2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
34 #include <asm/set_memory.h>
37 #include <drm/i915_drm.h>
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
48 * DOC: Global GTT views
50 * Background and previous state
52 * Historically objects could exists (be bound) in global GTT space only as
53 * singular instances with a view representing all of the object's backing pages
54 * in a linear fashion. This view will be called a normal view.
56 * To support multiple views of the same object, where the number of mapped
57 * pages is not equal to the backing store, or where the layout of the pages
58 * is not linear, concept of a GGTT view was added.
60 * One example of an alternative view is a stereo display driven by a single
61 * image. In this case we would have a framebuffer looking like this
67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68 * rendering. In contrast, fed to the display engine would be an alternative
69 * view which could look something like this:
74 * In this example both the size and layout of pages in the alternative view is
75 * different from the normal view.
77 * Implementation and usage
79 * GGTT views are implemented using VMAs and are distinguished via enum
80 * i915_ggtt_view_type and struct i915_ggtt_view.
82 * A new flavour of core GEM functions which work with GGTT bound objects were
83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84 * renaming in large amounts of code. They take the struct i915_ggtt_view
85 * parameter encapsulating all metadata required to implement a view.
87 * As a helper for callers which are only interested in the normal view,
88 * globally const i915_ggtt_view_normal singleton instance exists. All old core
89 * GEM API functions, the ones not taking the view parameter, are operating on,
90 * or with the normal GGTT view.
92 * Code wanting to add or use a new GGTT view needs to:
94 * 1. Add a new enum with a suitable name.
95 * 2. Extend the metadata in the i915_ggtt_view structure if required.
96 * 3. Add support to i915_get_vma_pages().
98 * New views are required to build a scatter-gather table from within the
99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100 * exists for the lifetime of an VMA.
102 * Core API is designed to have copy semantics which means that passed in
103 * struct i915_ggtt_view does not need to be persistent (left around after
104 * calling the core API functions).
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
114 * Note that as an uncached mmio write, this will flush the
115 * WCB of the writes into the GGTT before it triggers the invalidate.
117 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
122 gen6_ggtt_invalidate(dev_priv);
123 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
128 intel_gtt_chipset_flush();
131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
133 i915->ggtt.invalidate(i915);
136 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
140 bool has_full_48bit_ppgtt;
142 if (!dev_priv->info.has_aliasing_ppgtt)
145 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
146 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
148 if (intel_vgpu_active(dev_priv)) {
149 /* GVT-g has no support for 32bit ppgtt */
150 has_full_ppgtt = false;
151 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
155 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
156 * execlists, the sole mechanism available to submit work.
158 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
161 if (enable_ppgtt == 1)
164 if (enable_ppgtt == 2 && has_full_ppgtt)
167 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
170 /* Disable ppgtt on SNB if VT-d is on. */
171 if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172 DRM_INFO("Disabling PPGTT because VT-d is on\n");
176 /* Early VLV doesn't have this */
177 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
182 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 if (has_full_48bit_ppgtt)
193 static int ppgtt_bind_vma(struct i915_vma *vma,
194 enum i915_cache_level cache_level,
200 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
201 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
207 /* Currently applicable only to VLV */
210 pte_flags |= PTE_READ_ONLY;
212 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
217 static void ppgtt_unbind_vma(struct i915_vma *vma)
219 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
222 static int ppgtt_set_pages(struct i915_vma *vma)
224 GEM_BUG_ON(vma->pages);
226 vma->pages = vma->obj->mm.pages;
228 vma->page_sizes = vma->obj->mm.page_sizes;
233 static void clear_pages(struct i915_vma *vma)
235 GEM_BUG_ON(!vma->pages);
237 if (vma->pages != vma->obj->mm.pages) {
238 sg_free_table(vma->pages);
243 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
246 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247 enum i915_cache_level level)
249 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
253 case I915_CACHE_NONE:
254 pte |= PPAT_UNCACHED;
257 pte |= PPAT_DISPLAY_ELLC;
267 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
268 const enum i915_cache_level level)
270 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
272 if (level != I915_CACHE_NONE)
273 pde |= PPAT_CACHED_PDE;
275 pde |= PPAT_UNCACHED;
279 #define gen8_pdpe_encode gen8_pde_encode
280 #define gen8_pml4e_encode gen8_pde_encode
282 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
283 enum i915_cache_level level,
286 gen6_pte_t pte = GEN6_PTE_VALID;
287 pte |= GEN6_PTE_ADDR_ENCODE(addr);
290 case I915_CACHE_L3_LLC:
292 pte |= GEN6_PTE_CACHE_LLC;
294 case I915_CACHE_NONE:
295 pte |= GEN6_PTE_UNCACHED;
304 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
305 enum i915_cache_level level,
308 gen6_pte_t pte = GEN6_PTE_VALID;
309 pte |= GEN6_PTE_ADDR_ENCODE(addr);
312 case I915_CACHE_L3_LLC:
313 pte |= GEN7_PTE_CACHE_L3_LLC;
316 pte |= GEN6_PTE_CACHE_LLC;
318 case I915_CACHE_NONE:
319 pte |= GEN6_PTE_UNCACHED;
328 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
329 enum i915_cache_level level,
332 gen6_pte_t pte = GEN6_PTE_VALID;
333 pte |= GEN6_PTE_ADDR_ENCODE(addr);
335 if (!(flags & PTE_READ_ONLY))
336 pte |= BYT_PTE_WRITEABLE;
338 if (level != I915_CACHE_NONE)
339 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
344 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
345 enum i915_cache_level level,
348 gen6_pte_t pte = GEN6_PTE_VALID;
349 pte |= HSW_PTE_ADDR_ENCODE(addr);
351 if (level != I915_CACHE_NONE)
352 pte |= HSW_WB_LLC_AGE3;
357 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
358 enum i915_cache_level level,
361 gen6_pte_t pte = GEN6_PTE_VALID;
362 pte |= HSW_PTE_ADDR_ENCODE(addr);
365 case I915_CACHE_NONE:
368 pte |= HSW_WT_ELLC_LLC_AGE3;
371 pte |= HSW_WB_ELLC_LLC_AGE3;
378 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
380 struct pagevec *pvec = &vm->free_pages;
381 struct pagevec stash;
383 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
384 i915_gem_shrink_all(vm->i915);
386 if (likely(pvec->nr))
387 return pvec->pages[--pvec->nr];
390 return alloc_page(gfp);
392 /* A placeholder for a specific mutex to guard the WC stash */
393 lockdep_assert_held(&vm->i915->drm.struct_mutex);
395 /* Look in our global stash of WC pages... */
396 pvec = &vm->i915->mm.wc_stash;
397 if (likely(pvec->nr))
398 return pvec->pages[--pvec->nr];
401 * Otherwise batch allocate pages to amoritize cost of set_pages_wc.
403 * We have to be careful as page allocation may trigger the shrinker
404 * (via direct reclaim) which will fill up the WC stash underneath us.
405 * So we add our WB pages into a temporary pvec on the stack and merge
406 * them into the WC stash after all the allocations are complete.
408 pagevec_init(&stash);
412 page = alloc_page(gfp);
416 stash.pages[stash.nr++] = page;
417 } while (stash.nr < pagevec_space(pvec));
420 int nr = min_t(int, stash.nr, pagevec_space(pvec));
421 struct page **pages = stash.pages + stash.nr - nr;
423 if (nr && !set_pages_array_wc(pages, nr)) {
424 memcpy(pvec->pages + pvec->nr,
425 pages, sizeof(pages[0]) * nr);
430 pagevec_release(&stash);
433 return likely(pvec->nr) ? pvec->pages[--pvec->nr] : NULL;
436 static void vm_free_pages_release(struct i915_address_space *vm,
439 struct pagevec *pvec = &vm->free_pages;
441 GEM_BUG_ON(!pagevec_count(pvec));
443 if (vm->pt_kmap_wc) {
444 struct pagevec *stash = &vm->i915->mm.wc_stash;
446 /* When we use WC, first fill up the global stash and then
447 * only if full immediately free the overflow.
450 lockdep_assert_held(&vm->i915->drm.struct_mutex);
451 if (pagevec_space(stash)) {
453 stash->pages[stash->nr++] =
454 pvec->pages[--pvec->nr];
457 } while (pagevec_space(stash));
459 /* As we have made some room in the VM's free_pages,
460 * we can wait for it to fill again. Unless we are
461 * inside i915_address_space_fini() and must
462 * immediately release the pages!
468 set_pages_array_wb(pvec->pages, pvec->nr);
471 __pagevec_release(pvec);
474 static void vm_free_page(struct i915_address_space *vm, struct page *page)
477 * On !llc, we need to change the pages back to WB. We only do so
478 * in bulk, so we rarely need to change the page attributes here,
479 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
480 * To make detection of the possible sleep more likely, use an
481 * unconditional might_sleep() for everybody.
484 if (!pagevec_add(&vm->free_pages, page))
485 vm_free_pages_release(vm, false);
488 static int __setup_page_dma(struct i915_address_space *vm,
489 struct i915_page_dma *p,
492 p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
493 if (unlikely(!p->page))
496 p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
497 PCI_DMA_BIDIRECTIONAL);
498 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
499 vm_free_page(vm, p->page);
506 static int setup_page_dma(struct i915_address_space *vm,
507 struct i915_page_dma *p)
509 return __setup_page_dma(vm, p, I915_GFP_DMA);
512 static void cleanup_page_dma(struct i915_address_space *vm,
513 struct i915_page_dma *p)
515 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
516 vm_free_page(vm, p->page);
519 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
521 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
522 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
523 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
524 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
526 static void fill_page_dma(struct i915_address_space *vm,
527 struct i915_page_dma *p,
530 u64 * const vaddr = kmap_atomic(p->page);
532 memset64(vaddr, val, PAGE_SIZE / sizeof(val));
534 kunmap_atomic(vaddr);
537 static void fill_page_dma_32(struct i915_address_space *vm,
538 struct i915_page_dma *p,
541 fill_page_dma(vm, p, (u64)v << 32 | v);
545 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
550 * In order to utilize 64K pages for an object with a size < 2M, we will
551 * need to support a 64K scratch page, given that every 16th entry for a
552 * page-table operating in 64K mode must point to a properly aligned 64K
553 * region, including any PTEs which happen to point to scratch.
555 * This is only relevant for the 48b PPGTT where we support
556 * huge-gtt-pages, see also i915_vma_insert().
