1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
27 #include <linux/inetdevice.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/netns/generic.h>
39 #define DRV_NAME "vrf"
40 #define DRV_VERSION "1.1"
42 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
45 #define HASH_INITVAL ((u32)0xcafef00d)
48 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
52 * count how many distinct tables do not comply with the strict mode
54 * shared_tables value must be 0 in order to enable the strict mode.
56 * example of the evolution of shared_tables:
58 * add vrf0 --> table 100 shared_tables = 0 | t0
59 * add vrf1 --> table 101 shared_tables = 0 | t1
60 * add vrf2 --> table 100 shared_tables = 1 | t2
61 * add vrf3 --> table 100 shared_tables = 1 | t3
62 * add vrf4 --> table 101 shared_tables = 2 v t4
64 * shared_tables is a "step function" (or "staircase function")
65 * and it is increased by one when the second vrf is associated to a
68 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
70 * at t3, another dev (vrf3) is bound to the same table 100 but the
71 * value of shared_tables is still 1.
72 * This means that no matter how many new vrfs will register on the
73 * table 100, the shared_tables will not increase (considering only
76 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
78 * Looking at the value of shared_tables we can immediately know if
79 * the strict_mode can or cannot be enforced. Indeed, strict_mode
80 * can be enforced iff shared_tables = 0.
82 * Conversely, shared_tables is decreased when a vrf is de-associated
83 * from a table with exactly two associated vrfs.
91 struct hlist_node hnode;
92 struct list_head vrf_list; /* VRFs registered to this table */
99 static unsigned int vrf_net_id;
101 /* per netns vrf data */
103 /* protected by rtnl lock */
107 struct ctl_table_header *ctl_hdr;
111 struct rtable __rcu *rth;
112 struct rt6_info __rcu *rt6;
113 #if IS_ENABLED(CONFIG_IPV6)
114 struct fib6_table *fib6_table;
118 struct list_head me_list; /* entry in vrf_map_elem */
129 struct u64_stats_sync syncp;
132 static void vrf_rx_stats(struct net_device *dev, int len)
134 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
136 u64_stats_update_begin(&dstats->syncp);
138 dstats->rx_bytes += len;
139 u64_stats_update_end(&dstats->syncp);
142 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
144 vrf_dev->stats.tx_errors++;
148 static void vrf_get_stats64(struct net_device *dev,
149 struct rtnl_link_stats64 *stats)
153 for_each_possible_cpu(i) {
154 const struct pcpu_dstats *dstats;
155 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
158 dstats = per_cpu_ptr(dev->dstats, i);
160 start = u64_stats_fetch_begin_irq(&dstats->syncp);
161 tbytes = dstats->tx_bytes;
162 tpkts = dstats->tx_pkts;
163 tdrops = dstats->tx_drps;
164 rbytes = dstats->rx_bytes;
165 rpkts = dstats->rx_pkts;
166 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
167 stats->tx_bytes += tbytes;
168 stats->tx_packets += tpkts;
169 stats->tx_dropped += tdrops;
170 stats->rx_bytes += rbytes;
171 stats->rx_packets += rpkts;
175 static struct vrf_map *netns_vrf_map(struct net *net)
177 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
179 return &nn_vrf->vmap;
182 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
184 return netns_vrf_map(dev_net(dev));
187 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
189 struct list_head *me_head = &me->vrf_list;
192 if (list_empty(me_head))
195 vrf = list_first_entry(me_head, struct net_vrf, me_list);
200 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
202 struct vrf_map_elem *me;
204 me = kmalloc(sizeof(*me), flags);
211 static void vrf_map_elem_free(struct vrf_map_elem *me)
216 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
217 int ifindex, int users)
219 me->table_id = table_id;
220 me->ifindex = ifindex;
222 INIT_LIST_HEAD(&me->vrf_list);
225 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
228 struct vrf_map_elem *me;
231 key = jhash_1word(table_id, HASH_INITVAL);
232 hash_for_each_possible(vmap->ht, me, hnode, key) {
233 if (me->table_id == table_id)
240 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
242 u32 table_id = me->table_id;
245 key = jhash_1word(table_id, HASH_INITVAL);
246 hash_add(vmap->ht, &me->hnode, key);
249 static void vrf_map_del_elem(struct vrf_map_elem *me)
251 hash_del(&me->hnode);
254 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
256 spin_lock(&vmap->vmap_lock);
259 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
261 spin_unlock(&vmap->vmap_lock);
264 /* called with rtnl lock held */
266 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
268 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
269 struct net_vrf *vrf = netdev_priv(dev);
270 struct vrf_map_elem *new_me, *me;
271 u32 table_id = vrf->tb_id;
272 bool free_new_me = false;
276 /* we pre-allocate elements used in the spin-locked section (so that we
277 * keep the spinlock as short as possible).
