]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
drm/ttm: rename ttm_mem_reg to ttm_resource.
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <[email protected]>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "bif/bif_4_1_d.h"
62
63 #define AMDGPU_TTM_VRAM_MAX_DW_READ     (size_t)128
64
65 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
66                                     unsigned int type,
67                                     uint64_t size)
68 {
69         return ttm_range_man_init(&adev->mman.bdev, type,
70                                   TTM_PL_FLAG_UNCACHED, TTM_PL_FLAG_UNCACHED,
71                                   false, size >> PAGE_SHIFT);
72 }
73
74 /**
75  * amdgpu_evict_flags - Compute placement flags
76  *
77  * @bo: The buffer object to evict
78  * @placement: Possible destination(s) for evicted BO
79  *
80  * Fill in placement data when ttm_bo_evict() is called
81  */
82 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
83                                 struct ttm_placement *placement)
84 {
85         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
86         struct amdgpu_bo *abo;
87         static const struct ttm_place placements = {
88                 .fpfn = 0,
89                 .lpfn = 0,
90                 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
91         };
92
93         /* Don't handle scatter gather BOs */
94         if (bo->type == ttm_bo_type_sg) {
95                 placement->num_placement = 0;
96                 placement->num_busy_placement = 0;
97                 return;
98         }
99
100         /* Object isn't an AMDGPU object so ignore */
101         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
102                 placement->placement = &placements;
103                 placement->busy_placement = &placements;
104                 placement->num_placement = 1;
105                 placement->num_busy_placement = 1;
106                 return;
107         }
108
109         abo = ttm_to_amdgpu_bo(bo);
110         switch (bo->mem.mem_type) {
111         case AMDGPU_PL_GDS:
112         case AMDGPU_PL_GWS:
113         case AMDGPU_PL_OA:
114                 placement->num_placement = 0;
115                 placement->num_busy_placement = 0;
116                 return;
117
118         case TTM_PL_VRAM:
119                 if (!adev->mman.buffer_funcs_enabled) {
120                         /* Move to system memory */
121                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
122                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
123                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
124                            amdgpu_bo_in_cpu_visible_vram(abo)) {
125
126                         /* Try evicting to the CPU inaccessible part of VRAM
127                          * first, but only set GTT as busy placement, so this
128                          * BO will be evicted to GTT rather than causing other
129                          * BOs to be evicted from VRAM
130                          */
131                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
132                                                          AMDGPU_GEM_DOMAIN_GTT);
133                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
134                         abo->placements[0].lpfn = 0;
135                         abo->placement.busy_placement = &abo->placements[1];
136                         abo->placement.num_busy_placement = 1;
137                 } else {
138                         /* Move to GTT memory */
139                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
140                 }
141                 break;
142         case TTM_PL_TT:
143         default:
144                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
145                 break;
146         }
147         *placement = abo->placement;
148 }
149
150 /**
151  * amdgpu_verify_access - Verify access for a mmap call
152  *
153  * @bo: The buffer object to map
154  * @filp: The file pointer from the process performing the mmap
155  *
156  * This is called by ttm_bo_mmap() to verify whether a process
157  * has the right to mmap a BO to their process space.
158  */
159 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
160 {
161         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
162
163         /*
164          * Don't verify access for KFD BOs. They don't have a GEM
165          * object associated with them.
166          */
167         if (abo->kfd_bo)
168                 return 0;
169
170         if (amdgpu_ttm_tt_get_usermm(bo->ttm))
171                 return -EPERM;
172         return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
173                                           filp->private_data);
174 }
175
176 /**
177  * amdgpu_move_null - Register memory for a buffer object
178  *
179  * @bo: The bo to assign the memory to
180  * @new_mem: The memory to be assigned.
181  *
182  * Assign the memory from new_mem to the memory of the buffer object bo.
183  */
184 static void amdgpu_move_null(struct ttm_buffer_object *bo,
185                              struct ttm_resource *new_mem)
186 {
187         struct ttm_resource *old_mem = &bo->mem;
188
189         BUG_ON(old_mem->mm_node != NULL);
190         *old_mem = *new_mem;
191         new_mem->mm_node = NULL;
192 }
193
194 /**
195  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
196  *
197  * @bo: The bo to assign the memory to.
198  * @mm_node: Memory manager node for drm allocator.
199  * @mem: The region where the bo resides.
200  *
201  */
202 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
203                                     struct drm_mm_node *mm_node,
204                                     struct ttm_resource *mem)
205 {
206         uint64_t addr = 0;
207
208         if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
209                 addr = mm_node->start << PAGE_SHIFT;
210                 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
211                                                 mem->mem_type);
212         }
213         return addr;
214 }
215
216 /**
217  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
218  * @offset. It also modifies the offset to be within the drm_mm_node returned
219  *
220  * @mem: The region where the bo resides.
221  * @offset: The offset that drm_mm_node is used for finding.
222  *
223  */
224 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
225                                                uint64_t *offset)
226 {
227         struct drm_mm_node *mm_node = mem->mm_node;
228
229         while (*offset >= (mm_node->size << PAGE_SHIFT)) {
230                 *offset -= (mm_node->size << PAGE_SHIFT);
231                 ++mm_node;
232         }
233         return mm_node;
234 }
235
236 /**
237  * amdgpu_ttm_map_buffer - Map memory into the GART windows
238  * @bo: buffer object to map
239  * @mem: memory object to map
240  * @mm_node: drm_mm node object to map
241  * @num_pages: number of pages to map
242  * @offset: offset into @mm_node where to start
243  * @window: which GART window to use
244  * @ring: DMA ring to use for the copy
245  * @tmz: if we should setup a TMZ enabled mapping
246  * @addr: resulting address inside the MC address space
247  *
248  * Setup one of the GART windows to access a specific piece of memory or return
249  * the physical address for local memory.
250  */
251 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
252                                  struct ttm_resource *mem,
253                                  struct drm_mm_node *mm_node,
254                                  unsigned num_pages, uint64_t offset,
255                                  unsigned window, struct amdgpu_ring *ring,
256                                  bool tmz, uint64_t *addr)
257 {
258         struct amdgpu_device *adev = ring->adev;
259         struct amdgpu_job *job;
260         unsigned num_dw, num_bytes;
261         struct dma_fence *fence;
262         uint64_t src_addr, dst_addr;
263         void *cpu_addr;
264         uint64_t flags;
265         unsigned int i;
266         int r;
267
268         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
269                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
270
271         /* Map only what can't be accessed directly */
272         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
273                 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
274                 return 0;
275         }
276
277         *addr = adev->gmc.gart_start;
278         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
279                 AMDGPU_GPU_PAGE_SIZE;
280         *addr += offset & ~PAGE_MASK;
281
282         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
283         num_bytes = num_pages * 8;
284
285         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
286                                      AMDGPU_IB_POOL_DELAYED, &job);
287         if (r)
288                 return r;
289
290         src_addr = num_dw * 4;
291         src_addr += job->ibs[0].gpu_addr;
292
293         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
294         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
295         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
296                                 dst_addr, num_bytes, false);
297
298         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
299         WARN_ON(job->ibs[0].length_dw > num_dw);
300
301         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
302         if (tmz)
303                 flags |= AMDGPU_PTE_TMZ;
304
305         cpu_addr = &job->ibs[0].ptr[num_dw];
306
307         if (mem->mem_type == TTM_PL_TT) {
308                 struct ttm_dma_tt *dma;
309                 dma_addr_t *dma_address;
310
311                 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
312                 dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
313                 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
314                                     cpu_addr);
315                 if (r)
316                         goto error_free;
317         } else {
318                 dma_addr_t dma_address;
319
320                 dma_address = (mm_node->start << PAGE_SHIFT) + offset;
321                 dma_address += adev->vm_manager.vram_base_offset;
322
323                 for (i = 0; i < num_pages; ++i) {
324                         r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
325                                             &dma_address, flags, cpu_addr);
326                         if (r)
327                                 goto error_free;
328
329                         dma_address += PAGE_SIZE;
330                 }
331         }
332
333         r = amdgpu_job_submit(job, &adev->mman.entity,
334                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
335         if (r)
336                 goto error_free;
337
338         dma_fence_put(fence);
339
340         return r;
341
342 error_free:
343         amdgpu_job_free(job);
344         return r;
345 }
346
347 /**
348  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
349  * @adev: amdgpu device
350  * @src: buffer/address where to read from
351  * @dst: buffer/address where to write to
352  * @size: number of bytes to copy
353  * @tmz: if a secure copy should be used
354  * @resv: resv object to sync to
355  * @f: Returns the last fence if multiple jobs are submitted.