558 * TODO: we should really consider write-protecting the scratch-page and
559 * sharing between ppgtt
561 size = I915_GTT_PAGE_SIZE_4K;
562 if (i915_vm_is_48bit(vm) &&
563 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
564 size = I915_GTT_PAGE_SIZE_64K;
567 gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
570 int order = get_order(size);
574 page = alloc_pages(gfp, order);
578 addr = dma_map_page(vm->dma, page, 0, size,
579 PCI_DMA_BIDIRECTIONAL);
580 if (unlikely(dma_mapping_error(vm->dma, addr)))
583 if (unlikely(!IS_ALIGNED(addr, size)))
586 vm->scratch_page.page = page;
587 vm->scratch_page.daddr = addr;
588 vm->scratch_page.order = order;
592 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
594 __free_pages(page, order);
596 if (size == I915_GTT_PAGE_SIZE_4K)
599 size = I915_GTT_PAGE_SIZE_4K;
600 gfp &= ~__GFP_NOWARN;
604 static void cleanup_scratch_page(struct i915_address_space *vm)
606 struct i915_page_dma *p = &vm->scratch_page;
608 dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
609 PCI_DMA_BIDIRECTIONAL);
610 __free_pages(p->page, p->order);
613 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
615 struct i915_page_table *pt;
617 pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
619 return ERR_PTR(-ENOMEM);
621 if (unlikely(setup_px(vm, pt))) {
623 return ERR_PTR(-ENOMEM);
630 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
636 static void gen8_initialize_pt(struct i915_address_space *vm,
637 struct i915_page_table *pt)
640 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
643 static void gen6_initialize_pt(struct i915_address_space *vm,
644 struct i915_page_table *pt)
647 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
650 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
652 struct i915_page_directory *pd;
654 pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
656 return ERR_PTR(-ENOMEM);
658 if (unlikely(setup_px(vm, pd))) {
660 return ERR_PTR(-ENOMEM);
667 static void free_pd(struct i915_address_space *vm,
668 struct i915_page_directory *pd)
674 static void gen8_initialize_pd(struct i915_address_space *vm,
675 struct i915_page_directory *pd)
678 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
679 memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
682 static int __pdp_init(struct i915_address_space *vm,
683 struct i915_page_directory_pointer *pdp)
685 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
687 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
688 GFP_KERNEL | __GFP_NOWARN);
689 if (unlikely(!pdp->page_directory))
692 memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
697 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
699 kfree(pdp->page_directory);
700 pdp->page_directory = NULL;
703 static inline bool use_4lvl(const struct i915_address_space *vm)
705 return i915_vm_is_48bit(vm);
708 static struct i915_page_directory_pointer *
709 alloc_pdp(struct i915_address_space *vm)
711 struct i915_page_directory_pointer *pdp;
714 GEM_BUG_ON(!use_4lvl(vm));
716 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
718 return ERR_PTR(-ENOMEM);
720 ret = __pdp_init(vm, pdp);
724 ret = setup_px(vm, pdp);
738 static void free_pdp(struct i915_address_space *vm,
739 struct i915_page_directory_pointer *pdp)
750 static void gen8_initialize_pdp(struct i915_address_space *vm,
751 struct i915_page_directory_pointer *pdp)
753 gen8_ppgtt_pdpe_t scratch_pdpe;
755 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
757 fill_px(vm, pdp, scratch_pdpe);
760 static void gen8_initialize_pml4(struct i915_address_space *vm,
761 struct i915_pml4 *pml4)
764 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
765 memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
768 /* Broadwell Page Directory Pointer Descriptors */
769 static int gen8_write_pdp(struct i915_request *rq,
773 struct intel_engine_cs *engine = rq->engine;
778 cs = intel_ring_begin(rq, 6);
782 *cs++ = MI_LOAD_REGISTER_IMM(1);
783 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
784 *cs++ = upper_32_bits(addr);
785 *cs++ = MI_LOAD_REGISTER_IMM(1);
786 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
787 *cs++ = lower_32_bits(addr);
788 intel_ring_advance(rq, cs);
793 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
794 struct i915_request *rq)
798 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
799 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
801 ret = gen8_write_pdp(rq, i, pd_daddr);
809 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
810 struct i915_request *rq)
812 return gen8_write_pdp(rq, 0, px_dma(&ppgtt->pml4));
815 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
816 * the page table structures, we mark them dirty so that
817 * context switching/execlist queuing code takes extra steps
818 * to ensure that tlbs are flushed.
820 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
822 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
825 /* Removes entries from a single page table, releasing it if it's empty.
826 * Caller can use the return value to update higher-level entries.
828 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
829 struct i915_page_table *pt,
830 u64 start, u64 length)
832 unsigned int num_entries = gen8_pte_count(start, length);
833 unsigned int pte = gen8_pte_index(start);
834 unsigned int pte_end = pte + num_entries;
835 const gen8_pte_t scratch_pte =
836 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
839 GEM_BUG_ON(num_entries > pt->used_ptes);
841 pt->used_ptes -= num_entries;
845 vaddr = kmap_atomic_px(pt);
846 while (pte < pte_end)
847 vaddr[pte++] = scratch_pte;
848 kunmap_atomic(vaddr);
853 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
854 struct i915_page_directory *pd,
855 struct i915_page_table *pt,
860 pd->page_table[pde] = pt;
862 vaddr = kmap_atomic_px(pd);
863 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
864 kunmap_atomic(vaddr);
867 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
868 struct i915_page_directory *pd,
869 u64 start, u64 length)
871 struct i915_page_table *pt;
874 gen8_for_each_pde(pt, pd, start, length, pde) {
875 GEM_BUG_ON(pt == vm->scratch_pt);
877 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
880 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
881 GEM_BUG_ON(!pd->used_pdes);
887 return !pd->used_pdes;
890 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
891 struct i915_page_directory_pointer *pdp,
892 struct i915_page_directory *pd,
895 gen8_ppgtt_pdpe_t *vaddr;
897 pdp->page_directory[pdpe] = pd;
901 vaddr = kmap_atomic_px(pdp);
902 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
903 kunmap_atomic(vaddr);
906 /* Removes entries from a single page dir pointer, releasing it if it's empty.
907 * Caller can use the return value to update higher-level entries
909 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
910 struct i915_page_directory_pointer *pdp,
911 u64 start, u64 length)
913 struct i915_page_directory *pd;
916 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
917 GEM_BUG_ON(pd == vm->scratch_pd);
919 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
922 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
923 GEM_BUG_ON(!pdp->used_pdpes);
929 return !pdp->used_pdpes;
932 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
933 u64 start, u64 length)
935 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
938 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
939 struct i915_page_directory_pointer *pdp,
942 gen8_ppgtt_pml4e_t *vaddr;
944 pml4->pdps[pml4e] = pdp;
946 vaddr = kmap_atomic_px(pml4);
947 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
948 kunmap_atomic(vaddr);
951 /* Removes entries from a single pml4.
952 * This is the top-level structure in 4-level page tables used on gen8+.
953 * Empty entries are always scratch pml4e.
955 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
956 u64 start, u64 length)
958 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
959 struct i915_pml4 *pml4 = &ppgtt->pml4;
960 struct i915_page_directory_pointer *pdp;
963 GEM_BUG_ON(!use_4lvl(vm));
965 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
966 GEM_BUG_ON(pdp == vm->scratch_pdp);
968 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
971 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
977 static inline struct sgt_dma {
978 struct scatterlist *sg;
980 } sgt_dma(struct i915_vma *vma) {
981 struct scatterlist *sg = vma->pages->sgl;
982 dma_addr_t addr = sg_dma_address(sg);
983 return (struct sgt_dma) { sg, addr, addr + sg->length };
986 struct gen8_insert_pte {
993 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
995 return (struct gen8_insert_pte) {
996 gen8_pml4e_index(start),
997 gen8_pdpe_index(start),
998 gen8_pde_index(start),
999 gen8_pte_index(start),
1003 static __always_inline bool
1004 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1005 struct i915_page_directory_pointer *pdp,
1006 struct sgt_dma *iter,
1007 struct gen8_insert_pte *idx,
1008 enum i915_cache_level cache_level)
1010 struct i915_page_directory *pd;
1011 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1015 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1016 pd = pdp->page_directory[idx->pdpe];
1017 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1019 vaddr[idx->pte] = pte_encode | iter->dma;
1021 iter->dma += PAGE_SIZE;
1022 if (iter->dma >= iter->max) {
1023 iter->sg = __sg_next(iter->sg);
1029 iter->dma = sg_dma_address(iter->sg);
1030 iter->max = iter->dma + iter->sg->length;
1033 if (++idx->pte == GEN8_PTES) {
1036 if (++idx->pde == I915_PDES) {
1039 /* Limited by sg length for 3lvl */
1040 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1046 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1047 pd = pdp->page_directory[idx->pdpe];
1050 kunmap_atomic(vaddr);
1051 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1054 kunmap_atomic(vaddr);
1059 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1060 struct i915_vma *vma,
1061 enum i915_cache_level cache_level,
1064 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1065 struct sgt_dma iter = sgt_dma(vma);
1066 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1068 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1071 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1074 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1075 struct i915_page_directory_pointer **pdps,
1076 struct sgt_dma *iter,
1077 enum i915_cache_level cache_level)
1079 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1080 u64 start = vma->node.start;
1081 dma_addr_t rem = iter->sg->length;
1084 struct gen8_insert_pte idx = gen8_insert_pte(start);
1085 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1086 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1087 unsigned int page_size;
1088 bool maybe_64K = false;
1089 gen8_pte_t encode = pte_encode;
