4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/quotaops.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/writeback.h> /* for the emergency remount stuff */
31 #include <linux/idr.h>
32 #include <linux/mutex.h>
33 #include <linux/backing-dev.h>
37 LIST_HEAD(super_blocks);
38 DEFINE_SPINLOCK(sb_lock);
41 * alloc_super - create new superblock
42 * @type: filesystem type superblock should belong to
44 * Allocates and initializes a new &struct super_block. alloc_super()
45 * returns a pointer new superblock or %NULL if allocation had failed.
47 static struct super_block *alloc_super(struct file_system_type *type)
49 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
50 static const struct super_operations default_op;
53 if (security_sb_alloc(s)) {
58 INIT_LIST_HEAD(&s->s_files);
59 INIT_LIST_HEAD(&s->s_instances);
60 INIT_HLIST_HEAD(&s->s_anon);
61 INIT_LIST_HEAD(&s->s_inodes);
62 INIT_LIST_HEAD(&s->s_dentry_lru);
63 init_rwsem(&s->s_umount);
64 mutex_init(&s->s_lock);
65 lockdep_set_class(&s->s_umount, &type->s_umount_key);
67 * The locking rules for s_lock are up to the
68 * filesystem. For example ext3fs has different
69 * lock ordering than usbfs:
71 lockdep_set_class(&s->s_lock, &type->s_lock_key);
73 * sget() can have s_umount recursion.
75 * When it cannot find a suitable sb, it allocates a new
76 * one (this one), and tries again to find a suitable old
79 * In case that succeeds, it will acquire the s_umount
80 * lock of the old one. Since these are clearly distrinct
81 * locks, and this object isn't exposed yet, there's no
84 * Annotate this by putting this lock in a different
87 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
89 atomic_set(&s->s_active, 1);
90 mutex_init(&s->s_vfs_rename_mutex);
91 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
92 mutex_init(&s->s_dquot.dqio_mutex);
93 mutex_init(&s->s_dquot.dqonoff_mutex);
94 init_rwsem(&s->s_dquot.dqptr_sem);
95 init_waitqueue_head(&s->s_wait_unfrozen);
96 s->s_maxbytes = MAX_NON_LFS;
97 s->dq_op = sb_dquot_ops;
98 s->s_qcop = sb_quotactl_ops;
99 s->s_op = &default_op;
100 s->s_time_gran = 1000000000;
107 * destroy_super - frees a superblock
108 * @s: superblock to free
110 * Frees a superblock.
112 static inline void destroy_super(struct super_block *s)
120 /* Superblock refcounting */
123 * Drop a superblock's refcount. The caller must hold sb_lock.
125 void __put_super(struct super_block *sb)
127 if (!--sb->s_count) {
128 list_del_init(&sb->s_list);
134 * put_super - drop a temporary reference to superblock
135 * @sb: superblock in question
137 * Drops a temporary reference, frees superblock if there's no
140 void put_super(struct super_block *sb)
144 spin_unlock(&sb_lock);
149 * deactivate_locked_super - drop an active reference to superblock
150 * @s: superblock to deactivate
152 * Drops an active reference to superblock, converting it into a temprory
153 * one if there is no other active references left. In that case we
154 * tell fs driver to shut it down and drop the temporary reference we
157 * Caller holds exclusive lock on superblock; that lock is released.
159 void deactivate_locked_super(struct super_block *s)
161 struct file_system_type *fs = s->s_type;
162 if (atomic_dec_and_test(&s->s_active)) {
168 up_write(&s->s_umount);
172 EXPORT_SYMBOL(deactivate_locked_super);
175 * deactivate_super - drop an active reference to superblock
176 * @s: superblock to deactivate
178 * Variant of deactivate_locked_super(), except that superblock is *not*
179 * locked by caller. If we are going to drop the final active reference,
180 * lock will be acquired prior to that.
182 void deactivate_super(struct super_block *s)
184 if (!atomic_add_unless(&s->s_active, -1, 1)) {
185 down_write(&s->s_umount);
186 deactivate_locked_super(s);
190 EXPORT_SYMBOL(deactivate_super);
193 * grab_super - acquire an active reference
194 * @s: reference we are trying to make active
196 * Tries to acquire an active reference. grab_super() is used when we
197 * had just found a superblock in super_blocks or fs_type->fs_supers
198 * and want to turn it into a full-blown active reference. grab_super()
199 * is called with sb_lock held and drops it. Returns 1 in case of
200 * success, 0 if we had failed (superblock contents was already dead or
201 * dying when grab_super() had been called).
