]> Git Repo - linux.git/blob - fs/btrfs/disk-io.c
Btrfs: fix tree search logic when replaying directory entry deletes
[linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
59                                  BTRFS_HEADER_FLAG_RELOC |\
60                                  BTRFS_SUPER_FLAG_ERROR |\
61                                  BTRFS_SUPER_FLAG_SEEDING |\
62                                  BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68                                     int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71                                       struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74                                         struct extent_io_tree *dirty_pages,
75                                         int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77                                        struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87         struct bio *bio;
88         bio_end_io_t *end_io;
89         void *private;
90         struct btrfs_fs_info *info;
91         int error;
92         enum btrfs_wq_endio_type metadata;
93         struct list_head list;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         struct inode *inode;
123         struct bio *bio;
124         struct list_head list;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int mirror_num;
128         unsigned long bio_flags;
129         /*
130          * bio_offset is optional, can be used if the pages in the bio
131          * can't tell us where in the file the bio should go
132          */
133         u64 bio_offset;
134         struct btrfs_work work;
135         int error;
136 };
137
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167         u64                     id;             /* root objectid */
168         const char              *name_stem;     /* lock name stem */
169         char                    names[BTRFS_MAX_LEVEL + 1][20];
170         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
173         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
174         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
175         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
176         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
177         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
178         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
179         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
180         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
181         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
182         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
183         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184         { .id = 0,                              .name_stem = "tree"     },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189         int i, j;
190
191         /* initialize lockdep class names */
192         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196                         snprintf(ks->names[j], sizeof(ks->names[j]),
197                                  "btrfs-%s-%02d", ks->name_stem, j);
198         }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202                                     int level)
203 {
204         struct btrfs_lockdep_keyset *ks;
205
206         BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208         /* find the matching keyset, id 0 is the default entry */
209         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210                 if (ks->id == objectid)
211                         break;
212
213         lockdep_set_class_and_name(&eb->lock,
214                                    &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224                 struct page *page, size_t pg_offset, u64 start, u64 len,
225                 int create)
226 {
227         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228         struct extent_map *em;
229         int ret;
230
231         read_lock(&em_tree->lock);
232         em = lookup_extent_mapping(em_tree, start, len);
233         if (em) {
234                 em->bdev =
235                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236                 read_unlock(&em_tree->lock);
237                 goto out;
238         }
239         read_unlock(&em_tree->lock);
240
241         em = alloc_extent_map();
242         if (!em) {
243                 em = ERR_PTR(-ENOMEM);
244                 goto out;
245         }
246         em->start = 0;
247         em->len = (u64)-1;
248         em->block_len = (u64)-1;
249         em->block_start = 0;
250         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251
252         write_lock(&em_tree->lock);
253         ret = add_extent_mapping(em_tree, em, 0);
254         if (ret == -EEXIST) {
255                 free_extent_map(em);
256                 em = lookup_extent_mapping(em_tree, start, len);
257                 if (!em)
258                         em = ERR_PTR(-EIO);
259         } else if (ret) {
260                 free_extent_map(em);
261                 em = ERR_PTR(ret);
262         }
263         write_unlock(&em_tree->lock);
264
265 out:
266         return em;
267 }
268
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271         return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276         put_unaligned_le32(~crc, result);
277 }
278
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284                            struct extent_buffer *buf,
285                            int verify)
286 {
287         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288         char *result = NULL;
289         unsigned long len;
290         unsigned long cur_len;
291         unsigned long offset = BTRFS_CSUM_SIZE;
292         char *kaddr;
293         unsigned long map_start;
294         unsigned long map_len;
295         int err;
296         u32 crc = ~(u32)0;
297         unsigned long inline_result;
298
299         len = buf->len - offset;
300         while (len > 0) {
301                 err = map_private_extent_buffer(buf, offset, 32,
302                                         &kaddr, &map_start, &map_len);
303                 if (err)
304                         return err;
305                 cur_len = min(len, map_len - (offset - map_start));
306                 crc = btrfs_csum_data(kaddr + offset - map_start,
307                                       crc, cur_len);
308                 len -= cur_len;
309                 offset += cur_len;
310         }
311         if (csum_size > sizeof(inline_result)) {
312                 result = kzalloc(csum_size, GFP_NOFS);
313                 if (!result)
314                         return -ENOMEM;
315         } else {
316                 result = (char *)&inline_result;
317         }
318
319         btrfs_csum_final(crc, result);
320
321         if (verify) {
322                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323                         u32 val;
324                         u32 found = 0;
325                         memcpy(&found, result, csum_size);
326
327                         read_extent_buffer(buf, &val, 0, csum_size);
328                         btrfs_warn_rl(fs_info,
329                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
330                                 fs_info->sb->s_id, buf->start,
331                                 val, found, btrfs_header_level(buf));
332                         if (result != (char *)&inline_result)
333                                 kfree(result);
334                         return -EUCLEAN;
335                 }
336         } else {
337                 write_extent_buffer(buf, result, 0, csum_size);
338         }
339         if (result != (char *)&inline_result)
340                 kfree(result);
341         return 0;
342 }
343
344 /*
345  * we can't consider a given block up to date unless the transid of the
346  * block matches the transid in the parent node's pointer.  This is how we
347  * detect blocks that either didn't get written at all or got written
348  * in the wrong place.
349  */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351                                  struct extent_buffer *eb, u64 parent_transid,
352                                  int atomic)
353 {
354         struct extent_state *cached_state = NULL;
355         int ret;
356         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357
358         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359                 return 0;
360
361         if (atomic)
362                 return -EAGAIN;
363
364         if (need_lock) {
365                 btrfs_tree_read_lock(eb);
366                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367         }
368
369         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370                          &cached_state);
371         if (extent_buffer_uptodate(eb) &&
372             btrfs_header_generation(eb) == parent_transid) {
373                 ret = 0;
374                 goto out;
375         }
376         btrfs_err_rl(eb->fs_info,
377                 "parent transid verify failed on %llu wanted %llu found %llu",
378                         eb->start,
379                         parent_transid, btrfs_header_generation(eb));
380         ret = 1;
381
382         /*
383          * Things reading via commit roots that don't have normal protection,
384          * like send, can have a really old block in cache that may point at a
385          * block that has been freed and re-allocated.  So don't clear uptodate
386          * if we find an eb that is under IO (dirty/writeback) because we could
387          * end up reading in the stale data and then writing it back out and
388          * making everybody very sad.
389          */
390         if (!extent_buffer_under_io(eb))
391                 clear_extent_buffer_uptodate(eb);
392 out:
393         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394                              &cached_state, GFP_NOFS);
395         if (need_lock)
396                 btrfs_tree_read_unlock_blocking(eb);
397         return ret;
398 }
399
400 /*
401  * Return 0 if the superblock checksum type matches the checksum value of that
402  * algorithm. Pass the raw disk superblock data.
403  */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405                                   char *raw_disk_sb)
406 {
407         struct btrfs_super_block *disk_sb =
408                 (struct btrfs_super_block *)raw_disk_sb;
409         u16 csum_type = btrfs_super_csum_type(disk_sb);
410         int ret = 0;
411
412         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413                 u32 crc = ~(u32)0;
414                 const int csum_size = sizeof(crc);
415                 char result[csum_size];
416
417                 /*
418                  * The super_block structure does not span the whole
419                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420                  * is filled with zeros and is included in the checksum.
421                  */
422                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424                 btrfs_csum_final(crc, result);
425
426                 if (memcmp(raw_disk_sb, result, csum_size))
427                         ret = 1;
428         }
429
430         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432                                 csum_type);
433                 ret = 1;
434         }
435
436         return ret;
437 }
438
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444                                           struct extent_buffer *eb,
445                                           u64 parent_transid)
446 {
447         struct extent_io_tree *io_tree;
448         int failed = 0;
449         int ret;
450         int num_copies = 0;
451         int mirror_num = 0;
452         int failed_mirror = 0;
453
454         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456         while (1) {
457                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458                                                btree_get_extent, mirror_num);
459                 if (!ret) {
460                         if (!verify_parent_transid(io_tree, eb,
461                                                    parent_transid, 0))
462                                 break;
463                         else
464                                 ret = -EIO;
465                 }
466
467                 /*
468                  * This buffer's crc is fine, but its contents are corrupted, so
469                  * there is no reason to read the other copies, they won't be
470                  * any less wrong.
471                  */
472                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473                         break;
474
475                 num_copies = btrfs_num_copies(root->fs_info,
476                                               eb->start, eb->len);
477                 if (num_copies == 1)
478                         break;
479
480                 if (!failed_mirror) {
481                         failed = 1;
482                         failed_mirror = eb->read_mirror;
483                 }
484
485                 mirror_num++;
486                 if (mirror_num == failed_mirror)
487                         mirror_num++;
488
489                 if (mirror_num > num_copies)
490                         break;
491         }
492
493         if (failed && !ret && failed_mirror)
494                 repair_eb_io_failure(root, eb, failed_mirror);
495
496         return ret;
497 }
498
499 /*
500  * checksum a dirty tree block before IO.  This has extra checks to make sure
501  * we only fill in the checksum field in the first page of a multi-page block
502  */
503
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505 {
506         u64 start = page_offset(page);
507         u64 found_start;
508         struct extent_buffer *eb;
509
510         eb = (struct extent_buffer *)page->private;
511         if (page != eb->pages[0])
512                 return 0;
513
514         found_start = btrfs_header_bytenr(eb);
515         /*
516          * Please do not consolidate these warnings into a single if.
517          * It is useful to know what went wrong.
518          */
519         if (WARN_ON(found_start != start))
520                 return -EUCLEAN;
521         if (WARN_ON(!PageUptodate(page)))
522                 return -EUCLEAN;
523
524         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526
527         return csum_tree_block(fs_info, eb, 0);
528 }
529
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531                                  struct extent_buffer *eb)
532 {
533         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534         u8 fsid[BTRFS_UUID_SIZE];
535         int ret = 1;
536
537         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538         while (fs_devices) {
539                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540                         ret = 0;
541                         break;
542                 }
543                 fs_devices = fs_devices->seed;
544         }
545         return ret;
546 }
547
548 #define CORRUPT(reason, eb, root, slot)                         \
549         btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu," \
550                    " root=%llu, slot=%d",                       \
551                    btrfs_header_level(eb) == 0 ? "leaf" : "node",\
552                    reason, btrfs_header_bytenr(eb), root->objectid, slot)
553
554 static noinline int check_leaf(struct btrfs_root *root,
555                                struct extent_buffer *leaf)
556 {
557         struct btrfs_key key;
558         struct btrfs_key leaf_key;
559         u32 nritems = btrfs_header_nritems(leaf);
560         int slot;
561
562         /*
563          * Extent buffers from a relocation tree have a owner field that
564          * corresponds to the subvolume tree they are based on. So just from an
565          * extent buffer alone we can not find out what is the id of the
566          * corresponding subvolume tree, so we can not figure out if the extent
567          * buffer corresponds to the root of the relocation tree or not. So skip
568          * this check for relocation trees.
569          */
570         if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
571                 struct btrfs_root *check_root;
572
573                 key.objectid = btrfs_header_owner(leaf);
574                 key.type = BTRFS_ROOT_ITEM_KEY;
575                 key.offset = (u64)-1;
576
577                 check_root = btrfs_get_fs_root(root->fs_info, &key, false);
578                 /*
579                  * The only reason we also check NULL here is that during
580                  * open_ctree() some roots has not yet been set up.
581                  */
582                 if (!IS_ERR_OR_NULL(check_root)) {
583                         struct extent_buffer *eb;
584
585                         eb = btrfs_root_node(check_root);
586                         /* if leaf is the root, then it's fine */
587                         if (leaf != eb) {
588                                 CORRUPT("non-root leaf's nritems is 0",
589                                         leaf, check_root, 0);
590                                 free_extent_buffer(eb);
591                                 return -EIO;
592                         }
593                         free_extent_buffer(eb);
594                 }
595                 return 0;
596         }
597
598         if (nritems == 0)
599                 return 0;
600
601         /* Check the 0 item */
602         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
603             BTRFS_LEAF_DATA_SIZE(root)) {
604                 CORRUPT("invalid item offset size pair", leaf, root, 0);
605                 return -EIO;
606         }
607
608         /*
609          * Check to make sure each items keys are in the correct order and their
610          * offsets make sense.  We only have to loop through nritems-1 because
611          * we check the current slot against the next slot, which verifies the
612          * next slot's offset+size makes sense and that the current's slot
613          * offset is correct.
614          */
615         for (slot = 0; slot < nritems - 1; slot++) {
616                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
617                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
618
619                 /* Make sure the keys are in the right order */
620                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
621                         CORRUPT("bad key order", leaf, root, slot);
622                         return -EIO;
623                 }
624
625                 /*
626                  * Make sure the offset and ends are right, remember that the
627                  * item data starts at the end of the leaf and grows towards the
628                  * front.
629                  */
630                 if (btrfs_item_offset_nr(leaf, slot) !=
631                         btrfs_item_end_nr(leaf, slot + 1)) {
632                         CORRUPT("slot offset bad", leaf, root, slot);
633                         return -EIO;
634                 }
635
636                 /*
637                  * Check to make sure that we don't point outside of the leaf,
638                  * just in case all the items are consistent to each other, but
639                  * all point outside of the leaf.
640                  */
641                 if (btrfs_item_end_nr(leaf, slot) >
642                     BTRFS_LEAF_DATA_SIZE(root)) {
643                         CORRUPT("slot end outside of leaf", leaf, root, slot);
644                         return -EIO;
645                 }
646         }
647
648         return 0;
649 }
650
651 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
652 {
653         unsigned long nr = btrfs_header_nritems(node);
654         struct btrfs_key key, next_key;
655         int slot;
656         u64 bytenr;
657         int ret = 0;
658
659         if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
660                 btrfs_crit(root->fs_info,
661                            "corrupt node: block %llu root %llu nritems %lu",
662                            node->start, root->objectid, nr);
663                 return -EIO;
664         }
665
666         for (slot = 0; slot < nr - 1; slot++) {
667                 bytenr = btrfs_node_blockptr(node, slot);
668                 btrfs_node_key_to_cpu(node, &key, slot);
669                 btrfs_node_key_to_cpu(node, &next_key, slot + 1);
670
671                 if (!bytenr) {
672                         CORRUPT("invalid item slot", node, root, slot);
673                         ret = -EIO;
674                         goto out;
675                 }
676
677                 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
678                         CORRUPT("bad key order", node, root, slot);
679                         ret = -EIO;
680                         goto out;
681                 }
682         }
683 out:
684         return ret;
685 }
686
687 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
688                                       u64 phy_offset, struct page *page,
689                                       u64 start, u64 end, int mirror)
690 {
691         u64 found_start;
692         int found_level;
693         struct extent_buffer *eb;
694         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695         struct btrfs_fs_info *fs_info = root->fs_info;
696         int ret = 0;
697         int reads_done;
698
699         if (!page->private)
700                 goto out;
701
702         eb = (struct extent_buffer *)page->private;
703
704         /* the pending IO might have been the only thing that kept this buffer
705          * in memory.  Make sure we have a ref for all this other checks
706          */
707         extent_buffer_get(eb);
708
709         reads_done = atomic_dec_and_test(&eb->io_pages);
710         if (!reads_done)
711                 goto err;
712
713         eb->read_mirror = mirror;
714         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
715                 ret = -EIO;
716                 goto err;
717         }
718
719         found_start = btrfs_header_bytenr(eb);
720         if (found_start != eb->start) {
721                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
722                              found_start, eb->start);
723                 ret = -EIO;
724                 goto err;
725         }
726         if (check_tree_block_fsid(fs_info, eb)) {
727                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
728                              eb->start);
729                 ret = -EIO;
730                 goto err;
731         }
732         found_level = btrfs_header_level(eb);
733         if (found_level >= BTRFS_MAX_LEVEL) {
734                 btrfs_err(fs_info, "bad tree block level %d",
735                           (int)btrfs_header_level(eb));
736                 ret = -EIO;
737                 goto err;
738         }
739
740         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
741                                        eb, found_level);
742
743         ret = csum_tree_block(fs_info, eb, 1);
744         if (ret)
745                 goto err;
746
747         /*
748          * If this is a leaf block and it is corrupt, set the corrupt bit so
749          * that we don't try and read the other copies of this block, just
750          * return -EIO.
