]> Git Repo - linux.git/blob - drivers/perf/arm_spe_pmu.c
Merge tag 'devicetree-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / perf / arm_spe_pmu.c
1 /*
2  * Perf support for the Statistical Profiling Extension, introduced as
3  * part of ARMv8.2.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * Copyright (C) 2016 ARM Limited
18  *
19  * Author: Will Deacon <[email protected]>
20  */
21
22 #define PMUNAME                                 "arm_spe"
23 #define DRVNAME                                 PMUNAME "_pmu"
24 #define pr_fmt(fmt)                             DRVNAME ": " fmt
25
26 #include <linux/bitops.h>
27 #include <linux/bug.h>
28 #include <linux/capability.h>
29 #include <linux/cpuhotplug.h>
30 #include <linux/cpumask.h>
31 #include <linux/device.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/irq.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/module.h>
38 #include <linux/of_address.h>
39 #include <linux/of_device.h>
40 #include <linux/perf_event.h>
41 #include <linux/platform_device.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/smp.h>
45 #include <linux/vmalloc.h>
46
47 #include <asm/barrier.h>
48 #include <asm/cpufeature.h>
49 #include <asm/mmu.h>
50 #include <asm/sysreg.h>
51
52 #define ARM_SPE_BUF_PAD_BYTE                    0
53
54 struct arm_spe_pmu_buf {
55         int                                     nr_pages;
56         bool                                    snapshot;
57         void                                    *base;
58 };
59
60 struct arm_spe_pmu {
61         struct pmu                              pmu;
62         struct platform_device                  *pdev;
63         cpumask_t                               supported_cpus;
64         struct hlist_node                       hotplug_node;
65
66         int                                     irq; /* PPI */
67
68         u16                                     min_period;
69         u16                                     counter_sz;
70
71 #define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
72 #define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
73 #define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
74 #define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
75 #define SPE_PMU_FEAT_LDS                        (1UL << 4)
76 #define SPE_PMU_FEAT_ERND                       (1UL << 5)
77 #define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
78         u64                                     features;
79
80         u16                                     max_record_sz;
81         u16                                     align;
82         struct perf_output_handle __percpu      *handle;
83 };
84
85 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
86
87 /* Convert a free-running index from perf into an SPE buffer offset */
88 #define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
89
90 /* Keep track of our dynamic hotplug state */
91 static enum cpuhp_state arm_spe_pmu_online;
92
93 enum arm_spe_pmu_buf_fault_action {
94         SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
95         SPE_PMU_BUF_FAULT_ACT_FATAL,
96         SPE_PMU_BUF_FAULT_ACT_OK,
97 };
98
99 /* This sysfs gunk was really good fun to write. */
100 enum arm_spe_pmu_capabilities {
101         SPE_PMU_CAP_ARCH_INST = 0,
102         SPE_PMU_CAP_ERND,
103         SPE_PMU_CAP_FEAT_MAX,
104         SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
105         SPE_PMU_CAP_MIN_IVAL,
106 };
107
108 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
109         [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
110         [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
111 };
112
113 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
114 {
115         if (cap < SPE_PMU_CAP_FEAT_MAX)
116                 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
117
118         switch (cap) {
119         case SPE_PMU_CAP_CNT_SZ:
120                 return spe_pmu->counter_sz;
121         case SPE_PMU_CAP_MIN_IVAL:
122                 return spe_pmu->min_period;
123         default:
124                 WARN(1, "unknown cap %d\n", cap);
125         }
126
127         return 0;
128 }
129
130 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
131                                     struct device_attribute *attr,
132                                     char *buf)
133 {
134         struct platform_device *pdev = to_platform_device(dev);
135         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
136         struct dev_ext_attribute *ea =
137                 container_of(attr, struct dev_ext_attribute, attr);
138         int cap = (long)ea->var;
139
140         return snprintf(buf, PAGE_SIZE, "%u\n",
141                 arm_spe_pmu_cap_get(spe_pmu, cap));
142 }
143
144 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
145         &((struct dev_ext_attribute[]) {                                \
146                 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
147         })[0].attr.attr
148
149 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
150         SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
151
152 static struct attribute *arm_spe_pmu_cap_attr[] = {
153         SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
154         SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
155         SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
156         SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
157         NULL,
158 };
159
160 static struct attribute_group arm_spe_pmu_cap_group = {
161         .name   = "caps",
162         .attrs  = arm_spe_pmu_cap_attr,
163 };
164
165 /* User ABI */
166 #define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
167 #define ATTR_CFG_FLD_ts_enable_LO               0
168 #define ATTR_CFG_FLD_ts_enable_HI               0
169 #define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
170 #define ATTR_CFG_FLD_pa_enable_LO               1
171 #define ATTR_CFG_FLD_pa_enable_HI               1
172 #define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
