2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
22 #include "segment_descriptor.h"
24 #include <linux/module.h>
25 #include <linux/kernel.h>
27 #include <linux/highmem.h>
28 #include <linux/profile.h>
29 #include <linux/sched.h>
34 MODULE_AUTHOR("Qumranet");
35 MODULE_LICENSE("GPL");
46 struct kvm_msr_entry *guest_msrs;
47 struct kvm_msr_entry *host_msrs;
52 int msr_offset_kernel_gs_base;
57 u16 fs_sel, gs_sel, ldt_sel;
58 int gs_ldt_reload_needed;
64 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
66 return container_of(vcpu, struct vcpu_vmx, vcpu);
69 static int init_rmode_tss(struct kvm *kvm);
71 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
72 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
74 static struct page *vmx_io_bitmap_a;
75 static struct page *vmx_io_bitmap_b;
77 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
79 static struct vmcs_config {
83 u32 pin_based_exec_ctrl;
84 u32 cpu_based_exec_ctrl;
89 #define VMX_SEGMENT_FIELD(seg) \
90 [VCPU_SREG_##seg] = { \
91 .selector = GUEST_##seg##_SELECTOR, \
92 .base = GUEST_##seg##_BASE, \
93 .limit = GUEST_##seg##_LIMIT, \
94 .ar_bytes = GUEST_##seg##_AR_BYTES, \
97 static struct kvm_vmx_segment_field {
102 } kvm_vmx_segment_fields[] = {
103 VMX_SEGMENT_FIELD(CS),
104 VMX_SEGMENT_FIELD(DS),
105 VMX_SEGMENT_FIELD(ES),
106 VMX_SEGMENT_FIELD(FS),
107 VMX_SEGMENT_FIELD(GS),
108 VMX_SEGMENT_FIELD(SS),
109 VMX_SEGMENT_FIELD(TR),
110 VMX_SEGMENT_FIELD(LDTR),
114 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
115 * away by decrementing the array size.
117 static const u32 vmx_msr_index[] = {
119 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
121 MSR_EFER, MSR_K6_STAR,
123 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
125 static void load_msrs(struct kvm_msr_entry *e, int n)
129 for (i = 0; i < n; ++i)
130 wrmsrl(e[i].index, e[i].data);
133 static void save_msrs(struct kvm_msr_entry *e, int n)
137 for (i = 0; i < n; ++i)
138 rdmsrl(e[i].index, e[i].data);
141 static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
143 return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
146 static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
148 int efer_offset = vmx->msr_offset_efer;
149 return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
150 msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
153 static inline int is_page_fault(u32 intr_info)
155 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
156 INTR_INFO_VALID_MASK)) ==
157 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
160 static inline int is_no_device(u32 intr_info)
162 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
163 INTR_INFO_VALID_MASK)) ==
164 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
167 static inline int is_external_interrupt(u32 intr_info)
169 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
170 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
173 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
177 for (i = 0; i < vmx->nmsrs; ++i)
178 if (vmx->guest_msrs[i].index == msr)
183 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
187 i = __find_msr_index(vmx, msr);
189 return &vmx->guest_msrs[i];
193 static void vmcs_clear(struct vmcs *vmcs)
195 u64 phys_addr = __pa(vmcs);
198 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
199 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
202 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
206 static void __vcpu_clear(void *arg)
208 struct vcpu_vmx *vmx = arg;
209 int cpu = raw_smp_processor_id();
211 if (vmx->vcpu.cpu == cpu)
212 vmcs_clear(vmx->vmcs);
213 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
214 per_cpu(current_vmcs, cpu) = NULL;
215 rdtscll(vmx->vcpu.host_tsc);
218 static void vcpu_clear(struct vcpu_vmx *vmx)
220 if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
221 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
228 static unsigned long vmcs_readl(unsigned long field)
232 asm volatile (ASM_VMX_VMREAD_RDX_RAX
233 : "=a"(value) : "d"(field) : "cc");
237 static u16 vmcs_read16(unsigned long field)
239 return vmcs_readl(field);
242 static u32 vmcs_read32(unsigned long field)
244 return vmcs_readl(field);
247 static u64 vmcs_read64(unsigned long field)
250 return vmcs_readl(field);
252 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
256 static noinline void vmwrite_error(unsigned long field, unsigned long value)
258 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
259 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
263 static void vmcs_writel(unsigned long field, unsigned long value)
267 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
268 : "=q"(error) : "a"(value), "d"(field) : "cc" );
270 vmwrite_error(field, value);
273 static void vmcs_write16(unsigned long field, u16 value)
275 vmcs_writel(field, value);
278 static void vmcs_write32(unsigned long field, u32 value)
280 vmcs_writel(field, value);
283 static void vmcs_write64(unsigned long field, u64 value)
286 vmcs_writel(field, value);
288 vmcs_writel(field, value);
290 vmcs_writel(field+1, value >> 32);
294 static void vmcs_clear_bits(unsigned long field, u32 mask)
296 vmcs_writel(field, vmcs_readl(field) & ~mask);
299 static void vmcs_set_bits(unsigned long field, u32 mask)
301 vmcs_writel(field, vmcs_readl(field) | mask);
304 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
308 eb = 1u << PF_VECTOR;
309 if (!vcpu->fpu_active)
310 eb |= 1u << NM_VECTOR;
311 if (vcpu->guest_debug.enabled)
313 if (vcpu->rmode.active)
315 vmcs_write32(EXCEPTION_BITMAP, eb);
318 static void reload_tss(void)
320 #ifndef CONFIG_X86_64
323 * VT restores TR but not its size. Useless.
325 struct descriptor_table gdt;
326 struct segment_descriptor *descs;
329 descs = (void *)gdt.base;
330 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
335 static void load_transition_efer(struct vcpu_vmx *vmx)
338 int efer_offset = vmx->msr_offset_efer;
340 trans_efer = vmx->host_msrs[efer_offset].data;
341 trans_efer &= ~EFER_SAVE_RESTORE_BITS;
342 trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
343 wrmsrl(MSR_EFER, trans_efer);
344 vmx->vcpu.stat.efer_reload++;
347 static void vmx_save_host_state(struct vcpu_vmx *vmx)
349 if (vmx->host_state.loaded)
352 vmx->host_state.loaded = 1;
354 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
355 * allow segment selectors with cpl > 0 or ti == 1.
