1 // SPDX-License-Identifier: GPL-2.0+
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
5 * Copyright IBM Corporation, 2008
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
64 #include <linux/kasan.h>
65 #include "../time/tick-internal.h"
70 #ifdef MODULE_PARAM_PREFIX
71 #undef MODULE_PARAM_PREFIX
73 #define MODULE_PARAM_PREFIX "rcutree."
75 /* Data structures. */
78 * Steal a bit from the bottom of ->dynticks for idle entry/exit
79 * control. Initially this is for TLB flushing.
81 #define RCU_DYNTICK_CTRL_MASK 0x1
82 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
84 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
85 .dynticks_nesting = 1,
86 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
87 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
88 #ifdef CONFIG_RCU_NOCB_CPU
89 .cblist.flags = SEGCBLIST_SOFTIRQ_ONLY,
92 static struct rcu_state rcu_state = {
93 .level = { &rcu_state.node[0] },
94 .gp_state = RCU_GP_IDLE,
95 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
96 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
99 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
100 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
101 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
104 /* Dump rcu_node combining tree at boot to verify correct setup. */
105 static bool dump_tree;
106 module_param(dump_tree, bool, 0444);
107 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
108 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
109 #ifndef CONFIG_PREEMPT_RT
110 module_param(use_softirq, bool, 0444);
112 /* Control rcu_node-tree auto-balancing at boot time. */
113 static bool rcu_fanout_exact;
114 module_param(rcu_fanout_exact, bool, 0444);
115 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
116 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
117 module_param(rcu_fanout_leaf, int, 0444);
118 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
119 /* Number of rcu_nodes at specified level. */
120 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
121 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
124 * The rcu_scheduler_active variable is initialized to the value
125 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
126 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
127 * RCU can assume that there is but one task, allowing RCU to (for example)
128 * optimize synchronize_rcu() to a simple barrier(). When this variable
129 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
130 * to detect real grace periods. This variable is also used to suppress
131 * boot-time false positives from lockdep-RCU error checking. Finally, it
132 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
133 * is fully initialized, including all of its kthreads having been spawned.
135 int rcu_scheduler_active __read_mostly;
136 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
139 * The rcu_scheduler_fully_active variable transitions from zero to one
140 * during the early_initcall() processing, which is after the scheduler
141 * is capable of creating new tasks. So RCU processing (for example,
142 * creating tasks for RCU priority boosting) must be delayed until after
143 * rcu_scheduler_fully_active transitions from zero to one. We also
144 * currently delay invocation of any RCU callbacks until after this point.
146 * It might later prove better for people registering RCU callbacks during
147 * early boot to take responsibility for these callbacks, but one step at
150 static int rcu_scheduler_fully_active __read_mostly;
152 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
153 unsigned long gps, unsigned long flags);
154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
157 static void invoke_rcu_core(void);
158 static void rcu_report_exp_rdp(struct rcu_data *rdp);
159 static void sync_sched_exp_online_cleanup(int cpu);
160 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
161 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
163 /* rcuc/rcub kthread realtime priority */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
183 * This rcu parameter is runtime-read-only. It reflects
184 * a minimum allowed number of objects which can be cached
185 * per-CPU. Object size is equal to one page. This value
186 * can be changed at boot time.
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
191 // A page shrinker can ask for pages to be freed to make them
192 // available for other parts of the system. This usually happens
193 // under low memory conditions, and in that case we should also
194 // defer page-cache filling for a short time period.
196 // The default value is 5 seconds, which is long enough to reduce
197 // interference with the shrinker while it asks other systems to
198 // drain their caches.
199 static int rcu_delay_page_cache_fill_msec = 5000;
200 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
202 /* Retrieve RCU kthreads priority for rcutorture */
203 int rcu_get_gp_kthreads_prio(void)
207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
210 * Number of grace periods between delays, normalized by the duration of
211 * the delay. The longer the delay, the more the grace periods between
212 * each delay. The reason for this normalization is that it means that,
213 * for non-zero delays, the overall slowdown of grace periods is constant
214 * regardless of the duration of the delay. This arrangement balances
215 * the need for long delays to increase some race probabilities with the
216 * need for fast grace periods to increase other race probabilities.
218 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
221 * Compute the mask of online CPUs for the specified rcu_node structure.
222 * This will not be stable unless the rcu_node structure's ->lock is
223 * held, but the bit corresponding to the current CPU will be stable
226 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
228 return READ_ONCE(rnp->qsmaskinitnext);
232 * Return true if an RCU grace period is in progress. The READ_ONCE()s
233 * permit this function to be invoked without holding the root rcu_node
234 * structure's ->lock, but of course results can be subject to change.
236 static int rcu_gp_in_progress(void)
238 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
242 * Return the number of callbacks queued on the specified CPU.
243 * Handles both the nocbs and normal cases.
245 static long rcu_get_n_cbs_cpu(int cpu)
247 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
249 if (rcu_segcblist_is_enabled(&rdp->cblist))
250 return rcu_segcblist_n_cbs(&rdp->cblist);
254 void rcu_softirq_qs(void)
257 rcu_preempt_deferred_qs(current);
258 rcu_tasks_qs(current, false);
262 * Record entry into an extended quiescent state. This is only to be
263 * called when not already in an extended quiescent state, that is,
264 * RCU is watching prior to the call to this function and is no longer
265 * watching upon return.
267 static noinstr void rcu_dynticks_eqs_enter(void)
269 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
273 * CPUs seeing atomic_add_return() must see prior RCU read-side
274 * critical sections, and we also must force ordering with the
277 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
278 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
279 // RCU is no longer watching. Better be in extended quiescent state!
280 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
281 (seq & RCU_DYNTICK_CTRL_CTR));
282 /* Better not have special action (TLB flush) pending! */
283 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
284 (seq & RCU_DYNTICK_CTRL_MASK));
288 * Record exit from an extended quiescent state. This is only to be
289 * called from an extended quiescent state, that is, RCU is not watching
290 * prior to the call to this function and is watching upon return.
292 static noinstr void rcu_dynticks_eqs_exit(void)
294 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
298 * CPUs seeing atomic_add_return() must see prior idle sojourns,
299 * and we also must force ordering with the next RCU read-side
302 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
303 // RCU is now watching. Better not be in an extended quiescent state!
304 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 !(seq & RCU_DYNTICK_CTRL_CTR));
307 if (seq & RCU_DYNTICK_CTRL_MASK) {
308 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
309 smp_mb__after_atomic(); /* _exit after clearing mask. */
314 * Reset the current CPU's ->dynticks counter to indicate that the
315 * newly onlined CPU is no longer in an extended quiescent state.
316 * This will either leave the counter unchanged, or increment it
317 * to the next non-quiescent value.
319 * The non-atomic test/increment sequence works because the upper bits
320 * of the ->dynticks counter are manipulated only by the corresponding CPU,
321 * or when the corresponding CPU is offline.
323 static void rcu_dynticks_eqs_online(void)
325 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
327 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
329 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
333 * Is the current CPU in an extended quiescent state?
335 * No ordering, as we are sampling CPU-local information.
337 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
339 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
341 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
345 * Snapshot the ->dynticks counter with full ordering so as to allow
346 * stable comparison of this counter with past and future snapshots.
348 static int rcu_dynticks_snap(struct rcu_data *rdp)
350 int snap = atomic_add_return(0, &rdp->dynticks);
352 return snap & ~RCU_DYNTICK_CTRL_MASK;
356 * Return true if the snapshot returned from rcu_dynticks_snap()
357 * indicates that RCU is in an extended quiescent state.
359 static bool rcu_dynticks_in_eqs(int snap)
361 return !(snap & RCU_DYNTICK_CTRL_CTR);
364 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */
365 bool rcu_is_idle_cpu(int cpu)
367 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
369 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
373 * Return true if the CPU corresponding to the specified rcu_data
374 * structure has spent some time in an extended quiescent state since
375 * rcu_dynticks_snap() returned the specified snapshot.
377 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
379 return snap != rcu_dynticks_snap(rdp);
383 * Return true if the referenced integer is zero while the specified
384 * CPU remains within a single extended quiescent state.
386 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
388 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
391 // If not quiescent, force back to earlier extended quiescent state.
392 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
393 RCU_DYNTICK_CTRL_CTR);
395 smp_rmb(); // Order ->dynticks and *vp reads.
397 return false; // Non-zero, so report failure;
398 smp_rmb(); // Order *vp read and ->dynticks re-read.
400 // If still in the same extended quiescent state, we are good!
401 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
405 * Set the special (bottom) bit of the specified CPU so that it
406 * will take special action (such as flushing its TLB) on the
407 * next exit from an extended quiescent state. Returns true if
408 * the bit was successfully set, or false if the CPU was not in
409 * an extended quiescent state.
411 bool rcu_eqs_special_set(int cpu)
416 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
418 new_old = atomic_read(&rdp->dynticks);
421 if (old & RCU_DYNTICK_CTRL_CTR)
423 new = old | RCU_DYNTICK_CTRL_MASK;
424 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
425 } while (new_old != old);
430 * Let the RCU core know that this CPU has gone through the scheduler,
431 * which is a quiescent state. This is called when the need for a
432 * quiescent state is urgent, so we burn an atomic operation and full
433 * memory barriers to let the RCU core know about it, regardless of what
434 * this CPU might (or might not) do in the near future.
436 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
438 * The caller must have disabled interrupts and must not be idle.
440 notrace void rcu_momentary_dyntick_idle(void)
444 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
445 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
446 &this_cpu_ptr(&rcu_data)->dynticks);
447 /* It is illegal to call this from idle state. */
448 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
449 rcu_preempt_deferred_qs(current);
451 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
454 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
456 * If the current CPU is idle and running at a first-level (not nested)
457 * interrupt, or directly, from idle, return true.
459 * The caller must have at least disabled IRQs.
461 static int rcu_is_cpu_rrupt_from_idle(void)
466 * Usually called from the tick; but also used from smp_function_call()
467 * for expedited grace periods. This latter can result in running from
468 * the idle task, instead of an actual IPI.
470 lockdep_assert_irqs_disabled();
472 /* Check for counter underflows */
473 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
474 "RCU dynticks_nesting counter underflow!");
475 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
476 "RCU dynticks_nmi_nesting counter underflow/zero!");
478 /* Are we at first interrupt nesting level? */
479 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
484 * If we're not in an interrupt, we must be in the idle task!
486 WARN_ON_ONCE(!nesting && !is_idle_task(current));
488 /* Does CPU appear to be idle from an RCU standpoint? */
489 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
492 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
493 // Maximum callbacks per rcu_do_batch ...
494 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
495 static long blimit = DEFAULT_RCU_BLIMIT;
496 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
497 static long qhimark = DEFAULT_RCU_QHIMARK;
498 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
499 static long qlowmark = DEFAULT_RCU_QLOMARK;
500 #define DEFAULT_RCU_QOVLD_MULT 2
501 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
502 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
503 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
505 module_param(blimit, long, 0444);
506 module_param(qhimark, long, 0444);
507 module_param(qlowmark, long, 0444);
508 module_param(qovld, long, 0444);
510 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
511 static ulong jiffies_till_next_fqs = ULONG_MAX;
512 static bool rcu_kick_kthreads;
513 static int rcu_divisor = 7;
514 module_param(rcu_divisor, int, 0644);
516 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
517 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
518 module_param(rcu_resched_ns, long, 0644);
521 * How long the grace period must be before we start recruiting
522 * quiescent-state help from rcu_note_context_switch().
524 static ulong jiffies_till_sched_qs = ULONG_MAX;
525 module_param(jiffies_till_sched_qs, ulong, 0444);
526 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
527 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
530 * Make sure that we give the grace-period kthread time to detect any
531 * idle CPUs before taking active measures to force quiescent states.
532 * However, don't go below 100 milliseconds, adjusted upwards for really
535 static void adjust_jiffies_till_sched_qs(void)
539 /* If jiffies_till_sched_qs was specified, respect the request. */
540 if (jiffies_till_sched_qs != ULONG_MAX) {
541 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
544 /* Otherwise, set to third fqs scan, but bound below on large system. */
545 j = READ_ONCE(jiffies_till_first_fqs) +
546 2 * READ_ONCE(jiffies_till_next_fqs);
547 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
548 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
549 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
550 WRITE_ONCE(jiffies_to_sched_qs, j);
553 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
556 int ret = kstrtoul(val, 0, &j);
559 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
560 adjust_jiffies_till_sched_qs();
565 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
568 int ret = kstrtoul(val, 0, &j);
571 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
572 adjust_jiffies_till_sched_qs();
577 static const struct kernel_param_ops first_fqs_jiffies_ops = {
578 .set = param_set_first_fqs_jiffies,
579 .get = param_get_ulong,
582 static const struct kernel_param_ops next_fqs_jiffies_ops = {
583 .set = param_set_next_fqs_jiffies,
584 .get = param_get_ulong,
587 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
588 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
589 module_param(rcu_kick_kthreads, bool, 0644);
591 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
592 static int rcu_pending(int user);
595 * Return the number of RCU GPs completed thus far for debug & stats.
597 unsigned long rcu_get_gp_seq(void)
599 return READ_ONCE(rcu_state.gp_seq);
601 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
604 * Return the number of RCU expedited batches completed thus far for
605 * debug & stats. Odd numbers mean that a batch is in progress, even
606 * numbers mean idle. The value returned will thus be roughly double
607 * the cumulative batches since boot.
609 unsigned long rcu_exp_batches_completed(void)
611 return rcu_state.expedited_sequence;
613 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
616 * Return the root node of the rcu_state structure.
618 static struct rcu_node *rcu_get_root(void)
620 return &rcu_state.node[0];
624 * Send along grace-period-related data for rcutorture diagnostics.
626 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
627 unsigned long *gp_seq)
631 *flags = READ_ONCE(rcu_state.gp_flags);
632 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
638 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
641 * Enter an RCU extended quiescent state, which can be either the
642 * idle loop or adaptive-tickless usermode execution.
644 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
645 * the possibility of usermode upcalls having messed up our count
646 * of interrupt nesting level during the prior busy period.
648 static noinstr void rcu_eqs_enter(bool user)
650 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
652 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
653 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
654 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
655 rdp->dynticks_nesting == 0);
656 if (rdp->dynticks_nesting != 1) {
657 // RCU will still be watching, so just do accounting and leave.
658 rdp->dynticks_nesting--;
662 lockdep_assert_irqs_disabled();
663 instrumentation_begin();
664 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
665 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
666 rcu_prepare_for_idle();
667 rcu_preempt_deferred_qs(current);
669 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
670 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
672 instrumentation_end();
673 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
674 // RCU is watching here ...
675 rcu_dynticks_eqs_enter();
676 // ... but is no longer watching here.
677 rcu_dynticks_task_enter();
681 * rcu_idle_enter - inform RCU that current CPU is entering idle
683 * Enter idle mode, in other words, -leave- the mode in which RCU
684 * read-side critical sections can occur. (Though RCU read-side
685 * critical sections can occur in irq handlers in idle, a possibility
686 * handled by irq_enter() and irq_exit().)
