1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
50 mhash_entries = simple_strtoul(str, &str, 0);
53 __setup("mhash_entries=", set_mhash_entries);
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
60 mphash_entries = simple_strtoul(str, &str, 0);
63 __setup("mphash_entries=", set_mphash_entries);
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 unsigned int attr_set;
78 unsigned int attr_clr;
79 unsigned int propagation;
80 unsigned int lookup_flags;
85 struct kobject *fs_kobj;
86 EXPORT_SYMBOL_GPL(fs_kobj);
89 * vfsmount lock may be taken for read to prevent changes to the
90 * vfsmount hash, ie. during mountpoint lookups or walking back
93 * It should be taken for write in all cases where the vfsmount
94 * tree or hash is modified or when a vfsmount structure is modified.
96 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
98 static inline void lock_mount_hash(void)
100 write_seqlock(&mount_lock);
103 static inline void unlock_mount_hash(void)
105 write_sequnlock(&mount_lock);
108 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
110 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
111 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
112 tmp = tmp + (tmp >> m_hash_shift);
113 return &mount_hashtable[tmp & m_hash_mask];
116 static inline struct hlist_head *mp_hash(struct dentry *dentry)
118 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
119 tmp = tmp + (tmp >> mp_hash_shift);
120 return &mountpoint_hashtable[tmp & mp_hash_mask];
123 static int mnt_alloc_id(struct mount *mnt)
125 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
133 static void mnt_free_id(struct mount *mnt)
135 ida_free(&mnt_id_ida, mnt->mnt_id);
139 * Allocate a new peer group ID
141 static int mnt_alloc_group_id(struct mount *mnt)
143 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
147 mnt->mnt_group_id = res;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount *mnt)
156 ida_free(&mnt_group_ida, mnt->mnt_group_id);
157 mnt->mnt_group_id = 0;
161 * vfsmount lock must be held for read
163 static inline void mnt_add_count(struct mount *mnt, int n)
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
175 * vfsmount lock must be held for write
177 int mnt_get_count(struct mount *mnt)
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 return mnt->mnt_count;
193 static struct mount *alloc_vfsmnt(const char *name)
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
199 err = mnt_alloc_id(mnt);
204 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
212 goto out_free_devname;
214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
217 mnt->mnt_writers = 0;
220 INIT_HLIST_NODE(&mnt->mnt_hash);
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
228 INIT_HLIST_NODE(&mnt->mnt_mp_list);
229 INIT_LIST_HEAD(&mnt->mnt_umounting);
230 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
231 mnt->mnt.mnt_userns = &init_user_ns;
237 kfree_const(mnt->mnt_devname);
242 kmem_cache_free(mnt_cache, mnt);
247 * Most r/o checks on a fs are for operations that take
248 * discrete amounts of time, like a write() or unlink().
249 * We must keep track of when those operations start
250 * (for permission checks) and when they end, so that
251 * we can determine when writes are able to occur to
255 * __mnt_is_readonly: check whether a mount is read-only
256 * @mnt: the mount to check for its write status
258 * This shouldn't be used directly ouside of the VFS.
259 * It does not guarantee that the filesystem will stay
260 * r/w, just that it is right *now*. This can not and
261 * should not be used in place of IS_RDONLY(inode).
262 * mnt_want/drop_write() will _keep_ the filesystem
265 bool __mnt_is_readonly(struct vfsmount *mnt)
267 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
269 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
271 static inline void mnt_inc_writers(struct mount *mnt)
274 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 static inline void mnt_dec_writers(struct mount *mnt)
283 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 static unsigned int mnt_get_writers(struct mount *mnt)
292 unsigned int count = 0;
295 for_each_possible_cpu(cpu) {
296 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 return mnt->mnt_writers;
305 static int mnt_is_readonly(struct vfsmount *mnt)
307 if (mnt->mnt_sb->s_readonly_remount)
309 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
311 return __mnt_is_readonly(mnt);
315 * Most r/o & frozen checks on a fs are for operations that take discrete
316 * amounts of time, like a write() or unlink(). We must keep track of when
317 * those operations start (for permission checks) and when they end, so that we
318 * can determine when writes are able to occur to a filesystem.
321 * __mnt_want_write - get write access to a mount without freeze protection
322 * @m: the mount on which to take a write
324 * This tells the low-level filesystem that a write is about to be performed to
325 * it, and makes sure that writes are allowed (mnt it read-write) before
326 * returning success. This operation does not protect against filesystem being
327 * frozen. When the write operation is finished, __mnt_drop_write() must be
328 * called. This is effectively a refcount.
330 int __mnt_want_write(struct vfsmount *m)
332 struct mount *mnt = real_mount(m);
336 mnt_inc_writers(mnt);
338 * The store to mnt_inc_writers must be visible before we pass
339 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
340 * incremented count after it has set MNT_WRITE_HOLD.
343 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
346 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
347 * be set to match its requirements. So we must not load that until
348 * MNT_WRITE_HOLD is cleared.
351 if (mnt_is_readonly(m)) {
352 mnt_dec_writers(mnt);
361 * mnt_want_write - get write access to a mount
362 * @m: the mount on which to take a write
364 * This tells the low-level filesystem that a write is about to be performed to
365 * it, and makes sure that writes are allowed (mount is read-write, filesystem
366 * is not frozen) before returning success. When the write operation is
367 * finished, mnt_drop_write() must be called. This is effectively a refcount.
369 int mnt_want_write(struct vfsmount *m)
373 sb_start_write(m->mnt_sb);
374 ret = __mnt_want_write(m);
376 sb_end_write(m->mnt_sb);
379 EXPORT_SYMBOL_GPL(mnt_want_write);
382 * mnt_clone_write - get write access to a mount
383 * @mnt: the mount on which to take a write
385 * This is effectively like mnt_want_write, except
386 * it must only be used to take an extra write reference
387 * on a mountpoint that we already know has a write reference
388 * on it. This allows some optimisation.
390 * After finished, mnt_drop_write must be called as usual to
391 * drop the reference.
393 int mnt_clone_write(struct vfsmount *mnt)
395 /* superblock may be r/o */
396 if (__mnt_is_readonly(mnt))
399 mnt_inc_writers(real_mount(mnt));
403 EXPORT_SYMBOL_GPL(mnt_clone_write);
406 * __mnt_want_write_file - get write access to a file's mount
407 * @file: the file who's mount on which to take a write
409 * This is like __mnt_want_write, but it takes a file and can
410 * do some optimisations if the file is open for write already
412 int __mnt_want_write_file(struct file *file)
414 if (!(file->f_mode & FMODE_WRITER))
415 return __mnt_want_write(file->f_path.mnt);
417 return mnt_clone_write(file->f_path.mnt);
421 * mnt_want_write_file - get write access to a file's mount
422 * @file: the file who's mount on which to take a write
424 * This is like mnt_want_write, but it takes a file and can
425 * do some optimisations if the file is open for write already
427 int mnt_want_write_file(struct file *file)
431 sb_start_write(file_inode(file)->i_sb);
432 ret = __mnt_want_write_file(file);
434 sb_end_write(file_inode(file)->i_sb);
437 EXPORT_SYMBOL_GPL(mnt_want_write_file);
440 * __mnt_drop_write - give up write access to a mount
441 * @mnt: the mount on which to give up write access
443 * Tells the low-level filesystem that we are done
444 * performing writes to it. Must be matched with
445 * __mnt_want_write() call above.
447 void __mnt_drop_write(struct vfsmount *mnt)
450 mnt_dec_writers(real_mount(mnt));
455 * mnt_drop_write - give up write access to a mount
456 * @mnt: the mount on which to give up write access
458 * Tells the low-level filesystem that we are done performing writes to it and
459 * also allows filesystem to be frozen again. Must be matched with
460 * mnt_want_write() call above.
462 void mnt_drop_write(struct vfsmount *mnt)
464 __mnt_drop_write(mnt);
465 sb_end_write(mnt->mnt_sb);
467 EXPORT_SYMBOL_GPL(mnt_drop_write);
469 void __mnt_drop_write_file(struct file *file)
471 __mnt_drop_write(file->f_path.mnt);
474 void mnt_drop_write_file(struct file *file)
476 __mnt_drop_write_file(file);
477 sb_end_write(file_inode(file)->i_sb);
479 EXPORT_SYMBOL(mnt_drop_write_file);
481 static inline int mnt_hold_writers(struct mount *mnt)
483 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
485 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
486 * should be visible before we do.
491 * With writers on hold, if this value is zero, then there are
492 * definitely no active writers (although held writers may subsequently
493 * increment the count, they'll have to wait, and decrement it after
494 * seeing MNT_READONLY).
496 * It is OK to have counter incremented on one CPU and decremented on
497 * another: the sum will add up correctly. The danger would be when we
498 * sum up each counter, if we read a counter before it is incremented,
499 * but then read another CPU's count which it has been subsequently
500 * decremented from -- we would see more decrements than we should.
501 * MNT_WRITE_HOLD protects against this scenario, because
502 * mnt_want_write first increments count, then smp_mb, then spins on
503 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
504 * we're counting up here.
506 if (mnt_get_writers(mnt) > 0)
512 static inline void mnt_unhold_writers(struct mount *mnt)
515 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
516 * that become unheld will see MNT_READONLY.
519 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
522 static int mnt_make_readonly(struct mount *mnt)
526 ret = mnt_hold_writers(mnt);
528 mnt->mnt.mnt_flags |= MNT_READONLY;
529 mnt_unhold_writers(mnt);
533 int sb_prepare_remount_readonly(struct super_block *sb)
538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
539 if (atomic_long_read(&sb->s_remove_count))
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
547 if (mnt_get_writers(mnt) > 0) {
553 if (!err && atomic_long_read(&sb->s_remove_count))
557 sb->s_readonly_remount = 1;
560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
569 static void free_vfsmnt(struct mount *mnt)
571 struct user_namespace *mnt_userns;
573 mnt_userns = mnt_user_ns(&mnt->mnt);
574 if (mnt_userns != &init_user_ns)
575 put_user_ns(mnt_userns);
576 kfree_const(mnt->mnt_devname);
578 free_percpu(mnt->mnt_pcp);
580 kmem_cache_free(mnt_cache, mnt);
583 static void delayed_free_vfsmnt(struct rcu_head *head)
585 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
588 /* call under rcu_read_lock */
589 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592 if (read_seqretry(&mount_lock, seq))
596 mnt = real_mount(bastard);
597 mnt_add_count(mnt, 1);
598 smp_mb(); // see mntput_no_expire()
599 if (likely(!read_seqretry(&mount_lock, seq)))
601 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
602 mnt_add_count(mnt, -1);
606 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
607 mnt_add_count(mnt, -1);
612 /* caller will mntput() */
616 /* call under rcu_read_lock */
617 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
619 int res = __legitimize_mnt(bastard, seq);
622 if (unlikely(res < 0)) {
631 * find the first mount at @dentry on vfsmount @mnt.