173 #define ATTR_CFG_FLD_pct_enable_LO              2
174 #define ATTR_CFG_FLD_pct_enable_HI              2
175 #define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
176 #define ATTR_CFG_FLD_jitter_LO                  16
177 #define ATTR_CFG_FLD_jitter_HI                  16
178 #define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
179 #define ATTR_CFG_FLD_branch_filter_LO           32
180 #define ATTR_CFG_FLD_branch_filter_HI           32
181 #define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
182 #define ATTR_CFG_FLD_load_filter_LO             33
183 #define ATTR_CFG_FLD_load_filter_HI             33
184 #define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
185 #define ATTR_CFG_FLD_store_filter_LO            34
186 #define ATTR_CFG_FLD_store_filter_HI            34
187
188 #define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
189 #define ATTR_CFG_FLD_event_filter_LO            0
190 #define ATTR_CFG_FLD_event_filter_HI            63
191
192 #define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
193 #define ATTR_CFG_FLD_min_latency_LO             0
194 #define ATTR_CFG_FLD_min_latency_HI             11
195
196 /* Why does everything I do descend into this? */
197 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
198         (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
199
200 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
201         __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
202
203 #define GEN_PMU_FORMAT_ATTR(name)                                       \
204         PMU_FORMAT_ATTR(name,                                           \
205         _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
206                              ATTR_CFG_FLD_##name##_LO,                  \
207                              ATTR_CFG_FLD_##name##_HI))
208
209 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
210         ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
211
212 #define ATTR_CFG_GET_FLD(attr, name)                                    \
213         _ATTR_CFG_GET_FLD(attr,                                         \
214                           ATTR_CFG_FLD_##name##_CFG,                    \
215                           ATTR_CFG_FLD_##name##_LO,                     \
216                           ATTR_CFG_FLD_##name##_HI)
217
218 GEN_PMU_FORMAT_ATTR(ts_enable);
219 GEN_PMU_FORMAT_ATTR(pa_enable);
220 GEN_PMU_FORMAT_ATTR(pct_enable);
221 GEN_PMU_FORMAT_ATTR(jitter);
222 GEN_PMU_FORMAT_ATTR(branch_filter);
223 GEN_PMU_FORMAT_ATTR(load_filter);
224 GEN_PMU_FORMAT_ATTR(store_filter);
225 GEN_PMU_FORMAT_ATTR(event_filter);
226 GEN_PMU_FORMAT_ATTR(min_latency);
227
228 static struct attribute *arm_spe_pmu_formats_attr[] = {
229         &format_attr_ts_enable.attr,
230         &format_attr_pa_enable.attr,
231         &format_attr_pct_enable.attr,
232         &format_attr_jitter.attr,
233         &format_attr_branch_filter.attr,
234         &format_attr_load_filter.attr,
235         &format_attr_store_filter.attr,
236         &format_attr_event_filter.attr,
237         &format_attr_min_latency.attr,
238         NULL,
239 };
240
241 static struct attribute_group arm_spe_pmu_format_group = {
242         .name   = "format",
243         .attrs  = arm_spe_pmu_formats_attr,
244 };
245
246 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
247                                             struct device_attribute *attr,
248                                             char *buf)
249 {
250         struct platform_device *pdev = to_platform_device(dev);
251         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
252
253         return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
254 }
255 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
256
257 static struct attribute *arm_spe_pmu_attrs[] = {
258         &dev_attr_cpumask.attr,
259         NULL,
260 };
261
262 static struct attribute_group arm_spe_pmu_group = {
263         .attrs  = arm_spe_pmu_attrs,
264 };
265
266 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
267         &arm_spe_pmu_group,
268         &arm_spe_pmu_cap_group,
269         &arm_spe_pmu_format_group,
270         NULL,
271 };
272
273 /* Convert between user ABI and register values */
274 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
275 {
276         struct perf_event_attr *attr = &event->attr;
277         u64 reg = 0;
278
279         reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
280         reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
281         reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
282
283         if (!attr->exclude_user)
284                 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
285
286         if (!attr->exclude_kernel)
287                 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
288
289         if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
290                 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
291
292         return reg;
293 }
294
295 static void arm_spe_event_sanitise_period(struct perf_event *event)
296 {
297         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
298         u64 period = event->hw.sample_period;
299         u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
300                          << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
301
302         if (period < spe_pmu->min_period)
303                 period = spe_pmu->min_period;
304         else if (period > max_period)
305                 period = max_period;
306         else
307                 period &= max_period;
308
309         event->hw.sample_period = period;
310 }
311
312 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
313 {
314         struct perf_event_attr *attr = &event->attr;
315         u64 reg = 0;
316
317         arm_spe_event_sanitise_period(event);
318
319         reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
320         reg |= event->hw.sample_period;
321
322         return reg;
323 }
324
325 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
