.status) {
345 * A consumer driver can create a link to a supplier
346 * that has not completed its probing yet as long as it
347 * knows that the supplier is already functional (for
348 * example, it has just acquired some resources from the
351 link->status = DL_STATE_CONSUMER_PROBE;
354 link->status = DL_STATE_DORMANT;
358 case DL_DEV_DRIVER_BOUND:
359 switch (consumer->links.status) {
361 link->status = DL_STATE_CONSUMER_PROBE;
363 case DL_DEV_DRIVER_BOUND:
364 link->status = DL_STATE_ACTIVE;
367 link->status = DL_STATE_AVAILABLE;
371 case DL_DEV_UNBINDING:
372 link->status = DL_STATE_SUPPLIER_UNBIND;
375 link->status = DL_STATE_DORMANT;
380 static int device_reorder_to_tail(struct device *dev, void *not_used)
382 struct device_link *link;
385 * Devices that have not been registered yet will be put to the ends
386 * of the lists during the registration, so skip them here.
388 if (device_is_registered(dev))
389 devices_kset_move_last(dev);
391 if (device_pm_initialized(dev))
392 device_pm_move_last(dev);
394 device_for_each_child(dev, NULL, device_reorder_to_tail);
395 list_for_each_entry(link, &dev->links.consumers, s_node) {
396 if (device_link_flag_is_sync_state_only(link->flags))
398 device_reorder_to_tail(link->consumer, NULL);
405 * device_pm_move_to_tail - Move set of devices to the end of device lists
406 * @dev: Device to move
408 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
410 * It moves the @dev along with all of its children and all of its consumers
411 * to the ends of the device_kset and dpm_list, recursively.
413 void device_pm_move_to_tail(struct device *dev)
417 idx = device_links_read_lock();
419 device_reorder_to_tail(dev, NULL);
421 device_links_read_unlock(idx);
424 #define to_devlink(dev) container_of((dev), struct device_link, link_dev)
426 static ssize_t status_show(struct device *dev,
427 struct device_attribute *attr, char *buf)
431 switch (to_devlink(dev)->status) {
433 output = "not tracked";
435 case DL_STATE_DORMANT:
438 case DL_STATE_AVAILABLE:
439 output = "available";
441 case DL_STATE_CONSUMER_PROBE:
442 output = "consumer probing";
444 case DL_STATE_ACTIVE:
447 case DL_STATE_SUPPLIER_UNBIND:
448 output = "supplier unbinding";
455 return sysfs_emit(buf, "%s\n", output);
457 static DEVICE_ATTR_RO(status);
459 static ssize_t auto_remove_on_show(struct device *dev,
460 struct device_attribute *attr, char *buf)
462 struct device_link *link = to_devlink(dev);
465 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
466 output = "supplier unbind";
467 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
468 output = "consumer unbind";
472 return sysfs_emit(buf, "%s\n", output);
474 static DEVICE_ATTR_RO(auto_remove_on);
476 static ssize_t runtime_pm_show(struct device *dev,
477 struct device_attribute *attr, char *buf)
479 struct device_link *link = to_devlink(dev);
481 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
483 static DEVICE_ATTR_RO(runtime_pm);
485 static ssize_t sync_state_only_show(struct device *dev,
486 struct device_attribute *attr, char *buf)
488 struct device_link *link = to_devlink(dev);
490 return sysfs_emit(buf, "%d\n",
491 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
493 static DEVICE_ATTR_RO(sync_state_only);
495 static struct attribute *devlink_attrs[] = {
496 &dev_attr_status.attr,
497 &dev_attr_auto_remove_on.attr,
498 &dev_attr_runtime_pm.attr,
499 &dev_attr_sync_state_only.attr,
502 ATTRIBUTE_GROUPS(devlink);
504 static void device_link_release_fn(struct work_struct *work)
506 struct device_link *link = container_of(work, struct device_link, rm_work);
508 /* Ensure that all references to the link object have been dropped. */
509 device_link_synchronize_removal();
511 pm_runtime_release_supplier(link);
513 * If supplier_preactivated is set, the link has been dropped between
514 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
515 * in __driver_probe_device(). In that case, drop the supplier's
516 * PM-runtime usage counter to remove the reference taken by
517 * pm_runtime_get_suppliers().
519 if (link->supplier_preactivated)
520 pm_runtime_put_noidle(link->supplier);
522 pm_request_idle(link->supplier);
524 put_device(link->consumer);
525 put_device(link->supplier);
529 static void devlink_dev_release(struct device *dev)
531 struct device_link *link = to_devlink(dev);
533 INIT_WORK(&link->rm_work, device_link_release_fn);
535 * It may take a while to complete this work because of the SRCU
536 * synchronization in device_link_release_fn() and if the consumer or
537 * supplier devices get deleted when it runs, so put it into the
538 * dedicated workqueue.
540 queue_work(device_link_wq, &link->rm_work);
544 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
546 void device_link_wait_removal(void)
549 * devlink removal jobs are queued in the dedicated work queue.
550 * To be sure that all removal jobs are terminated, ensure that any
551 * scheduled work has run to completion.
553 flush_workqueue(device_link_wq);
555 EXPORT_SYMBOL_GPL(device_link_wait_removal);
557 static struct class devlink_class = {
559 .dev_groups = devlink_groups,
560 .dev_release = devlink_dev_release,
563 static int devlink_add_symlinks(struct device *dev)
567 struct device_link *link = to_devlink(dev);
568 struct device *sup = link->supplier;
569 struct device *con = link->consumer;
572 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
573 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
575 len += strlen("supplier:") + 1;
576 buf = kzalloc(len, GFP_KERNEL);
580 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
584 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
588 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
589 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
593 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
594 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
601 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
602 sysfs_remove_link(&sup->kobj, buf);
604 sysfs_remove_link(&link->link_dev.kobj, "consumer");
606 sysfs_remove_link(&link->link_dev.kobj, "supplier");
612 static void devlink_remove_symlinks(struct device *dev)
614 struct device_link *link = to_devlink(dev);
616 struct device *sup = link->supplier;
617 struct device *con = link->consumer;
620 sysfs_remove_link(&link->link_dev.kobj, "consumer");
621 sysfs_remove_link(&link->link_dev.kobj, "supplier");
623 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
624 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
626 len += strlen("supplier:") + 1;
627 buf = kzalloc(len, GFP_KERNEL);
629 WARN(1, "Unable to properly free device link symlinks!\n");
633 if (device_is_registered(con)) {
634 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
635 sysfs_remove_link(&con->kobj, buf);
637 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
638 sysfs_remove_link(&sup->kobj, buf);
642 static struct class_interface devlink_class_intf = {
643 .class = &devlink_class,
644 .add_dev = devlink_add_symlinks,
645 .remove_dev = devlink_remove_symlinks,
648 static int __init devlink_class_init(void)
652 ret = class_register(&devlink_class);
656 ret = class_interface_register(&devlink_class_intf);
658 class_unregister(&devlink_class);
662 postcore_initcall(devlink_class_init);
664 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
665 DL_FLAG_AUTOREMOVE_SUPPLIER | \
666 DL_FLAG_AUTOPROBE_CONSUMER | \
667 DL_FLAG_SYNC_STATE_ONLY | \
671 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
672 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
675 * device_link_add - Create a link between two devices.
676 * @consumer: Consumer end of the link.
677 * @supplier: Supplier end of the link.
678 * @flags: Link flags.
680 * The caller is responsible for the proper synchronization of the link creation
681 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
682 * runtime PM framework to take the link into account. Second, if the
683 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
684 * be forced into the active meta state and reference-counted upon the creation
685 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
688 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
689 * expected to release the link returned by it directly with the help of either
690 * device_link_del() or device_link_remove().
692 * If that flag is not set, however, the caller of this function is handing the
693 * management of the link over to the driver core entirely and its return value
694 * can only be used to check whether or not the link is present. In that case,
695 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
696 * flags can be used to indicate to the driver core when the link can be safely
697 * deleted. Namely, setting one of them in @flags indicates to the driver core
698 * that the link is not going to be used (by the given caller of this function)
699 * after unbinding the consumer or supplier driver, respectively, from its
700 * device, so the link can be deleted at that point. If none of them is set,
701 * the link will be maintained until one of the devices pointed to by it (either
702 * the consumer or the supplier) is unregistered.
704 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
705 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
706 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
707 * be used to request the driver core to automatically probe for a consumer
708 * driver after successfully binding a driver to the supplier device.
710 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
711 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
712 * the same time is invalid and will cause NULL to be returned upfront.
713 * However, if a device link between the given @consumer and @supplier pair
714 * exists already when this function is called for them, the existing link will
715 * be returned regardless of its current type and status (the link's flags may
716 * be modified then). The caller of this function is then expected to treat
717 * the link as though it has just been created, so (in particular) if
718 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
719 * explicitly when not needed any more (as stated above).
721 * A side effect of the link creation is re-ordering of dpm_list and the
722 * devices_kset list by moving the consumer device and all devices depending
723 * on it to the ends of these lists (that does not happen to devices that have
724 * not been registered when this function is called).
726 * The supplier device is required to be registered when this function is called
727 * and NULL will be returned if that is not the case. The consumer device need
728 * not be registered, however.
730 struct device_link *device_link_add(struct device *consumer,
731 struct device *supplier, u32 flags)
733 struct device_link *link;
735 if (!consumer || !supplier || consumer == supplier ||
736 flags & ~DL_ADD_VALID_FLAGS ||
737 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
738 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
739 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
740 DL_FLAG_AUTOREMOVE_SUPPLIER)))
743 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
744 if (pm_runtime_get_sync(supplier) < 0) {
745 pm_runtime_put_noidle(supplier);
750 if (!(flags & DL_FLAG_STATELESS))
751 flags |= DL_FLAG_MANAGED;
753 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
754 !device_link_flag_is_sync_state_only(flags))
757 device_links_write_lock();
761 * If the supplier has not been fully registered yet or there is a
762 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
763 * the supplier already in the graph, return NULL. If the link is a
764 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
765 * because it only affects sync_state() callbacks.
767 if (!device_pm_initialized(supplier)
768 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
769 device_is_dependent(consumer, supplier))) {
775 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
776 * So, only create it if the consumer hasn't probed yet.
778 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
779 consumer->links.status != DL_DEV_NO_DRIVER &&
780 consumer->links.status != DL_DEV_PROBING) {
786 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
787 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
788 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
790 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
791 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
793 list_for_each_entry(link, &supplier->links.consumers, s_node) {
794 if (link->consumer != consumer)
797 if (link->flags & DL_FLAG_INFERRED &&
798 !(flags & DL_FLAG_INFERRED))
799 link->flags &= ~DL_FLAG_INFERRED;
801 if (flags & DL_FLAG_PM_RUNTIME) {
802 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
803 pm_runtime_new_link(consumer);
804 link->flags |= DL_FLAG_PM_RUNTIME;
806 if (flags & DL_FLAG_RPM_ACTIVE)
807 refcount_inc(&link->rpm_active);
810 if (flags & DL_FLAG_STATELESS) {
811 kref_get(&link->kref);
812 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
813 !(link->flags & DL_FLAG_STATELESS)) {
814 link->flags |= DL_FLAG_STATELESS;
817 link->flags |= DL_FLAG_STATELESS;
823 * If the life time of the link following from the new flags is
824 * longer than indicated by the flags of the existing link,
825 * update the existing link to stay around longer.
827 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
828 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
829 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
830 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
832 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
833 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
834 DL_FLAG_AUTOREMOVE_SUPPLIER);
836 if (!(link->flags & DL_FLAG_MANAGED)) {
837 kref_get(&link->kref);
838 link->flags |= DL_FLAG_MANAGED;
839 device_link_init_status(link, consumer, supplier);
841 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
842 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
843 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
850 link = kzalloc(sizeof(*link), GFP_KERNEL);
854 refcount_set(&link->rpm_active, 1);
856 get_device(supplier);
857 link->supplier = supplier;
858 INIT_LIST_HEAD(&link->s_node);
859 get_device(consumer);
860 link->consumer = consumer;
861 INIT_LIST_HEAD(&link->c_node);
863 kref_init(&link->kref);
865 link->link_dev.class = &devlink_class;
866 device_set_pm_not_required(&link->link_dev);
867 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
868 dev_bus_name(supplier), dev_name(supplier),
869 dev_bus_name(consumer), dev_name(consumer));
870 if (device_register(&link->link_dev)) {
871 put_device(&link->link_dev);
876 if (flags & DL_FLAG_PM_RUNTIME) {
877 if (flags & DL_FLAG_RPM_ACTIVE)
878 refcount_inc(&link->rpm_active);
880 pm_runtime_new_link(consumer);
883 /* Determine the initial link state. */
884 if (flags & DL_FLAG_STATELESS)
885 link->status = DL_STATE_NONE;
887 device_link_init_status(link, consumer, supplier);
890 * Some callers expect the link creation during consumer driver probe to
891 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
893 if (link->status == DL_STATE_CONSUMER_PROBE &&
894 flags & DL_FLAG_PM_RUNTIME)
895 pm_runtime_resume(supplier);
897 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
898 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
900 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
902 "Linked as a sync state only consumer to %s\n",
909 * Move the consumer and all of the devices depending on it to the end
910 * of dpm_list and the devices_kset list.
912 * It is necessary to hold dpm_list locked throughout all that or else
913 * we may end up suspending with a wrong ordering of it.
915 device_reorder_to_tail(consumer, NULL);
917 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
921 device_links_write_unlock();
923 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
924 pm_runtime_put(supplier);
928 EXPORT_SYMBOL_GPL(device_link_add);
930 static void __device_link_del(struct kref *kref)
932 struct device_link *link = container_of(kref, struct device_link, kref);
934 dev_dbg(link->consumer, "Dropping the link to %s\n",
935 dev_name(link->supplier));
937 pm_runtime_drop_link(link);
939 device_link_remove_from_lists(link);
940 device_unregister(&link->link_dev);
943 static void device_link_put_kref(struct device_link *link)
945 if (link->flags & DL_FLAG_STATELESS)
946 kref_put(&link->kref, __device_link_del);
947 else if (!device_is_registered(link->consumer))
948 __device_link_del(&link->kref);
950 WARN(1, "Unable to drop a managed device link reference\n");
954 * device_link_del - Delete a stateless link between two devices.