632 * call under rcu_read_lock()
634 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
636 struct hlist_head *head = m_hash(mnt, dentry);
639 hlist_for_each_entry_rcu(p, head, mnt_hash)
640 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
646 * lookup_mnt - Return the first child mount mounted at path
648 * "First" means first mounted chronologically. If you create the
651 * mount /dev/sda1 /mnt
652 * mount /dev/sda2 /mnt
653 * mount /dev/sda3 /mnt
655 * Then lookup_mnt() on the base /mnt dentry in the root mount will
656 * return successively the root dentry and vfsmount of /dev/sda1, then
657 * /dev/sda2, then /dev/sda3, then NULL.
659 * lookup_mnt takes a reference to the found vfsmount.
661 struct vfsmount *lookup_mnt(const struct path *path)
663 struct mount *child_mnt;
669 seq = read_seqbegin(&mount_lock);
670 child_mnt = __lookup_mnt(path->mnt, path->dentry);
671 m = child_mnt ? &child_mnt->mnt : NULL;
672 } while (!legitimize_mnt(m, seq));
677 static inline void lock_ns_list(struct mnt_namespace *ns)
679 spin_lock(&ns->ns_lock);
682 static inline void unlock_ns_list(struct mnt_namespace *ns)
684 spin_unlock(&ns->ns_lock);
687 static inline bool mnt_is_cursor(struct mount *mnt)
689 return mnt->mnt.mnt_flags & MNT_CURSOR;
693 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
694 * current mount namespace.
696 * The common case is dentries are not mountpoints at all and that
697 * test is handled inline. For the slow case when we are actually
698 * dealing with a mountpoint of some kind, walk through all of the
699 * mounts in the current mount namespace and test to see if the dentry
702 * The mount_hashtable is not usable in the context because we
703 * need to identify all mounts that may be in the current mount
704 * namespace not just a mount that happens to have some specified
707 bool __is_local_mountpoint(struct dentry *dentry)
709 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
711 bool is_covered = false;
713 down_read(&namespace_sem);
715 list_for_each_entry(mnt, &ns->list, mnt_list) {
716 if (mnt_is_cursor(mnt))
718 is_covered = (mnt->mnt_mountpoint == dentry);
723 up_read(&namespace_sem);
728 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
730 struct hlist_head *chain = mp_hash(dentry);
731 struct mountpoint *mp;
733 hlist_for_each_entry(mp, chain, m_hash) {
734 if (mp->m_dentry == dentry) {
742 static struct mountpoint *get_mountpoint(struct dentry *dentry)
744 struct mountpoint *mp, *new = NULL;
747 if (d_mountpoint(dentry)) {
748 /* might be worth a WARN_ON() */
749 if (d_unlinked(dentry))
750 return ERR_PTR(-ENOENT);
752 read_seqlock_excl(&mount_lock);
753 mp = lookup_mountpoint(dentry);
754 read_sequnlock_excl(&mount_lock);
760 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
762 return ERR_PTR(-ENOMEM);
765 /* Exactly one processes may set d_mounted */
766 ret = d_set_mounted(dentry);
768 /* Someone else set d_mounted? */
772 /* The dentry is not available as a mountpoint? */
777 /* Add the new mountpoint to the hash table */
778 read_seqlock_excl(&mount_lock);
779 new->m_dentry = dget(dentry);
781 hlist_add_head(&new->m_hash, mp_hash(dentry));
782 INIT_HLIST_HEAD(&new->m_list);
783 read_sequnlock_excl(&mount_lock);
793 * vfsmount lock must be held. Additionally, the caller is responsible
794 * for serializing calls for given disposal list.
796 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
798 if (!--mp->m_count) {
799 struct dentry *dentry = mp->m_dentry;
800 BUG_ON(!hlist_empty(&mp->m_list));
801 spin_lock(&dentry->d_lock);
802 dentry->d_flags &= ~DCACHE_MOUNTED;
803 spin_unlock(&dentry->d_lock);
804 dput_to_list(dentry, list);
805 hlist_del(&mp->m_hash);
810 /* called with namespace_lock and vfsmount lock */
811 static void put_mountpoint(struct mountpoint *mp)
813 __put_mountpoint(mp, &ex_mountpoints);
816 static inline int check_mnt(struct mount *mnt)
818 return mnt->mnt_ns == current->nsproxy->mnt_ns;
822 * vfsmount lock must be held for write
824 static void touch_mnt_namespace(struct mnt_namespace *ns)
828 wake_up_interruptible(&ns->poll);
833 * vfsmount lock must be held for write
835 static void __touch_mnt_namespace(struct mnt_namespace *ns)
837 if (ns && ns->event != event) {
839 wake_up_interruptible(&ns->poll);
844 * vfsmount lock must be held for write
846 static struct mountpoint *unhash_mnt(struct mount *mnt)
848 struct mountpoint *mp;
849 mnt->mnt_parent = mnt;
850 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
851 list_del_init(&mnt->mnt_child);
852 hlist_del_init_rcu(&mnt->mnt_hash);
853 hlist_del_init(&mnt->mnt_mp_list);
860 * vfsmount lock must be held for write
862 static void umount_mnt(struct mount *mnt)
864 put_mountpoint(unhash_mnt(mnt));
868 * vfsmount lock must be held for write
870 void mnt_set_mountpoint(struct mount *mnt,
871 struct mountpoint *mp,
872 struct mount *child_mnt)
875 mnt_add_count(mnt, 1); /* essentially, that's mntget */
876 child_mnt->mnt_mountpoint = mp->m_dentry;
877 child_mnt->mnt_parent = mnt;
878 child_mnt->mnt_mp = mp;
879 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
882 static void __attach_mnt(struct mount *mnt, struct mount *parent)
884 hlist_add_head_rcu(&mnt->mnt_hash,
885 m_hash(&parent->mnt, mnt->mnt_mountpoint));
886 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
890 * vfsmount lock must be held for write
892 static void attach_mnt(struct mount *mnt,
893 struct mount *parent,
894 struct mountpoint *mp)
896 mnt_set_mountpoint(parent, mp, mnt);
897 __attach_mnt(mnt, parent);
900 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
902 struct mountpoint *old_mp = mnt->mnt_mp;
903 struct mount *old_parent = mnt->mnt_parent;
905 list_del_init(&mnt->mnt_child);
906 hlist_del_init(&mnt->mnt_mp_list);
907 hlist_del_init_rcu(&mnt->mnt_hash);
909 attach_mnt(mnt, parent, mp);
911 put_mountpoint(old_mp);
912 mnt_add_count(old_parent, -1);
916 * vfsmount lock must be held for write
918 static void commit_tree(struct mount *mnt)
920 struct mount *parent = mnt->mnt_parent;
923 struct mnt_namespace *n = parent->mnt_ns;
925 BUG_ON(parent == mnt);
927 list_add_tail(&head, &mnt->mnt_list);
928 list_for_each_entry(m, &head, mnt_list)
931 list_splice(&head, n->list.prev);
933 n->mounts += n->pending_mounts;
934 n->pending_mounts = 0;
936 __attach_mnt(mnt, parent);
937 touch_mnt_namespace(n);
940 static struct mount *next_mnt(struct mount *p, struct mount *root)
942 struct list_head *next = p->mnt_mounts.next;
943 if (next == &p->mnt_mounts) {
947 next = p->mnt_child.next;
948 if (next != &p->mnt_parent->mnt_mounts)
953 return list_entry(next, struct mount, mnt_child);
956 static struct mount *skip_mnt_tree(struct mount *p)
958 struct list_head *prev = p->mnt_mounts.prev;
959 while (prev != &p->mnt_mounts) {
960 p = list_entry(prev, struct mount, mnt_child);
961 prev = p->mnt_mounts.prev;
967 * vfs_create_mount - Create a mount for a configured superblock
968 * @fc: The configuration context with the superblock attached
970 * Create a mount to an already configured superblock. If necessary, the
971 * caller should invoke vfs_get_tree() before calling this.
973 * Note that this does not attach the mount to anything.
975 struct vfsmount *vfs_create_mount(struct fs_context *fc)
980 return ERR_PTR(-EINVAL);
982 mnt = alloc_vfsmnt(fc->source ?: "none");
984 return ERR_PTR(-ENOMEM);
986 if (fc->sb_flags & SB_KERNMOUNT)
987 mnt->mnt.mnt_flags = MNT_INTERNAL;
989 atomic_inc(&fc->root->d_sb->s_active);
990 mnt->mnt.mnt_sb = fc->root->d_sb;
991 mnt->mnt.mnt_root = dget(fc->root);
992 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
993 mnt->mnt_parent = mnt;
996 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1000 EXPORT_SYMBOL(vfs_create_mount);
1002 struct vfsmount *fc_mount(struct fs_context *fc)
1004 int err = vfs_get_tree(fc);
1006 up_write(&fc->root->d_sb->s_umount);
1007 return vfs_create_mount(fc);
1009 return ERR_PTR(err);
1011 EXPORT_SYMBOL(fc_mount);
1013 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1014 int flags, const char *name,
1017 struct fs_context *fc;
1018 struct vfsmount *mnt;
1022 return ERR_PTR(-EINVAL);
1024 fc = fs_context_for_mount(type, flags);
1026 return ERR_CAST(fc);
1029 ret = vfs_parse_fs_string(fc, "source",
1030 name, strlen(name));
1032 ret = parse_monolithic_mount_data(fc, data);
1041 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1044 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1045 const char *name, void *data)
1047 /* Until it is worked out how to pass the user namespace
1048 * through from the parent mount to the submount don't support
1049 * unprivileged mounts with submounts.
1051 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1052 return ERR_PTR(-EPERM);
1054 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1056 EXPORT_SYMBOL_GPL(vfs_submount);
1058 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1061 struct super_block *sb = old->mnt.mnt_sb;
1065 mnt = alloc_vfsmnt(old->mnt_devname);
1067 return ERR_PTR(-ENOMEM);
1069 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1070 mnt->mnt_group_id = 0; /* not a peer of original */
1072 mnt->mnt_group_id = old->mnt_group_id;
1074 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1075 err = mnt_alloc_group_id(mnt);
1080 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1081 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1083 atomic_inc(&sb->s_active);
1084 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1085 if (mnt->mnt.mnt_userns != &init_user_ns)
1086 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1087 mnt->mnt.mnt_sb = sb;
1088 mnt->mnt.mnt_root = dget(root);
1089 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1090 mnt->mnt_parent = mnt;
1092 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1093 unlock_mount_hash();
1095 if ((flag & CL_SLAVE) ||
1096 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1097 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1098 mnt->mnt_master = old;
1099 CLEAR_MNT_SHARED(mnt);
1100 } else if (!(flag & CL_PRIVATE)) {
1101 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1102 list_add(&mnt->mnt_share, &old->mnt_share);
1103 if (IS_MNT_SLAVE(old))
1104 list_add(&mnt->mnt_slave, &old->mnt_slave);
1105 mnt->mnt_master = old->mnt_master;
1107 CLEAR_MNT_SHARED(mnt);
1109 if (flag & CL_MAKE_SHARED)
1110 set_mnt_shared(mnt);
1112 /* stick the duplicate mount on the same expiry list
1113 * as the original if that was on one */
1114 if (flag & CL_EXPIRE) {
1115 if (!list_empty(&old->mnt_expire))
1116 list_add(&mnt->mnt_expire, &old->mnt_expire);
1124 return ERR_PTR(err);
1127 static void cleanup_mnt(struct mount *mnt)
1129 struct hlist_node *p;
1132 * The warning here probably indicates that somebody messed
1133 * up a mnt_want/drop_write() pair. If this happens, the
1134 * filesystem was probably unable to make r/w->r/o transitions.