326 {
327         struct perf_event_attr *attr = &event->attr;
328         u64 reg = 0;
329
330         reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
331         reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
332         reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
333
334         if (reg)
335                 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
336
337         if (ATTR_CFG_GET_FLD(attr, event_filter))
338                 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
339
340         if (ATTR_CFG_GET_FLD(attr, min_latency))
341                 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
342
343         return reg;
344 }
345
346 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
347 {
348         struct perf_event_attr *attr = &event->attr;
349         return ATTR_CFG_GET_FLD(attr, event_filter);
350 }
351
352 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
353 {
354         struct perf_event_attr *attr = &event->attr;
355         return ATTR_CFG_GET_FLD(attr, min_latency)
356                << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
357 }
358
359 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
360 {
361         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
362         u64 head = PERF_IDX2OFF(handle->head, buf);
363
364         memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
365         if (!buf->snapshot)
366                 perf_aux_output_skip(handle, len);
367 }
368
369 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
370 {
371         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
372         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
373         u64 head = PERF_IDX2OFF(handle->head, buf);
374         u64 limit = buf->nr_pages * PAGE_SIZE;
375
376         /*
377          * The trace format isn't parseable in reverse, so clamp
378          * the limit to half of the buffer size in snapshot mode
379          * so that the worst case is half a buffer of records, as
380          * opposed to a single record.
381          */
382         if (head < limit >> 1)
383                 limit >>= 1;
384
385         /*
386          * If we're within max_record_sz of the limit, we must
387          * pad, move the head index and recompute the limit.
388          */
389         if (limit - head < spe_pmu->max_record_sz) {
390                 arm_spe_pmu_pad_buf(handle, limit - head);
391                 handle->head = PERF_IDX2OFF(limit, buf);
392                 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
393         }
394
395         return limit;
396 }
397
398 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
399 {
400         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
401         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
402         const u64 bufsize = buf->nr_pages * PAGE_SIZE;
403         u64 limit = bufsize;
404         u64 head, tail, wakeup;
405
406         /*
407          * The head can be misaligned for two reasons:
408          *
409          * 1. The hardware left PMBPTR pointing to the first byte after
410          *    a record when generating a buffer management event.
411          *
412          * 2. We used perf_aux_output_skip to consume handle->size bytes
413          *    and CIRC_SPACE was used to compute the size, which always
414          *    leaves one entry free.
415          *
416          * Deal with this by padding to the next alignment boundary and
417          * moving the head index. If we run out of buffer space, we'll
418          * reduce handle->size to zero and end up reporting truncation.
419          */
420         head = PERF_IDX2OFF(handle->head, buf);
421         if (!IS_ALIGNED(head, spe_pmu->align)) {
422                 unsigned long delta = roundup(head, spe_pmu->align) - head;
423
424                 delta = min(delta, handle->size);
425                 arm_spe_pmu_pad_buf(handle, delta);
426                 head = PERF_IDX2OFF(handle->head, buf);
427         }
428
429         /* If we've run out of free space, then nothing more to do */
430         if (!handle->size)
431                 goto no_space;
432
433         /* Compute the tail and wakeup indices now that we've aligned head */
434         tail = PERF_IDX2OFF(handle->head + handle->size, buf);
435         wakeup = PERF_IDX2OFF(handle->wakeup, buf);
436
437         /*
438          * Avoid clobbering unconsumed data. We know we have space, so
439          * if we see head == tail we know that the buffer is empty. If
440          * head > tail, then there's nothing to clobber prior to
441          * wrapping.
442          */
443         if (head < tail)
444                 limit = round_down(tail, PAGE_SIZE);
445
446         /*
447          * Wakeup may be arbitrarily far into the future. If it's not in
448          * the current generation, either we'll wrap before hitting it,
449          * or it's in the past and has been handled already.
450          *
451          * If there's a wakeup before we wrap, arrange to be woken up by
452          * the page boundary following it. Keep the tail boundary if
453          * that's lower.
454          */
455         if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
456                 limit = min(limit, round_up(wakeup, PAGE_SIZE));
457
458         if (limit > head)
459                 return limit;
460
461         arm_spe_pmu_pad_buf(handle, handle->size);
462 no_space:
463         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
464         perf_aux_output_end(handle, 0);
465         return 0;
466 }
467
468 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
469 {
470         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
471         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
472         u64 limit = __arm_spe_pmu_next_off(handle);
473         u64 head = PERF_IDX2OFF(handle->head, buf);
474
475         /*
476          * If the head has come too close to the end of the buffer,
477          * then pad to the end and recompute the limit.