1093 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1094 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1095 rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1098 page_size = I915_GTT_PAGE_SIZE_2M;
1100 encode |= GEN8_PDE_PS_2M;
1102 vaddr = kmap_atomic_px(pd);
1104 struct i915_page_table *pt = pd->page_table[idx.pde];
1108 page_size = I915_GTT_PAGE_SIZE;
1111 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1112 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1113 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1114 rem >= (max - index) << PAGE_SHIFT))
1117 vaddr = kmap_atomic_px(pt);
1121 GEM_BUG_ON(iter->sg->length < page_size);
1122 vaddr[index++] = encode | iter->dma;
1125 iter->dma += page_size;
1127 if (iter->dma >= iter->max) {
1128 iter->sg = __sg_next(iter->sg);
1132 rem = iter->sg->length;
1133 iter->dma = sg_dma_address(iter->sg);
1134 iter->max = iter->dma + rem;
1136 if (maybe_64K && index < max &&
1137 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1138 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1139 rem >= (max - index) << PAGE_SHIFT)))
1142 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1145 } while (rem >= page_size && index < max);
1147 kunmap_atomic(vaddr);
1150 * Is it safe to mark the 2M block as 64K? -- Either we have
1151 * filled whole page-table with 64K entries, or filled part of
1152 * it and have reached the end of the sg table and we have
1157 (i915_vm_has_scratch_64K(vma->vm) &&
1158 !iter->sg && IS_ALIGNED(vma->node.start +
1160 I915_GTT_PAGE_SIZE_2M)))) {
1161 vaddr = kmap_atomic_px(pd);
1162 vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1163 kunmap_atomic(vaddr);
1164 page_size = I915_GTT_PAGE_SIZE_64K;
1167 * We write all 4K page entries, even when using 64K
1168 * pages. In order to verify that the HW isn't cheating
1169 * by using the 4K PTE instead of the 64K PTE, we want
1170 * to remove all the surplus entries. If the HW skipped
1171 * the 64K PTE, it will read/write into the scratch page
1172 * instead - which we detect as missing results during
1175 if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1178 encode = pte_encode | vma->vm->scratch_page.daddr;
1179 vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1181 for (i = 1; i < index; i += 16)
1182 memset64(vaddr + i, encode, 15);
1184 kunmap_atomic(vaddr);
1188 vma->page_sizes.gtt |= page_size;
1192 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1193 struct i915_vma *vma,
1194 enum i915_cache_level cache_level,
1197 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1198 struct sgt_dma iter = sgt_dma(vma);
1199 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1201 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1202 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
1204 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1206 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1207 &iter, &idx, cache_level))
1208 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1210 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1214 static void gen8_free_page_tables(struct i915_address_space *vm,
1215 struct i915_page_directory *pd)
1222 for (i = 0; i < I915_PDES; i++) {
1223 if (pd->page_table[i] != vm->scratch_pt)
1224 free_pt(vm, pd->page_table[i]);
1228 static int gen8_init_scratch(struct i915_address_space *vm)
1232 ret = setup_scratch_page(vm, I915_GFP_DMA);
1236 vm->scratch_pt = alloc_pt(vm);
1237 if (IS_ERR(vm->scratch_pt)) {
1238 ret = PTR_ERR(vm->scratch_pt);
1239 goto free_scratch_page;
1242 vm->scratch_pd = alloc_pd(vm);
1243 if (IS_ERR(vm->scratch_pd)) {
1244 ret = PTR_ERR(vm->scratch_pd);
1249 vm->scratch_pdp = alloc_pdp(vm);
1250 if (IS_ERR(vm->scratch_pdp)) {
1251 ret = PTR_ERR(vm->scratch_pdp);
1256 gen8_initialize_pt(vm, vm->scratch_pt);
1257 gen8_initialize_pd(vm, vm->scratch_pd);
1259 gen8_initialize_pdp(vm, vm->scratch_pdp);
1264 free_pd(vm, vm->scratch_pd);
1266 free_pt(vm, vm->scratch_pt);
1268 cleanup_scratch_page(vm);
1273 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1275 struct i915_address_space *vm = &ppgtt->base;
1276 struct drm_i915_private *dev_priv = vm->i915;
1277 enum vgt_g2v_type msg;
1281 const u64 daddr = px_dma(&ppgtt->pml4);
1283 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1284 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1286 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1287 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1289 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1290 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1292 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1293 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1296 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1297 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1300 I915_WRITE(vgtif_reg(g2v_notify), msg);
1305 static void gen8_free_scratch(struct i915_address_space *vm)
1308 free_pdp(vm, vm->scratch_pdp);
1309 free_pd(vm, vm->scratch_pd);
1310 free_pt(vm, vm->scratch_pt);
1311 cleanup_scratch_page(vm);
1314 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1315 struct i915_page_directory_pointer *pdp)
1317 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1320 for (i = 0; i < pdpes; i++) {
1321 if (pdp->page_directory[i] == vm->scratch_pd)
1324 gen8_free_page_tables(vm, pdp->page_directory[i]);
1325 free_pd(vm, pdp->page_directory[i]);
1331 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1335 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1336 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1339 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1342 cleanup_px(&ppgtt->base, &ppgtt->pml4);
1345 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1347 struct drm_i915_private *dev_priv = vm->i915;
1348 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1350 if (intel_vgpu_active(dev_priv))
1351 gen8_ppgtt_notify_vgt(ppgtt, false);
1354 gen8_ppgtt_cleanup_4lvl(ppgtt);
1356 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1358 gen8_free_scratch(vm);
1361 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1362 struct i915_page_directory *pd,
1363 u64 start, u64 length)
1365 struct i915_page_table *pt;
1369 gen8_for_each_pde(pt, pd, start, length, pde) {
1370 int count = gen8_pte_count(start, length);
1372 if (pt == vm->scratch_pt) {
1381 if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1382 gen8_initialize_pt(vm, pt);
1384 gen8_ppgtt_set_pde(vm, pd, pt, pde);
1385 GEM_BUG_ON(pd->used_pdes > I915_PDES);
1388 pt->used_ptes += count;
1393 gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1397 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1398 struct i915_page_directory_pointer *pdp,
1399 u64 start, u64 length)
1401 struct i915_page_directory *pd;
1406 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1407 if (pd == vm->scratch_pd) {
1416 gen8_initialize_pd(vm, pd);
1417 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1418 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1420 mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1423 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1431 if (!pd->used_pdes) {
1432 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1433 GEM_BUG_ON(!pdp->used_pdpes);
1438 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1442 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1443 u64 start, u64 length)
1445 return gen8_ppgtt_alloc_pdp(vm,
1446 &i915_vm_to_ppgtt(vm)->pdp, start, length);
1449 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1450 u64 start, u64 length)
1452 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1453 struct i915_pml4 *pml4 = &ppgtt->pml4;
1454 struct i915_page_directory_pointer *pdp;
1459 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1460 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1461 pdp = alloc_pdp(vm);
1465 gen8_initialize_pdp(vm, pdp);
1466 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1469 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1477 if (!pdp->used_pdpes) {
1478 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1482 gen8_ppgtt_clear_4lvl(vm, from, start - from);
1486 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1487 struct i915_page_directory_pointer *pdp,
1488 u64 start, u64 length,
1489 gen8_pte_t scratch_pte,
1492 struct i915_address_space *vm = &ppgtt->base;
1493 struct i915_page_directory *pd;
1496 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1497 struct i915_page_table *pt;
1498 u64 pd_len = length;
1499 u64 pd_start = start;
1502 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1505 seq_printf(m, "\tPDPE #%d\n", pdpe);
1506 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1508 gen8_pte_t *pt_vaddr;
1510 if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1513 pt_vaddr = kmap_atomic_px(pt);
1514 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1515 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1516 pde << GEN8_PDE_SHIFT |
1517 pte << GEN8_PTE_SHIFT);
1521 for (i = 0; i < 4; i++)
1522 if (pt_vaddr[pte + i] != scratch_pte)
1527 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1528 for (i = 0; i < 4; i++) {
1529 if (pt_vaddr[pte + i] != scratch_pte)
1530 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1532 seq_puts(m, " SCRATCH ");
1536 kunmap_atomic(pt_vaddr);
1541 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1543 struct i915_address_space *vm = &ppgtt->base;
1544 const gen8_pte_t scratch_pte =
1545 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1546 u64 start = 0, length = ppgtt->base.total;
1550 struct i915_pml4 *pml4 = &ppgtt->pml4;
1551 struct i915_page_directory_pointer *pdp;
1553 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1554 if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1557 seq_printf(m, " PML4E #%llu\n", pml4e);
1558 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1561 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1565 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1567 struct i915_address_space *vm = &ppgtt->base;
1568 struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1569 struct i915_page_directory *pd;
1570 u64 start = 0, length = ppgtt->base.total;
1574 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1579 gen8_initialize_pd(vm, pd);
1580 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1584 pdp->used_pdpes++; /* never remove */
1589 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1590 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1593 pdp->used_pdpes = 0;
1598 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1599 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1600 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1604 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1606 struct i915_address_space *vm = &ppgtt->base;
1607 struct drm_i915_private *dev_priv = vm->i915;
1610 ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1614 /* There are only few exceptions for gen >=6. chv and bxt.
1615 * And we are not sure about the latter so play safe for now.