279 new_me = vrf_map_elem_alloc(GFP_KERNEL);
283 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
287 me = vrf_map_lookup_elem(vmap, table_id);
290 vrf_map_add_elem(vmap, me);
294 /* we already have an entry in the vrf_map, so it means there is (at
295 * least) a vrf registered on the specific table.
298 if (vmap->strict_mode) {
299 /* vrfs cannot share the same table */
300 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
308 ++vmap->shared_tables;
310 list_add(&vrf->me_list, &me->vrf_list);
315 vrf_map_unlock(vmap);
317 /* clean-up, if needed */
319 vrf_map_elem_free(new_me);
324 /* called with rtnl lock held */
325 static void vrf_map_unregister_dev(struct net_device *dev)
327 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
328 struct net_vrf *vrf = netdev_priv(dev);
329 u32 table_id = vrf->tb_id;
330 struct vrf_map_elem *me;
335 me = vrf_map_lookup_elem(vmap, table_id);
339 list_del(&vrf->me_list);
343 --vmap->shared_tables;
344 } else if (users == 0) {
345 vrf_map_del_elem(me);
347 /* no one will refer to this element anymore */
348 vrf_map_elem_free(me);
352 vrf_map_unlock(vmap);
355 /* return the vrf device index associated with the table_id */
356 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
358 struct vrf_map *vmap = netns_vrf_map(net);
359 struct vrf_map_elem *me;
364 if (!vmap->strict_mode) {
369 me = vrf_map_lookup_elem(vmap, table_id);
375 ifindex = vrf_map_elem_get_vrf_ifindex(me);
378 vrf_map_unlock(vmap);
383 /* by default VRF devices do not have a qdisc and are expected
384 * to be created with only a single queue.
386 static bool qdisc_tx_is_default(const struct net_device *dev)
388 struct netdev_queue *txq;
391 if (dev->num_tx_queues > 1)
394 txq = netdev_get_tx_queue(dev, 0);
395 qdisc = rcu_access_pointer(txq->qdisc);
397 return !qdisc->enqueue;
400 /* Local traffic destined to local address. Reinsert the packet to rx
401 * path, similar to loopback handling.
403 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
404 struct dst_entry *dst)
410 skb_dst_set(skb, dst);
412 /* set pkt_type to avoid skb hitting packet taps twice -
413 * once on Tx and again in Rx processing
415 skb->pkt_type = PACKET_LOOPBACK;
417 skb->protocol = eth_type_trans(skb, dev);
419 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
420 vrf_rx_stats(dev, len);
422 this_cpu_inc(dev->dstats->rx_drps);
427 #if IS_ENABLED(CONFIG_IPV6)
428 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
433 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
434 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
436 if (likely(err == 1))
437 err = dst_output(net, sk, skb);
442 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
443 struct net_device *dev)
445 const struct ipv6hdr *iph;
446 struct net *net = dev_net(skb->dev);
448 int ret = NET_XMIT_DROP;
449 struct dst_entry *dst;
450 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
452 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
457 memset(&fl6, 0, sizeof(fl6));
458 /* needed to match OIF rule */
459 fl6.flowi6_oif = dev->ifindex;
460 fl6.flowi6_iif = LOOPBACK_IFINDEX;
461 fl6.daddr = iph->daddr;
462 fl6.saddr = iph->saddr;
463 fl6.flowlabel = ip6_flowinfo(iph);
464 fl6.flowi6_mark = skb->mark;
465 fl6.flowi6_proto = iph->nexthdr;
466 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
468 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
469 if (IS_ERR(dst) || dst == dst_null)
474 /* if dst.dev is the VRF device again this is locally originated traffic
475 * destined to a local address. Short circuit to Rx path.
478 return vrf_local_xmit(skb, dev, dst);
480 skb_dst_set(skb, dst);
482 /* strip the ethernet header added for pass through VRF device */
483 __skb_pull(skb, skb_network_offset(skb));
485 ret = vrf_ip6_local_out(net, skb->sk, skb);
486 if (unlikely(net_xmit_eval(ret)))
487 dev->stats.tx_errors++;
489 ret = NET_XMIT_SUCCESS;
493 vrf_tx_error(dev, skb);
494 return NET_XMIT_DROP;
497 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
498 struct net_device *dev)
500 vrf_tx_error(dev, skb);
501 return NET_XMIT_DROP;
505 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
506 static int vrf_ip_local_out(struct net *net, struct sock *sk,
511 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
512 skb, NULL, skb_dst(skb)->dev, dst_output);
513 if (likely(err == 1))
514 err = dst_output(net, sk, skb);
519 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
520 struct net_device *vrf_dev)
523 int ret = NET_XMIT_DROP;
525 struct net *net = dev_net(vrf_dev);
528 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
533 memset(&fl4, 0, sizeof(fl4));
534 /* needed to match OIF rule */
535 fl4.flowi4_oif = vrf_dev->ifindex;
536 fl4.flowi4_iif = LOOPBACK_IFINDEX;
537 fl4.flowi4_tos = RT_TOS(ip4h->tos);
538 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
539 fl4.flowi4_proto = ip4h->protocol;
540 fl4.daddr = ip4h->daddr;
541 fl4.saddr = ip4h->saddr;
543 rt = ip_route_output_flow(net, &fl4, NULL);
549 /* if dst.dev is the VRF device again this is locally originated traffic
550 * destined to a local address. Short circuit to Rx path.