357 vmx->host_state.ldt_sel = read_ldt();
358 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
359 vmx->host_state.fs_sel = read_fs();
360 if (!(vmx->host_state.fs_sel & 7)) {
361 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
362 vmx->host_state.fs_reload_needed = 0;
364 vmcs_write16(HOST_FS_SELECTOR, 0);
365 vmx->host_state.fs_reload_needed = 1;
367 vmx->host_state.gs_sel = read_gs();
368 if (!(vmx->host_state.gs_sel & 7))
369 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
371 vmcs_write16(HOST_GS_SELECTOR, 0);
372 vmx->host_state.gs_ldt_reload_needed = 1;
376 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
377 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
379 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
380 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
384 if (is_long_mode(&vmx->vcpu)) {
385 save_msrs(vmx->host_msrs +
386 vmx->msr_offset_kernel_gs_base, 1);
389 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
390 if (msr_efer_need_save_restore(vmx))
391 load_transition_efer(vmx);
394 static void vmx_load_host_state(struct vcpu_vmx *vmx)
398 if (!vmx->host_state.loaded)
401 vmx->host_state.loaded = 0;
402 if (vmx->host_state.fs_reload_needed)
403 load_fs(vmx->host_state.fs_sel);
404 if (vmx->host_state.gs_ldt_reload_needed) {
405 load_ldt(vmx->host_state.ldt_sel);
407 * If we have to reload gs, we must take care to
408 * preserve our gs base.
410 local_irq_save(flags);
411 load_gs(vmx->host_state.gs_sel);
413 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
415 local_irq_restore(flags);
418 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
419 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
420 if (msr_efer_need_save_restore(vmx))
421 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
425 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
426 * vcpu mutex is already taken.
428 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
430 struct vcpu_vmx *vmx = to_vmx(vcpu);
431 u64 phys_addr = __pa(vmx->vmcs);
434 if (vcpu->cpu != cpu)
437 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
440 per_cpu(current_vmcs, cpu) = vmx->vmcs;
441 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
442 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
445 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
446 vmx->vmcs, phys_addr);
449 if (vcpu->cpu != cpu) {
450 struct descriptor_table dt;
451 unsigned long sysenter_esp;
455 * Linux uses per-cpu TSS and GDT, so set these when switching
458 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
460 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
462 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
463 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
466 * Make sure the time stamp counter is monotonous.
469 delta = vcpu->host_tsc - tsc_this;
470 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
474 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
476 vmx_load_host_state(to_vmx(vcpu));
477 kvm_put_guest_fpu(vcpu);
480 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
482 if (vcpu->fpu_active)
484 vcpu->fpu_active = 1;
485 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
486 if (vcpu->cr0 & X86_CR0_TS)
487 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
488 update_exception_bitmap(vcpu);
491 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
493 if (!vcpu->fpu_active)
495 vcpu->fpu_active = 0;
496 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
497 update_exception_bitmap(vcpu);
500 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
502 vcpu_clear(to_vmx(vcpu));
505 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
507 return vmcs_readl(GUEST_RFLAGS);
510 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
512 vmcs_writel(GUEST_RFLAGS, rflags);
515 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
518 u32 interruptibility;
520 rip = vmcs_readl(GUEST_RIP);
521 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
522 vmcs_writel(GUEST_RIP, rip);
525 * We emulated an instruction, so temporary interrupt blocking
526 * should be removed, if set.
528 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
529 if (interruptibility & 3)
530 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
531 interruptibility & ~3);
532 vcpu->interrupt_window_open = 1;
535 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
537 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
538 vmcs_readl(GUEST_RIP));
539 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
540 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
542 INTR_TYPE_EXCEPTION |
543 INTR_INFO_DELIEVER_CODE_MASK |
544 INTR_INFO_VALID_MASK);
548 * Swap MSR entry in host/guest MSR entry array.
551 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
553 struct kvm_msr_entry tmp;
555 tmp = vmx->guest_msrs[to];
556 vmx->guest_msrs[to] = vmx->guest_msrs[from];
557 vmx->guest_msrs[from] = tmp;
558 tmp = vmx->host_msrs[to];
559 vmx->host_msrs[to] = vmx->host_msrs[from];
560 vmx->host_msrs[from] = tmp;
565 * Set up the vmcs to automatically save and restore system
566 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
567 * mode, as fiddling with msrs is very expensive.
569 static void setup_msrs(struct vcpu_vmx *vmx)
575 if (is_long_mode(&vmx->vcpu)) {
578 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
580 move_msr_up(vmx, index, save_nmsrs++);
581 index = __find_msr_index(vmx, MSR_LSTAR);
583 move_msr_up(vmx, index, save_nmsrs++);
584 index = __find_msr_index(vmx, MSR_CSTAR);
586 move_msr_up(vmx, index, save_nmsrs++);
587 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
589 move_msr_up(vmx, index, save_nmsrs++);
591 * MSR_K6_STAR is only needed on long mode guests, and only
592 * if efer.sce is enabled.
594 index = __find_msr_index(vmx, MSR_K6_STAR);
595 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
596 move_msr_up(vmx, index, save_nmsrs++);
599 vmx->save_nmsrs = save_nmsrs;
602 vmx->msr_offset_kernel_gs_base =
603 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
605 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
609 * reads and returns guest's timestamp counter "register"
610 * guest_tsc = host_tsc + tsc_offset -- 21.3
612 static u64 guest_read_tsc(void)
614 u64 host_tsc, tsc_offset;
617 tsc_offset = vmcs_read64(TSC_OFFSET);
618 return host_tsc + tsc_offset;
622 * writes 'guest_tsc' into guest's timestamp counter "register"
623 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
625 static void guest_write_tsc(u64 guest_tsc)
630 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
634 * Reads an msr value (of 'msr_index') into 'pdata'.
635 * Returns 0 on success, non-0 otherwise.
636 * Assumes vcpu_load() was already called.
638 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
641 struct kvm_msr_entry *msr;
644 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
651 data = vmcs_readl(GUEST_FS_BASE);
654 data = vmcs_readl(GUEST_GS_BASE);
657 return kvm_get_msr_common(vcpu, msr_index, pdata);
659 case MSR_IA32_TIME_STAMP_COUNTER:
660 data = guest_read_tsc();
662 case MSR_IA32_SYSENTER_CS:
663 data = vmcs_read32(GUEST_SYSENTER_CS);
665 case MSR_IA32_SYSENTER_EIP:
666 data = vmcs_readl(GUEST_SYSENTER_EIP);
668 case MSR_IA32_SYSENTER_ESP:
669 data = vmcs_readl(GUEST_SYSENTER_ESP);
672 msr = find_msr_entry(to_vmx(vcpu), msr_index);
677 return kvm_get_msr_common(vcpu, msr_index, pdata);
685 * Writes msr value into into the appropriate "register".
686 * Returns 0 on success, non-0 otherwise.
687 * Assumes vcpu_load() was already called.