688 * If you add or remove a call to rcu_idle_enter(), be sure to test with
689 * CONFIG_RCU_EQS_DEBUG=y.
691 void rcu_idle_enter(void)
693 lockdep_assert_irqs_disabled();
694 rcu_eqs_enter(false);
696 EXPORT_SYMBOL_GPL(rcu_idle_enter);
698 #ifdef CONFIG_NO_HZ_FULL
700 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
702 * An empty function that will trigger a reschedule on
703 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
705 static void late_wakeup_func(struct irq_work *work)
709 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
710 IRQ_WORK_INIT(late_wakeup_func);
715 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
716 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
718 * In these cases the late RCU wake ups aren't supported in the resched loops and our
719 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
720 * get re-enabled again.
722 noinstr static void rcu_irq_work_resched(void)
724 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
726 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
729 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
732 instrumentation_begin();
733 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
734 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
736 instrumentation_end();
740 static inline void rcu_irq_work_resched(void) { }
744 * rcu_user_enter - inform RCU that we are resuming userspace.
746 * Enter RCU idle mode right before resuming userspace. No use of RCU
747 * is permitted between this call and rcu_user_exit(). This way the
748 * CPU doesn't need to maintain the tick for RCU maintenance purposes
749 * when the CPU runs in userspace.
751 * If you add or remove a call to rcu_user_enter(), be sure to test with
752 * CONFIG_RCU_EQS_DEBUG=y.
754 noinstr void rcu_user_enter(void)
756 lockdep_assert_irqs_disabled();
759 * Other than generic entry implementation, we may be past the last
760 * rescheduling opportunity in the entry code. Trigger a self IPI
761 * that will fire and reschedule once we resume in user/guest mode.
763 rcu_irq_work_resched();
767 #endif /* CONFIG_NO_HZ_FULL */
770 * rcu_nmi_exit - inform RCU of exit from NMI context
772 * If we are returning from the outermost NMI handler that interrupted an
773 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
774 * to let the RCU grace-period handling know that the CPU is back to
777 * If you add or remove a call to rcu_nmi_exit(), be sure to test
778 * with CONFIG_RCU_EQS_DEBUG=y.
780 noinstr void rcu_nmi_exit(void)
782 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
784 instrumentation_begin();
786 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
787 * (We are exiting an NMI handler, so RCU better be paying attention
790 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
791 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
794 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
795 * leave it in non-RCU-idle state.
797 if (rdp->dynticks_nmi_nesting != 1) {
798 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
799 atomic_read(&rdp->dynticks));
800 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
801 rdp->dynticks_nmi_nesting - 2);
802 instrumentation_end();
806 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
807 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
808 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
811 rcu_prepare_for_idle();
813 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
814 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
815 instrumentation_end();
817 // RCU is watching here ...
818 rcu_dynticks_eqs_enter();
819 // ... but is no longer watching here.
822 rcu_dynticks_task_enter();
826 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
828 * Exit from an interrupt handler, which might possibly result in entering
829 * idle mode, in other words, leaving the mode in which read-side critical
830 * sections can occur. The caller must have disabled interrupts.
832 * This code assumes that the idle loop never does anything that might
833 * result in unbalanced calls to irq_enter() and irq_exit(). If your
834 * architecture's idle loop violates this assumption, RCU will give you what
835 * you deserve, good and hard. But very infrequently and irreproducibly.
837 * Use things like work queues to work around this limitation.
839 * You have been warned.
841 * If you add or remove a call to rcu_irq_exit(), be sure to test with
842 * CONFIG_RCU_EQS_DEBUG=y.
844 void noinstr rcu_irq_exit(void)
846 lockdep_assert_irqs_disabled();
850 #ifdef CONFIG_PROVE_RCU
852 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
854 void rcu_irq_exit_check_preempt(void)
856 lockdep_assert_irqs_disabled();
858 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
859 "RCU dynticks_nesting counter underflow/zero!");
860 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
862 "Bad RCU dynticks_nmi_nesting counter\n");
863 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
864 "RCU in extended quiescent state!");
866 #endif /* #ifdef CONFIG_PROVE_RCU */
869 * Wrapper for rcu_irq_exit() where interrupts are enabled.
871 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
872 * with CONFIG_RCU_EQS_DEBUG=y.
874 void rcu_irq_exit_irqson(void)
878 local_irq_save(flags);
880 local_irq_restore(flags);
884 * Exit an RCU extended quiescent state, which can be either the
885 * idle loop or adaptive-tickless usermode execution.
887 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
888 * allow for the possibility of usermode upcalls messing up our count of
889 * interrupt nesting level during the busy period that is just now starting.
891 static void noinstr rcu_eqs_exit(bool user)
893 struct rcu_data *rdp;
896 lockdep_assert_irqs_disabled();
897 rdp = this_cpu_ptr(&rcu_data);
898 oldval = rdp->dynticks_nesting;
899 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
901 // RCU was already watching, so just do accounting and leave.
902 rdp->dynticks_nesting++;
905 rcu_dynticks_task_exit();
906 // RCU is not watching here ...
907 rcu_dynticks_eqs_exit();
908 // ... but is watching here.
909 instrumentation_begin();
911 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
912 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
914 rcu_cleanup_after_idle();
915 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
916 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
917 WRITE_ONCE(rdp->dynticks_nesting, 1);
918 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
919 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
920 instrumentation_end();
924 * rcu_idle_exit - inform RCU that current CPU is leaving idle
926 * Exit idle mode, in other words, -enter- the mode in which RCU
927 * read-side critical sections can occur.
929 * If you add or remove a call to rcu_idle_exit(), be sure to test with
930 * CONFIG_RCU_EQS_DEBUG=y.
932 void rcu_idle_exit(void)
936 local_irq_save(flags);
938 local_irq_restore(flags);
940 EXPORT_SYMBOL_GPL(rcu_idle_exit);
942 #ifdef CONFIG_NO_HZ_FULL
944 * rcu_user_exit - inform RCU that we are exiting userspace.
946 * Exit RCU idle mode while entering the kernel because it can
947 * run a RCU read side critical section anytime.
949 * If you add or remove a call to rcu_user_exit(), be sure to test with
950 * CONFIG_RCU_EQS_DEBUG=y.
952 void noinstr rcu_user_exit(void)
958 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
960 * The scheduler tick is not normally enabled when CPUs enter the kernel
961 * from nohz_full userspace execution. After all, nohz_full userspace
962 * execution is an RCU quiescent state and the time executing in the kernel
963 * is quite short. Except of course when it isn't. And it is not hard to
964 * cause a large system to spend tens of seconds or even minutes looping
965 * in the kernel, which can cause a number of problems, include RCU CPU
968 * Therefore, if a nohz_full CPU fails to report a quiescent state
969 * in a timely manner, the RCU grace-period kthread sets that CPU's
970 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
971 * exception will invoke this function, which will turn on the scheduler
972 * tick, which will enable RCU to detect that CPU's quiescent states,
973 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
974 * The tick will be disabled once a quiescent state is reported for
977 * Of course, in carefully tuned systems, there might never be an
978 * interrupt or exception. In that case, the RCU grace-period kthread
979 * will eventually cause one to happen. However, in less carefully
980 * controlled environments, this function allows RCU to get what it
981 * needs without creating otherwise useless interruptions.
983 void __rcu_irq_enter_check_tick(void)
985 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
987 // If we're here from NMI there's nothing to do.
991 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
992 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
994 if (!tick_nohz_full_cpu(rdp->cpu) ||
995 !READ_ONCE(rdp->rcu_urgent_qs) ||
996 READ_ONCE(rdp->rcu_forced_tick)) {
997 // RCU doesn't need nohz_full help from this CPU, or it is
998 // already getting that help.
1002 // We get here only when not in an extended quiescent state and
1003 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
1004 // already watching and (2) The fact that we are in an interrupt
1005 // handler and that the rcu_node lock is an irq-disabled lock
1006 // prevents self-deadlock. So we can safely recheck under the lock.
1007 // Note that the nohz_full state currently cannot change.
1008 raw_spin_lock_rcu_node(rdp->mynode);
1009 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
1010 // A nohz_full CPU is in the kernel and RCU needs a
1011 // quiescent state. Turn on the tick!
1012 WRITE_ONCE(rdp->rcu_forced_tick, true);
1013 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1015 raw_spin_unlock_rcu_node(rdp->mynode);
1017 #endif /* CONFIG_NO_HZ_FULL */
1020 * rcu_nmi_enter - inform RCU of entry to NMI context
1022 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
1023 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
1024 * that the CPU is active. This implementation permits nested NMIs, as
1025 * long as the nesting level does not overflow an int. (You will probably
1026 * run out of stack space first.)
1028 * If you add or remove a call to rcu_nmi_enter(), be sure to test
1029 * with CONFIG_RCU_EQS_DEBUG=y.
1031 noinstr void rcu_nmi_enter(void)
1034 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1036 /* Complain about underflow. */
1037 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
1040 * If idle from RCU viewpoint, atomically increment ->dynticks
1041 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1042 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1043 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1044 * to be in the outermost NMI handler that interrupted an RCU-idle
1045 * period (observation due to Andy Lutomirski).
1047 if (rcu_dynticks_curr_cpu_in_eqs()) {
1050 rcu_dynticks_task_exit();
1052 // RCU is not watching here ...
1053 rcu_dynticks_eqs_exit();
1054 // ... but is watching here.
1057 instrumentation_begin();
1058 rcu_cleanup_after_idle();
1059 instrumentation_end();
1062 instrumentation_begin();
1063 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1064 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1065 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1066 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1069 } else if (!in_nmi()) {
1070 instrumentation_begin();
1071 rcu_irq_enter_check_tick();
1073 instrumentation_begin();
1076 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1077 rdp->dynticks_nmi_nesting,
1078 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1079 instrumentation_end();
1080 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1081 rdp->dynticks_nmi_nesting + incby);
1086 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1088 * Enter an interrupt handler, which might possibly result in exiting
1089 * idle mode, in other words, entering the mode in which read-side critical
1090 * sections can occur. The caller must have disabled interrupts.
1092 * Note that the Linux kernel is fully capable of entering an interrupt
1093 * handler that it never exits, for example when doing upcalls to user mode!
1094 * This code assumes that the idle loop never does upcalls to user mode.
1095 * If your architecture's idle loop does do upcalls to user mode (or does
1096 * anything else that results in unbalanced calls to the irq_enter() and
1097 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1098 * But very infrequently and irreproducibly.
1100 * Use things like work queues to work around this limitation.
1102 * You have been warned.
1104 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1105 * CONFIG_RCU_EQS_DEBUG=y.
1107 noinstr void rcu_irq_enter(void)
1109 lockdep_assert_irqs_disabled();
1114 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1116 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1117 * with CONFIG_RCU_EQS_DEBUG=y.
1119 void rcu_irq_enter_irqson(void)
1121 unsigned long flags;
1123 local_irq_save(flags);
1125 local_irq_restore(flags);
1129 * If any sort of urgency was applied to the current CPU (for example,
1130 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1131 * to get to a quiescent state, disable it.
1133 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1135 raw_lockdep_assert_held_rcu_node(rdp->mynode);
1136 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1137 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1138 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1139 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1140 WRITE_ONCE(rdp->rcu_forced_tick, false);
1145 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1147 * Return true if RCU is watching the running CPU, which means that this
1148 * CPU can safely enter RCU read-side critical sections. In other words,
1149 * if the current CPU is not in its idle loop or is in an interrupt or
1150 * NMI handler, return true.
1152 * Make notrace because it can be called by the internal functions of
1153 * ftrace, and making this notrace removes unnecessary recursion calls.
1155 notrace bool rcu_is_watching(void)
1159 preempt_disable_notrace();
1160 ret = !rcu_dynticks_curr_cpu_in_eqs();
1161 preempt_enable_notrace();
1164 EXPORT_SYMBOL_GPL(rcu_is_watching);
1167 * If a holdout task is actually running, request an urgent quiescent
1168 * state from its CPU. This is unsynchronized, so migrations can cause
1169 * the request to go to the wrong CPU. Which is OK, all that will happen
1170 * is that the CPU's next context switch will be a bit slower and next
1171 * time around this task will generate another request.
1173 void rcu_request_urgent_qs_task(struct task_struct *t)
1180 return; /* This task is not running on that CPU. */
1181 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1184 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1187 * Is the current CPU online as far as RCU is concerned?
1189 * Disable preemption to avoid false positives that could otherwise
1190 * happen due to the current CPU number being sampled, this task being
1191 * preempted, its old CPU being taken offline, resuming on some other CPU,
1192 * then determining that its old CPU is now offline.
1194 * Disable checking if in an NMI handler because we cannot safely
1195 * report errors from NMI handlers anyway. In addition, it is OK to use
1196 * RCU on an offline processor during initial boot, hence the check for
1197 * rcu_scheduler_fully_active.
1199 bool rcu_lockdep_current_cpu_online(void)
1201 struct rcu_data *rdp;
1202 struct rcu_node *rnp;
1205 if (in_nmi() || !rcu_scheduler_fully_active)
1207 preempt_disable_notrace();
1208 rdp = this_cpu_ptr(&rcu_data);
1210 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1212 preempt_enable_notrace();
1215 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1217 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1220 * When trying to report a quiescent state on behalf of some other CPU,
1221 * it is our responsibility to check for and handle potential overflow
1222 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1223 * After all, the CPU might be in deep idle state, and thus executing no
1226 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1228 raw_lockdep_assert_held_rcu_node(rnp);
1229 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1231 WRITE_ONCE(rdp->gpwrap, true);
1232 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1233 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1237 * Snapshot the specified CPU's dynticks counter so that we can later
1238 * credit them with an implicit quiescent state. Return 1 if this CPU
1239 * is in dynticks idle mode, which is an extended quiescent state.
1241 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1243 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1244 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1245 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1246 rcu_gpnum_ovf(rdp->mynode, rdp);
1253 * Return true if the specified CPU has passed through a quiescent
1254 * state by virtue of being in or having passed through an dynticks
1255 * idle state since the last call to dyntick_save_progress_counter()
1256 * for this same CPU, or by virtue of having been offline.
1258 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1263 struct rcu_node *rnp = rdp->mynode;
1266 * If the CPU passed through or entered a dynticks idle phase with
1267 * no active irq/NMI handlers, then we can safely pretend that the CPU
1268 * already acknowledged the request to pass through a quiescent
1269 * state. Either way, that CPU cannot possibly be in an RCU
1270 * read-side critical section that started before the beginning
1271 * of the current RCU grace period.
1273 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1274 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1275 rcu_gpnum_ovf(rnp, rdp);
1280 * Complain if a CPU that is considered to be offline from RCU's
1281 * perspective has not yet reported a quiescent state. After all,
1282 * the offline CPU should have reported a quiescent state during
1283 * the CPU-offline process, or, failing that, by rcu_gp_init()
1284 * if it ran concurrently with either the CPU going offline or the
1285 * last task on a leaf rcu_node structure exiting its RCU read-side
1286 * critical section while all CPUs corresponding to that structure
1287 * are offline. This added warning detects bugs in any of these
1290 * The rcu_node structure's ->lock is held here, which excludes
1291 * the relevant portions the CPU-hotplug code, the grace-period
1292 * initialization code, and the rcu_read_unlock() code paths.