1135 * The locking used to deal with mnt_count decrement provides barriers,
1136 * so mnt_get_writers() below is safe.
1138 WARN_ON(mnt_get_writers(mnt));
1139 if (unlikely(mnt->mnt_pins.first))
1141 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1142 hlist_del(&m->mnt_umount);
1145 fsnotify_vfsmount_delete(&mnt->mnt);
1146 dput(mnt->mnt.mnt_root);
1147 deactivate_super(mnt->mnt.mnt_sb);
1149 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1152 static void __cleanup_mnt(struct rcu_head *head)
1154 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1157 static LLIST_HEAD(delayed_mntput_list);
1158 static void delayed_mntput(struct work_struct *unused)
1160 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1161 struct mount *m, *t;
1163 llist_for_each_entry_safe(m, t, node, mnt_llist)
1166 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1168 static void mntput_no_expire(struct mount *mnt)
1174 if (likely(READ_ONCE(mnt->mnt_ns))) {
1176 * Since we don't do lock_mount_hash() here,
1177 * ->mnt_ns can change under us. However, if it's
1178 * non-NULL, then there's a reference that won't
1179 * be dropped until after an RCU delay done after
1180 * turning ->mnt_ns NULL. So if we observe it
1181 * non-NULL under rcu_read_lock(), the reference
1182 * we are dropping is not the final one.
1184 mnt_add_count(mnt, -1);
1190 * make sure that if __legitimize_mnt() has not seen us grab
1191 * mount_lock, we'll see their refcount increment here.
1194 mnt_add_count(mnt, -1);
1195 count = mnt_get_count(mnt);
1199 unlock_mount_hash();
1202 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1204 unlock_mount_hash();
1207 mnt->mnt.mnt_flags |= MNT_DOOMED;
1210 list_del(&mnt->mnt_instance);
1212 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1213 struct mount *p, *tmp;
1214 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1215 __put_mountpoint(unhash_mnt(p), &list);
1216 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1219 unlock_mount_hash();
1220 shrink_dentry_list(&list);
1222 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1223 struct task_struct *task = current;
1224 if (likely(!(task->flags & PF_KTHREAD))) {
1225 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1226 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1229 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1230 schedule_delayed_work(&delayed_mntput_work, 1);
1236 void mntput(struct vfsmount *mnt)
1239 struct mount *m = real_mount(mnt);
1240 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1241 if (unlikely(m->mnt_expiry_mark))
1242 m->mnt_expiry_mark = 0;
1243 mntput_no_expire(m);
1246 EXPORT_SYMBOL(mntput);
1248 struct vfsmount *mntget(struct vfsmount *mnt)
1251 mnt_add_count(real_mount(mnt), 1);
1254 EXPORT_SYMBOL(mntget);
1256 /* path_is_mountpoint() - Check if path is a mount in the current
1259 * d_mountpoint() can only be used reliably to establish if a dentry is
1260 * not mounted in any namespace and that common case is handled inline.
1261 * d_mountpoint() isn't aware of the possibility there may be multiple
1262 * mounts using a given dentry in a different namespace. This function
1263 * checks if the passed in path is a mountpoint rather than the dentry
1266 bool path_is_mountpoint(const struct path *path)
1271 if (!d_mountpoint(path->dentry))
1276 seq = read_seqbegin(&mount_lock);
1277 res = __path_is_mountpoint(path);
1278 } while (read_seqretry(&mount_lock, seq));
1283 EXPORT_SYMBOL(path_is_mountpoint);
1285 struct vfsmount *mnt_clone_internal(const struct path *path)
1288 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1291 p->mnt.mnt_flags |= MNT_INTERNAL;
1295 #ifdef CONFIG_PROC_FS
1296 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1297 struct list_head *p)
1299 struct mount *mnt, *ret = NULL;
1302 list_for_each_continue(p, &ns->list) {
1303 mnt = list_entry(p, typeof(*mnt), mnt_list);
1304 if (!mnt_is_cursor(mnt)) {
1314 /* iterator; we want it to have access to namespace_sem, thus here... */
1315 static void *m_start(struct seq_file *m, loff_t *pos)
1317 struct proc_mounts *p = m->private;
1318 struct list_head *prev;
1320 down_read(&namespace_sem);
1322 prev = &p->ns->list;
1324 prev = &p->cursor.mnt_list;
1326 /* Read after we'd reached the end? */
1327 if (list_empty(prev))
1331 return mnt_list_next(p->ns, prev);
1334 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1336 struct proc_mounts *p = m->private;
1337 struct mount *mnt = v;
1340 return mnt_list_next(p->ns, &mnt->mnt_list);
1343 static void m_stop(struct seq_file *m, void *v)
1345 struct proc_mounts *p = m->private;
1346 struct mount *mnt = v;
1348 lock_ns_list(p->ns);
1350 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1352 list_del_init(&p->cursor.mnt_list);
1353 unlock_ns_list(p->ns);
1354 up_read(&namespace_sem);
1357 static int m_show(struct seq_file *m, void *v)
1359 struct proc_mounts *p = m->private;
1360 struct mount *r = v;
1361 return p->show(m, &r->mnt);
1364 const struct seq_operations mounts_op = {
1371 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1373 down_read(&namespace_sem);
1375 list_del(&cursor->mnt_list);
1377 up_read(&namespace_sem);
1379 #endif /* CONFIG_PROC_FS */
1382 * may_umount_tree - check if a mount tree is busy
1383 * @mnt: root of mount tree
1385 * This is called to check if a tree of mounts has any
1386 * open files, pwds, chroots or sub mounts that are
1389 int may_umount_tree(struct vfsmount *m)
1391 struct mount *mnt = real_mount(m);
1392 int actual_refs = 0;
1393 int minimum_refs = 0;
1397 /* write lock needed for mnt_get_count */
1399 for (p = mnt; p; p = next_mnt(p, mnt)) {
1400 actual_refs += mnt_get_count(p);
1403 unlock_mount_hash();
1405 if (actual_refs > minimum_refs)
1411 EXPORT_SYMBOL(may_umount_tree);
1414 * may_umount - check if a mount point is busy
1415 * @mnt: root of mount
1417 * This is called to check if a mount point has any
1418 * open files, pwds, chroots or sub mounts. If the
1419 * mount has sub mounts this will return busy
1420 * regardless of whether the sub mounts are busy.
1422 * Doesn't take quota and stuff into account. IOW, in some cases it will
1423 * give false negatives. The main reason why it's here is that we need
1424 * a non-destructive way to look for easily umountable filesystems.
1426 int may_umount(struct vfsmount *mnt)
1429 down_read(&namespace_sem);
1431 if (propagate_mount_busy(real_mount(mnt), 2))
1433 unlock_mount_hash();
1434 up_read(&namespace_sem);
1438 EXPORT_SYMBOL(may_umount);
1440 static void namespace_unlock(void)
1442 struct hlist_head head;
1443 struct hlist_node *p;
1447 hlist_move_list(&unmounted, &head);
1448 list_splice_init(&ex_mountpoints, &list);
1450 up_write(&namespace_sem);
1452 shrink_dentry_list(&list);
1454 if (likely(hlist_empty(&head)))
1457 synchronize_rcu_expedited();
1459 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1460 hlist_del(&m->mnt_umount);
1465 static inline void namespace_lock(void)
1467 down_write(&namespace_sem);
1470 enum umount_tree_flags {
1472 UMOUNT_PROPAGATE = 2,
1473 UMOUNT_CONNECTED = 4,
1476 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1478 /* Leaving mounts connected is only valid for lazy umounts */
1479 if (how & UMOUNT_SYNC)
1482 /* A mount without a parent has nothing to be connected to */
1483 if (!mnt_has_parent(mnt))
1486 /* Because the reference counting rules change when mounts are
1487 * unmounted and connected, umounted mounts may not be
1488 * connected to mounted mounts.
1490 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1493 /* Has it been requested that the mount remain connected? */
1494 if (how & UMOUNT_CONNECTED)
1497 /* Is the mount locked such that it needs to remain connected? */
1498 if (IS_MNT_LOCKED(mnt))
1501 /* By default disconnect the mount */
1506 * mount_lock must be held
1507 * namespace_sem must be held for write
1509 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1511 LIST_HEAD(tmp_list);
1514 if (how & UMOUNT_PROPAGATE)
1515 propagate_mount_unlock(mnt);
1517 /* Gather the mounts to umount */
1518 for (p = mnt; p; p = next_mnt(p, mnt)) {
1519 p->mnt.mnt_flags |= MNT_UMOUNT;
1520 list_move(&p->mnt_list, &tmp_list);
1523 /* Hide the mounts from mnt_mounts */
1524 list_for_each_entry(p, &tmp_list, mnt_list) {
1525 list_del_init(&p->mnt_child);
1528 /* Add propogated mounts to the tmp_list */
1529 if (how & UMOUNT_PROPAGATE)
1530 propagate_umount(&tmp_list);
1532 while (!list_empty(&tmp_list)) {
1533 struct mnt_namespace *ns;
1535 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1536 list_del_init(&p->mnt_expire);
1537 list_del_init(&p->mnt_list);
1541 __touch_mnt_namespace(ns);
1544 if (how & UMOUNT_SYNC)
1545 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1547 disconnect = disconnect_mount(p, how);
1548 if (mnt_has_parent(p)) {
1549 mnt_add_count(p->mnt_parent, -1);
1551 /* Don't forget about p */
1552 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1557 change_mnt_propagation(p, MS_PRIVATE);
1559 hlist_add_head(&p->mnt_umount, &unmounted);
1563 static void shrink_submounts(struct mount *mnt);
1565 static int do_umount_root(struct super_block *sb)
1569 down_write(&sb->s_umount);
1570 if (!sb_rdonly(sb)) {
1571 struct fs_context *fc;
1573 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1578 ret = parse_monolithic_mount_data(fc, NULL);
1580 ret = reconfigure_super(fc);
1584 up_write(&sb->s_umount);
1588 static int do_umount(struct mount *mnt, int flags)
1590 struct super_block *sb = mnt->mnt.mnt_sb;
1593 retval = security_sb_umount(&mnt->mnt, flags);
1598 * Allow userspace to request a mountpoint be expired rather than
1599 * unmounting unconditionally. Unmount only happens if:
1600 * (1) the mark is already set (the mark is cleared by mntput())
1601 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1603 if (flags & MNT_EXPIRE) {
1604 if (&mnt->mnt == current->fs->root.mnt ||
1605 flags & (MNT_FORCE | MNT_DETACH))
1609 * probably don't strictly need the lock here if we examined
1610 * all race cases, but it's a slowpath.