751          */
752         if (found_level == 0 && check_leaf(root, eb)) {
753                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
754                 ret = -EIO;
755         }
756
757         if (found_level > 0 && check_node(root, eb))
758                 ret = -EIO;
759
760         if (!ret)
761                 set_extent_buffer_uptodate(eb);
762 err:
763         if (reads_done &&
764             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
765                 btree_readahead_hook(fs_info, eb, eb->start, ret);
766
767         if (ret) {
768                 /*
769                  * our io error hook is going to dec the io pages
770                  * again, we have to make sure it has something
771                  * to decrement
772                  */
773                 atomic_inc(&eb->io_pages);
774                 clear_extent_buffer_uptodate(eb);
775         }
776         free_extent_buffer(eb);
777 out:
778         return ret;
779 }
780
781 static int btree_io_failed_hook(struct page *page, int failed_mirror)
782 {
783         struct extent_buffer *eb;
784
785         eb = (struct extent_buffer *)page->private;
786         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
787         eb->read_mirror = failed_mirror;
788         atomic_dec(&eb->io_pages);
789         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
790                 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
791         return -EIO;    /* we fixed nothing */
792 }
793
794 static void end_workqueue_bio(struct bio *bio)
795 {
796         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
797         struct btrfs_fs_info *fs_info;
798         struct btrfs_workqueue *wq;
799         btrfs_work_func_t func;
800
801         fs_info = end_io_wq->info;
802         end_io_wq->error = bio->bi_error;
803
804         if (bio_op(bio) == REQ_OP_WRITE) {
805                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
806                         wq = fs_info->endio_meta_write_workers;
807                         func = btrfs_endio_meta_write_helper;
808                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
809                         wq = fs_info->endio_freespace_worker;
810                         func = btrfs_freespace_write_helper;
811                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
812                         wq = fs_info->endio_raid56_workers;
813                         func = btrfs_endio_raid56_helper;
814                 } else {
815                         wq = fs_info->endio_write_workers;
816                         func = btrfs_endio_write_helper;
817                 }
818         } else {
819                 if (unlikely(end_io_wq->metadata ==
820                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
821                         wq = fs_info->endio_repair_workers;
822                         func = btrfs_endio_repair_helper;
823                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
824                         wq = fs_info->endio_raid56_workers;
825                         func = btrfs_endio_raid56_helper;
826                 } else if (end_io_wq->metadata) {
827                         wq = fs_info->endio_meta_workers;
828                         func = btrfs_endio_meta_helper;
829                 } else {
830                         wq = fs_info->endio_workers;
831                         func = btrfs_endio_helper;
832                 }
833         }
834
835         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
836         btrfs_queue_work(wq, &end_io_wq->work);
837 }
838
839 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
840                         enum btrfs_wq_endio_type metadata)
841 {
842         struct btrfs_end_io_wq *end_io_wq;
843
844         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
845         if (!end_io_wq)
846                 return -ENOMEM;
847
848         end_io_wq->private = bio->bi_private;
849         end_io_wq->end_io = bio->bi_end_io;
850         end_io_wq->info = info;
851         end_io_wq->error = 0;
852         end_io_wq->bio = bio;
853         end_io_wq->metadata = metadata;
854
855         bio->bi_private = end_io_wq;
856         bio->bi_end_io = end_workqueue_bio;
857         return 0;
858 }
859
860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
861 {
862         unsigned long limit = min_t(unsigned long,
863                                     info->thread_pool_size,
864                                     info->fs_devices->open_devices);
865         return 256 * limit;
866 }
867
868 static void run_one_async_start(struct btrfs_work *work)
869 {
870         struct async_submit_bio *async;
871         int ret;
872
873         async = container_of(work, struct  async_submit_bio, work);
874         ret = async->submit_bio_start(async->inode, async->bio,
875                                       async->mirror_num, async->bio_flags,
876                                       async->bio_offset);
877         if (ret)
878                 async->error = ret;
879 }
880
881 static void run_one_async_done(struct btrfs_work *work)
882 {
883         struct btrfs_fs_info *fs_info;
884         struct async_submit_bio *async;
885         int limit;
886
887         async = container_of(work, struct  async_submit_bio, work);
888         fs_info = BTRFS_I(async->inode)->root->fs_info;
889
890         limit = btrfs_async_submit_limit(fs_info);
891         limit = limit * 2 / 3;
892
893         /*
894          * atomic_dec_return implies a barrier for waitqueue_active
895          */
896         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
897             waitqueue_active(&fs_info->async_submit_wait))
898                 wake_up(&fs_info->async_submit_wait);
899
900         /* If an error occurred we just want to clean up the bio and move on */
901         if (async->error) {
902                 async->bio->bi_error = async->error;
903                 bio_endio(async->bio);
904                 return;
905         }
906
907         async->submit_bio_done(async->inode, async->bio, async->mirror_num,
908                                async->bio_flags, async->bio_offset);
909 }
910
911 static void run_one_async_free(struct btrfs_work *work)
912 {
913         struct async_submit_bio *async;
914
915         async = container_of(work, struct  async_submit_bio, work);
916         kfree(async);
917 }
918
919 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
920                         struct bio *bio, int mirror_num,
921                         unsigned long bio_flags,
922                         u64 bio_offset,
923                         extent_submit_bio_hook_t *submit_bio_start,
924                         extent_submit_bio_hook_t *submit_bio_done)
925 {
926         struct async_submit_bio *async;
927
928         async = kmalloc(sizeof(*async), GFP_NOFS);
929         if (!async)
930                 return -ENOMEM;
931
932         async->inode = inode;
933         async->bio = bio;
934         async->mirror_num = mirror_num;
935         async->submit_bio_start = submit_bio_start;
936         async->submit_bio_done = submit_bio_done;
937
938         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
939                         run_one_async_done, run_one_async_free);
940
941         async->bio_flags = bio_flags;
942         async->bio_offset = bio_offset;
943
944         async->error = 0;
945
946         atomic_inc(&fs_info->nr_async_submits);
947
948         if (bio->bi_opf & REQ_SYNC)
949                 btrfs_set_work_high_priority(&async->work);
950
951         btrfs_queue_work(fs_info->workers, &async->work);
952
953         while (atomic_read(&fs_info->async_submit_draining) &&
954               atomic_read(&fs_info->nr_async_submits)) {
955                 wait_event(fs_info->async_submit_wait,
956                            (atomic_read(&fs_info->nr_async_submits) == 0));
957         }
958
959         return 0;
960 }
961
962 static int btree_csum_one_bio(struct bio *bio)
963 {
964         struct bio_vec *bvec;
965         struct btrfs_root *root;
966         int i, ret = 0;
967
968         bio_for_each_segment_all(bvec, bio, i) {
969                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
970                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
971                 if (ret)
972                         break;
973         }
974
975         return ret;
976 }
977
978 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
979                                     int mirror_num, unsigned long bio_flags,
980                                     u64 bio_offset)
981 {
982         /*
983          * when we're called for a write, we're already in the async
984          * submission context.  Just jump into btrfs_map_bio
985          */
986         return btree_csum_one_bio(bio);
987 }
988
989 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
990                                  int mirror_num, unsigned long bio_flags,
991                                  u64 bio_offset)
992 {
993         int ret;
994
995         /*
996          * when we're called for a write, we're already in the async
997          * submission context.  Just jump into btrfs_map_bio
998          */
999         ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
1000         if (ret) {
1001                 bio->bi_error = ret;
1002                 bio_endio(bio);
1003         }
1004         return ret;
1005 }
1006
1007 static int check_async_write(struct inode *inode, unsigned long bio_flags)
1008 {
1009         if (bio_flags & EXTENT_BIO_TREE_LOG)
1010                 return 0;
1011 #ifdef CONFIG_X86
1012         if (static_cpu_has(X86_FEATURE_XMM4_2))
1013                 return 0;
1014 #endif
1015         return 1;
1016 }
1017
1018 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1019                                  int mirror_num, unsigned long bio_flags,
1020                                  u64 bio_offset)
1021 {
1022         int async = check_async_write(inode, bio_flags);
1023         int ret;
1024
1025         if (bio_op(bio) != REQ_OP_WRITE) {
1026                 /*
1027                  * called for a read, do the setup so that checksum validation
1028                  * can happen in the async kernel threads
1029                  */
1030                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
1031                                           bio, BTRFS_WQ_ENDIO_METADATA);
1032                 if (ret)
1033                         goto out_w_error;
1034                 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1035         } else if (!async) {
1036                 ret = btree_csum_one_bio(bio);
1037                 if (ret)
1038                         goto out_w_error;
1039                 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1040         } else {
1041                 /*
1042                  * kthread helpers are used to submit writes so that
1043                  * checksumming can happen in parallel across all CPUs
1044                  */
1045                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1046                                           inode, bio, mirror_num, 0,
1047                                           bio_offset,
1048                                           __btree_submit_bio_start,
1049                                           __btree_submit_bio_done);
1050         }
1051
1052         if (ret)
1053                 goto out_w_error;
1054         return 0;
1055
1056 out_w_error:
1057         bio->bi_error = ret;
1058         bio_endio(bio);
1059         return ret;
1060 }
1061
1062 #ifdef CONFIG_MIGRATION
1063 static int btree_migratepage(struct address_space *mapping,
1064                         struct page *newpage, struct page *page,
1065                         enum migrate_mode mode)
1066 {
1067         /*
1068          * we can't safely write a btree page from here,
1069          * we haven't done the locking hook
1070          */
1071         if (PageDirty(page))
1072                 return -EAGAIN;
1073         /*
1074          * Buffers may be managed in a filesystem specific way.
1075          * We must have no buffers or drop them.
1076          */
1077         if (page_has_private(page) &&
1078             !try_to_release_page(page, GFP_KERNEL))
1079                 return -EAGAIN;
1080         return migrate_page(mapping, newpage, page, mode);
1081 }
1082 #endif
1083
1084
1085 static int btree_writepages(struct address_space *mapping,
1086                             struct writeback_control *wbc)
1087 {
1088         struct btrfs_fs_info *fs_info;
1089         int ret;
1090
1091         if (wbc->sync_mode == WB_SYNC_NONE) {
1092
1093                 if (wbc->for_kupdate)
1094                         return 0;
1095
1096                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1097                 /* this is a bit racy, but that's ok */
1098                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1099                                              BTRFS_DIRTY_METADATA_THRESH);
1100                 if (ret < 0)
1101                         return 0;
1102         }
1103         return btree_write_cache_pages(mapping, wbc);
1104 }
1105
1106 static int btree_readpage(struct file *file, struct page *page)
1107 {
1108         struct extent_io_tree *tree;
1109         tree = &BTRFS_I(page->mapping->host)->io_tree;
1110         return extent_read_full_page(tree, page, btree_get_extent, 0);
1111 }
1112
1113 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1114 {
1115         if (PageWriteback(page) || PageDirty(page))
1116                 return 0;
1117
1118         return try_release_extent_buffer(page);
1119 }
1120
1121 static void btree_invalidatepage(struct page *page, unsigned int offset,
1122                                  unsigned int length)
1123 {
1124         struct extent_io_tree *tree;
1125         tree = &BTRFS_I(page->mapping->host)->io_tree;
1126         extent_invalidatepage(tree, page, offset);
1127         btree_releasepage(page, GFP_NOFS);
1128         if (PagePrivate(page)) {
1129                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1130                            "page private not zero on page %llu",
1131                            (unsigned long long)page_offset(page));
1132                 ClearPagePrivate(page);
1133                 set_page_private(page, 0);
1134                 put_page(page);
1135         }
1136 }
1137
1138 static int btree_set_page_dirty(struct page *page)
1139 {
1140 #ifdef DEBUG
1141         struct extent_buffer *eb;
1142
1143         BUG_ON(!PagePrivate(page));
1144         eb = (struct extent_buffer *)page->private;
1145         BUG_ON(!eb);
1146         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1147         BUG_ON(!atomic_read(&eb->refs));
1148         btrfs_assert_tree_locked(eb);
1149 #endif
1150         return __set_page_dirty_nobuffers(page);
1151 }
1152
1153 static const struct address_space_operations btree_aops = {
1154         .readpage       = btree_readpage,
1155         .writepages     = btree_writepages,
1156         .releasepage    = btree_releasepage,
1157         .invalidatepage = btree_invalidatepage,
1158 #ifdef CONFIG_MIGRATION
1159         .migratepage    = btree_migratepage,
1160 #endif
1161         .set_page_dirty = btree_set_page_dirty,
1162 };
1163
1164 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1165 {
1166         struct extent_buffer *buf = NULL;
1167         struct inode *btree_inode = root->fs_info->btree_inode;
1168
1169         buf = btrfs_find_create_tree_block(root, bytenr);
1170         if (IS_ERR(buf))
1171                 return;
1172         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1173                                  buf, WAIT_NONE, btree_get_extent, 0);
1174         free_extent_buffer(buf);
1175 }
1176
1177 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1178                          int mirror_num, struct extent_buffer **eb)
1179 {
1180         struct extent_buffer *buf = NULL;
1181         struct inode *btree_inode = root->fs_info->btree_inode;
1182         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1183         int ret;
1184
1185         buf = btrfs_find_create_tree_block(root, bytenr);
1186         if (IS_ERR(buf))
1187                 return 0;
1188
1189         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1190
1191         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1192                                        btree_get_extent, mirror_num);
1193         if (ret) {
1194                 free_extent_buffer(buf);
1195                 return ret;
1196         }
1197
1198         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1199                 free_extent_buffer(buf);
1200                 return -EIO;
1201         } else if (extent_buffer_uptodate(buf)) {
1202                 *eb = buf;
1203         } else {
1204                 free_extent_buffer(buf);
1205         }
1206         return 0;
1207 }
1208
1209 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1210                                             u64 bytenr)
1211 {
1212         return find_extent_buffer(fs_info, bytenr);
1213 }
1214
1215 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1216                                                  u64 bytenr)
1217 {
1218         if (btrfs_is_testing(root->fs_info))
1219                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1220                                 root->nodesize);
1221         return alloc_extent_buffer(root->fs_info, bytenr);
1222 }
1223
1224
1225 int btrfs_write_tree_block(struct extent_buffer *buf)
1226 {
1227         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1228                                         buf->start + buf->len - 1);
1229 }
1230
1231 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1232 {
1233         return filemap_fdatawait_range(buf->pages[0]->mapping,
1234                                        buf->start, buf->start + buf->len - 1);
1235 }
1236
1237 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1238                                       u64 parent_transid)
1239 {
1240         struct extent_buffer *buf = NULL;
1241         int ret;
1242
1243         buf = btrfs_find_create_tree_block(root, bytenr);
1244         if (IS_ERR(buf))
1245                 return buf;
1246
1247         ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1248         if (ret) {
1249                 free_extent_buffer(buf);
1250                 return ERR_PTR(ret);
1251         }
1252         return buf;
1253
1254 }
1255
1256 void clean_tree_block(struct btrfs_trans_handle *trans,
1257                       struct btrfs_fs_info *fs_info,
1258                       struct extent_buffer *buf)
1259 {
1260         if (btrfs_header_generation(buf) ==
1261             fs_info->running_transaction->transid) {
1262                 btrfs_assert_tree_locked(buf);
1263
1264                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1265                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1266                                              -buf->len,
1267                                              fs_info->dirty_metadata_batch);
1268                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1269                         btrfs_set_lock_blocking(buf);
1270                         clear_extent_buffer_dirty(buf);
1271                 }
1272         }
1273 }
1274
1275 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1276 {
1277         struct btrfs_subvolume_writers *writers;
1278         int ret;
1279
1280         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1281         if (!writers)
1282                 return ERR_PTR(-ENOMEM);
1283
1284         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1285         if (ret < 0) {
1286                 kfree(writers);
1287                 return ERR_PTR(ret);
1288         }
1289
1290         init_waitqueue_head(&writers->wait);
1291         return writers;
1292 }
1293
1294 static void
1295 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1296 {
1297         percpu_counter_destroy(&writers->counter);
1298         kfree(writers);
1299 }
1300
1301 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1302                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1303                          u64 objectid)
1304 {
1305         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1306         root->node = NULL;
1307         root->commit_root = NULL;
1308         root->sectorsize = sectorsize;
1309         root->nodesize = nodesize;
1310         root->stripesize = stripesize;
1311         root->state = 0;
1312         root->orphan_cleanup_state = 0;
1313
1314         root->objectid = objectid;
1315         root->last_trans = 0;
1316         root->highest_objectid = 0;
1317         root->nr_delalloc_inodes = 0;
1318         root->nr_ordered_extents = 0;
1319         root->name = NULL;
1320         root->inode_tree = RB_ROOT;
1321         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1322         root->block_rsv = NULL;
1323         root->orphan_block_rsv = NULL;
1324
1325         INIT_LIST_HEAD(&root->dirty_list);
1326         INIT_LIST_HEAD(&root->root_list);
1327         INIT_LIST_HEAD(&root->delalloc_inodes);
1328         INIT_LIST_HEAD(&root->delalloc_root);
1329         INIT_LIST_HEAD(&root->ordered_extents);
1330         INIT_LIST_HEAD(&root->ordered_root);
1331         INIT_LIST_HEAD(&root->logged_list[0]);
1332         INIT_LIST_HEAD(&root->logged_list[1]);
1333         spin_lock_init(&root->orphan_lock);
1334         spin_lock_init(&root->inode_lock);
1335         spin_lock_init(&root->delalloc_lock);
1336         spin_lock_init(&root->ordered_extent_lock);
1337         spin_lock_init(&root->accounting_lock);
1338         spin_lock_init(&root->log_extents_lock[0]);
1339         spin_lock_init(&root->log_extents_lock[1]);
1340         mutex_init(&root->objectid_mutex);
1341         mutex_init(&root->log_mutex);
1342         mutex_init(&root->ordered_extent_mutex);
1343         mutex_init(&root->delalloc_mutex);
1344         init_waitqueue_head(&root->log_writer_wait);
1345         init_waitqueue_head(&root->log_commit_wait[0]);
1346         init_waitqueue_head(&root->log_commit_wait[1]);
1347         INIT_LIST_HEAD(&root->log_ctxs[0]);
1348         INIT_LIST_HEAD(&root->log_ctxs[1]);
1349         atomic_set(&root->log_commit[0], 0);
1350         atomic_set(&root->log_commit[1], 0);
1351         atomic_set(&root->log_writers, 0);
1352         atomic_set(&root->log_batch, 0);
1353         atomic_set(&root->orphan_inodes, 0);
1354         atomic_set(&root->refs, 1);
1355         atomic_set(&root->will_be_snapshoted, 0);
1356         atomic_set(&root->qgroup_meta_rsv, 0);
1357         root->log_transid = 0;
1358         root->log_transid_committed = -1;
1359         root->last_log_commit = 0;
1360         if (!dummy)
1361                 extent_io_tree_init(&root->dirty_log_pages,
1362                                      fs_info->btree_inode->i_mapping);
1363
1364         memset(&root->root_key, 0, sizeof(root->root_key));
1365         memset(&root->root_item, 0, sizeof(root->root_item));
1366         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1367         if (!dummy)
1368                 root->defrag_trans_start = fs_info->generation;
1369         else
1370                 root->defrag_trans_start = 0;
1371         root->root_key.objectid = objectid;
1372         root->anon_dev = 0;
1373
1374         spin_lock_init(&root->root_item_lock);
1375 }
1376
1377 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1378                 gfp_t flags)
1379 {
1380         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1381         if (root)
1382                 root->fs_info = fs_info;
1383         return root;
1384 }
1385
1386 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1387 /* Should only be used by the testing infrastructure */
1388 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1389                                           u32 sectorsize, u32 nodesize)
1390 {
1391         struct btrfs_root *root;
1392
1393         if (!fs_info)
1394                 return ERR_PTR(-EINVAL);
1395
1396         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1397         if (!root)
1398                 return ERR_PTR(-ENOMEM);
1399         /* We don't use the stripesize in selftest, set it as sectorsize */
1400         __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1401                         BTRFS_ROOT_TREE_OBJECTID);
1402         root->alloc_bytenr = 0;
1403
1404         return root;
1405 }
1406 #endif
1407
1408 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1409                                      struct btrfs_fs_info *fs_info,
1410                                      u64 objectid)
1411 {
1412         struct extent_buffer *leaf;
1413         struct btrfs_root *tree_root = fs_info->tree_root;
1414         struct btrfs_root *root;
1415         struct btrfs_key key;
1416         int ret = 0;
1417         uuid_le uuid;
1418
1419         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1420         if (!root)
1421                 return ERR_PTR(-ENOMEM);
1422
1423         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1424                 tree_root->stripesize, root, fs_info, objectid);
1425         root->root_key.objectid = objectid;
1426         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1427         root->root_key.offset = 0;
1428
1429         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1430         if (IS_ERR(leaf)) {
1431                 ret = PTR_ERR(leaf);
1432                 leaf = NULL;
1433                 goto fail;
1434         }
1435
1436         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1437         btrfs_set_header_bytenr(leaf, leaf->start);
1438         btrfs_set_header_generation(leaf, trans->transid);
1439         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1440         btrfs_set_header_owner(leaf, objectid);
1441         root->node = leaf;
1442
1443         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1444                             BTRFS_FSID_SIZE);
1445         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1446                             btrfs_header_chunk_tree_uuid(leaf),
1447                             BTRFS_UUID_SIZE);
1448         btrfs_mark_buffer_dirty(leaf);
1449
1450         root->commit_root = btrfs_root_node(root);
1451         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1452
1453         root->root_item.flags = 0;
1454         root->root_item.byte_limit = 0;
1455         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1456         btrfs_set_root_generation(&root->root_item, trans->transid);
1457         btrfs_set_root_level(&root->root_item, 0);
1458         btrfs_set_root_refs(&root->root_item, 1);
1459         btrfs_set_root_used(&root->root_item, leaf->len);
1460         btrfs_set_root_last_snapshot(&root->root_item, 0);
1461         btrfs_set_root_dirid(&root->root_item, 0);
1462         uuid_le_gen(&uuid);
1463         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1464         root->root_item.drop_level = 0;
1465
1466         key.objectid = objectid;
1467         key.type = BTRFS_ROOT_ITEM_KEY;
1468         key.offset = 0;
1469         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1470         if (ret)
1471                 goto fail;
1472
1473         btrfs_tree_unlock(leaf);
1474
1475         return root;
1476
1477 fail:
1478         if (leaf) {
1479                 btrfs_tree_unlock(leaf);
1480                 free_extent_buffer(root->commit_root);
1481                 free_extent_buffer(leaf);
1482         }
1483         kfree(root);
1484
1485         return ERR_PTR(ret);
1486 }
1487
1488 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1489                                          struct btrfs_fs_info *fs_info)
1490 {
1491         struct btrfs_root *root;
1492         struct btrfs_root *tree_root = fs_info->tree_root;
1493         struct extent_buffer *leaf;
1494
1495         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1496         if (!root)
1497                 return ERR_PTR(-ENOMEM);
1498
1499         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1500                      tree_root->stripesize, root, fs_info,
1501                      BTRFS_TREE_LOG_OBJECTID);
1502
1503         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1504         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1505         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1506
1507         /*
1508          * DON'T set REF_COWS for log trees
1509          *
1510          * log trees do not get reference counted because they go away
1511          * before a real commit is actually done.  They do store pointers
1512          * to file data extents, and those reference counts still get
1513          * updated (along with back refs to the log tree).