955 * @link: Device link to delete.
957 * The caller must ensure proper synchronization of this function with runtime
958 * PM. If the link was added multiple times, it needs to be deleted as often.
959 * Care is required for hotplugged devices: Their links are purged on removal
960 * and calling device_link_del() is then no longer allowed.
962 void device_link_del(struct device_link *link)
964 device_links_write_lock();
965 device_link_put_kref(link);
966 device_links_write_unlock();
968 EXPORT_SYMBOL_GPL(device_link_del);
971 * device_link_remove - Delete a stateless link between two devices.
972 * @consumer: Consumer end of the link.
973 * @supplier: Supplier end of the link.
975 * The caller must ensure proper synchronization of this function with runtime
978 void device_link_remove(void *consumer, struct device *supplier)
980 struct device_link *link;
982 if (WARN_ON(consumer == supplier))
985 device_links_write_lock();
987 list_for_each_entry(link, &supplier->links.consumers, s_node) {
988 if (link->consumer == consumer) {
989 device_link_put_kref(link);
994 device_links_write_unlock();
996 EXPORT_SYMBOL_GPL(device_link_remove);
998 static void device_links_missing_supplier(struct device *dev)
1000 struct device_link *link;
1002 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1003 if (link->status != DL_STATE_CONSUMER_PROBE)
1006 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1007 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1009 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1010 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1015 static bool dev_is_best_effort(struct device *dev)
1017 return (fw_devlink_best_effort && dev->can_match) ||
1018 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1021 static struct fwnode_handle *fwnode_links_check_suppliers(
1022 struct fwnode_handle *fwnode)
1024 struct fwnode_link *link;
1026 if (!fwnode || fw_devlink_is_permissive())
1029 list_for_each_entry(link, &fwnode->suppliers, c_hook)
1031 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1032 return link->supplier;
1038 * device_links_check_suppliers - Check presence of supplier drivers.
1039 * @dev: Consumer device.
1041 * Check links from this device to any suppliers. Walk the list of the device's
1042 * links to suppliers and see if all of them are available. If not, simply
1043 * return -EPROBE_DEFER.
1045 * We need to guarantee that the supplier will not go away after the check has
1046 * been positive here. It only can go away in __device_release_driver() and
1047 * that function checks the device's links to consumers. This means we need to
1048 * mark the link as "consumer probe in progress" to make the supplier removal
1049 * wait for us to complete (or bad things may happen).
1051 * Links without the DL_FLAG_MANAGED flag set are ignored.
1053 int device_links_check_suppliers(struct device *dev)
1055 struct device_link *link;
1056 int ret = 0, fwnode_ret = 0;
1057 struct fwnode_handle *sup_fw;
1060 * Device waiting for supplier to become available is not allowed to
1063 mutex_lock(&fwnode_link_lock);
1064 sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1066 if (!dev_is_best_effort(dev)) {
1067 fwnode_ret = -EPROBE_DEFER;
1068 dev_err_probe(dev, -EPROBE_DEFER,
1069 "wait for supplier %pfwf\n", sup_fw);
1071 fwnode_ret = -EAGAIN;
1074 mutex_unlock(&fwnode_link_lock);
1075 if (fwnode_ret == -EPROBE_DEFER)
1078 device_links_write_lock();
1080 list_for_each_entry(link, &dev->links.suppliers, c_node) {
1081 if (!(link->flags & DL_FLAG_MANAGED))
1084 if (link->status != DL_STATE_AVAILABLE &&
1085 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1087 if (dev_is_best_effort(dev) &&
1088 link->flags & DL_FLAG_INFERRED &&
1089 !link->supplier->can_match) {
1094 device_links_missing_supplier(dev);
1095 dev_err_probe(dev, -EPROBE_DEFER,
1096 "supplier %s not ready\n",
1097 dev_name(link->supplier));
1098 ret = -EPROBE_DEFER;
1101 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1103 dev->links.status = DL_DEV_PROBING;
1105 device_links_write_unlock();
1107 return ret ? ret : fwnode_ret;
1111 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1112 * @dev: Device to call sync_state() on
1113 * @list: List head to queue the @dev on
1115 * Queues a device for a sync_state() callback when the device links write lock
1116 * isn't held. This allows the sync_state() execution flow to use device links
1117 * APIs. The caller must ensure this function is called with
1118 * device_links_write_lock() held.
1120 * This function does a get_device() to make sure the device is not freed while
1123 * So the caller must also ensure that device_links_flush_sync_list() is called
1124 * as soon as the caller releases device_links_write_lock(). This is necessary
1125 * to make sure the sync_state() is called in a timely fashion and the
1126 * put_device() is called on this device.
1128 static void __device_links_queue_sync_state(struct device *dev,
1129 struct list_head *list)
1131 struct device_link *link;
1133 if (!dev_has_sync_state(dev))
1135 if (dev->state_synced)
1138 list_for_each_entry(link, &dev->links.consumers, s_node) {
1139 if (!(link->flags & DL_FLAG_MANAGED))
1141 if (link->status != DL_STATE_ACTIVE)
1146 * Set the flag here to avoid adding the same device to a list more
1147 * than once. This can happen if new consumers get added to the device
1148 * and probed before the list is flushed.
1150 dev->state_synced = true;
1152 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1156 list_add_tail(&dev->links.defer_sync, list);
1160 * device_links_flush_sync_list - Call sync_state() on a list of devices
1161 * @list: List of devices to call sync_state() on
1162 * @dont_lock_dev: Device for which lock is already held by the caller
1164 * Calls sync_state() on all the devices that have been queued for it. This
1165 * function is used in conjunction with __device_links_queue_sync_state(). The
1166 * @dont_lock_dev parameter is useful when this function is called from a
1167 * context where a device lock is already held.
1169 static void device_links_flush_sync_list(struct list_head *list,
1170 struct device *dont_lock_dev)
1172 struct device *dev, *tmp;
1174 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1175 list_del_init(&dev->links.defer_sync);
1177 if (dev != dont_lock_dev)
1180 dev_sync_state(dev);
1182 if (dev != dont_lock_dev)
1189 void device_links_supplier_sync_state_pause(void)
1191 device_links_write_lock();
1192 defer_sync_state_count++;
1193 device_links_write_unlock();
1196 void device_links_supplier_sync_state_resume(void)
1198 struct device *dev, *tmp;
1199 LIST_HEAD(sync_list);
1201 device_links_write_lock();
1202 if (!defer_sync_state_count) {
1203 WARN(true, "Unmatched sync_state pause/resume!");
1206 defer_sync_state_count--;
1207 if (defer_sync_state_count)
1210 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1212 * Delete from deferred_sync list before queuing it to
1213 * sync_list because defer_sync is used for both lists.
1215 list_del_init(&dev->links.defer_sync);
1216 __device_links_queue_sync_state(dev, &sync_list);
1219 device_links_write_unlock();
1221 device_links_flush_sync_list(&sync_list, NULL);
1224 static int sync_state_resume_initcall(void)
1226 device_links_supplier_sync_state_resume();
1229 late_initcall(sync_state_resume_initcall);
1231 static void __device_links_supplier_defer_sync(struct device *sup)
1233 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1234 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1237 static void device_link_drop_managed(struct device_link *link)
1239 link->flags &= ~DL_FLAG_MANAGED;
1240 WRITE_ONCE(link->status, DL_STATE_NONE);
1241 kref_put(&link->kref, __device_link_del);
1244 static ssize_t waiting_for_supplier_show(struct device *dev,
1245 struct device_attribute *attr,
1251 mutex_lock(&fwnode_link_lock);
1252 val = !!fwnode_links_check_suppliers(dev->fwnode);
1253 mutex_unlock(&fwnode_link_lock);
1255 return sysfs_emit(buf, "%u\n", val);
1257 static DEVICE_ATTR_RO(waiting_for_supplier);
1260 * device_links_force_bind - Prepares device to be force bound
1261 * @dev: Consumer device.
1263 * device_bind_driver() force binds a device to a driver without calling any
1264 * driver probe functions. So the consumer really isn't going to wait for any
1265 * supplier before it's bound to the driver. We still want the device link
1266 * states to be sensible when this happens.
1268 * In preparation for device_bind_driver(), this function goes through each
1269 * supplier device links and checks if the supplier is bound. If it is, then
1270 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1271 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1273 void device_links_force_bind(struct device *dev)
1275 struct device_link *link, *ln;
1277 device_links_write_lock();
1279 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1280 if (!(link->flags & DL_FLAG_MANAGED))
1283 if (link->status != DL_STATE_AVAILABLE) {
1284 device_link_drop_managed(link);
1287 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1289 dev->links.status = DL_DEV_PROBING;
1291 device_links_write_unlock();
1295 * device_links_driver_bound - Update device links after probing its driver.
1296 * @dev: Device to update the links for.
1298 * The probe has been successful, so update links from this device to any
1299 * consumers by changing their status to "available".
1301 * Also change the status of @dev's links to suppliers to "active".
1303 * Links without the DL_FLAG_MANAGED flag set are ignored.
1305 void device_links_driver_bound(struct device *dev)
1307 struct device_link *link, *ln;
1308 LIST_HEAD(sync_list);
1311 * If a device binds successfully, it's expected to have created all
1312 * the device links it needs to or make new device links as it needs
1313 * them. So, fw_devlink no longer needs to create device links to any
1314 * of the device's suppliers.
1316 * Also, if a child firmware node of this bound device is not added as a
1317 * device by now, assume it is never going to be added. Make this bound
1318 * device the fallback supplier to the dangling consumers of the child
1319 * firmware node because this bound device is probably implementing the
1320 * child firmware node functionality and we don't want the dangling
1321 * consumers to defer probe indefinitely waiting for a device for the
1322 * child firmware node.
1324 if (dev->fwnode && dev->fwnode->dev == dev) {
1325 struct fwnode_handle *child;
1326 fwnode_links_purge_suppliers(dev->fwnode);
1327 mutex_lock(&fwnode_link_lock);
1328 fwnode_for_each_available_child_node(dev->fwnode, child)
1329 __fw_devlink_pickup_dangling_consumers(child,
1331 __fw_devlink_link_to_consumers(dev);
1332 mutex_unlock(&fwnode_link_lock);
1334 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1336 device_links_write_lock();
1338 list_for_each_entry(link, &dev->links.consumers, s_node) {
1339 if (!(link->flags & DL_FLAG_MANAGED))
1343 * Links created during consumer probe may be in the "consumer
1344 * probe" state to start with if the supplier is still probing
1345 * when they are created and they may become "active" if the
1346 * consumer probe returns first. Skip them here.
1348 if (link->status == DL_STATE_CONSUMER_PROBE ||
1349 link->status == DL_STATE_ACTIVE)
1352 WARN_ON(link->status != DL_STATE_DORMANT);
1353 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1355 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1356 driver_deferred_probe_add(link->consumer);
1359 if (defer_sync_state_count)
1360 __device_links_supplier_defer_sync(dev);
1362 __device_links_queue_sync_state(dev, &sync_list);
1364 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1365 struct device *supplier;
1367 if (!(link->flags & DL_FLAG_MANAGED))
1370 supplier = link->supplier;
1371 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1373 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1374 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1375 * save to drop the managed link completely.
1377 device_link_drop_managed(link);
1378 } else if (dev_is_best_effort(dev) &&
1379 link->flags & DL_FLAG_INFERRED &&
1380 link->status != DL_STATE_CONSUMER_PROBE &&
1381 !link->supplier->can_match) {
1383 * When dev_is_best_effort() is true, we ignore device
1384 * links to suppliers that don't have a driver. If the
1385 * consumer device still managed to probe, there's no
1386 * point in maintaining a device link in a weird state
1387 * (consumer probed before supplier). So delete it.
1389 device_link_drop_managed(link);
1391 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1392 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1396 * This needs to be done even for the deleted
1397 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1398 * device link that was preventing the supplier from getting a
1399 * sync_state() call.
1401 if (defer_sync_state_count)
1402 __device_links_supplier_defer_sync(supplier);
1404 __device_links_queue_sync_state(supplier, &sync_list);
1407 dev->links.status = DL_DEV_DRIVER_BOUND;
1409 device_links_write_unlock();
1411 device_links_flush_sync_list(&sync_list, dev);
1415 * __device_links_no_driver - Update links of a device without a driver.
1416 * @dev: Device without a drvier.
1418 * Delete all non-persistent links from this device to any suppliers.
1420 * Persistent links stay around, but their status is changed to "available",
1421 * unless they already are in the "supplier unbind in progress" state in which
1422 * case they need not be updated.
1424 * Links without the DL_FLAG_MANAGED flag set are ignored.
1426 static void __device_links_no_driver(struct device *dev)
1428 struct device_link *link, *ln;
1430 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1431 if (!(link->flags & DL_FLAG_MANAGED))
1434 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1435 device_link_drop_managed(link);
1439 if (link->status != DL_STATE_CONSUMER_PROBE &&
1440 link->status != DL_STATE_ACTIVE)
1443 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1444 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1446 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1447 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1451 dev->links.status = DL_DEV_NO_DRIVER;
1455 * device_links_no_driver - Update links after failing driver probe.
1456 * @dev: Device whose driver has just failed to probe.
1458 * Clean up leftover links to consumers for @dev and invoke
1459 * %__device_links_no_driver() to update links to suppliers for it as
1462 * Links without the DL_FLAG_MANAGED flag set are ignored.
1464 void device_links_no_driver(struct device *dev)
1466 struct device_link *link;
1468 device_links_write_lock();
1470 list_for_each_entry(link, &dev->links.consumers, s_node) {
1471 if (!(link->flags & DL_FLAG_MANAGED))
1475 * The probe has failed, so if the status of the link is
1476 * "consumer probe" or "active", it must have been added by
1477 * a probing consumer while this device was still probing.
1478 * Change its state to "dormant", as it represents a valid
1479 * relationship, but it is not functionally meaningful.
1481 if (link->status == DL_STATE_CONSUMER_PROBE ||
1482 link->status == DL_STATE_ACTIVE)
1483 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1486 __device_links_no_driver(dev);
1488 device_links_write_unlock();
1492 * device_links_driver_cleanup - Update links after driver removal.
1493 * @dev: Device whose driver has just gone away.