1294 * For more detail, please refer to the "Hotplug CPU" section
1295 * of RCU's Requirements documentation.
1297 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1299 struct rcu_node *rnp1;
1301 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1302 __func__, rnp->grplo, rnp->grphi, rnp->level,
1303 (long)rnp->gp_seq, (long)rnp->completedqs);
1304 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1305 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1306 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1307 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1308 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1309 __func__, rdp->cpu, ".o"[onl],
1310 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1311 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1312 return 1; /* Break things loose after complaining. */
1316 * A CPU running for an extended time within the kernel can
1317 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1318 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1319 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1320 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1321 * variable are safe because the assignments are repeated if this
1322 * CPU failed to pass through a quiescent state. This code
1323 * also checks .jiffies_resched in case jiffies_to_sched_qs
1326 jtsq = READ_ONCE(jiffies_to_sched_qs);
1327 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1328 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1329 if (!READ_ONCE(*rnhqp) &&
1330 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1331 time_after(jiffies, rcu_state.jiffies_resched) ||
1332 rcu_state.cbovld)) {
1333 WRITE_ONCE(*rnhqp, true);
1334 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1335 smp_store_release(ruqp, true);
1336 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1337 WRITE_ONCE(*ruqp, true);
1341 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1342 * The above code handles this, but only for straight cond_resched().
1343 * And some in-kernel loops check need_resched() before calling
1344 * cond_resched(), which defeats the above code for CPUs that are
1345 * running in-kernel with scheduling-clock interrupts disabled.
1346 * So hit them over the head with the resched_cpu() hammer!
1348 if (tick_nohz_full_cpu(rdp->cpu) &&
1349 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1350 rcu_state.cbovld)) {
1351 WRITE_ONCE(*ruqp, true);
1352 resched_cpu(rdp->cpu);
1353 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1357 * If more than halfway to RCU CPU stall-warning time, invoke
1358 * resched_cpu() more frequently to try to loosen things up a bit.
1359 * Also check to see if the CPU is getting hammered with interrupts,
1360 * but only once per grace period, just to keep the IPIs down to
1363 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1364 if (time_after(jiffies,
1365 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1366 resched_cpu(rdp->cpu);
1367 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1369 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1370 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1371 (rnp->ffmask & rdp->grpmask)) {
1372 rdp->rcu_iw_pending = true;
1373 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1374 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1381 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1382 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1383 unsigned long gp_seq_req, const char *s)
1385 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1386 gp_seq_req, rnp->level,
1387 rnp->grplo, rnp->grphi, s);
1391 * rcu_start_this_gp - Request the start of a particular grace period
1392 * @rnp_start: The leaf node of the CPU from which to start.
1393 * @rdp: The rcu_data corresponding to the CPU from which to start.
1394 * @gp_seq_req: The gp_seq of the grace period to start.
1396 * Start the specified grace period, as needed to handle newly arrived
1397 * callbacks. The required future grace periods are recorded in each
1398 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1399 * is reason to awaken the grace-period kthread.
1401 * The caller must hold the specified rcu_node structure's ->lock, which
1402 * is why the caller is responsible for waking the grace-period kthread.
1404 * Returns true if the GP thread needs to be awakened else false.
1406 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1407 unsigned long gp_seq_req)
1410 struct rcu_node *rnp;
1413 * Use funnel locking to either acquire the root rcu_node
1414 * structure's lock or bail out if the need for this grace period
1415 * has already been recorded -- or if that grace period has in
1416 * fact already started. If there is already a grace period in
1417 * progress in a non-leaf node, no recording is needed because the
1418 * end of the grace period will scan the leaf rcu_node structures.
1419 * Note that rnp_start->lock must not be released.
1421 raw_lockdep_assert_held_rcu_node(rnp_start);
1422 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1423 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1424 if (rnp != rnp_start)
1425 raw_spin_lock_rcu_node(rnp);
1426 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1427 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1428 (rnp != rnp_start &&
1429 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1430 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1434 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1435 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1437 * We just marked the leaf or internal node, and a
1438 * grace period is in progress, which means that
1439 * rcu_gp_cleanup() will see the marking. Bail to
1440 * reduce contention.
1442 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1443 TPS("Startedleaf"));
1446 if (rnp != rnp_start && rnp->parent != NULL)
1447 raw_spin_unlock_rcu_node(rnp);
1449 break; /* At root, and perhaps also leaf. */
1452 /* If GP already in progress, just leave, otherwise start one. */
1453 if (rcu_gp_in_progress()) {
1454 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1457 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1458 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1459 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1460 if (!READ_ONCE(rcu_state.gp_kthread)) {
1461 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1464 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1465 ret = true; /* Caller must wake GP kthread. */
1467 /* Push furthest requested GP to leaf node and rcu_data structure. */
1468 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1469 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1470 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1472 if (rnp != rnp_start)
1473 raw_spin_unlock_rcu_node(rnp);
1478 * Clean up any old requests for the just-ended grace period. Also return
1479 * whether any additional grace periods have been requested.
1481 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1484 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1486 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1488 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1489 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1490 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1495 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1496 * interrupt or softirq handler, in which case we just might immediately
1497 * sleep upon return, resulting in a grace-period hang), and don't bother
1498 * awakening when there is nothing for the grace-period kthread to do
1499 * (as in several CPUs raced to awaken, we lost), and finally don't try
1500 * to awaken a kthread that has not yet been created. If all those checks
1501 * are passed, track some debug information and awaken.
1503 * So why do the self-wakeup when in an interrupt or softirq handler
1504 * in the grace-period kthread's context? Because the kthread might have
1505 * been interrupted just as it was going to sleep, and just after the final
1506 * pre-sleep check of the awaken condition. In this case, a wakeup really
1507 * is required, and is therefore supplied.
1509 static void rcu_gp_kthread_wake(void)
1511 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1513 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1514 !READ_ONCE(rcu_state.gp_flags) || !t)
1516 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1517 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1518 swake_up_one(&rcu_state.gp_wq);
1522 * If there is room, assign a ->gp_seq number to any callbacks on this
1523 * CPU that have not already been assigned. Also accelerate any callbacks
1524 * that were previously assigned a ->gp_seq number that has since proven
1525 * to be too conservative, which can happen if callbacks get assigned a
1526 * ->gp_seq number while RCU is idle, but with reference to a non-root
1527 * rcu_node structure. This function is idempotent, so it does not hurt
1528 * to call it repeatedly. Returns an flag saying that we should awaken
1529 * the RCU grace-period kthread.
1531 * The caller must hold rnp->lock with interrupts disabled.
1533 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1535 unsigned long gp_seq_req;
1538 rcu_lockdep_assert_cblist_protected(rdp);
1539 raw_lockdep_assert_held_rcu_node(rnp);
1541 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1542 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1545 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1548 * Callbacks are often registered with incomplete grace-period
1549 * information. Something about the fact that getting exact
1550 * information requires acquiring a global lock... RCU therefore
1551 * makes a conservative estimate of the grace period number at which
1552 * a given callback will become ready to invoke. The following
1553 * code checks this estimate and improves it when possible, thus
1554 * accelerating callback invocation to an earlier grace-period
1557 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1558 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1559 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1561 /* Trace depending on how much we were able to accelerate. */
1562 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1563 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1565 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1567 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1573 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1574 * rcu_node structure's ->lock be held. It consults the cached value
1575 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1576 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1577 * while holding the leaf rcu_node structure's ->lock.
1579 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1580 struct rcu_data *rdp)
1585 rcu_lockdep_assert_cblist_protected(rdp);
1586 c = rcu_seq_snap(&rcu_state.gp_seq);
1587 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1588 /* Old request still live, so mark recent callbacks. */
1589 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1592 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1593 needwake = rcu_accelerate_cbs(rnp, rdp);
1594 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1596 rcu_gp_kthread_wake();
1600 * Move any callbacks whose grace period has completed to the
1601 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1602 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1603 * sublist. This function is idempotent, so it does not hurt to
1604 * invoke it repeatedly. As long as it is not invoked -too- often...
1605 * Returns true if the RCU grace-period kthread needs to be awakened.
1607 * The caller must hold rnp->lock with interrupts disabled.
1609 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1611 rcu_lockdep_assert_cblist_protected(rdp);
1612 raw_lockdep_assert_held_rcu_node(rnp);
1614 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1615 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1619 * Find all callbacks whose ->gp_seq numbers indicate that they
1620 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1622 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1624 /* Classify any remaining callbacks. */
1625 return rcu_accelerate_cbs(rnp, rdp);
1629 * Move and classify callbacks, but only if doing so won't require
1630 * that the RCU grace-period kthread be awakened.
1632 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1633 struct rcu_data *rdp)
1635 rcu_lockdep_assert_cblist_protected(rdp);
1636 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1637 !raw_spin_trylock_rcu_node(rnp))
1639 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1640 raw_spin_unlock_rcu_node(rnp);
1644 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1645 * quiescent state. This is intended to be invoked when the CPU notices
1646 * a new grace period.
1648 static void rcu_strict_gp_check_qs(void)
1650 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1657 * Update CPU-local rcu_data state to record the beginnings and ends of
1658 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1659 * structure corresponding to the current CPU, and must have irqs disabled.
1660 * Returns true if the grace-period kthread needs to be awakened.
1662 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1666 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1668 raw_lockdep_assert_held_rcu_node(rnp);
1670 if (rdp->gp_seq == rnp->gp_seq)
1671 return false; /* Nothing to do. */
1673 /* Handle the ends of any preceding grace periods first. */
1674 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1675 unlikely(READ_ONCE(rdp->gpwrap))) {
1677 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1678 rdp->core_needs_qs = false;
1679 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1682 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1683 if (rdp->core_needs_qs)
1684 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1687 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1688 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1689 unlikely(READ_ONCE(rdp->gpwrap))) {
1691 * If the current grace period is waiting for this CPU,
1692 * set up to detect a quiescent state, otherwise don't
1693 * go looking for one.
1695 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1696 need_qs = !!(rnp->qsmask & rdp->grpmask);
1697 rdp->cpu_no_qs.b.norm = need_qs;
1698 rdp->core_needs_qs = need_qs;
1699 zero_cpu_stall_ticks(rdp);
1701 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1702 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1703 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1704 WRITE_ONCE(rdp->gpwrap, false);
1705 rcu_gpnum_ovf(rnp, rdp);
1709 static void note_gp_changes(struct rcu_data *rdp)
1711 unsigned long flags;
1713 struct rcu_node *rnp;
1715 local_irq_save(flags);
1717 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1718 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1719 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1720 local_irq_restore(flags);
1723 needwake = __note_gp_changes(rnp, rdp);
1724 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1725 rcu_strict_gp_check_qs();
1727 rcu_gp_kthread_wake();
1730 static void rcu_gp_slow(int delay)
1733 !(rcu_seq_ctr(rcu_state.gp_seq) %
1734 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1735 schedule_timeout_idle(delay);
1738 static unsigned long sleep_duration;
1740 /* Allow rcutorture to stall the grace-period kthread. */
1741 void rcu_gp_set_torture_wait(int duration)
1743 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1744 WRITE_ONCE(sleep_duration, duration);
1746 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1748 /* Actually implement the aforementioned wait. */
1749 static void rcu_gp_torture_wait(void)
1751 unsigned long duration;
1753 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1755 duration = xchg(&sleep_duration, 0UL);
1757 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1758 schedule_timeout_idle(duration);
1759 pr_alert("%s: Wait complete\n", __func__);
1764 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1767 static void rcu_strict_gp_boundary(void *unused)
1773 * Initialize a new grace period. Return false if no grace period required.
1775 static bool rcu_gp_init(void)
1777 unsigned long firstseq;
1778 unsigned long flags;
1779 unsigned long oldmask;
1781 struct rcu_data *rdp;
1782 struct rcu_node *rnp = rcu_get_root();
1784 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1785 raw_spin_lock_irq_rcu_node(rnp);
1786 if (!READ_ONCE(rcu_state.gp_flags)) {
1787 /* Spurious wakeup, tell caller to go back to sleep. */
1788 raw_spin_unlock_irq_rcu_node(rnp);
1791 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1793 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1795 * Grace period already in progress, don't start another.
1796 * Not supposed to be able to happen.
1798 raw_spin_unlock_irq_rcu_node(rnp);
1802 /* Advance to a new grace period and initialize state. */
1803 record_gp_stall_check_time();
1804 /* Record GP times before starting GP, hence rcu_seq_start(). */
1805 rcu_seq_start(&rcu_state.gp_seq);
1806 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1807 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1808 raw_spin_unlock_irq_rcu_node(rnp);
1811 * Apply per-leaf buffered online and offline operations to
1812 * the rcu_node tree. Note that this new grace period need not
1813 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1814 * offlining path, when combined with checks in this function,
1815 * will handle CPUs that are currently going offline or that will
1816 * go offline later. Please also refer to "Hotplug CPU" section
1817 * of RCU's Requirements documentation.
1819 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1820 rcu_for_each_leaf_node(rnp) {
1821 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1822 firstseq = READ_ONCE(rnp->ofl_seq);
1824 while (firstseq == READ_ONCE(rnp->ofl_seq))
1825 schedule_timeout_idle(1); // Can't wake unless RCU is watching.
1826 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1827 raw_spin_lock(&rcu_state.ofl_lock);
1828 raw_spin_lock_irq_rcu_node(rnp);
1829 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1830 !rnp->wait_blkd_tasks) {
1831 /* Nothing to do on this leaf rcu_node structure. */
1832 raw_spin_unlock_irq_rcu_node(rnp);
1833 raw_spin_unlock(&rcu_state.ofl_lock);
1837 /* Record old state, apply changes to ->qsmaskinit field. */
1838 oldmask = rnp->qsmaskinit;
1839 rnp->qsmaskinit = rnp->qsmaskinitnext;
1841 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1842 if (!oldmask != !rnp->qsmaskinit) {
1843 if (!oldmask) { /* First online CPU for rcu_node. */
1844 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1845 rcu_init_new_rnp(rnp);
1846 } else if (rcu_preempt_has_tasks(rnp)) {
1847 rnp->wait_blkd_tasks = true; /* blocked tasks */
1848 } else { /* Last offline CPU and can propagate. */
1849 rcu_cleanup_dead_rnp(rnp);
1854 * If all waited-on tasks from prior grace period are
1855 * done, and if all this rcu_node structure's CPUs are
1856 * still offline, propagate up the rcu_node tree and
1857 * clear ->wait_blkd_tasks. Otherwise, if one of this
1858 * rcu_node structure's CPUs has since come back online,
1859 * simply clear ->wait_blkd_tasks.