356  *
357  * The function copies @size bytes from {src->mem + src->offset} to
358  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
359  * move and different for a BO to BO copy.
360  *
361  */
362 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
363                                const struct amdgpu_copy_mem *src,
364                                const struct amdgpu_copy_mem *dst,
365                                uint64_t size, bool tmz,
366                                struct dma_resv *resv,
367                                struct dma_fence **f)
368 {
369         const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
370                                         AMDGPU_GPU_PAGE_SIZE);
371
372         uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
373         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
374         struct drm_mm_node *src_mm, *dst_mm;
375         struct dma_fence *fence = NULL;
376         int r = 0;
377
378         if (!adev->mman.buffer_funcs_enabled) {
379                 DRM_ERROR("Trying to move memory with ring turned off.\n");
380                 return -EINVAL;
381         }
382
383         src_offset = src->offset;
384         if (src->mem->mm_node) {
385                 src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
386                 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
387         } else {
388                 src_mm = NULL;
389                 src_node_size = ULLONG_MAX;
390         }
391
392         dst_offset = dst->offset;
393         if (dst->mem->mm_node) {
394                 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
395                 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
396         } else {
397                 dst_mm = NULL;
398                 dst_node_size = ULLONG_MAX;
399         }
400
401         mutex_lock(&adev->mman.gtt_window_lock);
402
403         while (size) {
404                 uint32_t src_page_offset = src_offset & ~PAGE_MASK;
405                 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
406                 struct dma_fence *next;
407                 uint32_t cur_size;
408                 uint64_t from, to;
409
410                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
411                  * begins at an offset, then adjust the size accordingly
412                  */
413                 cur_size = max(src_page_offset, dst_page_offset);
414                 cur_size = min(min3(src_node_size, dst_node_size, size),
415                                (uint64_t)(GTT_MAX_BYTES - cur_size));
416
417                 /* Map src to window 0 and dst to window 1. */
418                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
419                                           PFN_UP(cur_size + src_page_offset),
420                                           src_offset, 0, ring, tmz, &from);
421                 if (r)
422                         goto error;
423
424                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
425                                           PFN_UP(cur_size + dst_page_offset),
426                                           dst_offset, 1, ring, tmz, &to);
427                 if (r)
428                         goto error;
429
430                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
431                                        resv, &next, false, true, tmz);
432                 if (r)
433                         goto error;
434
435                 dma_fence_put(fence);
436                 fence = next;
437
438                 size -= cur_size;
439                 if (!size)
440                         break;
441
442                 src_node_size -= cur_size;
443                 if (!src_node_size) {
444                         ++src_mm;
445                         src_node_size = src_mm->size << PAGE_SHIFT;
446                         src_offset = 0;
447                 } else {
448                         src_offset += cur_size;
449                 }
450
451                 dst_node_size -= cur_size;
452                 if (!dst_node_size) {
453                         ++dst_mm;
454                         dst_node_size = dst_mm->size << PAGE_SHIFT;
455                         dst_offset = 0;
456                 } else {
457                         dst_offset += cur_size;
458                 }
459         }
460 error:
461         mutex_unlock(&adev->mman.gtt_window_lock);
462         if (f)
463                 *f = dma_fence_get(fence);
464         dma_fence_put(fence);
465         return r;
466 }
467
468 /**
469  * amdgpu_move_blit - Copy an entire buffer to another buffer
470  *
471  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
472  * help move buffers to and from VRAM.
473  */
474 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
475                             bool evict, bool no_wait_gpu,
476                             struct ttm_resource *new_mem,
477                             struct ttm_resource *old_mem)
478 {
479         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
480         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
481         struct amdgpu_copy_mem src, dst;
482         struct dma_fence *fence = NULL;
483         int r;
484
485         src.bo = bo;
486         dst.bo = bo;
487         src.mem = old_mem;
488         dst.mem = new_mem;
489         src.offset = 0;
490         dst.offset = 0;
491
492         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
493                                        new_mem->num_pages << PAGE_SHIFT,
494                                        amdgpu_bo_encrypted(abo),
495                                        bo->base.resv, &fence);
496         if (r)
497                 goto error;
498
499         /* clear the space being freed */
500         if (old_mem->mem_type == TTM_PL_VRAM &&
501             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
502                 struct dma_fence *wipe_fence = NULL;
503
504                 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
505                                        NULL, &wipe_fence);
506                 if (r) {
507                         goto error;
508                 } else if (wipe_fence) {
509                         dma_fence_put(fence);
510                         fence = wipe_fence;
511                 }
512         }
513
514         /* Always block for VM page tables before committing the new location */
515         if (bo->type == ttm_bo_type_kernel)
516                 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
517         else
518                 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
519         dma_fence_put(fence);
520         return r;
521
522 error:
523         if (fence)
524                 dma_fence_wait(fence, false);
525         dma_fence_put(fence);
526         return r;
527 }
528
529 /**
530  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
531  *
532  * Called by amdgpu_bo_move().
533  */
534 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
535                                 struct ttm_operation_ctx *ctx,
536                                 struct ttm_resource *new_mem)
537 {
538         struct ttm_resource *old_mem = &bo->mem;
539         struct ttm_resource tmp_mem;
540         struct ttm_place placements;
541         struct ttm_placement placement;
542         int r;
543
544         /* create space/pages for new_mem in GTT space */
545         tmp_mem = *new_mem;
546         tmp_mem.mm_node = NULL;
547         placement.num_placement = 1;
548         placement.placement = &placements;
549         placement.num_busy_placement = 1;
550         placement.busy_placement = &placements;
551         placements.fpfn = 0;
552         placements.lpfn = 0;
553         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
554         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
555         if (unlikely(r)) {
556                 pr_err("Failed to find GTT space for blit from VRAM\n");
557                 return r;
558         }
559
560         /* set caching flags */
561         r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
562         if (unlikely(r)) {
563                 goto out_cleanup;
564         }
565
566         /* Bind the memory to the GTT space */
567         r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
568         if (unlikely(r)) {
569                 goto out_cleanup;
570         }
571
572         /* blit VRAM to GTT */
573         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
574         if (unlikely(r)) {
575                 goto out_cleanup;
576         }
577
578         /* move BO (in tmp_mem) to new_mem */
579         r = ttm_bo_move_ttm(bo, ctx, new_mem);
580 out_cleanup:
581         ttm_bo_mem_put(bo, &tmp_mem);
582         return r;
583 }
584
585 /**
586  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
587  *
588  * Called by amdgpu_bo_move().