1495 * Update links to consumers for @dev by changing their status to "dormant" and
1496 * invoke %__device_links_no_driver() to update links to suppliers for it as
1499 * Links without the DL_FLAG_MANAGED flag set are ignored.
1501 void device_links_driver_cleanup(struct device *dev)
1503 struct device_link *link, *ln;
1505 device_links_write_lock();
1507 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1508 if (!(link->flags & DL_FLAG_MANAGED))
1511 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1512 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1515 * autoremove the links between this @dev and its consumer
1516 * devices that are not active, i.e. where the link state
1517 * has moved to DL_STATE_SUPPLIER_UNBIND.
1519 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1520 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1521 device_link_drop_managed(link);
1523 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1526 list_del_init(&dev->links.defer_sync);
1527 __device_links_no_driver(dev);
1529 device_links_write_unlock();
1533 * device_links_busy - Check if there are any busy links to consumers.
1534 * @dev: Device to check.
1536 * Check each consumer of the device and return 'true' if its link's status
1537 * is one of "consumer probe" or "active" (meaning that the given consumer is
1538 * probing right now or its driver is present). Otherwise, change the link
1539 * state to "supplier unbind" to prevent the consumer from being probed
1540 * successfully going forward.
1542 * Return 'false' if there are no probing or active consumers.
1544 * Links without the DL_FLAG_MANAGED flag set are ignored.
1546 bool device_links_busy(struct device *dev)
1548 struct device_link *link;
1551 device_links_write_lock();
1553 list_for_each_entry(link, &dev->links.consumers, s_node) {
1554 if (!(link->flags & DL_FLAG_MANAGED))
1557 if (link->status == DL_STATE_CONSUMER_PROBE
1558 || link->status == DL_STATE_ACTIVE) {
1562 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1565 dev->links.status = DL_DEV_UNBINDING;
1567 device_links_write_unlock();
1572 * device_links_unbind_consumers - Force unbind consumers of the given device.
1573 * @dev: Device to unbind the consumers of.
1575 * Walk the list of links to consumers for @dev and if any of them is in the
1576 * "consumer probe" state, wait for all device probes in progress to complete
1579 * If that's not the case, change the status of the link to "supplier unbind"
1580 * and check if the link was in the "active" state. If so, force the consumer
1581 * driver to unbind and start over (the consumer will not re-probe as we have
1582 * changed the state of the link already).
1584 * Links without the DL_FLAG_MANAGED flag set are ignored.
1586 void device_links_unbind_consumers(struct device *dev)
1588 struct device_link *link;
1591 device_links_write_lock();
1593 list_for_each_entry(link, &dev->links.consumers, s_node) {
1594 enum device_link_state status;
1596 if (!(link->flags & DL_FLAG_MANAGED) ||
1597 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1600 status = link->status;
1601 if (status == DL_STATE_CONSUMER_PROBE) {
1602 device_links_write_unlock();
1604 wait_for_device_probe();
1607 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1608 if (status == DL_STATE_ACTIVE) {
1609 struct device *consumer = link->consumer;
1611 get_device(consumer);
1613 device_links_write_unlock();
1615 device_release_driver_internal(consumer, NULL,
1617 put_device(consumer);
1622 device_links_write_unlock();
1626 * device_links_purge - Delete existing links to other devices.
1627 * @dev: Target device.
1629 static void device_links_purge(struct device *dev)
1631 struct device_link *link, *ln;
1633 if (dev->class == &devlink_class)
1637 * Delete all of the remaining links from this device to any other
1638 * devices (either consumers or suppliers).
1640 device_links_write_lock();
1642 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1643 WARN_ON(link->status == DL_STATE_ACTIVE);
1644 __device_link_del(&link->kref);
1647 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1648 WARN_ON(link->status != DL_STATE_DORMANT &&
1649 link->status != DL_STATE_NONE);
1650 __device_link_del(&link->kref);
1653 device_links_write_unlock();
1656 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1657 DL_FLAG_SYNC_STATE_ONLY)
1658 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1659 DL_FLAG_AUTOPROBE_CONSUMER)
1660 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1663 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1664 static int __init fw_devlink_setup(char *arg)
1669 if (strcmp(arg, "off") == 0) {
1670 fw_devlink_flags = 0;
1671 } else if (strcmp(arg, "permissive") == 0) {
1672 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1673 } else if (strcmp(arg, "on") == 0) {
1674 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1675 } else if (strcmp(arg, "rpm") == 0) {
1676 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1680 early_param("fw_devlink", fw_devlink_setup);
1682 static bool fw_devlink_strict;
1683 static int __init fw_devlink_strict_setup(char *arg)
1685 return kstrtobool(arg, &fw_devlink_strict);
1687 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1689 #define FW_DEVLINK_SYNC_STATE_STRICT 0
1690 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1
1692 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1693 static int fw_devlink_sync_state;
1695 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1698 static int __init fw_devlink_sync_state_setup(char *arg)
1703 if (strcmp(arg, "strict") == 0) {
1704 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1706 } else if (strcmp(arg, "timeout") == 0) {
1707 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1712 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1714 static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1716 if (fwlink_flags & FWLINK_FLAG_CYCLE)
1717 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1719 return fw_devlink_flags;
1722 static bool fw_devlink_is_permissive(void)
1724 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1727 bool fw_devlink_is_strict(void)
1729 return fw_devlink_strict && !fw_devlink_is_permissive();
1732 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1734 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1737 fwnode_call_int_op(fwnode, add_links);
1738 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1741 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1743 struct fwnode_handle *child = NULL;
1745 fw_devlink_parse_fwnode(fwnode);
1747 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1748 fw_devlink_parse_fwtree(child);
1751 static void fw_devlink_relax_link(struct device_link *link)
1753 if (!(link->flags & DL_FLAG_INFERRED))
1756 if (device_link_flag_is_sync_state_only(link->flags))
1759 pm_runtime_drop_link(link);
1760 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1761 dev_dbg(link->consumer, "Relaxing link with %s\n",
1762 dev_name(link->supplier));
1765 static int fw_devlink_no_driver(struct device *dev, void *data)
1767 struct device_link *link = to_devlink(dev);
1769 if (!link->supplier->can_match)
1770 fw_devlink_relax_link(link);
1775 void fw_devlink_drivers_done(void)
1777 fw_devlink_drv_reg_done = true;
1778 device_links_write_lock();
1779 class_for_each_device(&devlink_class, NULL, NULL,
1780 fw_devlink_no_driver);
1781 device_links_write_unlock();
1784 static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1786 struct device_link *link = to_devlink(dev);
1787 struct device *sup = link->supplier;
1789 if (!(link->flags & DL_FLAG_MANAGED) ||
1790 link->status == DL_STATE_ACTIVE || sup->state_synced ||
1791 !dev_has_sync_state(sup))
1794 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1795 dev_warn(sup, "sync_state() pending due to %s\n",
1796 dev_name(link->consumer));
1800 if (!list_empty(&sup->links.defer_sync))
1803 dev_warn(sup, "Timed out. Forcing sync_state()\n");
1804 sup->state_synced = true;
1806 list_add_tail(&sup->links.defer_sync, data);
1811 void fw_devlink_probing_done(void)
1813 LIST_HEAD(sync_list);
1815 device_links_write_lock();
1816 class_for_each_device(&devlink_class, NULL, &sync_list,
1817 fw_devlink_dev_sync_state);
1818 device_links_write_unlock();
1819 device_links_flush_sync_list(&sync_list, NULL);
1823 * wait_for_init_devices_probe - Try to probe any device needed for init
1825 * Some devices might need to be probed and bound successfully before the kernel
1826 * boot sequence can finish and move on to init/userspace. For example, a
1827 * network interface might need to be bound to be able to mount a NFS rootfs.
1829 * With fw_devlink=on by default, some of these devices might be blocked from
1830 * probing because they are waiting on a optional supplier that doesn't have a
1831 * driver. While fw_devlink will eventually identify such devices and unblock
1832 * the probing automatically, it might be too late by the time it unblocks the
1833 * probing of devices. For example, the IP4 autoconfig might timeout before
1834 * fw_devlink unblocks probing of the network interface.
1836 * This function is available to temporarily try and probe all devices that have
1837 * a driver even if some of their suppliers haven't been added or don't have
1840 * The drivers can then decide which of the suppliers are optional vs mandatory
1841 * and probe the device if possible. By the time this function returns, all such
1842 * "best effort" probes are guaranteed to be completed. If a device successfully
1843 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1844 * device where the supplier hasn't yet probed successfully because they have to
1845 * be optional dependencies.
1847 * Any devices that didn't successfully probe go back to being treated as if
1848 * this function was never called.
1850 * This also means that some devices that aren't needed for init and could have
1851 * waited for their optional supplier to probe (when the supplier's module is
1852 * loaded later on) would end up probing prematurely with limited functionality.
1853 * So call this function only when boot would fail without it.
1855 void __init wait_for_init_devices_probe(void)
1857 if (!fw_devlink_flags || fw_devlink_is_permissive())
1861 * Wait for all ongoing probes to finish so that the "best effort" is
1862 * only applied to devices that can't probe otherwise.
1864 wait_for_device_probe();
1866 pr_info("Trying to probe devices needed for running init ...\n");
1867 fw_devlink_best_effort = true;
1868 driver_deferred_probe_trigger();
1871 * Wait for all "best effort" probes to finish before going back to
1872 * normal enforcement.
1874 wait_for_device_probe();
1875 fw_devlink_best_effort = false;
1878 static void fw_devlink_unblock_consumers(struct device *dev)
1880 struct device_link *link;
1882 if (!fw_devlink_flags || fw_devlink_is_permissive())
1885 device_links_write_lock();
1886 list_for_each_entry(link, &dev->links.consumers, s_node)
1887 fw_devlink_relax_link(link);
1888 device_links_write_unlock();
1891 #define get_dev_from_fwnode(fwnode) get_device((fwnode)->dev)
1893 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1898 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1901 dev = get_dev_from_fwnode(fwnode);
1902 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1908 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1910 struct fwnode_handle *parent;
1912 fwnode_for_each_parent_node(fwnode, parent) {
1913 if (fwnode_init_without_drv(parent)) {
1914 fwnode_handle_put(parent);
1923 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1924 * @ancestor: Firmware which is tested for being an ancestor
1925 * @child: Firmware which is tested for being the child
1927 * A node is considered an ancestor of itself too.
1929 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1931 static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1932 const struct fwnode_handle *child)
1934 struct fwnode_handle *parent;
1936 if (IS_ERR_OR_NULL(ancestor))
1939 if (child == ancestor)
1942 fwnode_for_each_parent_node(child, parent) {
1943 if (parent == ancestor) {
1944 fwnode_handle_put(parent);
1952 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1953 * @fwnode: firmware node
1955 * Given a firmware node (@fwnode), this function finds its closest ancestor
1956 * firmware node that has a corresponding struct device and returns that struct
1959 * The caller is responsible for calling put_device() on the returned device
1962 * Return: a pointer to the device of the @fwnode's closest ancestor.
1964 static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1966 struct fwnode_handle *parent;
1969 fwnode_for_each_parent_node(fwnode, parent) {
1970 dev = get_dev_from_fwnode(parent);
1972 fwnode_handle_put(parent);
1980 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1981 * @con: Potential consumer device.
1982 * @sup_handle: Potential supplier's fwnode.
1984 * Needs to be called with fwnode_lock and device link lock held.
1986 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1987 * depend on @con. This function can detect multiple cyles between @sup_handle
1988 * and @con. When such dependency cycles are found, convert all device links
1989 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1990 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1991 * converted into a device link in the future, they are created as
1992 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1993 * fw_devlink=permissive just between the devices in the cycle. We need to do
1994 * this because, at this point, fw_devlink can't tell which of these
1995 * dependencies is not a real dependency.
1997 * Return true if one or more cycles were found. Otherwise, return false.
1999 static bool __fw_devlink_relax_cycles(struct device *con,
2000 struct fwnode_handle *sup_handle)
2002 struct device *sup_dev = NULL, *par_dev = NULL;
2003 struct fwnode_link *link;
2004 struct device_link *dev_link;
2011 * We aren't trying to find all cycles. Just a cycle between con and
2014 if (sup_handle->flags & FWNODE_FLAG_VISITED)
2017 sup_handle->flags |= FWNODE_FLAG_VISITED;
2019 sup_dev = get_dev_from_fwnode(sup_handle);
2021 /* Termination condition. */
2022 if (sup_dev == con) {
2023 pr_debug("----- cycle: start -----\n");
2029 * If sup_dev is bound to a driver and @con hasn't started binding to a
2030 * driver, sup_dev can't be a consumer of @con. So, no need to check
2033 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND &&
2034 con->links.status == DL_DEV_NO_DRIVER) {
2039 list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2040 if (link->flags & FWLINK_FLAG_IGNORE)
2043 if (__fw_devlink_relax_cycles(con, link->supplier)) {
2044 __fwnode_link_cycle(link);
2050 * Give priority to device parent over fwnode parent to account for any
2051 * quirks in how fwnodes are converted to devices.
2054 par_dev = get_device(sup_dev->parent);
2056 par_dev = fwnode_get_next_parent_dev(sup_handle);
2058 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
2059 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2067 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2069 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2070 * such due to a cycle.
2072 if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2073 !(dev_link->flags & DL_FLAG_CYCLE))
2076 if (__fw_devlink_relax_cycles(con,
2077 dev_link->supplier->fwnode)) {
2078 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2079 dev_link->supplier->fwnode);
2080 fw_devlink_relax_link(dev_link);
2081 dev_link->flags |= DL_FLAG_CYCLE;
2087 sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2088 put_device(sup_dev);
2089 put_device(par_dev);
2094 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2095 * @con: consumer device for the device link
2096 * @sup_handle: fwnode handle of supplier
2097 * @link: fwnode link that's being converted to a device link
2099 * This function will try to create a device link between the consumer device
2100 * @con and the supplier device represented by @sup_handle.
2102 * The supplier has to be provided as a fwnode because incorrect cycles in
2103 * fwnode links can sometimes cause the supplier device to never be created.
2104 * This function detects such cases and returns an error if it cannot create a
2105 * device link from the consumer to a missing supplier.