478          */
479         if (limit && (limit - head < spe_pmu->max_record_sz)) {
480                 arm_spe_pmu_pad_buf(handle, limit - head);
481                 limit = __arm_spe_pmu_next_off(handle);
482         }
483
484         return limit;
485 }
486
487 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
488                                           struct perf_event *event)
489 {
490         u64 base, limit;
491         struct arm_spe_pmu_buf *buf;
492
493         /* Start a new aux session */
494         buf = perf_aux_output_begin(handle, event);
495         if (!buf) {
496                 event->hw.state |= PERF_HES_STOPPED;
497                 /*
498                  * We still need to clear the limit pointer, since the
499                  * profiler might only be disabled by virtue of a fault.
500                  */
501                 limit = 0;
502                 goto out_write_limit;
503         }
504
505         limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
506                               : arm_spe_pmu_next_off(handle);
507         if (limit)
508                 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
509
510         limit += (u64)buf->base;
511         base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
512         write_sysreg_s(base, SYS_PMBPTR_EL1);
513
514 out_write_limit:
515         write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
516 }
517
518 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
519 {
520         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
521         u64 offset, size;
522
523         offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
524         size = offset - PERF_IDX2OFF(handle->head, buf);
525
526         if (buf->snapshot)
527                 handle->head = offset;
528
529         perf_aux_output_end(handle, size);
530 }
531
532 static void arm_spe_pmu_disable_and_drain_local(void)
533 {
534         /* Disable profiling at EL0 and EL1 */
535         write_sysreg_s(0, SYS_PMSCR_EL1);
536         isb();
537
538         /* Drain any buffered data */
539         psb_csync();
540         dsb(nsh);
541
542         /* Disable the profiling buffer */
543         write_sysreg_s(0, SYS_PMBLIMITR_EL1);
544         isb();
545 }
546
547 /* IRQ handling */
548 static enum arm_spe_pmu_buf_fault_action
549 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
550 {
551         const char *err_str;
552         u64 pmbsr;
553         enum arm_spe_pmu_buf_fault_action ret;
554
555         /*
556          * Ensure new profiling data is visible to the CPU and any external
557          * aborts have been resolved.
558          */
559         psb_csync();
560         dsb(nsh);
561
562         /* Ensure hardware updates to PMBPTR_EL1 are visible */
563         isb();
564
565         /* Service required? */
566         pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
567         if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
568                 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
569
570         /*
571          * If we've lost data, disable profiling and also set the PARTIAL
572          * flag to indicate that the last record is corrupted.
573          */
574         if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
575                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
576                                              PERF_AUX_FLAG_PARTIAL);
577
578         /* Report collisions to userspace so that it can up the period */
579         if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
580                 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
581
582         /* We only expect buffer management events */
583         switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
584         case SYS_PMBSR_EL1_EC_BUF:
585                 /* Handled below */
586                 break;
587         case SYS_PMBSR_EL1_EC_FAULT_S1:
588         case SYS_PMBSR_EL1_EC_FAULT_S2:
589                 err_str = "Unexpected buffer fault";
590                 goto out_err;
591         default:
592                 err_str = "Unknown error code";
593                 goto out_err;
594         }
595
596         /* Buffer management event */
597         switch (pmbsr &
598                 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
599         case SYS_PMBSR_EL1_BUF_BSC_FULL:
600                 ret = SPE_PMU_BUF_FAULT_ACT_OK;
601                 goto out_stop;
602         default:
603                 err_str = "Unknown buffer status code";
604         }
605
606 out_err:
607         pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
608                            err_str, smp_processor_id(), pmbsr,
609                            read_sysreg_s(SYS_PMBPTR_EL1),
610                            read_sysreg_s(SYS_PMBLIMITR_EL1));
611         ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
612
613 out_stop:
614         arm_spe_perf_aux_output_end(handle);
615         return ret;
616 }
617
618 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
619 {
620         struct perf_output_handle *handle = dev;
621         struct perf_event *event = handle->event;
622         enum arm_spe_pmu_buf_fault_action act;
623
624         if (!perf_get_aux(handle))
625                 return IRQ_NONE;
626
627         act = arm_spe_pmu_buf_get_fault_act(handle);
628         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
629                 return IRQ_NONE;
630
631         /*
632          * Ensure perf callbacks have completed, which may disable the
633          * profiling buffer in response to a TRUNCATION flag.