589  */
590 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
591                                 struct ttm_operation_ctx *ctx,
592                                 struct ttm_resource *new_mem)
593 {
594         struct ttm_resource *old_mem = &bo->mem;
595         struct ttm_resource tmp_mem;
596         struct ttm_placement placement;
597         struct ttm_place placements;
598         int r;
599
600         /* make space in GTT for old_mem buffer */
601         tmp_mem = *new_mem;
602         tmp_mem.mm_node = NULL;
603         placement.num_placement = 1;
604         placement.placement = &placements;
605         placement.num_busy_placement = 1;
606         placement.busy_placement = &placements;
607         placements.fpfn = 0;
608         placements.lpfn = 0;
609         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
610         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
611         if (unlikely(r)) {
612                 pr_err("Failed to find GTT space for blit to VRAM\n");
613                 return r;
614         }
615
616         /* move/bind old memory to GTT space */
617         r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
618         if (unlikely(r)) {
619                 goto out_cleanup;
620         }
621
622         /* copy to VRAM */
623         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
624         if (unlikely(r)) {
625                 goto out_cleanup;
626         }
627 out_cleanup:
628         ttm_bo_mem_put(bo, &tmp_mem);
629         return r;
630 }
631
632 /**
633  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
634  *
635  * Called by amdgpu_bo_move()
636  */
637 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
638                                struct ttm_resource *mem)
639 {
640         struct drm_mm_node *nodes = mem->mm_node;
641
642         if (mem->mem_type == TTM_PL_SYSTEM ||
643             mem->mem_type == TTM_PL_TT)
644                 return true;
645         if (mem->mem_type != TTM_PL_VRAM)
646                 return false;
647
648         /* ttm_resource_ioremap only supports contiguous memory */
649         if (nodes->size != mem->num_pages)
650                 return false;
651
652         return ((nodes->start + nodes->size) << PAGE_SHIFT)
653                 <= adev->gmc.visible_vram_size;
654 }
655
656 /**
657  * amdgpu_bo_move - Move a buffer object to a new memory location
658  *
659  * Called by ttm_bo_handle_move_mem()
660  */
661 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
662                           struct ttm_operation_ctx *ctx,
663                           struct ttm_resource *new_mem)
664 {
665         struct amdgpu_device *adev;
666         struct amdgpu_bo *abo;
667         struct ttm_resource *old_mem = &bo->mem;
668         int r;
669
670         /* Can't move a pinned BO */
671         abo = ttm_to_amdgpu_bo(bo);
672         if (WARN_ON_ONCE(abo->pin_count > 0))
673                 return -EINVAL;
674
675         adev = amdgpu_ttm_adev(bo->bdev);
676
677         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
678                 amdgpu_move_null(bo, new_mem);
679                 return 0;
680         }
681         if ((old_mem->mem_type == TTM_PL_TT &&
682              new_mem->mem_type == TTM_PL_SYSTEM) ||
683             (old_mem->mem_type == TTM_PL_SYSTEM &&
684              new_mem->mem_type == TTM_PL_TT)) {
685                 /* bind is enough */
686                 amdgpu_move_null(bo, new_mem);
687                 return 0;
688         }
689         if (old_mem->mem_type == AMDGPU_PL_GDS ||
690             old_mem->mem_type == AMDGPU_PL_GWS ||
691             old_mem->mem_type == AMDGPU_PL_OA ||
692             new_mem->mem_type == AMDGPU_PL_GDS ||
693             new_mem->mem_type == AMDGPU_PL_GWS ||
694             new_mem->mem_type == AMDGPU_PL_OA) {
695                 /* Nothing to save here */
696                 amdgpu_move_null(bo, new_mem);
697                 return 0;
698         }
699
700         if (!adev->mman.buffer_funcs_enabled) {
701                 r = -ENODEV;
702                 goto memcpy;
703         }
704
705         if (old_mem->mem_type == TTM_PL_VRAM &&
706             new_mem->mem_type == TTM_PL_SYSTEM) {
707                 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
708         } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
709                    new_mem->mem_type == TTM_PL_VRAM) {
710                 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
711         } else {
712                 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
713                                      new_mem, old_mem);
714         }
715
716         if (r) {
717 memcpy:
718                 /* Check that all memory is CPU accessible */
719                 if (!amdgpu_mem_visible(adev, old_mem) ||
720                     !amdgpu_mem_visible(adev, new_mem)) {
721                         pr_err("Move buffer fallback to memcpy unavailable\n");
722                         return r;
723                 }
724
725                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
726                 if (r)
727                         return r;
728         }
729
730         if (bo->type == ttm_bo_type_device &&
731             new_mem->mem_type == TTM_PL_VRAM &&
732             old_mem->mem_type != TTM_PL_VRAM) {
733                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
734                  * accesses the BO after it's moved.
735                  */
736                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
737         }
738
739         /* update statistics */
740         atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
741         return 0;
742 }
743
744 /**
745  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
746  *
747  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
748  */
749 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
750 {
751         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
752         struct drm_mm_node *mm_node = mem->mm_node;
753
754         mem->bus.addr = NULL;
755         mem->bus.offset = 0;
756         mem->bus.size = mem->num_pages << PAGE_SHIFT;
757         mem->bus.base = 0;
758         mem->bus.is_iomem = false;
759
760         switch (mem->mem_type) {
761         case TTM_PL_SYSTEM:
762                 /* system memory */
763                 return 0;
764         case TTM_PL_TT:
765                 break;
766         case TTM_PL_VRAM:
767                 mem->bus.offset = mem->start << PAGE_SHIFT;
768                 /* check if it's visible */
769                 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
770                         return -EINVAL;
771                 /* Only physically contiguous buffers apply. In a contiguous
772                  * buffer, size of the first mm_node would match the number of
773                  * pages in ttm_resource.
774                  */
775                 if (adev->mman.aper_base_kaddr &&
776                     (mm_node->size == mem->num_pages))
777                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
778                                         mem->bus.offset;
779
780                 mem->bus.base = adev->gmc.aper_base;
781                 mem->bus.is_iomem = true;
782                 break;
783         default:
784                 return -EINVAL;
785         }
786         return 0;
787 }
788
789 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
790                                            unsigned long page_offset)
791 {
792         uint64_t offset = (page_offset << PAGE_SHIFT);
793         struct drm_mm_node *mm;
794
795         mm = amdgpu_find_mm_node(&bo->mem, &offset);
796         return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
797                 (offset >> PAGE_SHIFT);
798 }
799
800 /**
801  * amdgpu_ttm_domain_start - Returns GPU start address
802  * @adev: amdgpu device object
803  * @type: type of the memory
804  *
805  * Returns:
806  * GPU start address of a memory domain
807  */
808
809 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
810 {
811         switch (type) {
812         case TTM_PL_TT:
813                 return adev->gmc.gart_start;
814         case TTM_PL_VRAM:
815                 return adev->gmc.vram_start;
816         }
817
818         return 0;
819 }
820
821 /*
822  * TTM backend functions.
823  */
824 struct amdgpu_ttm_tt {
825         struct ttm_dma_tt       ttm;
826         struct drm_gem_object   *gobj;
827         u64                     offset;
828         uint64_t                userptr;
829         struct task_struct      *usertask;
830         uint32_t                userflags;
831 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
832         struct hmm_range        *range;
833 #endif
834 };
835
836 #ifdef CONFIG_DRM_AMDGPU_USERPTR
837 /**
838  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
839  * memory and start HMM tracking CPU page table update
840  *
841  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
842  * once afterwards to stop HMM tracking
843  */
844 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
845 {
846         struct ttm_tt *ttm = bo->tbo.ttm;
847         struct amdgpu_ttm_tt *gtt = (void *)ttm;
848         unsigned long start = gtt->userptr;
849         struct vm_area_struct *vma;
850         struct hmm_range *range;
851         unsigned long timeout;
852         struct mm_struct *mm;
853         unsigned long i;
854         int r = 0;
855
856         mm = bo->notifier.mm;
857         if (unlikely(!mm)) {
858                 DRM_DEBUG_DRIVER("BO is not registered?\n");
859                 return -EFAULT;
860         }
861
862         /* Another get_user_pages is running at the same time?? */
863         if (WARN_ON(gtt->range))
864                 return -EFAULT;
865
866         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
867                 return -ESRCH;
868
869         range = kzalloc(sizeof(*range), GFP_KERNEL);
870         if (unlikely(!range)) {
871                 r = -ENOMEM;
872                 goto out;
873         }
874         range->notifier = &bo->notifier;
875         range->start = bo->notifier.interval_tree.start;
876         range->end = bo->notifier.interval_tree.last + 1;
877         range->default_flags = HMM_PFN_REQ_FAULT;
878         if (!amdgpu_ttm_tt_is_readonly(ttm))
879                 range->default_flags |= HMM_PFN_REQ_WRITE;
880
881         range->hmm_pfns = kvmalloc_array(ttm->num_pages,
882                                          sizeof(*range->hmm_pfns), GFP_KERNEL);
883         if (unlikely(!range->hmm_pfns)) {
884                 r = -ENOMEM;
885                 goto out_free_ranges;
886         }
887
888         mmap_read_lock(mm);
889         vma = find_vma(mm, start);
890         if (unlikely(!vma || start < vma->vm_start)) {
891                 r = -EFAULT;
892                 goto out_unlock;
893         }
894         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
895                 vma->vm_file)) {
896                 r = -EPERM;
897                 goto out_unlock;
898         }
899         mmap_read_unlock(mm);
900         timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
901
902 retry:
903         range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
904
905         mmap_read_lock(mm);
906         r = hmm_range_fault(range);
907         mmap_read_unlock(mm);
908         if (unlikely(r)) {
909                 /*
910                  * FIXME: This timeout should encompass the retry from
911                  * mmu_interval_read_retry() as well.
912                  */
913                 if (r == -EBUSY && !time_after(jiffies, timeout))
914                         goto retry;
915                 goto out_free_pfns;
916         }
917
918         /*
919          * Due to default_flags, all pages are HMM_PFN_VALID or
920          * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
921          * the notifier_lock, and mmu_interval_read_retry() must be done first.
922          */
923         for (i = 0; i < ttm->num_pages; i++)
924                 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
925
926         gtt->range = range;
927         mmput(mm);
928
929         return 0;
930
931 out_unlock:
932         mmap_read_unlock(mm);
933 out_free_pfns:
934         kvfree(range->hmm_pfns);
935 out_free_ranges:
936         kfree(range);
937 out:
938         mmput(mm);
939         return r;
940 }
941
942 /**
943  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
944  * Check if the pages backing this ttm range have been invalidated
945  *
946  * Returns: true if pages are still valid
947  */
948 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
949 {
950         struct amdgpu_ttm_tt *gtt = (void *)ttm;
951         bool r = false;
952
953         if (!gtt || !gtt->userptr)
954                 return false;
955
956         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
957                 gtt->userptr, ttm->num_pages);
958
959         WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
960                 "No user pages to check\n");
961
962         if (gtt->range) {
963                 /*
964                  * FIXME: Must always hold notifier_lock for this, and must
965                  * not ignore the return code.