1861 if (rnp->wait_blkd_tasks &&
1862 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1863 rnp->wait_blkd_tasks = false;
1864 if (!rnp->qsmaskinit)
1865 rcu_cleanup_dead_rnp(rnp);
1868 raw_spin_unlock_irq_rcu_node(rnp);
1869 raw_spin_unlock(&rcu_state.ofl_lock);
1871 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1874 * Set the quiescent-state-needed bits in all the rcu_node
1875 * structures for all currently online CPUs in breadth-first
1876 * order, starting from the root rcu_node structure, relying on the
1877 * layout of the tree within the rcu_state.node[] array. Note that
1878 * other CPUs will access only the leaves of the hierarchy, thus
1879 * seeing that no grace period is in progress, at least until the
1880 * corresponding leaf node has been initialized.
1882 * The grace period cannot complete until the initialization
1883 * process finishes, because this kthread handles both.
1885 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1886 rcu_for_each_node_breadth_first(rnp) {
1887 rcu_gp_slow(gp_init_delay);
1888 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1889 rdp = this_cpu_ptr(&rcu_data);
1890 rcu_preempt_check_blocked_tasks(rnp);
1891 rnp->qsmask = rnp->qsmaskinit;
1892 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1893 if (rnp == rdp->mynode)
1894 (void)__note_gp_changes(rnp, rdp);
1895 rcu_preempt_boost_start_gp(rnp);
1896 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1897 rnp->level, rnp->grplo,
1898 rnp->grphi, rnp->qsmask);
1899 /* Quiescent states for tasks on any now-offline CPUs. */
1900 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1901 rnp->rcu_gp_init_mask = mask;
1902 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1903 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1905 raw_spin_unlock_irq_rcu_node(rnp);
1906 cond_resched_tasks_rcu_qs();
1907 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1910 // If strict, make all CPUs aware of new grace period.
1911 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1912 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1918 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1921 static bool rcu_gp_fqs_check_wake(int *gfp)
1923 struct rcu_node *rnp = rcu_get_root();
1925 // If under overload conditions, force an immediate FQS scan.
1926 if (*gfp & RCU_GP_FLAG_OVLD)
1929 // Someone like call_rcu() requested a force-quiescent-state scan.
1930 *gfp = READ_ONCE(rcu_state.gp_flags);
1931 if (*gfp & RCU_GP_FLAG_FQS)
1934 // The current grace period has completed.
1935 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1942 * Do one round of quiescent-state forcing.
1944 static void rcu_gp_fqs(bool first_time)
1946 struct rcu_node *rnp = rcu_get_root();
1948 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1949 rcu_state.n_force_qs++;
1951 /* Collect dyntick-idle snapshots. */
1952 force_qs_rnp(dyntick_save_progress_counter);
1954 /* Handle dyntick-idle and offline CPUs. */
1955 force_qs_rnp(rcu_implicit_dynticks_qs);
1957 /* Clear flag to prevent immediate re-entry. */
1958 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1959 raw_spin_lock_irq_rcu_node(rnp);
1960 WRITE_ONCE(rcu_state.gp_flags,
1961 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1962 raw_spin_unlock_irq_rcu_node(rnp);
1967 * Loop doing repeated quiescent-state forcing until the grace period ends.
1969 static void rcu_gp_fqs_loop(void)
1975 struct rcu_node *rnp = rcu_get_root();
1977 first_gp_fqs = true;
1978 j = READ_ONCE(jiffies_till_first_fqs);
1979 if (rcu_state.cbovld)
1980 gf = RCU_GP_FLAG_OVLD;
1984 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1986 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1987 * update; required for stall checks.
1990 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1991 jiffies + (j ? 3 * j : 2));
1993 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1995 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1996 ret = swait_event_idle_timeout_exclusive(
1997 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1998 rcu_gp_torture_wait();
1999 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2000 /* Locking provides needed memory barriers. */
2001 /* If grace period done, leave loop. */
2002 if (!READ_ONCE(rnp->qsmask) &&
2003 !rcu_preempt_blocked_readers_cgp(rnp))
2005 /* If time for quiescent-state forcing, do it. */
2006 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2007 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2008 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2010 rcu_gp_fqs(first_gp_fqs);
2013 first_gp_fqs = false;
2014 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2016 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2018 cond_resched_tasks_rcu_qs();
2019 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2020 ret = 0; /* Force full wait till next FQS. */
2021 j = READ_ONCE(jiffies_till_next_fqs);
2023 /* Deal with stray signal. */
2024 cond_resched_tasks_rcu_qs();
2025 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2026 WARN_ON(signal_pending(current));
2027 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2029 ret = 1; /* Keep old FQS timing. */
2031 if (time_after(jiffies, rcu_state.jiffies_force_qs))
2034 j = rcu_state.jiffies_force_qs - j;
2041 * Clean up after the old grace period.
2043 static noinline void rcu_gp_cleanup(void)
2046 bool needgp = false;
2047 unsigned long gp_duration;
2048 unsigned long new_gp_seq;
2050 struct rcu_data *rdp;
2051 struct rcu_node *rnp = rcu_get_root();
2052 struct swait_queue_head *sq;
2054 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2055 raw_spin_lock_irq_rcu_node(rnp);
2056 rcu_state.gp_end = jiffies;
2057 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2058 if (gp_duration > rcu_state.gp_max)
2059 rcu_state.gp_max = gp_duration;
2062 * We know the grace period is complete, but to everyone else
2063 * it appears to still be ongoing. But it is also the case
2064 * that to everyone else it looks like there is nothing that
2065 * they can do to advance the grace period. It is therefore
2066 * safe for us to drop the lock in order to mark the grace
2067 * period as completed in all of the rcu_node structures.
2069 raw_spin_unlock_irq_rcu_node(rnp);
2072 * Propagate new ->gp_seq value to rcu_node structures so that
2073 * other CPUs don't have to wait until the start of the next grace
2074 * period to process their callbacks. This also avoids some nasty
2075 * RCU grace-period initialization races by forcing the end of
2076 * the current grace period to be completely recorded in all of
2077 * the rcu_node structures before the beginning of the next grace
2078 * period is recorded in any of the rcu_node structures.
2080 new_gp_seq = rcu_state.gp_seq;
2081 rcu_seq_end(&new_gp_seq);
2082 rcu_for_each_node_breadth_first(rnp) {
2083 raw_spin_lock_irq_rcu_node(rnp);
2084 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2085 dump_blkd_tasks(rnp, 10);
2086 WARN_ON_ONCE(rnp->qsmask);
2087 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2088 rdp = this_cpu_ptr(&rcu_data);
2089 if (rnp == rdp->mynode)
2090 needgp = __note_gp_changes(rnp, rdp) || needgp;
2091 /* smp_mb() provided by prior unlock-lock pair. */
2092 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2093 // Reset overload indication for CPUs no longer overloaded
2094 if (rcu_is_leaf_node(rnp))
2095 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2096 rdp = per_cpu_ptr(&rcu_data, cpu);
2097 check_cb_ovld_locked(rdp, rnp);
2099 sq = rcu_nocb_gp_get(rnp);
2100 raw_spin_unlock_irq_rcu_node(rnp);
2101 rcu_nocb_gp_cleanup(sq);
2102 cond_resched_tasks_rcu_qs();
2103 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2104 rcu_gp_slow(gp_cleanup_delay);
2106 rnp = rcu_get_root();
2107 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2109 /* Declare grace period done, trace first to use old GP number. */
2110 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2111 rcu_seq_end(&rcu_state.gp_seq);
2112 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2113 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2114 /* Check for GP requests since above loop. */
2115 rdp = this_cpu_ptr(&rcu_data);
2116 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2117 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2118 TPS("CleanupMore"));
2121 /* Advance CBs to reduce false positives below. */
2122 offloaded = rcu_rdp_is_offloaded(rdp);
2123 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2124 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2125 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2126 trace_rcu_grace_period(rcu_state.name,
2130 WRITE_ONCE(rcu_state.gp_flags,
2131 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2133 raw_spin_unlock_irq_rcu_node(rnp);
2135 // If strict, make all CPUs aware of the end of the old grace period.
2136 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2137 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2141 * Body of kthread that handles grace periods.
2143 static int __noreturn rcu_gp_kthread(void *unused)
2145 rcu_bind_gp_kthread();
2148 /* Handle grace-period start. */
2150 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2152 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2153 swait_event_idle_exclusive(rcu_state.gp_wq,
2154 READ_ONCE(rcu_state.gp_flags) &
2156 rcu_gp_torture_wait();
2157 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2158 /* Locking provides needed memory barrier. */
2161 cond_resched_tasks_rcu_qs();
2162 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2163 WARN_ON(signal_pending(current));
2164 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2168 /* Handle quiescent-state forcing. */
2171 /* Handle grace-period end. */
2172 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2174 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2179 * Report a full set of quiescent states to the rcu_state data structure.
2180 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2181 * another grace period is required. Whether we wake the grace-period
2182 * kthread or it awakens itself for the next round of quiescent-state
2183 * forcing, that kthread will clean up after the just-completed grace
2184 * period. Note that the caller must hold rnp->lock, which is released
2187 static void rcu_report_qs_rsp(unsigned long flags)
2188 __releases(rcu_get_root()->lock)
2190 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2191 WARN_ON_ONCE(!rcu_gp_in_progress());
2192 WRITE_ONCE(rcu_state.gp_flags,
2193 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2194 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2195 rcu_gp_kthread_wake();
2199 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2200 * Allows quiescent states for a group of CPUs to be reported at one go
2201 * to the specified rcu_node structure, though all the CPUs in the group
2202 * must be represented by the same rcu_node structure (which need not be a
2203 * leaf rcu_node structure, though it often will be). The gps parameter
2204 * is the grace-period snapshot, which means that the quiescent states
2205 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2206 * must be held upon entry, and it is released before return.
2208 * As a special case, if mask is zero, the bit-already-cleared check is
2209 * disabled. This allows propagating quiescent state due to resumed tasks
2210 * during grace-period initialization.
2212 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2213 unsigned long gps, unsigned long flags)
2214 __releases(rnp->lock)
2216 unsigned long oldmask = 0;
2217 struct rcu_node *rnp_c;
2219 raw_lockdep_assert_held_rcu_node(rnp);
2221 /* Walk up the rcu_node hierarchy. */
2223 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2226 * Our bit has already been cleared, or the
2227 * relevant grace period is already over, so done.
2229 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2232 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2233 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2234 rcu_preempt_blocked_readers_cgp(rnp));
2235 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2236 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2237 mask, rnp->qsmask, rnp->level,
2238 rnp->grplo, rnp->grphi,
2240 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2242 /* Other bits still set at this level, so done. */
2243 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2246 rnp->completedqs = rnp->gp_seq;
2247 mask = rnp->grpmask;
2248 if (rnp->parent == NULL) {
2250 /* No more levels. Exit loop holding root lock. */
2254 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2257 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2258 oldmask = READ_ONCE(rnp_c->qsmask);
2262 * Get here if we are the last CPU to pass through a quiescent
2263 * state for this grace period. Invoke rcu_report_qs_rsp()
2264 * to clean up and start the next grace period if one is needed.
2266 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2270 * Record a quiescent state for all tasks that were previously queued
2271 * on the specified rcu_node structure and that were blocking the current
2272 * RCU grace period. The caller must hold the corresponding rnp->lock with
2273 * irqs disabled, and this lock is released upon return, but irqs remain
2276 static void __maybe_unused
2277 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2278 __releases(rnp->lock)
2282 struct rcu_node *rnp_p;
2284 raw_lockdep_assert_held_rcu_node(rnp);
2285 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2286 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2288 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2289 return; /* Still need more quiescent states! */
2292 rnp->completedqs = rnp->gp_seq;
2293 rnp_p = rnp->parent;
2294 if (rnp_p == NULL) {
2296 * Only one rcu_node structure in the tree, so don't
2297 * try to report up to its nonexistent parent!
2299 rcu_report_qs_rsp(flags);
2303 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2305 mask = rnp->grpmask;
2306 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2307 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2308 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2312 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2313 * structure. This must be called from the specified CPU.
2316 rcu_report_qs_rdp(struct rcu_data *rdp)
2318 unsigned long flags;
2320 bool needwake = false;
2321 const bool offloaded = rcu_rdp_is_offloaded(rdp);
2322 struct rcu_node *rnp;
2324 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2326 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2327 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2331 * The grace period in which this quiescent state was
2332 * recorded has ended, so don't report it upwards.
2333 * We will instead need a new quiescent state that lies
2334 * within the current grace period.
2336 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2337 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2340 mask = rdp->grpmask;
2341 rdp->core_needs_qs = false;
2342 if ((rnp->qsmask & mask) == 0) {
2343 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2346 * This GP can't end until cpu checks in, so all of our
2347 * callbacks can be processed during the next GP.
2350 needwake = rcu_accelerate_cbs(rnp, rdp);
2352 rcu_disable_urgency_upon_qs(rdp);
2353 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2354 /* ^^^ Released rnp->lock */
2356 rcu_gp_kthread_wake();
2361 * Check to see if there is a new grace period of which this CPU
2362 * is not yet aware, and if so, set up local rcu_data state for it.
2363 * Otherwise, see if this CPU has just passed through its first
2364 * quiescent state for this grace period, and record that fact if so.
2367 rcu_check_quiescent_state(struct rcu_data *rdp)
2369 /* Check for grace-period ends and beginnings. */
2370 note_gp_changes(rdp);
2373 * Does this CPU still need to do its part for current grace period?
2374 * If no, return and let the other CPUs do their part as well.
2376 if (!rdp->core_needs_qs)
2380 * Was there a quiescent state since the beginning of the grace
2381 * period? If no, then exit and wait for the next call.
2383 if (rdp->cpu_no_qs.b.norm)
2387 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2390 rcu_report_qs_rdp(rdp);
2394 * Near the end of the offline process. Trace the fact that this CPU
2397 int rcutree_dying_cpu(unsigned int cpu)
2400 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2401 struct rcu_node *rnp = rdp->mynode;
2403 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2406 blkd = !!(rnp->qsmask & rdp->grpmask);
2407 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2408 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2413 * All CPUs for the specified rcu_node structure have gone offline,
2414 * and all tasks that were preempted within an RCU read-side critical
2415 * section while running on one of those CPUs have since exited their RCU
2416 * read-side critical section. Some other CPU is reporting this fact with
2417 * the specified rcu_node structure's ->lock held and interrupts disabled.
2418 * This function therefore goes up the tree of rcu_node structures,
2419 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2420 * the leaf rcu_node structure's ->qsmaskinit field has already been
2423 * This function does check that the specified rcu_node structure has
2424 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2425 * prematurely. That said, invoking it after the fact will cost you
2426 * a needless lock acquisition. So once it has done its work, don't
2429 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2432 struct rcu_node *rnp = rnp_leaf;
2434 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2435 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2436 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2437 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2440 mask = rnp->grpmask;
2444 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2445 rnp->qsmaskinit &= ~mask;
2446 /* Between grace periods, so better already be zero! */
2447 WARN_ON_ONCE(rnp->qsmask);
2448 if (rnp->qsmaskinit) {
2449 raw_spin_unlock_rcu_node(rnp);
2450 /* irqs remain disabled. */
2453 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2458 * The CPU has been completely removed, and some other CPU is reporting
2459 * this fact from process context. Do the remainder of the cleanup.