634          */
635         irq_work_run();
636
637         switch (act) {
638         case SPE_PMU_BUF_FAULT_ACT_FATAL:
639                 /*
640                  * If a fatal exception occurred then leaving the profiling
641                  * buffer enabled is a recipe waiting to happen. Since
642                  * fatal faults don't always imply truncation, make sure
643                  * that the profiling buffer is disabled explicitly before
644                  * clearing the syndrome register.
645                  */
646                 arm_spe_pmu_disable_and_drain_local();
647                 break;
648         case SPE_PMU_BUF_FAULT_ACT_OK:
649                 /*
650                  * We handled the fault (the buffer was full), so resume
651                  * profiling as long as we didn't detect truncation.
652                  * PMBPTR might be misaligned, but we'll burn that bridge
653                  * when we get to it.
654                  */
655                 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
656                         arm_spe_perf_aux_output_begin(handle, event);
657                         isb();
658                 }
659                 break;
660         case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
661                 /* We've seen you before, but GCC has the memory of a sieve. */
662                 break;
663         }
664
665         /* The buffer pointers are now sane, so resume profiling. */
666         write_sysreg_s(0, SYS_PMBSR_EL1);
667         return IRQ_HANDLED;
668 }
669
670 /* Perf callbacks */
671 static int arm_spe_pmu_event_init(struct perf_event *event)
672 {
673         u64 reg;
674         struct perf_event_attr *attr = &event->attr;
675         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
676
677         /* This is, of course, deeply driver-specific */
678         if (attr->type != event->pmu->type)
679                 return -ENOENT;
680
681         if (event->cpu >= 0 &&
682             !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
683                 return -ENOENT;
684
685         if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
686                 return -EOPNOTSUPP;
687
688         if (attr->exclude_idle)
689                 return -EOPNOTSUPP;
690
691         /*
692          * Feedback-directed frequency throttling doesn't work when we
693          * have a buffer of samples. We'd need to manually count the
694          * samples in the buffer when it fills up and adjust the event
695          * count to reflect that. Instead, just force the user to specify
696          * a sample period.
697          */
698         if (attr->freq)
699                 return -EINVAL;
700
701         reg = arm_spe_event_to_pmsfcr(event);
702         if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
703             !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
704                 return -EOPNOTSUPP;
705
706         if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
707             !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
708                 return -EOPNOTSUPP;
709
710         if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
711             !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
712                 return -EOPNOTSUPP;
713
714         reg = arm_spe_event_to_pmscr(event);
715         if (!capable(CAP_SYS_ADMIN) &&
716             (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
717                     BIT(SYS_PMSCR_EL1_CX_SHIFT) |
718                     BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
719                 return -EACCES;
720
721         return 0;
722 }
723
724 static void arm_spe_pmu_start(struct perf_event *event, int flags)
725 {
726         u64 reg;
727         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
728         struct hw_perf_event *hwc = &event->hw;
729         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
730
731         hwc->state = 0;
732         arm_spe_perf_aux_output_begin(handle, event);
733         if (hwc->state)
734                 return;
735
736         reg = arm_spe_event_to_pmsfcr(event);
737         write_sysreg_s(reg, SYS_PMSFCR_EL1);
738
739         reg = arm_spe_event_to_pmsevfr(event);
740         write_sysreg_s(reg, SYS_PMSEVFR_EL1);
741
742         reg = arm_spe_event_to_pmslatfr(event);
743         write_sysreg_s(reg, SYS_PMSLATFR_EL1);
744
745         if (flags & PERF_EF_RELOAD) {
746                 reg = arm_spe_event_to_pmsirr(event);
747                 write_sysreg_s(reg, SYS_PMSIRR_EL1);
748                 isb();
749                 reg = local64_read(&hwc->period_left);
750                 write_sysreg_s(reg, SYS_PMSICR_EL1);
751         }
752
753         reg = arm_spe_event_to_pmscr(event);
754         isb();
755         write_sysreg_s(reg, SYS_PMSCR_EL1);
756 }
757
758 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
759 {
760         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
761         struct hw_perf_event *hwc = &event->hw;
762         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
763
764         /* If we're already stopped, then nothing to do */
765         if (hwc->state & PERF_HES_STOPPED)
766                 return;
767
768         /* Stop all trace generation */
769         arm_spe_pmu_disable_and_drain_local();
770
771         if (flags & PERF_EF_UPDATE) {
772                 /*
773                  * If there's a fault pending then ensure we contain it
774                  * to this buffer, since we might be on the context-switch
775                  * path.