203 static int grab_super(struct super_block *s) __releases(sb_lock)
205 if (atomic_inc_not_zero(&s->s_active)) {
206 spin_unlock(&sb_lock);
209 /* it's going away */
211 spin_unlock(&sb_lock);
212 /* wait for it to die */
213 down_write(&s->s_umount);
214 up_write(&s->s_umount);
220 * Superblock locking. We really ought to get rid of these two.
222 void lock_super(struct super_block * sb)
225 mutex_lock(&sb->s_lock);
228 void unlock_super(struct super_block * sb)
231 mutex_unlock(&sb->s_lock);
234 EXPORT_SYMBOL(lock_super);
235 EXPORT_SYMBOL(unlock_super);
238 * generic_shutdown_super - common helper for ->kill_sb()
239 * @sb: superblock to kill
241 * generic_shutdown_super() does all fs-independent work on superblock
242 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
243 * that need destruction out of superblock, call generic_shutdown_super()
244 * and release aforementioned objects. Note: dentries and inodes _are_
245 * taken care of and do not need specific handling.
247 * Upon calling this function, the filesystem may no longer alter or
248 * rearrange the set of dentries belonging to this super_block, nor may it
249 * change the attachments of dentries to inodes.
251 void generic_shutdown_super(struct super_block *sb)
253 const struct super_operations *sop = sb->s_op;
257 shrink_dcache_for_umount(sb);
260 sb->s_flags &= ~MS_ACTIVE;
262 /* bad name - it should be evict_inodes() */
263 invalidate_inodes(sb);
268 /* Forget any remaining inodes */
269 if (invalidate_inodes(sb)) {
270 printk("VFS: Busy inodes after unmount of %s. "
271 "Self-destruct in 5 seconds. Have a nice day...\n",
277 /* should be initialized for __put_super_and_need_restart() */
278 list_del_init(&sb->s_instances);
279 spin_unlock(&sb_lock);
280 up_write(&sb->s_umount);
283 EXPORT_SYMBOL(generic_shutdown_super);
286 * sget - find or create a superblock
287 * @type: filesystem type superblock should belong to
288 * @test: comparison callback
289 * @set: setup callback
290 * @data: argument to each of them
292 struct super_block *sget(struct file_system_type *type,
293 int (*test)(struct super_block *,void *),
294 int (*set)(struct super_block *,void *),
297 struct super_block *s = NULL;
298 struct super_block *old;
304 list_for_each_entry(old, &type->fs_supers, s_instances) {
305 if (!test(old, data))
307 if (!grab_super(old))
310 up_write(&s->s_umount);
313 down_write(&old->s_umount);
318 spin_unlock(&sb_lock);
319 s = alloc_super(type);
321 return ERR_PTR(-ENOMEM);
327 spin_unlock(&sb_lock);
328 up_write(&s->s_umount);
333 strlcpy(s->s_id, type->name, sizeof(s->s_id));
334 list_add_tail(&s->s_list, &super_blocks);
335 list_add(&s->s_instances, &type->fs_supers);
336 spin_unlock(&sb_lock);
337 get_filesystem(type);
343 void drop_super(struct super_block *sb)
345 up_read(&sb->s_umount);
349 EXPORT_SYMBOL(drop_super);
352 * sync_supers - helper for periodic superblock writeback
354 * Call the write_super method if present on all dirty superblocks in
355 * the system. This is for the periodic writeback used by most older
356 * filesystems. For data integrity superblock writeback use
357 * sync_filesystems() instead.
359 * Note: check the dirty flag before waiting, so we don't
360 * hold up the sync while mounting a device. (The newly
361 * mounted device won't need syncing.)
363 void sync_supers(void)
365 struct super_block *sb, *n;
368 list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
369 if (list_empty(&sb->s_instances))
371 if (sb->s_op->write_super && sb->s_dirt) {
373 spin_unlock(&sb_lock);
375 down_read(&sb->s_umount);
376 if (sb->s_root && sb->s_dirt)
377 sb->s_op->write_super(sb);
378 up_read(&sb->s_umount);
384 spin_unlock(&sb_lock);
388 * iterate_supers - call function for all active superblocks
389 * @f: function to call
390 * @arg: argument to pass to it
392 * Scans the superblock list and calls given function, passing it
393 * locked superblock and given argument.