966                  */
967                 r = mmu_interval_read_retry(gtt->range->notifier,
968                                          gtt->range->notifier_seq);
969                 kvfree(gtt->range->hmm_pfns);
970                 kfree(gtt->range);
971                 gtt->range = NULL;
972         }
973
974         return !r;
975 }
976 #endif
977
978 /**
979  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
980  *
981  * Called by amdgpu_cs_list_validate(). This creates the page list
982  * that backs user memory and will ultimately be mapped into the device
983  * address space.
984  */
985 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
986 {
987         unsigned long i;
988
989         for (i = 0; i < ttm->num_pages; ++i)
990                 ttm->pages[i] = pages ? pages[i] : NULL;
991 }
992
993 /**
994  * amdgpu_ttm_tt_pin_userptr -  prepare the sg table with the user pages
995  *
996  * Called by amdgpu_ttm_backend_bind()
997  **/
998 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
999 {
1000         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1001         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1002         int r;
1003
1004         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1005         enum dma_data_direction direction = write ?
1006                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1007
1008         /* Allocate an SG array and squash pages into it */
1009         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1010                                       ttm->num_pages << PAGE_SHIFT,
1011                                       GFP_KERNEL);
1012         if (r)
1013                 goto release_sg;
1014
1015         /* Map SG to device */
1016         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1017         if (r)
1018                 goto release_sg;
1019
1020         /* convert SG to linear array of pages and dma addresses */
1021         drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1022                                          gtt->ttm.dma_address, ttm->num_pages);
1023
1024         return 0;
1025
1026 release_sg:
1027         kfree(ttm->sg);
1028         return r;
1029 }
1030
1031 /**
1032  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1033  */
1034 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1035 {
1036         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1037         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1038
1039         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1040         enum dma_data_direction direction = write ?
1041                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1042
1043         /* double check that we don't free the table twice */
1044         if (!ttm->sg->sgl)
1045                 return;
1046
1047         /* unmap the pages mapped to the device */
1048         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1049         sg_free_table(ttm->sg);
1050
1051 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1052         if (gtt->range) {
1053                 unsigned long i;
1054
1055                 for (i = 0; i < ttm->num_pages; i++) {
1056                         if (ttm->pages[i] !=
1057                             hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1058                                 break;
1059                 }
1060
1061                 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1062         }
1063 #endif
1064 }
1065
1066 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1067                                 struct ttm_buffer_object *tbo,
1068                                 uint64_t flags)
1069 {
1070         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1071         struct ttm_tt *ttm = tbo->ttm;
1072         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1073         int r;
1074
1075         if (amdgpu_bo_encrypted(abo))
1076                 flags |= AMDGPU_PTE_TMZ;
1077
1078         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1079                 uint64_t page_idx = 1;
1080
1081                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1082                                 ttm->pages, gtt->ttm.dma_address, flags);
1083                 if (r)
1084                         goto gart_bind_fail;
1085
1086                 /* The memory type of the first page defaults to UC. Now
1087                  * modify the memory type to NC from the second page of
1088                  * the BO onward.
1089                  */
1090                 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1091                 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1092
1093                 r = amdgpu_gart_bind(adev,
1094                                 gtt->offset + (page_idx << PAGE_SHIFT),
1095                                 ttm->num_pages - page_idx,
1096                                 &ttm->pages[page_idx],
1097                                 &(gtt->ttm.dma_address[page_idx]), flags);
1098         } else {
1099                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1100                                      ttm->pages, gtt->ttm.dma_address, flags);
1101         }
1102
1103 gart_bind_fail:
1104         if (r)
1105                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1106                           ttm->num_pages, gtt->offset);
1107
1108         return r;
1109 }
1110
1111 /**
1112  * amdgpu_ttm_backend_bind - Bind GTT memory
1113  *
1114  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1115  * This handles binding GTT memory to the device address space.
1116  */
1117 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1118                                    struct ttm_resource *bo_mem)
1119 {
1120         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1121         struct amdgpu_ttm_tt *gtt = (void*)ttm;
1122         uint64_t flags;
1123         int r = 0;
1124
1125         if (gtt->userptr) {
1126                 r = amdgpu_ttm_tt_pin_userptr(ttm);
1127                 if (r) {
1128                         DRM_ERROR("failed to pin userptr\n");
1129                         return r;
1130                 }
1131         }
1132         if (!ttm->num_pages) {
1133                 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1134                      ttm->num_pages, bo_mem, ttm);
1135         }
1136
1137         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1138             bo_mem->mem_type == AMDGPU_PL_GWS ||
1139             bo_mem->mem_type == AMDGPU_PL_OA)
1140                 return -EINVAL;
1141
1142         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1143                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1144                 return 0;
1145         }
1146
1147         /* compute PTE flags relevant to this BO memory */
1148         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1149
1150         /* bind pages into GART page tables */
1151         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1152         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1153                 ttm->pages, gtt->ttm.dma_address, flags);
1154
1155         if (r)
1156                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1157                           ttm->num_pages, gtt->offset);
1158         return r;
1159 }
1160
1161 /**
1162  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1163  */
1164 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1165 {
1166         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1167         struct ttm_operation_ctx ctx = { false, false };
1168         struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1169         struct ttm_resource tmp;
1170         struct ttm_placement placement;
1171         struct ttm_place placements;
1172         uint64_t addr, flags;
1173         int r;
1174
1175         if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1176                 return 0;
1177
1178         addr = amdgpu_gmc_agp_addr(bo);
1179         if (addr != AMDGPU_BO_INVALID_OFFSET) {
1180                 bo->mem.start = addr >> PAGE_SHIFT;
1181         } else {
1182
1183                 /* allocate GART space */
1184                 tmp = bo->mem;
1185                 tmp.mm_node = NULL;
1186                 placement.num_placement = 1;
1187                 placement.placement = &placements;
1188                 placement.num_busy_placement = 1;
1189                 placement.busy_placement = &placements;
1190                 placements.fpfn = 0;
1191                 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1192                 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1193                         TTM_PL_FLAG_TT;
1194
1195                 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1196                 if (unlikely(r))
1197                         return r;
1198
1199                 /* compute PTE flags for this buffer object */
1200                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1201
1202                 /* Bind pages */
1203                 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1204                 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1205                 if (unlikely(r)) {
1206                         ttm_bo_mem_put(bo, &tmp);
1207                         return r;
1208                 }
1209
1210                 ttm_bo_mem_put(bo, &bo->mem);
1211                 bo->mem = tmp;
1212         }
1213
1214         return 0;
1215 }
1216
1217 /**
1218  * amdgpu_ttm_recover_gart - Rebind GTT pages
1219  *
1220  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1221  * rebind GTT pages during a GPU reset.
1222  */
1223 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1224 {
1225         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1226         uint64_t flags;
1227         int r;
1228
1229         if (!tbo->ttm)
1230                 return 0;
1231
1232         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1233         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1234
1235         return r;
1236 }
1237
1238 /**
1239  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1240  *
1241  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1242  * ttm_tt_destroy().
1243  */
1244 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1245 {
1246         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1247         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1248         int r;
1249
1250         /* if the pages have userptr pinning then clear that first */
1251         if (gtt->userptr)
1252                 amdgpu_ttm_tt_unpin_userptr(ttm);
1253
1254         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1255                 return 0;
1256
1257         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1258         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1259         if (r)
1260                 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1261                           gtt->ttm.ttm.num_pages, gtt->offset);
1262         return r;
1263 }
1264
1265 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1266 {
1267         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1268
1269         if (gtt->usertask)
1270                 put_task_struct(gtt->usertask);
1271
1272         ttm_dma_tt_fini(&gtt->ttm);
1273         kfree(gtt);
1274 }
1275
1276 static struct ttm_backend_func amdgpu_backend_func = {
1277         .bind = &amdgpu_ttm_backend_bind,
1278         .unbind = &amdgpu_ttm_backend_unbind,
1279         .destroy = &amdgpu_ttm_backend_destroy,
1280 };
1281
1282 /**
1283  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1284  *
1285  * @bo: The buffer object to create a GTT ttm_tt object around
1286  *
1287  * Called by ttm_tt_create().