1617 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1618 ppgtt->base.pt_kmap_wc = true;
1620 ret = gen8_init_scratch(&ppgtt->base);
1622 ppgtt->base.total = 0;
1627 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1631 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1633 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1634 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1635 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1636 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1638 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1642 if (intel_vgpu_active(dev_priv)) {
1643 ret = gen8_preallocate_top_level_pdp(ppgtt);
1645 __pdp_fini(&ppgtt->pdp);
1650 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1651 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1652 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1653 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1656 if (intel_vgpu_active(dev_priv))
1657 gen8_ppgtt_notify_vgt(ppgtt, true);
1659 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1660 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1661 ppgtt->base.bind_vma = ppgtt_bind_vma;
1662 ppgtt->base.set_pages = ppgtt_set_pages;
1663 ppgtt->base.clear_pages = clear_pages;
1664 ppgtt->debug_dump = gen8_dump_ppgtt;
1669 gen8_free_scratch(&ppgtt->base);
1673 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1675 struct i915_address_space *vm = &ppgtt->base;
1676 struct i915_page_table *unused;
1677 gen6_pte_t scratch_pte;
1678 u32 pd_entry, pte, pde;
1679 u32 start = 0, length = ppgtt->base.total;
1681 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1684 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1686 gen6_pte_t *pt_vaddr;
1687 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1688 pd_entry = readl(ppgtt->pd_addr + pde);
1689 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1691 if (pd_entry != expected)
1692 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1696 seq_printf(m, "\tPDE: %x\n", pd_entry);
1698 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1700 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1702 (pde * PAGE_SIZE * GEN6_PTES) +
1706 for (i = 0; i < 4; i++)
1707 if (pt_vaddr[pte + i] != scratch_pte)
1712 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1713 for (i = 0; i < 4; i++) {
1714 if (pt_vaddr[pte + i] != scratch_pte)
1715 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1717 seq_puts(m, " SCRATCH ");
1721 kunmap_atomic(pt_vaddr);
1725 /* Write pde (index) from the page directory @pd to the page table @pt */
1726 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1727 const unsigned int pde,
1728 const struct i915_page_table *pt)
1730 /* Caller needs to make sure the write completes if necessary */
1731 writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1732 ppgtt->pd_addr + pde);
1735 /* Write all the page tables found in the ppgtt structure to incrementing page
1737 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1738 u32 start, u32 length)
1740 struct i915_page_table *pt;
1743 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1744 gen6_write_pde(ppgtt, pde, pt);
1746 mark_tlbs_dirty(ppgtt);
1750 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1752 GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1753 return ppgtt->pd.base.ggtt_offset << 10;
1756 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1757 struct i915_request *rq)
1759 struct intel_engine_cs *engine = rq->engine;
1762 /* NB: TLBs must be flushed and invalidated before a switch */
1763 cs = intel_ring_begin(rq, 6);
1767 *cs++ = MI_LOAD_REGISTER_IMM(2);
1768 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1769 *cs++ = PP_DIR_DCLV_2G;
1770 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1771 *cs++ = get_pd_offset(ppgtt);
1773 intel_ring_advance(rq, cs);
1778 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1779 struct i915_request *rq)
1781 struct intel_engine_cs *engine = rq->engine;
1784 /* NB: TLBs must be flushed and invalidated before a switch */
1785 cs = intel_ring_begin(rq, 6);
1789 *cs++ = MI_LOAD_REGISTER_IMM(2);
1790 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1791 *cs++ = PP_DIR_DCLV_2G;
1792 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1793 *cs++ = get_pd_offset(ppgtt);
1795 intel_ring_advance(rq, cs);
1800 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1801 struct i915_request *rq)
1803 struct intel_engine_cs *engine = rq->engine;
1804 struct drm_i915_private *dev_priv = rq->i915;
1806 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1807 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1811 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1813 struct intel_engine_cs *engine;
1814 enum intel_engine_id id;
1816 for_each_engine(engine, dev_priv, id) {
1817 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1818 GEN8_GFX_PPGTT_48B : 0;
1819 I915_WRITE(RING_MODE_GEN7(engine),
1820 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1824 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1826 struct intel_engine_cs *engine;
1827 u32 ecochk, ecobits;
1828 enum intel_engine_id id;
1830 ecobits = I915_READ(GAC_ECO_BITS);
1831 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1833 ecochk = I915_READ(GAM_ECOCHK);
1834 if (IS_HASWELL(dev_priv)) {
1835 ecochk |= ECOCHK_PPGTT_WB_HSW;
1837 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1838 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1840 I915_WRITE(GAM_ECOCHK, ecochk);
1842 for_each_engine(engine, dev_priv, id) {
1843 /* GFX_MODE is per-ring on gen7+ */
1844 I915_WRITE(RING_MODE_GEN7(engine),
1845 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1849 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1851 u32 ecochk, gab_ctl, ecobits;
1853 ecobits = I915_READ(GAC_ECO_BITS);
1854 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1855 ECOBITS_PPGTT_CACHE64B);
1857 gab_ctl = I915_READ(GAB_CTL);
1858 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1860 ecochk = I915_READ(GAM_ECOCHK);
1861 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1863 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1866 /* PPGTT support for Sandybdrige/Gen6 and later */
1867 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1868 u64 start, u64 length)
1870 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1871 unsigned int first_entry = start >> PAGE_SHIFT;
1872 unsigned int pde = first_entry / GEN6_PTES;
1873 unsigned int pte = first_entry % GEN6_PTES;
1874 unsigned int num_entries = length >> PAGE_SHIFT;
1875 gen6_pte_t scratch_pte =
1876 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1878 while (num_entries) {
1879 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1880 unsigned int end = min(pte + num_entries, GEN6_PTES);
1883 num_entries -= end - pte;
1885 /* Note that the hw doesn't support removing PDE on the fly
1886 * (they are cached inside the context with no means to
1887 * invalidate the cache), so we can only reset the PTE
1888 * entries back to scratch.
1891 vaddr = kmap_atomic_px(pt);
1893 vaddr[pte++] = scratch_pte;
1894 } while (pte < end);
1895 kunmap_atomic(vaddr);
1901 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1902 struct i915_vma *vma,
1903 enum i915_cache_level cache_level,
1906 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1907 unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1908 unsigned act_pt = first_entry / GEN6_PTES;
1909 unsigned act_pte = first_entry % GEN6_PTES;
1910 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1911 struct sgt_dma iter = sgt_dma(vma);
1914 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1916 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1918 iter.dma += PAGE_SIZE;
1919 if (iter.dma == iter.max) {
1920 iter.sg = __sg_next(iter.sg);
1924 iter.dma = sg_dma_address(iter.sg);
1925 iter.max = iter.dma + iter.sg->length;
1928 if (++act_pte == GEN6_PTES) {
1929 kunmap_atomic(vaddr);
1930 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1934 kunmap_atomic(vaddr);
1936 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1939 static int gen6_alloc_va_range(struct i915_address_space *vm,
1940 u64 start, u64 length)
1942 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1943 struct i915_page_table *pt;
1948 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1949 if (pt == vm->scratch_pt) {
1954 gen6_initialize_pt(vm, pt);
1955 ppgtt->pd.page_table[pde] = pt;
1956 gen6_write_pde(ppgtt, pde, pt);
1962 mark_tlbs_dirty(ppgtt);
1969 gen6_ppgtt_clear_range(vm, from, start);
1973 static int gen6_init_scratch(struct i915_address_space *vm)
1977 ret = setup_scratch_page(vm, I915_GFP_DMA);
1981 vm->scratch_pt = alloc_pt(vm);
1982 if (IS_ERR(vm->scratch_pt)) {
1983 cleanup_scratch_page(vm);
1984 return PTR_ERR(vm->scratch_pt);
1987 gen6_initialize_pt(vm, vm->scratch_pt);
1992 static void gen6_free_scratch(struct i915_address_space *vm)
1994 free_pt(vm, vm->scratch_pt);
1995 cleanup_scratch_page(vm);
1998 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2000 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
2001 struct i915_page_directory *pd = &ppgtt->pd;
2002 struct i915_page_table *pt;
2005 drm_mm_remove_node(&ppgtt->node);
2007 gen6_for_all_pdes(pt, pd, pde)
2008 if (pt != vm->scratch_pt)
2011 gen6_free_scratch(vm);
2014 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2016 struct i915_address_space *vm = &ppgtt->base;
2017 struct drm_i915_private *dev_priv = ppgtt->base.i915;
2018 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2021 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2022 * allocator works in address space sizes, so it's multiplied by page
2023 * size. We allocate at the top of the GTT to avoid fragmentation.
2025 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2027 ret = gen6_init_scratch(vm);
2031 ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
2032 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2033 I915_COLOR_UNEVICTABLE,
2034 0, ggtt->base.total,
2039 if (ppgtt->node.start < ggtt->mappable_end)
2040 DRM_DEBUG("Forced to use aperture for PDEs\n");
2042 ppgtt->pd.base.ggtt_offset =
2043 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2045 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2046 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2051 gen6_free_scratch(vm);
2055 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2057 return gen6_ppgtt_allocate_page_directories(ppgtt);
2060 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2061 u64 start, u64 length)
2063 struct i915_page_table *unused;
2066 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2067 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2070 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2072 struct drm_i915_private *dev_priv = ppgtt->base.i915;
2073 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2076 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2077 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2078 ppgtt->switch_mm = gen6_mm_switch;
2079 else if (IS_HASWELL(dev_priv))
2080 ppgtt->switch_mm = hsw_mm_switch;
2081 else if (IS_GEN7(dev_priv))
2082 ppgtt->switch_mm = gen7_mm_switch;
2086 ret = gen6_ppgtt_alloc(ppgtt);
2090 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2092 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2093 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
2095 ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
2097 gen6_ppgtt_cleanup(&ppgtt->base);
2101 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2102 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2103 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2104 ppgtt->base.bind_vma = ppgtt_bind_vma;
2105 ppgtt->base.set_pages = ppgtt_set_pages;
2106 ppgtt->base.clear_pages = clear_pages;
2107 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2108 ppgtt->debug_dump = gen6_dump_ppgtt;
2110 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2111 ppgtt->node.size >> 20,
2112 ppgtt->node.start / PAGE_SIZE);
2114 DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
2115 ppgtt->pd.base.ggtt_offset << 10);
2120 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2121 struct drm_i915_private *dev_priv)
2123 ppgtt->base.i915 = dev_priv;
2124 ppgtt->base.dma = &dev_priv->drm.pdev->dev;
2126 if (INTEL_GEN(dev_priv) < 8)
2127 return gen6_ppgtt_init(ppgtt);
2129 return gen8_ppgtt_init(ppgtt);
2132 static void i915_address_space_init(struct i915_address_space *vm,
2133 struct drm_i915_private *dev_priv,
2136 drm_mm_init(&vm->mm, 0, vm->total);
2137 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
2139 INIT_LIST_HEAD(&vm->active_list);
2140 INIT_LIST_HEAD(&vm->inactive_list);
2141 INIT_LIST_HEAD(&vm->unbound_list);
2143 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2144 pagevec_init(&vm->free_pages);
2147 static void i915_address_space_fini(struct i915_address_space *vm)
2149 if (pagevec_count(&vm->free_pages))
2150 vm_free_pages_release(vm, true);
2152 drm_mm_takedown(&vm->mm);
2153 list_del(&vm->global_link);
2156 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2158 /* This function is for gtt related workarounds. This function is
2159 * called on driver load and after a GPU reset, so you can place
2160 * workarounds here even if they get overwritten by GPU reset.
2162 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2163 if (IS_BROADWELL(dev_priv))
2164 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2165 else if (IS_CHERRYVIEW(dev_priv))
2166 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2167 else if (IS_GEN9_LP(dev_priv))
2168 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2169 else if (INTEL_GEN(dev_priv) >= 9)
2170 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2173 * To support 64K PTEs we need to first enable the use of the
2174 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2175 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2176 * shouldn't be needed after GEN10.