552 if (rt->dst.dev == vrf_dev)
553 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
555 skb_dst_set(skb, &rt->dst);
557 /* strip the ethernet header added for pass through VRF device */
558 __skb_pull(skb, skb_network_offset(skb));
561 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
565 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
566 if (unlikely(net_xmit_eval(ret)))
567 vrf_dev->stats.tx_errors++;
569 ret = NET_XMIT_SUCCESS;
574 vrf_tx_error(vrf_dev, skb);
578 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
580 switch (skb->protocol) {
581 case htons(ETH_P_IP):
582 return vrf_process_v4_outbound(skb, dev);
583 case htons(ETH_P_IPV6):
584 return vrf_process_v6_outbound(skb, dev);
586 vrf_tx_error(dev, skb);
587 return NET_XMIT_DROP;
591 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
594 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
596 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
597 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
599 u64_stats_update_begin(&dstats->syncp);
601 dstats->tx_bytes += len;
602 u64_stats_update_end(&dstats->syncp);
604 this_cpu_inc(dev->dstats->tx_drps);
610 static void vrf_finish_direct(struct sk_buff *skb)
612 struct net_device *vrf_dev = skb->dev;
614 if (!list_empty(&vrf_dev->ptype_all) &&
615 likely(skb_headroom(skb) >= ETH_HLEN)) {
616 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
618 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
619 eth_zero_addr(eth->h_dest);
620 eth->h_proto = skb->protocol;
623 dev_queue_xmit_nit(skb, vrf_dev);
624 rcu_read_unlock_bh();
626 skb_pull(skb, ETH_HLEN);
629 /* reset skb device */
633 #if IS_ENABLED(CONFIG_IPV6)
634 /* modelled after ip6_finish_output2 */
635 static int vrf_finish_output6(struct net *net, struct sock *sk,
638 struct dst_entry *dst = skb_dst(skb);
639 struct net_device *dev = dst->dev;
640 const struct in6_addr *nexthop;
641 struct neighbour *neigh;
646 skb->protocol = htons(ETH_P_IPV6);
650 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
651 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
652 if (unlikely(!neigh))
653 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
654 if (!IS_ERR(neigh)) {
655 sock_confirm_neigh(skb, neigh);
656 ret = neigh_output(neigh, skb, false);
657 rcu_read_unlock_bh();
660 rcu_read_unlock_bh();
662 IP6_INC_STATS(dev_net(dst->dev),
663 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
668 /* modelled after ip6_output */
669 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
671 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
672 net, sk, skb, NULL, skb_dst(skb)->dev,
674 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
677 /* set dst on skb to send packet to us via dev_xmit path. Allows
678 * packet to go through device based features such as qdisc, netfilter
679 * hooks and packet sockets with skb->dev set to vrf device.
681 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
684 struct net_vrf *vrf = netdev_priv(vrf_dev);
685 struct dst_entry *dst = NULL;
686 struct rt6_info *rt6;
690 rt6 = rcu_dereference(vrf->rt6);
698 if (unlikely(!dst)) {
699 vrf_tx_error(vrf_dev, skb);
704 skb_dst_set(skb, dst);
709 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
712 vrf_finish_direct(skb);
714 return vrf_ip6_local_out(net, sk, skb);
717 static int vrf_output6_direct(struct net *net, struct sock *sk,
722 skb->protocol = htons(ETH_P_IPV6);
724 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
725 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
726 NULL, skb->dev, vrf_output6_direct_finish);
728 if (likely(err == 1))
729 vrf_finish_direct(skb);
734 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
739 err = vrf_output6_direct(net, sk, skb);
740 if (likely(err == 1))
741 err = vrf_ip6_local_out(net, sk, skb);
746 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
750 struct net *net = dev_net(vrf_dev);
755 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
756 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
758 if (likely(err == 1))
759 err = vrf_output6_direct(net, sk, skb);
761 if (likely(err == 1))
767 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
771 /* don't divert link scope packets */
772 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
775 if (qdisc_tx_is_default(vrf_dev) ||
776 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
777 return vrf_ip6_out_direct(vrf_dev, sk, skb);
779 return vrf_ip6_out_redirect(vrf_dev, skb);
783 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
785 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
786 struct net *net = dev_net(dev);
787 struct dst_entry *dst;
789 RCU_INIT_POINTER(vrf->rt6, NULL);
792 /* move dev in dst's to loopback so this VRF device can be deleted
793 * - based on dst_ifdown
798 dst->dev = net->loopback_dev;
804 static int vrf_rt6_create(struct net_device *dev)
806 int flags = DST_NOPOLICY | DST_NOXFRM;
807 struct net_vrf *vrf = netdev_priv(dev);
808 struct net *net = dev_net(dev);
809 struct rt6_info *rt6;
812 /* IPv6 can be CONFIG enabled and then disabled runtime */