1613 if (mnt_get_count(mnt) != 2) {
1614 unlock_mount_hash();
1617 unlock_mount_hash();
1619 if (!xchg(&mnt->mnt_expiry_mark, 1))
1624 * If we may have to abort operations to get out of this
1625 * mount, and they will themselves hold resources we must
1626 * allow the fs to do things. In the Unix tradition of
1627 * 'Gee thats tricky lets do it in userspace' the umount_begin
1628 * might fail to complete on the first run through as other tasks
1629 * must return, and the like. Thats for the mount program to worry
1630 * about for the moment.
1633 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1634 sb->s_op->umount_begin(sb);
1638 * No sense to grab the lock for this test, but test itself looks
1639 * somewhat bogus. Suggestions for better replacement?
1640 * Ho-hum... In principle, we might treat that as umount + switch
1641 * to rootfs. GC would eventually take care of the old vfsmount.
1642 * Actually it makes sense, especially if rootfs would contain a
1643 * /reboot - static binary that would close all descriptors and
1644 * call reboot(9). Then init(8) could umount root and exec /reboot.
1646 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1648 * Special case for "unmounting" root ...
1649 * we just try to remount it readonly.
1651 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1653 return do_umount_root(sb);
1659 /* Recheck MNT_LOCKED with the locks held */
1661 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1665 if (flags & MNT_DETACH) {
1666 if (!list_empty(&mnt->mnt_list))
1667 umount_tree(mnt, UMOUNT_PROPAGATE);
1670 shrink_submounts(mnt);
1672 if (!propagate_mount_busy(mnt, 2)) {
1673 if (!list_empty(&mnt->mnt_list))
1674 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1679 unlock_mount_hash();
1685 * __detach_mounts - lazily unmount all mounts on the specified dentry
1687 * During unlink, rmdir, and d_drop it is possible to loose the path
1688 * to an existing mountpoint, and wind up leaking the mount.
1689 * detach_mounts allows lazily unmounting those mounts instead of
1692 * The caller may hold dentry->d_inode->i_mutex.
1694 void __detach_mounts(struct dentry *dentry)
1696 struct mountpoint *mp;
1701 mp = lookup_mountpoint(dentry);
1706 while (!hlist_empty(&mp->m_list)) {
1707 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1708 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1710 hlist_add_head(&mnt->mnt_umount, &unmounted);
1712 else umount_tree(mnt, UMOUNT_CONNECTED);
1716 unlock_mount_hash();
1721 * Is the caller allowed to modify his namespace?
1723 static inline bool may_mount(void)
1725 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1728 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1729 static inline bool may_mandlock(void)
1731 return capable(CAP_SYS_ADMIN);
1734 static inline bool may_mandlock(void)
1736 pr_warn("VFS: \"mand\" mount option not supported");
1741 static int can_umount(const struct path *path, int flags)
1743 struct mount *mnt = real_mount(path->mnt);
1747 if (path->dentry != path->mnt->mnt_root)
1749 if (!check_mnt(mnt))
1751 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1753 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1758 // caller is responsible for flags being sane
1759 int path_umount(struct path *path, int flags)
1761 struct mount *mnt = real_mount(path->mnt);
1764 ret = can_umount(path, flags);
1766 ret = do_umount(mnt, flags);
1768 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1770 mntput_no_expire(mnt);
1774 static int ksys_umount(char __user *name, int flags)
1776 int lookup_flags = LOOKUP_MOUNTPOINT;
1780 // basic validity checks done first
1781 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1784 if (!(flags & UMOUNT_NOFOLLOW))
1785 lookup_flags |= LOOKUP_FOLLOW;
1786 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1789 return path_umount(&path, flags);
1792 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1794 return ksys_umount(name, flags);
1797 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1800 * The 2.0 compatible umount. No flags.
1802 SYSCALL_DEFINE1(oldumount, char __user *, name)
1804 return ksys_umount(name, 0);
1809 static bool is_mnt_ns_file(struct dentry *dentry)
1811 /* Is this a proxy for a mount namespace? */
1812 return dentry->d_op == &ns_dentry_operations &&
1813 dentry->d_fsdata == &mntns_operations;
1816 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1818 return container_of(ns, struct mnt_namespace, ns);
1821 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1826 static bool mnt_ns_loop(struct dentry *dentry)
1828 /* Could bind mounting the mount namespace inode cause a
1829 * mount namespace loop?
1831 struct mnt_namespace *mnt_ns;
1832 if (!is_mnt_ns_file(dentry))
1835 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1836 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1839 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1842 struct mount *res, *p, *q, *r, *parent;
1844 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1845 return ERR_PTR(-EINVAL);
1847 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1848 return ERR_PTR(-EINVAL);
1850 res = q = clone_mnt(mnt, dentry, flag);
1854 q->mnt_mountpoint = mnt->mnt_mountpoint;
1857 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1859 if (!is_subdir(r->mnt_mountpoint, dentry))
1862 for (s = r; s; s = next_mnt(s, r)) {
1863 if (!(flag & CL_COPY_UNBINDABLE) &&
1864 IS_MNT_UNBINDABLE(s)) {
1865 if (s->mnt.mnt_flags & MNT_LOCKED) {
1866 /* Both unbindable and locked. */
1867 q = ERR_PTR(-EPERM);
1870 s = skip_mnt_tree(s);
1874 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1875 is_mnt_ns_file(s->mnt.mnt_root)) {
1876 s = skip_mnt_tree(s);
1879 while (p != s->mnt_parent) {
1885 q = clone_mnt(p, p->mnt.mnt_root, flag);
1889 list_add_tail(&q->mnt_list, &res->mnt_list);
1890 attach_mnt(q, parent, p->mnt_mp);
1891 unlock_mount_hash();
1898 umount_tree(res, UMOUNT_SYNC);
1899 unlock_mount_hash();
1904 /* Caller should check returned pointer for errors */
1906 struct vfsmount *collect_mounts(const struct path *path)
1910 if (!check_mnt(real_mount(path->mnt)))
1911 tree = ERR_PTR(-EINVAL);
1913 tree = copy_tree(real_mount(path->mnt), path->dentry,
1914 CL_COPY_ALL | CL_PRIVATE);
1917 return ERR_CAST(tree);
1921 static void free_mnt_ns(struct mnt_namespace *);
1922 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1924 void dissolve_on_fput(struct vfsmount *mnt)
1926 struct mnt_namespace *ns;
1929 ns = real_mount(mnt)->mnt_ns;
1932 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1936 unlock_mount_hash();
1942 void drop_collected_mounts(struct vfsmount *mnt)
1946 umount_tree(real_mount(mnt), 0);
1947 unlock_mount_hash();
1952 * clone_private_mount - create a private clone of a path
1954 * This creates a new vfsmount, which will be the clone of @path. The new will
1955 * not be attached anywhere in the namespace and will be private (i.e. changes
1956 * to the originating mount won't be propagated into this).
1958 * Release with mntput().
1960 struct vfsmount *clone_private_mount(const struct path *path)
1962 struct mount *old_mnt = real_mount(path->mnt);
1963 struct mount *new_mnt;
1965 if (IS_MNT_UNBINDABLE(old_mnt))
1966 return ERR_PTR(-EINVAL);
1968 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1969 if (IS_ERR(new_mnt))
1970 return ERR_CAST(new_mnt);
1972 /* Longterm mount to be removed by kern_unmount*() */
1973 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1975 return &new_mnt->mnt;
1977 EXPORT_SYMBOL_GPL(clone_private_mount);
1979 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1980 struct vfsmount *root)
1983 int res = f(root, arg);
1986 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1987 res = f(&mnt->mnt, arg);
1994 static void lock_mnt_tree(struct mount *mnt)
1998 for (p = mnt; p; p = next_mnt(p, mnt)) {
1999 int flags = p->mnt.mnt_flags;
2000 /* Don't allow unprivileged users to change mount flags */
2001 flags |= MNT_LOCK_ATIME;
2003 if (flags & MNT_READONLY)
2004 flags |= MNT_LOCK_READONLY;
2006 if (flags & MNT_NODEV)
2007 flags |= MNT_LOCK_NODEV;
2009 if (flags & MNT_NOSUID)
2010 flags |= MNT_LOCK_NOSUID;
2012 if (flags & MNT_NOEXEC)
2013 flags |= MNT_LOCK_NOEXEC;
2014 /* Don't allow unprivileged users to reveal what is under a mount */
2015 if (list_empty(&p->mnt_expire))
2016 flags |= MNT_LOCKED;
2017 p->mnt.mnt_flags = flags;
2021 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2025 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2026 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2027 mnt_release_group_id(p);
2031 static int invent_group_ids(struct mount *mnt, bool recurse)
2035 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2036 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2037 int err = mnt_alloc_group_id(p);
2039 cleanup_group_ids(mnt, p);
2048 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2050 unsigned int max = READ_ONCE(sysctl_mount_max);
2051 unsigned int mounts = 0, old, pending, sum;
2054 for (p = mnt; p; p = next_mnt(p, mnt))
2058 pending = ns->pending_mounts;
2059 sum = old + pending;
2063 (mounts > (max - sum)))
2066 ns->pending_mounts = pending + mounts;
2071 * @source_mnt : mount tree to be attached
2072 * @nd : place the mount tree @source_mnt is attached
2073 * @parent_nd : if non-null, detach the source_mnt from its parent and
2074 * store the parent mount and mountpoint dentry.
2075 * (done when source_mnt is moved)
2077 * NOTE: in the table below explains the semantics when a source mount
2078 * of a given type is attached to a destination mount of a given type.
2079 * ---------------------------------------------------------------------------
2080 * | BIND MOUNT OPERATION |
2081 * |**************************************************************************
2082 * | source-->| shared | private | slave | unbindable |
2086 * |**************************************************************************
2087 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2089 * |non-shared| shared (+) | private | slave (*) | invalid |
2090 * ***************************************************************************
2091 * A bind operation clones the source mount and mounts the clone on the
2092 * destination mount.
2094 * (++) the cloned mount is propagated to all the mounts in the propagation
2095 * tree of the destination mount and the cloned mount is added to
2096 * the peer group of the source mount.
2097 * (+) the cloned mount is created under the destination mount and is marked
2098 * as shared. The cloned mount is added to the peer group of the source
2100 * (+++) the mount is propagated to all the mounts in the propagation tree
2101 * of the destination mount and the cloned mount is made slave
2102 * of the same master as that of the source mount. The cloned mount
2103 * is marked as 'shared and slave'.
2104 * (*) the cloned mount is made a slave of the same master as that of the
2107 * ---------------------------------------------------------------------------
2108 * | MOVE MOUNT OPERATION |
2109 * |**************************************************************************
2110 * | source-->| shared | private | slave | unbindable |
2114 * |**************************************************************************
2115 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2117 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2118 * ***************************************************************************
2120 * (+) the mount is moved to the destination. And is then propagated to
2121 * all the mounts in the propagation tree of the destination mount.
2122 * (+*) the mount is moved to the destination.
2123 * (+++) the mount is moved to the destination and is then propagated to
2124 * all the mounts belonging to the destination mount's propagation tree.
2125 * the mount is marked as 'shared and slave'.
2126 * (*) the mount continues to be a slave at the new location.