2178 * 64K pages were first introduced from BDW+, although technically they
2179 * only *work* from gen9+. For pre-BDW we instead have the option for
2180 * 32K pages, but we don't currently have any support for it in our
2183 if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2184 INTEL_GEN(dev_priv) <= 10)
2185 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2186 I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2187 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2190 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2192 gtt_write_workarounds(dev_priv);
2194 /* In the case of execlists, PPGTT is enabled by the context descriptor
2195 * and the PDPs are contained within the context itself. We don't
2196 * need to do anything here. */
2197 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2200 if (!USES_PPGTT(dev_priv))
2203 if (IS_GEN6(dev_priv))
2204 gen6_ppgtt_enable(dev_priv);
2205 else if (IS_GEN7(dev_priv))
2206 gen7_ppgtt_enable(dev_priv);
2207 else if (INTEL_GEN(dev_priv) >= 8)
2208 gen8_ppgtt_enable(dev_priv);
2210 MISSING_CASE(INTEL_GEN(dev_priv));
2215 struct i915_hw_ppgtt *
2216 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2217 struct drm_i915_file_private *fpriv,
2220 struct i915_hw_ppgtt *ppgtt;
2223 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2225 return ERR_PTR(-ENOMEM);
2227 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2230 return ERR_PTR(ret);
2233 kref_init(&ppgtt->ref);
2234 i915_address_space_init(&ppgtt->base, dev_priv, name);
2235 ppgtt->base.file = fpriv;
2237 trace_i915_ppgtt_create(&ppgtt->base);
2242 void i915_ppgtt_close(struct i915_address_space *vm)
2244 GEM_BUG_ON(vm->closed);
2248 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2250 struct list_head *phases[] = {
2258 for (phase = phases; *phase; phase++) {
2259 struct i915_vma *vma, *vn;
2261 list_for_each_entry_safe(vma, vn, *phase, vm_link)
2262 i915_vma_destroy(vma);
2266 void i915_ppgtt_release(struct kref *kref)
2268 struct i915_hw_ppgtt *ppgtt =
2269 container_of(kref, struct i915_hw_ppgtt, ref);
2271 trace_i915_ppgtt_release(&ppgtt->base);
2273 ppgtt_destroy_vma(&ppgtt->base);
2275 GEM_BUG_ON(!list_empty(&ppgtt->base.active_list));
2276 GEM_BUG_ON(!list_empty(&ppgtt->base.inactive_list));
2277 GEM_BUG_ON(!list_empty(&ppgtt->base.unbound_list));
2279 ppgtt->base.cleanup(&ppgtt->base);
2280 i915_address_space_fini(&ppgtt->base);
2284 /* Certain Gen5 chipsets require require idling the GPU before
2285 * unmapping anything from the GTT when VT-d is enabled.
2287 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2289 /* Query intel_iommu to see if we need the workaround. Presumably that
2292 return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2295 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2297 struct intel_engine_cs *engine;
2298 enum intel_engine_id id;
2301 for_each_engine(engine, dev_priv, id) {
2302 fault = I915_READ(RING_FAULT_REG(engine));
2303 if (fault & RING_FAULT_VALID) {
2304 DRM_DEBUG_DRIVER("Unexpected fault\n"
2306 "\tAddress space: %s\n"
2310 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2311 RING_FAULT_SRCID(fault),
2312 RING_FAULT_FAULT_TYPE(fault));
2313 I915_WRITE(RING_FAULT_REG(engine),
2314 fault & ~RING_FAULT_VALID);
2318 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2321 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2323 u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2325 if (fault & RING_FAULT_VALID) {
2326 u32 fault_data0, fault_data1;
2329 fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2330 fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2331 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2332 ((u64)fault_data0 << 12);
2334 DRM_DEBUG_DRIVER("Unexpected fault\n"
2335 "\tAddr: 0x%08x_%08x\n"
2336 "\tAddress space: %s\n"
2340 upper_32_bits(fault_addr),
2341 lower_32_bits(fault_addr),
2342 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2343 GEN8_RING_FAULT_ENGINE_ID(fault),
2344 RING_FAULT_SRCID(fault),
2345 RING_FAULT_FAULT_TYPE(fault));
2346 I915_WRITE(GEN8_RING_FAULT_REG,
2347 fault & ~RING_FAULT_VALID);
2350 POSTING_READ(GEN8_RING_FAULT_REG);
2353 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2355 /* From GEN8 onwards we only have one 'All Engine Fault Register' */
2356 if (INTEL_GEN(dev_priv) >= 8)
2357 gen8_check_and_clear_faults(dev_priv);
2358 else if (INTEL_GEN(dev_priv) >= 6)
2359 gen6_check_and_clear_faults(dev_priv);
2364 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2366 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2368 /* Don't bother messing with faults pre GEN6 as we have little
2369 * documentation supporting that it's a good idea.
2371 if (INTEL_GEN(dev_priv) < 6)
2374 i915_check_and_clear_faults(dev_priv);
2376 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2378 i915_ggtt_invalidate(dev_priv);
2381 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2382 struct sg_table *pages)
2385 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2386 pages->sgl, pages->nents,
2387 PCI_DMA_BIDIRECTIONAL,
2391 /* If the DMA remap fails, one cause can be that we have
2392 * too many objects pinned in a small remapping table,
2393 * such as swiotlb. Incrementally purge all other objects and
2394 * try again - if there are no more pages to remove from
2395 * the DMA remapper, i915_gem_shrink will return 0.
2397 GEM_BUG_ON(obj->mm.pages == pages);
2398 } while (i915_gem_shrink(to_i915(obj->base.dev),
2399 obj->base.size >> PAGE_SHIFT, NULL,
2401 I915_SHRINK_UNBOUND |
2402 I915_SHRINK_ACTIVE));
2407 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2412 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2415 enum i915_cache_level level,
2418 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2419 gen8_pte_t __iomem *pte =
2420 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2422 gen8_set_pte(pte, gen8_pte_encode(addr, level));
2424 ggtt->invalidate(vm->i915);
2427 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2428 struct i915_vma *vma,
2429 enum i915_cache_level level,
2432 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2433 struct sgt_iter sgt_iter;
2434 gen8_pte_t __iomem *gtt_entries;
2435 const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2438 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2439 gtt_entries += vma->node.start >> PAGE_SHIFT;
2440 for_each_sgt_dma(addr, sgt_iter, vma->pages)
2441 gen8_set_pte(gtt_entries++, pte_encode | addr);
2444 * We want to flush the TLBs only after we're certain all the PTE
2445 * updates have finished.
2447 ggtt->invalidate(vm->i915);
2450 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2453 enum i915_cache_level level,
2456 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2457 gen6_pte_t __iomem *pte =
2458 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2460 iowrite32(vm->pte_encode(addr, level, flags), pte);
2462 ggtt->invalidate(vm->i915);
2466 * Binds an object into the global gtt with the specified cache level. The object
2467 * will be accessible to the GPU via commands whose operands reference offsets
2468 * within the global GTT as well as accessible by the GPU through the GMADR
2469 * mapped BAR (dev_priv->mm.gtt->gtt).
2471 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2472 struct i915_vma *vma,
2473 enum i915_cache_level level,
2476 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2477 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2478 unsigned int i = vma->node.start >> PAGE_SHIFT;
2479 struct sgt_iter iter;
2481 for_each_sgt_dma(addr, iter, vma->pages)
2482 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2485 * We want to flush the TLBs only after we're certain all the PTE
2486 * updates have finished.
2488 ggtt->invalidate(vm->i915);
2491 static void nop_clear_range(struct i915_address_space *vm,
2492 u64 start, u64 length)
2496 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2497 u64 start, u64 length)
2499 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2500 unsigned first_entry = start >> PAGE_SHIFT;
2501 unsigned num_entries = length >> PAGE_SHIFT;
2502 const gen8_pte_t scratch_pte =
2503 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2504 gen8_pte_t __iomem *gtt_base =
2505 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2506 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2509 if (WARN(num_entries > max_entries,
2510 "First entry = %d; Num entries = %d (max=%d)\n",
2511 first_entry, num_entries, max_entries))
2512 num_entries = max_entries;
2514 for (i = 0; i < num_entries; i++)
2515 gen8_set_pte(>t_base[i], scratch_pte);
2518 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2520 struct drm_i915_private *dev_priv = vm->i915;
2523 * Make sure the internal GAM fifo has been cleared of all GTT
2524 * writes before exiting stop_machine(). This guarantees that
2525 * any aperture accesses waiting to start in another process
2526 * cannot back up behind the GTT writes causing a hang.
2527 * The register can be any arbitrary GAM register.
2529 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2532 struct insert_page {
2533 struct i915_address_space *vm;
2536 enum i915_cache_level level;
2539 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2541 struct insert_page *arg = _arg;
2543 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2544 bxt_vtd_ggtt_wa(arg->vm);
2549 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2552 enum i915_cache_level level,
2555 struct insert_page arg = { vm, addr, offset, level };
2557 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2560 struct insert_entries {
2561 struct i915_address_space *vm;
2562 struct i915_vma *vma;
2563 enum i915_cache_level level;
2566 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2568 struct insert_entries *arg = _arg;
2570 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2571 bxt_vtd_ggtt_wa(arg->vm);
2576 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2577 struct i915_vma *vma,
2578 enum i915_cache_level level,
2581 struct insert_entries arg = { vm, vma, level };
2583 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2586 struct clear_range {
2587 struct i915_address_space *vm;
2592 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2594 struct clear_range *arg = _arg;
2596 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2597 bxt_vtd_ggtt_wa(arg->vm);
2602 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2606 struct clear_range arg = { vm, start, length };
2608 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2611 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2612 u64 start, u64 length)
2614 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2615 unsigned first_entry = start >> PAGE_SHIFT;
2616 unsigned num_entries = length >> PAGE_SHIFT;
2617 gen6_pte_t scratch_pte, __iomem *gtt_base =
2618 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2619 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2622 if (WARN(num_entries > max_entries,
2623 "First entry = %d; Num entries = %d (max=%d)\n",
2624 first_entry, num_entries, max_entries))
2625 num_entries = max_entries;
2627 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2630 for (i = 0; i < num_entries; i++)
2631 iowrite32(scratch_pte, >t_base[i]);
2634 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2637 enum i915_cache_level cache_level,
2640 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2641 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2643 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2646 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2647 struct i915_vma *vma,
2648 enum i915_cache_level cache_level,
2651 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2652 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2654 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2658 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2659 u64 start, u64 length)
2661 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2664 static int ggtt_bind_vma(struct i915_vma *vma,
2665 enum i915_cache_level cache_level,
2668 struct drm_i915_private *i915 = vma->vm->i915;
2669 struct drm_i915_gem_object *obj = vma->obj;
2672 /* Currently applicable only to VLV */
2675 pte_flags |= PTE_READ_ONLY;
2677 intel_runtime_pm_get(i915);
2678 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2679 intel_runtime_pm_put(i915);
2681 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2684 * Without aliasing PPGTT there's no difference between
2685 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2686 * upgrade to both bound if we bind either to avoid double-binding.