813 if (!ipv6_mod_enabled())
816 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
817 if (!vrf->fib6_table)
820 /* create a dst for routing packets out a VRF device */
821 rt6 = ip6_dst_alloc(net, dev, flags);
825 rt6->dst.output = vrf_output6;
827 rcu_assign_pointer(vrf->rt6, rt6);
834 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
841 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
845 static int vrf_rt6_create(struct net_device *dev)
851 /* modelled after ip_finish_output2 */
852 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
854 struct dst_entry *dst = skb_dst(skb);
855 struct rtable *rt = (struct rtable *)dst;
856 struct net_device *dev = dst->dev;
857 unsigned int hh_len = LL_RESERVED_SPACE(dev);
858 struct neighbour *neigh;
859 bool is_v6gw = false;
864 /* Be paranoid, rather than too clever. */
865 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
866 struct sk_buff *skb2;
868 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
874 skb_set_owner_w(skb2, skb->sk);
882 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
883 if (!IS_ERR(neigh)) {
884 sock_confirm_neigh(skb, neigh);
885 /* if crossing protocols, can not use the cached header */
886 ret = neigh_output(neigh, skb, is_v6gw);
887 rcu_read_unlock_bh();
891 rcu_read_unlock_bh();
893 vrf_tx_error(skb->dev, skb);
897 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
899 struct net_device *dev = skb_dst(skb)->dev;
901 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
904 skb->protocol = htons(ETH_P_IP);
906 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
907 net, sk, skb, NULL, dev,
909 !(IPCB(skb)->flags & IPSKB_REROUTED));
912 /* set dst on skb to send packet to us via dev_xmit path. Allows
913 * packet to go through device based features such as qdisc, netfilter
914 * hooks and packet sockets with skb->dev set to vrf device.
916 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
919 struct net_vrf *vrf = netdev_priv(vrf_dev);
920 struct dst_entry *dst = NULL;
925 rth = rcu_dereference(vrf->rth);
933 if (unlikely(!dst)) {
934 vrf_tx_error(vrf_dev, skb);
939 skb_dst_set(skb, dst);
944 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
947 vrf_finish_direct(skb);
949 return vrf_ip_local_out(net, sk, skb);
952 static int vrf_output_direct(struct net *net, struct sock *sk,
957 skb->protocol = htons(ETH_P_IP);
959 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
960 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
961 NULL, skb->dev, vrf_output_direct_finish);
963 if (likely(err == 1))
964 vrf_finish_direct(skb);
969 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
974 err = vrf_output_direct(net, sk, skb);
975 if (likely(err == 1))
976 err = vrf_ip_local_out(net, sk, skb);
981 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
985 struct net *net = dev_net(vrf_dev);
990 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
991 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
993 if (likely(err == 1))
994 err = vrf_output_direct(net, sk, skb);
996 if (likely(err == 1))
1002 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1004 struct sk_buff *skb)
1006 /* don't divert multicast or local broadcast */
1007 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1008 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1011 if (qdisc_tx_is_default(vrf_dev) ||
1012 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1013 return vrf_ip_out_direct(vrf_dev, sk, skb);
1015 return vrf_ip_out_redirect(vrf_dev, skb);
1018 /* called with rcu lock held */
1019 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1021 struct sk_buff *skb,
1026 return vrf_ip_out(vrf_dev, sk, skb);
1028 return vrf_ip6_out(vrf_dev, sk, skb);
1035 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1037 struct rtable *rth = rtnl_dereference(vrf->rth);
1038 struct net *net = dev_net(dev);
1039 struct dst_entry *dst;
1041 RCU_INIT_POINTER(vrf->rth, NULL);
1044 /* move dev in dst's to loopback so this VRF device can be deleted
1045 * - based on dst_ifdown
1050 dst->dev = net->loopback_dev;
1056 static int vrf_rtable_create(struct net_device *dev)
1058 struct net_vrf *vrf = netdev_priv(dev);
1061 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1064 /* create a dst for routing packets out through a VRF device */
1065 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1069 rth->dst.output = vrf_output;
1071 rcu_assign_pointer(vrf->rth, rth);
1076 /**************************** device handling ********************/
1078 /* cycle interface to flush neighbor cache and move routes across tables */
1079 static void cycle_netdev(struct net_device *dev,
1080 struct netlink_ext_ack *extack)
1082 unsigned int flags = dev->flags;
1085 if (!netif_running(dev))
1088 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1090 ret = dev_change_flags(dev, flags, extack);
1094 "Failed to cycle device %s; route tables might be wrong!\n",
1099 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1100 struct netlink_ext_ack *extack)
1104 /* do not allow loopback device to be enslaved to a VRF.