776                  */
777                 if (perf_get_aux(handle)) {
778                         enum arm_spe_pmu_buf_fault_action act;
779
780                         act = arm_spe_pmu_buf_get_fault_act(handle);
781                         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
782                                 arm_spe_perf_aux_output_end(handle);
783                         else
784                                 write_sysreg_s(0, SYS_PMBSR_EL1);
785                 }
786
787                 /*
788                  * This may also contain ECOUNT, but nobody else should
789                  * be looking at period_left, since we forbid frequency
790                  * based sampling.
791                  */
792                 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
793                 hwc->state |= PERF_HES_UPTODATE;
794         }
795
796         hwc->state |= PERF_HES_STOPPED;
797 }
798
799 static int arm_spe_pmu_add(struct perf_event *event, int flags)
800 {
801         int ret = 0;
802         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
803         struct hw_perf_event *hwc = &event->hw;
804         int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
805
806         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
807                 return -ENOENT;
808
809         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
810
811         if (flags & PERF_EF_START) {
812                 arm_spe_pmu_start(event, PERF_EF_RELOAD);
813                 if (hwc->state & PERF_HES_STOPPED)
814                         ret = -EINVAL;
815         }
816
817         return ret;
818 }
819
820 static void arm_spe_pmu_del(struct perf_event *event, int flags)
821 {
822         arm_spe_pmu_stop(event, PERF_EF_UPDATE);
823 }
824
825 static void arm_spe_pmu_read(struct perf_event *event)
826 {
827 }
828
829 static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages,
830                                    bool snapshot)
831 {
832         int i;
833         struct page **pglist;
834         struct arm_spe_pmu_buf *buf;
835
836         /* We need at least two pages for this to work. */
837         if (nr_pages < 2)
838                 return NULL;
839
840         /*
841          * We require an even number of pages for snapshot mode, so that
842          * we can effectively treat the buffer as consisting of two equal
843          * parts and give userspace a fighting chance of getting some
844          * useful data out of it.
845          */
846         if (!nr_pages || (snapshot && (nr_pages & 1)))
847                 return NULL;
848
849         if (cpu == -1)
850                 cpu = raw_smp_processor_id();
851
852         buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
853         if (!buf)
854                 return NULL;
855
856         pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
857         if (!pglist)
858                 goto out_free_buf;
859
860         for (i = 0; i < nr_pages; ++i) {
861                 struct page *page = virt_to_page(pages[i]);
862
863                 if (PagePrivate(page)) {
864                         pr_warn("unexpected high-order page for auxbuf!");
865                         goto out_free_pglist;
866                 }
867
868                 pglist[i] = virt_to_page(pages[i]);
869         }
870
871         buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
872         if (!buf->base)
873                 goto out_free_pglist;
874
875         buf->nr_pages   = nr_pages;
876         buf->snapshot   = snapshot;
877
878         kfree(pglist);
879         return buf;
880
881 out_free_pglist:
882         kfree(pglist);
883 out_free_buf:
884         kfree(buf);
885         return NULL;
886 }
887
888 static void arm_spe_pmu_free_aux(void *aux)
889 {
890         struct arm_spe_pmu_buf *buf = aux;
891
892         vunmap(buf->base);
893         kfree(buf);
894 }
895
896 /* Initialisation and teardown functions */
897 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
898 {
899         static atomic_t pmu_idx = ATOMIC_INIT(-1);
900
901         int idx;
902         char *name;
903         struct device *dev = &spe_pmu->pdev->dev;
904
905         spe_pmu->pmu = (struct pmu) {
906                 .module = THIS_MODULE,
907                 .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
908                 .attr_groups    = arm_spe_pmu_attr_groups,
909                 /*
910                  * We hitch a ride on the software context here, so that
911                  * we can support per-task profiling (which is not possible
912                  * with the invalid context as it doesn't get sched callbacks).
913                  * This requires that userspace either uses a dummy event for
914                  * perf_event_open, since the aux buffer is not setup until
915                  * a subsequent mmap, or creates the profiling event in a
916                  * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
917                  * once the buffer has been created.