2688 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2693 static void ggtt_unbind_vma(struct i915_vma *vma)
2695 struct drm_i915_private *i915 = vma->vm->i915;
2697 intel_runtime_pm_get(i915);
2698 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2699 intel_runtime_pm_put(i915);
2702 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2703 enum i915_cache_level cache_level,
2706 struct drm_i915_private *i915 = vma->vm->i915;
2710 /* Currently applicable only to VLV */
2712 if (vma->obj->gt_ro)
2713 pte_flags |= PTE_READ_ONLY;
2715 if (flags & I915_VMA_LOCAL_BIND) {
2716 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2718 if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2719 appgtt->base.allocate_va_range) {
2720 ret = appgtt->base.allocate_va_range(&appgtt->base,
2727 appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2731 if (flags & I915_VMA_GLOBAL_BIND) {
2732 intel_runtime_pm_get(i915);
2733 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2734 intel_runtime_pm_put(i915);
2740 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2742 struct drm_i915_private *i915 = vma->vm->i915;
2744 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2745 intel_runtime_pm_get(i915);
2746 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2747 intel_runtime_pm_put(i915);
2750 if (vma->flags & I915_VMA_LOCAL_BIND) {
2751 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2753 vm->clear_range(vm, vma->node.start, vma->size);
2757 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2758 struct sg_table *pages)
2760 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2761 struct device *kdev = &dev_priv->drm.pdev->dev;
2762 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2764 if (unlikely(ggtt->do_idle_maps)) {
2765 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2766 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2767 /* Wait a bit, in hopes it avoids the hang */
2772 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2775 static int ggtt_set_pages(struct i915_vma *vma)
2779 GEM_BUG_ON(vma->pages);
2781 ret = i915_get_ggtt_vma_pages(vma);
2785 vma->page_sizes = vma->obj->mm.page_sizes;
2790 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2791 unsigned long color,
2795 if (node->allocated && node->color != color)
2796 *start += I915_GTT_PAGE_SIZE;
2798 /* Also leave a space between the unallocated reserved node after the
2799 * GTT and any objects within the GTT, i.e. we use the color adjustment
2800 * to insert a guard page to prevent prefetches crossing over the
2803 node = list_next_entry(node, node_list);
2804 if (node->color != color)
2805 *end -= I915_GTT_PAGE_SIZE;
2808 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2810 struct i915_ggtt *ggtt = &i915->ggtt;
2811 struct i915_hw_ppgtt *ppgtt;
2814 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2816 return PTR_ERR(ppgtt);
2818 if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2823 if (ppgtt->base.allocate_va_range) {
2824 /* Note we only pre-allocate as far as the end of the global
2825 * GTT. On 48b / 4-level page-tables, the difference is very,
2826 * very significant! We have to preallocate as GVT/vgpu does
2827 * not like the page directory disappearing.
2829 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2830 0, ggtt->base.total);
2835 i915->mm.aliasing_ppgtt = ppgtt;
2837 GEM_BUG_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2838 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2840 GEM_BUG_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2841 ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2846 i915_ppgtt_put(ppgtt);
2850 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2852 struct i915_ggtt *ggtt = &i915->ggtt;
2853 struct i915_hw_ppgtt *ppgtt;
2855 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2859 i915_ppgtt_put(ppgtt);
2861 ggtt->base.bind_vma = ggtt_bind_vma;
2862 ggtt->base.unbind_vma = ggtt_unbind_vma;
2865 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2867 /* Let GEM Manage all of the aperture.
2869 * However, leave one page at the end still bound to the scratch page.
2870 * There are a number of places where the hardware apparently prefetches
2871 * past the end of the object, and we've seen multiple hangs with the
2872 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2873 * aperture. One page should be enough to keep any prefetching inside
2876 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2877 unsigned long hole_start, hole_end;
2878 struct drm_mm_node *entry;
2881 ret = intel_vgt_balloon(dev_priv);
2885 /* Reserve a mappable slot for our lockless error capture */
2886 ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2887 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2888 0, ggtt->mappable_end,
2893 /* Clear any non-preallocated blocks */
2894 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2895 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2896 hole_start, hole_end);
2897 ggtt->base.clear_range(&ggtt->base, hole_start,
2898 hole_end - hole_start);
2901 /* And finally clear the reserved guard page */
2902 ggtt->base.clear_range(&ggtt->base,
2903 ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2905 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2906 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2914 drm_mm_remove_node(&ggtt->error_capture);
2919 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2920 * @dev_priv: i915 device
2922 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2924 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2925 struct i915_vma *vma, *vn;
2926 struct pagevec *pvec;
2928 ggtt->base.closed = true;
2930 mutex_lock(&dev_priv->drm.struct_mutex);
2931 GEM_BUG_ON(!list_empty(&ggtt->base.active_list));
2932 list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2933 WARN_ON(i915_vma_unbind(vma));
2934 mutex_unlock(&dev_priv->drm.struct_mutex);
2936 i915_gem_cleanup_stolen(&dev_priv->drm);
2938 mutex_lock(&dev_priv->drm.struct_mutex);
2939 i915_gem_fini_aliasing_ppgtt(dev_priv);
2941 if (drm_mm_node_allocated(&ggtt->error_capture))
2942 drm_mm_remove_node(&ggtt->error_capture);
2944 if (drm_mm_initialized(&ggtt->base.mm)) {
2945 intel_vgt_deballoon(dev_priv);
2946 i915_address_space_fini(&ggtt->base);
2949 ggtt->base.cleanup(&ggtt->base);
2951 pvec = &dev_priv->mm.wc_stash;
2953 set_pages_array_wb(pvec->pages, pvec->nr);
2954 __pagevec_release(pvec);
2957 mutex_unlock(&dev_priv->drm.struct_mutex);
2959 arch_phys_wc_del(ggtt->mtrr);
2960 io_mapping_fini(&ggtt->iomap);
2963 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2965 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2966 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2967 return snb_gmch_ctl << 20;
2970 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2972 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2973 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2975 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2977 #ifdef CONFIG_X86_32
2978 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2979 if (bdw_gmch_ctl > 4)
2983 return bdw_gmch_ctl << 20;
2986 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2988 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2989 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2992 return 1 << (20 + gmch_ctrl);
2997 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2999 struct drm_i915_private *dev_priv = ggtt->base.i915;
3000 struct pci_dev *pdev = dev_priv->drm.pdev;
3001 phys_addr_t phys_addr;
3004 /* For Modern GENs the PTEs and register space are split in the BAR */
3005 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
3008 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
3009 * will be dropped. For WC mappings in general we have 64 byte burst
3010 * writes when the WC buffer is flushed, so we can't use it, but have to
3011 * resort to an uncached mapping. The WC issue is easily caught by the
3012 * readback check when writing GTT PTE entries.
3014 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3015 ggtt->gsm = ioremap_nocache(phys_addr, size);
3017 ggtt->gsm = ioremap_wc(phys_addr, size);
3019 DRM_ERROR("Failed to map the ggtt page table\n");
3023 ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
3025 DRM_ERROR("Scratch setup failed\n");
3026 /* iounmap will also get called at remove, but meh */
3034 static struct intel_ppat_entry *
3035 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3037 struct intel_ppat_entry *entry = &ppat->entries[index];
3039 GEM_BUG_ON(index >= ppat->max_entries);
3040 GEM_BUG_ON(test_bit(index, ppat->used));
3043 entry->value = value;
3044 kref_init(&entry->ref);
3045 set_bit(index, ppat->used);
3046 set_bit(index, ppat->dirty);
3051 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3053 struct intel_ppat *ppat = entry->ppat;
3054 unsigned int index = entry - ppat->entries;
3056 GEM_BUG_ON(index >= ppat->max_entries);
3057 GEM_BUG_ON(!test_bit(index, ppat->used));
3059 entry->value = ppat->clear_value;
3060 clear_bit(index, ppat->used);
3061 set_bit(index, ppat->dirty);
3065 * intel_ppat_get - get a usable PPAT entry
3066 * @i915: i915 device instance
3067 * @value: the PPAT value required by the caller
3069 * The function tries to search if there is an existing PPAT entry which
3070 * matches with the required value. If perfectly matched, the existing PPAT
3071 * entry will be used. If only partially matched, it will try to check if
3072 * there is any available PPAT index. If yes, it will allocate a new PPAT
3073 * index for the required entry and update the HW. If not, the partially
3074 * matched entry will be used.
3076 const struct intel_ppat_entry *
3077 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3079 struct intel_ppat *ppat = &i915->ppat;
3080 struct intel_ppat_entry *entry = NULL;
3081 unsigned int scanned, best_score;
3084 GEM_BUG_ON(!ppat->max_entries);
3086 scanned = best_score = 0;
3087 for_each_set_bit(i, ppat->used, ppat->max_entries) {
3090 score = ppat->match(ppat->entries[i].value, value);
3091 if (score > best_score) {
3092 entry = &ppat->entries[i];
3093 if (score == INTEL_PPAT_PERFECT_MATCH) {
3094 kref_get(&entry->ref);
3102 if (scanned == ppat->max_entries) {
3104 return ERR_PTR(-ENOSPC);
3106 kref_get(&entry->ref);
3110 i = find_first_zero_bit(ppat->used, ppat->max_entries);
3111 entry = __alloc_ppat_entry(ppat, i, value);
3112 ppat->update_hw(i915);
3116 static void release_ppat(struct kref *kref)
3118 struct intel_ppat_entry *entry =
3119 container_of(kref, struct intel_ppat_entry, ref);
3120 struct drm_i915_private *i915 = entry->ppat->i915;
3122 __free_ppat_entry(entry);
3123 entry->ppat->update_hw(i915);
3127 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3128 * @entry: an intel PPAT entry
3130 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3131 * entry is dynamically allocated, its reference count will be decreased. Once
3132 * the reference count becomes into zero, the PPAT index becomes free again.
3134 void intel_ppat_put(const struct intel_ppat_entry *entry)
3136 struct intel_ppat *ppat = entry->ppat;
3137 unsigned int index = entry - ppat->entries;
3139 GEM_BUG_ON(!ppat->max_entries);
3141 kref_put(&ppat->entries[index].ref, release_ppat);
3144 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3146 struct intel_ppat *ppat = &dev_priv->ppat;
3149 for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3150 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3151 clear_bit(i, ppat->dirty);
3155 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3157 struct intel_ppat *ppat = &dev_priv->ppat;
3161 for (i = 0; i < ppat->max_entries; i++)
3162 pat |= GEN8_PPAT(i, ppat->entries[i].value);
3164 bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3166 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3167 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3170 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3172 unsigned int score = 0;
3179 /* Cache attribute has to be matched. */
3180 if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3185 if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3188 if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3191 if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3192 return INTEL_PPAT_PERFECT_MATCH;
3197 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3199 return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3200 INTEL_PPAT_PERFECT_MATCH : 0;
3203 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3205 ppat->max_entries = 8;
3206 ppat->update_hw = cnl_private_pat_update_hw;
3207 ppat->match = bdw_private_pat_match;
3208 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3210 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3211 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3212 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3213 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3214 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3215 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3216 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3217 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3220 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3221 * bits. When using advanced contexts each context stores its own PAT, but
3222 * writing this data shouldn't be harmful even in those cases. */
3223 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3225 ppat->max_entries = 8;
3226 ppat->update_hw = bdw_private_pat_update_hw;
3227 ppat->match = bdw_private_pat_match;
3228 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3230 if (!USES_PPGTT(ppat->i915)) {
3231 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3232 * so RTL will always use the value corresponding to
3234 * So let's disable cache for GGTT to avoid screen corruptions.