1105 * The vrf device acts as the loopback for the vrf.
1107 if (port_dev == dev_net(dev)->loopback_dev) {
1108 NL_SET_ERR_MSG(extack,
1109 "Can not enslave loopback device to a VRF");
1113 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1114 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1118 cycle_netdev(port_dev, extack);
1123 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1127 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1128 struct netlink_ext_ack *extack)
1130 if (netif_is_l3_master(port_dev)) {
1131 NL_SET_ERR_MSG(extack,
1132 "Can not enslave an L3 master device to a VRF");
1136 if (netif_is_l3_slave(port_dev))
1139 return do_vrf_add_slave(dev, port_dev, extack);
1142 /* inverse of do_vrf_add_slave */
1143 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1145 netdev_upper_dev_unlink(port_dev, dev);
1146 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1148 cycle_netdev(port_dev, NULL);
1153 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1155 return do_vrf_del_slave(dev, port_dev);
1158 static void vrf_dev_uninit(struct net_device *dev)
1160 struct net_vrf *vrf = netdev_priv(dev);
1162 vrf_rtable_release(dev, vrf);
1163 vrf_rt6_release(dev, vrf);
1165 free_percpu(dev->dstats);
1169 static int vrf_dev_init(struct net_device *dev)
1171 struct net_vrf *vrf = netdev_priv(dev);
1173 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1177 /* create the default dst which points back to us */
1178 if (vrf_rtable_create(dev) != 0)
1181 if (vrf_rt6_create(dev) != 0)
1184 dev->flags = IFF_MASTER | IFF_NOARP;
1186 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1187 dev->operstate = IF_OPER_UP;
1188 netdev_lockdep_set_classes(dev);
1192 vrf_rtable_release(dev, vrf);
1194 free_percpu(dev->dstats);
1200 static const struct net_device_ops vrf_netdev_ops = {
1201 .ndo_init = vrf_dev_init,
1202 .ndo_uninit = vrf_dev_uninit,
1203 .ndo_start_xmit = vrf_xmit,
1204 .ndo_set_mac_address = eth_mac_addr,
1205 .ndo_get_stats64 = vrf_get_stats64,
1206 .ndo_add_slave = vrf_add_slave,
1207 .ndo_del_slave = vrf_del_slave,
1210 static u32 vrf_fib_table(const struct net_device *dev)
1212 struct net_vrf *vrf = netdev_priv(dev);
1217 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1223 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1224 struct sk_buff *skb,
1225 struct net_device *dev)
1227 struct net *net = dev_net(dev);
1229 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1230 skb = NULL; /* kfree_skb(skb) handled by nf code */
1235 static int vrf_prepare_mac_header(struct sk_buff *skb,
1236 struct net_device *vrf_dev, u16 proto)
1241 /* in general, we do not know if there is enough space in the head of
1242 * the packet for hosting the mac header.
1244 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1246 /* no space in the skb head */
1249 __skb_push(skb, ETH_HLEN);
1250 eth = (struct ethhdr *)skb->data;
1252 skb_reset_mac_header(skb);
1254 /* we set the ethernet destination and the source addresses to the
1255 * address of the VRF device.
1257 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1258 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1259 eth->h_proto = htons(proto);
1261 /* the destination address of the Ethernet frame corresponds to the
1262 * address set on the VRF interface; therefore, the packet is intended
1263 * to be processed locally.
1265 skb->protocol = eth->h_proto;
1266 skb->pkt_type = PACKET_HOST;
1268 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1270 skb_pull_inline(skb, ETH_HLEN);
1275 /* prepare and add the mac header to the packet if it was not set previously.
1276 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1277 * If the mac header was already set, the original mac header is left
1278 * untouched and the function returns immediately.