1514          */
1515
1516         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1517                         NULL, 0, 0, 0);
1518         if (IS_ERR(leaf)) {
1519                 kfree(root);
1520                 return ERR_CAST(leaf);
1521         }
1522
1523         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1524         btrfs_set_header_bytenr(leaf, leaf->start);
1525         btrfs_set_header_generation(leaf, trans->transid);
1526         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1527         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1528         root->node = leaf;
1529
1530         write_extent_buffer(root->node, root->fs_info->fsid,
1531                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1532         btrfs_mark_buffer_dirty(root->node);
1533         btrfs_tree_unlock(root->node);
1534         return root;
1535 }
1536
1537 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1538                              struct btrfs_fs_info *fs_info)
1539 {
1540         struct btrfs_root *log_root;
1541
1542         log_root = alloc_log_tree(trans, fs_info);
1543         if (IS_ERR(log_root))
1544                 return PTR_ERR(log_root);
1545         WARN_ON(fs_info->log_root_tree);
1546         fs_info->log_root_tree = log_root;
1547         return 0;
1548 }
1549
1550 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1551                        struct btrfs_root *root)
1552 {
1553         struct btrfs_root *log_root;
1554         struct btrfs_inode_item *inode_item;
1555
1556         log_root = alloc_log_tree(trans, root->fs_info);
1557         if (IS_ERR(log_root))
1558                 return PTR_ERR(log_root);
1559
1560         log_root->last_trans = trans->transid;
1561         log_root->root_key.offset = root->root_key.objectid;
1562
1563         inode_item = &log_root->root_item.inode;
1564         btrfs_set_stack_inode_generation(inode_item, 1);
1565         btrfs_set_stack_inode_size(inode_item, 3);
1566         btrfs_set_stack_inode_nlink(inode_item, 1);
1567         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1568         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1569
1570         btrfs_set_root_node(&log_root->root_item, log_root->node);
1571
1572         WARN_ON(root->log_root);
1573         root->log_root = log_root;
1574         root->log_transid = 0;
1575         root->log_transid_committed = -1;
1576         root->last_log_commit = 0;
1577         return 0;
1578 }
1579
1580 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1581                                                struct btrfs_key *key)
1582 {
1583         struct btrfs_root *root;
1584         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1585         struct btrfs_path *path;
1586         u64 generation;
1587         int ret;
1588
1589         path = btrfs_alloc_path();
1590         if (!path)
1591                 return ERR_PTR(-ENOMEM);
1592
1593         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1594         if (!root) {
1595                 ret = -ENOMEM;
1596                 goto alloc_fail;
1597         }
1598
1599         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1600                 tree_root->stripesize, root, fs_info, key->objectid);
1601
1602         ret = btrfs_find_root(tree_root, key, path,
1603                               &root->root_item, &root->root_key);
1604         if (ret) {
1605                 if (ret > 0)
1606                         ret = -ENOENT;
1607                 goto find_fail;
1608         }
1609
1610         generation = btrfs_root_generation(&root->root_item);
1611         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1612                                      generation);
1613         if (IS_ERR(root->node)) {
1614                 ret = PTR_ERR(root->node);
1615                 goto find_fail;
1616         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1617                 ret = -EIO;
1618                 free_extent_buffer(root->node);
1619                 goto find_fail;
1620         }
1621         root->commit_root = btrfs_root_node(root);
1622 out:
1623         btrfs_free_path(path);
1624         return root;
1625
1626 find_fail:
1627         kfree(root);
1628 alloc_fail:
1629         root = ERR_PTR(ret);
1630         goto out;
1631 }
1632
1633 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1634                                       struct btrfs_key *location)
1635 {
1636         struct btrfs_root *root;
1637
1638         root = btrfs_read_tree_root(tree_root, location);
1639         if (IS_ERR(root))
1640                 return root;
1641
1642         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1643                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1644                 btrfs_check_and_init_root_item(&root->root_item);
1645         }
1646
1647         return root;
1648 }
1649
1650 int btrfs_init_fs_root(struct btrfs_root *root)
1651 {
1652         int ret;
1653         struct btrfs_subvolume_writers *writers;
1654
1655         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1656         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1657                                         GFP_NOFS);
1658         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1659                 ret = -ENOMEM;
1660                 goto fail;
1661         }
1662
1663         writers = btrfs_alloc_subvolume_writers();
1664         if (IS_ERR(writers)) {
1665                 ret = PTR_ERR(writers);
1666                 goto fail;
1667         }
1668         root->subv_writers = writers;
1669
1670         btrfs_init_free_ino_ctl(root);
1671         spin_lock_init(&root->ino_cache_lock);
1672         init_waitqueue_head(&root->ino_cache_wait);
1673
1674         ret = get_anon_bdev(&root->anon_dev);
1675         if (ret)
1676                 goto fail;
1677
1678         mutex_lock(&root->objectid_mutex);
1679         ret = btrfs_find_highest_objectid(root,
1680                                         &root->highest_objectid);
1681         if (ret) {
1682                 mutex_unlock(&root->objectid_mutex);
1683                 goto fail;
1684         }
1685
1686         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1687
1688         mutex_unlock(&root->objectid_mutex);
1689
1690         return 0;
1691 fail:
1692         /* the caller is responsible to call free_fs_root */
1693         return ret;
1694 }
1695
1696 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1697                                         u64 root_id)
1698 {
1699         struct btrfs_root *root;
1700
1701         spin_lock(&fs_info->fs_roots_radix_lock);
1702         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1703                                  (unsigned long)root_id);
1704         spin_unlock(&fs_info->fs_roots_radix_lock);
1705         return root;
1706 }
1707
1708 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1709                          struct btrfs_root *root)
1710 {
1711         int ret;
1712
1713         ret = radix_tree_preload(GFP_NOFS);
1714         if (ret)
1715                 return ret;
1716
1717         spin_lock(&fs_info->fs_roots_radix_lock);
1718         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1719                                 (unsigned long)root->root_key.objectid,
1720                                 root);
1721         if (ret == 0)
1722                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1723         spin_unlock(&fs_info->fs_roots_radix_lock);
1724         radix_tree_preload_end();
1725
1726         return ret;
1727 }
1728
1729 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1730                                      struct btrfs_key *location,
1731                                      bool check_ref)
1732 {
1733         struct btrfs_root *root;
1734         struct btrfs_path *path;
1735         struct btrfs_key key;
1736         int ret;
1737
1738         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1739                 return fs_info->tree_root;
1740         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1741                 return fs_info->extent_root;
1742         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1743                 return fs_info->chunk_root;
1744         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1745                 return fs_info->dev_root;
1746         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1747                 return fs_info->csum_root;
1748         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1749                 return fs_info->quota_root ? fs_info->quota_root :
1750                                              ERR_PTR(-ENOENT);
1751         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1752                 return fs_info->uuid_root ? fs_info->uuid_root :
1753                                             ERR_PTR(-ENOENT);
1754         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1755                 return fs_info->free_space_root ? fs_info->free_space_root :
1756                                                   ERR_PTR(-ENOENT);
1757 again:
1758         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1759         if (root) {
1760                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1761                         return ERR_PTR(-ENOENT);
1762                 return root;
1763         }
1764
1765         root = btrfs_read_fs_root(fs_info->tree_root, location);
1766         if (IS_ERR(root))
1767                 return root;
1768
1769         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1770                 ret = -ENOENT;
1771                 goto fail;
1772         }
1773
1774         ret = btrfs_init_fs_root(root);
1775         if (ret)
1776                 goto fail;
1777
1778         path = btrfs_alloc_path();
1779         if (!path) {
1780                 ret = -ENOMEM;
1781                 goto fail;
1782         }
1783         key.objectid = BTRFS_ORPHAN_OBJECTID;
1784         key.type = BTRFS_ORPHAN_ITEM_KEY;
1785         key.offset = location->objectid;
1786
1787         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1788         btrfs_free_path(path);
1789         if (ret < 0)
1790                 goto fail;
1791         if (ret == 0)
1792                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1793
1794         ret = btrfs_insert_fs_root(fs_info, root);
1795         if (ret) {
1796                 if (ret == -EEXIST) {
1797                         free_fs_root(root);
1798                         goto again;
1799                 }
1800                 goto fail;
1801         }
1802         return root;
1803 fail:
1804         free_fs_root(root);
1805         return ERR_PTR(ret);
1806 }
1807
1808 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1809 {
1810         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1811         int ret = 0;
1812         struct btrfs_device *device;
1813         struct backing_dev_info *bdi;
1814
1815         rcu_read_lock();
1816         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1817                 if (!device->bdev)
1818                         continue;
1819                 bdi = blk_get_backing_dev_info(device->bdev);
1820                 if (bdi_congested(bdi, bdi_bits)) {
1821                         ret = 1;
1822                         break;
1823                 }
1824         }
1825         rcu_read_unlock();
1826         return ret;
1827 }
1828
1829 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1830 {
1831         int err;
1832
1833         err = bdi_setup_and_register(bdi, "btrfs");
1834         if (err)
1835                 return err;
1836
1837         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1838         bdi->congested_fn       = btrfs_congested_fn;
1839         bdi->congested_data     = info;
1840         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1841         return 0;
1842 }
1843
1844 /*
1845  * called by the kthread helper functions to finally call the bio end_io
1846  * functions.  This is where read checksum verification actually happens
1847  */
1848 static void end_workqueue_fn(struct btrfs_work *work)
1849 {
1850         struct bio *bio;
1851         struct btrfs_end_io_wq *end_io_wq;
1852
1853         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1854         bio = end_io_wq->bio;
1855
1856         bio->bi_error = end_io_wq->error;
1857         bio->bi_private = end_io_wq->private;
1858         bio->bi_end_io = end_io_wq->end_io;
1859         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1860         bio_endio(bio);
1861 }
1862
1863 static int cleaner_kthread(void *arg)
1864 {
1865         struct btrfs_root *root = arg;
1866         int again;
1867         struct btrfs_trans_handle *trans;
1868
1869         do {
1870                 again = 0;
1871
1872                 /* Make the cleaner go to sleep early. */
1873                 if (btrfs_need_cleaner_sleep(root))
1874                         goto sleep;
1875
1876                 /*
1877                  * Do not do anything if we might cause open_ctree() to block
1878                  * before we have finished mounting the filesystem.
1879                  */
1880                 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
1881                         goto sleep;
1882
1883                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1884                         goto sleep;
1885
1886                 /*
1887                  * Avoid the problem that we change the status of the fs
1888                  * during the above check and trylock.
1889                  */
1890                 if (btrfs_need_cleaner_sleep(root)) {
1891                         mutex_unlock(&root->fs_info->cleaner_mutex);
1892                         goto sleep;
1893                 }
1894
1895                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1896                 btrfs_run_delayed_iputs(root);
1897                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1898
1899                 again = btrfs_clean_one_deleted_snapshot(root);
1900                 mutex_unlock(&root->fs_info->cleaner_mutex);
1901
1902                 /*
1903                  * The defragger has dealt with the R/O remount and umount,
1904                  * needn't do anything special here.
1905                  */
1906                 btrfs_run_defrag_inodes(root->fs_info);
1907
1908                 /*
1909                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1910                  * with relocation (btrfs_relocate_chunk) and relocation
1911                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1912                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1913                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1914                  * unused block groups.
1915                  */
1916                 btrfs_delete_unused_bgs(root->fs_info);
1917 sleep:
1918                 if (!again) {
1919                         set_current_state(TASK_INTERRUPTIBLE);
1920                         if (!kthread_should_stop())
1921                                 schedule();
1922                         __set_current_state(TASK_RUNNING);
1923                 }
1924         } while (!kthread_should_stop());
1925
1926         /*
1927          * Transaction kthread is stopped before us and wakes us up.
1928          * However we might have started a new transaction and COWed some
1929          * tree blocks when deleting unused block groups for example. So
1930          * make sure we commit the transaction we started to have a clean
1931          * shutdown when evicting the btree inode - if it has dirty pages
1932          * when we do the final iput() on it, eviction will trigger a
1933          * writeback for it which will fail with null pointer dereferences
1934          * since work queues and other resources were already released and
1935          * destroyed by the time the iput/eviction/writeback is made.