395 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
397 struct super_block *sb, *n;
400 list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
401 if (list_empty(&sb->s_instances))
404 spin_unlock(&sb_lock);
406 down_read(&sb->s_umount);
409 up_read(&sb->s_umount);
414 spin_unlock(&sb_lock);
418 * get_super - get the superblock of a device
419 * @bdev: device to get the superblock for
421 * Scans the superblock list and finds the superblock of the file system
422 * mounted on the device given. %NULL is returned if no match is found.
425 struct super_block *get_super(struct block_device *bdev)
427 struct super_block *sb;
434 list_for_each_entry(sb, &super_blocks, s_list) {
435 if (list_empty(&sb->s_instances))
437 if (sb->s_bdev == bdev) {
439 spin_unlock(&sb_lock);
440 down_read(&sb->s_umount);
444 up_read(&sb->s_umount);
445 /* nope, got unmounted */
451 spin_unlock(&sb_lock);
455 EXPORT_SYMBOL(get_super);
458 * get_active_super - get an active reference to the superblock of a device
459 * @bdev: device to get the superblock for
461 * Scans the superblock list and finds the superblock of the file system
462 * mounted on the device given. Returns the superblock with an active
463 * reference or %NULL if none was found.
465 struct super_block *get_active_super(struct block_device *bdev)
467 struct super_block *sb;
474 list_for_each_entry(sb, &super_blocks, s_list) {
475 if (list_empty(&sb->s_instances))
477 if (sb->s_bdev == bdev) {
478 if (grab_super(sb)) /* drops sb_lock */
484 spin_unlock(&sb_lock);
488 struct super_block *user_get_super(dev_t dev)
490 struct super_block *sb;
494 list_for_each_entry(sb, &super_blocks, s_list) {
495 if (list_empty(&sb->s_instances))
497 if (sb->s_dev == dev) {
499 spin_unlock(&sb_lock);
500 down_read(&sb->s_umount);
504 up_read(&sb->s_umount);
505 /* nope, got unmounted */
511 spin_unlock(&sb_lock);
516 * do_remount_sb - asks filesystem to change mount options.
517 * @sb: superblock in question
518 * @flags: numeric part of options
519 * @data: the rest of options
520 * @force: whether or not to force the change
522 * Alters the mount options of a mounted file system.
524 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
527 int remount_rw, remount_ro;
529 if (sb->s_frozen != SB_UNFROZEN)
533 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
537 if (flags & MS_RDONLY)
539 shrink_dcache_sb(sb);
542 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
543 remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
545 /* If we are remounting RDONLY and current sb is read/write,
546 make sure there are no rw files opened */
550 else if (!fs_may_remount_ro(sb))
552 retval = vfs_dq_off(sb, 1);
553 if (retval < 0 && retval != -ENOSYS)
557 if (sb->s_op->remount_fs) {
558 retval = sb->s_op->remount_fs(sb, &flags, data);
562 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
564 vfs_dq_quota_on_remount(sb);
566 * Some filesystems modify their metadata via some other path than the
567 * bdev buffer cache (eg. use a private mapping, or directories in
568 * pagecache, etc). Also file data modifications go via their own
569 * mappings. So If we try to mount readonly then copy the filesystem
570 * from bdev, we could get stale data, so invalidate it to give a best
571 * effort at coherency.
573 if (remount_ro && sb->s_bdev)
574 invalidate_bdev(sb->s_bdev);
578 static void do_emergency_remount(struct work_struct *work)
580 struct super_block *sb, *n;
583 list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
584 if (list_empty(&sb->s_instances))
587 spin_unlock(&sb_lock);
588 down_write(&sb->s_umount);
589 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
591 * What lock protects sb->s_flags??