1288  */
1289 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1290                                            uint32_t page_flags)
1291 {
1292         struct amdgpu_ttm_tt *gtt;
1293
1294         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1295         if (gtt == NULL) {
1296                 return NULL;
1297         }
1298         gtt->ttm.ttm.func = &amdgpu_backend_func;
1299         gtt->gobj = &bo->base;
1300
1301         /* allocate space for the uninitialized page entries */
1302         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1303                 kfree(gtt);
1304                 return NULL;
1305         }
1306         return &gtt->ttm.ttm;
1307 }
1308
1309 /**
1310  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1311  *
1312  * Map the pages of a ttm_tt object to an address space visible
1313  * to the underlying device.
1314  */
1315 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1316                         struct ttm_operation_ctx *ctx)
1317 {
1318         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1319         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1320
1321         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1322         if (gtt && gtt->userptr) {
1323                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1324                 if (!ttm->sg)
1325                         return -ENOMEM;
1326
1327                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1328                 ttm->state = tt_unbound;
1329                 return 0;
1330         }
1331
1332         if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1333                 if (!ttm->sg) {
1334                         struct dma_buf_attachment *attach;
1335                         struct sg_table *sgt;
1336
1337                         attach = gtt->gobj->import_attach;
1338                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1339                         if (IS_ERR(sgt))
1340                                 return PTR_ERR(sgt);
1341
1342                         ttm->sg = sgt;
1343                 }
1344
1345                 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1346                                                  gtt->ttm.dma_address,
1347                                                  ttm->num_pages);
1348                 ttm->state = tt_unbound;
1349                 return 0;
1350         }
1351
1352 #ifdef CONFIG_SWIOTLB
1353         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1354                 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1355         }
1356 #endif
1357
1358         /* fall back to generic helper to populate the page array
1359          * and map them to the device */
1360         return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1361 }
1362
1363 /**
1364  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1365  *
1366  * Unmaps pages of a ttm_tt object from the device address space and
1367  * unpopulates the page array backing it.
1368  */
1369 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1370 {
1371         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1372         struct amdgpu_device *adev;
1373
1374         if (gtt && gtt->userptr) {
1375                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1376                 kfree(ttm->sg);
1377                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1378                 return;
1379         }
1380
1381         if (ttm->sg && gtt->gobj->import_attach) {
1382                 struct dma_buf_attachment *attach;
1383
1384                 attach = gtt->gobj->import_attach;
1385                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1386                 ttm->sg = NULL;
1387                 return;
1388         }
1389
1390         if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1391                 return;
1392
1393         adev = amdgpu_ttm_adev(ttm->bdev);
1394
1395 #ifdef CONFIG_SWIOTLB
1396         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1397                 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1398                 return;
1399         }
1400 #endif
1401
1402         /* fall back to generic helper to unmap and unpopulate array */
1403         ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1404 }
1405
1406 /**
1407  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1408  * task
1409  *
1410  * @ttm: The ttm_tt object to bind this userptr object to
1411  * @addr:  The address in the current tasks VM space to use
1412  * @flags: Requirements of userptr object.
1413  *
1414  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1415  * to current task
1416  */
1417 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1418                               uint32_t flags)
1419 {
1420         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1421
1422         if (gtt == NULL)
1423                 return -EINVAL;
1424
1425         gtt->userptr = addr;
1426         gtt->userflags = flags;
1427
1428         if (gtt->usertask)
1429                 put_task_struct(gtt->usertask);
1430         gtt->usertask = current->group_leader;
1431         get_task_struct(gtt->usertask);
1432
1433         return 0;
1434 }
1435
1436 /**
1437  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1438  */
1439 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1440 {
1441         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1442
1443         if (gtt == NULL)
1444                 return NULL;
1445
1446         if (gtt->usertask == NULL)
1447                 return NULL;
1448
1449         return gtt->usertask->mm;
1450 }
1451
1452 /**
1453  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1454  * address range for the current task.
1455  *
1456  */
1457 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1458                                   unsigned long end)
1459 {
1460         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1461         unsigned long size;
1462
1463         if (gtt == NULL || !gtt->userptr)
1464                 return false;
1465
1466         /* Return false if no part of the ttm_tt object lies within
1467          * the range
1468          */
1469         size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1470         if (gtt->userptr > end || gtt->userptr + size <= start)
1471                 return false;
1472
1473         return true;
1474 }
1475
1476 /**
1477  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1478  */
1479 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1480 {
1481         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1482
1483         if (gtt == NULL || !gtt->userptr)
1484                 return false;
1485
1486         return true;
1487 }
1488
1489 /**
1490  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1491  */
1492 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1493 {
1494         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1495
1496         if (gtt == NULL)
1497                 return false;
1498
1499         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1500 }
1501
1502 /**
1503  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1504  *
1505  * @ttm: The ttm_tt object to compute the flags for
1506  * @mem: The memory registry backing this ttm_tt object
1507  *
1508  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1509  */
1510 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1511 {
1512         uint64_t flags = 0;
1513
1514         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1515                 flags |= AMDGPU_PTE_VALID;
1516
1517         if (mem && mem->mem_type == TTM_PL_TT) {
1518                 flags |= AMDGPU_PTE_SYSTEM;
1519
1520                 if (ttm->caching_state == tt_cached)
1521                         flags |= AMDGPU_PTE_SNOOPED;
1522         }
1523
1524         return flags;
1525 }
1526
1527 /**
1528  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1529  *
1530  * @ttm: The ttm_tt object to compute the flags for
1531  * @mem: The memory registry backing this ttm_tt object
1532
1533  * Figure out the flags to use for a VM PTE (Page Table Entry).
1534  */
1535 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1536                                  struct ttm_resource *mem)
1537 {
1538         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1539
1540         flags |= adev->gart.gart_pte_flags;
1541         flags |= AMDGPU_PTE_READABLE;
1542
1543         if (!amdgpu_ttm_tt_is_readonly(ttm))
1544                 flags |= AMDGPU_PTE_WRITEABLE;
1545
1546         return flags;
1547 }
1548
1549 /**
1550  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1551  * object.
1552  *
1553  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1554  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1555  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1556  * used to clean out a memory space.
1557  */
1558 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1559                                             const struct ttm_place *place)
1560 {
1561         unsigned long num_pages = bo->mem.num_pages;
1562         struct drm_mm_node *node = bo->mem.mm_node;
1563         struct dma_resv_list *flist;
1564         struct dma_fence *f;
1565         int i;
1566
1567         if (bo->type == ttm_bo_type_kernel &&
1568             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1569                 return false;
1570
1571         /* If bo is a KFD BO, check if the bo belongs to the current process.
1572          * If true, then return false as any KFD process needs all its BOs to
1573          * be resident to run successfully
1574          */
1575         flist = dma_resv_get_list(bo->base.resv);
1576         if (flist) {
1577                 for (i = 0; i < flist->shared_count; ++i) {
1578                         f = rcu_dereference_protected(flist->shared[i],
1579                                 dma_resv_held(bo->base.resv));
1580                         if (amdkfd_fence_check_mm(f, current->mm))
1581                                 return false;
1582                 }
1583         }
1584
1585         switch (bo->mem.mem_type) {
1586         case TTM_PL_TT:
1587                 if (amdgpu_bo_is_amdgpu_bo(bo) &&
1588                     amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1589                         return false;
1590                 return true;
1591
1592         case TTM_PL_VRAM:
1593                 /* Check each drm MM node individually */
1594                 while (num_pages) {
1595                         if (place->fpfn < (node->start + node->size) &&
1596                             !(place->lpfn && place->lpfn <= node->start))
1597                                 return true;
1598
1599                         num_pages -= node->size;
1600                         ++node;
1601                 }
1602                 return false;
1603
1604         default:
1605                 break;
1606         }
1607
1608         return ttm_bo_eviction_valuable(bo, place);
1609 }
1610
1611 /**
1612  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1613  *
1614  * @bo:  The buffer object to read/write
1615  * @offset:  Offset into buffer object
1616  * @buf:  Secondary buffer to write/read from
1617  * @len: Length in bytes of access
1618  * @write:  true if writing
1619  *
1620  * This is used to access VRAM that backs a buffer object via MMIO
1621  * access for debugging purposes.