2460 * There can only be one CPU hotplug operation at a time, so no need for
2463 int rcutree_dead_cpu(unsigned int cpu)
2465 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2466 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2468 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2471 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2472 /* Adjust any no-longer-needed kthreads. */
2473 rcu_boost_kthread_setaffinity(rnp, -1);
2474 /* Do any needed no-CB deferred wakeups from this CPU. */
2475 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2477 // Stop-machine done, so allow nohz_full to disable tick.
2478 tick_dep_clear(TICK_DEP_BIT_RCU);
2483 * Invoke any RCU callbacks that have made it to the end of their grace
2484 * period. Throttle as specified by rdp->blimit.
2486 static void rcu_do_batch(struct rcu_data *rdp)
2489 bool __maybe_unused empty;
2490 unsigned long flags;
2491 const bool offloaded = rcu_rdp_is_offloaded(rdp);
2492 struct rcu_head *rhp;
2493 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2495 long pending, tlimit = 0;
2497 /* If no callbacks are ready, just return. */
2498 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2499 trace_rcu_batch_start(rcu_state.name,
2500 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2501 trace_rcu_batch_end(rcu_state.name, 0,
2502 !rcu_segcblist_empty(&rdp->cblist),
2503 need_resched(), is_idle_task(current),
2504 rcu_is_callbacks_kthread());
2509 * Extract the list of ready callbacks, disabling to prevent
2510 * races with call_rcu() from interrupt handlers. Leave the
2511 * callback counts, as rcu_barrier() needs to be conservative.
2513 local_irq_save(flags);
2515 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2516 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2517 div = READ_ONCE(rcu_divisor);
2518 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2519 bl = max(rdp->blimit, pending >> div);
2520 if (unlikely(bl > 100)) {
2521 long rrn = READ_ONCE(rcu_resched_ns);
2523 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2524 tlimit = local_clock() + rrn;
2526 trace_rcu_batch_start(rcu_state.name,
2527 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2528 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2530 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2532 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2533 rcu_nocb_unlock_irqrestore(rdp, flags);
2535 /* Invoke callbacks. */
2536 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2537 rhp = rcu_cblist_dequeue(&rcl);
2539 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2543 debug_rcu_head_unqueue(rhp);
2545 rcu_lock_acquire(&rcu_callback_map);
2546 trace_rcu_invoke_callback(rcu_state.name, rhp);
2549 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2552 rcu_lock_release(&rcu_callback_map);
2555 * Stop only if limit reached and CPU has something to do.
2557 if (count >= bl && !offloaded &&
2559 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2561 if (unlikely(tlimit)) {
2562 /* only call local_clock() every 32 callbacks */
2563 if (likely((count & 31) || local_clock() < tlimit))
2565 /* Exceeded the time limit, so leave. */
2568 if (!in_serving_softirq()) {
2570 lockdep_assert_irqs_enabled();
2571 cond_resched_tasks_rcu_qs();
2572 lockdep_assert_irqs_enabled();
2577 local_irq_save(flags);
2579 rdp->n_cbs_invoked += count;
2580 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2581 is_idle_task(current), rcu_is_callbacks_kthread());
2583 /* Update counts and requeue any remaining callbacks. */
2584 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2585 rcu_segcblist_add_len(&rdp->cblist, -count);
2587 /* Reinstate batch limit if we have worked down the excess. */
2588 count = rcu_segcblist_n_cbs(&rdp->cblist);
2589 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2590 rdp->blimit = blimit;
2592 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2593 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2594 rdp->qlen_last_fqs_check = 0;
2595 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2596 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2597 rdp->qlen_last_fqs_check = count;
2600 * The following usually indicates a double call_rcu(). To track
2601 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2603 empty = rcu_segcblist_empty(&rdp->cblist);
2604 WARN_ON_ONCE(count == 0 && !empty);
2605 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2606 count != 0 && empty);
2607 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2608 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2610 rcu_nocb_unlock_irqrestore(rdp, flags);
2612 /* Re-invoke RCU core processing if there are callbacks remaining. */
2613 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2615 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2619 * This function is invoked from each scheduling-clock interrupt,
2620 * and checks to see if this CPU is in a non-context-switch quiescent
2621 * state, for example, user mode or idle loop. It also schedules RCU
2622 * core processing. If the current grace period has gone on too long,
2623 * it will ask the scheduler to manufacture a context switch for the sole
2624 * purpose of providing the needed quiescent state.
2626 void rcu_sched_clock_irq(int user)
2628 trace_rcu_utilization(TPS("Start scheduler-tick"));
2629 lockdep_assert_irqs_disabled();
2630 raw_cpu_inc(rcu_data.ticks_this_gp);
2631 /* The load-acquire pairs with the store-release setting to true. */
2632 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2633 /* Idle and userspace execution already are quiescent states. */
2634 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2635 set_tsk_need_resched(current);
2636 set_preempt_need_resched();
2638 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2640 rcu_flavor_sched_clock_irq(user);
2641 if (rcu_pending(user))
2643 lockdep_assert_irqs_disabled();
2645 trace_rcu_utilization(TPS("End scheduler-tick"));
2649 * Scan the leaf rcu_node structures. For each structure on which all
2650 * CPUs have reported a quiescent state and on which there are tasks
2651 * blocking the current grace period, initiate RCU priority boosting.
2652 * Otherwise, invoke the specified function to check dyntick state for
2653 * each CPU that has not yet reported a quiescent state.
2655 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2658 unsigned long flags;
2660 struct rcu_data *rdp;
2661 struct rcu_node *rnp;
2663 rcu_state.cbovld = rcu_state.cbovldnext;
2664 rcu_state.cbovldnext = false;
2665 rcu_for_each_leaf_node(rnp) {
2666 cond_resched_tasks_rcu_qs();
2668 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2669 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2670 if (rnp->qsmask == 0) {
2671 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2673 * No point in scanning bits because they
2674 * are all zero. But we might need to
2675 * priority-boost blocked readers.
2677 rcu_initiate_boost(rnp, flags);
2678 /* rcu_initiate_boost() releases rnp->lock */
2681 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2684 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2685 rdp = per_cpu_ptr(&rcu_data, cpu);
2687 mask |= rdp->grpmask;
2688 rcu_disable_urgency_upon_qs(rdp);
2692 /* Idle/offline CPUs, report (releases rnp->lock). */
2693 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2695 /* Nothing to do here, so just drop the lock. */
2696 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2702 * Force quiescent states on reluctant CPUs, and also detect which
2703 * CPUs are in dyntick-idle mode.
2705 void rcu_force_quiescent_state(void)
2707 unsigned long flags;
2709 struct rcu_node *rnp;
2710 struct rcu_node *rnp_old = NULL;
2712 /* Funnel through hierarchy to reduce memory contention. */
2713 rnp = __this_cpu_read(rcu_data.mynode);
2714 for (; rnp != NULL; rnp = rnp->parent) {
2715 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2716 !raw_spin_trylock(&rnp->fqslock);
2717 if (rnp_old != NULL)
2718 raw_spin_unlock(&rnp_old->fqslock);
2723 /* rnp_old == rcu_get_root(), rnp == NULL. */
2725 /* Reached the root of the rcu_node tree, acquire lock. */
2726 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2727 raw_spin_unlock(&rnp_old->fqslock);
2728 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2729 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2730 return; /* Someone beat us to it. */
2732 WRITE_ONCE(rcu_state.gp_flags,
2733 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2734 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2735 rcu_gp_kthread_wake();
2737 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2739 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2741 static void strict_work_handler(struct work_struct *work)
2747 /* Perform RCU core processing work for the current CPU. */
2748 static __latent_entropy void rcu_core(void)
2750 unsigned long flags;
2751 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2752 struct rcu_node *rnp = rdp->mynode;
2753 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2755 if (cpu_is_offline(smp_processor_id()))
2757 trace_rcu_utilization(TPS("Start RCU core"));
2758 WARN_ON_ONCE(!rdp->beenonline);
2760 /* Report any deferred quiescent states if preemption enabled. */
2761 if (!(preempt_count() & PREEMPT_MASK)) {
2762 rcu_preempt_deferred_qs(current);
2763 } else if (rcu_preempt_need_deferred_qs(current)) {
2764 set_tsk_need_resched(current);
2765 set_preempt_need_resched();
2768 /* Update RCU state based on any recent quiescent states. */
2769 rcu_check_quiescent_state(rdp);
2771 /* No grace period and unregistered callbacks? */
2772 if (!rcu_gp_in_progress() &&
2773 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2774 rcu_nocb_lock_irqsave(rdp, flags);
2775 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2776 rcu_accelerate_cbs_unlocked(rnp, rdp);
2777 rcu_nocb_unlock_irqrestore(rdp, flags);
2780 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2782 /* If there are callbacks ready, invoke them. */
2783 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2784 likely(READ_ONCE(rcu_scheduler_fully_active)))
2787 /* Do any needed deferred wakeups of rcuo kthreads. */
2788 do_nocb_deferred_wakeup(rdp);
2789 trace_rcu_utilization(TPS("End RCU core"));
2791 // If strict GPs, schedule an RCU reader in a clean environment.
2792 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2793 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2796 static void rcu_core_si(struct softirq_action *h)
2801 static void rcu_wake_cond(struct task_struct *t, int status)
2804 * If the thread is yielding, only wake it when this
2805 * is invoked from idle
2807 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2811 static void invoke_rcu_core_kthread(void)
2813 struct task_struct *t;
2814 unsigned long flags;
2816 local_irq_save(flags);
2817 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2818 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2819 if (t != NULL && t != current)
2820 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2821 local_irq_restore(flags);
2825 * Wake up this CPU's rcuc kthread to do RCU core processing.
2827 static void invoke_rcu_core(void)
2829 if (!cpu_online(smp_processor_id()))
2832 raise_softirq(RCU_SOFTIRQ);
2834 invoke_rcu_core_kthread();
2837 static void rcu_cpu_kthread_park(unsigned int cpu)
2839 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2842 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2844 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2848 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2849 * the RCU softirq used in configurations of RCU that do not support RCU
2850 * priority boosting.
2852 static void rcu_cpu_kthread(unsigned int cpu)
2854 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2855 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2858 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2859 for (spincnt = 0; spincnt < 10; spincnt++) {
2861 *statusp = RCU_KTHREAD_RUNNING;
2862 local_irq_disable();
2870 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2871 *statusp = RCU_KTHREAD_WAITING;
2875 *statusp = RCU_KTHREAD_YIELDING;
2876 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2877 schedule_timeout_idle(2);
2878 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2879 *statusp = RCU_KTHREAD_WAITING;
2882 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2883 .store = &rcu_data.rcu_cpu_kthread_task,
2884 .thread_should_run = rcu_cpu_kthread_should_run,
2885 .thread_fn = rcu_cpu_kthread,
2886 .thread_comm = "rcuc/%u",
2887 .setup = rcu_cpu_kthread_setup,
2888 .park = rcu_cpu_kthread_park,
2892 * Spawn per-CPU RCU core processing kthreads.
2894 static int __init rcu_spawn_core_kthreads(void)
2898 for_each_possible_cpu(cpu)
2899 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2900 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2902 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2903 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2908 * Handle any core-RCU processing required by a call_rcu() invocation.
2910 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2911 unsigned long flags)
2914 * If called from an extended quiescent state, invoke the RCU
2915 * core in order to force a re-evaluation of RCU's idleness.
2917 if (!rcu_is_watching())
2920 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2921 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2925 * Force the grace period if too many callbacks or too long waiting.
2926 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2927 * if some other CPU has recently done so. Also, don't bother
2928 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2929 * is the only one waiting for a grace period to complete.
2931 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2932 rdp->qlen_last_fqs_check + qhimark)) {
2934 /* Are we ignoring a completed grace period? */
2935 note_gp_changes(rdp);
2937 /* Start a new grace period if one not already started. */
2938 if (!rcu_gp_in_progress()) {
2939 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2941 /* Give the grace period a kick. */
2942 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2943 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2944 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2945 rcu_force_quiescent_state();
2946 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2947 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2953 * RCU callback function to leak a callback.
2955 static void rcu_leak_callback(struct rcu_head *rhp)
2960 * Check and if necessary update the leaf rcu_node structure's
2961 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2962 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2963 * structure's ->lock.
2965 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2967 raw_lockdep_assert_held_rcu_node(rnp);
2968 if (qovld_calc <= 0)
2969 return; // Early boot and wildcard value set.
2970 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2971 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2973 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2977 * Check and if necessary update the leaf rcu_node structure's
2978 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2979 * number of queued RCU callbacks. No locks need be held, but the
2980 * caller must have disabled interrupts.
2982 * Note that this function ignores the possibility that there are a lot
2983 * of callbacks all of which have already seen the end of their respective
2984 * grace periods. This omission is due to the need for no-CBs CPUs to
2985 * be holding ->nocb_lock to do this check, which is too heavy for a
2986 * common-case operation.
2988 static void check_cb_ovld(struct rcu_data *rdp)
2990 struct rcu_node *const rnp = rdp->mynode;
2992 if (qovld_calc <= 0 ||
2993 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2994 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2995 return; // Early boot wildcard value or already set correctly.
2996 raw_spin_lock_rcu_node(rnp);
2997 check_cb_ovld_locked(rdp, rnp);
2998 raw_spin_unlock_rcu_node(rnp);
3001 /* Helper function for call_rcu() and friends. */
3003 __call_rcu(struct rcu_head *head, rcu_callback_t func)
3005 static atomic_t doublefrees;
3006 unsigned long flags;
3007 struct rcu_data *rdp;
3010 /* Misaligned rcu_head! */
3011 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3013 if (debug_rcu_head_queue(head)) {
3015 * Probable double call_rcu(), so leak the callback.
3016 * Use rcu:rcu_callback trace event to find the previous
3017 * time callback was passed to __call_rcu().
3019 if (atomic_inc_return(&doublefrees) < 4) {
3020 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
3023 WRITE_ONCE(head->func, rcu_leak_callback);
3028 local_irq_save(flags);
3029 kasan_record_aux_stack(head);
3030 rdp = this_cpu_ptr(&rcu_data);
3032 /* Add the callback to our list. */
3033 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3034 // This can trigger due to call_rcu() from offline CPU:
3035 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3036 WARN_ON_ONCE(!rcu_is_watching());
3037 // Very early boot, before rcu_init(). Initialize if needed
3038 // and then drop through to queue the callback.
3039 if (rcu_segcblist_empty(&rdp->cblist))
3040 rcu_segcblist_init(&rdp->cblist);
3044 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3045 return; // Enqueued onto ->nocb_bypass, so just leave.