593 do_remount_sb(sb, MS_RDONLY, NULL, 1);
595 up_write(&sb->s_umount);
599 spin_unlock(&sb_lock);
601 printk("Emergency Remount complete\n");
604 void emergency_remount(void)
606 struct work_struct *work;
608 work = kmalloc(sizeof(*work), GFP_ATOMIC);
610 INIT_WORK(work, do_emergency_remount);
616 * Unnamed block devices are dummy devices used by virtual
617 * filesystems which don't use real block-devices. -- jrs
620 static DEFINE_IDA(unnamed_dev_ida);
621 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
622 static int unnamed_dev_start = 0; /* don't bother trying below it */
624 int set_anon_super(struct super_block *s, void *data)
630 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
632 spin_lock(&unnamed_dev_lock);
633 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
635 unnamed_dev_start = dev + 1;
636 spin_unlock(&unnamed_dev_lock);
637 if (error == -EAGAIN)
638 /* We raced and lost with another CPU. */
643 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
644 spin_lock(&unnamed_dev_lock);
645 ida_remove(&unnamed_dev_ida, dev);
646 if (unnamed_dev_start > dev)
647 unnamed_dev_start = dev;
648 spin_unlock(&unnamed_dev_lock);
651 s->s_dev = MKDEV(0, dev & MINORMASK);
652 s->s_bdi = &noop_backing_dev_info;
656 EXPORT_SYMBOL(set_anon_super);
658 void kill_anon_super(struct super_block *sb)
660 int slot = MINOR(sb->s_dev);
662 generic_shutdown_super(sb);
663 spin_lock(&unnamed_dev_lock);
664 ida_remove(&unnamed_dev_ida, slot);
665 if (slot < unnamed_dev_start)
666 unnamed_dev_start = slot;
667 spin_unlock(&unnamed_dev_lock);
670 EXPORT_SYMBOL(kill_anon_super);
672 void kill_litter_super(struct super_block *sb)
675 d_genocide(sb->s_root);
679 EXPORT_SYMBOL(kill_litter_super);
681 static int ns_test_super(struct super_block *sb, void *data)
683 return sb->s_fs_info == data;
686 static int ns_set_super(struct super_block *sb, void *data)
688 sb->s_fs_info = data;
689 return set_anon_super(sb, NULL);
692 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
693 int (*fill_super)(struct super_block *, void *, int),
694 struct vfsmount *mnt)
696 struct super_block *sb;
698 sb = sget(fs_type, ns_test_super, ns_set_super, data);
705 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
707 deactivate_locked_super(sb);
711 sb->s_flags |= MS_ACTIVE;
714 simple_set_mnt(mnt, sb);
718 EXPORT_SYMBOL(get_sb_ns);
721 static int set_bdev_super(struct super_block *s, void *data)
724 s->s_dev = s->s_bdev->bd_dev;
727 * We set the bdi here to the queue backing, file systems can
728 * overwrite this in ->fill_super()
730 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
734 static int test_bdev_super(struct super_block *s, void *data)
736 return (void *)s->s_bdev == data;
739 int get_sb_bdev(struct file_system_type *fs_type,
740 int flags, const char *dev_name, void *data,
741 int (*fill_super)(struct super_block *, void *, int),
742 struct vfsmount *mnt)
744 struct block_device *bdev;
745 struct super_block *s;
746 fmode_t mode = FMODE_READ;
749 if (!(flags & MS_RDONLY))
752 bdev = open_bdev_exclusive(dev_name, mode, fs_type);
754 return PTR_ERR(bdev);
757 * once the super is inserted into the list by sget, s_umount
758 * will protect the lockfs code from trying to start a snapshot
759 * while we are mounting
761 mutex_lock(&bdev->bd_fsfreeze_mutex);
762 if (bdev->bd_fsfreeze_count > 0) {
763 mutex_unlock(&bdev->bd_fsfreeze_mutex);
767 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
768 mutex_unlock(&bdev->bd_fsfreeze_mutex);
773 if ((flags ^ s->s_flags) & MS_RDONLY) {
774 deactivate_locked_super(s);
779 close_bdev_exclusive(bdev, mode);
781 char b[BDEVNAME_SIZE];
785 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
786 sb_set_blocksize(s, block_size(bdev));
787 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
789 deactivate_locked_super(s);
793 s->s_flags |= MS_ACTIVE;
797 simple_set_mnt(mnt, s);
803 close_bdev_exclusive(bdev, mode);
808 EXPORT_SYMBOL(get_sb_bdev);
810 void kill_block_super(struct super_block *sb)
812 struct block_device *bdev = sb->s_bdev;
813 fmode_t mode = sb->s_mode;
815 bdev->bd_super = NULL;
816 generic_shutdown_super(sb);
818 close_bdev_exclusive(bdev, mode);
821 EXPORT_SYMBOL(kill_block_super);
824 int get_sb_nodev(struct file_system_type *fs_type,
825 int flags, void *data,
826 int (*fill_super)(struct super_block *, void *, int),
827 struct vfsmount *mnt)
830 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
837 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
839 deactivate_locked_super(s);
842 s->s_flags |= MS_ACTIVE;
843 simple_set_mnt(mnt, s);
847 EXPORT_SYMBOL(get_sb_nodev);
849 static int compare_single(struct super_block *s, void *p)
854 int get_sb_single(struct file_system_type *fs_type,
855 int flags, void *data,
856 int (*fill_super)(struct super_block *, void *, int),
857 struct vfsmount *mnt)
859 struct super_block *s;
862 s = sget(fs_type, compare_single, set_anon_super, NULL);
867 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
869 deactivate_locked_super(s);
872 s->s_flags |= MS_ACTIVE;
874 do_remount_sb(s, flags, data, 0);
876 simple_set_mnt(mnt, s);
880 EXPORT_SYMBOL(get_sb_single);
883 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
885 struct vfsmount *mnt;
886 char *secdata = NULL;
890 return ERR_PTR(-ENODEV);
893 mnt = alloc_vfsmnt(name);
897 if (flags & MS_KERNMOUNT)
898 mnt->mnt_flags = MNT_INTERNAL;
900 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
901 secdata = alloc_secdata();
905 error = security_sb_copy_data(data, secdata);
907 goto out_free_secdata;
910 error = type->get_sb(type, flags, name, data, mnt);
912 goto out_free_secdata;
913 BUG_ON(!mnt->mnt_sb);
914 WARN_ON(!mnt->mnt_sb->s_bdi);
916 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
921 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
922 * but s_maxbytes was an unsigned long long for many releases. Throw
923 * this warning for a little while to try and catch filesystems that
924 * violate this rule. This warning should be either removed or
925 * converted to a BUG() in 2.6.34.