689 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
691 struct vcpu_vmx *vmx = to_vmx(vcpu);
692 struct kvm_msr_entry *msr;
698 ret = kvm_set_msr_common(vcpu, msr_index, data);
699 if (vmx->host_state.loaded)
700 load_transition_efer(vmx);
703 vmcs_writel(GUEST_FS_BASE, data);
706 vmcs_writel(GUEST_GS_BASE, data);
709 case MSR_IA32_SYSENTER_CS:
710 vmcs_write32(GUEST_SYSENTER_CS, data);
712 case MSR_IA32_SYSENTER_EIP:
713 vmcs_writel(GUEST_SYSENTER_EIP, data);
715 case MSR_IA32_SYSENTER_ESP:
716 vmcs_writel(GUEST_SYSENTER_ESP, data);
718 case MSR_IA32_TIME_STAMP_COUNTER:
719 guest_write_tsc(data);
722 msr = find_msr_entry(vmx, msr_index);
725 if (vmx->host_state.loaded)
726 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
729 ret = kvm_set_msr_common(vcpu, msr_index, data);
736 * Sync the rsp and rip registers into the vcpu structure. This allows
737 * registers to be accessed by indexing vcpu->regs.
739 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
741 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
742 vcpu->rip = vmcs_readl(GUEST_RIP);
746 * Syncs rsp and rip back into the vmcs. Should be called after possible
749 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
751 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
752 vmcs_writel(GUEST_RIP, vcpu->rip);
755 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
757 unsigned long dr7 = 0x400;
760 old_singlestep = vcpu->guest_debug.singlestep;
762 vcpu->guest_debug.enabled = dbg->enabled;
763 if (vcpu->guest_debug.enabled) {
766 dr7 |= 0x200; /* exact */
767 for (i = 0; i < 4; ++i) {
768 if (!dbg->breakpoints[i].enabled)
770 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
771 dr7 |= 2 << (i*2); /* global enable */
772 dr7 |= 0 << (i*4+16); /* execution breakpoint */
775 vcpu->guest_debug.singlestep = dbg->singlestep;
777 vcpu->guest_debug.singlestep = 0;
779 if (old_singlestep && !vcpu->guest_debug.singlestep) {
782 flags = vmcs_readl(GUEST_RFLAGS);
783 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
784 vmcs_writel(GUEST_RFLAGS, flags);
787 update_exception_bitmap(vcpu);
788 vmcs_writel(GUEST_DR7, dr7);
793 static int vmx_get_irq(struct kvm_vcpu *vcpu)
797 idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
798 if (idtv_info_field & INTR_INFO_VALID_MASK) {
799 if (is_external_interrupt(idtv_info_field))
800 return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
802 printk("pending exception: not handled yet\n");
807 static __init int cpu_has_kvm_support(void)
809 unsigned long ecx = cpuid_ecx(1);
810 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
813 static __init int vmx_disabled_by_bios(void)
817 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
818 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
819 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
820 == MSR_IA32_FEATURE_CONTROL_LOCKED;
821 /* locked but not enabled */
824 static void hardware_enable(void *garbage)
826 int cpu = raw_smp_processor_id();
827 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
830 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
831 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
832 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
833 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
834 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
835 /* enable and lock */
836 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
837 MSR_IA32_FEATURE_CONTROL_LOCKED |
838 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
839 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
840 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
844 static void hardware_disable(void *garbage)
846 asm volatile (ASM_VMX_VMXOFF : : : "cc");
849 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
850 u32 msr, u32* result)
852 u32 vmx_msr_low, vmx_msr_high;
853 u32 ctl = ctl_min | ctl_opt;
855 rdmsr(msr, vmx_msr_low, vmx_msr_high);
857 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
858 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
860 /* Ensure minimum (required) set of control bits are supported. */
868 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
870 u32 vmx_msr_low, vmx_msr_high;
872 u32 _pin_based_exec_control = 0;
873 u32 _cpu_based_exec_control = 0;
874 u32 _vmexit_control = 0;
875 u32 _vmentry_control = 0;
877 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
879 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
880 &_pin_based_exec_control) < 0)
883 min = CPU_BASED_HLT_EXITING |
885 CPU_BASED_CR8_LOAD_EXITING |
886 CPU_BASED_CR8_STORE_EXITING |
888 CPU_BASED_USE_IO_BITMAPS |
889 CPU_BASED_MOV_DR_EXITING |
890 CPU_BASED_USE_TSC_OFFSETING;
892 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
893 &_cpu_based_exec_control) < 0)
898 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
901 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
902 &_vmexit_control) < 0)
906 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
907 &_vmentry_control) < 0)
910 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
912 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
913 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
917 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
918 if (vmx_msr_high & (1u<<16))
922 /* Require Write-Back (WB) memory type for VMCS accesses. */
923 if (((vmx_msr_high >> 18) & 15) != 6)
926 vmcs_conf->size = vmx_msr_high & 0x1fff;
927 vmcs_conf->order = get_order(vmcs_config.size);
928 vmcs_conf->revision_id = vmx_msr_low;
930 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
931 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
932 vmcs_conf->vmexit_ctrl = _vmexit_control;
933 vmcs_conf->vmentry_ctrl = _vmentry_control;
938 static struct vmcs *alloc_vmcs_cpu(int cpu)
940 int node = cpu_to_node(cpu);
944 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
947 vmcs = page_address(pages);
948 memset(vmcs, 0, vmcs_config.size);
949 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
953 static struct vmcs *alloc_vmcs(void)
955 return alloc_vmcs_cpu(raw_smp_processor_id());
958 static void free_vmcs(struct vmcs *vmcs)
960 free_pages((unsigned long)vmcs, vmcs_config.order);
963 static void free_kvm_area(void)
967 for_each_online_cpu(cpu)
968 free_vmcs(per_cpu(vmxarea, cpu));
971 static __init int alloc_kvm_area(void)
975 for_each_online_cpu(cpu) {
978 vmcs = alloc_vmcs_cpu(cpu);
984 per_cpu(vmxarea, cpu) = vmcs;
989 static __init int hardware_setup(void)
991 if (setup_vmcs_config(&vmcs_config) < 0)
993 return alloc_kvm_area();
996 static __exit void hardware_unsetup(void)
1001 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1003 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1005 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1006 vmcs_write16(sf->selector, save->selector);
1007 vmcs_writel(sf->base, save->base);
1008 vmcs_write32(sf->limit, save->limit);
1009 vmcs_write32(sf->ar_bytes, save->ar);
1011 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1013 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1017 static void enter_pmode(struct kvm_vcpu *vcpu)
1019 unsigned long flags;
1021 vcpu->rmode.active = 0;
1023 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1024 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1025 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1027 flags = vmcs_readl(GUEST_RFLAGS);
1028 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
1029 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1030 vmcs_writel(GUEST_RFLAGS, flags);
1032 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1033 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1035 update_exception_bitmap(vcpu);
1037 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1038 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1039 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1040 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1042 vmcs_write16(GUEST_SS_SELECTOR, 0);
1043 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1045 vmcs_write16(GUEST_CS_SELECTOR,
1046 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1047 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1050 static gva_t rmode_tss_base(struct kvm* kvm)