2128 * if the source mount is a tree, the operations explained above is
2129 * applied to each mount in the tree.
2130 * Must be called without spinlocks held, since this function can sleep
2133 static int attach_recursive_mnt(struct mount *source_mnt,
2134 struct mount *dest_mnt,
2135 struct mountpoint *dest_mp,
2138 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2139 HLIST_HEAD(tree_list);
2140 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2141 struct mountpoint *smp;
2142 struct mount *child, *p;
2143 struct hlist_node *n;
2146 /* Preallocate a mountpoint in case the new mounts need
2147 * to be tucked under other mounts.
2149 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2151 return PTR_ERR(smp);
2153 /* Is there space to add these mounts to the mount namespace? */
2155 err = count_mounts(ns, source_mnt);
2160 if (IS_MNT_SHARED(dest_mnt)) {
2161 err = invent_group_ids(source_mnt, true);
2164 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2167 goto out_cleanup_ids;
2168 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2174 unhash_mnt(source_mnt);
2175 attach_mnt(source_mnt, dest_mnt, dest_mp);
2176 touch_mnt_namespace(source_mnt->mnt_ns);
2178 if (source_mnt->mnt_ns) {
2179 /* move from anon - the caller will destroy */
2180 list_del_init(&source_mnt->mnt_ns->list);
2182 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2183 commit_tree(source_mnt);
2186 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2188 hlist_del_init(&child->mnt_hash);
2189 q = __lookup_mnt(&child->mnt_parent->mnt,
2190 child->mnt_mountpoint);
2192 mnt_change_mountpoint(child, smp, q);
2193 /* Notice when we are propagating across user namespaces */
2194 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2195 lock_mnt_tree(child);
2196 child->mnt.mnt_flags &= ~MNT_LOCKED;
2199 put_mountpoint(smp);
2200 unlock_mount_hash();
2205 while (!hlist_empty(&tree_list)) {
2206 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2207 child->mnt_parent->mnt_ns->pending_mounts = 0;
2208 umount_tree(child, UMOUNT_SYNC);
2210 unlock_mount_hash();
2211 cleanup_group_ids(source_mnt, NULL);
2213 ns->pending_mounts = 0;
2215 read_seqlock_excl(&mount_lock);
2216 put_mountpoint(smp);
2217 read_sequnlock_excl(&mount_lock);
2222 static struct mountpoint *lock_mount(struct path *path)
2224 struct vfsmount *mnt;
2225 struct dentry *dentry = path->dentry;
2227 inode_lock(dentry->d_inode);
2228 if (unlikely(cant_mount(dentry))) {
2229 inode_unlock(dentry->d_inode);
2230 return ERR_PTR(-ENOENT);
2233 mnt = lookup_mnt(path);
2235 struct mountpoint *mp = get_mountpoint(dentry);
2238 inode_unlock(dentry->d_inode);
2244 inode_unlock(path->dentry->d_inode);
2247 dentry = path->dentry = dget(mnt->mnt_root);
2251 static void unlock_mount(struct mountpoint *where)
2253 struct dentry *dentry = where->m_dentry;
2255 read_seqlock_excl(&mount_lock);
2256 put_mountpoint(where);
2257 read_sequnlock_excl(&mount_lock);
2260 inode_unlock(dentry->d_inode);
2263 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2265 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2268 if (d_is_dir(mp->m_dentry) !=
2269 d_is_dir(mnt->mnt.mnt_root))
2272 return attach_recursive_mnt(mnt, p, mp, false);
2276 * Sanity check the flags to change_mnt_propagation.
2279 static int flags_to_propagation_type(int ms_flags)
2281 int type = ms_flags & ~(MS_REC | MS_SILENT);
2283 /* Fail if any non-propagation flags are set */
2284 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2286 /* Only one propagation flag should be set */
2287 if (!is_power_of_2(type))
2293 * recursively change the type of the mountpoint.
2295 static int do_change_type(struct path *path, int ms_flags)
2298 struct mount *mnt = real_mount(path->mnt);
2299 int recurse = ms_flags & MS_REC;
2303 if (path->dentry != path->mnt->mnt_root)
2306 type = flags_to_propagation_type(ms_flags);
2311 if (type == MS_SHARED) {
2312 err = invent_group_ids(mnt, recurse);
2318 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2319 change_mnt_propagation(m, type);
2320 unlock_mount_hash();
2327 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2329 struct mount *child;
2330 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2331 if (!is_subdir(child->mnt_mountpoint, dentry))
2334 if (child->mnt.mnt_flags & MNT_LOCKED)
2340 static struct mount *__do_loopback(struct path *old_path, int recurse)
2342 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2344 if (IS_MNT_UNBINDABLE(old))
2347 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2350 if (!recurse && has_locked_children(old, old_path->dentry))
2354 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2356 mnt = clone_mnt(old, old_path->dentry, 0);
2359 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2365 * do loopback mount.
2367 static int do_loopback(struct path *path, const char *old_name,
2370 struct path old_path;
2371 struct mount *mnt = NULL, *parent;
2372 struct mountpoint *mp;
2374 if (!old_name || !*old_name)
2376 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2381 if (mnt_ns_loop(old_path.dentry))
2384 mp = lock_mount(path);
2390 parent = real_mount(path->mnt);
2391 if (!check_mnt(parent))
2394 mnt = __do_loopback(&old_path, recurse);
2400 err = graft_tree(mnt, parent, mp);
2403 umount_tree(mnt, UMOUNT_SYNC);
2404 unlock_mount_hash();
2409 path_put(&old_path);
2413 static struct file *open_detached_copy(struct path *path, bool recursive)
2415 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2416 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2417 struct mount *mnt, *p;
2421 return ERR_CAST(ns);
2424 mnt = __do_loopback(path, recursive);
2428 return ERR_CAST(mnt);
2432 for (p = mnt; p; p = next_mnt(p, mnt)) {
2437 list_add_tail(&ns->list, &mnt->mnt_list);
2439 unlock_mount_hash();
2443 path->mnt = &mnt->mnt;
2444 file = dentry_open(path, O_PATH, current_cred());
2446 dissolve_on_fput(path->mnt);
2448 file->f_mode |= FMODE_NEED_UNMOUNT;
2452 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2456 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2457 bool detached = flags & OPEN_TREE_CLONE;
2461 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2463 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2464 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2468 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2471 if (flags & AT_NO_AUTOMOUNT)
2472 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2473 if (flags & AT_SYMLINK_NOFOLLOW)
2474 lookup_flags &= ~LOOKUP_FOLLOW;
2475 if (flags & AT_EMPTY_PATH)
2476 lookup_flags |= LOOKUP_EMPTY;
2478 if (detached && !may_mount())
2481 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2485 error = user_path_at(dfd, filename, lookup_flags, &path);
2486 if (unlikely(error)) {
2487 file = ERR_PTR(error);
2490 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2492 file = dentry_open(&path, O_PATH, current_cred());
2497 return PTR_ERR(file);
2499 fd_install(fd, file);
2504 * Don't allow locked mount flags to be cleared.
2506 * No locks need to be held here while testing the various MNT_LOCK
2507 * flags because those flags can never be cleared once they are set.
2509 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2511 unsigned int fl = mnt->mnt.mnt_flags;
2513 if ((fl & MNT_LOCK_READONLY) &&
2514 !(mnt_flags & MNT_READONLY))
2517 if ((fl & MNT_LOCK_NODEV) &&
2518 !(mnt_flags & MNT_NODEV))
2521 if ((fl & MNT_LOCK_NOSUID) &&
2522 !(mnt_flags & MNT_NOSUID))
2525 if ((fl & MNT_LOCK_NOEXEC) &&
2526 !(mnt_flags & MNT_NOEXEC))
2529 if ((fl & MNT_LOCK_ATIME) &&
2530 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2536 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2538 bool readonly_request = (mnt_flags & MNT_READONLY);
2540 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2543 if (readonly_request)
2544 return mnt_make_readonly(mnt);
2546 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2550 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2552 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2553 mnt->mnt.mnt_flags = mnt_flags;
2554 touch_mnt_namespace(mnt->mnt_ns);
2557 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2559 struct super_block *sb = mnt->mnt_sb;
2561 if (!__mnt_is_readonly(mnt) &&
2562 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2563 char *buf = (char *)__get_free_page(GFP_KERNEL);
2564 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2567 time64_to_tm(sb->s_time_max, 0, &tm);
2569 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2571 is_mounted(mnt) ? "remounted" : "mounted",
2573 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2575 free_page((unsigned long)buf);
2580 * Handle reconfiguration of the mountpoint only without alteration of the
2581 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2584 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2586 struct super_block *sb = path->mnt->mnt_sb;
2587 struct mount *mnt = real_mount(path->mnt);
2590 if (!check_mnt(mnt))
2593 if (path->dentry != mnt->mnt.mnt_root)
2596 if (!can_change_locked_flags(mnt, mnt_flags))
2600 * We're only checking whether the superblock is read-only not
2601 * changing it, so only take down_read(&sb->s_umount).
2603 down_read(&sb->s_umount);
2605 ret = change_mount_ro_state(mnt, mnt_flags);
2607 set_mount_attributes(mnt, mnt_flags);
2608 unlock_mount_hash();
2609 up_read(&sb->s_umount);
2611 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2617 * change filesystem flags. dir should be a physical root of filesystem.
2618 * If you've mounted a non-root directory somewhere and want to do remount
2619 * on it - tough luck.
2621 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2622 int mnt_flags, void *data)
2625 struct super_block *sb = path->mnt->mnt_sb;
2626 struct mount *mnt = real_mount(path->mnt);
2627 struct fs_context *fc;
2629 if (!check_mnt(mnt))
2632 if (path->dentry != path->mnt->mnt_root)
2635 if (!can_change_locked_flags(mnt, mnt_flags))
2638 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2643 err = parse_monolithic_mount_data(fc, data);
2645 down_write(&sb->s_umount);
2647 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2648 err = reconfigure_super(fc);
2651 set_mount_attributes(mnt, mnt_flags);
2652 unlock_mount_hash();
2655 up_write(&sb->s_umount);
2658 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2664 static inline int tree_contains_unbindable(struct mount *mnt)
2667 for (p = mnt; p; p = next_mnt(p, mnt)) {
2668 if (IS_MNT_UNBINDABLE(p))
2675 * Check that there aren't references to earlier/same mount namespaces in the
2676 * specified subtree. Such references can act as pins for mount namespaces
2677 * that aren't checked by the mount-cycle checking code, thereby allowing
2678 * cycles to be made.
2680 static bool check_for_nsfs_mounts(struct mount *subtree)
2686 for (p = subtree; p; p = next_mnt(p, subtree))
2687 if (mnt_ns_loop(p->mnt.mnt_root))
2692 unlock_mount_hash();
2696 static int do_move_mount(struct path *old_path, struct path *new_path)
2698 struct mnt_namespace *ns;
2701 struct mount *parent;
2702 struct mountpoint *mp, *old_mp;
2706 mp = lock_mount(new_path);
2710 old = real_mount(old_path->mnt);
2711 p = real_mount(new_path->mnt);
2712 parent = old->mnt_parent;
2713 attached = mnt_has_parent(old);
2714 old_mp = old->mnt_mp;
2718 /* The mountpoint must be in our namespace. */
2722 /* The thing moved must be mounted... */
2723 if (!is_mounted(&old->mnt))
2726 /* ... and either ours or the root of anon namespace */
2727 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2730 if (old->mnt.mnt_flags & MNT_LOCKED)
2733 if (old_path->dentry != old_path->mnt->mnt_root)
2736 if (d_is_dir(new_path->dentry) !=
2737 d_is_dir(old_path->dentry))
2740 * Don't move a mount residing in a shared parent.