927 WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
928 "negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
930 mnt->mnt_mountpoint = mnt->mnt_root;
931 mnt->mnt_parent = mnt;
932 up_write(&mnt->mnt_sb->s_umount);
933 free_secdata(secdata);
937 deactivate_locked_super(mnt->mnt_sb);
939 free_secdata(secdata);
943 return ERR_PTR(error);
946 EXPORT_SYMBOL_GPL(vfs_kern_mount);
949 * freeze_super - lock the filesystem and force it into a consistent state
950 * @sb: the super to lock
952 * Syncs the super to make sure the filesystem is consistent and calls the fs's
953 * freeze_fs. Subsequent calls to this without first thawing the fs will return
956 int freeze_super(struct super_block *sb)
960 atomic_inc(&sb->s_active);
961 down_write(&sb->s_umount);
963 deactivate_locked_super(sb);
967 if (sb->s_flags & MS_RDONLY) {
968 sb->s_frozen = SB_FREEZE_TRANS;
970 up_write(&sb->s_umount);
974 sb->s_frozen = SB_FREEZE_WRITE;
979 sb->s_frozen = SB_FREEZE_TRANS;
982 sync_blockdev(sb->s_bdev);
983 if (sb->s_op->freeze_fs) {
984 ret = sb->s_op->freeze_fs(sb);
987 "VFS:Filesystem freeze failed\n");
988 sb->s_frozen = SB_UNFROZEN;
989 deactivate_locked_super(sb);
993 up_write(&sb->s_umount);
996 EXPORT_SYMBOL(freeze_super);
999 * thaw_super -- unlock filesystem
1000 * @sb: the super to thaw
1002 * Unlocks the filesystem and marks it writeable again after freeze_super().
1004 int thaw_super(struct super_block *sb)
1008 down_write(&sb->s_umount);
1009 if (sb->s_frozen == SB_UNFROZEN) {
1010 up_write(&sb->s_umount);
1014 if (sb->s_flags & MS_RDONLY)
1017 if (sb->s_op->unfreeze_fs) {
1018 error = sb->s_op->unfreeze_fs(sb);
1021 "VFS:Filesystem thaw failed\n");
1022 sb->s_frozen = SB_FREEZE_TRANS;
1023 up_write(&sb->s_umount);
1029 sb->s_frozen = SB_UNFROZEN;
1031 wake_up(&sb->s_wait_unfrozen);
1032 deactivate_locked_super(sb);
1036 EXPORT_SYMBOL(thaw_super);
1038 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1041 const char *subtype = strchr(fstype, '.');
1050 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1052 if (!mnt->mnt_sb->s_subtype)
1058 return ERR_PTR(err);
1062 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1064 struct file_system_type *type = get_fs_type(fstype);
1065 struct vfsmount *mnt;
1067 return ERR_PTR(-ENODEV);
1068 mnt = vfs_kern_mount(type, flags, name, data);
1069 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1070 !mnt->mnt_sb->s_subtype)
1071 mnt = fs_set_subtype(mnt, fstype);
1072 put_filesystem(type);
1075 EXPORT_SYMBOL_GPL(do_kern_mount);
1077 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1079 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1082 EXPORT_SYMBOL_GPL(kern_mount_data);