3046 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3047 rcu_segcblist_enqueue(&rdp->cblist, head);
3048 if (__is_kvfree_rcu_offset((unsigned long)func))
3049 trace_rcu_kvfree_callback(rcu_state.name, head,
3050 (unsigned long)func,
3051 rcu_segcblist_n_cbs(&rdp->cblist));
3053 trace_rcu_callback(rcu_state.name, head,
3054 rcu_segcblist_n_cbs(&rdp->cblist));
3056 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3058 /* Go handle any RCU core processing required. */
3059 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3060 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3062 __call_rcu_core(rdp, head, flags);
3063 local_irq_restore(flags);
3068 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3069 * @head: structure to be used for queueing the RCU updates.
3070 * @func: actual callback function to be invoked after the grace period
3072 * The callback function will be invoked some time after a full grace
3073 * period elapses, in other words after all pre-existing RCU read-side
3074 * critical sections have completed. However, the callback function
3075 * might well execute concurrently with RCU read-side critical sections
3076 * that started after call_rcu() was invoked.
3078 * RCU read-side critical sections are delimited by rcu_read_lock()
3079 * and rcu_read_unlock(), and may be nested. In addition, but only in
3080 * v5.0 and later, regions of code across which interrupts, preemption,
3081 * or softirqs have been disabled also serve as RCU read-side critical
3082 * sections. This includes hardware interrupt handlers, softirq handlers,
3085 * Note that all CPUs must agree that the grace period extended beyond
3086 * all pre-existing RCU read-side critical section. On systems with more
3087 * than one CPU, this means that when "func()" is invoked, each CPU is
3088 * guaranteed to have executed a full memory barrier since the end of its
3089 * last RCU read-side critical section whose beginning preceded the call
3090 * to call_rcu(). It also means that each CPU executing an RCU read-side
3091 * critical section that continues beyond the start of "func()" must have
3092 * executed a memory barrier after the call_rcu() but before the beginning
3093 * of that RCU read-side critical section. Note that these guarantees
3094 * include CPUs that are offline, idle, or executing in user mode, as
3095 * well as CPUs that are executing in the kernel.
3097 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3098 * resulting RCU callback function "func()", then both CPU A and CPU B are
3099 * guaranteed to execute a full memory barrier during the time interval
3100 * between the call to call_rcu() and the invocation of "func()" -- even
3101 * if CPU A and CPU B are the same CPU (but again only if the system has
3102 * more than one CPU).
3104 * Implementation of these memory-ordering guarantees is described here:
3105 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3107 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3109 __call_rcu(head, func);
3111 EXPORT_SYMBOL_GPL(call_rcu);
3114 /* Maximum number of jiffies to wait before draining a batch. */
3115 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3116 #define KFREE_N_BATCHES 2
3117 #define FREE_N_CHANNELS 2
3120 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3121 * @nr_records: Number of active pointers in the array
3122 * @next: Next bulk object in the block chain
3123 * @records: Array of the kvfree_rcu() pointers
3125 struct kvfree_rcu_bulk_data {
3126 unsigned long nr_records;
3127 struct kvfree_rcu_bulk_data *next;
3132 * This macro defines how many entries the "records" array
3133 * will contain. It is based on the fact that the size of
3134 * kvfree_rcu_bulk_data structure becomes exactly one page.
3136 #define KVFREE_BULK_MAX_ENTR \
3137 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3140 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3141 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3142 * @head_free: List of kfree_rcu() objects waiting for a grace period
3143 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3144 * @krcp: Pointer to @kfree_rcu_cpu structure
3147 struct kfree_rcu_cpu_work {
3148 struct rcu_work rcu_work;
3149 struct rcu_head *head_free;
3150 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3151 struct kfree_rcu_cpu *krcp;
3155 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3156 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3157 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3158 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3159 * @lock: Synchronize access to this structure
3160 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3161 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3162 * @initialized: The @rcu_work fields have been initialized
3163 * @count: Number of objects for which GP not started
3165 * A simple cache list that contains objects for reuse purpose.
3166 * In order to save some per-cpu space the list is singular.
3167 * Even though it is lockless an access has to be protected by the
3169 * @page_cache_work: A work to refill the cache when it is empty
3170 * @backoff_page_cache_fill: Delay cache refills
3171 * @work_in_progress: Indicates that page_cache_work is running
3172 * @hrtimer: A hrtimer for scheduling a page_cache_work
3173 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3175 * This is a per-CPU structure. The reason that it is not included in
3176 * the rcu_data structure is to permit this code to be extracted from
3177 * the RCU files. Such extraction could allow further optimization of
3178 * the interactions with the slab allocators.
3180 struct kfree_rcu_cpu {
3181 struct rcu_head *head;
3182 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3183 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3184 raw_spinlock_t lock;
3185 struct delayed_work monitor_work;
3190 struct delayed_work page_cache_work;
3191 atomic_t backoff_page_cache_fill;
3192 atomic_t work_in_progress;
3193 struct hrtimer hrtimer;
3195 struct llist_head bkvcache;
3199 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3200 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3203 static __always_inline void
3204 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3206 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3209 for (i = 0; i < bhead->nr_records; i++)
3210 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3214 static inline struct kfree_rcu_cpu *
3215 krc_this_cpu_lock(unsigned long *flags)
3217 struct kfree_rcu_cpu *krcp;
3219 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3220 krcp = this_cpu_ptr(&krc);
3221 raw_spin_lock(&krcp->lock);
3227 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3229 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3232 static inline struct kvfree_rcu_bulk_data *
3233 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3235 if (!krcp->nr_bkv_objs)
3238 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3239 return (struct kvfree_rcu_bulk_data *)
3240 llist_del_first(&krcp->bkvcache);
3244 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3245 struct kvfree_rcu_bulk_data *bnode)
3248 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3251 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3252 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3257 drain_page_cache(struct kfree_rcu_cpu *krcp)
3259 unsigned long flags;
3260 struct llist_node *page_list, *pos, *n;
3263 raw_spin_lock_irqsave(&krcp->lock, flags);
3264 page_list = llist_del_all(&krcp->bkvcache);
3265 WRITE_ONCE(krcp->nr_bkv_objs, 0);
3266 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3268 llist_for_each_safe(pos, n, page_list) {
3269 free_page((unsigned long)pos);
3277 * This function is invoked in workqueue context after a grace period.
3278 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3280 static void kfree_rcu_work(struct work_struct *work)
3282 unsigned long flags;
3283 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3284 struct rcu_head *head, *next;
3285 struct kfree_rcu_cpu *krcp;
3286 struct kfree_rcu_cpu_work *krwp;
3289 krwp = container_of(to_rcu_work(work),
3290 struct kfree_rcu_cpu_work, rcu_work);
3293 raw_spin_lock_irqsave(&krcp->lock, flags);
3294 // Channels 1 and 2.
3295 for (i = 0; i < FREE_N_CHANNELS; i++) {
3296 bkvhead[i] = krwp->bkvhead_free[i];
3297 krwp->bkvhead_free[i] = NULL;
3301 head = krwp->head_free;
3302 krwp->head_free = NULL;
3303 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3305 // Handle the first two channels.
3306 for (i = 0; i < FREE_N_CHANNELS; i++) {
3307 for (; bkvhead[i]; bkvhead[i] = bnext) {
3308 bnext = bkvhead[i]->next;
3309 debug_rcu_bhead_unqueue(bkvhead[i]);
3311 rcu_lock_acquire(&rcu_callback_map);
3312 if (i == 0) { // kmalloc() / kfree().
3313 trace_rcu_invoke_kfree_bulk_callback(
3314 rcu_state.name, bkvhead[i]->nr_records,
3315 bkvhead[i]->records);
3317 kfree_bulk(bkvhead[i]->nr_records,
3318 bkvhead[i]->records);
3319 } else { // vmalloc() / vfree().
3320 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3321 trace_rcu_invoke_kvfree_callback(
3323 bkvhead[i]->records[j], 0);
3325 vfree(bkvhead[i]->records[j]);
3328 rcu_lock_release(&rcu_callback_map);
3330 raw_spin_lock_irqsave(&krcp->lock, flags);
3331 if (put_cached_bnode(krcp, bkvhead[i]))
3333 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3336 free_page((unsigned long) bkvhead[i]);
3338 cond_resched_tasks_rcu_qs();
3343 * This is used when the "bulk" path can not be used for the
3344 * double-argument of kvfree_rcu(). This happens when the
3345 * page-cache is empty, which means that objects are instead
3346 * queued on a linked list through their rcu_head structures.
3347 * This list is named "Channel 3".
3349 for (; head; head = next) {
3350 unsigned long offset = (unsigned long)head->func;
3351 void *ptr = (void *)head - offset;
3354 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3355 rcu_lock_acquire(&rcu_callback_map);
3356 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3358 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3361 rcu_lock_release(&rcu_callback_map);
3362 cond_resched_tasks_rcu_qs();
3367 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3369 static void kfree_rcu_monitor(struct work_struct *work)
3371 struct kfree_rcu_cpu *krcp = container_of(work,
3372 struct kfree_rcu_cpu, monitor_work.work);
3373 unsigned long flags;
3376 raw_spin_lock_irqsave(&krcp->lock, flags);
3378 // Attempt to start a new batch.
3379 for (i = 0; i < KFREE_N_BATCHES; i++) {
3380 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3382 // Try to detach bkvhead or head and attach it over any
3383 // available corresponding free channel. It can be that
3384 // a previous RCU batch is in progress, it means that
3385 // immediately to queue another one is not possible so
3386 // in that case the monitor work is rearmed.
3387 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3388 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3389 (krcp->head && !krwp->head_free)) {
3390 // Channel 1 corresponds to the SLAB-pointer bulk path.
3391 // Channel 2 corresponds to vmalloc-pointer bulk path.
3392 for (j = 0; j < FREE_N_CHANNELS; j++) {
3393 if (!krwp->bkvhead_free[j]) {
3394 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3395 krcp->bkvhead[j] = NULL;
3399 // Channel 3 corresponds to both SLAB and vmalloc
3400 // objects queued on the linked list.
3401 if (!krwp->head_free) {
3402 krwp->head_free = krcp->head;
3406 WRITE_ONCE(krcp->count, 0);
3408 // One work is per one batch, so there are three
3409 // "free channels", the batch can handle. It can
3410 // be that the work is in the pending state when
3411 // channels have been detached following by each
3413 queue_rcu_work(system_wq, &krwp->rcu_work);
3417 // If there is nothing to detach, it means that our job is
3418 // successfully done here. In case of having at least one
3419 // of the channels that is still busy we should rearm the
3420 // work to repeat an attempt. Because previous batches are
3421 // still in progress.
3422 if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head)
3423 krcp->monitor_todo = false;
3425 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3427 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3430 static enum hrtimer_restart
3431 schedule_page_work_fn(struct hrtimer *t)
3433 struct kfree_rcu_cpu *krcp =
3434 container_of(t, struct kfree_rcu_cpu, hrtimer);
3436 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3437 return HRTIMER_NORESTART;
3440 static void fill_page_cache_func(struct work_struct *work)
3442 struct kvfree_rcu_bulk_data *bnode;
3443 struct kfree_rcu_cpu *krcp =
3444 container_of(work, struct kfree_rcu_cpu,
3445 page_cache_work.work);
3446 unsigned long flags;
3451 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3452 1 : rcu_min_cached_objs;
3454 for (i = 0; i < nr_pages; i++) {
3455 bnode = (struct kvfree_rcu_bulk_data *)
3456 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3459 raw_spin_lock_irqsave(&krcp->lock, flags);
3460 pushed = put_cached_bnode(krcp, bnode);
3461 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3464 free_page((unsigned long) bnode);
3470 atomic_set(&krcp->work_in_progress, 0);
3471 atomic_set(&krcp->backoff_page_cache_fill, 0);
3475 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3477 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3478 !atomic_xchg(&krcp->work_in_progress, 1)) {
3479 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3480 queue_delayed_work(system_wq,
3481 &krcp->page_cache_work,
3482 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3484 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3485 krcp->hrtimer.function = schedule_page_work_fn;
3486 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3491 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3492 // state specified by flags. If can_alloc is true, the caller must
3493 // be schedulable and not be holding any locks or mutexes that might be
3494 // acquired by the memory allocator or anything that it might invoke.
3495 // Returns true if ptr was successfully recorded, else the caller must
3498 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3499 unsigned long *flags, void *ptr, bool can_alloc)
3501 struct kvfree_rcu_bulk_data *bnode;
3504 *krcp = krc_this_cpu_lock(flags);
3505 if (unlikely(!(*krcp)->initialized))
3508 idx = !!is_vmalloc_addr(ptr);
3510 /* Check if a new block is required. */
3511 if (!(*krcp)->bkvhead[idx] ||
3512 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3513 bnode = get_cached_bnode(*krcp);
3514 if (!bnode && can_alloc) {
3515 krc_this_cpu_unlock(*krcp, *flags);
3517 // __GFP_NORETRY - allows a light-weight direct reclaim
3518 // what is OK from minimizing of fallback hitting point of
3519 // view. Apart of that it forbids any OOM invoking what is
3520 // also beneficial since we are about to release memory soon.
3522 // __GFP_NOMEMALLOC - prevents from consuming of all the
3523 // memory reserves. Please note we have a fallback path.
3525 // __GFP_NOWARN - it is supposed that an allocation can
3526 // be failed under low memory or high memory pressure
3528 bnode = (struct kvfree_rcu_bulk_data *)
3529 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3530 *krcp = krc_this_cpu_lock(flags);
3536 /* Initialize the new block. */
3537 bnode->nr_records = 0;
3538 bnode->next = (*krcp)->bkvhead[idx];
3540 /* Attach it to the head. */
3541 (*krcp)->bkvhead[idx] = bnode;
3544 /* Finally insert. */
3545 (*krcp)->bkvhead[idx]->records
3546 [(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3552 * Queue a request for lazy invocation of the appropriate free routine
3553 * after a grace period. Please note that three paths are maintained,
3554 * two for the common case using arrays of pointers and a third one that
3555 * is used only when the main paths cannot be used, for example, due to
3558 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3559 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3560 * be free'd in workqueue context. This allows us to: batch requests together to
3561 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3563 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3565 unsigned long flags;
3566 struct kfree_rcu_cpu *krcp;
3571 ptr = (void *) head - (unsigned long) func;
3574 * Please note there is a limitation for the head-less
3575 * variant, that is why there is a clear rule for such
3576 * objects: it can be used from might_sleep() context
3577 * only. For other places please embed an rcu_head to
3581 ptr = (unsigned long *) func;
3584 // Queue the object but don't yet schedule the batch.
3585 if (debug_rcu_head_queue(ptr)) {
3586 // Probable double kfree_rcu(), just leak.
3587 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3590 // Mark as success and leave.
3594 kasan_record_aux_stack(ptr);
3595 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3597 run_page_cache_worker(krcp);
3600 // Inline if kvfree_rcu(one_arg) call.
3604 head->next = krcp->head;
3609 WRITE_ONCE(krcp->count, krcp->count + 1);
3611 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3612 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3613 !krcp->monitor_todo) {
3614 krcp->monitor_todo = true;
3615 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3619 krc_this_cpu_unlock(krcp, flags);
3622 * Inline kvfree() after synchronize_rcu(). We can do
3623 * it from might_sleep() context only, so the current
3624 * CPU can pass the QS state.