1936          */
1937         trans = btrfs_attach_transaction(root);
1938         if (IS_ERR(trans)) {
1939                 if (PTR_ERR(trans) != -ENOENT)
1940                         btrfs_err(root->fs_info,
1941                                   "cleaner transaction attach returned %ld",
1942                                   PTR_ERR(trans));
1943         } else {
1944                 int ret;
1945
1946                 ret = btrfs_commit_transaction(trans, root);
1947                 if (ret)
1948                         btrfs_err(root->fs_info,
1949                                   "cleaner open transaction commit returned %d",
1950                                   ret);
1951         }
1952
1953         return 0;
1954 }
1955
1956 static int transaction_kthread(void *arg)
1957 {
1958         struct btrfs_root *root = arg;
1959         struct btrfs_trans_handle *trans;
1960         struct btrfs_transaction *cur;
1961         u64 transid;
1962         unsigned long now;
1963         unsigned long delay;
1964         bool cannot_commit;
1965
1966         do {
1967                 cannot_commit = false;
1968                 delay = HZ * root->fs_info->commit_interval;
1969                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1970
1971                 spin_lock(&root->fs_info->trans_lock);
1972                 cur = root->fs_info->running_transaction;
1973                 if (!cur) {
1974                         spin_unlock(&root->fs_info->trans_lock);
1975                         goto sleep;
1976                 }
1977
1978                 now = get_seconds();
1979                 if (cur->state < TRANS_STATE_BLOCKED &&
1980                     (now < cur->start_time ||
1981                      now - cur->start_time < root->fs_info->commit_interval)) {
1982                         spin_unlock(&root->fs_info->trans_lock);
1983                         delay = HZ * 5;
1984                         goto sleep;
1985                 }
1986                 transid = cur->transid;
1987                 spin_unlock(&root->fs_info->trans_lock);
1988
1989                 /* If the file system is aborted, this will always fail. */
1990                 trans = btrfs_attach_transaction(root);
1991                 if (IS_ERR(trans)) {
1992                         if (PTR_ERR(trans) != -ENOENT)
1993                                 cannot_commit = true;
1994                         goto sleep;
1995                 }
1996                 if (transid == trans->transid) {
1997                         btrfs_commit_transaction(trans, root);
1998                 } else {
1999                         btrfs_end_transaction(trans, root);
2000                 }
2001 sleep:
2002                 wake_up_process(root->fs_info->cleaner_kthread);
2003                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
2004
2005                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
2006                                       &root->fs_info->fs_state)))
2007                         btrfs_cleanup_transaction(root);
2008                 set_current_state(TASK_INTERRUPTIBLE);
2009                 if (!kthread_should_stop() &&
2010                                 (!btrfs_transaction_blocked(root->fs_info) ||
2011                                  cannot_commit))
2012                         schedule_timeout(delay);
2013                 __set_current_state(TASK_RUNNING);
2014         } while (!kthread_should_stop());
2015         return 0;
2016 }
2017
2018 /*
2019  * this will find the highest generation in the array of
2020  * root backups.  The index of the highest array is returned,
2021  * or -1 if we can't find anything.
2022  *
2023  * We check to make sure the array is valid by comparing the
2024  * generation of the latest  root in the array with the generation
2025  * in the super block.  If they don't match we pitch it.
2026  */
2027 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2028 {
2029         u64 cur;
2030         int newest_index = -1;
2031         struct btrfs_root_backup *root_backup;
2032         int i;
2033
2034         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2035                 root_backup = info->super_copy->super_roots + i;
2036                 cur = btrfs_backup_tree_root_gen(root_backup);
2037                 if (cur == newest_gen)
2038                         newest_index = i;
2039         }
2040
2041         /* check to see if we actually wrapped around */
2042         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2043                 root_backup = info->super_copy->super_roots;
2044                 cur = btrfs_backup_tree_root_gen(root_backup);
2045                 if (cur == newest_gen)
2046                         newest_index = 0;
2047         }
2048         return newest_index;
2049 }
2050
2051
2052 /*
2053  * find the oldest backup so we know where to store new entries
2054  * in the backup array.  This will set the backup_root_index
2055  * field in the fs_info struct
2056  */
2057 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2058                                      u64 newest_gen)
2059 {
2060         int newest_index = -1;
2061
2062         newest_index = find_newest_super_backup(info, newest_gen);
2063         /* if there was garbage in there, just move along */
2064         if (newest_index == -1) {
2065                 info->backup_root_index = 0;
2066         } else {
2067                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2068         }
2069 }
2070
2071 /*
2072  * copy all the root pointers into the super backup array.
2073  * this will bump the backup pointer by one when it is
2074  * done
2075  */
2076 static void backup_super_roots(struct btrfs_fs_info *info)
2077 {
2078         int next_backup;
2079         struct btrfs_root_backup *root_backup;
2080         int last_backup;
2081
2082         next_backup = info->backup_root_index;
2083         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2084                 BTRFS_NUM_BACKUP_ROOTS;
2085
2086         /*
2087          * just overwrite the last backup if we're at the same generation
2088          * this happens only at umount
2089          */
2090         root_backup = info->super_for_commit->super_roots + last_backup;
2091         if (btrfs_backup_tree_root_gen(root_backup) ==
2092             btrfs_header_generation(info->tree_root->node))
2093                 next_backup = last_backup;
2094
2095         root_backup = info->super_for_commit->super_roots + next_backup;
2096
2097         /*
2098          * make sure all of our padding and empty slots get zero filled
2099          * regardless of which ones we use today
2100          */
2101         memset(root_backup, 0, sizeof(*root_backup));
2102
2103         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2104
2105         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2106         btrfs_set_backup_tree_root_gen(root_backup,
2107                                btrfs_header_generation(info->tree_root->node));
2108
2109         btrfs_set_backup_tree_root_level(root_backup,
2110                                btrfs_header_level(info->tree_root->node));
2111
2112         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2113         btrfs_set_backup_chunk_root_gen(root_backup,
2114                                btrfs_header_generation(info->chunk_root->node));
2115         btrfs_set_backup_chunk_root_level(root_backup,
2116                                btrfs_header_level(info->chunk_root->node));
2117
2118         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2119         btrfs_set_backup_extent_root_gen(root_backup,
2120                                btrfs_header_generation(info->extent_root->node));
2121         btrfs_set_backup_extent_root_level(root_backup,
2122                                btrfs_header_level(info->extent_root->node));
2123
2124         /*
2125          * we might commit during log recovery, which happens before we set
2126          * the fs_root.  Make sure it is valid before we fill it in.
2127          */
2128         if (info->fs_root && info->fs_root->node) {
2129                 btrfs_set_backup_fs_root(root_backup,
2130                                          info->fs_root->node->start);
2131                 btrfs_set_backup_fs_root_gen(root_backup,
2132                                btrfs_header_generation(info->fs_root->node));
2133                 btrfs_set_backup_fs_root_level(root_backup,
2134                                btrfs_header_level(info->fs_root->node));
2135         }
2136
2137         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2138         btrfs_set_backup_dev_root_gen(root_backup,
2139                                btrfs_header_generation(info->dev_root->node));
2140         btrfs_set_backup_dev_root_level(root_backup,
2141                                        btrfs_header_level(info->dev_root->node));
2142
2143         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2144         btrfs_set_backup_csum_root_gen(root_backup,
2145                                btrfs_header_generation(info->csum_root->node));
2146         btrfs_set_backup_csum_root_level(root_backup,
2147                                btrfs_header_level(info->csum_root->node));
2148
2149         btrfs_set_backup_total_bytes(root_backup,
2150                              btrfs_super_total_bytes(info->super_copy));
2151         btrfs_set_backup_bytes_used(root_backup,
2152                              btrfs_super_bytes_used(info->super_copy));
2153         btrfs_set_backup_num_devices(root_backup,
2154                              btrfs_super_num_devices(info->super_copy));
2155
2156         /*
2157          * if we don't copy this out to the super_copy, it won't get remembered
2158          * for the next commit
2159          */
2160         memcpy(&info->super_copy->super_roots,
2161                &info->super_for_commit->super_roots,
2162                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2163 }
2164
2165 /*
2166  * this copies info out of the root backup array and back into
2167  * the in-memory super block.  It is meant to help iterate through
2168  * the array, so you send it the number of backups you've already
2169  * tried and the last backup index you used.
2170  *
2171  * this returns -1 when it has tried all the backups
2172  */
2173 static noinline int next_root_backup(struct btrfs_fs_info *info,
2174                                      struct btrfs_super_block *super,
2175                                      int *num_backups_tried, int *backup_index)
2176 {
2177         struct btrfs_root_backup *root_backup;
2178         int newest = *backup_index;
2179
2180         if (*num_backups_tried == 0) {
2181                 u64 gen = btrfs_super_generation(super);
2182
2183                 newest = find_newest_super_backup(info, gen);
2184                 if (newest == -1)
2185                         return -1;
2186
2187                 *backup_index = newest;
2188                 *num_backups_tried = 1;
2189         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2190                 /* we've tried all the backups, all done */
2191                 return -1;
2192         } else {
2193                 /* jump to the next oldest backup */
2194                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2195                         BTRFS_NUM_BACKUP_ROOTS;
2196                 *backup_index = newest;
2197                 *num_backups_tried += 1;
2198         }
2199         root_backup = super->super_roots + newest;
2200
2201         btrfs_set_super_generation(super,
2202                                    btrfs_backup_tree_root_gen(root_backup));
2203         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2204         btrfs_set_super_root_level(super,
2205                                    btrfs_backup_tree_root_level(root_backup));
2206         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2207
2208         /*
2209          * fixme: the total bytes and num_devices need to match or we should
2210          * need a fsck
2211          */
2212         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2213         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2214         return 0;
2215 }
2216
2217 /* helper to cleanup workers */
2218 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2219 {
2220         btrfs_destroy_workqueue(fs_info->fixup_workers);
2221         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2222         btrfs_destroy_workqueue(fs_info->workers);
2223         btrfs_destroy_workqueue(fs_info->endio_workers);
2224         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2225         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2226         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2227         btrfs_destroy_workqueue(fs_info->rmw_workers);
2228         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2229         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2230         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2231         btrfs_destroy_workqueue(fs_info->submit_workers);
2232         btrfs_destroy_workqueue(fs_info->delayed_workers);
2233         btrfs_destroy_workqueue(fs_info->caching_workers);
2234         btrfs_destroy_workqueue(fs_info->readahead_workers);
2235         btrfs_destroy_workqueue(fs_info->flush_workers);
2236         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2237         btrfs_destroy_workqueue(fs_info->extent_workers);
2238 }
2239
2240 static void free_root_extent_buffers(struct btrfs_root *root)
2241 {
2242         if (root) {
2243                 free_extent_buffer(root->node);
2244                 free_extent_buffer(root->commit_root);
2245                 root->node = NULL;
2246                 root->commit_root = NULL;
2247         }
2248 }
2249
2250 /* helper to cleanup tree roots */
2251 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2252 {
2253         free_root_extent_buffers(info->tree_root);
2254
2255         free_root_extent_buffers(info->dev_root);
2256         free_root_extent_buffers(info->extent_root);
2257         free_root_extent_buffers(info->csum_root);
2258         free_root_extent_buffers(info->quota_root);
2259         free_root_extent_buffers(info->uuid_root);
2260         if (chunk_root)
2261                 free_root_extent_buffers(info->chunk_root);
2262         free_root_extent_buffers(info->free_space_root);
2263 }
2264
2265 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2266 {
2267         int ret;
2268         struct btrfs_root *gang[8];
2269         int i;
2270
2271         while (!list_empty(&fs_info->dead_roots)) {
2272                 gang[0] = list_entry(fs_info->dead_roots.next,
2273                                      struct btrfs_root, root_list);
2274                 list_del(&gang[0]->root_list);
2275
2276                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2277                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2278                 } else {
2279                         free_extent_buffer(gang[0]->node);
2280                         free_extent_buffer(gang[0]->commit_root);
2281                         btrfs_put_fs_root(gang[0]);
2282                 }
2283         }
2284
2285         while (1) {
2286                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2287                                              (void **)gang, 0,
2288                                              ARRAY_SIZE(gang));
2289                 if (!ret)
2290                         break;
2291                 for (i = 0; i < ret; i++)
2292                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2293         }
2294
2295         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2296                 btrfs_free_log_root_tree(NULL, fs_info);
2297                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2298                                             fs_info->pinned_extents);
2299         }
2300 }
2301
2302 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2303 {
2304         mutex_init(&fs_info->scrub_lock);
2305         atomic_set(&fs_info->scrubs_running, 0);
2306         atomic_set(&fs_info->scrub_pause_req, 0);
2307         atomic_set(&fs_info->scrubs_paused, 0);
2308         atomic_set(&fs_info->scrub_cancel_req, 0);
2309         init_waitqueue_head(&fs_info->scrub_pause_wait);
2310         fs_info->scrub_workers_refcnt = 0;
2311 }
2312
2313 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2314 {
2315         spin_lock_init(&fs_info->balance_lock);
2316         mutex_init(&fs_info->balance_mutex);
2317         atomic_set(&fs_info->balance_running, 0);
2318         atomic_set(&fs_info->balance_pause_req, 0);
2319         atomic_set(&fs_info->balance_cancel_req, 0);
2320         fs_info->balance_ctl = NULL;
2321         init_waitqueue_head(&fs_info->balance_wait_q);
2322 }
2323
2324 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2325                                    struct btrfs_root *tree_root)
2326 {
2327         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2328         set_nlink(fs_info->btree_inode, 1);
2329         /*
2330          * we set the i_size on the btree inode to the max possible int.