1052 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1053 return base_gfn << PAGE_SHIFT;
1056 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1058 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1060 save->selector = vmcs_read16(sf->selector);
1061 save->base = vmcs_readl(sf->base);
1062 save->limit = vmcs_read32(sf->limit);
1063 save->ar = vmcs_read32(sf->ar_bytes);
1064 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1065 vmcs_write32(sf->limit, 0xffff);
1066 vmcs_write32(sf->ar_bytes, 0xf3);
1069 static void enter_rmode(struct kvm_vcpu *vcpu)
1071 unsigned long flags;
1073 vcpu->rmode.active = 1;
1075 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1076 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1078 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1079 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1081 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1082 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1084 flags = vmcs_readl(GUEST_RFLAGS);
1085 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
1087 flags |= IOPL_MASK | X86_EFLAGS_VM;
1089 vmcs_writel(GUEST_RFLAGS, flags);
1090 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1091 update_exception_bitmap(vcpu);
1093 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1094 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1095 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1097 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1098 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1099 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1100 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1101 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1103 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1104 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1105 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1106 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1108 init_rmode_tss(vcpu->kvm);
1111 #ifdef CONFIG_X86_64
1113 static void enter_lmode(struct kvm_vcpu *vcpu)
1117 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1118 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1119 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1121 vmcs_write32(GUEST_TR_AR_BYTES,
1122 (guest_tr_ar & ~AR_TYPE_MASK)
1123 | AR_TYPE_BUSY_64_TSS);
1126 vcpu->shadow_efer |= EFER_LMA;
1128 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1129 vmcs_write32(VM_ENTRY_CONTROLS,
1130 vmcs_read32(VM_ENTRY_CONTROLS)
1131 | VM_ENTRY_IA32E_MODE);
1134 static void exit_lmode(struct kvm_vcpu *vcpu)
1136 vcpu->shadow_efer &= ~EFER_LMA;
1138 vmcs_write32(VM_ENTRY_CONTROLS,
1139 vmcs_read32(VM_ENTRY_CONTROLS)
1140 & ~VM_ENTRY_IA32E_MODE);
1145 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1147 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1148 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1151 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1153 vmx_fpu_deactivate(vcpu);
1155 if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1158 if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1161 #ifdef CONFIG_X86_64
1162 if (vcpu->shadow_efer & EFER_LME) {
1163 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1165 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1170 vmcs_writel(CR0_READ_SHADOW, cr0);
1171 vmcs_writel(GUEST_CR0,
1172 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1175 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1176 vmx_fpu_activate(vcpu);
1179 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1181 vmcs_writel(GUEST_CR3, cr3);
1182 if (vcpu->cr0 & X86_CR0_PE)
1183 vmx_fpu_deactivate(vcpu);
1186 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1188 vmcs_writel(CR4_READ_SHADOW, cr4);
1189 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1190 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1194 #ifdef CONFIG_X86_64
1196 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1198 struct vcpu_vmx *vmx = to_vmx(vcpu);
1199 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1201 vcpu->shadow_efer = efer;
1202 if (efer & EFER_LMA) {
1203 vmcs_write32(VM_ENTRY_CONTROLS,
1204 vmcs_read32(VM_ENTRY_CONTROLS) |
1205 VM_ENTRY_IA32E_MODE);
1209 vmcs_write32(VM_ENTRY_CONTROLS,
1210 vmcs_read32(VM_ENTRY_CONTROLS) &
1211 ~VM_ENTRY_IA32E_MODE);
1213 msr->data = efer & ~EFER_LME;
1220 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1222 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1224 return vmcs_readl(sf->base);
1227 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1228 struct kvm_segment *var, int seg)
1230 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1233 var->base = vmcs_readl(sf->base);
1234 var->limit = vmcs_read32(sf->limit);
1235 var->selector = vmcs_read16(sf->selector);
1236 ar = vmcs_read32(sf->ar_bytes);
1237 if (ar & AR_UNUSABLE_MASK)
1239 var->type = ar & 15;
1240 var->s = (ar >> 4) & 1;
1241 var->dpl = (ar >> 5) & 3;
1242 var->present = (ar >> 7) & 1;
1243 var->avl = (ar >> 12) & 1;
1244 var->l = (ar >> 13) & 1;
1245 var->db = (ar >> 14) & 1;
1246 var->g = (ar >> 15) & 1;
1247 var->unusable = (ar >> 16) & 1;
1250 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1257 ar = var->type & 15;
1258 ar |= (var->s & 1) << 4;
1259 ar |= (var->dpl & 3) << 5;
1260 ar |= (var->present & 1) << 7;
1261 ar |= (var->avl & 1) << 12;
1262 ar |= (var->l & 1) << 13;
1263 ar |= (var->db & 1) << 14;
1264 ar |= (var->g & 1) << 15;
1266 if (ar == 0) /* a 0 value means unusable */
1267 ar = AR_UNUSABLE_MASK;
1272 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1273 struct kvm_segment *var, int seg)
1275 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1278 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1279 vcpu->rmode.tr.selector = var->selector;
1280 vcpu->rmode.tr.base = var->base;
1281 vcpu->rmode.tr.limit = var->limit;
1282 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1285 vmcs_writel(sf->base, var->base);
1286 vmcs_write32(sf->limit, var->limit);
1287 vmcs_write16(sf->selector, var->selector);
1288 if (vcpu->rmode.active && var->s) {
1290 * Hack real-mode segments into vm86 compatibility.
1292 if (var->base == 0xffff0000 && var->selector == 0xf000)
1293 vmcs_writel(sf->base, 0xf0000);
1296 ar = vmx_segment_access_rights(var);
1297 vmcs_write32(sf->ar_bytes, ar);
1300 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1302 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1304 *db = (ar >> 14) & 1;
1305 *l = (ar >> 13) & 1;
1308 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1310 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1311 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1314 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1316 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1317 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1320 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1322 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1323 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1326 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1328 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1329 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1332 static int init_rmode_tss(struct kvm* kvm)
1334 struct page *p1, *p2, *p3;
1335 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1338 p1 = gfn_to_page(kvm, fn++);
1339 p2 = gfn_to_page(kvm, fn++);
1340 p3 = gfn_to_page(kvm, fn);
1342 if (!p1 || !p2 || !p3) {
1343 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1347 page = kmap_atomic(p1, KM_USER0);
1349 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1350 kunmap_atomic(page, KM_USER0);
1352 page = kmap_atomic(p2, KM_USER0);
1354 kunmap_atomic(page, KM_USER0);
1356 page = kmap_atomic(p3, KM_USER0);
1358 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1359 kunmap_atomic(page, KM_USER0);
1364 static void seg_setup(int seg)
1366 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1368 vmcs_write16(sf->selector, 0);
1369 vmcs_writel(sf->base, 0);
1370 vmcs_write32(sf->limit, 0xffff);
1371 vmcs_write32(sf->ar_bytes, 0x93);
1375 * Sets up the vmcs for emulated real mode.