2108 * 0 on successfully creating a device link
2109 * -EINVAL if the device link cannot be created as expected
2110 * -EAGAIN if the device link cannot be created right now, but it may be
2111 * possible to do that in the future
2113 static int fw_devlink_create_devlink(struct device *con,
2114 struct fwnode_handle *sup_handle,
2115 struct fwnode_link *link)
2117 struct device *sup_dev;
2121 if (link->flags & FWLINK_FLAG_IGNORE)
2124 if (con->fwnode == link->consumer)
2125 flags = fw_devlink_get_flags(link->flags);
2127 flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2130 * In some cases, a device P might also be a supplier to its child node
2131 * C. However, this would defer the probe of C until the probe of P
2132 * completes successfully. This is perfectly fine in the device driver
2133 * model. device_add() doesn't guarantee probe completion of the device
2134 * by the time it returns.
2136 * However, there are a few drivers that assume C will finish probing
2137 * as soon as it's added and before P finishes probing. So, we provide
2138 * a flag to let fw_devlink know not to delay the probe of C until the
2139 * probe of P completes successfully.
2141 * When such a flag is set, we can't create device links where P is the
2142 * supplier of C as that would delay the probe of C.
2144 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2145 fwnode_is_ancestor_of(sup_handle, con->fwnode))
2149 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2150 * So, one might expect that cycle detection isn't necessary for them.
2151 * However, if the device link was marked as SYNC_STATE_ONLY because
2152 * it's part of a cycle, then we still need to do cycle detection. This
2153 * is because the consumer and supplier might be part of multiple cycles
2154 * and we need to detect all those cycles.
2156 if (!device_link_flag_is_sync_state_only(flags) ||
2157 flags & DL_FLAG_CYCLE) {
2158 device_links_write_lock();
2159 if (__fw_devlink_relax_cycles(con, sup_handle)) {
2160 __fwnode_link_cycle(link);
2161 flags = fw_devlink_get_flags(link->flags);
2162 pr_debug("----- cycle: end -----\n");
2163 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2166 device_links_write_unlock();
2169 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2170 sup_dev = fwnode_get_next_parent_dev(sup_handle);
2172 sup_dev = get_dev_from_fwnode(sup_handle);
2176 * If it's one of those drivers that don't actually bind to
2177 * their device using driver core, then don't wait on this
2178 * supplier device indefinitely.
2180 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2181 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2183 "Not linking %pfwf - dev might never probe\n",
2189 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2190 dev_err(con, "Failed to create device link (0x%x) with %s\n",
2191 flags, dev_name(sup_dev));
2199 * Supplier or supplier's ancestor already initialized without a struct
2200 * device or being probed by a driver.
2202 if (fwnode_init_without_drv(sup_handle) ||
2203 fwnode_ancestor_init_without_drv(sup_handle)) {
2204 dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2211 put_device(sup_dev);
2216 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2217 * @dev: Device that needs to be linked to its consumers
2219 * This function looks at all the consumer fwnodes of @dev and creates device
2220 * links between the consumer device and @dev (supplier).
2222 * If the consumer device has not been added yet, then this function creates a
2223 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2224 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2225 * sync_state() callback before the real consumer device gets to be added and
2228 * Once device links are created from the real consumer to @dev (supplier), the
2229 * fwnode links are deleted.
2231 static void __fw_devlink_link_to_consumers(struct device *dev)
2233 struct fwnode_handle *fwnode = dev->fwnode;
2234 struct fwnode_link *link, *tmp;
2236 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2237 struct device *con_dev;
2238 bool own_link = true;
2241 con_dev = get_dev_from_fwnode(link->consumer);
2243 * If consumer device is not available yet, make a "proxy"
2244 * SYNC_STATE_ONLY link from the consumer's parent device to
2245 * the supplier device. This is necessary to make sure the
2246 * supplier doesn't get a sync_state() callback before the real
2247 * consumer can create a device link to the supplier.
2249 * This proxy link step is needed to handle the case where the
2250 * consumer's parent device is added before the supplier.
2253 con_dev = fwnode_get_next_parent_dev(link->consumer);
2255 * However, if the consumer's parent device is also the
2256 * parent of the supplier, don't create a
2257 * consumer-supplier link from the parent to its child
2258 * device. Such a dependency is impossible.
2261 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2262 put_device(con_dev);
2272 ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2273 put_device(con_dev);
2274 if (!own_link || ret == -EAGAIN)
2277 __fwnode_link_del(link);
2282 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2283 * @dev: The consumer device that needs to be linked to its suppliers
2284 * @fwnode: Root of the fwnode tree that is used to create device links
2286 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2287 * @fwnode and creates device links between @dev (consumer) and all the
2288 * supplier devices of the entire fwnode tree at @fwnode.
2290 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2291 * and the real suppliers of @dev. Once these device links are created, the
2292 * fwnode links are deleted.
2294 * In addition, it also looks at all the suppliers of the entire fwnode tree
2295 * because some of the child devices of @dev that have not been added yet
2296 * (because @dev hasn't probed) might already have their suppliers added to
2297 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2298 * @dev (consumer) and these suppliers to make sure they don't execute their
2299 * sync_state() callbacks before these child devices have a chance to create
2300 * their device links. The fwnode links that correspond to the child devices
2301 * aren't delete because they are needed later to create the device links
2302 * between the real consumer and supplier devices.
2304 static void __fw_devlink_link_to_suppliers(struct device *dev,
2305 struct fwnode_handle *fwnode)
2307 bool own_link = (dev->fwnode == fwnode);
2308 struct fwnode_link *link, *tmp;
2309 struct fwnode_handle *child = NULL;
2311 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2313 struct fwnode_handle *sup = link->supplier;
2315 ret = fw_devlink_create_devlink(dev, sup, link);
2316 if (!own_link || ret == -EAGAIN)
2319 __fwnode_link_del(link);
2323 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2324 * all the descendants. This proxy link step is needed to handle the
2325 * case where the supplier is added before the consumer's parent device
2328 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2329 __fw_devlink_link_to_suppliers(dev, child);
2332 static void fw_devlink_link_device(struct device *dev)
2334 struct fwnode_handle *fwnode = dev->fwnode;
2336 if (!fw_devlink_flags)
2339 fw_devlink_parse_fwtree(fwnode);
2341 mutex_lock(&fwnode_link_lock);
2342 __fw_devlink_link_to_consumers(dev);
2343 __fw_devlink_link_to_suppliers(dev, fwnode);
2344 mutex_unlock(&fwnode_link_lock);
2347 /* Device links support end. */
2349 int (*platform_notify)(struct device *dev) = NULL;
2350 int (*platform_notify_remove)(struct device *dev) = NULL;
2351 static struct kobject *dev_kobj;
2354 static struct kobject *sysfs_dev_char_kobj;
2356 /* /sys/dev/block */
2357 static struct kobject *sysfs_dev_block_kobj;
2359 static DEFINE_MUTEX(device_hotplug_lock);
2361 void lock_device_hotplug(void)
2363 mutex_lock(&device_hotplug_lock);
2366 void unlock_device_hotplug(void)
2368 mutex_unlock(&device_hotplug_lock);
2371 int lock_device_hotplug_sysfs(void)
2373 if (mutex_trylock(&device_hotplug_lock))
2376 /* Avoid busy looping (5 ms of sleep should do). */
2378 return restart_syscall();
2382 static inline int device_is_not_partition(struct device *dev)
2384 return !(dev->type == &part_type);
2387 static inline int device_is_not_partition(struct device *dev)
2393 static void device_platform_notify(struct device *dev)
2395 acpi_device_notify(dev);
2397 software_node_notify(dev);
2399 if (platform_notify)
2400 platform_notify(dev);
2403 static void device_platform_notify_remove(struct device *dev)
2405 if (platform_notify_remove)
2406 platform_notify_remove(dev);
2408 software_node_notify_remove(dev);
2410 acpi_device_notify_remove(dev);
2414 * dev_driver_string - Return a device's driver name, if at all possible
2415 * @dev: struct device to get the name of
2417 * Will return the device's driver's name if it is bound to a device. If
2418 * the device is not bound to a driver, it will return the name of the bus
2419 * it is attached to. If it is not attached to a bus either, an empty
2420 * string will be returned.
2422 const char *dev_driver_string(const struct device *dev)
2424 struct device_driver *drv;
2426 /* dev->driver can change to NULL underneath us because of unbinding,
2427 * so be careful about accessing it. dev->bus and dev->class should
2428 * never change once they are set, so they don't need special care.
2430 drv = READ_ONCE(dev->driver);
2431 return drv ? drv->name : dev_bus_name(dev);
2433 EXPORT_SYMBOL(dev_driver_string);
2435 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2437 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2440 struct device_attribute *dev_attr = to_dev_attr(attr);
2441 struct device *dev = kobj_to_dev(kobj);
2445 ret = dev_attr->show(dev, dev_attr, buf);
2446 if (ret >= (ssize_t)PAGE_SIZE) {
2447 printk("dev_attr_show: %pS returned bad count\n",
2453 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2454 const char *buf, size_t count)
2456 struct device_attribute *dev_attr = to_dev_attr(attr);
2457 struct device *dev = kobj_to_dev(kobj);
2460 if (dev_attr->store)
2461 ret = dev_attr->store(dev, dev_attr, buf, count);
2465 static const struct sysfs_ops dev_sysfs_ops = {
2466 .show = dev_attr_show,
2467 .store = dev_attr_store,
2470 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2472 ssize_t device_store_ulong(struct device *dev,
2473 struct device_attribute *attr,
2474 const char *buf, size_t size)
2476 struct dev_ext_attribute *ea = to_ext_attr(attr);
2480 ret = kstrtoul(buf, 0, &new);
2483 *(unsigned long *)(ea->var) = new;
2484 /* Always return full write size even if we didn't consume all */
2487 EXPORT_SYMBOL_GPL(device_store_ulong);
2489 ssize_t device_show_ulong(struct device *dev,
2490 struct device_attribute *attr,
2493 struct dev_ext_attribute *ea = to_ext_attr(attr);
2494 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2496 EXPORT_SYMBOL_GPL(device_show_ulong);
2498 ssize_t device_store_int(struct device *dev,
2499 struct device_attribute *attr,
2500 const char *buf, size_t size)
2502 struct dev_ext_attribute *ea = to_ext_attr(attr);
2506 ret = kstrtol(buf, 0, &new);
2510 if (new > INT_MAX || new < INT_MIN)
2512 *(int *)(ea->var) = new;
2513 /* Always return full write size even if we didn't consume all */
2516 EXPORT_SYMBOL_GPL(device_store_int);
2518 ssize_t device_show_int(struct device *dev,
2519 struct device_attribute *attr,
2522 struct dev_ext_attribute *ea = to_ext_attr(attr);
2524 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2526 EXPORT_SYMBOL_GPL(device_show_int);
2528 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2529 const char *buf, size_t size)
2531 struct dev_ext_attribute *ea = to_ext_attr(attr);
2533 if (kstrtobool(buf, ea->var) < 0)
2538 EXPORT_SYMBOL_GPL(device_store_bool);
2540 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2543 struct dev_ext_attribute *ea = to_ext_attr(attr);
2545 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2547 EXPORT_SYMBOL_GPL(device_show_bool);
2550 * device_release - free device structure.
2551 * @kobj: device's kobject.
2553 * This is called once the reference count for the object
2554 * reaches 0. We forward the call to the device's release
2555 * method, which should handle actually freeing the structure.
2557 static void device_release(struct kobject *kobj)
2559 struct device *dev = kobj_to_dev(kobj);
2560 struct device_private *p = dev->p;
2563 * Some platform devices are driven without driver attached
2564 * and managed resources may have been acquired. Make sure
2565 * all resources are released.
2567 * Drivers still can add resources into device after device
2568 * is deleted but alive, so release devres here to avoid
2569 * possible memory leak.