1280 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1281 struct net_device *vrf_dev,
1284 if (skb_mac_header_was_set(skb))
1287 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1290 #if IS_ENABLED(CONFIG_IPV6)
1291 /* neighbor handling is done with actual device; do not want
1292 * to flip skb->dev for those ndisc packets. This really fails
1293 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1296 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1298 const struct ipv6hdr *iph = ipv6_hdr(skb);
1301 if (iph->nexthdr == NEXTHDR_ICMP) {
1302 const struct icmp6hdr *icmph;
1303 struct icmp6hdr _icmph;
1305 icmph = skb_header_pointer(skb, sizeof(*iph),
1306 sizeof(_icmph), &_icmph);
1310 switch (icmph->icmp6_type) {
1311 case NDISC_ROUTER_SOLICITATION:
1312 case NDISC_ROUTER_ADVERTISEMENT:
1313 case NDISC_NEIGHBOUR_SOLICITATION:
1314 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1315 case NDISC_REDIRECT:
1325 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1326 const struct net_device *dev,
1329 const struct sk_buff *skb,
1332 struct net_vrf *vrf = netdev_priv(dev);
1334 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1337 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1340 const struct ipv6hdr *iph = ipv6_hdr(skb);
1341 struct flowi6 fl6 = {
1342 .flowi6_iif = ifindex,
1343 .flowi6_mark = skb->mark,
1344 .flowi6_proto = iph->nexthdr,
1345 .daddr = iph->daddr,
1346 .saddr = iph->saddr,
1347 .flowlabel = ip6_flowinfo(iph),
1349 struct net *net = dev_net(vrf_dev);
1350 struct rt6_info *rt6;
1352 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1353 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1357 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1360 skb_dst_set(skb, &rt6->dst);
1363 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1364 struct sk_buff *skb)
1366 int orig_iif = skb->skb_iif;
1367 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1368 bool is_ndisc = ipv6_ndisc_frame(skb);
1370 /* loopback, multicast & non-ND link-local traffic; do not push through
1371 * packet taps again. Reset pkt_type for upper layers to process skb.
1372 * For strict packets with a source LLA, determine the dst using the
1375 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1377 skb->skb_iif = vrf_dev->ifindex;
1378 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1380 if (skb->pkt_type == PACKET_LOOPBACK)
1381 skb->pkt_type = PACKET_HOST;
1382 else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1383 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1388 /* if packet is NDISC then keep the ingress interface */
1390 vrf_rx_stats(vrf_dev, skb->len);
1392 skb->skb_iif = vrf_dev->ifindex;
1394 if (!list_empty(&vrf_dev->ptype_all)) {
1397 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1400 skb_push(skb, skb->mac_len);
1401 dev_queue_xmit_nit(skb, vrf_dev);
1402 skb_pull(skb, skb->mac_len);
1406 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1410 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1412 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1418 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1419 struct sk_buff *skb)
1425 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1426 struct sk_buff *skb)
1429 skb->skb_iif = vrf_dev->ifindex;
1430 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1432 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1435 /* loopback traffic; do not push through packet taps again.
1436 * Reset pkt_type for upper layers to process skb
1438 if (skb->pkt_type == PACKET_LOOPBACK) {
1439 skb->pkt_type = PACKET_HOST;
1443 vrf_rx_stats(vrf_dev, skb->len);
1445 if (!list_empty(&vrf_dev->ptype_all)) {
1448 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1450 skb_push(skb, skb->mac_len);
1451 dev_queue_xmit_nit(skb, vrf_dev);
1452 skb_pull(skb, skb->mac_len);
1456 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1461 /* called with rcu lock held */
1462 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1463 struct sk_buff *skb,
1468 return vrf_ip_rcv(vrf_dev, skb);
1470 return vrf_ip6_rcv(vrf_dev, skb);
1476 #if IS_ENABLED(CONFIG_IPV6)
1477 /* send to link-local or multicast address via interface enslaved to
1478 * VRF device. Force lookup to VRF table without changing flow struct
1479 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1480 * is taken on the dst by this function.
1482 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1485 struct net *net = dev_net(dev);
1486 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1487 struct dst_entry *dst = NULL;
1488 struct rt6_info *rt;
1490 /* VRF device does not have a link-local address and
1491 * sending packets to link-local or mcast addresses over
1492 * a VRF device does not make sense
1494 if (fl6->flowi6_oif == dev->ifindex) {
1495 dst = &net->ipv6.ip6_null_entry->dst;
1499 if (!ipv6_addr_any(&fl6->saddr))
1500 flags |= RT6_LOOKUP_F_HAS_SADDR;
1502 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1510 static const struct l3mdev_ops vrf_l3mdev_ops = {
1511 .l3mdev_fib_table = vrf_fib_table,
1512 .l3mdev_l3_rcv = vrf_l3_rcv,
1513 .l3mdev_l3_out = vrf_l3_out,
1514 #if IS_ENABLED(CONFIG_IPV6)