1377 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1379 u32 host_sysenter_cs;
1382 struct descriptor_table dt;
1385 unsigned long kvm_vmx_return;
1388 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1393 vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1394 set_cr8(&vmx->vcpu, 0);
1395 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1396 if (vmx->vcpu.vcpu_id == 0)
1397 msr |= MSR_IA32_APICBASE_BSP;
1398 kvm_set_apic_base(&vmx->vcpu, msr);
1400 fx_init(&vmx->vcpu);
1403 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1404 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1406 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1407 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1408 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1409 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1411 seg_setup(VCPU_SREG_DS);
1412 seg_setup(VCPU_SREG_ES);
1413 seg_setup(VCPU_SREG_FS);
1414 seg_setup(VCPU_SREG_GS);
1415 seg_setup(VCPU_SREG_SS);
1417 vmcs_write16(GUEST_TR_SELECTOR, 0);
1418 vmcs_writel(GUEST_TR_BASE, 0);
1419 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1420 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1422 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1423 vmcs_writel(GUEST_LDTR_BASE, 0);
1424 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1425 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1427 vmcs_write32(GUEST_SYSENTER_CS, 0);
1428 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1429 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1431 vmcs_writel(GUEST_RFLAGS, 0x02);
1432 vmcs_writel(GUEST_RIP, 0xfff0);
1433 vmcs_writel(GUEST_RSP, 0);
1435 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1436 vmcs_writel(GUEST_DR7, 0x400);
1438 vmcs_writel(GUEST_GDTR_BASE, 0);
1439 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1441 vmcs_writel(GUEST_IDTR_BASE, 0);
1442 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1444 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1445 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1446 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1449 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1450 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1454 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1456 /* Special registers */
1457 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1460 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1461 vmcs_config.pin_based_exec_ctrl);
1462 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1463 vmcs_config.cpu_based_exec_ctrl);
1465 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1466 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1467 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1469 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1470 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1471 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1473 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1474 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1475 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1476 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1477 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1478 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1479 #ifdef CONFIG_X86_64
1480 rdmsrl(MSR_FS_BASE, a);
1481 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1482 rdmsrl(MSR_GS_BASE, a);
1483 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1485 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1486 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1489 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1492 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1494 asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1495 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1496 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1497 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1498 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1500 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1501 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1502 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1503 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1504 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1505 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1507 for (i = 0; i < NR_VMX_MSR; ++i) {
1508 u32 index = vmx_msr_index[i];
1509 u32 data_low, data_high;
1513 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1515 if (wrmsr_safe(index, data_low, data_high) < 0)
1517 data = data_low | ((u64)data_high << 32);
1518 vmx->host_msrs[j].index = index;
1519 vmx->host_msrs[j].reserved = 0;
1520 vmx->host_msrs[j].data = data;
1521 vmx->guest_msrs[j] = vmx->host_msrs[j];
1527 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1529 /* 22.2.1, 20.8.1 */
1530 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1532 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1534 #ifdef CONFIG_X86_64
1535 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1536 vmcs_writel(TPR_THRESHOLD, 0);
1539 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1540 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1542 vmx->vcpu.cr0 = 0x60000010;
1543 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1544 vmx_set_cr4(&vmx->vcpu, 0);
1545 #ifdef CONFIG_X86_64
1546 vmx_set_efer(&vmx->vcpu, 0);
1548 vmx_fpu_activate(&vmx->vcpu);
1549 update_exception_bitmap(&vmx->vcpu);
1557 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1562 unsigned long flags;
1563 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1564 u16 sp = vmcs_readl(GUEST_RSP);
1565 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1567 if (sp > ss_limit || sp < 6 ) {
1568 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1570 vmcs_readl(GUEST_RSP),
1571 vmcs_readl(GUEST_SS_BASE),
1572 vmcs_read32(GUEST_SS_LIMIT));
1576 if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1578 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1582 flags = vmcs_readl(GUEST_RFLAGS);
1583 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1584 ip = vmcs_readl(GUEST_RIP);
1587 if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1588 emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1589 emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1590 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1594 vmcs_writel(GUEST_RFLAGS, flags &
1595 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1596 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1597 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1598 vmcs_writel(GUEST_RIP, ent[0]);
1599 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1602 static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
1604 if (vcpu->rmode.active) {
1605 inject_rmode_irq(vcpu, irq);
1608 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1609 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1612 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1614 int word_index = __ffs(vcpu->irq_summary);
1615 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1616 int irq = word_index * BITS_PER_LONG + bit_index;
1618 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1619 if (!vcpu->irq_pending[word_index])
1620 clear_bit(word_index, &vcpu->irq_summary);
1621 vmx_inject_irq(vcpu, irq);
1625 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1626 struct kvm_run *kvm_run)
1628 u32 cpu_based_vm_exec_control;
1630 vcpu->interrupt_window_open =
1631 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1632 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1634 if (vcpu->interrupt_window_open &&
1635 vcpu->irq_summary &&
1636 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1638 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1640 kvm_do_inject_irq(vcpu);
1642 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1643 if (!vcpu->interrupt_window_open &&
1644 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1646 * Interrupts blocked. Wait for unblock.
1648 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1650 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1651 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1654 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1656 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1658 set_debugreg(dbg->bp[0], 0);
1659 set_debugreg(dbg->bp[1], 1);
1660 set_debugreg(dbg->bp[2], 2);
1661 set_debugreg(dbg->bp[3], 3);
1663 if (dbg->singlestep) {
1664 unsigned long flags;
1666 flags = vmcs_readl(GUEST_RFLAGS);
1667 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1668 vmcs_writel(GUEST_RFLAGS, flags);
1672 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1673 int vec, u32 err_code)
1675 if (!vcpu->rmode.active)
1679 * Instruction with address size override prefix opcode 0x67
1680 * Cause the #SS fault with 0 error code in VM86 mode.