2742 if (attached && IS_MNT_SHARED(parent))
2745 * Don't move a mount tree containing unbindable mounts to a destination
2746 * mount which is shared.
2748 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2751 if (!check_for_nsfs_mounts(old))
2753 for (; mnt_has_parent(p); p = p->mnt_parent)
2757 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2762 /* if the mount is moved, it should no longer be expire
2764 list_del_init(&old->mnt_expire);
2766 put_mountpoint(old_mp);
2771 mntput_no_expire(parent);
2778 static int do_move_mount_old(struct path *path, const char *old_name)
2780 struct path old_path;
2783 if (!old_name || !*old_name)
2786 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2790 err = do_move_mount(&old_path, path);
2791 path_put(&old_path);
2796 * add a mount into a namespace's mount tree
2798 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2799 struct path *path, int mnt_flags)
2801 struct mount *parent = real_mount(path->mnt);
2803 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2805 if (unlikely(!check_mnt(parent))) {
2806 /* that's acceptable only for automounts done in private ns */
2807 if (!(mnt_flags & MNT_SHRINKABLE))
2809 /* ... and for those we'd better have mountpoint still alive */
2810 if (!parent->mnt_ns)
2814 /* Refuse the same filesystem on the same mount point */
2815 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2816 path->mnt->mnt_root == path->dentry)
2819 if (d_is_symlink(newmnt->mnt.mnt_root))
2822 newmnt->mnt.mnt_flags = mnt_flags;
2823 return graft_tree(newmnt, parent, mp);
2826 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2829 * Create a new mount using a superblock configuration and request it
2830 * be added to the namespace tree.
2832 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2833 unsigned int mnt_flags)
2835 struct vfsmount *mnt;
2836 struct mountpoint *mp;
2837 struct super_block *sb = fc->root->d_sb;
2840 error = security_sb_kern_mount(sb);
2841 if (!error && mount_too_revealing(sb, &mnt_flags))
2844 if (unlikely(error)) {
2849 up_write(&sb->s_umount);
2851 mnt = vfs_create_mount(fc);
2853 return PTR_ERR(mnt);
2855 mnt_warn_timestamp_expiry(mountpoint, mnt);
2857 mp = lock_mount(mountpoint);
2862 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2870 * create a new mount for userspace and request it to be added into the
2873 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2874 int mnt_flags, const char *name, void *data)
2876 struct file_system_type *type;
2877 struct fs_context *fc;
2878 const char *subtype = NULL;
2884 type = get_fs_type(fstype);
2888 if (type->fs_flags & FS_HAS_SUBTYPE) {
2889 subtype = strchr(fstype, '.');
2893 put_filesystem(type);
2899 fc = fs_context_for_mount(type, sb_flags);
2900 put_filesystem(type);
2905 err = vfs_parse_fs_string(fc, "subtype",
2906 subtype, strlen(subtype));
2908 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2910 err = parse_monolithic_mount_data(fc, data);
2911 if (!err && !mount_capable(fc))
2914 err = vfs_get_tree(fc);
2916 err = do_new_mount_fc(fc, path, mnt_flags);
2922 int finish_automount(struct vfsmount *m, struct path *path)
2924 struct dentry *dentry = path->dentry;
2925 struct mountpoint *mp;
2934 mnt = real_mount(m);
2935 /* The new mount record should have at least 2 refs to prevent it being
2936 * expired before we get a chance to add it
2938 BUG_ON(mnt_get_count(mnt) < 2);
2940 if (m->mnt_sb == path->mnt->mnt_sb &&
2941 m->mnt_root == dentry) {
2947 * we don't want to use lock_mount() - in this case finding something
2948 * that overmounts our mountpoint to be means "quitely drop what we've
2949 * got", not "try to mount it on top".
2951 inode_lock(dentry->d_inode);
2953 if (unlikely(cant_mount(dentry))) {
2955 goto discard_locked;
2958 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2961 goto discard_locked;
2964 mp = get_mountpoint(dentry);
2967 goto discard_locked;
2970 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2979 inode_unlock(dentry->d_inode);
2981 /* remove m from any expiration list it may be on */
2982 if (!list_empty(&mnt->mnt_expire)) {
2984 list_del_init(&mnt->mnt_expire);
2993 * mnt_set_expiry - Put a mount on an expiration list
2994 * @mnt: The mount to list.
2995 * @expiry_list: The list to add the mount to.
2997 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3001 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3005 EXPORT_SYMBOL(mnt_set_expiry);
3008 * process a list of expirable mountpoints with the intent of discarding any
3009 * mountpoints that aren't in use and haven't been touched since last we came
3012 void mark_mounts_for_expiry(struct list_head *mounts)
3014 struct mount *mnt, *next;
3015 LIST_HEAD(graveyard);
3017 if (list_empty(mounts))
3023 /* extract from the expiration list every vfsmount that matches the
3024 * following criteria:
3025 * - only referenced by its parent vfsmount
3026 * - still marked for expiry (marked on the last call here; marks are
3027 * cleared by mntput())
3029 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3030 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3031 propagate_mount_busy(mnt, 1))
3033 list_move(&mnt->mnt_expire, &graveyard);
3035 while (!list_empty(&graveyard)) {
3036 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3037 touch_mnt_namespace(mnt->mnt_ns);
3038 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3040 unlock_mount_hash();
3044 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3047 * Ripoff of 'select_parent()'
3049 * search the list of submounts for a given mountpoint, and move any
3050 * shrinkable submounts to the 'graveyard' list.
3052 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3054 struct mount *this_parent = parent;
3055 struct list_head *next;
3059 next = this_parent->mnt_mounts.next;
3061 while (next != &this_parent->mnt_mounts) {
3062 struct list_head *tmp = next;
3063 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3066 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3069 * Descend a level if the d_mounts list is non-empty.
3071 if (!list_empty(&mnt->mnt_mounts)) {
3076 if (!propagate_mount_busy(mnt, 1)) {
3077 list_move_tail(&mnt->mnt_expire, graveyard);
3082 * All done at this level ... ascend and resume the search
3084 if (this_parent != parent) {
3085 next = this_parent->mnt_child.next;
3086 this_parent = this_parent->mnt_parent;
3093 * process a list of expirable mountpoints with the intent of discarding any
3094 * submounts of a specific parent mountpoint
3096 * mount_lock must be held for write
3098 static void shrink_submounts(struct mount *mnt)
3100 LIST_HEAD(graveyard);
3103 /* extract submounts of 'mountpoint' from the expiration list */
3104 while (select_submounts(mnt, &graveyard)) {
3105 while (!list_empty(&graveyard)) {
3106 m = list_first_entry(&graveyard, struct mount,
3108 touch_mnt_namespace(m->mnt_ns);
3109 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3114 static void *copy_mount_options(const void __user * data)
3117 unsigned left, offset;
3122 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3124 return ERR_PTR(-ENOMEM);
3126 left = copy_from_user(copy, data, PAGE_SIZE);
3129 * Not all architectures have an exact copy_from_user(). Resort to
3132 offset = PAGE_SIZE - left;
3135 if (get_user(c, (const char __user *)data + offset))
3142 if (left == PAGE_SIZE) {
3144 return ERR_PTR(-EFAULT);
3150 static char *copy_mount_string(const void __user *data)
3152 return data ? strndup_user(data, PATH_MAX) : NULL;
3156 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3157 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3159 * data is a (void *) that can point to any structure up to
3160 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3161 * information (or be NULL).
3163 * Pre-0.97 versions of mount() didn't have a flags word.
3164 * When the flags word was introduced its top half was required
3165 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3166 * Therefore, if this magic number is present, it carries no information
3167 * and must be discarded.
3169 int path_mount(const char *dev_name, struct path *path,
3170 const char *type_page, unsigned long flags, void *data_page)
3172 unsigned int mnt_flags = 0, sb_flags;
3176 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3177 flags &= ~MS_MGC_MSK;
3179 /* Basic sanity checks */
3181 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3183 if (flags & MS_NOUSER)
3186 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3191 if ((flags & SB_MANDLOCK) && !may_mandlock())
3194 /* Default to relatime unless overriden */
3195 if (!(flags & MS_NOATIME))
3196 mnt_flags |= MNT_RELATIME;
3198 /* Separate the per-mountpoint flags */
3199 if (flags & MS_NOSUID)
3200 mnt_flags |= MNT_NOSUID;
3201 if (flags & MS_NODEV)
3202 mnt_flags |= MNT_NODEV;
3203 if (flags & MS_NOEXEC)
3204 mnt_flags |= MNT_NOEXEC;
3205 if (flags & MS_NOATIME)
3206 mnt_flags |= MNT_NOATIME;
3207 if (flags & MS_NODIRATIME)
3208 mnt_flags |= MNT_NODIRATIME;
3209 if (flags & MS_STRICTATIME)
3210 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3211 if (flags & MS_RDONLY)
3212 mnt_flags |= MNT_READONLY;
3213 if (flags & MS_NOSYMFOLLOW)
3214 mnt_flags |= MNT_NOSYMFOLLOW;
3216 /* The default atime for remount is preservation */
3217 if ((flags & MS_REMOUNT) &&
3218 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3219 MS_STRICTATIME)) == 0)) {
3220 mnt_flags &= ~MNT_ATIME_MASK;
3221 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3224 sb_flags = flags & (SB_RDONLY |
3233 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3234 return do_reconfigure_mnt(path, mnt_flags);
3235 if (flags & MS_REMOUNT)
3236 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3237 if (flags & MS_BIND)
3238 return do_loopback(path, dev_name, flags & MS_REC);
3239 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3240 return do_change_type(path, flags);
3241 if (flags & MS_MOVE)
3242 return do_move_mount_old(path, dev_name);
3244 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3248 long do_mount(const char *dev_name, const char __user *dir_name,
3249 const char *type_page, unsigned long flags, void *data_page)
3254 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3257 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3262 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3264 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3267 static void dec_mnt_namespaces(struct ucounts *ucounts)
3269 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3272 static void free_mnt_ns(struct mnt_namespace *ns)
3274 if (!is_anon_ns(ns))
3275 ns_free_inum(&ns->ns);
3276 dec_mnt_namespaces(ns->ucounts);
3277 put_user_ns(ns->user_ns);
3282 * Assign a sequence number so we can detect when we attempt to bind
3283 * mount a reference to an older mount namespace into the current
3284 * mount namespace, preventing reference counting loops. A 64bit
3285 * number incrementing at 10Ghz will take 12,427 years to wrap which
3286 * is effectively never, so we can ignore the possibility.