1622  */
1623 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1624                                     unsigned long offset,
1625                                     void *buf, int len, int write)
1626 {
1627         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1628         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1629         struct drm_mm_node *nodes;
1630         uint32_t value = 0;
1631         int ret = 0;
1632         uint64_t pos;
1633         unsigned long flags;
1634
1635         if (bo->mem.mem_type != TTM_PL_VRAM)
1636                 return -EIO;
1637
1638         pos = offset;
1639         nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1640         pos += (nodes->start << PAGE_SHIFT);
1641
1642         while (len && pos < adev->gmc.mc_vram_size) {
1643                 uint64_t aligned_pos = pos & ~(uint64_t)3;
1644                 uint64_t bytes = 4 - (pos & 3);
1645                 uint32_t shift = (pos & 3) * 8;
1646                 uint32_t mask = 0xffffffff << shift;
1647
1648                 if (len < bytes) {
1649                         mask &= 0xffffffff >> (bytes - len) * 8;
1650                         bytes = len;
1651                 }
1652
1653                 if (mask != 0xffffffff) {
1654                         spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1655                         WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1656                         WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1657                         if (!write || mask != 0xffffffff)
1658                                 value = RREG32_NO_KIQ(mmMM_DATA);
1659                         if (write) {
1660                                 value &= ~mask;
1661                                 value |= (*(uint32_t *)buf << shift) & mask;
1662                                 WREG32_NO_KIQ(mmMM_DATA, value);
1663                         }
1664                         spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1665                         if (!write) {
1666                                 value = (value & mask) >> shift;
1667                                 memcpy(buf, &value, bytes);
1668                         }
1669                 } else {
1670                         bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1671                         bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1672
1673                         amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1674                                                   bytes, write);
1675                 }
1676
1677                 ret += bytes;
1678                 buf = (uint8_t *)buf + bytes;
1679                 pos += bytes;
1680                 len -= bytes;
1681                 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1682                         ++nodes;
1683                         pos = (nodes->start << PAGE_SHIFT);
1684                 }
1685         }
1686
1687         return ret;
1688 }
1689
1690 static struct ttm_bo_driver amdgpu_bo_driver = {
1691         .ttm_tt_create = &amdgpu_ttm_tt_create,
1692         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1693         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1694         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1695         .evict_flags = &amdgpu_evict_flags,
1696         .move = &amdgpu_bo_move,
1697         .verify_access = &amdgpu_verify_access,
1698         .move_notify = &amdgpu_bo_move_notify,
1699         .release_notify = &amdgpu_bo_release_notify,
1700         .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1701         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1702         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1703         .access_memory = &amdgpu_ttm_access_memory,
1704         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1705 };
1706
1707 /*
1708  * Firmware Reservation functions
1709  */
1710 /**
1711  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1712  *
1713  * @adev: amdgpu_device pointer
1714  *
1715  * free fw reserved vram if it has been reserved.
1716  */
1717 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1718 {
1719         amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1720                 NULL, &adev->fw_vram_usage.va);
1721 }
1722
1723 /**
1724  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1725  *
1726  * @adev: amdgpu_device pointer
1727  *
1728  * create bo vram reservation from fw.
1729  */
1730 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1731 {
1732         uint64_t vram_size = adev->gmc.visible_vram_size;
1733
1734         adev->fw_vram_usage.va = NULL;
1735         adev->fw_vram_usage.reserved_bo = NULL;
1736
1737         if (adev->fw_vram_usage.size == 0 ||
1738             adev->fw_vram_usage.size > vram_size)
1739                 return 0;
1740
1741         return amdgpu_bo_create_kernel_at(adev,
1742                                           adev->fw_vram_usage.start_offset,
1743                                           adev->fw_vram_usage.size,
1744                                           AMDGPU_GEM_DOMAIN_VRAM,
1745                                           &adev->fw_vram_usage.reserved_bo,
1746                                           &adev->fw_vram_usage.va);
1747 }
1748
1749 /*
1750  * Memoy training reservation functions
1751  */
1752
1753 /**
1754  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1755  *
1756  * @adev: amdgpu_device pointer
1757  *
1758  * free memory training reserved vram if it has been reserved.
1759  */
1760 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1761 {
1762         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1763
1764         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1765         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1766         ctx->c2p_bo = NULL;
1767
1768         return 0;
1769 }
1770
1771 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1772 {
1773        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1774                vram_size -= SZ_1M;
1775
1776        return ALIGN(vram_size, SZ_1M);
1777 }
1778
1779 /**
1780  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1781  *
1782  * @adev: amdgpu_device pointer
1783  *
1784  * create bo vram reservation from memory training.
1785  */
1786 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1787 {
1788         int ret;
1789         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1790
1791         memset(ctx, 0, sizeof(*ctx));
1792         if (!adev->fw_vram_usage.mem_train_support) {
1793                 DRM_DEBUG("memory training does not support!\n");
1794                 return 0;
1795         }
1796
1797         ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1798         ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1799         ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1800
1801         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1802                   ctx->train_data_size,
1803                   ctx->p2c_train_data_offset,
1804                   ctx->c2p_train_data_offset);
1805
1806         ret = amdgpu_bo_create_kernel_at(adev,
1807                                          ctx->c2p_train_data_offset,
1808                                          ctx->train_data_size,
1809                                          AMDGPU_GEM_DOMAIN_VRAM,
1810                                          &ctx->c2p_bo,
1811                                          NULL);
1812         if (ret) {
1813                 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1814                 amdgpu_ttm_training_reserve_vram_fini(adev);
1815                 return ret;
1816         }
1817
1818         ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1819         return 0;
1820 }
1821
1822 /**
1823  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1824  * gtt/vram related fields.
1825  *
1826  * This initializes all of the memory space pools that the TTM layer
1827  * will need such as the GTT space (system memory mapped to the device),
1828  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1829  * can be mapped per VMID.
1830  */
1831 int amdgpu_ttm_init(struct amdgpu_device *adev)
1832 {
1833         uint64_t gtt_size;
1834         int r;
1835         u64 vis_vram_limit;
1836         void *stolen_vga_buf;
1837
1838         mutex_init(&adev->mman.gtt_window_lock);
1839
1840         /* No others user of address space so set it to 0 */
1841         r = ttm_bo_device_init(&adev->mman.bdev,
1842                                &amdgpu_bo_driver,
1843                                adev->ddev->anon_inode->i_mapping,
1844                                adev->ddev->vma_offset_manager,
1845                                dma_addressing_limited(adev->dev));
1846         if (r) {
1847                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1848                 return r;
1849         }
1850         adev->mman.initialized = true;
1851
1852         /* We opt to avoid OOM on system pages allocations */
1853         adev->mman.bdev.no_retry = true;
1854
1855         /* Initialize VRAM pool with all of VRAM divided into pages */
1856         r = amdgpu_vram_mgr_init(adev);
1857         if (r) {
1858                 DRM_ERROR("Failed initializing VRAM heap.\n");
1859                 return r;
1860         }
1861
1862         /* Reduce size of CPU-visible VRAM if requested */
1863         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1864         if (amdgpu_vis_vram_limit > 0 &&
1865             vis_vram_limit <= adev->gmc.visible_vram_size)
1866                 adev->gmc.visible_vram_size = vis_vram_limit;
1867
1868         /* Change the size here instead of the init above so only lpfn is affected */
1869         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1870 #ifdef CONFIG_64BIT
1871         adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1872                                                 adev->gmc.visible_vram_size);
1873 #endif
1874
1875         /*
1876          *The reserved vram for firmware must be pinned to the specified
1877          *place on the VRAM, so reserve it early.
1878          */
1879         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1880         if (r) {
1881                 return r;
1882         }
1883
1884         /*
1885          *The reserved vram for memory training must be pinned to the specified
1886          *place on the VRAM, so reserve it early.
1887          */
1888         if (!amdgpu_sriov_vf(adev)) {
1889                 r = amdgpu_ttm_training_reserve_vram_init(adev);
1890                 if (r)
1891                         return r;
1892         }
1893
1894         /* allocate memory as required for VGA
1895          * This is used for VGA emulation and pre-OS scanout buffers to
1896          * avoid display artifacts while transitioning between pre-OS
1897          * and driver.  */
1898         r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1899                                     AMDGPU_GEM_DOMAIN_VRAM,
1900                                     &adev->stolen_vga_memory,
1901                                     NULL, &stolen_vga_buf);
1902         if (r)
1903                 return r;
1904
1905         /*
1906          * reserve TMR memory at the top of VRAM which holds
1907          * IP Discovery data and is protected by PSP.