2571 devres_release_all(dev);
2573 kfree(dev->dma_range_map);
2577 else if (dev->type && dev->type->release)
2578 dev->type->release(dev);
2579 else if (dev->class && dev->class->dev_release)
2580 dev->class->dev_release(dev);
2582 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2587 static const void *device_namespace(const struct kobject *kobj)
2589 const struct device *dev = kobj_to_dev(kobj);
2590 const void *ns = NULL;
2592 if (dev->class && dev->class->ns_type)
2593 ns = dev->class->namespace(dev);
2598 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2600 const struct device *dev = kobj_to_dev(kobj);
2602 if (dev->class && dev->class->get_ownership)
2603 dev->class->get_ownership(dev, uid, gid);
2606 static const struct kobj_type device_ktype = {
2607 .release = device_release,
2608 .sysfs_ops = &dev_sysfs_ops,
2609 .namespace = device_namespace,
2610 .get_ownership = device_get_ownership,
2614 static int dev_uevent_filter(const struct kobject *kobj)
2616 const struct kobj_type *ktype = get_ktype(kobj);
2618 if (ktype == &device_ktype) {
2619 const struct device *dev = kobj_to_dev(kobj);
2628 static const char *dev_uevent_name(const struct kobject *kobj)
2630 const struct device *dev = kobj_to_dev(kobj);
2633 return dev->bus->name;
2635 return dev->class->name;
2639 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2641 const struct device *dev = kobj_to_dev(kobj);
2644 /* add device node properties if present */
2645 if (MAJOR(dev->devt)) {
2649 kuid_t uid = GLOBAL_ROOT_UID;
2650 kgid_t gid = GLOBAL_ROOT_GID;
2652 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2653 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2654 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2656 add_uevent_var(env, "DEVNAME=%s", name);
2658 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2659 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2660 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2661 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2662 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2667 if (dev->type && dev->type->name)
2668 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2671 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2673 /* Add common DT information about the device */
2674 of_device_uevent(dev, env);
2676 /* have the bus specific function add its stuff */
2677 if (dev->bus && dev->bus->uevent) {
2678 retval = dev->bus->uevent(dev, env);
2680 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2681 dev_name(dev), __func__, retval);
2684 /* have the class specific function add its stuff */
2685 if (dev->class && dev->class->dev_uevent) {
2686 retval = dev->class->dev_uevent(dev, env);
2688 pr_debug("device: '%s': %s: class uevent() "
2689 "returned %d\n", dev_name(dev),
2693 /* have the device type specific function add its stuff */
2694 if (dev->type && dev->type->uevent) {
2695 retval = dev->type->uevent(dev, env);
2697 pr_debug("device: '%s': %s: dev_type uevent() "
2698 "returned %d\n", dev_name(dev),
2705 static const struct kset_uevent_ops device_uevent_ops = {
2706 .filter = dev_uevent_filter,
2707 .name = dev_uevent_name,
2708 .uevent = dev_uevent,
2711 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2714 struct kobject *top_kobj;
2716 struct kobj_uevent_env *env = NULL;
2721 /* search the kset, the device belongs to */
2722 top_kobj = &dev->kobj;
2723 while (!top_kobj->kset && top_kobj->parent)
2724 top_kobj = top_kobj->parent;
2725 if (!top_kobj->kset)
2728 kset = top_kobj->kset;
2729 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2732 /* respect filter */
2733 if (kset->uevent_ops && kset->uevent_ops->filter)
2734 if (!kset->uevent_ops->filter(&dev->kobj))
2737 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2741 /* let the kset specific function add its keys */
2742 retval = kset->uevent_ops->uevent(&dev->kobj, env);
2746 /* copy keys to file */
2747 for (i = 0; i < env->envp_idx; i++)
2748 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2754 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2755 const char *buf, size_t count)
2759 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2762 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2768 static DEVICE_ATTR_RW(uevent);
2770 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2776 val = !dev->offline;
2778 return sysfs_emit(buf, "%u\n", val);
2781 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2782 const char *buf, size_t count)
2787 ret = kstrtobool(buf, &val);
2791 ret = lock_device_hotplug_sysfs();
2795 ret = val ? device_online(dev) : device_offline(dev);
2796 unlock_device_hotplug();
2797 return ret < 0 ? ret : count;
2799 static DEVICE_ATTR_RW(online);
2801 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2806 switch (dev->removable) {
2807 case DEVICE_REMOVABLE:
2816 return sysfs_emit(buf, "%s\n", loc);
2818 static DEVICE_ATTR_RO(removable);
2820 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2822 return sysfs_create_groups(&dev->kobj, groups);
2824 EXPORT_SYMBOL_GPL(device_add_groups);
2826 void device_remove_groups(struct device *dev,
2827 const struct attribute_group **groups)
2829 sysfs_remove_groups(&dev->kobj, groups);
2831 EXPORT_SYMBOL_GPL(device_remove_groups);
2833 union device_attr_group_devres {
2834 const struct attribute_group *group;
2835 const struct attribute_group **groups;
2838 static void devm_attr_group_remove(struct device *dev, void *res)
2840 union device_attr_group_devres *devres = res;
2841 const struct attribute_group *group = devres->group;
2843 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2844 sysfs_remove_group(&dev->kobj, group);
2847 static void devm_attr_groups_remove(struct device *dev, void *res)
2849 union device_attr_group_devres *devres = res;
2850 const struct attribute_group **groups = devres->groups;
2852 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2853 sysfs_remove_groups(&dev->kobj, groups);
2857 * devm_device_add_group - given a device, create a managed attribute group
2858 * @dev: The device to create the group for
2859 * @grp: The attribute group to create
2861 * This function creates a group for the first time. It will explicitly
2862 * warn and error if any of the attribute files being created already exist.
2864 * Returns 0 on success or error code on failure.
2866 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2868 union device_attr_group_devres *devres;
2871 devres = devres_alloc(devm_attr_group_remove,
2872 sizeof(*devres), GFP_KERNEL);
2876 error = sysfs_create_group(&dev->kobj, grp);
2878 devres_free(devres);
2882 devres->group = grp;
2883 devres_add(dev, devres);
2886 EXPORT_SYMBOL_GPL(devm_device_add_group);
2889 * devm_device_add_groups - create a bunch of managed attribute groups
2890 * @dev: The device to create the group for
2891 * @groups: The attribute groups to create, NULL terminated
2893 * This function creates a bunch of managed attribute groups. If an error
2894 * occurs when creating a group, all previously created groups will be
2895 * removed, unwinding everything back to the original state when this
2896 * function was called. It will explicitly warn and error if any of the
2897 * attribute files being created already exist.
2899 * Returns 0 on success or error code from sysfs_create_group on failure.
2901 int devm_device_add_groups(struct device *dev,
2902 const struct attribute_group **groups)
2904 union device_attr_group_devres *devres;
2907 devres = devres_alloc(devm_attr_groups_remove,
2908 sizeof(*devres), GFP_KERNEL);
2912 error = sysfs_create_groups(&dev->kobj, groups);
2914 devres_free(devres);
2918 devres->groups = groups;
2919 devres_add(dev, devres);
2922 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2924 static int device_add_attrs(struct device *dev)
2926 const struct class *class = dev->class;
2927 const struct device_type *type = dev->type;
2931 error = device_add_groups(dev, class->dev_groups);
2937 error = device_add_groups(dev, type->groups);
2939 goto err_remove_class_groups;
2942 error = device_add_groups(dev, dev->groups);
2944 goto err_remove_type_groups;
2946 if (device_supports_offline(dev) && !dev->offline_disabled) {
2947 error = device_create_file(dev, &dev_attr_online);
2949 goto err_remove_dev_groups;
2952 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2953 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2955 goto err_remove_dev_online;
2958 if (dev_removable_is_valid(dev)) {
2959 error = device_create_file(dev, &dev_attr_removable);
2961 goto err_remove_dev_waiting_for_supplier;
2964 if (dev_add_physical_location(dev)) {
2965 error = device_add_group(dev,
2966 &dev_attr_physical_location_group);
2968 goto err_remove_dev_removable;
2973 err_remove_dev_removable:
2974 device_remove_file(dev, &dev_attr_removable);
2975 err_remove_dev_waiting_for_supplier:
2976 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2977 err_remove_dev_online:
2978 device_remove_file(dev, &dev_attr_online);
2979 err_remove_dev_groups:
2980 device_remove_groups(dev, dev->groups);
2981 err_remove_type_groups:
2983 device_remove_groups(dev, type->groups);
2984 err_remove_class_groups:
2986 device_remove_groups(dev, class->dev_groups);
2991 static void device_remove_attrs(struct device *dev)
2993 const struct class *class = dev->class;
2994 const struct device_type *type = dev->type;
2996 if (dev->physical_location) {
2997 device_remove_group(dev, &dev_attr_physical_location_group);
2998 kfree(dev->physical_location);
3001 device_remove_file(dev, &dev_attr_removable);
3002 device_remove_file(dev, &dev_attr_waiting_for_supplier);
3003 device_remove_file(dev, &dev_attr_online);
3004 device_remove_groups(dev, dev->groups);
3007 device_remove_groups(dev, type->groups);
3010 device_remove_groups(dev, class->dev_groups);
3013 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
3016 return print_dev_t(buf, dev->devt);
3018 static DEVICE_ATTR_RO(dev);
3021 struct kset *devices_kset;
3024 * devices_kset_move_before - Move device in the devices_kset's list.
3025 * @deva: Device to move.
3026 * @devb: Device @deva should come before.
3028 static void devices_kset_move_before(struct device *deva, struct device *devb)
3032 pr_debug("devices_kset: Moving %s before %s\n",
3033 dev_name(deva), dev_name(devb));
3034 spin_lock(&devices_kset->list_lock);
3035 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
3036 spin_unlock(&devices_kset->list_lock);
3040 * devices_kset_move_after - Move device in the devices_kset's list.
3041 * @deva: Device to move
3042 * @devb: Device @deva should come after.
3044 static void devices_kset_move_after(struct device *deva, struct device *devb)
3048 pr_debug("devices_kset: Moving %s after %s\n",
3049 dev_name(deva), dev_name(devb));
3050 spin_lock(&devices_kset->list_lock);
3051 list_move(&deva->kobj.entry, &devb->kobj.entry);
3052 spin_unlock(&devices_kset->list_lock);
3056 * devices_kset_move_last - move the device to the end of devices_kset's list.
3057 * @dev: device to move
3059 void devices_kset_move_last(struct device *dev)
3063 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3064 spin_lock(&devices_kset->list_lock);
3065 list_move_tail(&dev->kobj.entry, &devices_kset->list);
3066 spin_unlock(&devices_kset->list_lock);
3070 * device_create_file - create sysfs attribute file for device.
3072 * @attr: device attribute descriptor.
3074 int device_create_file(struct device *dev,
3075 const struct device_attribute *attr)
3080 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3081 "Attribute %s: write permission without 'store'\n",
3083 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3084 "Attribute %s: read permission without 'show'\n",
3086 error = sysfs_create_file(&dev->kobj, &attr->attr);
3091 EXPORT_SYMBOL_GPL(device_create_file);
3094 * device_remove_file - remove sysfs attribute file.
3096 * @attr: device attribute descriptor.
3098 void device_remove_file(struct device *dev,
3099 const struct device_attribute *attr)
3102 sysfs_remove_file(&dev->kobj, &attr->attr);
3104 EXPORT_SYMBOL_GPL(device_remove_file);
3107 * device_remove_file_self - remove sysfs attribute file from its own method.
3109 * @attr: device attribute descriptor.
3111 * See kernfs_remove_self() for details.
3113 bool device_remove_file_self(struct device *dev,
3114 const struct device_attribute *attr)
3117 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3121 EXPORT_SYMBOL_GPL(device_remove_file_self);
3124 * device_create_bin_file - create sysfs binary attribute file for device.
3126 * @attr: device binary attribute descriptor.
3128 int device_create_bin_file(struct device *dev,
3129 const struct bin_attribute *attr)
3131 int error = -EINVAL;
3133 error = sysfs_create_bin_file(&dev->kobj, attr);
3136 EXPORT_SYMBOL_GPL(device_create_bin_file);
3139 * device_remove_bin_file - remove sysfs binary attribute file
3141 * @attr: device binary attribute descriptor.
3143 void device_remove_bin_file(struct device *dev,
3144 const struct bin_attribute *attr)
3147 sysfs_remove_bin_file(&dev->kobj, attr);
3149 EXPORT_SYMBOL_GPL(device_remove_bin_file);
3151 static void klist_children_get(struct klist_node *n)
3153 struct device_private *p = to_device_private_parent(n);
3154 struct device *dev = p->device;
3159 static void klist_children_put(struct klist_node *n)
3161 struct device_private *p = to_device_private_parent(n);
3162 struct device *dev = p->device;
3168 * device_initialize - init device structure.
3171 * This prepares the device for use by other layers by initializing
3173 * It is the first half of device_register(), if called by
3174 * that function, though it can also be called separately, so one
3175 * may use @dev's fields. In particular, get_device()/put_device()
3176 * may be used for reference counting of @dev after calling this
3179 * All fields in @dev must be initialized by the caller to 0, except
3180 * for those explicitly set to some other value. The simplest
3181 * approach is to use kzalloc() to allocate the structure containing
3184 * NOTE: Use put_device() to give up your reference instead of freeing
3185 * @dev directly once you have called this function.
3187 void device_initialize(struct device *dev)
3189 dev->kobj.kset = devices_kset;
3190 kobject_init(&dev->kobj, &device_ktype);
3191 INIT_LIST_HEAD(&dev->dma_pools);
3192 mutex_init(&dev->mutex);
3193 lockdep_set_novalidate_class(&dev->mutex);
3194 spin_lock_init(&dev->devres_lock);
3195 INIT_LIST_HEAD(&dev->devres_head);
3196 device_pm_init(dev);
3197 set_dev_node(dev, NUMA_NO_NODE);
3198 INIT_LIST_HEAD(&dev->links.consumers);
3199 INIT_LIST_HEAD(&dev->links.suppliers);
3200 INIT_LIST_HEAD(&dev->links.defer_sync);
3201 dev->links.status = DL_DEV_NO_DRIVER;
3202 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3203 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3204 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3205 dev->dma_coherent = dma_default_coherent;
3207 swiotlb_dev_init(dev);
3209 EXPORT_SYMBOL_GPL(device_initialize);
3211 struct kobject *virtual_device_parent(struct device *dev)
3213 static struct kobject *virtual_dir = NULL;
3216 virtual_dir = kobject_create_and_add("virtual",
3217 &devices_kset->kobj);
3223 struct kobject kobj;
3224 const struct class *class;
3227 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3229 static void class_dir_release(struct kobject *kobj)
3231 struct class_dir *dir = to_class_dir(kobj);
3236 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3238 const struct class_dir *dir = to_class_dir(kobj);
3239 return dir->class->ns_type;
3242 static const struct kobj_type class_dir_ktype = {
3243 .release = class_dir_release,
3244 .sysfs_ops = &kobj_sysfs_ops,
3245 .child_ns_type = class_dir_child_ns_type
3248 static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3249 struct kobject *parent_kobj)
3251 struct class_dir *dir;
3254 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3256 return ERR_PTR(-ENOMEM);
3258 dir->class = sp->class;
3259 kobject_init(&dir->kobj, &class_dir_ktype);
3261 dir->kobj.kset = &sp->glue_dirs;
3263 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3265 kobject_put(&dir->kobj);
3266 return ERR_PTR(retval);
3271 static DEFINE_MUTEX(gdp_mutex);
3273 static struct kobject *get_device_parent(struct device *dev,
3274 struct device *parent)
3276 struct subsys_private *sp = class_to_subsys(dev->class);
3277 struct kobject *kobj = NULL;
3280 struct kobject *parent_kobj;
3284 * If we have no parent, we live in "virtual".
3285 * Class-devices with a non class-device as parent, live
3286 * in a "glue" directory to prevent namespace collisions.
3289 parent_kobj = virtual_device_parent(dev);
3290 else if (parent->class && !dev->class->ns_type) {
3292 return &parent->kobj;
3294 parent_kobj = &parent->kobj;
3297 mutex_lock(&gdp_mutex);
3299 /* find our class-directory at the parent and reference it */
3300 spin_lock(&sp->glue_dirs.list_lock);
3301 list_for_each_entry(k, &sp->glue_dirs.list, entry)
3302 if (k->parent == parent_kobj) {
3303 kobj = kobject_get(k);
3306 spin_unlock(&sp->glue_dirs.list_lock);
3308 mutex_unlock(&gdp_mutex);
3313 /* or create a new class-directory at the parent device */
3314 k = class_dir_create_and_add(sp, parent_kobj);
3315 /* do not emit an uevent for this simple "glue" directory */
3316 mutex_unlock(&gdp_mutex);
3321 /* subsystems can specify a default root directory for their devices */
3322 if (!parent && dev->bus) {
3323 struct device *dev_root = bus_get_dev_root(dev->bus);
3326 kobj = &dev_root->kobj;
3327 put_device(dev_root);
3333 return &parent->kobj;
3337 static inline bool live_in_glue_dir(struct kobject *kobj,
3340 struct subsys_private *sp;
3343 if (!kobj || !dev->class)
3346 sp = class_to_subsys(dev->class);
3350 if (kobj->kset == &sp->glue_dirs)
3359 static inline struct kobject *get_glue_dir(struct device *dev)
3361 return dev->kobj.parent;
3365 * kobject_has_children - Returns whether a kobject has children.