3288 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3290 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3292 struct mnt_namespace *new_ns;
3293 struct ucounts *ucounts;
3296 ucounts = inc_mnt_namespaces(user_ns);
3298 return ERR_PTR(-ENOSPC);
3300 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3302 dec_mnt_namespaces(ucounts);
3303 return ERR_PTR(-ENOMEM);
3306 ret = ns_alloc_inum(&new_ns->ns);
3309 dec_mnt_namespaces(ucounts);
3310 return ERR_PTR(ret);
3313 new_ns->ns.ops = &mntns_operations;
3315 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3316 refcount_set(&new_ns->ns.count, 1);
3317 INIT_LIST_HEAD(&new_ns->list);
3318 init_waitqueue_head(&new_ns->poll);
3319 spin_lock_init(&new_ns->ns_lock);
3320 new_ns->user_ns = get_user_ns(user_ns);
3321 new_ns->ucounts = ucounts;
3326 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3327 struct user_namespace *user_ns, struct fs_struct *new_fs)
3329 struct mnt_namespace *new_ns;
3330 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3331 struct mount *p, *q;
3338 if (likely(!(flags & CLONE_NEWNS))) {
3345 new_ns = alloc_mnt_ns(user_ns, false);
3350 /* First pass: copy the tree topology */
3351 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3352 if (user_ns != ns->user_ns)
3353 copy_flags |= CL_SHARED_TO_SLAVE;
3354 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3357 free_mnt_ns(new_ns);
3358 return ERR_CAST(new);
3360 if (user_ns != ns->user_ns) {
3363 unlock_mount_hash();
3366 list_add_tail(&new_ns->list, &new->mnt_list);
3369 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3370 * as belonging to new namespace. We have already acquired a private
3371 * fs_struct, so tsk->fs->lock is not needed.
3379 if (&p->mnt == new_fs->root.mnt) {
3380 new_fs->root.mnt = mntget(&q->mnt);
3383 if (&p->mnt == new_fs->pwd.mnt) {
3384 new_fs->pwd.mnt = mntget(&q->mnt);
3388 p = next_mnt(p, old);
3389 q = next_mnt(q, new);
3392 while (p->mnt.mnt_root != q->mnt.mnt_root)
3393 p = next_mnt(p, old);
3405 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3407 struct mount *mnt = real_mount(m);
3408 struct mnt_namespace *ns;
3409 struct super_block *s;
3413 ns = alloc_mnt_ns(&init_user_ns, true);
3416 return ERR_CAST(ns);
3421 list_add(&mnt->mnt_list, &ns->list);
3423 err = vfs_path_lookup(m->mnt_root, m,
3424 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3429 return ERR_PTR(err);
3431 /* trade a vfsmount reference for active sb one */
3432 s = path.mnt->mnt_sb;
3433 atomic_inc(&s->s_active);
3435 /* lock the sucker */
3436 down_write(&s->s_umount);
3437 /* ... and return the root of (sub)tree on it */
3440 EXPORT_SYMBOL(mount_subtree);
3442 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3443 char __user *, type, unsigned long, flags, void __user *, data)
3450 kernel_type = copy_mount_string(type);
3451 ret = PTR_ERR(kernel_type);
3452 if (IS_ERR(kernel_type))
3455 kernel_dev = copy_mount_string(dev_name);
3456 ret = PTR_ERR(kernel_dev);
3457 if (IS_ERR(kernel_dev))
3460 options = copy_mount_options(data);
3461 ret = PTR_ERR(options);
3462 if (IS_ERR(options))
3465 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3476 #define FSMOUNT_VALID_FLAGS \
3477 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3478 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME)
3480 #define MOUNT_SETATTR_VALID_FLAGS FSMOUNT_VALID_FLAGS
3482 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3483 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3485 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3487 unsigned int mnt_flags = 0;
3489 if (attr_flags & MOUNT_ATTR_RDONLY)
3490 mnt_flags |= MNT_READONLY;
3491 if (attr_flags & MOUNT_ATTR_NOSUID)
3492 mnt_flags |= MNT_NOSUID;
3493 if (attr_flags & MOUNT_ATTR_NODEV)
3494 mnt_flags |= MNT_NODEV;
3495 if (attr_flags & MOUNT_ATTR_NOEXEC)
3496 mnt_flags |= MNT_NOEXEC;
3497 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3498 mnt_flags |= MNT_NODIRATIME;
3504 * Create a kernel mount representation for a new, prepared superblock
3505 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3507 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3508 unsigned int, attr_flags)
3510 struct mnt_namespace *ns;
3511 struct fs_context *fc;
3513 struct path newmount;
3516 unsigned int mnt_flags = 0;
3522 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3525 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3528 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3530 switch (attr_flags & MOUNT_ATTR__ATIME) {
3531 case MOUNT_ATTR_STRICTATIME:
3533 case MOUNT_ATTR_NOATIME:
3534 mnt_flags |= MNT_NOATIME;
3536 case MOUNT_ATTR_RELATIME:
3537 mnt_flags |= MNT_RELATIME;
3548 if (f.file->f_op != &fscontext_fops)
3551 fc = f.file->private_data;
3553 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3557 /* There must be a valid superblock or we can't mount it */
3563 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3564 pr_warn("VFS: Mount too revealing\n");
3569 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3573 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3576 newmount.mnt = vfs_create_mount(fc);
3577 if (IS_ERR(newmount.mnt)) {
3578 ret = PTR_ERR(newmount.mnt);
3581 newmount.dentry = dget(fc->root);
3582 newmount.mnt->mnt_flags = mnt_flags;
3584 /* We've done the mount bit - now move the file context into more or
3585 * less the same state as if we'd done an fspick(). We don't want to
3586 * do any memory allocation or anything like that at this point as we
3587 * don't want to have to handle any errors incurred.
3589 vfs_clean_context(fc);
3591 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3596 mnt = real_mount(newmount.mnt);
3600 list_add(&mnt->mnt_list, &ns->list);
3601 mntget(newmount.mnt);
3603 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3604 * it, not just simply put it.
3606 file = dentry_open(&newmount, O_PATH, fc->cred);
3608 dissolve_on_fput(newmount.mnt);
3609 ret = PTR_ERR(file);
3612 file->f_mode |= FMODE_NEED_UNMOUNT;
3614 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3616 fd_install(ret, file);
3621 path_put(&newmount);
3623 mutex_unlock(&fc->uapi_mutex);
3630 * Move a mount from one place to another. In combination with
3631 * fsopen()/fsmount() this is used to install a new mount and in combination
3632 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3635 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3637 SYSCALL_DEFINE5(move_mount,
3638 int, from_dfd, const char __user *, from_pathname,
3639 int, to_dfd, const char __user *, to_pathname,
3640 unsigned int, flags)
3642 struct path from_path, to_path;
3643 unsigned int lflags;
3649 if (flags & ~MOVE_MOUNT__MASK)
3652 /* If someone gives a pathname, they aren't permitted to move
3653 * from an fd that requires unmount as we can't get at the flag
3654 * to clear it afterwards.
3657 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3658 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3659 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3661 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3666 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3667 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3668 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3670 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3674 ret = security_move_mount(&from_path, &to_path);
3678 ret = do_move_mount(&from_path, &to_path);
3683 path_put(&from_path);
3688 * Return true if path is reachable from root
3690 * namespace_sem or mount_lock is held
3692 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3693 const struct path *root)
3695 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3696 dentry = mnt->mnt_mountpoint;
3697 mnt = mnt->mnt_parent;
3699 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3702 bool path_is_under(const struct path *path1, const struct path *path2)
3705 read_seqlock_excl(&mount_lock);
3706 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3707 read_sequnlock_excl(&mount_lock);
3710 EXPORT_SYMBOL(path_is_under);
3713 * pivot_root Semantics:
3714 * Moves the root file system of the current process to the directory put_old,
3715 * makes new_root as the new root file system of the current process, and sets
3716 * root/cwd of all processes which had them on the current root to new_root.
3719 * The new_root and put_old must be directories, and must not be on the
3720 * same file system as the current process root. The put_old must be
3721 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3722 * pointed to by put_old must yield the same directory as new_root. No other
3723 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3725 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3726 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3727 * in this situation.
3730 * - we don't move root/cwd if they are not at the root (reason: if something
3731 * cared enough to change them, it's probably wrong to force them elsewhere)
3732 * - it's okay to pick a root that isn't the root of a file system, e.g.
3733 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3734 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3737 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3738 const char __user *, put_old)
3740 struct path new, old, root;
3741 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3742 struct mountpoint *old_mp, *root_mp;
3748 error = user_path_at(AT_FDCWD, new_root,
3749 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3753 error = user_path_at(AT_FDCWD, put_old,
3754 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3758 error = security_sb_pivotroot(&old, &new);
3762 get_fs_root(current->fs, &root);
3763 old_mp = lock_mount(&old);
3764 error = PTR_ERR(old_mp);
3769 new_mnt = real_mount(new.mnt);
3770 root_mnt = real_mount(root.mnt);
3771 old_mnt = real_mount(old.mnt);
3772 ex_parent = new_mnt->mnt_parent;
3773 root_parent = root_mnt->mnt_parent;
3774 if (IS_MNT_SHARED(old_mnt) ||
3775 IS_MNT_SHARED(ex_parent) ||
3776 IS_MNT_SHARED(root_parent))
3778 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3780 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3783 if (d_unlinked(new.dentry))
3786 if (new_mnt == root_mnt || old_mnt == root_mnt)
3787 goto out4; /* loop, on the same file system */
3789 if (root.mnt->mnt_root != root.dentry)
3790 goto out4; /* not a mountpoint */
3791 if (!mnt_has_parent(root_mnt))
3792 goto out4; /* not attached */
3793 if (new.mnt->mnt_root != new.dentry)
3794 goto out4; /* not a mountpoint */
3795 if (!mnt_has_parent(new_mnt))
3796 goto out4; /* not attached */
3797 /* make sure we can reach put_old from new_root */
3798 if (!is_path_reachable(old_mnt, old.dentry, &new))
3800 /* make certain new is below the root */
3801 if (!is_path_reachable(new_mnt, new.dentry, &root))
3804 umount_mnt(new_mnt);
3805 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3806 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3807 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3808 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3810 /* mount old root on put_old */
3811 attach_mnt(root_mnt, old_mnt, old_mp);
3812 /* mount new_root on / */
3813 attach_mnt(new_mnt, root_parent, root_mp);
3814 mnt_add_count(root_parent, -1);
3815 touch_mnt_namespace(current->nsproxy->mnt_ns);
3816 /* A moved mount should not expire automatically */
3817 list_del_init(&new_mnt->mnt_expire);
3818 put_mountpoint(root_mp);
3819 unlock_mount_hash();
3820 chroot_fs_refs(&root, &new);
3823 unlock_mount(old_mp);
3825 mntput_no_expire(ex_parent);
3836 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3838 unsigned int flags = mnt->mnt.mnt_flags;
3840 /* flags to clear */
3841 flags &= ~kattr->attr_clr;
3842 /* flags to raise */
3843 flags |= kattr->attr_set;
3848 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3849 struct mount *mnt, int *err)
3851 struct mount *m = mnt, *last = NULL;
3853 if (!is_mounted(&m->mnt)) {
3858 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3866 flags = recalc_flags(kattr, m);
3867 if (!can_change_locked_flags(m, flags)) {
3874 if ((kattr->attr_set & MNT_READONLY) &&
3875 !(m->mnt.mnt_flags & MNT_READONLY)) {
3876 *err = mnt_hold_writers(m);
3880 } while (kattr->recurse && (m = next_mnt(m, mnt)));
3886 static void mount_setattr_commit(struct mount_kattr *kattr,
3887 struct mount *mnt, struct mount *last,
3890 struct mount *m = mnt;
3896 flags = recalc_flags(kattr, m);
3897 WRITE_ONCE(m->mnt.mnt_flags, flags);
3901 * We either set MNT_READONLY above so make it visible
3902 * before ~MNT_WRITE_HOLD or we failed to recursively
3903 * apply mount options.