1682 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1683 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1688 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1690 u32 intr_info, error_code;
1691 unsigned long cr2, rip;
1693 enum emulation_result er;
1696 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1697 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1699 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1700 !is_page_fault(intr_info)) {
1701 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1702 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1705 if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
1706 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1707 set_bit(irq, vcpu->irq_pending);
1708 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1711 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1716 if (is_no_device(intr_info)) {
1717 vmx_fpu_activate(vcpu);
1722 rip = vmcs_readl(GUEST_RIP);
1723 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1724 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1725 if (is_page_fault(intr_info)) {
1726 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1728 mutex_lock(&vcpu->kvm->lock);
1729 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1731 mutex_unlock(&vcpu->kvm->lock);
1735 mutex_unlock(&vcpu->kvm->lock);
1739 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1740 mutex_unlock(&vcpu->kvm->lock);
1745 case EMULATE_DO_MMIO:
1746 ++vcpu->stat.mmio_exits;
1749 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1756 if (vcpu->rmode.active &&
1757 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1759 if (vcpu->halt_request) {
1760 vcpu->halt_request = 0;
1761 return kvm_emulate_halt(vcpu);
1766 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1767 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1770 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1771 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1772 kvm_run->ex.error_code = error_code;
1776 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1777 struct kvm_run *kvm_run)
1779 ++vcpu->stat.irq_exits;
1783 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1785 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1789 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1791 u64 exit_qualification;
1792 int size, down, in, string, rep;
1795 ++vcpu->stat.io_exits;
1796 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1797 string = (exit_qualification & 16) != 0;
1800 if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
1805 size = (exit_qualification & 7) + 1;
1806 in = (exit_qualification & 8) != 0;
1807 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1808 rep = (exit_qualification & 32) != 0;
1809 port = exit_qualification >> 16;
1811 return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
1815 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1818 * Patch in the VMCALL instruction:
1820 hypercall[0] = 0x0f;
1821 hypercall[1] = 0x01;
1822 hypercall[2] = 0xc1;
1823 hypercall[3] = 0xc3;
1826 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1828 u64 exit_qualification;
1832 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1833 cr = exit_qualification & 15;
1834 reg = (exit_qualification >> 8) & 15;
1835 switch ((exit_qualification >> 4) & 3) {
1836 case 0: /* mov to cr */
1839 vcpu_load_rsp_rip(vcpu);
1840 set_cr0(vcpu, vcpu->regs[reg]);
1841 skip_emulated_instruction(vcpu);
1844 vcpu_load_rsp_rip(vcpu);
1845 set_cr3(vcpu, vcpu->regs[reg]);
1846 skip_emulated_instruction(vcpu);
1849 vcpu_load_rsp_rip(vcpu);
1850 set_cr4(vcpu, vcpu->regs[reg]);
1851 skip_emulated_instruction(vcpu);
1854 vcpu_load_rsp_rip(vcpu);
1855 set_cr8(vcpu, vcpu->regs[reg]);
1856 skip_emulated_instruction(vcpu);
1857 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
1862 vcpu_load_rsp_rip(vcpu);
1863 vmx_fpu_deactivate(vcpu);
1864 vcpu->cr0 &= ~X86_CR0_TS;
1865 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1866 vmx_fpu_activate(vcpu);
1867 skip_emulated_instruction(vcpu);
1869 case 1: /*mov from cr*/
1872 vcpu_load_rsp_rip(vcpu);
1873 vcpu->regs[reg] = vcpu->cr3;
1874 vcpu_put_rsp_rip(vcpu);
1875 skip_emulated_instruction(vcpu);
1878 vcpu_load_rsp_rip(vcpu);
1879 vcpu->regs[reg] = get_cr8(vcpu);
1880 vcpu_put_rsp_rip(vcpu);
1881 skip_emulated_instruction(vcpu);
1886 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1888 skip_emulated_instruction(vcpu);
1893 kvm_run->exit_reason = 0;
1894 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
1895 (int)(exit_qualification >> 4) & 3, cr);
1899 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1901 u64 exit_qualification;
1906 * FIXME: this code assumes the host is debugging the guest.
1907 * need to deal with guest debugging itself too.
1909 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1910 dr = exit_qualification & 7;
1911 reg = (exit_qualification >> 8) & 15;
1912 vcpu_load_rsp_rip(vcpu);
1913 if (exit_qualification & 16) {
1925 vcpu->regs[reg] = val;
1929 vcpu_put_rsp_rip(vcpu);
1930 skip_emulated_instruction(vcpu);
1934 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1936 kvm_emulate_cpuid(vcpu);
1940 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1942 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1945 if (vmx_get_msr(vcpu, ecx, &data)) {
1946 vmx_inject_gp(vcpu, 0);
1950 /* FIXME: handling of bits 32:63 of rax, rdx */
1951 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1952 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1953 skip_emulated_instruction(vcpu);
1957 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1959 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1960 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1961 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1963 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1964 vmx_inject_gp(vcpu, 0);
1968 skip_emulated_instruction(vcpu);
1972 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1973 struct kvm_run *kvm_run)
1975 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1976 kvm_run->cr8 = get_cr8(vcpu);
1977 kvm_run->apic_base = kvm_get_apic_base(vcpu);
1978 if (irqchip_in_kernel(vcpu->kvm))
1979 kvm_run->ready_for_interrupt_injection = 1;
1981 kvm_run->ready_for_interrupt_injection =
1982 (vcpu->interrupt_window_open &&
1983 vcpu->irq_summary == 0);
1986 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1987 struct kvm_run *kvm_run)
1989 u32 cpu_based_vm_exec_control;
1991 /* clear pending irq */
1992 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1993 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1994 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1996 * If the user space waits to inject interrupts, exit as soon as
1999 if (kvm_run->request_interrupt_window &&
2000 !vcpu->irq_summary) {
2001 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2002 ++vcpu->stat.irq_window_exits;
2008 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2010 skip_emulated_instruction(vcpu);
2011 return kvm_emulate_halt(vcpu);
2014 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2016 skip_emulated_instruction(vcpu);
2017 return kvm_hypercall(vcpu, kvm_run);
2021 * The exit handlers return 1 if the exit was handled fully and guest execution
2022 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2023 * to be done to userspace and return 0.
2025 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2026 struct kvm_run *kvm_run) = {
2027 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2028 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2029 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2030 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2031 [EXIT_REASON_CR_ACCESS] = handle_cr,
2032 [EXIT_REASON_DR_ACCESS] = handle_dr,
2033 [EXIT_REASON_CPUID] = handle_cpuid,
2034 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2035 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2036 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2037 [EXIT_REASON_HLT] = handle_halt,
2038 [EXIT_REASON_VMCALL] = handle_vmcall,
2041 static const int kvm_vmx_max_exit_handlers =
2042 ARRAY_SIZE(kvm_vmx_exit_handlers);
2045 * The guest has exited. See if we can fix it or if we need userspace
2048 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2050 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2051 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2053 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2054 exit_reason != EXIT_REASON_EXCEPTION_NMI )
2055 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2056 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2057 if (exit_reason < kvm_vmx_max_exit_handlers
2058 && kvm_vmx_exit_handlers[exit_reason])
2059 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2061 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2062 kvm_run->hw.hardware_exit_reason = exit_reason;
2068 * Check if userspace requested an interrupt window, and that the
2069 * interrupt window is open.
2071 * No need to exit to userspace if we already have an interrupt queued.