918                  */
919                 .task_ctx_nr    = perf_sw_context,
920                 .event_init     = arm_spe_pmu_event_init,
921                 .add            = arm_spe_pmu_add,
922                 .del            = arm_spe_pmu_del,
923                 .start          = arm_spe_pmu_start,
924                 .stop           = arm_spe_pmu_stop,
925                 .read           = arm_spe_pmu_read,
926                 .setup_aux      = arm_spe_pmu_setup_aux,
927                 .free_aux       = arm_spe_pmu_free_aux,
928         };
929
930         idx = atomic_inc_return(&pmu_idx);
931         name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
932         return perf_pmu_register(&spe_pmu->pmu, name, -1);
933 }
934
935 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
936 {
937         perf_pmu_unregister(&spe_pmu->pmu);
938 }
939
940 static void __arm_spe_pmu_dev_probe(void *info)
941 {
942         int fld;
943         u64 reg;
944         struct arm_spe_pmu *spe_pmu = info;
945         struct device *dev = &spe_pmu->pdev->dev;
946
947         fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
948                                                    ID_AA64DFR0_PMSVER_SHIFT);
949         if (!fld) {
950                 dev_err(dev,
951                         "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
952                         fld, smp_processor_id());
953                 return;
954         }
955
956         /* Read PMBIDR first to determine whether or not we have access */
957         reg = read_sysreg_s(SYS_PMBIDR_EL1);
958         if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
959                 dev_err(dev,
960                         "profiling buffer owned by higher exception level\n");
961                 return;
962         }
963
964         /* Minimum alignment. If it's out-of-range, then fail the probe */
965         fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
966         spe_pmu->align = 1 << fld;
967         if (spe_pmu->align > SZ_2K) {
968                 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
969                         fld, smp_processor_id());
970                 return;
971         }
972
973         /* It's now safe to read PMSIDR and figure out what we've got */
974         reg = read_sysreg_s(SYS_PMSIDR_EL1);
975         if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
976                 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
977
978         if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
979                 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
980
981         if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
982                 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
983
984         if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
985                 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
986
987         if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
988                 spe_pmu->features |= SPE_PMU_FEAT_LDS;
989
990         if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
991                 spe_pmu->features |= SPE_PMU_FEAT_ERND;
992
993         /* This field has a spaced out encoding, so just use a look-up */
994         fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
995         switch (fld) {
996         case 0:
997                 spe_pmu->min_period = 256;
998                 break;
999         case 2:
1000                 spe_pmu->min_period = 512;
1001                 break;
1002         case 3:
1003                 spe_pmu->min_period = 768;
1004                 break;
1005         case 4:
1006                 spe_pmu->min_period = 1024;
1007                 break;
1008         case 5:
1009                 spe_pmu->min_period = 1536;
1010                 break;
1011         case 6:
1012                 spe_pmu->min_period = 2048;
1013                 break;
1014         case 7:
1015                 spe_pmu->min_period = 3072;
1016                 break;
1017         default:
1018                 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1019                          fld);
1020                 /* Fallthrough */
1021         case 8:
1022                 spe_pmu->min_period = 4096;
1023         }
1024
1025         /* Maximum record size. If it's out-of-range, then fail the probe */
1026         fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1027         spe_pmu->max_record_sz = 1 << fld;
1028         if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1029                 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1030                         fld, smp_processor_id());
1031                 return;
1032         }
1033
1034         fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1035         switch (fld) {
1036         default:
1037                 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1038                          fld);
1039                 /* Fallthrough */
1040         case 2:
1041                 spe_pmu->counter_sz = 12;
1042         }
1043
1044         dev_info(dev,
1045                  "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1046                  cpumask_pr_args(&spe_pmu->supported_cpus),
1047                  spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1048
1049         spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1050         return;
1051 }
1052
1053 static void __arm_spe_pmu_reset_local(void)
1054 {
1055         /*
1056          * This is probably overkill, as we have no idea where we're
1057          * draining any buffered data to...
1058          */
1059         arm_spe_pmu_disable_and_drain_local();
1060
1061         /* Reset the buffer base pointer */
1062         write_sysreg_s(0, SYS_PMBPTR_EL1);
1063         isb();
1064
1065         /* Clear any pending management interrupts */
1066         write_sysreg_s(0, SYS_PMBSR_EL1);
1067         isb();
1068 }
1069
1070 static void __arm_spe_pmu_setup_one(void *info)
1071 {
1072         struct arm_spe_pmu *spe_pmu = info;
1073
1074         __arm_spe_pmu_reset_local();
1075         enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1076 }
1077
1078 static void __arm_spe_pmu_stop_one(void *info)
1079 {
1080         struct arm_spe_pmu *spe_pmu = info;
1081
1082         disable_percpu_irq(spe_pmu->irq);
1083         __arm_spe_pmu_reset_local();
1084 }
1085
1086 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1087 {
1088         struct arm_spe_pmu *spe_pmu;
1089
1090         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1091         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1092                 return 0;
1093
1094         __arm_spe_pmu_setup_one(spe_pmu);
1095         return 0;
1096 }
1097
1098 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1099 {
1100         struct arm_spe_pmu *spe_pmu;
1101
1102         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1103         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1104                 return 0;
1105
1106         __arm_spe_pmu_stop_one(spe_pmu);
1107         return 0;
1108 }
1109
1110 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1111 {
1112         int ret;
1113         cpumask_t *mask = &spe_pmu->supported_cpus;
1114
1115         /* Make sure we probe the hardware on a relevant CPU */
1116         ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1117         if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1118                 return -ENXIO;
1119
1120         /* Request our PPIs (note that the IRQ is still disabled) */
1121         ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1122                                  spe_pmu->handle);
1123         if (ret)
1124                 return ret;
1125
1126         /*
1127          * Register our hotplug notifier now so we don't miss any events.