3235 * MOCS still can be used though.
3236 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3237 * before this patch, i.e. the same uncached + snooping access
3238 * like on gen6/7 seems to be in effect.
3239 * - So this just fixes blitter/render access. Again it looks
3240 * like it's not just uncached access, but uncached + snooping.
3241 * So we can still hold onto all our assumptions wrt cpu
3242 * clflushing on LLC machines.
3244 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3248 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */
3249 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */
3250 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */
3251 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */
3252 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3253 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3254 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3255 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3258 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3260 ppat->max_entries = 8;
3261 ppat->update_hw = bdw_private_pat_update_hw;
3262 ppat->match = chv_private_pat_match;
3263 ppat->clear_value = CHV_PPAT_SNOOP;
3266 * Map WB on BDW to snooped on CHV.
3268 * Only the snoop bit has meaning for CHV, the rest is
3271 * The hardware will never snoop for certain types of accesses:
3272 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3273 * - PPGTT page tables
3274 * - some other special cycles
3276 * As with BDW, we also need to consider the following for GT accesses:
3277 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3278 * so RTL will always use the value corresponding to
3280 * Which means we must set the snoop bit in PAT entry 0
3281 * in order to keep the global status page working.
3284 __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3285 __alloc_ppat_entry(ppat, 1, 0);
3286 __alloc_ppat_entry(ppat, 2, 0);
3287 __alloc_ppat_entry(ppat, 3, 0);
3288 __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3289 __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3290 __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3291 __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3294 static void gen6_gmch_remove(struct i915_address_space *vm)
3296 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3299 cleanup_scratch_page(vm);
3302 static void setup_private_pat(struct drm_i915_private *dev_priv)
3304 struct intel_ppat *ppat = &dev_priv->ppat;
3307 ppat->i915 = dev_priv;
3309 if (INTEL_GEN(dev_priv) >= 10)
3310 cnl_setup_private_ppat(ppat);
3311 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3312 chv_setup_private_ppat(ppat);
3314 bdw_setup_private_ppat(ppat);
3316 GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3318 for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3319 ppat->entries[i].value = ppat->clear_value;
3320 ppat->entries[i].ppat = ppat;
3321 set_bit(i, ppat->dirty);
3324 ppat->update_hw(dev_priv);
3327 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3329 struct drm_i915_private *dev_priv = ggtt->base.i915;
3330 struct pci_dev *pdev = dev_priv->drm.pdev;
3335 /* TODO: We're not aware of mappable constraints on gen8 yet */
3337 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3338 pci_resource_len(pdev, 2));
3339 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3341 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3343 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3345 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3347 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3348 if (IS_CHERRYVIEW(dev_priv))
3349 size = chv_get_total_gtt_size(snb_gmch_ctl);
3351 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3353 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3354 ggtt->base.cleanup = gen6_gmch_remove;
3355 ggtt->base.bind_vma = ggtt_bind_vma;
3356 ggtt->base.unbind_vma = ggtt_unbind_vma;
3357 ggtt->base.set_pages = ggtt_set_pages;
3358 ggtt->base.clear_pages = clear_pages;
3359 ggtt->base.insert_page = gen8_ggtt_insert_page;
3360 ggtt->base.clear_range = nop_clear_range;
3361 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3362 ggtt->base.clear_range = gen8_ggtt_clear_range;
3364 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3366 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3367 if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3368 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3369 ggtt->base.insert_page = bxt_vtd_ggtt_insert_page__BKL;
3370 if (ggtt->base.clear_range != nop_clear_range)
3371 ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3374 ggtt->invalidate = gen6_ggtt_invalidate;
3376 setup_private_pat(dev_priv);
3378 return ggtt_probe_common(ggtt, size);
3381 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3383 struct drm_i915_private *dev_priv = ggtt->base.i915;
3384 struct pci_dev *pdev = dev_priv->drm.pdev;
3390 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3391 pci_resource_len(pdev, 2));
3392 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3394 /* 64/512MB is the current min/max we actually know of, but this is just
3395 * a coarse sanity check.
3397 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3398 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3402 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3404 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3406 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3407 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3409 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3410 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3412 ggtt->base.clear_range = gen6_ggtt_clear_range;
3413 ggtt->base.insert_page = gen6_ggtt_insert_page;
3414 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3415 ggtt->base.bind_vma = ggtt_bind_vma;
3416 ggtt->base.unbind_vma = ggtt_unbind_vma;
3417 ggtt->base.set_pages = ggtt_set_pages;
3418 ggtt->base.clear_pages = clear_pages;
3419 ggtt->base.cleanup = gen6_gmch_remove;
3421 ggtt->invalidate = gen6_ggtt_invalidate;
3423 if (HAS_EDRAM(dev_priv))
3424 ggtt->base.pte_encode = iris_pte_encode;
3425 else if (IS_HASWELL(dev_priv))
3426 ggtt->base.pte_encode = hsw_pte_encode;
3427 else if (IS_VALLEYVIEW(dev_priv))
3428 ggtt->base.pte_encode = byt_pte_encode;
3429 else if (INTEL_GEN(dev_priv) >= 7)
3430 ggtt->base.pte_encode = ivb_pte_encode;
3432 ggtt->base.pte_encode = snb_pte_encode;
3434 return ggtt_probe_common(ggtt, size);
3437 static void i915_gmch_remove(struct i915_address_space *vm)
3439 intel_gmch_remove();
3442 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3444 struct drm_i915_private *dev_priv = ggtt->base.i915;
3445 phys_addr_t gmadr_base;
3448 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3450 DRM_ERROR("failed to set up gmch\n");
3454 intel_gtt_get(&ggtt->base.total,
3456 &ggtt->mappable_end);
3459 (struct resource) DEFINE_RES_MEM(gmadr_base,
3460 ggtt->mappable_end);
3462 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3463 ggtt->base.insert_page = i915_ggtt_insert_page;
3464 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3465 ggtt->base.clear_range = i915_ggtt_clear_range;
3466 ggtt->base.bind_vma = ggtt_bind_vma;
3467 ggtt->base.unbind_vma = ggtt_unbind_vma;
3468 ggtt->base.set_pages = ggtt_set_pages;
3469 ggtt->base.clear_pages = clear_pages;
3470 ggtt->base.cleanup = i915_gmch_remove;
3472 ggtt->invalidate = gmch_ggtt_invalidate;
3474 if (unlikely(ggtt->do_idle_maps))
3475 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3481 * i915_ggtt_probe_hw - Probe GGTT hardware location
3482 * @dev_priv: i915 device
3484 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3486 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3489 ggtt->base.i915 = dev_priv;
3490 ggtt->base.dma = &dev_priv->drm.pdev->dev;
3492 if (INTEL_GEN(dev_priv) <= 5)
3493 ret = i915_gmch_probe(ggtt);
3494 else if (INTEL_GEN(dev_priv) < 8)
3495 ret = gen6_gmch_probe(ggtt);
3497 ret = gen8_gmch_probe(ggtt);
3501 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3502 * This is easier than doing range restriction on the fly, as we
3503 * currently don't have any bits spare to pass in this upper
3506 if (USES_GUC(dev_priv)) {
3507 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3508 ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3511 if ((ggtt->base.total - 1) >> 32) {
3512 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3513 " of address space! Found %lldM!\n",
3514 ggtt->base.total >> 20);
3515 ggtt->base.total = 1ULL << 32;
3516 ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3519 if (ggtt->mappable_end > ggtt->base.total) {
3520 DRM_ERROR("mappable aperture extends past end of GGTT,"
3521 " aperture=%pa, total=%llx\n",
3522 &ggtt->mappable_end, ggtt->base.total);
3523 ggtt->mappable_end = ggtt->base.total;
3526 /* GMADR is the PCI mmio aperture into the global GTT. */
3527 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->base.total >> 20);
3528 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3529 DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3530 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3531 if (intel_vtd_active())
3532 DRM_INFO("VT-d active for gfx access\n");
3538 * i915_ggtt_init_hw - Initialize GGTT hardware
3539 * @dev_priv: i915 device
3541 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3543 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3546 INIT_LIST_HEAD(&dev_priv->vm_list);
3548 /* Note that we use page colouring to enforce a guard page at the
3549 * end of the address space. This is required as the CS may prefetch
3550 * beyond the end of the batch buffer, across the page boundary,
3551 * and beyond the end of the GTT if we do not provide a guard.
3553 mutex_lock(&dev_priv->drm.struct_mutex);
3554 i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3555 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3556 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3557 mutex_unlock(&dev_priv->drm.struct_mutex);
3559 if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3560 dev_priv->ggtt.gmadr.start,
3561 dev_priv->ggtt.mappable_end)) {
3563 goto out_gtt_cleanup;
3566 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3569 * Initialise stolen early so that we may reserve preallocated
3570 * objects for the BIOS to KMS transition.