3627 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3632 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3634 static unsigned long
3635 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3638 unsigned long count = 0;
3640 /* Snapshot count of all CPUs */
3641 for_each_possible_cpu(cpu) {
3642 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3644 count += READ_ONCE(krcp->count);
3645 count += READ_ONCE(krcp->nr_bkv_objs);
3646 atomic_set(&krcp->backoff_page_cache_fill, 1);
3652 static unsigned long
3653 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3657 for_each_possible_cpu(cpu) {
3659 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3661 count = krcp->count;
3662 count += drain_page_cache(krcp);
3663 kfree_rcu_monitor(&krcp->monitor_work.work);
3665 sc->nr_to_scan -= count;
3668 if (sc->nr_to_scan <= 0)
3672 return freed == 0 ? SHRINK_STOP : freed;
3675 static struct shrinker kfree_rcu_shrinker = {
3676 .count_objects = kfree_rcu_shrink_count,
3677 .scan_objects = kfree_rcu_shrink_scan,
3679 .seeks = DEFAULT_SEEKS,
3682 void __init kfree_rcu_scheduler_running(void)
3685 unsigned long flags;
3687 for_each_possible_cpu(cpu) {
3688 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3690 raw_spin_lock_irqsave(&krcp->lock, flags);
3691 if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) ||
3692 krcp->monitor_todo) {
3693 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3696 krcp->monitor_todo = true;
3697 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3698 KFREE_DRAIN_JIFFIES);
3699 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3704 * During early boot, any blocking grace-period wait automatically
3705 * implies a grace period. Later on, this is never the case for PREEMPTION.
3707 * However, because a context switch is a grace period for !PREEMPTION, any
3708 * blocking grace-period wait automatically implies a grace period if
3709 * there is only one CPU online at any point time during execution of
3710 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3711 * occasionally incorrectly indicate that there are multiple CPUs online
3712 * when there was in fact only one the whole time, as this just adds some
3713 * overhead: RCU still operates correctly.
3715 static int rcu_blocking_is_gp(void)
3719 if (IS_ENABLED(CONFIG_PREEMPTION))
3720 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3721 might_sleep(); /* Check for RCU read-side critical section. */
3724 * If the rcu_state.n_online_cpus counter is equal to one,
3725 * there is only one CPU, and that CPU sees all prior accesses
3726 * made by any CPU that was online at the time of its access.
3727 * Furthermore, if this counter is equal to one, its value cannot
3728 * change until after the preempt_enable() below.
3730 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3731 * all later CPUs (both this one and any that come online later
3732 * on) are guaranteed to see all accesses prior to this point
3733 * in the code, without the need for additional memory barriers.
3734 * Those memory barriers are provided by CPU-hotplug code.
3736 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3742 * synchronize_rcu - wait until a grace period has elapsed.
3744 * Control will return to the caller some time after a full grace
3745 * period has elapsed, in other words after all currently executing RCU
3746 * read-side critical sections have completed. Note, however, that
3747 * upon return from synchronize_rcu(), the caller might well be executing
3748 * concurrently with new RCU read-side critical sections that began while
3749 * synchronize_rcu() was waiting.
3751 * RCU read-side critical sections are delimited by rcu_read_lock()
3752 * and rcu_read_unlock(), and may be nested. In addition, but only in
3753 * v5.0 and later, regions of code across which interrupts, preemption,
3754 * or softirqs have been disabled also serve as RCU read-side critical
3755 * sections. This includes hardware interrupt handlers, softirq handlers,
3758 * Note that this guarantee implies further memory-ordering guarantees.
3759 * On systems with more than one CPU, when synchronize_rcu() returns,
3760 * each CPU is guaranteed to have executed a full memory barrier since
3761 * the end of its last RCU read-side critical section whose beginning
3762 * preceded the call to synchronize_rcu(). In addition, each CPU having
3763 * an RCU read-side critical section that extends beyond the return from
3764 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3765 * after the beginning of synchronize_rcu() and before the beginning of
3766 * that RCU read-side critical section. Note that these guarantees include
3767 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3768 * that are executing in the kernel.
3770 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3771 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3772 * to have executed a full memory barrier during the execution of
3773 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3774 * again only if the system has more than one CPU).
3776 * Implementation of these memory-ordering guarantees is described here:
3777 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3779 void synchronize_rcu(void)
3781 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3782 lock_is_held(&rcu_lock_map) ||
3783 lock_is_held(&rcu_sched_lock_map),
3784 "Illegal synchronize_rcu() in RCU read-side critical section");
3785 if (rcu_blocking_is_gp())
3786 return; // Context allows vacuous grace periods.
3787 if (rcu_gp_is_expedited())
3788 synchronize_rcu_expedited();
3790 wait_rcu_gp(call_rcu);
3792 EXPORT_SYMBOL_GPL(synchronize_rcu);
3795 * get_state_synchronize_rcu - Snapshot current RCU state
3797 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3798 * or poll_state_synchronize_rcu() to determine whether or not a full
3799 * grace period has elapsed in the meantime.
3801 unsigned long get_state_synchronize_rcu(void)
3804 * Any prior manipulation of RCU-protected data must happen
3805 * before the load from ->gp_seq.
3808 return rcu_seq_snap(&rcu_state.gp_seq);
3810 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3813 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3815 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3816 * or poll_state_synchronize_rcu() to determine whether or not a full
3817 * grace period has elapsed in the meantime. If the needed grace period
3818 * is not already slated to start, notifies RCU core of the need for that
3821 * Interrupts must be enabled for the case where it is necessary to awaken
3822 * the grace-period kthread.
3824 unsigned long start_poll_synchronize_rcu(void)
3826 unsigned long flags;
3827 unsigned long gp_seq = get_state_synchronize_rcu();
3829 struct rcu_data *rdp;
3830 struct rcu_node *rnp;
3832 lockdep_assert_irqs_enabled();
3833 local_irq_save(flags);
3834 rdp = this_cpu_ptr(&rcu_data);
3836 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3837 needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3838 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3840 rcu_gp_kthread_wake();
3843 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3846 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3848 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3850 * If a full RCU grace period has elapsed since the earlier call from
3851 * which oldstate was obtained, return @true, otherwise return @false.
3852 * If @false is returned, it is the caller's responsibility to invoke this
3853 * function later on until it does return @true. Alternatively, the caller
3854 * can explicitly wait for a grace period, for example, by passing @oldstate
3855 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3857 * Yes, this function does not take counter wrap into account.
3858 * But counter wrap is harmless. If the counter wraps, we have waited for
3859 * more than 2 billion grace periods (and way more on a 64-bit system!).
3860 * Those needing to keep oldstate values for very long time periods
3861 * (many hours even on 32-bit systems) should check them occasionally
3862 * and either refresh them or set a flag indicating that the grace period
3865 * This function provides the same memory-ordering guarantees that
3866 * would be provided by a synchronize_rcu() that was invoked at the call
3867 * to the function that provided @oldstate, and that returned at the end
3870 bool poll_state_synchronize_rcu(unsigned long oldstate)
3872 if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3873 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3878 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3881 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3883 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3885 * If a full RCU grace period has elapsed since the earlier call to
3886 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3887 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3889 * Yes, this function does not take counter wrap into account. But
3890 * counter wrap is harmless. If the counter wraps, we have waited for
3891 * more than 2 billion grace periods (and way more on a 64-bit system!),
3892 * so waiting for one additional grace period should be just fine.
3894 * This function provides the same memory-ordering guarantees that
3895 * would be provided by a synchronize_rcu() that was invoked at the call
3896 * to the function that provided @oldstate, and that returned at the end
3899 void cond_synchronize_rcu(unsigned long oldstate)
3901 if (!poll_state_synchronize_rcu(oldstate))
3904 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3907 * Check to see if there is any immediate RCU-related work to be done by
3908 * the current CPU, returning 1 if so and zero otherwise. The checks are
3909 * in order of increasing expense: checks that can be carried out against
3910 * CPU-local state are performed first. However, we must check for CPU
3911 * stalls first, else we might not get a chance.
3913 static int rcu_pending(int user)
3915 bool gp_in_progress;
3916 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3917 struct rcu_node *rnp = rdp->mynode;
3919 lockdep_assert_irqs_disabled();
3921 /* Check for CPU stalls, if enabled. */
3922 check_cpu_stall(rdp);
3924 /* Does this CPU need a deferred NOCB wakeup? */
3925 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3928 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3929 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3932 /* Is the RCU core waiting for a quiescent state from this CPU? */
3933 gp_in_progress = rcu_gp_in_progress();
3934 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3937 /* Does this CPU have callbacks ready to invoke? */
3938 if (!rcu_rdp_is_offloaded(rdp) &&
3939 rcu_segcblist_ready_cbs(&rdp->cblist))
3942 /* Has RCU gone idle with this CPU needing another grace period? */
3943 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3944 !rcu_rdp_is_offloaded(rdp) &&
3945 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3948 /* Have RCU grace period completed or started? */
3949 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3950 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3958 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3959 * the compiler is expected to optimize this away.
3961 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3963 trace_rcu_barrier(rcu_state.name, s, cpu,
3964 atomic_read(&rcu_state.barrier_cpu_count), done);
3968 * RCU callback function for rcu_barrier(). If we are last, wake
3969 * up the task executing rcu_barrier().
3971 * Note that the value of rcu_state.barrier_sequence must be captured
3972 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3973 * other CPUs might count the value down to zero before this CPU gets
3974 * around to invoking rcu_barrier_trace(), which might result in bogus
3975 * data from the next instance of rcu_barrier().
3977 static void rcu_barrier_callback(struct rcu_head *rhp)
3979 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3981 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3982 rcu_barrier_trace(TPS("LastCB"), -1, s);
3983 complete(&rcu_state.barrier_completion);
3985 rcu_barrier_trace(TPS("CB"), -1, s);
3990 * Called with preemption disabled, and from cross-cpu IRQ context.
3992 static void rcu_barrier_func(void *cpu_in)
3994 uintptr_t cpu = (uintptr_t)cpu_in;
3995 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3997 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3998 rdp->barrier_head.func = rcu_barrier_callback;
3999 debug_rcu_head_queue(&rdp->barrier_head);
4001 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
4002 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4003 atomic_inc(&rcu_state.barrier_cpu_count);
4005 debug_rcu_head_unqueue(&rdp->barrier_head);
4006 rcu_barrier_trace(TPS("IRQNQ"), -1,
4007 rcu_state.barrier_sequence);
4009 rcu_nocb_unlock(rdp);
4013 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4015 * Note that this primitive does not necessarily wait for an RCU grace period
4016 * to complete. For example, if there are no RCU callbacks queued anywhere
4017 * in the system, then rcu_barrier() is within its rights to return
4018 * immediately, without waiting for anything, much less an RCU grace period.
4020 void rcu_barrier(void)
4023 struct rcu_data *rdp;
4024 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4026 rcu_barrier_trace(TPS("Begin"), -1, s);
4028 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4029 mutex_lock(&rcu_state.barrier_mutex);
4031 /* Did someone else do our work for us? */
4032 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4033 rcu_barrier_trace(TPS("EarlyExit"), -1,
4034 rcu_state.barrier_sequence);
4035 smp_mb(); /* caller's subsequent code after above check. */
4036 mutex_unlock(&rcu_state.barrier_mutex);
4040 /* Mark the start of the barrier operation. */
4041 rcu_seq_start(&rcu_state.barrier_sequence);
4042 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4045 * Initialize the count to two rather than to zero in order
4046 * to avoid a too-soon return to zero in case of an immediate
4047 * invocation of the just-enqueued callback (or preemption of
4048 * this task). Exclude CPU-hotplug operations to ensure that no
4049 * offline non-offloaded CPU has callbacks queued.
4051 init_completion(&rcu_state.barrier_completion);
4052 atomic_set(&rcu_state.barrier_cpu_count, 2);
4056 * Force each CPU with callbacks to register a new callback.
4057 * When that callback is invoked, we will know that all of the
4058 * corresponding CPU's preceding callbacks have been invoked.
4060 for_each_possible_cpu(cpu) {
4061 rdp = per_cpu_ptr(&rcu_data, cpu);
4062 if (cpu_is_offline(cpu) &&
4063 !rcu_rdp_is_offloaded(rdp))
4065 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
4066 rcu_barrier_trace(TPS("OnlineQ"), cpu,
4067 rcu_state.barrier_sequence);
4068 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
4069 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
4070 cpu_is_offline(cpu)) {
4071 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
4072 rcu_state.barrier_sequence);
4073 local_irq_disable();
4074 rcu_barrier_func((void *)cpu);
4076 } else if (cpu_is_offline(cpu)) {
4077 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
4078 rcu_state.barrier_sequence);
4080 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
4081 rcu_state.barrier_sequence);
4087 * Now that we have an rcu_barrier_callback() callback on each
4088 * CPU, and thus each counted, remove the initial count.
4090 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4091 complete(&rcu_state.barrier_completion);
4093 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4094 wait_for_completion(&rcu_state.barrier_completion);
4096 /* Mark the end of the barrier operation. */
4097 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4098 rcu_seq_end(&rcu_state.barrier_sequence);
4100 /* Other rcu_barrier() invocations can now safely proceed. */
4101 mutex_unlock(&rcu_state.barrier_mutex);
4103 EXPORT_SYMBOL_GPL(rcu_barrier);
4106 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4107 * first CPU in a given leaf rcu_node structure coming online. The caller
4108 * must hold the corresponding leaf rcu_node ->lock with interrupts
4111 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4115 struct rcu_node *rnp = rnp_leaf;
4117 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4118 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4120 mask = rnp->grpmask;
4124 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4125 oldmask = rnp->qsmaskinit;
4126 rnp->qsmaskinit |= mask;
4127 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4134 * Do boot-time initialization of a CPU's per-CPU RCU data.
4137 rcu_boot_init_percpu_data(int cpu)
4139 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4141 /* Set up local state, ensuring consistent view of global state. */
4142 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4143 INIT_WORK(&rdp->strict_work, strict_work_handler);
4144 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4145 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4146 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4147 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4148 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4149 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4151 rcu_boot_init_nocb_percpu_data(rdp);
4155 * Invoked early in the CPU-online process, when pretty much all services
4156 * are available. The incoming CPU is not present.
4158 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4159 * offline event can be happening at a given time. Note also that we can
4160 * accept some slop in the rsp->gp_seq access due to the fact that this
4161 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4162 * And any offloaded callbacks are being numbered elsewhere.
4164 int rcutree_prepare_cpu(unsigned int cpu)
4166 unsigned long flags;
4167 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4168 struct rcu_node *rnp = rcu_get_root();
4170 /* Set up local state, ensuring consistent view of global state. */
4171 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4172 rdp->qlen_last_fqs_check = 0;
4173 rdp->n_force_qs_snap = rcu_state.n_force_qs;
4174 rdp->blimit = blimit;
4175 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
4176 rcu_dynticks_eqs_online();
4177 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4180 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4183 if (!rcu_segcblist_is_enabled(&rdp->cblist))
4184 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4187 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4188 * propagation up the rcu_node tree will happen at the beginning
4189 * of the next grace period.