2073 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2074 struct kvm_run *kvm_run)
2076 return (!vcpu->irq_summary &&
2077 kvm_run->request_interrupt_window &&
2078 vcpu->interrupt_window_open &&
2079 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
2082 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2086 static void enable_irq_window(struct kvm_vcpu *vcpu)
2088 u32 cpu_based_vm_exec_control;
2090 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2091 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2092 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2095 static void vmx_intr_assist(struct kvm_vcpu *vcpu)
2097 u32 idtv_info_field, intr_info_field;
2098 int has_ext_irq, interrupt_window_open;
2100 has_ext_irq = kvm_cpu_has_interrupt(vcpu);
2101 intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
2102 idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2103 if (intr_info_field & INTR_INFO_VALID_MASK) {
2104 if (idtv_info_field & INTR_INFO_VALID_MASK) {
2105 /* TODO: fault when IDT_Vectoring */
2106 printk(KERN_ERR "Fault when IDT_Vectoring\n");
2109 enable_irq_window(vcpu);
2112 if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
2113 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
2114 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2115 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
2117 if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
2118 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2119 vmcs_read32(IDT_VECTORING_ERROR_CODE));
2120 if (unlikely(has_ext_irq))
2121 enable_irq_window(vcpu);
2126 interrupt_window_open =
2127 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2128 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
2129 if (interrupt_window_open)
2130 vmx_inject_irq(vcpu, kvm_cpu_get_interrupt(vcpu));
2132 enable_irq_window(vcpu);
2135 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2137 struct vcpu_vmx *vmx = to_vmx(vcpu);
2142 if (vcpu->guest_debug.enabled)
2143 kvm_guest_debug_pre(vcpu);
2146 r = kvm_mmu_reload(vcpu);
2152 vmx_save_host_state(vmx);
2153 kvm_load_guest_fpu(vcpu);
2156 * Loading guest fpu may have cleared host cr0.ts
2158 vmcs_writel(HOST_CR0, read_cr0());
2160 local_irq_disable();
2162 if (signal_pending(current)) {
2166 kvm_run->exit_reason = KVM_EXIT_INTR;
2167 ++vcpu->stat.signal_exits;
2171 if (irqchip_in_kernel(vcpu->kvm))
2172 vmx_intr_assist(vcpu);
2173 else if (!vcpu->mmio_read_completed)
2174 do_interrupt_requests(vcpu, kvm_run);
2176 vcpu->guest_mode = 1;
2178 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
2179 vmx_flush_tlb(vcpu);
2182 /* Store host registers */
2183 #ifdef CONFIG_X86_64
2184 "push %%rax; push %%rbx; push %%rdx;"
2185 "push %%rsi; push %%rdi; push %%rbp;"
2186 "push %%r8; push %%r9; push %%r10; push %%r11;"
2187 "push %%r12; push %%r13; push %%r14; push %%r15;"
2189 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2191 "pusha; push %%ecx \n\t"
2192 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2194 /* Check if vmlaunch of vmresume is needed */
2196 /* Load guest registers. Don't clobber flags. */
2197 #ifdef CONFIG_X86_64
2198 "mov %c[cr2](%3), %%rax \n\t"
2199 "mov %%rax, %%cr2 \n\t"
2200 "mov %c[rax](%3), %%rax \n\t"
2201 "mov %c[rbx](%3), %%rbx \n\t"
2202 "mov %c[rdx](%3), %%rdx \n\t"
2203 "mov %c[rsi](%3), %%rsi \n\t"
2204 "mov %c[rdi](%3), %%rdi \n\t"
2205 "mov %c[rbp](%3), %%rbp \n\t"
2206 "mov %c[r8](%3), %%r8 \n\t"
2207 "mov %c[r9](%3), %%r9 \n\t"
2208 "mov %c[r10](%3), %%r10 \n\t"
2209 "mov %c[r11](%3), %%r11 \n\t"
2210 "mov %c[r12](%3), %%r12 \n\t"
2211 "mov %c[r13](%3), %%r13 \n\t"
2212 "mov %c[r14](%3), %%r14 \n\t"
2213 "mov %c[r15](%3), %%r15 \n\t"
2214 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2216 "mov %c[cr2](%3), %%eax \n\t"
2217 "mov %%eax, %%cr2 \n\t"
2218 "mov %c[rax](%3), %%eax \n\t"
2219 "mov %c[rbx](%3), %%ebx \n\t"
2220 "mov %c[rdx](%3), %%edx \n\t"
2221 "mov %c[rsi](%3), %%esi \n\t"
2222 "mov %c[rdi](%3), %%edi \n\t"
2223 "mov %c[rbp](%3), %%ebp \n\t"
2224 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2226 /* Enter guest mode */
2227 "jne .Llaunched \n\t"
2228 ASM_VMX_VMLAUNCH "\n\t"
2229 "jmp .Lkvm_vmx_return \n\t"
2230 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2231 ".Lkvm_vmx_return: "
2232 /* Save guest registers, load host registers, keep flags */
2233 #ifdef CONFIG_X86_64
2234 "xchg %3, (%%rsp) \n\t"
2235 "mov %%rax, %c[rax](%3) \n\t"
2236 "mov %%rbx, %c[rbx](%3) \n\t"
2237 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2238 "mov %%rdx, %c[rdx](%3) \n\t"
2239 "mov %%rsi, %c[rsi](%3) \n\t"
2240 "mov %%rdi, %c[rdi](%3) \n\t"
2241 "mov %%rbp, %c[rbp](%3) \n\t"
2242 "mov %%r8, %c[r8](%3) \n\t"
2243 "mov %%r9, %c[r9](%3) \n\t"
2244 "mov %%r10, %c[r10](%3) \n\t"
2245 "mov %%r11, %c[r11](%3) \n\t"
2246 "mov %%r12, %c[r12](%3) \n\t"
2247 "mov %%r13, %c[r13](%3) \n\t"
2248 "mov %%r14, %c[r14](%3) \n\t"
2249 "mov %%r15, %c[r15](%3) \n\t"
2250 "mov %%cr2, %%rax \n\t"
2251 "mov %%rax, %c[cr2](%3) \n\t"
2252 "mov (%%rsp), %3 \n\t"
2254 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
2255 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
2256 "pop %%rbp; pop %%rdi; pop %%rsi;"
2257 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
2259 "xchg %3, (%%esp) \n\t"
2260 "mov %%eax, %c[rax](%3) \n\t"
2261 "mov %%ebx, %c[rbx](%3) \n\t"
2262 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2263 "mov %%edx, %c[rdx](%3) \n\t"
2264 "mov %%esi, %c[rsi](%3) \n\t"
2265 "mov %%edi, %c[rdi](%3) \n\t"
2266 "mov %%ebp, %c[rbp](%3) \n\t"
2267 "mov %%cr2, %%eax \n\t"
2268 "mov %%eax, %c[cr2](%3) \n\t"
2269 "mov (%%esp), %3 \n\t"
2271 "pop %%ecx; popa \n\t"
2275 : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2277 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2278 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2279 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2280 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2281 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2282 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2283 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2284 #ifdef CONFIG_X86_64