2331          * the real end of the address space is determined by all of
2332          * the devices in the system
2333          */
2334         fs_info->btree_inode->i_size = OFFSET_MAX;
2335         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2336
2337         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2338         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2339                              fs_info->btree_inode->i_mapping);
2340         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2341         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2342
2343         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2344
2345         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2346         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2347                sizeof(struct btrfs_key));
2348         set_bit(BTRFS_INODE_DUMMY,
2349                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2350         btrfs_insert_inode_hash(fs_info->btree_inode);
2351 }
2352
2353 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2354 {
2355         fs_info->dev_replace.lock_owner = 0;
2356         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2357         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2358         rwlock_init(&fs_info->dev_replace.lock);
2359         atomic_set(&fs_info->dev_replace.read_locks, 0);
2360         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2361         init_waitqueue_head(&fs_info->replace_wait);
2362         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2363 }
2364
2365 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2366 {
2367         spin_lock_init(&fs_info->qgroup_lock);
2368         mutex_init(&fs_info->qgroup_ioctl_lock);
2369         fs_info->qgroup_tree = RB_ROOT;
2370         fs_info->qgroup_op_tree = RB_ROOT;
2371         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2372         fs_info->qgroup_seq = 1;
2373         fs_info->qgroup_ulist = NULL;
2374         fs_info->qgroup_rescan_running = false;
2375         mutex_init(&fs_info->qgroup_rescan_lock);
2376 }
2377
2378 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2379                 struct btrfs_fs_devices *fs_devices)
2380 {
2381         int max_active = fs_info->thread_pool_size;
2382         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2383
2384         fs_info->workers =
2385                 btrfs_alloc_workqueue(fs_info, "worker",
2386                                       flags | WQ_HIGHPRI, max_active, 16);
2387
2388         fs_info->delalloc_workers =
2389                 btrfs_alloc_workqueue(fs_info, "delalloc",
2390                                       flags, max_active, 2);
2391
2392         fs_info->flush_workers =
2393                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2394                                       flags, max_active, 0);
2395
2396         fs_info->caching_workers =
2397                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2398
2399         /*
2400          * a higher idle thresh on the submit workers makes it much more
2401          * likely that bios will be send down in a sane order to the
2402          * devices
2403          */
2404         fs_info->submit_workers =
2405                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2406                                       min_t(u64, fs_devices->num_devices,
2407                                             max_active), 64);
2408
2409         fs_info->fixup_workers =
2410                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2411
2412         /*
2413          * endios are largely parallel and should have a very
2414          * low idle thresh
2415          */
2416         fs_info->endio_workers =
2417                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2418         fs_info->endio_meta_workers =
2419                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2420                                       max_active, 4);
2421         fs_info->endio_meta_write_workers =
2422                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2423                                       max_active, 2);
2424         fs_info->endio_raid56_workers =
2425                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2426                                       max_active, 4);
2427         fs_info->endio_repair_workers =
2428                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2429         fs_info->rmw_workers =
2430                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2431         fs_info->endio_write_workers =
2432                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2433                                       max_active, 2);
2434         fs_info->endio_freespace_worker =
2435                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2436                                       max_active, 0);
2437         fs_info->delayed_workers =
2438                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2439                                       max_active, 0);
2440         fs_info->readahead_workers =
2441                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2442                                       max_active, 2);
2443         fs_info->qgroup_rescan_workers =
2444                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2445         fs_info->extent_workers =
2446                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2447                                       min_t(u64, fs_devices->num_devices,
2448                                             max_active), 8);
2449
2450         if (!(fs_info->workers && fs_info->delalloc_workers &&
2451               fs_info->submit_workers && fs_info->flush_workers &&
2452               fs_info->endio_workers && fs_info->endio_meta_workers &&
2453               fs_info->endio_meta_write_workers &&
2454               fs_info->endio_repair_workers &&
2455               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2456               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2457               fs_info->caching_workers && fs_info->readahead_workers &&
2458               fs_info->fixup_workers && fs_info->delayed_workers &&
2459               fs_info->extent_workers &&
2460               fs_info->qgroup_rescan_workers)) {
2461                 return -ENOMEM;
2462         }
2463
2464         return 0;
2465 }
2466
2467 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2468                             struct btrfs_fs_devices *fs_devices)
2469 {
2470         int ret;
2471         struct btrfs_root *tree_root = fs_info->tree_root;
2472         struct btrfs_root *log_tree_root;
2473         struct btrfs_super_block *disk_super = fs_info->super_copy;
2474         u64 bytenr = btrfs_super_log_root(disk_super);
2475
2476         if (fs_devices->rw_devices == 0) {
2477                 btrfs_warn(fs_info, "log replay required on RO media");
2478                 return -EIO;
2479         }
2480
2481         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2482         if (!log_tree_root)
2483                 return -ENOMEM;
2484
2485         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2486                         tree_root->stripesize, log_tree_root, fs_info,
2487                         BTRFS_TREE_LOG_OBJECTID);
2488
2489         log_tree_root->node = read_tree_block(tree_root, bytenr,
2490                         fs_info->generation + 1);
2491         if (IS_ERR(log_tree_root->node)) {
2492                 btrfs_warn(fs_info, "failed to read log tree");
2493                 ret = PTR_ERR(log_tree_root->node);
2494                 kfree(log_tree_root);
2495                 return ret;
2496         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2497                 btrfs_err(fs_info, "failed to read log tree");
2498                 free_extent_buffer(log_tree_root->node);
2499                 kfree(log_tree_root);
2500                 return -EIO;
2501         }
2502         /* returns with log_tree_root freed on success */
2503         ret = btrfs_recover_log_trees(log_tree_root);
2504         if (ret) {
2505                 btrfs_handle_fs_error(tree_root->fs_info, ret,
2506                             "Failed to recover log tree");
2507                 free_extent_buffer(log_tree_root->node);
2508                 kfree(log_tree_root);
2509                 return ret;
2510         }
2511
2512         if (fs_info->sb->s_flags & MS_RDONLY) {
2513                 ret = btrfs_commit_super(tree_root);
2514                 if (ret)
2515                         return ret;
2516         }
2517
2518         return 0;
2519 }
2520
2521 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2522                             struct btrfs_root *tree_root)
2523 {
2524         struct btrfs_root *root;
2525         struct btrfs_key location;
2526         int ret;
2527
2528         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2529         location.type = BTRFS_ROOT_ITEM_KEY;
2530         location.offset = 0;
2531
2532         root = btrfs_read_tree_root(tree_root, &location);
2533         if (IS_ERR(root))
2534                 return PTR_ERR(root);
2535         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2536         fs_info->extent_root = root;
2537
2538         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2539         root = btrfs_read_tree_root(tree_root, &location);
2540         if (IS_ERR(root))
2541                 return PTR_ERR(root);
2542         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2543         fs_info->dev_root = root;
2544         btrfs_init_devices_late(fs_info);
2545
2546         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2547         root = btrfs_read_tree_root(tree_root, &location);
2548         if (IS_ERR(root))
2549                 return PTR_ERR(root);
2550         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551         fs_info->csum_root = root;
2552
2553         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2554         root = btrfs_read_tree_root(tree_root, &location);
2555         if (!IS_ERR(root)) {
2556                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2557                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2558                 fs_info->quota_root = root;
2559         }
2560
2561         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2562         root = btrfs_read_tree_root(tree_root, &location);
2563         if (IS_ERR(root)) {
2564                 ret = PTR_ERR(root);
2565                 if (ret != -ENOENT)
2566                         return ret;
2567         } else {
2568                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2569                 fs_info->uuid_root = root;
2570         }
2571
2572         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2573                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2574                 root = btrfs_read_tree_root(tree_root, &location);
2575                 if (IS_ERR(root))
2576                         return PTR_ERR(root);
2577                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2578                 fs_info->free_space_root = root;
2579         }
2580
2581         return 0;
2582 }
2583
2584 int open_ctree(struct super_block *sb,
2585                struct btrfs_fs_devices *fs_devices,
2586                char *options)
2587 {
2588         u32 sectorsize;
2589         u32 nodesize;
2590         u32 stripesize;
2591         u64 generation;
2592         u64 features;
2593         struct btrfs_key location;
2594         struct buffer_head *bh;
2595         struct btrfs_super_block *disk_super;
2596         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2597         struct btrfs_root *tree_root;
2598         struct btrfs_root *chunk_root;
2599         int ret;
2600         int err = -EINVAL;
2601         int num_backups_tried = 0;
2602         int backup_index = 0;
2603         int max_active;
2604         int clear_free_space_tree = 0;
2605
2606         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2607         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2608         if (!tree_root || !chunk_root) {
2609                 err = -ENOMEM;
2610                 goto fail;
2611         }
2612
2613         ret = init_srcu_struct(&fs_info->subvol_srcu);
2614         if (ret) {
2615                 err = ret;
2616                 goto fail;
2617         }
2618
2619         ret = setup_bdi(fs_info, &fs_info->bdi);
2620         if (ret) {
2621                 err = ret;
2622                 goto fail_srcu;
2623         }
2624
2625         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2626         if (ret) {
2627                 err = ret;
2628                 goto fail_bdi;
2629         }
2630         fs_info->dirty_metadata_batch = PAGE_SIZE *
2631                                         (1 + ilog2(nr_cpu_ids));
2632
2633         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2634         if (ret) {
2635                 err = ret;
2636                 goto fail_dirty_metadata_bytes;
2637         }
2638
2639         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2640         if (ret) {
2641                 err = ret;
2642                 goto fail_delalloc_bytes;
2643         }
2644
2645         fs_info->btree_inode = new_inode(sb);
2646         if (!fs_info->btree_inode) {
2647                 err = -ENOMEM;
2648                 goto fail_bio_counter;
2649         }
2650
2651         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2652
2653         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2654         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2655         INIT_LIST_HEAD(&fs_info->trans_list);
2656         INIT_LIST_HEAD(&fs_info->dead_roots);
2657         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2658         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2659         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2660         spin_lock_init(&fs_info->delalloc_root_lock);
2661         spin_lock_init(&fs_info->trans_lock);
2662         spin_lock_init(&fs_info->fs_roots_radix_lock);
2663         spin_lock_init(&fs_info->delayed_iput_lock);
2664         spin_lock_init(&fs_info->defrag_inodes_lock);
2665         spin_lock_init(&fs_info->free_chunk_lock);
2666         spin_lock_init(&fs_info->tree_mod_seq_lock);
2667         spin_lock_init(&fs_info->super_lock);
2668         spin_lock_init(&fs_info->qgroup_op_lock);
2669         spin_lock_init(&fs_info->buffer_lock);
2670         spin_lock_init(&fs_info->unused_bgs_lock);
2671         rwlock_init(&fs_info->tree_mod_log_lock);
2672         mutex_init(&fs_info->unused_bg_unpin_mutex);
2673         mutex_init(&fs_info->delete_unused_bgs_mutex);
2674         mutex_init(&fs_info->reloc_mutex);
2675         mutex_init(&fs_info->delalloc_root_mutex);
2676         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2677         seqlock_init(&fs_info->profiles_lock);
2678
2679         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2680         INIT_LIST_HEAD(&fs_info->space_info);
2681         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2682         INIT_LIST_HEAD(&fs_info->unused_bgs);
2683         btrfs_mapping_init(&fs_info->mapping_tree);
2684         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2685                              BTRFS_BLOCK_RSV_GLOBAL);
2686         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2687                              BTRFS_BLOCK_RSV_DELALLOC);
2688         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2689         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2690         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2691         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2692                              BTRFS_BLOCK_RSV_DELOPS);
2693         atomic_set(&fs_info->nr_async_submits, 0);
2694         atomic_set(&fs_info->async_delalloc_pages, 0);
2695         atomic_set(&fs_info->async_submit_draining, 0);
2696         atomic_set(&fs_info->nr_async_bios, 0);
2697         atomic_set(&fs_info->defrag_running, 0);
2698         atomic_set(&fs_info->qgroup_op_seq, 0);
2699         atomic_set(&fs_info->reada_works_cnt, 0);
2700         atomic64_set(&fs_info->tree_mod_seq, 0);
2701         fs_info->fs_frozen = 0;
2702         fs_info->sb = sb;
2703         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2704         fs_info->metadata_ratio = 0;
2705         fs_info->defrag_inodes = RB_ROOT;
2706         fs_info->free_chunk_space = 0;
2707         fs_info->tree_mod_log = RB_ROOT;
2708         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2709         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2710         /* readahead state */
2711         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2712         spin_lock_init(&fs_info->reada_lock);
2713
2714         fs_info->thread_pool_size = min_t(unsigned long,
2715                                           num_online_cpus() + 2, 8);
2716
2717         INIT_LIST_HEAD(&fs_info->ordered_roots);
2718         spin_lock_init(&fs_info->ordered_root_lock);
2719         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2720                                         GFP_KERNEL);
2721         if (!fs_info->delayed_root) {
2722                 err = -ENOMEM;
2723                 goto fail_iput;
2724         }
2725         btrfs_init_delayed_root(fs_info->delayed_root);
2726
2727         btrfs_init_scrub(fs_info);
2728 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2729         fs_info->check_integrity_print_mask = 0;
2730 #endif
2731         btrfs_init_balance(fs_info);
2732         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2733
2734         sb->s_blocksize = 4096;
2735         sb->s_blocksize_bits = blksize_bits(4096);
2736         sb->s_bdi = &fs_info->bdi;
2737
2738         btrfs_init_btree_inode(fs_info, tree_root);
2739
2740         spin_lock_init(&fs_info->block_group_cache_lock);
2741         fs_info->block_group_cache_tree = RB_ROOT;
2742         fs_info->first_logical_byte = (u64)-1;
2743
2744         extent_io_tree_init(&fs_info->freed_extents[0],
2745                              fs_info->btree_inode->i_mapping);
2746         extent_io_tree_init(&fs_info->freed_extents[1],
2747                              fs_info->btree_inode->i_mapping);
2748         fs_info->pinned_extents = &fs_info->freed_extents[0];
2749         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2750
2751         mutex_init(&fs_info->ordered_operations_mutex);
2752         mutex_init(&fs_info->tree_log_mutex);
2753         mutex_init(&fs_info->chunk_mutex);
2754         mutex_init(&fs_info->transaction_kthread_mutex);
2755         mutex_init(&fs_info->cleaner_mutex);
2756         mutex_init(&fs_info->volume_mutex);
2757         mutex_init(&fs_info->ro_block_group_mutex);
2758         init_rwsem(&fs_info->commit_root_sem);
2759         init_rwsem(&fs_info->cleanup_work_sem);
2760         init_rwsem(&fs_info->subvol_sem);
2761         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2762
2763         btrfs_init_dev_replace_locks(fs_info);
2764         btrfs_init_qgroup(fs_info);
2765
2766         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2767         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2768
2769         init_waitqueue_head(&fs_info->transaction_throttle);
2770         init_waitqueue_head(&fs_info->transaction_wait);
2771         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2772         init_waitqueue_head(&fs_info->async_submit_wait);
2773
2774         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2775
2776         ret = btrfs_alloc_stripe_hash_table(fs_info);
2777         if (ret) {
2778                 err = ret;
2779                 goto fail_alloc;
2780         }
2781
2782         __setup_root(4096, 4096, 4096, tree_root,
2783                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2784
2785         invalidate_bdev(fs_devices->latest_bdev);
2786
2787         /*
2788          * Read super block and check the signature bytes only
2789          */
2790         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2791         if (IS_ERR(bh)) {
2792                 err = PTR_ERR(bh);
2793                 goto fail_alloc;
2794         }
2795
2796         /*
2797          * We want to check superblock checksum, the type is stored inside.
2798          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2799          */
2800         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2801                 btrfs_err(fs_info, "superblock checksum mismatch");
2802                 err = -EINVAL;
2803                 brelse(bh);
2804                 goto fail_alloc;
2805         }
2806
2807         /*
2808          * super_copy is zeroed at allocation time and we never touch the
2809          * following bytes up to INFO_SIZE, the checksum is calculated from
2810          * the whole block of INFO_SIZE
2811          */
2812         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2813         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2814                sizeof(*fs_info->super_for_commit));
2815         brelse(bh);
2816
2817         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2818
2819         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2820         if (ret) {
2821                 btrfs_err(fs_info, "superblock contains fatal errors");
2822                 err = -EINVAL;
2823                 goto fail_alloc;
2824         }
2825
2826         disk_super = fs_info->super_copy;
2827         if (!btrfs_super_root(disk_super))
2828                 goto fail_alloc;
2829
2830         /* check FS state, whether FS is broken. */
2831         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2832                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2833
2834         /*
2835          * run through our array of backup supers and setup
2836          * our ring pointer to the oldest one
2837          */
2838         generation = btrfs_super_generation(disk_super);
2839         find_oldest_super_backup(fs_info, generation);
2840
2841         /*
2842          * In the long term, we'll store the compression type in the super
2843          * block, and it'll be used for per file compression control.
2844          */
2845         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2846
2847         ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2848         if (ret) {
2849                 err = ret;
2850                 goto fail_alloc;
2851         }
2852
2853         features = btrfs_super_incompat_flags(disk_super) &
2854                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2855         if (features) {
2856                 btrfs_err(fs_info,
2857                     "cannot mount because of unsupported optional features (%llx)",
2858                     features);
2859                 err = -EINVAL;
2860                 goto fail_alloc;
2861         }
2862
2863         features = btrfs_super_incompat_flags(disk_super);
2864         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2865         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2866                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2867
2868         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2869                 btrfs_info(fs_info, "has skinny extents");
2870
2871         /*
2872          * flag our filesystem as having big metadata blocks if
2873          * they are bigger than the page size
2874          */
2875         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2876                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2877                         btrfs_info(fs_info,
2878                                 "flagging fs with big metadata feature");
2879                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2880         }
2881
2882         nodesize = btrfs_super_nodesize(disk_super);
2883         sectorsize = btrfs_super_sectorsize(disk_super);
2884         stripesize = sectorsize;
2885         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2886         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2887
2888         /*
2889          * mixed block groups end up with duplicate but slightly offset
2890          * extent buffers for the same range.  It leads to corruptions
2891          */
2892         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2893             (sectorsize != nodesize)) {
2894                 btrfs_err(fs_info,
2895 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2896                         nodesize, sectorsize);
2897                 goto fail_alloc;
2898         }
2899
2900         /*
2901          * Needn't use the lock because there is no other task which will
2902          * update the flag.