4192 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4193 rdp->beenonline = true; /* We have now been online. */
4194 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4195 rdp->gp_seq_needed = rdp->gp_seq;
4196 rdp->cpu_no_qs.b.norm = true;
4197 rdp->core_needs_qs = false;
4198 rdp->rcu_iw_pending = false;
4199 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4200 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4201 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4202 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4203 rcu_spawn_one_boost_kthread(rnp);
4204 rcu_spawn_cpu_nocb_kthread(cpu);
4205 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4211 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4213 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4215 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4217 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4221 * Near the end of the CPU-online process. Pretty much all services
4222 * enabled, and the CPU is now very much alive.
4224 int rcutree_online_cpu(unsigned int cpu)
4226 unsigned long flags;
4227 struct rcu_data *rdp;
4228 struct rcu_node *rnp;
4230 rdp = per_cpu_ptr(&rcu_data, cpu);
4232 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4233 rnp->ffmask |= rdp->grpmask;
4234 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4235 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4236 return 0; /* Too early in boot for scheduler work. */
4237 sync_sched_exp_online_cleanup(cpu);
4238 rcutree_affinity_setting(cpu, -1);
4240 // Stop-machine done, so allow nohz_full to disable tick.
4241 tick_dep_clear(TICK_DEP_BIT_RCU);
4246 * Near the beginning of the process. The CPU is still very much alive
4247 * with pretty much all services enabled.
4249 int rcutree_offline_cpu(unsigned int cpu)
4251 unsigned long flags;
4252 struct rcu_data *rdp;
4253 struct rcu_node *rnp;
4255 rdp = per_cpu_ptr(&rcu_data, cpu);
4257 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4258 rnp->ffmask &= ~rdp->grpmask;
4259 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4261 rcutree_affinity_setting(cpu, cpu);
4263 // nohz_full CPUs need the tick for stop-machine to work quickly
4264 tick_dep_set(TICK_DEP_BIT_RCU);
4269 * Mark the specified CPU as being online so that subsequent grace periods
4270 * (both expedited and normal) will wait on it. Note that this means that
4271 * incoming CPUs are not allowed to use RCU read-side critical sections
4272 * until this function is called. Failing to observe this restriction
4273 * will result in lockdep splats.
4275 * Note that this function is special in that it is invoked directly
4276 * from the incoming CPU rather than from the cpuhp_step mechanism.
4277 * This is because this function must be invoked at a precise location.
4279 void rcu_cpu_starting(unsigned int cpu)
4281 unsigned long flags;
4283 struct rcu_data *rdp;
4284 struct rcu_node *rnp;
4287 rdp = per_cpu_ptr(&rcu_data, cpu);
4288 if (rdp->cpu_started)
4290 rdp->cpu_started = true;
4293 mask = rdp->grpmask;
4294 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4295 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4296 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4297 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4298 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4299 newcpu = !(rnp->expmaskinitnext & mask);
4300 rnp->expmaskinitnext |= mask;
4301 /* Allow lockless access for expedited grace periods. */
4302 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4303 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4304 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4305 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4306 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4308 /* An incoming CPU should never be blocking a grace period. */
4309 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4310 rcu_disable_urgency_upon_qs(rdp);
4311 /* Report QS -after- changing ->qsmaskinitnext! */
4312 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4314 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4316 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4317 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4318 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4319 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4323 * The outgoing function has no further need of RCU, so remove it from
4324 * the rcu_node tree's ->qsmaskinitnext bit masks.
4326 * Note that this function is special in that it is invoked directly
4327 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4328 * This is because this function must be invoked at a precise location.
4330 void rcu_report_dead(unsigned int cpu)
4332 unsigned long flags;
4334 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4335 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4337 // Do any dangling deferred wakeups.
4338 do_nocb_deferred_wakeup(rdp);
4340 /* QS for any half-done expedited grace period. */
4342 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4344 rcu_preempt_deferred_qs(current);
4346 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4347 mask = rdp->grpmask;
4348 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4349 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4350 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4351 raw_spin_lock(&rcu_state.ofl_lock);
4352 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4353 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4354 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4355 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4356 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4357 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4358 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4360 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4361 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4362 raw_spin_unlock(&rcu_state.ofl_lock);
4363 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4364 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4365 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4367 rdp->cpu_started = false;
4370 #ifdef CONFIG_HOTPLUG_CPU
4372 * The outgoing CPU has just passed through the dying-idle state, and we
4373 * are being invoked from the CPU that was IPIed to continue the offline
4374 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4376 void rcutree_migrate_callbacks(int cpu)
4378 unsigned long flags;
4379 struct rcu_data *my_rdp;
4380 struct rcu_node *my_rnp;
4381 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4384 if (rcu_rdp_is_offloaded(rdp) ||
4385 rcu_segcblist_empty(&rdp->cblist))
4386 return; /* No callbacks to migrate. */
4388 local_irq_save(flags);
4389 my_rdp = this_cpu_ptr(&rcu_data);
4390 my_rnp = my_rdp->mynode;
4391 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4392 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4393 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4394 /* Leverage recent GPs and set GP for new callbacks. */
4395 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4396 rcu_advance_cbs(my_rnp, my_rdp);
4397 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4398 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4399 rcu_segcblist_disable(&rdp->cblist);
4400 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4401 !rcu_segcblist_n_cbs(&my_rdp->cblist));
4402 if (rcu_rdp_is_offloaded(my_rdp)) {
4403 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4404 __call_rcu_nocb_wake(my_rdp, true, flags);
4406 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4407 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4410 rcu_gp_kthread_wake();
4411 lockdep_assert_irqs_enabled();
4412 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4413 !rcu_segcblist_empty(&rdp->cblist),
4414 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4415 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4416 rcu_segcblist_first_cb(&rdp->cblist));
4421 * On non-huge systems, use expedited RCU grace periods to make suspend
4422 * and hibernation run faster.
4424 static int rcu_pm_notify(struct notifier_block *self,
4425 unsigned long action, void *hcpu)
4428 case PM_HIBERNATION_PREPARE:
4429 case PM_SUSPEND_PREPARE:
4432 case PM_POST_HIBERNATION:
4433 case PM_POST_SUSPEND:
4434 rcu_unexpedite_gp();
4443 * Spawn the kthreads that handle RCU's grace periods.
4445 static int __init rcu_spawn_gp_kthread(void)
4447 unsigned long flags;
4448 int kthread_prio_in = kthread_prio;
4449 struct rcu_node *rnp;
4450 struct sched_param sp;
4451 struct task_struct *t;
4453 /* Force priority into range. */
4454 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4455 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4457 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4459 else if (kthread_prio < 0)
4461 else if (kthread_prio > 99)
4464 if (kthread_prio != kthread_prio_in)
4465 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4466 kthread_prio, kthread_prio_in);
4468 rcu_scheduler_fully_active = 1;
4469 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4470 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4473 sp.sched_priority = kthread_prio;
4474 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4476 rnp = rcu_get_root();
4477 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4478 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4479 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4480 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4481 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4482 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4484 rcu_spawn_nocb_kthreads();
4485 rcu_spawn_boost_kthreads();
4486 rcu_spawn_core_kthreads();
4489 early_initcall(rcu_spawn_gp_kthread);
4492 * This function is invoked towards the end of the scheduler's
4493 * initialization process. Before this is called, the idle task might
4494 * contain synchronous grace-period primitives (during which time, this idle
4495 * task is booting the system, and such primitives are no-ops). After this
4496 * function is called, any synchronous grace-period primitives are run as
4497 * expedited, with the requesting task driving the grace period forward.
4498 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4499 * runtime RCU functionality.
4501 void rcu_scheduler_starting(void)
4503 WARN_ON(num_online_cpus() != 1);
4504 WARN_ON(nr_context_switches() > 0);
4505 rcu_test_sync_prims();
4506 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4507 rcu_test_sync_prims();
4511 * Helper function for rcu_init() that initializes the rcu_state structure.
4513 static void __init rcu_init_one(void)
4515 static const char * const buf[] = RCU_NODE_NAME_INIT;
4516 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4517 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4518 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4520 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4524 struct rcu_node *rnp;
4526 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4528 /* Silence gcc 4.8 false positive about array index out of range. */
4529 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4530 panic("rcu_init_one: rcu_num_lvls out of range");
4532 /* Initialize the level-tracking arrays. */
4534 for (i = 1; i < rcu_num_lvls; i++)
4535 rcu_state.level[i] =
4536 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4537 rcu_init_levelspread(levelspread, num_rcu_lvl);
4539 /* Initialize the elements themselves, starting from the leaves. */
4541 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4542 cpustride *= levelspread[i];
4543 rnp = rcu_state.level[i];
4544 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4545 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4546 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4547 &rcu_node_class[i], buf[i]);
4548 raw_spin_lock_init(&rnp->fqslock);
4549 lockdep_set_class_and_name(&rnp->fqslock,
4550 &rcu_fqs_class[i], fqs[i]);
4551 rnp->gp_seq = rcu_state.gp_seq;
4552 rnp->gp_seq_needed = rcu_state.gp_seq;
4553 rnp->completedqs = rcu_state.gp_seq;
4555 rnp->qsmaskinit = 0;
4556 rnp->grplo = j * cpustride;
4557 rnp->grphi = (j + 1) * cpustride - 1;
4558 if (rnp->grphi >= nr_cpu_ids)
4559 rnp->grphi = nr_cpu_ids - 1;
4565 rnp->grpnum = j % levelspread[i - 1];
4566 rnp->grpmask = BIT(rnp->grpnum);
4567 rnp->parent = rcu_state.level[i - 1] +
4568 j / levelspread[i - 1];
4571 INIT_LIST_HEAD(&rnp->blkd_tasks);
4572 rcu_init_one_nocb(rnp);
4573 init_waitqueue_head(&rnp->exp_wq[0]);
4574 init_waitqueue_head(&rnp->exp_wq[1]);
4575 init_waitqueue_head(&rnp->exp_wq[2]);
4576 init_waitqueue_head(&rnp->exp_wq[3]);
4577 spin_lock_init(&rnp->exp_lock);
4581 init_swait_queue_head(&rcu_state.gp_wq);
4582 init_swait_queue_head(&rcu_state.expedited_wq);
4583 rnp = rcu_first_leaf_node();
4584 for_each_possible_cpu(i) {
4585 while (i > rnp->grphi)
4587 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4588 rcu_boot_init_percpu_data(i);
4593 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4594 * replace the definitions in tree.h because those are needed to size
4595 * the ->node array in the rcu_state structure.
4597 void rcu_init_geometry(void)
4601 static unsigned long old_nr_cpu_ids;
4602 int rcu_capacity[RCU_NUM_LVLS];
4603 static bool initialized;
4607 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4608 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4610 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4614 old_nr_cpu_ids = nr_cpu_ids;
4618 * Initialize any unspecified boot parameters.
4619 * The default values of jiffies_till_first_fqs and
4620 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4621 * value, which is a function of HZ, then adding one for each
4622 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4624 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4625 if (jiffies_till_first_fqs == ULONG_MAX)
4626 jiffies_till_first_fqs = d;
4627 if (jiffies_till_next_fqs == ULONG_MAX)
4628 jiffies_till_next_fqs = d;
4629 adjust_jiffies_till_sched_qs();
4631 /* If the compile-time values are accurate, just leave. */
4632 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4633 nr_cpu_ids == NR_CPUS)
4635 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4636 rcu_fanout_leaf, nr_cpu_ids);
4639 * The boot-time rcu_fanout_leaf parameter must be at least two
4640 * and cannot exceed the number of bits in the rcu_node masks.
4641 * Complain and fall back to the compile-time values if this
4642 * limit is exceeded.
4644 if (rcu_fanout_leaf < 2 ||
4645 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4646 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4652 * Compute number of nodes that can be handled an rcu_node tree
4653 * with the given number of levels.
4655 rcu_capacity[0] = rcu_fanout_leaf;
4656 for (i = 1; i < RCU_NUM_LVLS; i++)
4657 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4660 * The tree must be able to accommodate the configured number of CPUs.
4661 * If this limit is exceeded, fall back to the compile-time values.
4663 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4664 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4669 /* Calculate the number of levels in the tree. */
4670 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4672 rcu_num_lvls = i + 1;
4674 /* Calculate the number of rcu_nodes at each level of the tree. */
4675 for (i = 0; i < rcu_num_lvls; i++) {
4676 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4677 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4680 /* Calculate the total number of rcu_node structures. */
4682 for (i = 0; i < rcu_num_lvls; i++)
4683 rcu_num_nodes += num_rcu_lvl[i];
4687 * Dump out the structure of the rcu_node combining tree associated
4688 * with the rcu_state structure.
4690 static void __init rcu_dump_rcu_node_tree(void)
4693 struct rcu_node *rnp;
4695 pr_info("rcu_node tree layout dump\n");
4697 rcu_for_each_node_breadth_first(rnp) {
4698 if (rnp->level != level) {
4703 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4708 struct workqueue_struct *rcu_gp_wq;
4709 struct workqueue_struct *rcu_par_gp_wq;
4711 static void __init kfree_rcu_batch_init(void)
4716 /* Clamp it to [0:100] seconds interval. */
4717 if (rcu_delay_page_cache_fill_msec < 0 ||
4718 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4720 rcu_delay_page_cache_fill_msec =
4721 clamp(rcu_delay_page_cache_fill_msec, 0,
4722 (int) (100 * MSEC_PER_SEC));
4724 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4725 rcu_delay_page_cache_fill_msec);
4728 for_each_possible_cpu(cpu) {
4729 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4731 for (i = 0; i < KFREE_N_BATCHES; i++) {
4732 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4733 krcp->krw_arr[i].krcp = krcp;
4736 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4737 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4738 krcp->initialized = true;
4740 if (register_shrinker(&kfree_rcu_shrinker))
4741 pr_err("Failed to register kfree_rcu() shrinker!\n");
4744 void __init rcu_init(void)
4748 rcu_early_boot_tests();
4750 kfree_rcu_batch_init();
4751 rcu_bootup_announce();
4752 rcu_init_geometry();
4755 rcu_dump_rcu_node_tree();
4757 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4760 * We don't need protection against CPU-hotplug here because
4761 * this is called early in boot, before either interrupts
4762 * or the scheduler are operational.
4764 pm_notifier(rcu_pm_notify, 0);
4765 for_each_online_cpu(cpu) {
4766 rcutree_prepare_cpu(cpu);
4767 rcu_cpu_starting(cpu);
4768 rcutree_online_cpu(cpu);
4771 /* Create workqueue for Tree SRCU and for expedited GPs. */
4772 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4773 WARN_ON(!rcu_gp_wq);
4774 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4775 WARN_ON(!rcu_par_gp_wq);
4777 /* Fill in default value for rcutree.qovld boot parameter. */
4778 /* -After- the rcu_node ->lock fields are initialized! */
4780 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4785 #include "tree_stall.h"
4786 #include "tree_exp.h"
4787 #include "tree_plugin.h"