3366 * @kobj: the object to test
3368 * This will return whether a kobject has other kobjects as children.
3370 * It does NOT account for the presence of attribute files, only sub
3371 * directories. It also assumes there is no concurrent addition or
3372 * removal of such children, and thus relies on external locking.
3374 static inline bool kobject_has_children(struct kobject *kobj)
3376 WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3378 return kobj->sd && kobj->sd->dir.subdirs;
3382 * make sure cleaning up dir as the last step, we need to make
3383 * sure .release handler of kobject is run with holding the
3386 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3390 /* see if we live in a "glue" directory */
3391 if (!live_in_glue_dir(glue_dir, dev))
3394 mutex_lock(&gdp_mutex);
3396 * There is a race condition between removing glue directory
3397 * and adding a new device under the glue directory.
3402 * get_device_parent()
3403 * class_dir_create_and_add()
3404 * kobject_add_internal()
3405 * create_dir() // create glue_dir
3408 * get_device_parent()
3409 * kobject_get() // get glue_dir
3412 * cleanup_glue_dir()
3413 * kobject_del(glue_dir)
3416 * kobject_add_internal()
3417 * create_dir() // in glue_dir
3418 * sysfs_create_dir_ns()
3419 * kernfs_create_dir_ns(sd)
3421 * sysfs_remove_dir() // glue_dir->sd=NULL
3422 * sysfs_put() // free glue_dir->sd
3425 * kernfs_new_node(sd)
3426 * kernfs_get(glue_dir)
3430 * Before CPU1 remove last child device under glue dir, if CPU2 add
3431 * a new device under glue dir, the glue_dir kobject reference count
3432 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3433 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3434 * and sysfs_put(). This result in glue_dir->sd is freed.
3436 * Then the CPU2 will see a stale "empty" but still potentially used
3437 * glue dir around in kernfs_new_node().
3439 * In order to avoid this happening, we also should make sure that
3440 * kernfs_node for glue_dir is released in CPU1 only when refcount
3441 * for glue_dir kobj is 1.
3443 ref = kref_read(&glue_dir->kref);
3444 if (!kobject_has_children(glue_dir) && !--ref)
3445 kobject_del(glue_dir);
3446 kobject_put(glue_dir);
3447 mutex_unlock(&gdp_mutex);
3450 static int device_add_class_symlinks(struct device *dev)
3452 struct device_node *of_node = dev_of_node(dev);
3453 struct subsys_private *sp;
3457 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3459 dev_warn(dev, "Error %d creating of_node link\n",error);
3460 /* An error here doesn't warrant bringing down the device */
3463 sp = class_to_subsys(dev->class);
3467 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3471 if (dev->parent && device_is_not_partition(dev)) {
3472 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3478 /* link in the class directory pointing to the device */
3479 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3485 sysfs_remove_link(&dev->kobj, "device");
3487 sysfs_remove_link(&dev->kobj, "subsystem");
3489 sysfs_remove_link(&dev->kobj, "of_node");
3495 static void device_remove_class_symlinks(struct device *dev)
3497 struct subsys_private *sp = class_to_subsys(dev->class);
3499 if (dev_of_node(dev))
3500 sysfs_remove_link(&dev->kobj, "of_node");
3505 if (dev->parent && device_is_not_partition(dev))
3506 sysfs_remove_link(&dev->kobj, "device");
3507 sysfs_remove_link(&dev->kobj, "subsystem");
3508 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3513 * dev_set_name - set a device name
3515 * @fmt: format string for the device's name
3517 int dev_set_name(struct device *dev, const char *fmt, ...)
3522 va_start(vargs, fmt);
3523 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3527 EXPORT_SYMBOL_GPL(dev_set_name);
3529 /* select a /sys/dev/ directory for the device */
3530 static struct kobject *device_to_dev_kobj(struct device *dev)
3532 if (is_blockdev(dev))
3533 return sysfs_dev_block_kobj;
3535 return sysfs_dev_char_kobj;
3538 static int device_create_sys_dev_entry(struct device *dev)
3540 struct kobject *kobj = device_to_dev_kobj(dev);
3545 format_dev_t(devt_str, dev->devt);
3546 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3552 static void device_remove_sys_dev_entry(struct device *dev)
3554 struct kobject *kobj = device_to_dev_kobj(dev);
3558 format_dev_t(devt_str, dev->devt);
3559 sysfs_remove_link(kobj, devt_str);
3563 static int device_private_init(struct device *dev)
3565 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3568 dev->p->device = dev;
3569 klist_init(&dev->p->klist_children, klist_children_get,
3570 klist_children_put);
3571 INIT_LIST_HEAD(&dev->p->deferred_probe);
3576 * device_add - add device to device hierarchy.
3579 * This is part 2 of device_register(), though may be called
3580 * separately _iff_ device_initialize() has been called separately.
3582 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3583 * to the global and sibling lists for the device, then
3584 * adds it to the other relevant subsystems of the driver model.
3586 * Do not call this routine or device_register() more than once for
3587 * any device structure. The driver model core is not designed to work
3588 * with devices that get unregistered and then spring back to life.
3589 * (Among other things, it's very hard to guarantee that all references
3590 * to the previous incarnation of @dev have been dropped.) Allocate
3591 * and register a fresh new struct device instead.
3593 * NOTE: _Never_ directly free @dev after calling this function, even
3594 * if it returned an error! Always use put_device() to give up your
3595 * reference instead.
3597 * Rule of thumb is: if device_add() succeeds, you should call
3598 * device_del() when you want to get rid of it. If device_add() has
3599 * *not* succeeded, use *only* put_device() to drop the reference
3602 int device_add(struct device *dev)
3604 struct subsys_private *sp;
3605 struct device *parent;
3606 struct kobject *kobj;
3607 struct class_interface *class_intf;
3608 int error = -EINVAL;
3609 struct kobject *glue_dir = NULL;
3611 dev = get_device(dev);
3616 error = device_private_init(dev);
3622 * for statically allocated devices, which should all be converted
3623 * some day, we need to initialize the name. We prevent reading back
3624 * the name, and force the use of dev_name()
3626 if (dev->init_name) {
3627 error = dev_set_name(dev, "%s", dev->init_name);
3628 dev->init_name = NULL;
3633 /* subsystems can specify simple device enumeration */
3634 else if (dev->bus && dev->bus->dev_name)
3635 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3641 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3643 parent = get_device(dev->parent);
3644 kobj = get_device_parent(dev, parent);
3646 error = PTR_ERR(kobj);
3650 dev->kobj.parent = kobj;
3652 /* use parent numa_node */
3653 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3654 set_dev_node(dev, dev_to_node(parent));
3656 /* first, register with generic layer. */
3657 /* we require the name to be set before, and pass NULL */
3658 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3664 /* notify platform of device entry */
3665 device_platform_notify(dev);
3667 error = device_create_file(dev, &dev_attr_uevent);
3671 error = device_add_class_symlinks(dev);
3674 error = device_add_attrs(dev);
3677 error = bus_add_device(dev);
3680 error = dpm_sysfs_add(dev);
3685 if (MAJOR(dev->devt)) {
3686 error = device_create_file(dev, &dev_attr_dev);
3690 error = device_create_sys_dev_entry(dev);
3694 devtmpfs_create_node(dev);
3697 /* Notify clients of device addition. This call must come
3698 * after dpm_sysfs_add() and before kobject_uevent().
3700 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3701 kobject_uevent(&dev->kobj, KOBJ_ADD);
3704 * Check if any of the other devices (consumers) have been waiting for
3705 * this device (supplier) to be added so that they can create a device
3708 * This needs to happen after device_pm_add() because device_link_add()
3709 * requires the supplier be registered before it's called.
3711 * But this also needs to happen before bus_probe_device() to make sure
3712 * waiting consumers can link to it before the driver is bound to the
3713 * device and the driver sync_state callback is called for this device.
3715 if (dev->fwnode && !dev->fwnode->dev) {
3716 dev->fwnode->dev = dev;
3717 fw_devlink_link_device(dev);
3720 bus_probe_device(dev);
3723 * If all driver registration is done and a newly added device doesn't
3724 * match with any driver, don't block its consumers from probing in
3725 * case the consumer device is able to operate without this supplier.
3727 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3728 fw_devlink_unblock_consumers(dev);
3731 klist_add_tail(&dev->p->knode_parent,
3732 &parent->p->klist_children);
3734 sp = class_to_subsys(dev->class);
3736 mutex_lock(&sp->mutex);
3737 /* tie the class to the device */
3738 klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3740 /* notify any interfaces that the device is here */
3741 list_for_each_entry(class_intf, &sp->interfaces, node)
3742 if (class_intf->add_dev)
3743 class_intf->add_dev(dev);
3744 mutex_unlock(&sp->mutex);
3751 if (MAJOR(dev->devt))
3752 device_remove_file(dev, &dev_attr_dev);
3754 device_pm_remove(dev);
3755 dpm_sysfs_remove(dev);
3758 bus_remove_device(dev);
3760 device_remove_attrs(dev);
3762 device_remove_class_symlinks(dev);
3764 device_remove_file(dev, &dev_attr_uevent);
3766 device_platform_notify_remove(dev);
3767 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3768 glue_dir = get_glue_dir(dev);
3769 kobject_del(&dev->kobj);
3771 cleanup_glue_dir(dev, glue_dir);
3779 EXPORT_SYMBOL_GPL(device_add);
3782 * device_register - register a device with the system.
3783 * @dev: pointer to the device structure
3785 * This happens in two clean steps - initialize the device
3786 * and add it to the system. The two steps can be called
3787 * separately, but this is the easiest and most common.
3788 * I.e. you should only call the two helpers separately if
3789 * have a clearly defined need to use and refcount the device
3790 * before it is added to the hierarchy.
3792 * For more information, see the kerneldoc for device_initialize()
3795 * NOTE: _Never_ directly free @dev after calling this function, even
3796 * if it returned an error! Always use put_device() to give up the
3797 * reference initialized in this function instead.
3799 int device_register(struct device *dev)
3801 device_initialize(dev);
3802 return device_add(dev);
3804 EXPORT_SYMBOL_GPL(device_register);
3807 * get_device - increment reference count for device.
3810 * This simply forwards the call to kobject_get(), though
3811 * we do take care to provide for the case that we get a NULL
3812 * pointer passed in.
3814 struct device *get_device(struct device *dev)
3816 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3818 EXPORT_SYMBOL_GPL(get_device);
3821 * put_device - decrement reference count.
3822 * @dev: device in question.
3824 void put_device(struct device *dev)
3826 /* might_sleep(); */
3828 kobject_put(&dev->kobj);
3830 EXPORT_SYMBOL_GPL(put_device);
3832 bool kill_device(struct device *dev)
3835 * Require the device lock and set the "dead" flag to guarantee that
3836 * the update behavior is consistent with the other bitfields near
3837 * it and that we cannot have an asynchronous probe routine trying
3838 * to run while we are tearing out the bus/class/sysfs from
3839 * underneath the device.
3841 device_lock_assert(dev);
3845 dev->p->dead = true;
3848 EXPORT_SYMBOL_GPL(kill_device);
3851 * device_del - delete device from system.
3854 * This is the first part of the device unregistration
3855 * sequence. This removes the device from the lists we control
3856 * from here, has it removed from the other driver model
3857 * subsystems it was added to in device_add(), and removes it
3858 * from the kobject hierarchy.
3860 * NOTE: this should be called manually _iff_ device_add() was
3861 * also called manually.
3863 void device_del(struct device *dev)
3865 struct subsys_private *sp;
3866 struct device *parent = dev->parent;
3867 struct kobject *glue_dir = NULL;
3868 struct class_interface *class_intf;
3869 unsigned int noio_flag;
3875 if (dev->fwnode && dev->fwnode->dev == dev)
3876 dev->fwnode->dev = NULL;
3878 /* Notify clients of device removal. This call must come
3879 * before dpm_sysfs_remove().
3881 noio_flag = memalloc_noio_save();
3882 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3884 dpm_sysfs_remove(dev);
3886 klist_del(&dev->p->knode_parent);
3887 if (MAJOR(dev->devt)) {
3888 devtmpfs_delete_node(dev);
3889 device_remove_sys_dev_entry(dev);
3890 device_remove_file(dev, &dev_attr_dev);
3893 sp = class_to_subsys(dev->class);
3895 device_remove_class_symlinks(dev);
3897 mutex_lock(&sp->mutex);
3898 /* notify any interfaces that the device is now gone */
3899 list_for_each_entry(class_intf, &sp->interfaces, node)
3900 if (class_intf->remove_dev)
3901 class_intf->remove_dev(dev);
3902 /* remove the device from the class list */
3903 klist_del(&dev->p->knode_class);
3904 mutex_unlock(&sp->mutex);
3907 device_remove_file(dev, &dev_attr_uevent);
3908 device_remove_attrs(dev);
3909 bus_remove_device(dev);
3910 device_pm_remove(dev);
3911 driver_deferred_probe_del(dev);
3912 device_platform_notify_remove(dev);
3913 device_links_purge(dev);
3916 * If a device does not have a driver attached, we need to clean
3917 * up any managed resources. We do this in device_release(), but
3918 * it's never called (and we leak the device) if a managed
3919 * resource holds a reference to the device. So release all
3920 * managed resources here, like we do in driver_detach(). We
3921 * still need to do so again in device_release() in case someone
3922 * adds a new resource after this point, though.
3924 devres_release_all(dev);
3926 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3927 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3928 glue_dir = get_glue_dir(dev);
3929 kobject_del(&dev->kobj);
3930 cleanup_glue_dir(dev, glue_dir);
3931 memalloc_noio_restore(noio_flag);
3934 EXPORT_SYMBOL_GPL(device_del);
3937 * device_unregister - unregister device from system.