1908          */
1909         if (adev->discovery_tmr_size > 0) {
1910                 r = amdgpu_bo_create_kernel_at(adev,
1911                         adev->gmc.real_vram_size - adev->discovery_tmr_size,
1912                         adev->discovery_tmr_size,
1913                         AMDGPU_GEM_DOMAIN_VRAM,
1914                         &adev->discovery_memory,
1915                         NULL);
1916                 if (r)
1917                         return r;
1918         }
1919
1920         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1922
1923         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1924          * or whatever the user passed on module init */
1925         if (amdgpu_gtt_size == -1) {
1926                 struct sysinfo si;
1927
1928                 si_meminfo(&si);
1929                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1930                                adev->gmc.mc_vram_size),
1931                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1932         }
1933         else
1934                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1935
1936         /* Initialize GTT memory pool */
1937         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1938         if (r) {
1939                 DRM_ERROR("Failed initializing GTT heap.\n");
1940                 return r;
1941         }
1942         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1943                  (unsigned)(gtt_size / (1024 * 1024)));
1944
1945         /* Initialize various on-chip memory pools */
1946         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1947         if (r) {
1948                 DRM_ERROR("Failed initializing GDS heap.\n");
1949                 return r;
1950         }
1951
1952         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1953         if (r) {
1954                 DRM_ERROR("Failed initializing gws heap.\n");
1955                 return r;
1956         }
1957
1958         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1959         if (r) {
1960                 DRM_ERROR("Failed initializing oa heap.\n");
1961                 return r;
1962         }
1963
1964         return 0;
1965 }
1966
1967 /**
1968  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1969  */
1970 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1971 {
1972         void *stolen_vga_buf;
1973         /* return the VGA stolen memory (if any) back to VRAM */
1974         amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1975 }
1976
1977 /**
1978  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1979  */
1980 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1981 {
1982         if (!adev->mman.initialized)
1983                 return;
1984
1985         amdgpu_ttm_training_reserve_vram_fini(adev);
1986         /* return the IP Discovery TMR memory back to VRAM */
1987         amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1988         amdgpu_ttm_fw_reserve_vram_fini(adev);
1989
1990         if (adev->mman.aper_base_kaddr)
1991                 iounmap(adev->mman.aper_base_kaddr);
1992         adev->mman.aper_base_kaddr = NULL;
1993
1994         amdgpu_vram_mgr_fini(adev);
1995         amdgpu_gtt_mgr_fini(adev);
1996         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1997         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1998         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1999         ttm_bo_device_release(&adev->mman.bdev);
2000         adev->mman.initialized = false;
2001         DRM_INFO("amdgpu: ttm finalized\n");
2002 }
2003
2004 /**
2005  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2006  *
2007  * @adev: amdgpu_device pointer
2008  * @enable: true when we can use buffer functions.
2009  *
2010  * Enable/disable use of buffer functions during suspend/resume. This should
2011  * only be called at bootup or when userspace isn't running.
2012  */
2013 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2014 {
2015         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2016         uint64_t size;
2017         int r;
2018
2019         if (!adev->mman.initialized || adev->in_gpu_reset ||
2020             adev->mman.buffer_funcs_enabled == enable)
2021                 return;
2022
2023         if (enable) {
2024                 struct amdgpu_ring *ring;
2025                 struct drm_gpu_scheduler *sched;
2026
2027                 ring = adev->mman.buffer_funcs_ring;
2028                 sched = &ring->sched;
2029                 r = drm_sched_entity_init(&adev->mman.entity,
2030                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
2031                                           1, NULL);
2032                 if (r) {
2033                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2034                                   r);
2035                         return;
2036                 }
2037         } else {
2038                 drm_sched_entity_destroy(&adev->mman.entity);
2039                 dma_fence_put(man->move);
2040                 man->move = NULL;
2041         }
2042
2043         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2044         if (enable)
2045                 size = adev->gmc.real_vram_size;
2046         else
2047                 size = adev->gmc.visible_vram_size;
2048         man->size = size >> PAGE_SHIFT;
2049         adev->mman.buffer_funcs_enabled = enable;
2050 }
2051
2052 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2053 {
2054         struct drm_file *file_priv = filp->private_data;
2055         struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2056
2057         if (adev == NULL)
2058                 return -EINVAL;
2059
2060         return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2061 }
2062
2063 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2064                        uint64_t dst_offset, uint32_t byte_count,
2065                        struct dma_resv *resv,
2066                        struct dma_fence **fence, bool direct_submit,
2067                        bool vm_needs_flush, bool tmz)
2068 {
2069         enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2070                 AMDGPU_IB_POOL_DELAYED;
2071         struct amdgpu_device *adev = ring->adev;
2072         struct amdgpu_job *job;
2073
2074         uint32_t max_bytes;
2075         unsigned num_loops, num_dw;
2076         unsigned i;
2077         int r;
2078
2079         if (direct_submit && !ring->sched.ready) {
2080                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2081                 return -EINVAL;
2082         }
2083
2084         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2085         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2086         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2087
2088         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2089         if (r)
2090                 return r;
2091
2092         if (vm_needs_flush) {
2093                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2094                 job->vm_needs_flush = true;
2095         }
2096         if (resv) {
2097                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2098                                      AMDGPU_SYNC_ALWAYS,
2099                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2100                 if (r) {
2101                         DRM_ERROR("sync failed (%d).\n", r);
2102                         goto error_free;
2103                 }
2104         }
2105
2106         for (i = 0; i < num_loops; i++) {
2107                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2108
2109                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2110                                         dst_offset, cur_size_in_bytes, tmz);
2111
2112                 src_offset += cur_size_in_bytes;
2113                 dst_offset += cur_size_in_bytes;
2114                 byte_count -= cur_size_in_bytes;
2115         }
2116
2117         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2118         WARN_ON(job->ibs[0].length_dw > num_dw);
2119         if (direct_submit)
2120                 r = amdgpu_job_submit_direct(job, ring, fence);
2121         else
2122                 r = amdgpu_job_submit(job, &adev->mman.entity,
2123                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2124         if (r)
2125                 goto error_free;
2126
2127         return r;
2128
2129 error_free:
2130         amdgpu_job_free(job);
2131         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2132         return r;
2133 }
2134
2135 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2136                        uint32_t src_data,
2137                        struct dma_resv *resv,
2138                        struct dma_fence **fence)
2139 {
2140         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2141         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2142         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2143
2144         struct drm_mm_node *mm_node;
2145         unsigned long num_pages;
2146         unsigned int num_loops, num_dw;
2147
2148         struct amdgpu_job *job;
2149         int r;
2150
2151         if (!adev->mman.buffer_funcs_enabled) {
2152                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2153                 return -EINVAL;
2154         }
2155
2156         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2157                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2158                 if (r)
2159                         return r;
2160         }
2161
2162         num_pages = bo->tbo.num_pages;
2163         mm_node = bo->tbo.mem.mm_node;
2164         num_loops = 0;
2165         while (num_pages) {
2166                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2167
2168                 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2169                 num_pages -= mm_node->size;
2170                 ++mm_node;
2171         }
2172         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2173
2174         /* for IB padding */
2175         num_dw += 64;
2176
2177         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2178                                      &job);
2179         if (r)
2180                 return r;
2181
2182         if (resv) {
2183                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2184                                      AMDGPU_SYNC_ALWAYS,
2185                                      AMDGPU_FENCE_OWNER_UNDEFINED);
2186                 if (r) {
2187                         DRM_ERROR("sync failed (%d).\n", r);
2188                         goto error_free;
2189                 }
2190         }
2191
2192         num_pages = bo->tbo.num_pages;
2193         mm_node = bo->tbo.mem.mm_node;
2194
2195         while (num_pages) {
2196                 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2197                 uint64_t dst_addr;
2198
2199                 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2200                 while (byte_count) {
2201                         uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2202                                                            max_bytes);
2203
2204                         amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2205                                                 dst_addr, cur_size_in_bytes);
2206
2207                         dst_addr += cur_size_in_bytes;
2208                         byte_count -= cur_size_in_bytes;
2209                 }
2210
2211                 num_pages -= mm_node->size;
2212                 ++mm_node;
2213         }
2214
2215         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2216         WARN_ON(job->ibs[0].length_dw > num_dw);
2217         r = amdgpu_job_submit(job, &adev->mman.entity,
2218                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2219         if (r)
2220                 goto error_free;
2221
2222         return 0;
2223
2224 error_free:
2225         amdgpu_job_free(job);
2226         return r;
2227 }
2228
2229 #if defined(CONFIG_DEBUG_FS)
2230
2231 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2232 {
2233         struct drm_info_node *node = (struct drm_info_node *)m->private;
2234         unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2235         struct drm_device *dev = node->minor->dev;
2236         struct amdgpu_device *adev = dev->dev_private;
2237         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl);
2238         struct drm_printer p = drm_seq_file_printer(m);
2239
2240         man->func->debug(man, &p);
2241         return 0;
2242 }
2243
2244 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2245         {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2246         {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2247         {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2248         {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2249         {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2250         {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2251 #ifdef CONFIG_SWIOTLB
2252         {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2253 #endif
2254 };
2255
2256 /**
2257  * amdgpu_ttm_vram_read - Linear read access to VRAM
2258  *
2259  * Accesses VRAM via MMIO for debugging purposes.