3905 if ((kattr->attr_set & MNT_READONLY) &&
3906 (m->mnt.mnt_flags & MNT_WRITE_HOLD))
3907 mnt_unhold_writers(m);
3909 if (!err && kattr->propagation)
3910 change_mnt_propagation(m, kattr->propagation);
3913 * On failure, only cleanup until we found the first mount
3914 * we failed to handle.
3916 if (err && m == last)
3918 } while (kattr->recurse && (m = next_mnt(m, mnt)));
3921 touch_mnt_namespace(mnt->mnt_ns);
3924 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
3926 struct mount *mnt = real_mount(path->mnt), *last = NULL;
3929 if (path->dentry != mnt->mnt.mnt_root)
3932 if (kattr->propagation) {
3934 * Only take namespace_lock() if we're actually changing
3938 if (kattr->propagation == MS_SHARED) {
3939 err = invent_group_ids(mnt, kattr->recurse);
3950 * Get the mount tree in a shape where we can change mount
3951 * properties without failure.
3953 last = mount_setattr_prepare(kattr, mnt, &err);
3954 if (last) /* Commit all changes or revert to the old state. */
3955 mount_setattr_commit(kattr, mnt, last, err);
3957 unlock_mount_hash();
3959 if (kattr->propagation) {
3962 cleanup_group_ids(mnt, NULL);
3968 static int build_mount_kattr(const struct mount_attr *attr,
3969 struct mount_kattr *kattr, unsigned int flags)
3971 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3973 if (flags & AT_NO_AUTOMOUNT)
3974 lookup_flags &= ~LOOKUP_AUTOMOUNT;
3975 if (flags & AT_SYMLINK_NOFOLLOW)
3976 lookup_flags &= ~LOOKUP_FOLLOW;
3977 if (flags & AT_EMPTY_PATH)
3978 lookup_flags |= LOOKUP_EMPTY;
3980 *kattr = (struct mount_kattr) {
3981 .lookup_flags = lookup_flags,
3982 .recurse = !!(flags & AT_RECURSIVE),
3985 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
3987 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
3989 kattr->propagation = attr->propagation;
3991 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
3994 if (attr->userns_fd)
3997 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
3998 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4001 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4002 * users wanting to transition to a different atime setting cannot
4003 * simply specify the atime setting in @attr_set, but must also
4004 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4005 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4006 * @attr_clr and that @attr_set can't have any atime bits set if
4007 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4009 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4010 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4014 * Clear all previous time settings as they are mutually
4017 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4018 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4019 case MOUNT_ATTR_RELATIME:
4020 kattr->attr_set |= MNT_RELATIME;
4022 case MOUNT_ATTR_NOATIME:
4023 kattr->attr_set |= MNT_NOATIME;
4025 case MOUNT_ATTR_STRICTATIME:
4031 if (attr->attr_set & MOUNT_ATTR__ATIME)
4038 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4039 unsigned int, flags, struct mount_attr __user *, uattr,
4044 struct mount_attr attr;
4045 struct mount_kattr kattr;
4047 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4049 if (flags & ~(AT_EMPTY_PATH |
4051 AT_SYMLINK_NOFOLLOW |
4055 if (unlikely(usize > PAGE_SIZE))
4057 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4063 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4067 /* Don't bother walking through the mounts if this is a nop. */
4068 if (attr.attr_set == 0 &&
4069 attr.attr_clr == 0 &&
4070 attr.propagation == 0)
4073 err = build_mount_kattr(&attr, &kattr, flags);
4077 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4081 err = do_mount_setattr(&target, &kattr);
4086 static void __init init_mount_tree(void)
4088 struct vfsmount *mnt;
4090 struct mnt_namespace *ns;
4093 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4095 panic("Can't create rootfs");
4097 ns = alloc_mnt_ns(&init_user_ns, false);
4099 panic("Can't allocate initial namespace");
4100 m = real_mount(mnt);
4104 list_add(&m->mnt_list, &ns->list);
4105 init_task.nsproxy->mnt_ns = ns;
4109 root.dentry = mnt->mnt_root;
4110 mnt->mnt_flags |= MNT_LOCKED;
4112 set_fs_pwd(current->fs, &root);
4113 set_fs_root(current->fs, &root);
4116 void __init mnt_init(void)
4120 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4121 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
4123 mount_hashtable = alloc_large_system_hash("Mount-cache",
4124 sizeof(struct hlist_head),
4127 &m_hash_shift, &m_hash_mask, 0, 0);
4128 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4129 sizeof(struct hlist_head),
4132 &mp_hash_shift, &mp_hash_mask, 0, 0);
4134 if (!mount_hashtable || !mountpoint_hashtable)
4135 panic("Failed to allocate mount hash table\n");
4141 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4143 fs_kobj = kobject_create_and_add("fs", NULL);
4145 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4151 void put_mnt_ns(struct mnt_namespace *ns)
4153 if (!refcount_dec_and_test(&ns->ns.count))
4155 drop_collected_mounts(&ns->root->mnt);
4159 struct vfsmount *kern_mount(struct file_system_type *type)
4161 struct vfsmount *mnt;
4162 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4165 * it is a longterm mount, don't release mnt until
4166 * we unmount before file sys is unregistered
4168 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4172 EXPORT_SYMBOL_GPL(kern_mount);
4174 void kern_unmount(struct vfsmount *mnt)
4176 /* release long term mount so mount point can be released */
4177 if (!IS_ERR_OR_NULL(mnt)) {
4178 real_mount(mnt)->mnt_ns = NULL;
4179 synchronize_rcu(); /* yecchhh... */
4183 EXPORT_SYMBOL(kern_unmount);
4185 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4189 for (i = 0; i < num; i++)
4191 real_mount(mnt[i])->mnt_ns = NULL;
4192 synchronize_rcu_expedited();
4193 for (i = 0; i < num; i++)
4196 EXPORT_SYMBOL(kern_unmount_array);
4198 bool our_mnt(struct vfsmount *mnt)
4200 return check_mnt(real_mount(mnt));
4203 bool current_chrooted(void)
4205 /* Does the current process have a non-standard root */
4206 struct path ns_root;
4207 struct path fs_root;
4210 /* Find the namespace root */
4211 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
4212 ns_root.dentry = ns_root.mnt->mnt_root;
4214 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4217 get_fs_root(current->fs, &fs_root);
4219 chrooted = !path_equal(&fs_root, &ns_root);
4227 static bool mnt_already_visible(struct mnt_namespace *ns,
4228 const struct super_block *sb,
4231 int new_flags = *new_mnt_flags;
4233 bool visible = false;
4235 down_read(&namespace_sem);
4237 list_for_each_entry(mnt, &ns->list, mnt_list) {
4238 struct mount *child;
4241 if (mnt_is_cursor(mnt))
4244 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4247 /* This mount is not fully visible if it's root directory
4248 * is not the root directory of the filesystem.
4250 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4253 /* A local view of the mount flags */
4254 mnt_flags = mnt->mnt.mnt_flags;
4256 /* Don't miss readonly hidden in the superblock flags */
4257 if (sb_rdonly(mnt->mnt.mnt_sb))
4258 mnt_flags |= MNT_LOCK_READONLY;
4260 /* Verify the mount flags are equal to or more permissive
4261 * than the proposed new mount.
4263 if ((mnt_flags & MNT_LOCK_READONLY) &&
4264 !(new_flags & MNT_READONLY))
4266 if ((mnt_flags & MNT_LOCK_ATIME) &&
4267 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4270 /* This mount is not fully visible if there are any
4271 * locked child mounts that cover anything except for
4272 * empty directories.
4274 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4275 struct inode *inode = child->mnt_mountpoint->d_inode;
4276 /* Only worry about locked mounts */
4277 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4279 /* Is the directory permanetly empty? */
4280 if (!is_empty_dir_inode(inode))
4283 /* Preserve the locked attributes */
4284 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4292 up_read(&namespace_sem);
4296 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4298 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4299 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4300 unsigned long s_iflags;
4302 if (ns->user_ns == &init_user_ns)
4305 /* Can this filesystem be too revealing? */
4306 s_iflags = sb->s_iflags;
4307 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4310 if ((s_iflags & required_iflags) != required_iflags) {
4311 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4316 return !mnt_already_visible(ns, sb, new_mnt_flags);
4319 bool mnt_may_suid(struct vfsmount *mnt)
4322 * Foreign mounts (accessed via fchdir or through /proc
4323 * symlinks) are always treated as if they are nosuid. This
4324 * prevents namespaces from trusting potentially unsafe
4325 * suid/sgid bits, file caps, or security labels that originate
4326 * in other namespaces.
4328 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4329 current_in_userns(mnt->mnt_sb->s_user_ns);
4332 static struct ns_common *mntns_get(struct task_struct *task)
4334 struct ns_common *ns = NULL;
4335 struct nsproxy *nsproxy;
4338 nsproxy = task->nsproxy;
4340 ns = &nsproxy->mnt_ns->ns;
4341 get_mnt_ns(to_mnt_ns(ns));
4348 static void mntns_put(struct ns_common *ns)
4350 put_mnt_ns(to_mnt_ns(ns));
4353 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4355 struct nsproxy *nsproxy = nsset->nsproxy;
4356 struct fs_struct *fs = nsset->fs;
4357 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4358 struct user_namespace *user_ns = nsset->cred->user_ns;
4362 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4363 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4364 !ns_capable(user_ns, CAP_SYS_ADMIN))
4367 if (is_anon_ns(mnt_ns))
4374 old_mnt_ns = nsproxy->mnt_ns;
4375 nsproxy->mnt_ns = mnt_ns;
4378 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4379 "/", LOOKUP_DOWN, &root);
4381 /* revert to old namespace */
4382 nsproxy->mnt_ns = old_mnt_ns;
4387 put_mnt_ns(old_mnt_ns);
4389 /* Update the pwd and root */
4390 set_fs_pwd(fs, &root);
4391 set_fs_root(fs, &root);
4397 static struct user_namespace *mntns_owner(struct ns_common *ns)
4399 return to_mnt_ns(ns)->user_ns;
4402 const struct proc_ns_operations mntns_operations = {
4404 .type = CLONE_NEWNS,
4407 .install = mntns_install,
4408 .owner = mntns_owner,