2285 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2286 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2287 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2288 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2289 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2290 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2291 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2292 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2294 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2297 vcpu->guest_mode = 0;
2302 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2304 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2309 if (unlikely(fail)) {
2310 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2311 kvm_run->fail_entry.hardware_entry_failure_reason
2312 = vmcs_read32(VM_INSTRUCTION_ERROR);
2317 * Profile KVM exit RIPs:
2319 if (unlikely(prof_on == KVM_PROFILING))
2320 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2322 r = kvm_handle_exit(kvm_run, vcpu);
2324 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2326 kvm_run->exit_reason = KVM_EXIT_INTR;
2327 ++vcpu->stat.request_irq_exits;
2330 if (!need_resched()) {
2331 ++vcpu->stat.light_exits;
2342 post_kvm_run_save(vcpu, kvm_run);
2346 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2350 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2352 ++vcpu->stat.pf_guest;
2354 if (is_page_fault(vect_info)) {
2355 printk(KERN_DEBUG "inject_page_fault: "
2356 "double fault 0x%lx @ 0x%lx\n",
2357 addr, vmcs_readl(GUEST_RIP));
2358 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2359 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2361 INTR_TYPE_EXCEPTION |
2362 INTR_INFO_DELIEVER_CODE_MASK |
2363 INTR_INFO_VALID_MASK);
2367 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2368 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2370 INTR_TYPE_EXCEPTION |
2371 INTR_INFO_DELIEVER_CODE_MASK |
2372 INTR_INFO_VALID_MASK);
2376 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2378 struct vcpu_vmx *vmx = to_vmx(vcpu);
2381 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2382 free_vmcs(vmx->vmcs);
2387 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2389 struct vcpu_vmx *vmx = to_vmx(vcpu);
2391 vmx_free_vmcs(vcpu);
2392 kfree(vmx->host_msrs);
2393 kfree(vmx->guest_msrs);
2394 kvm_vcpu_uninit(vcpu);
2395 kmem_cache_free(kvm_vcpu_cache, vmx);
2398 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2401 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2405 return ERR_PTR(-ENOMEM);
2407 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2411 if (irqchip_in_kernel(kvm)) {
2412 err = kvm_create_lapic(&vmx->vcpu);
2417 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2418 if (!vmx->guest_msrs) {
2423 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2424 if (!vmx->host_msrs)
2425 goto free_guest_msrs;
2427 vmx->vmcs = alloc_vmcs();
2431 vmcs_clear(vmx->vmcs);
2434 vmx_vcpu_load(&vmx->vcpu, cpu);
2435 err = vmx_vcpu_setup(vmx);
2436 vmx_vcpu_put(&vmx->vcpu);
2444 free_vmcs(vmx->vmcs);
2446 kfree(vmx->host_msrs);
2448 kfree(vmx->guest_msrs);
2450 kvm_vcpu_uninit(&vmx->vcpu);
2452 kmem_cache_free(kvm_vcpu_cache, vmx);
2453 return ERR_PTR(err);
2456 static void __init vmx_check_processor_compat(void *rtn)
2458 struct vmcs_config vmcs_conf;
2461 if (setup_vmcs_config(&vmcs_conf) < 0)
2463 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2464 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2465 smp_processor_id());
2470 static struct kvm_arch_ops vmx_arch_ops = {
2471 .cpu_has_kvm_support = cpu_has_kvm_support,
2472 .disabled_by_bios = vmx_disabled_by_bios,
2473 .hardware_setup = hardware_setup,
2474 .hardware_unsetup = hardware_unsetup,
2475 .check_processor_compatibility = vmx_check_processor_compat,
2476 .hardware_enable = hardware_enable,
2477 .hardware_disable = hardware_disable,
2479 .vcpu_create = vmx_create_vcpu,
2480 .vcpu_free = vmx_free_vcpu,
2482 .vcpu_load = vmx_vcpu_load,
2483 .vcpu_put = vmx_vcpu_put,
2484 .vcpu_decache = vmx_vcpu_decache,
2486 .set_guest_debug = set_guest_debug,
2487 .get_msr = vmx_get_msr,
2488 .set_msr = vmx_set_msr,
2489 .get_segment_base = vmx_get_segment_base,
2490 .get_segment = vmx_get_segment,
2491 .set_segment = vmx_set_segment,
2492 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2493 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2494 .set_cr0 = vmx_set_cr0,
2495 .set_cr3 = vmx_set_cr3,
2496 .set_cr4 = vmx_set_cr4,
2497 #ifdef CONFIG_X86_64
2498 .set_efer = vmx_set_efer,
2500 .get_idt = vmx_get_idt,
2501 .set_idt = vmx_set_idt,
2502 .get_gdt = vmx_get_gdt,
2503 .set_gdt = vmx_set_gdt,
2504 .cache_regs = vcpu_load_rsp_rip,
2505 .decache_regs = vcpu_put_rsp_rip,
2506 .get_rflags = vmx_get_rflags,
2507 .set_rflags = vmx_set_rflags,
2509 .tlb_flush = vmx_flush_tlb,
2510 .inject_page_fault = vmx_inject_page_fault,
2512 .inject_gp = vmx_inject_gp,
2514 .run = vmx_vcpu_run,
2515 .skip_emulated_instruction = skip_emulated_instruction,
2516 .patch_hypercall = vmx_patch_hypercall,
2517 .get_irq = vmx_get_irq,
2518 .set_irq = vmx_inject_irq,
2521 static int __init vmx_init(void)
2526 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2527 if (!vmx_io_bitmap_a)
2530 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2531 if (!vmx_io_bitmap_b) {
2537 * Allow direct access to the PC debug port (it is often used for I/O
2538 * delays, but the vmexits simply slow things down).
2540 iova = kmap(vmx_io_bitmap_a);
2541 memset(iova, 0xff, PAGE_SIZE);
2542 clear_bit(0x80, iova);
2543 kunmap(vmx_io_bitmap_a);
2545 iova = kmap(vmx_io_bitmap_b);
2546 memset(iova, 0xff, PAGE_SIZE);
2547 kunmap(vmx_io_bitmap_b);
2549 r = kvm_init_arch(&vmx_arch_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2556 __free_page(vmx_io_bitmap_b);
2558 __free_page(vmx_io_bitmap_a);
2562 static void __exit vmx_exit(void)
2564 __free_page(vmx_io_bitmap_b);
2565 __free_page(vmx_io_bitmap_a);
2570 module_init(vmx_init)
2571 module_exit(vmx_exit)