2903          */
2904         btrfs_set_super_incompat_flags(disk_super, features);
2905
2906         features = btrfs_super_compat_ro_flags(disk_super) &
2907                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2908         if (!(sb->s_flags & MS_RDONLY) && features) {
2909                 btrfs_err(fs_info,
2910         "cannot mount read-write because of unsupported optional features (%llx)",
2911                        features);
2912                 err = -EINVAL;
2913                 goto fail_alloc;
2914         }
2915
2916         max_active = fs_info->thread_pool_size;
2917
2918         ret = btrfs_init_workqueues(fs_info, fs_devices);
2919         if (ret) {
2920                 err = ret;
2921                 goto fail_sb_buffer;
2922         }
2923
2924         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2925         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2926                                     SZ_4M / PAGE_SIZE);
2927
2928         tree_root->nodesize = nodesize;
2929         tree_root->sectorsize = sectorsize;
2930         tree_root->stripesize = stripesize;
2931
2932         sb->s_blocksize = sectorsize;
2933         sb->s_blocksize_bits = blksize_bits(sectorsize);
2934
2935         mutex_lock(&fs_info->chunk_mutex);
2936         ret = btrfs_read_sys_array(tree_root);
2937         mutex_unlock(&fs_info->chunk_mutex);
2938         if (ret) {
2939                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2940                 goto fail_sb_buffer;
2941         }
2942
2943         generation = btrfs_super_chunk_root_generation(disk_super);
2944
2945         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2946                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2947
2948         chunk_root->node = read_tree_block(chunk_root,
2949                                            btrfs_super_chunk_root(disk_super),
2950                                            generation);
2951         if (IS_ERR(chunk_root->node) ||
2952             !extent_buffer_uptodate(chunk_root->node)) {
2953                 btrfs_err(fs_info, "failed to read chunk root");
2954                 if (!IS_ERR(chunk_root->node))
2955                         free_extent_buffer(chunk_root->node);
2956                 chunk_root->node = NULL;
2957                 goto fail_tree_roots;
2958         }
2959         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2960         chunk_root->commit_root = btrfs_root_node(chunk_root);
2961
2962         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2963            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2964
2965         ret = btrfs_read_chunk_tree(chunk_root);
2966         if (ret) {
2967                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2968                 goto fail_tree_roots;
2969         }
2970
2971         /*
2972          * keep the device that is marked to be the target device for the
2973          * dev_replace procedure
2974          */
2975         btrfs_close_extra_devices(fs_devices, 0);
2976
2977         if (!fs_devices->latest_bdev) {
2978                 btrfs_err(fs_info, "failed to read devices");
2979                 goto fail_tree_roots;
2980         }
2981
2982 retry_root_backup:
2983         generation = btrfs_super_generation(disk_super);
2984
2985         tree_root->node = read_tree_block(tree_root,
2986                                           btrfs_super_root(disk_super),
2987                                           generation);
2988         if (IS_ERR(tree_root->node) ||
2989             !extent_buffer_uptodate(tree_root->node)) {
2990                 btrfs_warn(fs_info, "failed to read tree root");
2991                 if (!IS_ERR(tree_root->node))
2992                         free_extent_buffer(tree_root->node);
2993                 tree_root->node = NULL;
2994                 goto recovery_tree_root;
2995         }
2996
2997         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2998         tree_root->commit_root = btrfs_root_node(tree_root);
2999         btrfs_set_root_refs(&tree_root->root_item, 1);
3000
3001         mutex_lock(&tree_root->objectid_mutex);
3002         ret = btrfs_find_highest_objectid(tree_root,
3003                                         &tree_root->highest_objectid);
3004         if (ret) {
3005                 mutex_unlock(&tree_root->objectid_mutex);
3006                 goto recovery_tree_root;
3007         }
3008
3009         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3010
3011         mutex_unlock(&tree_root->objectid_mutex);
3012
3013         ret = btrfs_read_roots(fs_info, tree_root);
3014         if (ret)
3015                 goto recovery_tree_root;
3016
3017         fs_info->generation = generation;
3018         fs_info->last_trans_committed = generation;
3019
3020         ret = btrfs_recover_balance(fs_info);
3021         if (ret) {
3022                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3023                 goto fail_block_groups;
3024         }
3025
3026         ret = btrfs_init_dev_stats(fs_info);
3027         if (ret) {
3028                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3029                 goto fail_block_groups;
3030         }
3031
3032         ret = btrfs_init_dev_replace(fs_info);
3033         if (ret) {
3034                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3035                 goto fail_block_groups;
3036         }
3037
3038         btrfs_close_extra_devices(fs_devices, 1);
3039
3040         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3041         if (ret) {
3042                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3043                                 ret);
3044                 goto fail_block_groups;
3045         }
3046
3047         ret = btrfs_sysfs_add_device(fs_devices);
3048         if (ret) {
3049                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3050                                 ret);
3051                 goto fail_fsdev_sysfs;
3052         }
3053
3054         ret = btrfs_sysfs_add_mounted(fs_info);
3055         if (ret) {
3056                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3057                 goto fail_fsdev_sysfs;
3058         }
3059
3060         ret = btrfs_init_space_info(fs_info);
3061         if (ret) {
3062                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3063                 goto fail_sysfs;
3064         }
3065
3066         ret = btrfs_read_block_groups(fs_info->extent_root);
3067         if (ret) {
3068                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3069                 goto fail_sysfs;
3070         }
3071         fs_info->num_tolerated_disk_barrier_failures =
3072                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3073         if (fs_info->fs_devices->missing_devices >
3074              fs_info->num_tolerated_disk_barrier_failures &&
3075             !(sb->s_flags & MS_RDONLY)) {
3076                 btrfs_warn(fs_info,
3077 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3078                         fs_info->fs_devices->missing_devices,
3079                         fs_info->num_tolerated_disk_barrier_failures);
3080                 goto fail_sysfs;
3081         }
3082
3083         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3084                                                "btrfs-cleaner");
3085         if (IS_ERR(fs_info->cleaner_kthread))
3086                 goto fail_sysfs;
3087
3088         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3089                                                    tree_root,
3090                                                    "btrfs-transaction");
3091         if (IS_ERR(fs_info->transaction_kthread))
3092                 goto fail_cleaner;
3093
3094         if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3095             !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3096             !fs_info->fs_devices->rotating) {
3097                 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3098                 btrfs_set_opt(fs_info->mount_opt, SSD);
3099         }
3100
3101         /*
3102          * Mount does not set all options immediately, we can do it now and do
3103          * not have to wait for transaction commit
3104          */
3105         btrfs_apply_pending_changes(fs_info);
3106
3107 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3108         if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3109                 ret = btrfsic_mount(tree_root, fs_devices,
3110                                     btrfs_test_opt(tree_root->fs_info,
3111                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3112                                     1 : 0,
3113                                     fs_info->check_integrity_print_mask);
3114                 if (ret)
3115                         btrfs_warn(fs_info,
3116                                 "failed to initialize integrity check module: %d",
3117                                 ret);
3118         }
3119 #endif
3120         ret = btrfs_read_qgroup_config(fs_info);
3121         if (ret)
3122                 goto fail_trans_kthread;
3123
3124         /* do not make disk changes in broken FS or nologreplay is given */
3125         if (btrfs_super_log_root(disk_super) != 0 &&
3126             !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3127                 ret = btrfs_replay_log(fs_info, fs_devices);
3128                 if (ret) {
3129                         err = ret;
3130                         goto fail_qgroup;
3131                 }
3132         }
3133
3134         ret = btrfs_find_orphan_roots(tree_root);
3135         if (ret)
3136                 goto fail_qgroup;
3137
3138         if (!(sb->s_flags & MS_RDONLY)) {
3139                 ret = btrfs_cleanup_fs_roots(fs_info);
3140                 if (ret)
3141                         goto fail_qgroup;
3142
3143                 mutex_lock(&fs_info->cleaner_mutex);
3144                 ret = btrfs_recover_relocation(tree_root);
3145                 mutex_unlock(&fs_info->cleaner_mutex);
3146                 if (ret < 0) {
3147                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3148                                         ret);
3149                         err = -EINVAL;
3150                         goto fail_qgroup;
3151                 }
3152         }
3153
3154         location.objectid = BTRFS_FS_TREE_OBJECTID;
3155         location.type = BTRFS_ROOT_ITEM_KEY;
3156         location.offset = 0;
3157
3158         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3159         if (IS_ERR(fs_info->fs_root)) {
3160                 err = PTR_ERR(fs_info->fs_root);
3161                 goto fail_qgroup;
3162         }
3163
3164         if (sb->s_flags & MS_RDONLY)
3165                 return 0;
3166
3167         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3168             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3169                 clear_free_space_tree = 1;
3170         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3171                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3172                 btrfs_warn(fs_info, "free space tree is invalid");
3173                 clear_free_space_tree = 1;
3174         }
3175
3176         if (clear_free_space_tree) {
3177                 btrfs_info(fs_info, "clearing free space tree");
3178                 ret = btrfs_clear_free_space_tree(fs_info);
3179                 if (ret) {
3180                         btrfs_warn(fs_info,
3181                                    "failed to clear free space tree: %d", ret);
3182                         close_ctree(tree_root);
3183                         return ret;
3184                 }
3185         }
3186
3187         if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3188             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3189                 btrfs_info(fs_info, "creating free space tree");
3190                 ret = btrfs_create_free_space_tree(fs_info);
3191                 if (ret) {
3192                         btrfs_warn(fs_info,
3193                                 "failed to create free space tree: %d", ret);
3194                         close_ctree(tree_root);
3195                         return ret;
3196                 }
3197         }
3198
3199         down_read(&fs_info->cleanup_work_sem);
3200         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3201             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3202                 up_read(&fs_info->cleanup_work_sem);
3203                 close_ctree(tree_root);
3204                 return ret;
3205         }
3206         up_read(&fs_info->cleanup_work_sem);
3207
3208         ret = btrfs_resume_balance_async(fs_info);
3209         if (ret) {
3210                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3211                 close_ctree(tree_root);
3212                 return ret;
3213         }
3214
3215         ret = btrfs_resume_dev_replace_async(fs_info);
3216         if (ret) {
3217                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3218                 close_ctree(tree_root);
3219                 return ret;
3220         }
3221
3222         btrfs_qgroup_rescan_resume(fs_info);
3223
3224         if (!fs_info->uuid_root) {
3225                 btrfs_info(fs_info, "creating UUID tree");
3226                 ret = btrfs_create_uuid_tree(fs_info);
3227                 if (ret) {
3228                         btrfs_warn(fs_info,
3229                                 "failed to create the UUID tree: %d", ret);
3230                         close_ctree(tree_root);
3231                         return ret;
3232                 }
3233         } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3234                    fs_info->generation !=
3235                                 btrfs_super_uuid_tree_generation(disk_super)) {
3236                 btrfs_info(fs_info, "checking UUID tree");
3237                 ret = btrfs_check_uuid_tree(fs_info);
3238                 if (ret) {
3239                         btrfs_warn(fs_info,
3240                                 "failed to check the UUID tree: %d", ret);
3241                         close_ctree(tree_root);
3242                         return ret;
3243                 }
3244         } else {
3245                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3246         }
3247         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3248
3249         /*
3250          * backuproot only affect mount behavior, and if open_ctree succeeded,
3251          * no need to keep the flag
3252          */
3253         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3254
3255         return 0;
3256
3257 fail_qgroup:
3258         btrfs_free_qgroup_config(fs_info);
3259 fail_trans_kthread:
3260         kthread_stop(fs_info->transaction_kthread);
3261         btrfs_cleanup_transaction(fs_info->tree_root);
3262         btrfs_free_fs_roots(fs_info);
3263 fail_cleaner:
3264         kthread_stop(fs_info->cleaner_kthread);
3265
3266         /*
3267          * make sure we're done with the btree inode before we stop our
3268          * kthreads
3269          */
3270         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3271
3272 fail_sysfs:
3273         btrfs_sysfs_remove_mounted(fs_info);
3274
3275 fail_fsdev_sysfs:
3276         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3277
3278 fail_block_groups:
3279         btrfs_put_block_group_cache(fs_info);
3280         btrfs_free_block_groups(fs_info);
3281
3282 fail_tree_roots:
3283         free_root_pointers(fs_info, 1);
3284         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3285
3286 fail_sb_buffer:
3287         btrfs_stop_all_workers(fs_info);
3288 fail_alloc:
3289 fail_iput:
3290         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3291
3292         iput(fs_info->btree_inode);
3293 fail_bio_counter:
3294         percpu_counter_destroy(&fs_info->bio_counter);
3295 fail_delalloc_bytes:
3296         percpu_counter_destroy(&fs_info->delalloc_bytes);
3297 fail_dirty_metadata_bytes:
3298         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3299 fail_bdi:
3300         bdi_destroy(&fs_info->bdi);
3301 fail_srcu:
3302         cleanup_srcu_struct(&fs_info->subvol_srcu);
3303 fail:
3304         btrfs_free_stripe_hash_table(fs_info);
3305         btrfs_close_devices(fs_info->fs_devices);
3306         return err;
3307
3308 recovery_tree_root:
3309         if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3310                 goto fail_tree_roots;
3311
3312         free_root_pointers(fs_info, 0);
3313
3314         /* don't use the log in recovery mode, it won't be valid */
3315         btrfs_set_super_log_root(disk_super, 0);
3316
3317         /* we can't trust the free space cache either */
3318         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3319
3320         ret = next_root_backup(fs_info, fs_info->super_copy,
3321                                &num_backups_tried, &backup_index);
3322         if (ret == -1)
3323                 goto fail_block_groups;
3324         goto retry_root_backup;
3325 }
3326
3327 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3328 {
3329         if (uptodate) {
3330                 set_buffer_uptodate(bh);
3331         } else {
3332                 struct btrfs_device *device = (struct btrfs_device *)
3333                         bh->b_private;
3334
3335                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3336                                 "lost page write due to IO error on %s",
3337                                           rcu_str_deref(device->name));
3338                 /* note, we don't set_buffer_write_io_error because we have
3339                  * our own ways of dealing with the IO errors
3340                  */
3341                 clear_buffer_uptodate(bh);
3342                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3343         }
3344         unlock_buffer(bh);
3345         put_bh(bh);
3346 }
3347
3348 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3349                         struct buffer_head **bh_ret)
3350 {
3351         struct buffer_head *bh;
3352         struct btrfs_super_block *super;
3353         u64 bytenr;
3354
3355         bytenr = btrfs_sb_offset(copy_num);
3356         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3357                 return -EINVAL;
3358
3359         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3360         /*
3361          * If we fail to read from the underlying devices, as of now
3362          * the best option we have is to mark it EIO.
3363          */
3364         if (!bh)
3365                 return -EIO;
3366
3367         super = (struct btrfs_super_block *)bh->b_data;
3368         if (btrfs_super_bytenr(super) != bytenr ||
3369                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3370                 brelse(bh);
3371                 return -EINVAL;
3372         }
3373
3374         *bh_ret = bh;
3375         return 0;
3376 }
3377
3378
3379 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3380 {
3381         struct buffer_head *bh;
3382         struct buffer_head *latest = NULL;
3383         struct btrfs_super_block *super;
3384         int i;
3385         u64 transid = 0;
3386         int ret = -EINVAL;
3387
3388         /* we would like to check all the supers, but that would make
3389          * a btrfs mount succeed after a mkfs from a different FS.
3390          * So, we need to add a special mount option to scan for
3391          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3392          */
3393         for (i = 0; i < 1; i++) {
3394                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3395                 if (ret)
3396                         continue;
3397
3398                 super = (struct btrfs_super_block *)bh->b_data;
3399
3400                 if (!latest || btrfs_super_generation(super) > transid) {
3401                         brelse(latest);
3402                         latest = bh;
3403                         transid = btrfs_super_generation(super);
3404                 } else {
3405                         brelse(bh);
3406                 }
3407         }
3408
3409         if (!latest)
3410                 return ERR_PTR(ret);
3411
3412         return latest;
3413 }
3414
3415 /*
3416  * this should be called twice, once with wait == 0 and
3417  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3418  * we write are pinned.
3419  *
3420  * They are released when wait == 1 is done.
3421  * max_mirrors must be the same for both runs, and it indicates how
3422  * many supers on this one device should be written.
3423  *
3424  * max_mirrors == 0 means to write them all.
3425  */
3426 static int write_dev_supers(struct btrfs_device *device,
3427                             struct btrfs_super_block *sb,
3428                             int do_barriers, int wait, int max_mirrors)
3429 {
3430         struct buffer_head *bh;
3431         int i;
3432         int ret;
3433         int errors = 0;
3434         u32 crc;
3435         u64 bytenr;
3436
3437         if (max_mirrors == 0)
3438                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3439
3440         for (i = 0; i < max_mirrors; i++) {
3441                 bytenr = btrfs_sb_offset(i);
3442                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3443                     device->commit_total_bytes)
3444                         break;
3445
3446                 if (wait) {
3447                         bh = __find_get_block(device->bdev, bytenr / 4096,
3448                                               BTRFS_SUPER_INFO_SIZE);
3449                         if (!bh) {
3450                                 errors++;
3451                                 continue;
3452                         }
3453                         wait_on_buffer(bh);
3454                         if (!buffer_uptodate(bh))
3455                                 errors++;
3456
3457                         /* drop our reference */
3458                         brelse(bh);
3459
3460                         /* drop the reference from the wait == 0 run */
3461                         brelse(bh);
3462                         continue;
3463                 } else {
3464                         btrfs_set_super_bytenr(sb, bytenr);
3465
3466                         crc = ~(u32)0;
3467                         crc = btrfs_csum_data((char *)sb +
3468                                               BTRFS_CSUM_SIZE, crc,
3469                                               BTRFS_SUPER_INFO_SIZE -
3470                                               BTRFS_CSUM_SIZE);
3471                         btrfs_csum_final(crc, sb->csum);
3472
3473                         /*
3474                          * one reference for us, and we leave it for the
3475                          * caller
3476                          */
3477                         bh = __getblk(device->bdev, bytenr / 4096,
3478                                       BTRFS_SUPER_INFO_SIZE);
3479                         if (!bh) {
3480                                 btrfs_err(device->dev_root->fs_info,
3481                                     "couldn't get super buffer head for bytenr %llu",
3482                                     bytenr);
3483                                 errors++;
3484                                 continue;
3485                         }
3486
3487                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3488
3489                         /* one reference for submit_bh */
3490                         get_bh(bh);
3491
3492                         set_buffer_uptodate(bh);
3493                         lock_buffer(bh);
3494                         bh->b_end_io = btrfs_end_buffer_write_sync;
3495                         bh->b_private = device;
3496                 }
3497
3498                 /*
3499                  * we fua the first super.  The others we allow
3500                  * to go down lazy.
3501                  */
3502                 if (i == 0)
3503                         ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3504                 else
3505                         ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3506                 if (ret)
3507                         errors++;
3508         }
3509         return errors < i ? 0 : -1;
3510 }
3511
3512 /*
3513  * endio for the write_dev_flush, this will wake anyone waiting
3514  * for the barrier when it is done
3515  */
3516 static void btrfs_end_empty_barrier(struct bio *bio)
3517 {
3518         if (bio->bi_private)
3519                 complete(bio->bi_private);
3520         bio_put(bio);
3521 }
3522
3523 /*
3524  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3525  * sent down.  With wait == 1, it waits for the previous flush.