3938 * @dev: device going away.
3940 * We do this in two parts, like we do device_register(). First,
3941 * we remove it from all the subsystems with device_del(), then
3942 * we decrement the reference count via put_device(). If that
3943 * is the final reference count, the device will be cleaned up
3944 * via device_release() above. Otherwise, the structure will
3945 * stick around until the final reference to the device is dropped.
3947 void device_unregister(struct device *dev)
3949 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3953 EXPORT_SYMBOL_GPL(device_unregister);
3955 static struct device *prev_device(struct klist_iter *i)
3957 struct klist_node *n = klist_prev(i);
3958 struct device *dev = NULL;
3959 struct device_private *p;
3962 p = to_device_private_parent(n);
3968 static struct device *next_device(struct klist_iter *i)
3970 struct klist_node *n = klist_next(i);
3971 struct device *dev = NULL;
3972 struct device_private *p;
3975 p = to_device_private_parent(n);
3982 * device_get_devnode - path of device node file
3984 * @mode: returned file access mode
3985 * @uid: returned file owner
3986 * @gid: returned file group
3987 * @tmp: possibly allocated string
3989 * Return the relative path of a possible device node.
3990 * Non-default names may need to allocate a memory to compose
3991 * a name. This memory is returned in tmp and needs to be
3992 * freed by the caller.
3994 const char *device_get_devnode(const struct device *dev,
3995 umode_t *mode, kuid_t *uid, kgid_t *gid,
4002 /* the device type may provide a specific name */
4003 if (dev->type && dev->type->devnode)
4004 *tmp = dev->type->devnode(dev, mode, uid, gid);
4008 /* the class may provide a specific name */
4009 if (dev->class && dev->class->devnode)
4010 *tmp = dev->class->devnode(dev, mode);
4014 /* return name without allocation, tmp == NULL */
4015 if (strchr(dev_name(dev), '!') == NULL)
4016 return dev_name(dev);
4018 /* replace '!' in the name with '/' */
4019 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
4026 * device_for_each_child - device child iterator.
4027 * @parent: parent struct device.
4028 * @fn: function to be called for each device.
4029 * @data: data for the callback.
4031 * Iterate over @parent's child devices, and call @fn for each,
4034 * We check the return of @fn each time. If it returns anything
4035 * other than 0, we break out and return that value.
4037 int device_for_each_child(struct device *parent, void *data,
4038 int (*fn)(struct device *dev, void *data))
4040 struct klist_iter i;
4041 struct device *child;
4047 klist_iter_init(&parent->p->klist_children, &i);
4048 while (!error && (child = next_device(&i)))
4049 error = fn(child, data);
4050 klist_iter_exit(&i);
4053 EXPORT_SYMBOL_GPL(device_for_each_child);
4056 * device_for_each_child_reverse - device child iterator in reversed order.
4057 * @parent: parent struct device.
4058 * @fn: function to be called for each device.
4059 * @data: data for the callback.
4061 * Iterate over @parent's child devices, and call @fn for each,
4064 * We check the return of @fn each time. If it returns anything
4065 * other than 0, we break out and return that value.
4067 int device_for_each_child_reverse(struct device *parent, void *data,
4068 int (*fn)(struct device *dev, void *data))
4070 struct klist_iter i;
4071 struct device *child;
4077 klist_iter_init(&parent->p->klist_children, &i);
4078 while ((child = prev_device(&i)) && !error)
4079 error = fn(child, data);
4080 klist_iter_exit(&i);
4083 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4086 * device_find_child - device iterator for locating a particular device.
4087 * @parent: parent struct device
4088 * @match: Callback function to check device
4089 * @data: Data to pass to match function
4091 * This is similar to the device_for_each_child() function above, but it
4092 * returns a reference to a device that is 'found' for later use, as
4093 * determined by the @match callback.
4095 * The callback should return 0 if the device doesn't match and non-zero
4096 * if it does. If the callback returns non-zero and a reference to the
4097 * current device can be obtained, this function will return to the caller
4098 * and not iterate over any more devices.
4100 * NOTE: you will need to drop the reference with put_device() after use.
4102 struct device *device_find_child(struct device *parent, void *data,
4103 int (*match)(struct device *dev, void *data))
4105 struct klist_iter i;
4106 struct device *child;
4111 klist_iter_init(&parent->p->klist_children, &i);
4112 while ((child = next_device(&i)))
4113 if (match(child, data) && get_device(child))
4115 klist_iter_exit(&i);
4118 EXPORT_SYMBOL_GPL(device_find_child);
4121 * device_find_child_by_name - device iterator for locating a child device.
4122 * @parent: parent struct device
4123 * @name: name of the child device
4125 * This is similar to the device_find_child() function above, but it
4126 * returns a reference to a device that has the name @name.
4128 * NOTE: you will need to drop the reference with put_device() after use.
4130 struct device *device_find_child_by_name(struct device *parent,
4133 struct klist_iter i;
4134 struct device *child;
4139 klist_iter_init(&parent->p->klist_children, &i);
4140 while ((child = next_device(&i)))
4141 if (sysfs_streq(dev_name(child), name) && get_device(child))
4143 klist_iter_exit(&i);
4146 EXPORT_SYMBOL_GPL(device_find_child_by_name);
4148 static int match_any(struct device *dev, void *unused)
4154 * device_find_any_child - device iterator for locating a child device, if any.
4155 * @parent: parent struct device
4157 * This is similar to the device_find_child() function above, but it
4158 * returns a reference to a child device, if any.
4160 * NOTE: you will need to drop the reference with put_device() after use.
4162 struct device *device_find_any_child(struct device *parent)
4164 return device_find_child(parent, NULL, match_any);
4166 EXPORT_SYMBOL_GPL(device_find_any_child);
4168 int __init devices_init(void)
4170 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4173 dev_kobj = kobject_create_and_add("dev", NULL);
4176 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4177 if (!sysfs_dev_block_kobj)
4178 goto block_kobj_err;
4179 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4180 if (!sysfs_dev_char_kobj)
4182 device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4183 if (!device_link_wq)
4189 kobject_put(sysfs_dev_char_kobj);
4191 kobject_put(sysfs_dev_block_kobj);
4193 kobject_put(dev_kobj);
4195 kset_unregister(devices_kset);
4199 static int device_check_offline(struct device *dev, void *not_used)
4203 ret = device_for_each_child(dev, NULL, device_check_offline);
4207 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4211 * device_offline - Prepare the device for hot-removal.
4212 * @dev: Device to be put offline.
4214 * Execute the device bus type's .offline() callback, if present, to prepare
4215 * the device for a subsequent hot-removal. If that succeeds, the device must
4216 * not be used until either it is removed or its bus type's .online() callback
4219 * Call under device_hotplug_lock.
4221 int device_offline(struct device *dev)
4225 if (dev->offline_disabled)
4228 ret = device_for_each_child(dev, NULL, device_check_offline);
4233 if (device_supports_offline(dev)) {
4237 ret = dev->bus->offline(dev);
4239 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4240 dev->offline = true;
4250 * device_online - Put the device back online after successful device_offline().
4251 * @dev: Device to be put back online.
4253 * If device_offline() has been successfully executed for @dev, but the device
4254 * has not been removed subsequently, execute its bus type's .online() callback
4255 * to indicate that the device can be used again.
4257 * Call under device_hotplug_lock.
4259 int device_online(struct device *dev)
4264 if (device_supports_offline(dev)) {
4266 ret = dev->bus->online(dev);
4268 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4269 dev->offline = false;
4280 struct root_device {
4282 struct module *owner;
4285 static inline struct root_device *to_root_device(struct device *d)
4287 return container_of(d, struct root_device, dev);
4290 static void root_device_release(struct device *dev)
4292 kfree(to_root_device(dev));
4296 * __root_device_register - allocate and register a root device
4297 * @name: root device name
4298 * @owner: owner module of the root device, usually THIS_MODULE
4300 * This function allocates a root device and registers it
4301 * using device_register(). In order to free the returned
4302 * device, use root_device_unregister().
4304 * Root devices are dummy devices which allow other devices
4305 * to be grouped under /sys/devices. Use this function to
4306 * allocate a root device and then use it as the parent of
4307 * any device which should appear under /sys/devices/{name}
4309 * The /sys/devices/{name} directory will also contain a
4310 * 'module' symlink which points to the @owner directory
4313 * Returns &struct device pointer on success, or ERR_PTR() on error.
4315 * Note: You probably want to use root_device_register().
4317 struct device *__root_device_register(const char *name, struct module *owner)
4319 struct root_device *root;
4322 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4324 return ERR_PTR(err);
4326 err = dev_set_name(&root->dev, "%s", name);
4329 return ERR_PTR(err);
4332 root->dev.release = root_device_release;
4334 err = device_register(&root->dev);
4336 put_device(&root->dev);
4337 return ERR_PTR(err);
4340 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
4342 struct module_kobject *mk = &owner->mkobj;
4344 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4346 device_unregister(&root->dev);
4347 return ERR_PTR(err);
4349 root->owner = owner;
4355 EXPORT_SYMBOL_GPL(__root_device_register);
4358 * root_device_unregister - unregister and free a root device
4359 * @dev: device going away
4361 * This function unregisters and cleans up a device that was created by
4362 * root_device_register().
4364 void root_device_unregister(struct device *dev)
4366 struct root_device *root = to_root_device(dev);
4369 sysfs_remove_link(&root->dev.kobj, "module");
4371 device_unregister(dev);
4373 EXPORT_SYMBOL_GPL(root_device_unregister);
4376 static void device_create_release(struct device *dev)
4378 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4382 static __printf(6, 0) struct device *
4383 device_create_groups_vargs(const struct class *class, struct device *parent,
4384 dev_t devt, void *drvdata,
4385 const struct attribute_group **groups,
4386 const char *fmt, va_list args)
4388 struct device *dev = NULL;
4389 int retval = -ENODEV;
4391 if (IS_ERR_OR_NULL(class))
4394 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4400 device_initialize(dev);
4403 dev->parent = parent;
4404 dev->groups = groups;
4405 dev->release = device_create_release;
4406 dev_set_drvdata(dev, drvdata);
4408 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4412 retval = device_add(dev);
4420 return ERR_PTR(retval);
4424 * device_create - creates a device and registers it with sysfs
4425 * @class: pointer to the struct class that this device should be registered to
4426 * @parent: pointer to the parent struct device of this new device, if any
4427 * @devt: the dev_t for the char device to be added
4428 * @drvdata: the data to be added to the device for callbacks
4429 * @fmt: string for the device's name
4431 * This function can be used by char device classes. A struct device
4432 * will be created in sysfs, registered to the specified class.
4434 * A "dev" file will be created, showing the dev_t for the device, if
4435 * the dev_t is not 0,0.
4436 * If a pointer to a parent struct device is passed in, the newly created
4437 * struct device will be a child of that device in sysfs.
4438 * The pointer to the struct device will be returned from the call.
4439 * Any further sysfs files that might be required can be created using this
4442 * Returns &struct device pointer on success, or ERR_PTR() on error.
4444 struct device *device_create(const struct class *class, struct device *parent,
4445 dev_t devt, void *drvdata, const char *fmt, ...)
4450 va_start(vargs, fmt);
4451 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4456 EXPORT_SYMBOL_GPL(device_create);
4459 * device_create_with_groups - creates a device and registers it with sysfs
4460 * @class: pointer to the struct class that this device should be registered to
4461 * @parent: pointer to the parent struct device of this new device, if any
4462 * @devt: the dev_t for the char device to be added
4463 * @drvdata: the data to be added to the device for callbacks
4464 * @groups: NULL-terminated list of attribute groups to be created
4465 * @fmt: string for the device's name
4467 * This function can be used by char device classes. A struct device
4468 * will be created in sysfs, registered to the specified class.
4469 * Additional attributes specified in the groups parameter will also
4470 * be created automatically.
4472 * A "dev" file will be created, showing the dev_t for the device, if
4473 * the dev_t is not 0,0.
4474 * If a pointer to a parent struct device is passed in, the newly created
4475 * struct device will be a child of that device in sysfs.
4476 * The pointer to the struct device will be returned from the call.
4477 * Any further sysfs files that might be required can be created using this
4480 * Returns &struct device pointer on success, or ERR_PTR() on error.
4482 struct device *device_create_with_groups(const struct class *class,
4483 struct device *parent, dev_t devt,
4485 const struct attribute_group **groups,
4486 const char *fmt, ...)
4491 va_start(vargs, fmt);
4492 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4497 EXPORT_SYMBOL_GPL(device_create_with_groups);
4500 * device_destroy - removes a device that was created with device_create()
4501 * @class: pointer to the struct class that this device was registered with
4502 * @devt: the dev_t of the device that was previously registered
4504 * This call unregisters and cleans up a device that was created with a
4505 * call to device_create().
4507 void device_destroy(const struct class *class, dev_t devt)
4511 dev = class_find_device_by_devt(class, devt);
4514 device_unregister(dev);
4517 EXPORT_SYMBOL_GPL(device_destroy);
4520 * device_rename - renames a device
4521 * @dev: the pointer to the struct device to be renamed
4522 * @new_name: the new name of the device
4524 * It is the responsibility of the caller to provide mutual
4525 * exclusion between two different calls of device_rename
4526 * on the same device to ensure that new_name is valid and
4527 * won't conflict with other devices.
4529 * Note: given that some subsystems (networking and infiniband) use this
4530 * function, with no immediate plans for this to change, we cannot assume or
4531 * require that this function not be called at all.
4533 * However, if you're writing new code, do not call this function. The following
4534 * text from Kay Sievers offers some insight:
4536 * Renaming devices is racy at many levels, symlinks and other stuff are not
4537 * replaced atomically, and you get a "move" uevent, but it's not easy to
4538 * connect the event to the old and new device. Device nodes are not renamed at
4539 * all, there isn't even support for that in the kernel now.
4541 * In the meantime, during renaming, your target name might be taken by another
4542 * driver, creating conflicts. Or the old name is taken directly after you
4543 * renamed it -- then you get events for the same DEVPATH, before you even see
4544 * the "move" event. It's just a mess, and nothing new should ever rely on
4545 * kernel device renaming. Besides that, it's not even implemented now for
4546 * other things than (driver-core wise very simple) network devices.