1128          * This will enable the IRQ for any supported CPUs that are already
1129          * up.
1130          */
1131         ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1132                                        &spe_pmu->hotplug_node);
1133         if (ret)
1134                 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1135
1136         return ret;
1137 }
1138
1139 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1140 {
1141         cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1142         free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1143 }
1144
1145 /* Driver and device probing */
1146 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1147 {
1148         struct platform_device *pdev = spe_pmu->pdev;
1149         int irq = platform_get_irq(pdev, 0);
1150
1151         if (irq < 0) {
1152                 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1153                 return -ENXIO;
1154         }
1155
1156         if (!irq_is_percpu(irq)) {
1157                 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1158                 return -EINVAL;
1159         }
1160
1161         if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1162                 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1163                 return -EINVAL;
1164         }
1165
1166         spe_pmu->irq = irq;
1167         return 0;
1168 }
1169
1170 static const struct of_device_id arm_spe_pmu_of_match[] = {
1171         { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1172         { /* Sentinel */ },
1173 };
1174
1175 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1176 {
1177         int ret;
1178         struct arm_spe_pmu *spe_pmu;
1179         struct device *dev = &pdev->dev;
1180
1181         /*
1182          * If kernelspace is unmapped when running at EL0, then the SPE
1183          * buffer will fault and prematurely terminate the AUX session.
1184          */
1185         if (arm64_kernel_unmapped_at_el0()) {
1186                 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1187                 return -EPERM;
1188         }
1189
1190         spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1191         if (!spe_pmu) {
1192                 dev_err(dev, "failed to allocate spe_pmu\n");
1193                 return -ENOMEM;
1194         }
1195
1196         spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1197         if (!spe_pmu->handle)
1198                 return -ENOMEM;
1199
1200         spe_pmu->pdev = pdev;
1201         platform_set_drvdata(pdev, spe_pmu);
1202
1203         ret = arm_spe_pmu_irq_probe(spe_pmu);
1204         if (ret)
1205                 goto out_free_handle;
1206
1207         ret = arm_spe_pmu_dev_init(spe_pmu);
1208         if (ret)
1209                 goto out_free_handle;
1210
1211         ret = arm_spe_pmu_perf_init(spe_pmu);
1212         if (ret)
1213                 goto out_teardown_dev;
1214
1215         return 0;
1216
1217 out_teardown_dev:
1218         arm_spe_pmu_dev_teardown(spe_pmu);
1219 out_free_handle:
1220         free_percpu(spe_pmu->handle);
1221         return ret;
1222 }
1223
1224 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1225 {
1226         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1227
1228         arm_spe_pmu_perf_destroy(spe_pmu);
1229         arm_spe_pmu_dev_teardown(spe_pmu);
1230         free_percpu(spe_pmu->handle);
1231         return 0;
1232 }
1233
1234 static struct platform_driver arm_spe_pmu_driver = {
1235         .driver = {
1236                 .name           = DRVNAME,
1237                 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1238         },
1239         .probe  = arm_spe_pmu_device_dt_probe,
1240         .remove = arm_spe_pmu_device_remove,
1241 };
1242
1243 static int __init arm_spe_pmu_init(void)
1244 {
1245         int ret;
1246
1247         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1248                                       arm_spe_pmu_cpu_startup,
1249                                       arm_spe_pmu_cpu_teardown);
1250         if (ret < 0)
1251                 return ret;
1252         arm_spe_pmu_online = ret;
1253
1254         ret = platform_driver_register(&arm_spe_pmu_driver);
1255         if (ret)
1256                 cpuhp_remove_multi_state(arm_spe_pmu_online);
1257
1258         return ret;
1259 }
1260
1261 static void __exit arm_spe_pmu_exit(void)
1262 {
1263         platform_driver_unregister(&arm_spe_pmu_driver);
1264         cpuhp_remove_multi_state(arm_spe_pmu_online);
1265 }
1266
1267 module_init(arm_spe_pmu_init);
1268 module_exit(arm_spe_pmu_exit);
1269
1270 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1271 MODULE_AUTHOR("Will Deacon <[email protected]>");
1272 MODULE_LICENSE("GPL v2");
This page took 0.1095 seconds and 4 git commands to generate.