1515 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1519 static void vrf_get_drvinfo(struct net_device *dev,
1520 struct ethtool_drvinfo *info)
1522 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1523 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1526 static const struct ethtool_ops vrf_ethtool_ops = {
1527 .get_drvinfo = vrf_get_drvinfo,
1530 static inline size_t vrf_fib_rule_nl_size(void)
1534 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1535 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1536 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1537 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1542 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1544 struct fib_rule_hdr *frh;
1545 struct nlmsghdr *nlh;
1546 struct sk_buff *skb;
1549 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1550 !ipv6_mod_enabled())
1553 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1557 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1559 goto nla_put_failure;
1561 /* rule only needs to appear once */
1562 nlh->nlmsg_flags |= NLM_F_EXCL;
1564 frh = nlmsg_data(nlh);
1565 memset(frh, 0, sizeof(*frh));
1566 frh->family = family;
1567 frh->action = FR_ACT_TO_TBL;
1569 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1570 goto nla_put_failure;
1572 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1573 goto nla_put_failure;
1575 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1576 goto nla_put_failure;
1578 nlmsg_end(skb, nlh);
1580 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1581 skb->sk = dev_net(dev)->rtnl;
1583 err = fib_nl_newrule(skb, nlh, NULL);
1587 err = fib_nl_delrule(skb, nlh, NULL);
1601 static int vrf_add_fib_rules(const struct net_device *dev)
1605 err = vrf_fib_rule(dev, AF_INET, true);
1609 err = vrf_fib_rule(dev, AF_INET6, true);
1613 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1614 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1619 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1620 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1627 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1629 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1632 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1634 vrf_fib_rule(dev, AF_INET6, false);
1638 vrf_fib_rule(dev, AF_INET, false);
1641 netdev_err(dev, "Failed to add FIB rules.\n");
1645 static void vrf_setup(struct net_device *dev)
1649 /* Initialize the device structure. */
1650 dev->netdev_ops = &vrf_netdev_ops;
1651 dev->l3mdev_ops = &vrf_l3mdev_ops;
1652 dev->ethtool_ops = &vrf_ethtool_ops;
1653 dev->needs_free_netdev = true;
1655 /* Fill in device structure with ethernet-generic values. */
1656 eth_hw_addr_random(dev);
1658 /* don't acquire vrf device's netif_tx_lock when transmitting */
1659 dev->features |= NETIF_F_LLTX;
1661 /* don't allow vrf devices to change network namespaces. */
1662 dev->features |= NETIF_F_NETNS_LOCAL;
1664 /* does not make sense for a VLAN to be added to a vrf device */
1665 dev->features |= NETIF_F_VLAN_CHALLENGED;
1667 /* enable offload features */
1668 dev->features |= NETIF_F_GSO_SOFTWARE;
1669 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1670 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1672 dev->hw_features = dev->features;
1673 dev->hw_enc_features = dev->features;
1675 /* default to no qdisc; user can add if desired */
1676 dev->priv_flags |= IFF_NO_QUEUE;
1677 dev->priv_flags |= IFF_NO_RX_HANDLER;
1678 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1680 /* VRF devices do not care about MTU, but if the MTU is set
1681 * too low then the ipv4 and ipv6 protocols are disabled
1682 * which breaks networking.
1684 dev->min_mtu = IPV6_MIN_MTU;
1685 dev->max_mtu = IP6_MAX_MTU;
1686 dev->mtu = dev->max_mtu;
1689 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1690 struct netlink_ext_ack *extack)
1692 if (tb[IFLA_ADDRESS]) {
1693 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1694 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1697 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1698 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1699 return -EADDRNOTAVAIL;
1705 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1707 struct net_device *port_dev;
1708 struct list_head *iter;
1710 netdev_for_each_lower_dev(dev, port_dev, iter)
1711 vrf_del_slave(dev, port_dev);
1713 vrf_map_unregister_dev(dev);
1715 unregister_netdevice_queue(dev, head);
1718 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1719 struct nlattr *tb[], struct nlattr *data[],
1720 struct netlink_ext_ack *extack)
1722 struct net_vrf *vrf = netdev_priv(dev);
1723 struct netns_vrf *nn_vrf;
1724 bool *add_fib_rules;
1728 if (!data || !data[IFLA_VRF_TABLE]) {
1729 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1733 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1734 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1735 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1736 "Invalid VRF table id");
1740 dev->priv_flags |= IFF_L3MDEV_MASTER;
1742 err = register_netdevice(dev);
1746 /* mapping between table_id and vrf;
1747 * note: such binding could not be done in the dev init function
1748 * because dev->ifindex id is not available yet.