3526  *
3527  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3528  * capable
3529  */
3530 static int write_dev_flush(struct btrfs_device *device, int wait)
3531 {
3532         struct bio *bio;
3533         int ret = 0;
3534
3535         if (device->nobarriers)
3536                 return 0;
3537
3538         if (wait) {
3539                 bio = device->flush_bio;
3540                 if (!bio)
3541                         return 0;
3542
3543                 wait_for_completion(&device->flush_wait);
3544
3545                 if (bio->bi_error) {
3546                         ret = bio->bi_error;
3547                         btrfs_dev_stat_inc_and_print(device,
3548                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3549                 }
3550
3551                 /* drop the reference from the wait == 0 run */
3552                 bio_put(bio);
3553                 device->flush_bio = NULL;
3554
3555                 return ret;
3556         }
3557
3558         /*
3559          * one reference for us, and we leave it for the
3560          * caller
3561          */
3562         device->flush_bio = NULL;
3563         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3564         if (!bio)
3565                 return -ENOMEM;
3566
3567         bio->bi_end_io = btrfs_end_empty_barrier;
3568         bio->bi_bdev = device->bdev;
3569         bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3570         init_completion(&device->flush_wait);
3571         bio->bi_private = &device->flush_wait;
3572         device->flush_bio = bio;
3573
3574         bio_get(bio);
3575         btrfsic_submit_bio(bio);
3576
3577         return 0;
3578 }
3579
3580 /*
3581  * send an empty flush down to each device in parallel,
3582  * then wait for them
3583  */
3584 static int barrier_all_devices(struct btrfs_fs_info *info)
3585 {
3586         struct list_head *head;
3587         struct btrfs_device *dev;
3588         int errors_send = 0;
3589         int errors_wait = 0;
3590         int ret;
3591
3592         /* send down all the barriers */
3593         head = &info->fs_devices->devices;
3594         list_for_each_entry_rcu(dev, head, dev_list) {
3595                 if (dev->missing)
3596                         continue;
3597                 if (!dev->bdev) {
3598                         errors_send++;
3599                         continue;
3600                 }
3601                 if (!dev->in_fs_metadata || !dev->writeable)
3602                         continue;
3603
3604                 ret = write_dev_flush(dev, 0);
3605                 if (ret)
3606                         errors_send++;
3607         }
3608
3609         /* wait for all the barriers */
3610         list_for_each_entry_rcu(dev, head, dev_list) {
3611                 if (dev->missing)
3612                         continue;
3613                 if (!dev->bdev) {
3614                         errors_wait++;
3615                         continue;
3616                 }
3617                 if (!dev->in_fs_metadata || !dev->writeable)
3618                         continue;
3619
3620                 ret = write_dev_flush(dev, 1);
3621                 if (ret)
3622                         errors_wait++;
3623         }
3624         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3625             errors_wait > info->num_tolerated_disk_barrier_failures)
3626                 return -EIO;
3627         return 0;
3628 }
3629
3630 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3631 {
3632         int raid_type;
3633         int min_tolerated = INT_MAX;
3634
3635         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3636             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3637                 min_tolerated = min(min_tolerated,
3638                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3639                                     tolerated_failures);
3640
3641         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3642                 if (raid_type == BTRFS_RAID_SINGLE)
3643                         continue;
3644                 if (!(flags & btrfs_raid_group[raid_type]))
3645                         continue;
3646                 min_tolerated = min(min_tolerated,
3647                                     btrfs_raid_array[raid_type].
3648                                     tolerated_failures);
3649         }
3650
3651         if (min_tolerated == INT_MAX) {
3652                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3653                 min_tolerated = 0;
3654         }
3655
3656         return min_tolerated;
3657 }
3658
3659 int btrfs_calc_num_tolerated_disk_barrier_failures(
3660         struct btrfs_fs_info *fs_info)
3661 {
3662         struct btrfs_ioctl_space_info space;
3663         struct btrfs_space_info *sinfo;
3664         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3665                        BTRFS_BLOCK_GROUP_SYSTEM,
3666                        BTRFS_BLOCK_GROUP_METADATA,
3667                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3668         int i;
3669         int c;
3670         int num_tolerated_disk_barrier_failures =
3671                 (int)fs_info->fs_devices->num_devices;
3672
3673         for (i = 0; i < ARRAY_SIZE(types); i++) {
3674                 struct btrfs_space_info *tmp;
3675
3676                 sinfo = NULL;
3677                 rcu_read_lock();
3678                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3679                         if (tmp->flags == types[i]) {
3680                                 sinfo = tmp;
3681                                 break;
3682                         }
3683                 }
3684                 rcu_read_unlock();
3685
3686                 if (!sinfo)
3687                         continue;
3688
3689                 down_read(&sinfo->groups_sem);
3690                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3691                         u64 flags;
3692
3693                         if (list_empty(&sinfo->block_groups[c]))
3694                                 continue;
3695
3696                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3697                                                    &space);
3698                         if (space.total_bytes == 0 || space.used_bytes == 0)
3699                                 continue;
3700                         flags = space.flags;
3701
3702                         num_tolerated_disk_barrier_failures = min(
3703                                 num_tolerated_disk_barrier_failures,
3704                                 btrfs_get_num_tolerated_disk_barrier_failures(
3705                                         flags));
3706                 }
3707                 up_read(&sinfo->groups_sem);
3708         }
3709
3710         return num_tolerated_disk_barrier_failures;
3711 }
3712
3713 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3714 {
3715         struct list_head *head;
3716         struct btrfs_device *dev;
3717         struct btrfs_super_block *sb;
3718         struct btrfs_dev_item *dev_item;
3719         int ret;
3720         int do_barriers;
3721         int max_errors;
3722         int total_errors = 0;
3723         u64 flags;
3724
3725         do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3726         backup_super_roots(root->fs_info);
3727
3728         sb = root->fs_info->super_for_commit;
3729         dev_item = &sb->dev_item;
3730
3731         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3732         head = &root->fs_info->fs_devices->devices;
3733         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3734
3735         if (do_barriers) {
3736                 ret = barrier_all_devices(root->fs_info);
3737                 if (ret) {
3738                         mutex_unlock(
3739                                 &root->fs_info->fs_devices->device_list_mutex);
3740                         btrfs_handle_fs_error(root->fs_info, ret,
3741                                     "errors while submitting device barriers.");
3742                         return ret;
3743                 }
3744         }
3745
3746         list_for_each_entry_rcu(dev, head, dev_list) {
3747                 if (!dev->bdev) {
3748                         total_errors++;
3749                         continue;
3750                 }
3751                 if (!dev->in_fs_metadata || !dev->writeable)
3752                         continue;
3753
3754                 btrfs_set_stack_device_generation(dev_item, 0);
3755                 btrfs_set_stack_device_type(dev_item, dev->type);
3756                 btrfs_set_stack_device_id(dev_item, dev->devid);
3757                 btrfs_set_stack_device_total_bytes(dev_item,
3758                                                    dev->commit_total_bytes);
3759                 btrfs_set_stack_device_bytes_used(dev_item,
3760                                                   dev->commit_bytes_used);
3761                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3762                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3763                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3764                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3765                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3766
3767                 flags = btrfs_super_flags(sb);
3768                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3769
3770                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3771                 if (ret)
3772                         total_errors++;
3773         }
3774         if (total_errors > max_errors) {
3775                 btrfs_err(root->fs_info, "%d errors while writing supers",
3776                        total_errors);
3777                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3778
3779                 /* FUA is masked off if unsupported and can't be the reason */
3780                 btrfs_handle_fs_error(root->fs_info, -EIO,
3781                             "%d errors while writing supers", total_errors);
3782                 return -EIO;
3783         }
3784
3785         total_errors = 0;
3786         list_for_each_entry_rcu(dev, head, dev_list) {
3787                 if (!dev->bdev)
3788                         continue;
3789                 if (!dev->in_fs_metadata || !dev->writeable)
3790                         continue;
3791
3792                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3793                 if (ret)
3794                         total_errors++;
3795         }
3796         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3797         if (total_errors > max_errors) {
3798                 btrfs_handle_fs_error(root->fs_info, -EIO,
3799                             "%d errors while writing supers", total_errors);
3800                 return -EIO;
3801         }
3802         return 0;
3803 }
3804
3805 int write_ctree_super(struct btrfs_trans_handle *trans,
3806                       struct btrfs_root *root, int max_mirrors)
3807 {
3808         return write_all_supers(root, max_mirrors);
3809 }
3810
3811 /* Drop a fs root from the radix tree and free it. */
3812 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3813                                   struct btrfs_root *root)
3814 {
3815         spin_lock(&fs_info->fs_roots_radix_lock);
3816         radix_tree_delete(&fs_info->fs_roots_radix,
3817                           (unsigned long)root->root_key.objectid);
3818         spin_unlock(&fs_info->fs_roots_radix_lock);
3819
3820         if (btrfs_root_refs(&root->root_item) == 0)
3821                 synchronize_srcu(&fs_info->subvol_srcu);
3822
3823         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3824                 btrfs_free_log(NULL, root);
3825                 if (root->reloc_root) {
3826                         free_extent_buffer(root->reloc_root->node);
3827                         free_extent_buffer(root->reloc_root->commit_root);
3828                         btrfs_put_fs_root(root->reloc_root);
3829                         root->reloc_root = NULL;
3830                 }
3831         }
3832
3833         if (root->free_ino_pinned)
3834                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3835         if (root->free_ino_ctl)
3836                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3837         free_fs_root(root);
3838 }
3839
3840 static void free_fs_root(struct btrfs_root *root)
3841 {
3842         iput(root->ino_cache_inode);
3843         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3844         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3845         root->orphan_block_rsv = NULL;
3846         if (root->anon_dev)
3847                 free_anon_bdev(root->anon_dev);
3848         if (root->subv_writers)
3849                 btrfs_free_subvolume_writers(root->subv_writers);
3850         free_extent_buffer(root->node);
3851         free_extent_buffer(root->commit_root);
3852         kfree(root->free_ino_ctl);
3853         kfree(root->free_ino_pinned);
3854         kfree(root->name);
3855         btrfs_put_fs_root(root);
3856 }
3857
3858 void btrfs_free_fs_root(struct btrfs_root *root)
3859 {
3860         free_fs_root(root);
3861 }
3862
3863 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3864 {
3865         u64 root_objectid = 0;
3866         struct btrfs_root *gang[8];
3867         int i = 0;
3868         int err = 0;
3869         unsigned int ret = 0;
3870         int index;
3871
3872         while (1) {
3873                 index = srcu_read_lock(&fs_info->subvol_srcu);
3874                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3875                                              (void **)gang, root_objectid,
3876                                              ARRAY_SIZE(gang));
3877                 if (!ret) {
3878                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3879                         break;
3880                 }
3881                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3882
3883                 for (i = 0; i < ret; i++) {
3884                         /* Avoid to grab roots in dead_roots */
3885                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3886                                 gang[i] = NULL;
3887                                 continue;
3888                         }
3889                         /* grab all the search result for later use */
3890                         gang[i] = btrfs_grab_fs_root(gang[i]);
3891                 }
3892                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3893
3894                 for (i = 0; i < ret; i++) {
3895                         if (!gang[i])
3896                                 continue;
3897                         root_objectid = gang[i]->root_key.objectid;
3898                         err = btrfs_orphan_cleanup(gang[i]);
3899                         if (err)
3900                                 break;
3901                         btrfs_put_fs_root(gang[i]);
3902                 }
3903                 root_objectid++;
3904         }
3905
3906         /* release the uncleaned roots due to error */
3907         for (; i < ret; i++) {
3908                 if (gang[i])
3909                         btrfs_put_fs_root(gang[i]);
3910         }
3911         return err;
3912 }
3913
3914 int btrfs_commit_super(struct btrfs_root *root)
3915 {
3916         struct btrfs_trans_handle *trans;
3917
3918         mutex_lock(&root->fs_info->cleaner_mutex);
3919         btrfs_run_delayed_iputs(root);
3920         mutex_unlock(&root->fs_info->cleaner_mutex);
3921         wake_up_process(root->fs_info->cleaner_kthread);
3922
3923         /* wait until ongoing cleanup work done */
3924         down_write(&root->fs_info->cleanup_work_sem);
3925         up_write(&root->fs_info->cleanup_work_sem);
3926
3927         trans = btrfs_join_transaction(root);
3928         if (IS_ERR(trans))
3929                 return PTR_ERR(trans);
3930         return btrfs_commit_transaction(trans, root);
3931 }
3932
3933 void close_ctree(struct btrfs_root *root)
3934 {
3935         struct btrfs_fs_info *fs_info = root->fs_info;
3936         int ret;
3937
3938         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3939
3940         /* wait for the qgroup rescan worker to stop */
3941         btrfs_qgroup_wait_for_completion(fs_info, false);
3942
3943         /* wait for the uuid_scan task to finish */
3944         down(&fs_info->uuid_tree_rescan_sem);
3945         /* avoid complains from lockdep et al., set sem back to initial state */
3946         up(&fs_info->uuid_tree_rescan_sem);
3947
3948         /* pause restriper - we want to resume on mount */
3949         btrfs_pause_balance(fs_info);
3950
3951         btrfs_dev_replace_suspend_for_unmount(fs_info);
3952
3953         btrfs_scrub_cancel(fs_info);
3954
3955         /* wait for any defraggers to finish */
3956         wait_event(fs_info->transaction_wait,
3957                    (atomic_read(&fs_info->defrag_running) == 0));
3958
3959         /* clear out the rbtree of defraggable inodes */
3960         btrfs_cleanup_defrag_inodes(fs_info);
3961
3962         cancel_work_sync(&fs_info->async_reclaim_work);
3963
3964         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3965                 /*
3966                  * If the cleaner thread is stopped and there are
3967                  * block groups queued for removal, the deletion will be
3968                  * skipped when we quit the cleaner thread.
3969                  */
3970                 btrfs_delete_unused_bgs(root->fs_info);
3971
3972                 ret = btrfs_commit_super(root);
3973                 if (ret)
3974                         btrfs_err(fs_info, "commit super ret %d", ret);
3975         }
3976
3977         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3978                 btrfs_error_commit_super(root);
3979
3980         kthread_stop(fs_info->transaction_kthread);
3981         kthread_stop(fs_info->cleaner_kthread);
3982
3983         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3984
3985         btrfs_free_qgroup_config(fs_info);
3986
3987         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3988                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3989                        percpu_counter_sum(&fs_info->delalloc_bytes));
3990         }
3991
3992         btrfs_sysfs_remove_mounted(fs_info);
3993         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3994
3995         btrfs_free_fs_roots(fs_info);
3996
3997         btrfs_put_block_group_cache(fs_info);
3998
3999         btrfs_free_block_groups(fs_info);
4000
4001         /*
4002          * we must make sure there is not any read request to
4003          * submit after we stopping all workers.
4004          */
4005         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4006         btrfs_stop_all_workers(fs_info);
4007
4008         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4009         free_root_pointers(fs_info, 1);
4010
4011         iput(fs_info->btree_inode);
4012
4013 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4014         if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
4015                 btrfsic_unmount(root, fs_info->fs_devices);
4016 #endif
4017
4018         btrfs_close_devices(fs_info->fs_devices);
4019         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4020
4021         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4022         percpu_counter_destroy(&fs_info->delalloc_bytes);
4023         percpu_counter_destroy(&fs_info->bio_counter);
4024         bdi_destroy(&fs_info->bdi);
4025         cleanup_srcu_struct(&fs_info->subvol_srcu);
4026
4027         btrfs_free_stripe_hash_table(fs_info);
4028
4029         __btrfs_free_block_rsv(root->orphan_block_rsv);
4030         root->orphan_block_rsv = NULL;
4031
4032         lock_chunks(root);
4033         while (!list_empty(&fs_info->pinned_chunks)) {
4034                 struct extent_map *em;
4035
4036                 em = list_first_entry(&fs_info->pinned_chunks,
4037                                       struct extent_map, list);
4038                 list_del_init(&em->list);
4039                 free_extent_map(em);
4040         }
4041         unlock_chunks(root);
4042 }
4043
4044 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4045                           int atomic)
4046 {
4047         int ret;
4048         struct inode *btree_inode = buf->pages[0]->mapping->host;
4049
4050         ret = extent_buffer_uptodate(buf);
4051         if (!ret)
4052                 return ret;
4053
4054         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4055                                     parent_transid, atomic);
4056         if (ret == -EAGAIN)
4057                 return ret;
4058         return !ret;
4059 }
4060
4061 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4062 {
4063         struct btrfs_root *root;
4064         u64 transid = btrfs_header_generation(buf);
4065         int was_dirty;
4066
4067 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4068         /*
4069          * This is a fast path so only do this check if we have sanity tests
4070          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4071          * outside of the sanity tests.
4072          */
4073         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4074                 return;
4075 #endif
4076         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4077         btrfs_assert_tree_locked(buf);
4078         if (transid != root->fs_info->generation)
4079                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4080                         buf->start, transid, root->fs_info->generation);
4081         was_dirty = set_extent_buffer_dirty(buf);
4082         if (!was_dirty)
4083                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4084                                      buf->len,
4085                                      root->fs_info->dirty_metadata_batch);
4086 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4087         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4088                 btrfs_print_leaf(root, buf);
4089                 ASSERT(0);
4090         }
4091 #endif
4092 }
4093
4094 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4095                                         int flush_delayed)
4096 {
4097         /*
4098          * looks as though older kernels can get into trouble with
4099          * this code, they end up stuck in balance_dirty_pages forever
4100          */
4101         int ret;
4102
4103         if (current->flags & PF_MEMALLOC)
4104                 return;
4105
4106         if (flush_delayed)
4107                 btrfs_balance_delayed_items(root);
4108
4109         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4110                                      BTRFS_DIRTY_METADATA_THRESH);
4111         if (ret > 0) {
4112                 balance_dirty_pages_ratelimited(
4113                                    root->fs_info->btree_inode->i_mapping);
4114         }
4115 }
4116
4117 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4118 {
4119         __btrfs_btree_balance_dirty(root, 1);
4120 }
4121
4122 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4123 {
4124         __btrfs_btree_balance_dirty(root, 0);
4125 }
4126
4127 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4128 {
4129         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4130         return btree_read_extent_buffer_pages(root, buf, parent_transid);
4131 }
4132
4133 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4134                               int read_only)
4135 {
4136         struct btrfs_super_block *sb = fs_info->super_copy;
4137         u64 nodesize = btrfs_super_nodesize(sb);
4138         u64 sectorsize = btrfs_super_sectorsize(sb);
4139         int ret = 0;
4140
4141         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4142                 btrfs_err(fs_info, "no valid FS found");
4143                 ret = -EINVAL;
4144         }
4145         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4146                 btrfs_warn(fs_info, "unrecognized super flag: %llu",
4147                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4148         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4149                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4150                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4151                 ret = -EINVAL;
4152         }
4153         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4154                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4155                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4156                 ret = -EINVAL;
4157         }
4158         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4159                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4160                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4161                 ret = -EINVAL;
4162         }
4163
4164         /*
4165          * Check sectorsize and nodesize first, other check will need it.