4548 * Make up a "real" name in the driver before you register anything, or add
4549 * some other attributes for userspace to find the device, or use udev to add
4550 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4551 * don't even want to get into that and try to implement the missing pieces in
4552 * the core. We really have other pieces to fix in the driver core mess. :)
4554 int device_rename(struct device *dev, const char *new_name)
4556 struct kobject *kobj = &dev->kobj;
4557 char *old_device_name = NULL;
4560 dev = get_device(dev);
4564 dev_dbg(dev, "renaming to %s\n", new_name);
4566 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4567 if (!old_device_name) {
4573 struct subsys_private *sp = class_to_subsys(dev->class);
4580 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4581 new_name, kobject_namespace(kobj));
4587 error = kobject_rename(kobj, new_name);
4594 kfree(old_device_name);
4598 EXPORT_SYMBOL_GPL(device_rename);
4600 static int device_move_class_links(struct device *dev,
4601 struct device *old_parent,
4602 struct device *new_parent)
4607 sysfs_remove_link(&dev->kobj, "device");
4609 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4615 * device_move - moves a device to a new parent
4616 * @dev: the pointer to the struct device to be moved
4617 * @new_parent: the new parent of the device (can be NULL)
4618 * @dpm_order: how to reorder the dpm_list
4620 int device_move(struct device *dev, struct device *new_parent,
4621 enum dpm_order dpm_order)
4624 struct device *old_parent;
4625 struct kobject *new_parent_kobj;
4627 dev = get_device(dev);
4632 new_parent = get_device(new_parent);
4633 new_parent_kobj = get_device_parent(dev, new_parent);
4634 if (IS_ERR(new_parent_kobj)) {
4635 error = PTR_ERR(new_parent_kobj);
4636 put_device(new_parent);
4640 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4641 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4642 error = kobject_move(&dev->kobj, new_parent_kobj);
4644 cleanup_glue_dir(dev, new_parent_kobj);
4645 put_device(new_parent);
4648 old_parent = dev->parent;
4649 dev->parent = new_parent;
4651 klist_remove(&dev->p->knode_parent);
4653 klist_add_tail(&dev->p->knode_parent,
4654 &new_parent->p->klist_children);
4655 set_dev_node(dev, dev_to_node(new_parent));
4659 error = device_move_class_links(dev, old_parent, new_parent);
4661 /* We ignore errors on cleanup since we're hosed anyway... */
4662 device_move_class_links(dev, new_parent, old_parent);
4663 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4665 klist_remove(&dev->p->knode_parent);
4666 dev->parent = old_parent;
4668 klist_add_tail(&dev->p->knode_parent,
4669 &old_parent->p->klist_children);
4670 set_dev_node(dev, dev_to_node(old_parent));
4673 cleanup_glue_dir(dev, new_parent_kobj);
4674 put_device(new_parent);
4678 switch (dpm_order) {
4679 case DPM_ORDER_NONE:
4681 case DPM_ORDER_DEV_AFTER_PARENT:
4682 device_pm_move_after(dev, new_parent);
4683 devices_kset_move_after(dev, new_parent);
4685 case DPM_ORDER_PARENT_BEFORE_DEV:
4686 device_pm_move_before(new_parent, dev);
4687 devices_kset_move_before(new_parent, dev);
4689 case DPM_ORDER_DEV_LAST:
4690 device_pm_move_last(dev);
4691 devices_kset_move_last(dev);
4695 put_device(old_parent);
4701 EXPORT_SYMBOL_GPL(device_move);
4703 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4706 struct kobject *kobj = &dev->kobj;
4707 const struct class *class = dev->class;
4708 const struct device_type *type = dev->type;
4713 * Change the device groups of the device class for @dev to
4716 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4724 * Change the device groups of the device type for @dev to
4727 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4733 /* Change the device groups of @dev to @kuid/@kgid. */
4734 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4738 if (device_supports_offline(dev) && !dev->offline_disabled) {
4739 /* Change online device attributes of @dev to @kuid/@kgid. */
4740 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4750 * device_change_owner - change the owner of an existing device.
4752 * @kuid: new owner's kuid
4753 * @kgid: new owner's kgid
4755 * This changes the owner of @dev and its corresponding sysfs entries to
4756 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4759 * Returns 0 on success or error code on failure.
4761 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4764 struct kobject *kobj = &dev->kobj;
4765 struct subsys_private *sp;
4767 dev = get_device(dev);
4772 * Change the kobject and the default attributes and groups of the
4773 * ktype associated with it to @kuid/@kgid.
4775 error = sysfs_change_owner(kobj, kuid, kgid);
4780 * Change the uevent file for @dev to the new owner. The uevent file
4781 * was created in a separate step when @dev got added and we mirror
4784 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4790 * Change the device groups, the device groups associated with the
4791 * device class, and the groups associated with the device type of @dev
4794 error = device_attrs_change_owner(dev, kuid, kgid);
4798 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4803 * Change the owner of the symlink located in the class directory of
4804 * the device class associated with @dev which points to the actual
4805 * directory entry for @dev to @kuid/@kgid. This ensures that the
4806 * symlink shows the same permissions as its target.
4808 sp = class_to_subsys(dev->class);
4813 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4820 EXPORT_SYMBOL_GPL(device_change_owner);
4823 * device_shutdown - call ->shutdown() on each device to shutdown.
4825 void device_shutdown(void)
4827 struct device *dev, *parent;
4829 wait_for_device_probe();
4830 device_block_probing();
4834 spin_lock(&devices_kset->list_lock);
4836 * Walk the devices list backward, shutting down each in turn.
4837 * Beware that device unplug events may also start pulling
4838 * devices offline, even as the system is shutting down.
4840 while (!list_empty(&devices_kset->list)) {
4841 dev = list_entry(devices_kset->list.prev, struct device,
4845 * hold reference count of device's parent to
4846 * prevent it from being freed because parent's
4847 * lock is to be held
4849 parent = get_device(dev->parent);
4852 * Make sure the device is off the kset list, in the
4853 * event that dev->*->shutdown() doesn't remove it.
4855 list_del_init(&dev->kobj.entry);
4856 spin_unlock(&devices_kset->list_lock);
4858 /* hold lock to avoid race with probe/release */
4860 device_lock(parent);
4863 /* Don't allow any more runtime suspends */
4864 pm_runtime_get_noresume(dev);
4865 pm_runtime_barrier(dev);
4867 if (dev->class && dev->class->shutdown_pre) {
4869 dev_info(dev, "shutdown_pre\n");
4870 dev->class->shutdown_pre(dev);
4872 if (dev->bus && dev->bus->shutdown) {
4874 dev_info(dev, "shutdown\n");
4875 dev->bus->shutdown(dev);
4876 } else if (dev->driver && dev->driver->shutdown) {
4878 dev_info(dev, "shutdown\n");
4879 dev->driver->shutdown(dev);
4884 device_unlock(parent);
4889 spin_lock(&devices_kset->list_lock);
4891 spin_unlock(&devices_kset->list_lock);
4895 * Device logging functions
4898 #ifdef CONFIG_PRINTK
4900 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4904 memset(dev_info, 0, sizeof(*dev_info));
4907 subsys = dev->class->name;
4909 subsys = dev->bus->name;
4913 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4916 * Add device identifier DEVICE=:
4920 * +sound:card0 subsystem:devname
4922 if (MAJOR(dev->devt)) {
4925 if (strcmp(subsys, "block") == 0)
4930 snprintf(dev_info->device, sizeof(dev_info->device),
4931 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4932 } else if (strcmp(subsys, "net") == 0) {
4933 struct net_device *net = to_net_dev(dev);
4935 snprintf(dev_info->device, sizeof(dev_info->device),
4936 "n%u", net->ifindex);
4938 snprintf(dev_info->device, sizeof(dev_info->device),
4939 "+%s:%s", subsys, dev_name(dev));
4943 int dev_vprintk_emit(int level, const struct device *dev,
4944 const char *fmt, va_list args)
4946 struct dev_printk_info dev_info;
4948 set_dev_info(dev, &dev_info);
4950 return vprintk_emit(0, level, &dev_info, fmt, args);
4952 EXPORT_SYMBOL(dev_vprintk_emit);
4954 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4959 va_start(args, fmt);
4961 r = dev_vprintk_emit(level, dev, fmt, args);
4967 EXPORT_SYMBOL(dev_printk_emit);
4969 static void __dev_printk(const char *level, const struct device *dev,
4970 struct va_format *vaf)
4973 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4974 dev_driver_string(dev), dev_name(dev), vaf);
4976 printk("%s(NULL device *): %pV", level, vaf);
4979 void _dev_printk(const char *level, const struct device *dev,
4980 const char *fmt, ...)
4982 struct va_format vaf;
4985 va_start(args, fmt);
4990 __dev_printk(level, dev, &vaf);
4994 EXPORT_SYMBOL(_dev_printk);
4996 #define define_dev_printk_level(func, kern_level) \
4997 void func(const struct device *dev, const char *fmt, ...) \
4999 struct va_format vaf; \
5002 va_start(args, fmt); \
5007 __dev_printk(kern_level, dev, &vaf); \
5011 EXPORT_SYMBOL(func);
5013 define_dev_printk_level(_dev_emerg, KERN_EMERG);
5014 define_dev_printk_level(_dev_alert, KERN_ALERT);
5015 define_dev_printk_level(_dev_crit, KERN_CRIT);
5016 define_dev_printk_level(_dev_err, KERN_ERR);
5017 define_dev_printk_level(_dev_warn, KERN_WARNING);
5018 define_dev_printk_level(_dev_notice, KERN_NOTICE);
5019 define_dev_printk_level(_dev_info, KERN_INFO);
5024 * dev_err_probe - probe error check and log helper
5025 * @dev: the pointer to the struct device
5026 * @err: error value to test
5027 * @fmt: printf-style format string
5028 * @...: arguments as specified in the format string
5030 * This helper implements common pattern present in probe functions for error
5031 * checking: print debug or error message depending if the error value is
5032 * -EPROBE_DEFER and propagate error upwards.
5033 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5034 * checked later by reading devices_deferred debugfs attribute.
5035 * It replaces code sequence::
5037 * if (err != -EPROBE_DEFER)
5038 * dev_err(dev, ...);
5040 * dev_dbg(dev, ...);
5045 * return dev_err_probe(dev, err, ...);
5047 * Using this helper in your probe function is totally fine even if @err is
5048 * known to never be -EPROBE_DEFER.
5049 * The benefit compared to a normal dev_err() is the standardized format
5050 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
5051 * instead of "-35") and the fact that the error code is returned which allows
5052 * more compact error paths.
5056 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5058 struct va_format vaf;
5061 va_start(args, fmt);
5065 if (err != -EPROBE_DEFER) {
5066 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5068 device_set_deferred_probe_reason(dev, &vaf);
5069 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5076 EXPORT_SYMBOL_GPL(dev_err_probe);
5078 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5080 return fwnode && !IS_ERR(fwnode->secondary);
5084 * set_primary_fwnode - Change the primary firmware node of a given device.
5085 * @dev: Device to handle.
5086 * @fwnode: New primary firmware node of the device.
5088 * Set the device's firmware node pointer to @fwnode, but if a secondary
5089 * firmware node of the device is present, preserve it.
5091 * Valid fwnode cases are:
5092 * - primary --> secondary --> -ENODEV
5093 * - primary --> NULL
5094 * - secondary --> -ENODEV
5097 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5099 struct device *parent = dev->parent;
5100 struct fwnode_handle *fn = dev->fwnode;
5103 if (fwnode_is_primary(fn))
5107 WARN_ON(fwnode->secondary);
5108 fwnode->secondary = fn;
5110 dev->fwnode = fwnode;
5112 if (fwnode_is_primary(fn)) {
5113 dev->fwnode = fn->secondary;
5115 /* Skip nullifying fn->secondary if the primary is shared */
5116 if (parent && fn == parent->fwnode)
5119 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
5120 fn->secondary = NULL;
5126 EXPORT_SYMBOL_GPL(set_primary_fwnode);
5129 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5130 * @dev: Device to handle.
5131 * @fwnode: New secondary firmware node of the device.
5133 * If a primary firmware node of the device is present, set its secondary
5134 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
5137 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5140 fwnode->secondary = ERR_PTR(-ENODEV);
5142 if (fwnode_is_primary(dev->fwnode))
5143 dev->fwnode->secondary = fwnode;
5145 dev->fwnode = fwnode;
5147 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5150 * device_set_of_node_from_dev - reuse device-tree node of another device
5151 * @dev: device whose device-tree node is being set
5152 * @dev2: device whose device-tree node is being reused
5154 * Takes another reference to the new device-tree node after first dropping
5155 * any reference held to the old node.
5157 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5159 of_node_put(dev->of_node);
5160 dev->of_node = of_node_get(dev2->of_node);
5161 dev->of_node_reused = true;
5163 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5165 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5167 dev->fwnode = fwnode;
5168 dev->of_node = to_of_node(fwnode);
5170 EXPORT_SYMBOL_GPL(device_set_node);
5172 int device_match_name(struct device *dev, const void *name)
5174 return sysfs_streq(dev_name(dev), name);
5176 EXPORT_SYMBOL_GPL(device_match_name);
5178 int device_match_of_node(struct device *dev, const void *np)
5180 return dev->of_node == np;
5182 EXPORT_SYMBOL_GPL(device_match_of_node);
5184 int device_match_fwnode(struct device *dev, const void *fwnode)
5186 return dev_fwnode(dev) == fwnode;
5188 EXPORT_SYMBOL_GPL(device_match_fwnode);
5190 int device_match_devt(struct device *dev, const void *pdevt)
5192 return dev->devt == *(dev_t *)pdevt;
5194 EXPORT_SYMBOL_GPL(device_match_devt);
5196 int device_match_acpi_dev(struct device *dev, const void *adev)
5198 return ACPI_COMPANION(dev) == adev;
5200 EXPORT_SYMBOL(device_match_acpi_dev);
5202 int device_match_acpi_handle(struct device *dev, const void *handle)
5204 return ACPI_HANDLE(dev) == handle;
5206 EXPORT_SYMBOL(device_match_acpi_handle);
5208 int device_match_any(struct device *dev, const void *unused)
5212 EXPORT_SYMBOL_GPL(device_match_any);