1750 vrf->ifindex = dev->ifindex;
1752 err = vrf_map_register_dev(dev, extack);
1754 unregister_netdevice(dev);
1759 nn_vrf = net_generic(net, vrf_net_id);
1761 add_fib_rules = &nn_vrf->add_fib_rules;
1762 if (*add_fib_rules) {
1763 err = vrf_add_fib_rules(dev);
1765 vrf_map_unregister_dev(dev);
1766 unregister_netdevice(dev);
1769 *add_fib_rules = false;
1776 static size_t vrf_nl_getsize(const struct net_device *dev)
1778 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1781 static int vrf_fillinfo(struct sk_buff *skb,
1782 const struct net_device *dev)
1784 struct net_vrf *vrf = netdev_priv(dev);
1786 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1789 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1790 const struct net_device *slave_dev)
1792 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1795 static int vrf_fill_slave_info(struct sk_buff *skb,
1796 const struct net_device *vrf_dev,
1797 const struct net_device *slave_dev)
1799 struct net_vrf *vrf = netdev_priv(vrf_dev);
1801 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1807 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1808 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1811 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1813 .priv_size = sizeof(struct net_vrf),
1815 .get_size = vrf_nl_getsize,
1816 .policy = vrf_nl_policy,
1817 .validate = vrf_validate,
1818 .fill_info = vrf_fillinfo,
1820 .get_slave_size = vrf_get_slave_size,
1821 .fill_slave_info = vrf_fill_slave_info,
1823 .newlink = vrf_newlink,
1824 .dellink = vrf_dellink,
1826 .maxtype = IFLA_VRF_MAX,
1829 static int vrf_device_event(struct notifier_block *unused,
1830 unsigned long event, void *ptr)
1832 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1834 /* only care about unregister events to drop slave references */
1835 if (event == NETDEV_UNREGISTER) {
1836 struct net_device *vrf_dev;
1838 if (!netif_is_l3_slave(dev))
1841 vrf_dev = netdev_master_upper_dev_get(dev);
1842 vrf_del_slave(vrf_dev, dev);
1848 static struct notifier_block vrf_notifier_block __read_mostly = {
1849 .notifier_call = vrf_device_event,
1852 static int vrf_map_init(struct vrf_map *vmap)
1854 spin_lock_init(&vmap->vmap_lock);
1855 hash_init(vmap->ht);
1857 vmap->strict_mode = false;
1862 #ifdef CONFIG_SYSCTL
1863 static bool vrf_strict_mode(struct vrf_map *vmap)
1868 strict_mode = vmap->strict_mode;
1869 vrf_map_unlock(vmap);
1874 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1881 cur_mode = &vmap->strict_mode;
1882 if (*cur_mode == new_mode)
1886 /* disable strict mode */
1889 if (vmap->shared_tables) {
1890 /* we cannot allow strict_mode because there are some
1891 * vrfs that share one or more tables.
1897 /* no tables are shared among vrfs, so we can go back
1898 * to 1:1 association between a vrf with its table.
1904 vrf_map_unlock(vmap);
1909 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1910 void *buffer, size_t *lenp, loff_t *ppos)
1912 struct net *net = (struct net *)table->extra1;
1913 struct vrf_map *vmap = netns_vrf_map(net);
1914 int proc_strict_mode = 0;
1915 struct ctl_table tmp = {
1916 .procname = table->procname,
1917 .data = &proc_strict_mode,
1918 .maxlen = sizeof(int),
1919 .mode = table->mode,
1920 .extra1 = SYSCTL_ZERO,
1921 .extra2 = SYSCTL_ONE,
1926 proc_strict_mode = vrf_strict_mode(vmap);
1928 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1930 if (write && ret == 0)
1931 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1936 static const struct ctl_table vrf_table[] = {
1938 .procname = "strict_mode",
1940 .maxlen = sizeof(int),
1942 .proc_handler = vrf_shared_table_handler,
1943 /* set by the vrf_netns_init */
1949 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1951 struct ctl_table *table;
1953 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1957 /* init the extra1 parameter with the reference to current netns */
1958 table[0].extra1 = net;
1960 nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1961 if (!nn_vrf->ctl_hdr) {
1969 static void vrf_netns_exit_sysctl(struct net *net)
1971 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1972 struct ctl_table *table;
1974 table = nn_vrf->ctl_hdr->ctl_table_arg;
1975 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1979 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1984 static void vrf_netns_exit_sysctl(struct net *net)
1989 /* Initialize per network namespace state */
1990 static int __net_init vrf_netns_init(struct net *net)
1992 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1994 nn_vrf->add_fib_rules = true;
1995 vrf_map_init(&nn_vrf->vmap);
1997 return vrf_netns_init_sysctl(net, nn_vrf);
2000 static void __net_exit vrf_netns_exit(struct net *net)
2002 vrf_netns_exit_sysctl(net);
2005 static struct pernet_operations vrf_net_ops __net_initdata = {
2006 .init = vrf_netns_init,
2007 .exit = vrf_netns_exit,
2009 .size = sizeof(struct netns_vrf),
2012 static int __init vrf_init_module(void)
2016 register_netdevice_notifier(&vrf_notifier_block);
2018 rc = register_pernet_subsys(&vrf_net_ops);
2022 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2023 vrf_ifindex_lookup_by_table_id);
2027 rc = rtnl_link_register(&vrf_link_ops);
2029 goto table_lookup_unreg;
2034 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2035 vrf_ifindex_lookup_by_table_id);
2038 unregister_pernet_subsys(&vrf_net_ops);
2041 unregister_netdevice_notifier(&vrf_notifier_block);
2045 module_init(vrf_init_module);
2046 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2047 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2048 MODULE_LICENSE("GPL");
2049 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2050 MODULE_VERSION(DRV_VERSION);