4166          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4167          */
4168         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4169             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4170                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4171                 ret = -EINVAL;
4172         }
4173         /* Only PAGE SIZE is supported yet */
4174         if (sectorsize != PAGE_SIZE) {
4175                 btrfs_err(fs_info,
4176                         "sectorsize %llu not supported yet, only support %lu",
4177                         sectorsize, PAGE_SIZE);
4178                 ret = -EINVAL;
4179         }
4180         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4181             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4182                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4183                 ret = -EINVAL;
4184         }
4185         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4186                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4187                           le32_to_cpu(sb->__unused_leafsize), nodesize);
4188                 ret = -EINVAL;
4189         }
4190
4191         /* Root alignment check */
4192         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4193                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4194                            btrfs_super_root(sb));
4195                 ret = -EINVAL;
4196         }
4197         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4198                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4199                            btrfs_super_chunk_root(sb));
4200                 ret = -EINVAL;
4201         }
4202         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4203                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4204                            btrfs_super_log_root(sb));
4205                 ret = -EINVAL;
4206         }
4207
4208         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4209                 btrfs_err(fs_info,
4210                            "dev_item UUID does not match fsid: %pU != %pU",
4211                            fs_info->fsid, sb->dev_item.fsid);
4212                 ret = -EINVAL;
4213         }
4214
4215         /*
4216          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4217          * done later
4218          */
4219         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4220                 btrfs_err(fs_info, "bytes_used is too small %llu",
4221                           btrfs_super_bytes_used(sb));
4222                 ret = -EINVAL;
4223         }
4224         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4225                 btrfs_err(fs_info, "invalid stripesize %u",
4226                           btrfs_super_stripesize(sb));
4227                 ret = -EINVAL;
4228         }
4229         if (btrfs_super_num_devices(sb) > (1UL << 31))
4230                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4231                            btrfs_super_num_devices(sb));
4232         if (btrfs_super_num_devices(sb) == 0) {
4233                 btrfs_err(fs_info, "number of devices is 0");
4234                 ret = -EINVAL;
4235         }
4236
4237         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4238                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4239                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4240                 ret = -EINVAL;
4241         }
4242
4243         /*
4244          * Obvious sys_chunk_array corruptions, it must hold at least one key
4245          * and one chunk
4246          */
4247         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4248                 btrfs_err(fs_info, "system chunk array too big %u > %u",
4249                           btrfs_super_sys_array_size(sb),
4250                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4251                 ret = -EINVAL;
4252         }
4253         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4254                         + sizeof(struct btrfs_chunk)) {
4255                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4256                           btrfs_super_sys_array_size(sb),
4257                           sizeof(struct btrfs_disk_key)
4258                           + sizeof(struct btrfs_chunk));
4259                 ret = -EINVAL;
4260         }
4261
4262         /*
4263          * The generation is a global counter, we'll trust it more than the others
4264          * but it's still possible that it's the one that's wrong.
4265          */
4266         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4267                 btrfs_warn(fs_info,
4268                         "suspicious: generation < chunk_root_generation: %llu < %llu",
4269                         btrfs_super_generation(sb),
4270                         btrfs_super_chunk_root_generation(sb));
4271         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4272             && btrfs_super_cache_generation(sb) != (u64)-1)
4273                 btrfs_warn(fs_info,
4274                         "suspicious: generation < cache_generation: %llu < %llu",
4275                         btrfs_super_generation(sb),
4276                         btrfs_super_cache_generation(sb));
4277
4278         return ret;
4279 }
4280
4281 static void btrfs_error_commit_super(struct btrfs_root *root)
4282 {
4283         mutex_lock(&root->fs_info->cleaner_mutex);
4284         btrfs_run_delayed_iputs(root);
4285         mutex_unlock(&root->fs_info->cleaner_mutex);
4286
4287         down_write(&root->fs_info->cleanup_work_sem);
4288         up_write(&root->fs_info->cleanup_work_sem);
4289
4290         /* cleanup FS via transaction */
4291         btrfs_cleanup_transaction(root);
4292 }
4293
4294 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4295 {
4296         struct btrfs_ordered_extent *ordered;
4297
4298         spin_lock(&root->ordered_extent_lock);
4299         /*
4300          * This will just short circuit the ordered completion stuff which will
4301          * make sure the ordered extent gets properly cleaned up.
4302          */
4303         list_for_each_entry(ordered, &root->ordered_extents,
4304                             root_extent_list)
4305                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4306         spin_unlock(&root->ordered_extent_lock);
4307 }
4308
4309 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4310 {
4311         struct btrfs_root *root;
4312         struct list_head splice;
4313
4314         INIT_LIST_HEAD(&splice);
4315
4316         spin_lock(&fs_info->ordered_root_lock);
4317         list_splice_init(&fs_info->ordered_roots, &splice);
4318         while (!list_empty(&splice)) {
4319                 root = list_first_entry(&splice, struct btrfs_root,
4320                                         ordered_root);
4321                 list_move_tail(&root->ordered_root,
4322                                &fs_info->ordered_roots);
4323
4324                 spin_unlock(&fs_info->ordered_root_lock);
4325                 btrfs_destroy_ordered_extents(root);
4326
4327                 cond_resched();
4328                 spin_lock(&fs_info->ordered_root_lock);
4329         }
4330         spin_unlock(&fs_info->ordered_root_lock);
4331 }
4332
4333 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4334                                       struct btrfs_root *root)
4335 {
4336         struct rb_node *node;
4337         struct btrfs_delayed_ref_root *delayed_refs;
4338         struct btrfs_delayed_ref_node *ref;
4339         int ret = 0;
4340
4341         delayed_refs = &trans->delayed_refs;
4342
4343         spin_lock(&delayed_refs->lock);
4344         if (atomic_read(&delayed_refs->num_entries) == 0) {
4345                 spin_unlock(&delayed_refs->lock);
4346                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4347                 return ret;
4348         }
4349
4350         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4351                 struct btrfs_delayed_ref_head *head;
4352                 struct btrfs_delayed_ref_node *tmp;
4353                 bool pin_bytes = false;
4354
4355                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4356                                 href_node);
4357                 if (!mutex_trylock(&head->mutex)) {
4358                         atomic_inc(&head->node.refs);
4359                         spin_unlock(&delayed_refs->lock);
4360
4361                         mutex_lock(&head->mutex);
4362                         mutex_unlock(&head->mutex);
4363                         btrfs_put_delayed_ref(&head->node);
4364                         spin_lock(&delayed_refs->lock);
4365                         continue;
4366                 }
4367                 spin_lock(&head->lock);
4368                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4369                                                  list) {
4370                         ref->in_tree = 0;
4371                         list_del(&ref->list);
4372                         atomic_dec(&delayed_refs->num_entries);
4373                         btrfs_put_delayed_ref(ref);
4374                 }
4375                 if (head->must_insert_reserved)
4376                         pin_bytes = true;
4377                 btrfs_free_delayed_extent_op(head->extent_op);
4378                 delayed_refs->num_heads--;
4379                 if (head->processing == 0)
4380                         delayed_refs->num_heads_ready--;
4381                 atomic_dec(&delayed_refs->num_entries);
4382                 head->node.in_tree = 0;
4383                 rb_erase(&head->href_node, &delayed_refs->href_root);
4384                 spin_unlock(&head->lock);
4385                 spin_unlock(&delayed_refs->lock);
4386                 mutex_unlock(&head->mutex);
4387
4388                 if (pin_bytes)
4389                         btrfs_pin_extent(root, head->node.bytenr,
4390                                          head->node.num_bytes, 1);
4391                 btrfs_put_delayed_ref(&head->node);
4392                 cond_resched();
4393                 spin_lock(&delayed_refs->lock);
4394         }
4395
4396         spin_unlock(&delayed_refs->lock);
4397
4398         return ret;
4399 }
4400
4401 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4402 {
4403         struct btrfs_inode *btrfs_inode;
4404         struct list_head splice;
4405
4406         INIT_LIST_HEAD(&splice);
4407
4408         spin_lock(&root->delalloc_lock);
4409         list_splice_init(&root->delalloc_inodes, &splice);
4410
4411         while (!list_empty(&splice)) {
4412                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4413                                                delalloc_inodes);
4414
4415                 list_del_init(&btrfs_inode->delalloc_inodes);
4416                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4417                           &btrfs_inode->runtime_flags);
4418                 spin_unlock(&root->delalloc_lock);
4419
4420                 btrfs_invalidate_inodes(btrfs_inode->root);
4421
4422                 spin_lock(&root->delalloc_lock);
4423         }
4424
4425         spin_unlock(&root->delalloc_lock);
4426 }
4427
4428 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4429 {
4430         struct btrfs_root *root;
4431         struct list_head splice;
4432
4433         INIT_LIST_HEAD(&splice);
4434
4435         spin_lock(&fs_info->delalloc_root_lock);
4436         list_splice_init(&fs_info->delalloc_roots, &splice);
4437         while (!list_empty(&splice)) {
4438                 root = list_first_entry(&splice, struct btrfs_root,
4439                                          delalloc_root);
4440                 list_del_init(&root->delalloc_root);
4441                 root = btrfs_grab_fs_root(root);
4442                 BUG_ON(!root);
4443                 spin_unlock(&fs_info->delalloc_root_lock);
4444
4445                 btrfs_destroy_delalloc_inodes(root);
4446                 btrfs_put_fs_root(root);
4447
4448                 spin_lock(&fs_info->delalloc_root_lock);
4449         }
4450         spin_unlock(&fs_info->delalloc_root_lock);
4451 }
4452
4453 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4454                                         struct extent_io_tree *dirty_pages,
4455                                         int mark)
4456 {
4457         int ret;
4458         struct extent_buffer *eb;
4459         u64 start = 0;
4460         u64 end;
4461
4462         while (1) {
4463                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4464                                             mark, NULL);
4465                 if (ret)
4466                         break;
4467
4468                 clear_extent_bits(dirty_pages, start, end, mark);
4469                 while (start <= end) {
4470                         eb = btrfs_find_tree_block(root->fs_info, start);
4471                         start += root->nodesize;
4472                         if (!eb)
4473                                 continue;
4474                         wait_on_extent_buffer_writeback(eb);
4475
4476                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4477                                                &eb->bflags))
4478                                 clear_extent_buffer_dirty(eb);
4479                         free_extent_buffer_stale(eb);
4480                 }
4481         }
4482
4483         return ret;
4484 }
4485
4486 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4487                                        struct extent_io_tree *pinned_extents)
4488 {
4489         struct extent_io_tree *unpin;
4490         u64 start;
4491         u64 end;
4492         int ret;
4493         bool loop = true;
4494
4495         unpin = pinned_extents;
4496 again:
4497         while (1) {
4498                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4499                                             EXTENT_DIRTY, NULL);
4500                 if (ret)
4501                         break;
4502
4503                 clear_extent_dirty(unpin, start, end);
4504                 btrfs_error_unpin_extent_range(root, start, end);
4505                 cond_resched();
4506         }
4507
4508         if (loop) {
4509                 if (unpin == &root->fs_info->freed_extents[0])
4510                         unpin = &root->fs_info->freed_extents[1];
4511                 else
4512                         unpin = &root->fs_info->freed_extents[0];
4513                 loop = false;
4514                 goto again;
4515         }
4516
4517         return 0;
4518 }
4519
4520 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4521 {
4522         struct inode *inode;
4523
4524         inode = cache->io_ctl.inode;
4525         if (inode) {
4526                 invalidate_inode_pages2(inode->i_mapping);
4527                 BTRFS_I(inode)->generation = 0;
4528                 cache->io_ctl.inode = NULL;
4529                 iput(inode);
4530         }
4531         btrfs_put_block_group(cache);
4532 }
4533
4534 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4535                              struct btrfs_root *root)
4536 {
4537         struct btrfs_block_group_cache *cache;
4538
4539         spin_lock(&cur_trans->dirty_bgs_lock);
4540         while (!list_empty(&cur_trans->dirty_bgs)) {
4541                 cache = list_first_entry(&cur_trans->dirty_bgs,
4542                                          struct btrfs_block_group_cache,
4543                                          dirty_list);
4544                 if (!cache) {
4545                         btrfs_err(root->fs_info,
4546                                   "orphan block group dirty_bgs list");
4547                         spin_unlock(&cur_trans->dirty_bgs_lock);
4548                         return;
4549                 }
4550
4551                 if (!list_empty(&cache->io_list)) {
4552                         spin_unlock(&cur_trans->dirty_bgs_lock);
4553                         list_del_init(&cache->io_list);
4554                         btrfs_cleanup_bg_io(cache);
4555                         spin_lock(&cur_trans->dirty_bgs_lock);
4556                 }
4557
4558                 list_del_init(&cache->dirty_list);
4559                 spin_lock(&cache->lock);
4560                 cache->disk_cache_state = BTRFS_DC_ERROR;
4561                 spin_unlock(&cache->lock);
4562
4563                 spin_unlock(&cur_trans->dirty_bgs_lock);
4564                 btrfs_put_block_group(cache);
4565                 spin_lock(&cur_trans->dirty_bgs_lock);
4566         }
4567         spin_unlock(&cur_trans->dirty_bgs_lock);
4568
4569         while (!list_empty(&cur_trans->io_bgs)) {
4570                 cache = list_first_entry(&cur_trans->io_bgs,
4571                                          struct btrfs_block_group_cache,
4572                                          io_list);
4573                 if (!cache) {
4574                         btrfs_err(root->fs_info,
4575                                   "orphan block group on io_bgs list");
4576                         return;
4577                 }
4578
4579                 list_del_init(&cache->io_list);
4580                 spin_lock(&cache->lock);
4581                 cache->disk_cache_state = BTRFS_DC_ERROR;
4582                 spin_unlock(&cache->lock);
4583                 btrfs_cleanup_bg_io(cache);
4584         }
4585 }
4586
4587 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4588                                    struct btrfs_root *root)
4589 {
4590         btrfs_cleanup_dirty_bgs(cur_trans, root);
4591         ASSERT(list_empty(&cur_trans->dirty_bgs));
4592         ASSERT(list_empty(&cur_trans->io_bgs));
4593
4594         btrfs_destroy_delayed_refs(cur_trans, root);
4595
4596         cur_trans->state = TRANS_STATE_COMMIT_START;
4597         wake_up(&root->fs_info->transaction_blocked_wait);
4598
4599         cur_trans->state = TRANS_STATE_UNBLOCKED;
4600         wake_up(&root->fs_info->transaction_wait);
4601
4602         btrfs_destroy_delayed_inodes(root);
4603         btrfs_assert_delayed_root_empty(root);
4604
4605         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4606                                      EXTENT_DIRTY);
4607         btrfs_destroy_pinned_extent(root,
4608                                     root->fs_info->pinned_extents);
4609
4610         cur_trans->state =TRANS_STATE_COMPLETED;
4611         wake_up(&cur_trans->commit_wait);
4612
4613         /*
4614         memset(cur_trans, 0, sizeof(*cur_trans));
4615         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4616         */
4617 }
4618
4619 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4620 {
4621         struct btrfs_transaction *t;
4622
4623         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4624
4625         spin_lock(&root->fs_info->trans_lock);
4626         while (!list_empty(&root->fs_info->trans_list)) {
4627                 t = list_first_entry(&root->fs_info->trans_list,
4628                                      struct btrfs_transaction, list);
4629                 if (t->state >= TRANS_STATE_COMMIT_START) {
4630                         atomic_inc(&t->use_count);
4631                         spin_unlock(&root->fs_info->trans_lock);
4632                         btrfs_wait_for_commit(root, t->transid);
4633                         btrfs_put_transaction(t);
4634                         spin_lock(&root->fs_info->trans_lock);
4635                         continue;
4636                 }
4637                 if (t == root->fs_info->running_transaction) {
4638                         t->state = TRANS_STATE_COMMIT_DOING;
4639                         spin_unlock(&root->fs_info->trans_lock);
4640                         /*
4641                          * We wait for 0 num_writers since we don't hold a trans
4642                          * handle open currently for this transaction.
4643                          */
4644                         wait_event(t->writer_wait,
4645                                    atomic_read(&t->num_writers) == 0);
4646                 } else {
4647                         spin_unlock(&root->fs_info->trans_lock);
4648                 }
4649                 btrfs_cleanup_one_transaction(t, root);
4650
4651                 spin_lock(&root->fs_info->trans_lock);
4652                 if (t == root->fs_info->running_transaction)
4653                         root->fs_info->running_transaction = NULL;
4654                 list_del_init(&t->list);
4655                 spin_unlock(&root->fs_info->trans_lock);
4656
4657                 btrfs_put_transaction(t);
4658                 trace_btrfs_transaction_commit(root);
4659                 spin_lock(&root->fs_info->trans_lock);
4660         }
4661         spin_unlock(&root->fs_info->trans_lock);
4662         btrfs_destroy_all_ordered_extents(root->fs_info);
4663         btrfs_destroy_delayed_inodes(root);
4664         btrfs_assert_delayed_root_empty(root);
4665         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4666         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4667         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4668
4669         return 0;
4670 }
4671
4672 static const struct extent_io_ops btree_extent_io_ops = {
4673         .readpage_end_io_hook = btree_readpage_end_io_hook,
4674         .readpage_io_failed_hook = btree_io_failed_hook,
4675         .submit_bio_hook = btree_submit_bio_hook,
4676         /* note we're sharing with inode.c for the merge bio hook */
4677         .merge_bio_hook = btrfs_merge_bio_hook,
4678 };
This page took 0.36188 seconds and 4 git commands to generate.