3572 ret = i915_gem_init_stolen(dev_priv);
3574 goto out_gtt_cleanup;
3579 ggtt->base.cleanup(&ggtt->base);
3583 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3585 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3591 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3593 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3595 i915->ggtt.invalidate = guc_ggtt_invalidate;
3597 i915_ggtt_invalidate(i915);
3600 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3602 /* We should only be called after i915_ggtt_enable_guc() */
3603 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3605 i915->ggtt.invalidate = gen6_ggtt_invalidate;
3607 i915_ggtt_invalidate(i915);
3610 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3612 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3613 struct drm_i915_gem_object *obj, *on;
3615 i915_check_and_clear_faults(dev_priv);
3617 /* First fill our portion of the GTT with scratch pages */
3618 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3620 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3622 /* clflush objects bound into the GGTT and rebind them. */
3623 list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) {
3624 bool ggtt_bound = false;
3625 struct i915_vma *vma;
3627 for_each_ggtt_vma(vma, obj) {
3628 if (!i915_vma_unbind(vma))
3631 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3637 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3640 ggtt->base.closed = false;
3642 if (INTEL_GEN(dev_priv) >= 8) {
3643 struct intel_ppat *ppat = &dev_priv->ppat;
3645 bitmap_set(ppat->dirty, 0, ppat->max_entries);
3646 dev_priv->ppat.update_hw(dev_priv);
3650 if (USES_PPGTT(dev_priv)) {
3651 struct i915_address_space *vm;
3653 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3654 struct i915_hw_ppgtt *ppgtt;
3656 if (i915_is_ggtt(vm))
3657 ppgtt = dev_priv->mm.aliasing_ppgtt;
3659 ppgtt = i915_vm_to_ppgtt(vm);
3661 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3665 i915_ggtt_invalidate(dev_priv);
3668 static struct scatterlist *
3669 rotate_pages(const dma_addr_t *in, unsigned int offset,
3670 unsigned int width, unsigned int height,
3671 unsigned int stride,
3672 struct sg_table *st, struct scatterlist *sg)
3674 unsigned int column, row;
3675 unsigned int src_idx;
3677 for (column = 0; column < width; column++) {
3678 src_idx = stride * (height - 1) + column;
3679 for (row = 0; row < height; row++) {
3681 /* We don't need the pages, but need to initialize
3682 * the entries so the sg list can be happily traversed.
3683 * The only thing we need are DMA addresses.
3685 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3686 sg_dma_address(sg) = in[offset + src_idx];
3687 sg_dma_len(sg) = PAGE_SIZE;
3696 static noinline struct sg_table *
3697 intel_rotate_pages(struct intel_rotation_info *rot_info,
3698 struct drm_i915_gem_object *obj)
3700 const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3701 unsigned int size = intel_rotation_info_size(rot_info);
3702 struct sgt_iter sgt_iter;
3703 dma_addr_t dma_addr;
3705 dma_addr_t *page_addr_list;
3706 struct sg_table *st;
3707 struct scatterlist *sg;
3710 /* Allocate a temporary list of source pages for random access. */
3711 page_addr_list = kvmalloc_array(n_pages,
3714 if (!page_addr_list)
3715 return ERR_PTR(ret);
3717 /* Allocate target SG list. */
3718 st = kmalloc(sizeof(*st), GFP_KERNEL);
3722 ret = sg_alloc_table(st, size, GFP_KERNEL);
3726 /* Populate source page list from the object. */
3728 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3729 page_addr_list[i++] = dma_addr;
3731 GEM_BUG_ON(i != n_pages);
3735 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3736 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3737 rot_info->plane[i].width, rot_info->plane[i].height,
3738 rot_info->plane[i].stride, st, sg);
3741 kvfree(page_addr_list);
3748 kvfree(page_addr_list);
3750 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3751 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3753 return ERR_PTR(ret);
3756 static noinline struct sg_table *
3757 intel_partial_pages(const struct i915_ggtt_view *view,
3758 struct drm_i915_gem_object *obj)
3760 struct sg_table *st;
3761 struct scatterlist *sg, *iter;
3762 unsigned int count = view->partial.size;
3763 unsigned int offset;
3766 st = kmalloc(sizeof(*st), GFP_KERNEL);
3770 ret = sg_alloc_table(st, count, GFP_KERNEL);
3774 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3782 len = min(iter->length - (offset << PAGE_SHIFT),
3783 count << PAGE_SHIFT);
3784 sg_set_page(sg, NULL, len, 0);
3785 sg_dma_address(sg) =
3786 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3787 sg_dma_len(sg) = len;
3790 count -= len >> PAGE_SHIFT;
3797 iter = __sg_next(iter);
3804 return ERR_PTR(ret);
3808 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3812 /* The vma->pages are only valid within the lifespan of the borrowed
3813 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3814 * must be the vma->pages. A simple rule is that vma->pages must only
3815 * be accessed when the obj->mm.pages are pinned.
3817 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3819 switch (vma->ggtt_view.type) {
3821 GEM_BUG_ON(vma->ggtt_view.type);
3823 case I915_GGTT_VIEW_NORMAL:
3824 vma->pages = vma->obj->mm.pages;
3827 case I915_GGTT_VIEW_ROTATED:
3829 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3832 case I915_GGTT_VIEW_PARTIAL:
3833 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3838 if (unlikely(IS_ERR(vma->pages))) {
3839 ret = PTR_ERR(vma->pages);
3841 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3842 vma->ggtt_view.type, ret);
3848 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3849 * @vm: the &struct i915_address_space
3850 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3851 * @size: how much space to allocate inside the GTT,
3852 * must be #I915_GTT_PAGE_SIZE aligned
3853 * @offset: where to insert inside the GTT,
3854 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3855 * (@offset + @size) must fit within the address space
3856 * @color: color to apply to node, if this node is not from a VMA,
3857 * color must be #I915_COLOR_UNEVICTABLE
3858 * @flags: control search and eviction behaviour
3860 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3861 * the address space (using @size and @color). If the @node does not fit, it
3862 * tries to evict any overlapping nodes from the GTT, including any
3863 * neighbouring nodes if the colors do not match (to ensure guard pages between
3864 * differing domains). See i915_gem_evict_for_node() for the gory details
3865 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3866 * evicting active overlapping objects, and any overlapping node that is pinned
3867 * or marked as unevictable will also result in failure.
3869 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3870 * asked to wait for eviction and interrupted.
3872 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3873 struct drm_mm_node *node,
3874 u64 size, u64 offset, unsigned long color,
3880 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3881 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3882 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3883 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3884 GEM_BUG_ON(drm_mm_node_allocated(node));
3887 node->start = offset;
3888 node->color = color;
3890 err = drm_mm_reserve_node(&vm->mm, node);
3894 if (flags & PIN_NOEVICT)
3897 err = i915_gem_evict_for_node(vm, node, flags);
3899 err = drm_mm_reserve_node(&vm->mm, node);
3904 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3908 GEM_BUG_ON(range_overflows(start, len, end));
3909 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3911 range = round_down(end - len, align) - round_up(start, align);
3913 if (sizeof(unsigned long) == sizeof(u64)) {
3914 addr = get_random_long();
3916 addr = get_random_int();
3917 if (range > U32_MAX) {
3919 addr |= get_random_int();
3922 div64_u64_rem(addr, range, &addr);
3926 return round_up(start, align);
3930 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3931 * @vm: the &struct i915_address_space
3932 * @node: the &struct drm_mm_node (typically i915_vma.node)
3933 * @size: how much space to allocate inside the GTT,
3934 * must be #I915_GTT_PAGE_SIZE aligned
3935 * @alignment: required alignment of starting offset, may be 0 but
3936 * if specified, this must be a power-of-two and at least
3937 * #I915_GTT_MIN_ALIGNMENT
3938 * @color: color to apply to node
3939 * @start: start of any range restriction inside GTT (0 for all),
3940 * must be #I915_GTT_PAGE_SIZE aligned
3941 * @end: end of any range restriction inside GTT (U64_MAX for all),
3942 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3943 * @flags: control search and eviction behaviour
3945 * i915_gem_gtt_insert() first searches for an available hole into which
3946 * is can insert the node. The hole address is aligned to @alignment and
3947 * its @size must then fit entirely within the [@start, @end] bounds. The
3948 * nodes on either side of the hole must match @color, or else a guard page
3949 * will be inserted between the two nodes (or the node evicted). If no
3950 * suitable hole is found, first a victim is randomly selected and tested
3951 * for eviction, otherwise then the LRU list of objects within the GTT
3952 * is scanned to find the first set of replacement nodes to create the hole.
3953 * Those old overlapping nodes are evicted from the GTT (and so must be
3954 * rebound before any future use). Any node that is currently pinned cannot
3955 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3956 * active and #PIN_NONBLOCK is specified, that node is also skipped when
3957 * searching for an eviction candidate. See i915_gem_evict_something() for
3958 * the gory details on the eviction algorithm.
3960 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3961 * asked to wait for eviction and interrupted.
3963 int i915_gem_gtt_insert(struct i915_address_space *vm,
3964 struct drm_mm_node *node,
3965 u64 size, u64 alignment, unsigned long color,
3966 u64 start, u64 end, unsigned int flags)
3968 enum drm_mm_insert_mode mode;
3972 lockdep_assert_held(&vm->i915->drm.struct_mutex);
3974 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3975 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3976 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3977 GEM_BUG_ON(start >= end);
3978 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3979 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3980 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3981 GEM_BUG_ON(drm_mm_node_allocated(node));
3983 if (unlikely(range_overflows(start, size, end)))
3986 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3989 mode = DRM_MM_INSERT_BEST;
3990 if (flags & PIN_HIGH)
3991 mode = DRM_MM_INSERT_HIGH;
3992 if (flags & PIN_MAPPABLE)
3993 mode = DRM_MM_INSERT_LOW;
3995 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3996 * so we know that we always have a minimum alignment of 4096.
3997 * The drm_mm range manager is optimised to return results
3998 * with zero alignment, so where possible use the optimal
4001 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
4002 if (alignment <= I915_GTT_MIN_ALIGNMENT)
4005 err = drm_mm_insert_node_in_range(&vm->mm, node,
4006 size, alignment, color,
4011 if (flags & PIN_NOEVICT)
4014 /* No free space, pick a slot at random.
4016 * There is a pathological case here using a GTT shared between
4017 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4019 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4020 * (64k objects) (448k objects)
4022 * Now imagine that the eviction LRU is ordered top-down (just because
4023 * pathology meets real life), and that we need to evict an object to
4024 * make room inside the aperture. The eviction scan then has to walk
4025 * the 448k list before it finds one within range. And now imagine that
4026 * it has to search for a new hole between every byte inside the memcpy,
4027 * for several simultaneous clients.
4029 * On a full-ppgtt system, if we have run out of available space, there
4030 * will be lots and lots of objects in the eviction list! Again,
4031 * searching that LRU list may be slow if we are also applying any
4032 * range restrictions (e.g. restriction to low 4GiB) and so, for
4033 * simplicity and similarilty between different GTT, try the single
4034 * random replacement first.
4036 offset = random_offset(start, end,
4037 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4038 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4042 /* Randomly selected placement is pinned, do a search */
4043 err = i915_gem_evict_something(vm, size, alignment, color,
4048 return drm_mm_insert_node_in_range(&vm->mm, node,
4049 size, alignment, color,
4050 start, end, DRM_MM_INSERT_EVICT);
4053 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4054 #include "selftests/mock_gtt.c"
4055 #include "selftests/i915_gem_gtt.c"