2260  */
2261 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2262                                     size_t size, loff_t *pos)
2263 {
2264         struct amdgpu_device *adev = file_inode(f)->i_private;
2265         ssize_t result = 0;
2266
2267         if (size & 0x3 || *pos & 0x3)
2268                 return -EINVAL;
2269
2270         if (*pos >= adev->gmc.mc_vram_size)
2271                 return -ENXIO;
2272
2273         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2274         while (size) {
2275                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2276                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2277
2278                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2279                 if (copy_to_user(buf, value, bytes))
2280                         return -EFAULT;
2281
2282                 result += bytes;
2283                 buf += bytes;
2284                 *pos += bytes;
2285                 size -= bytes;
2286         }
2287
2288         return result;
2289 }
2290
2291 /**
2292  * amdgpu_ttm_vram_write - Linear write access to VRAM
2293  *
2294  * Accesses VRAM via MMIO for debugging purposes.
2295  */
2296 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2297                                     size_t size, loff_t *pos)
2298 {
2299         struct amdgpu_device *adev = file_inode(f)->i_private;
2300         ssize_t result = 0;
2301         int r;
2302
2303         if (size & 0x3 || *pos & 0x3)
2304                 return -EINVAL;
2305
2306         if (*pos >= adev->gmc.mc_vram_size)
2307                 return -ENXIO;
2308
2309         while (size) {
2310                 unsigned long flags;
2311                 uint32_t value;
2312
2313                 if (*pos >= adev->gmc.mc_vram_size)
2314                         return result;
2315
2316                 r = get_user(value, (uint32_t *)buf);
2317                 if (r)
2318                         return r;
2319
2320                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2321                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2322                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2323                 WREG32_NO_KIQ(mmMM_DATA, value);
2324                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2325
2326                 result += 4;
2327                 buf += 4;
2328                 *pos += 4;
2329                 size -= 4;
2330         }
2331
2332         return result;
2333 }
2334
2335 static const struct file_operations amdgpu_ttm_vram_fops = {
2336         .owner = THIS_MODULE,
2337         .read = amdgpu_ttm_vram_read,
2338         .write = amdgpu_ttm_vram_write,
2339         .llseek = default_llseek,
2340 };
2341
2342 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2343
2344 /**
2345  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2346  */
2347 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2348                                    size_t size, loff_t *pos)
2349 {
2350         struct amdgpu_device *adev = file_inode(f)->i_private;
2351         ssize_t result = 0;
2352         int r;
2353
2354         while (size) {
2355                 loff_t p = *pos / PAGE_SIZE;
2356                 unsigned off = *pos & ~PAGE_MASK;
2357                 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2358                 struct page *page;
2359                 void *ptr;
2360
2361                 if (p >= adev->gart.num_cpu_pages)
2362                         return result;
2363
2364                 page = adev->gart.pages[p];
2365                 if (page) {
2366                         ptr = kmap(page);
2367                         ptr += off;
2368
2369                         r = copy_to_user(buf, ptr, cur_size);
2370                         kunmap(adev->gart.pages[p]);
2371                 } else
2372                         r = clear_user(buf, cur_size);
2373
2374                 if (r)
2375                         return -EFAULT;
2376
2377                 result += cur_size;
2378                 buf += cur_size;
2379                 *pos += cur_size;
2380                 size -= cur_size;
2381         }
2382
2383         return result;
2384 }
2385
2386 static const struct file_operations amdgpu_ttm_gtt_fops = {
2387         .owner = THIS_MODULE,
2388         .read = amdgpu_ttm_gtt_read,
2389         .llseek = default_llseek
2390 };
2391
2392 #endif
2393
2394 /**
2395  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2396  *
2397  * This function is used to read memory that has been mapped to the
2398  * GPU and the known addresses are not physical addresses but instead
2399  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2400  */
2401 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2402                                  size_t size, loff_t *pos)
2403 {
2404         struct amdgpu_device *adev = file_inode(f)->i_private;
2405         struct iommu_domain *dom;
2406         ssize_t result = 0;
2407         int r;
2408
2409         /* retrieve the IOMMU domain if any for this device */
2410         dom = iommu_get_domain_for_dev(adev->dev);
2411
2412         while (size) {
2413                 phys_addr_t addr = *pos & PAGE_MASK;
2414                 loff_t off = *pos & ~PAGE_MASK;
2415                 size_t bytes = PAGE_SIZE - off;
2416                 unsigned long pfn;
2417                 struct page *p;
2418                 void *ptr;
2419
2420                 bytes = bytes < size ? bytes : size;
2421
2422                 /* Translate the bus address to a physical address.  If
2423                  * the domain is NULL it means there is no IOMMU active
2424                  * and the address translation is the identity
2425                  */
2426                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2427
2428                 pfn = addr >> PAGE_SHIFT;
2429                 if (!pfn_valid(pfn))
2430                         return -EPERM;
2431
2432                 p = pfn_to_page(pfn);
2433                 if (p->mapping != adev->mman.bdev.dev_mapping)
2434                         return -EPERM;
2435
2436                 ptr = kmap(p);
2437                 r = copy_to_user(buf, ptr + off, bytes);
2438                 kunmap(p);
2439                 if (r)
2440                         return -EFAULT;
2441
2442                 size -= bytes;
2443                 *pos += bytes;
2444                 result += bytes;
2445         }
2446
2447         return result;
2448 }
2449
2450 /**
2451  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2452  *
2453  * This function is used to write memory that has been mapped to the
2454  * GPU and the known addresses are not physical addresses but instead
2455  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2456  */
2457 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2458                                  size_t size, loff_t *pos)
2459 {
2460         struct amdgpu_device *adev = file_inode(f)->i_private;
2461         struct iommu_domain *dom;
2462         ssize_t result = 0;
2463         int r;
2464
2465         dom = iommu_get_domain_for_dev(adev->dev);
2466
2467         while (size) {
2468                 phys_addr_t addr = *pos & PAGE_MASK;
2469                 loff_t off = *pos & ~PAGE_MASK;
2470                 size_t bytes = PAGE_SIZE - off;
2471                 unsigned long pfn;
2472                 struct page *p;
2473                 void *ptr;
2474
2475                 bytes = bytes < size ? bytes : size;
2476
2477                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2478
2479                 pfn = addr >> PAGE_SHIFT;
2480                 if (!pfn_valid(pfn))
2481                         return -EPERM;
2482
2483                 p = pfn_to_page(pfn);
2484                 if (p->mapping != adev->mman.bdev.dev_mapping)
2485                         return -EPERM;
2486
2487                 ptr = kmap(p);
2488                 r = copy_from_user(ptr + off, buf, bytes);
2489                 kunmap(p);
2490                 if (r)
2491                         return -EFAULT;
2492
2493                 size -= bytes;
2494                 *pos += bytes;
2495                 result += bytes;
2496         }
2497
2498         return result;
2499 }
2500
2501 static const struct file_operations amdgpu_ttm_iomem_fops = {
2502         .owner = THIS_MODULE,
2503         .read = amdgpu_iomem_read,
2504         .write = amdgpu_iomem_write,
2505         .llseek = default_llseek
2506 };
2507
2508 static const struct {
2509         char *name;
2510         const struct file_operations *fops;
2511         int domain;
2512 } ttm_debugfs_entries[] = {
2513         { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2514 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2515         { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2516 #endif
2517         { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2518 };
2519
2520 #endif
2521
2522 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2523 {
2524 #if defined(CONFIG_DEBUG_FS)
2525         unsigned count;
2526
2527         struct drm_minor *minor = adev->ddev->primary;
2528         struct dentry *ent, *root = minor->debugfs_root;
2529
2530         for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2531                 ent = debugfs_create_file(
2532                                 ttm_debugfs_entries[count].name,
2533                                 S_IFREG | S_IRUGO, root,
2534                                 adev,
2535                                 ttm_debugfs_entries[count].fops);
2536                 if (IS_ERR(ent))
2537                         return PTR_ERR(ent);
2538                 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2539                         i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2540                 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2541                         i_size_write(ent->d_inode, adev->gmc.gart_size);
2542                 adev->mman.debugfs_entries[count] = ent;
2543         }
2544
2545         count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2546
2547 #ifdef CONFIG_SWIOTLB
2548         if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2549                 --count;
2550 #endif
2551
2552         return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2553 #else
2554         return 0;
2555 #endif
2556 }
This page took 0.193116 seconds and 4 git commands to generate.