2 * Copyright (C) 2016 Broadcom
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * DOC: VC4 DSI0/DSI1 module
20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25 * while the compute module brings both DSI0 and DSI1 out.
27 * This driver has been tested for DSI1 video-mode display only
28 * currently, with most of the information necessary for DSI0
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drm_mipi_dsi.h>
36 #include <drm/drm_panel.h>
37 #include <linux/clk.h>
38 #include <linux/clk-provider.h>
39 #include <linux/completion.h>
40 #include <linux/component.h>
41 #include <linux/dmaengine.h>
42 #include <linux/i2c.h>
43 #include <linux/of_address.h>
44 #include <linux/of_platform.h>
45 #include <linux/pm_runtime.h>
49 #define DSI_CMD_FIFO_DEPTH 16
50 #define DSI_PIX_FIFO_DEPTH 256
51 #define DSI_PIX_FIFO_WIDTH 4
53 #define DSI0_CTRL 0x00
55 /* Command packet control. */
56 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
57 #define DSI1_TXPKT1C 0x04
58 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
59 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
60 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
61 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
63 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
64 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
65 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
66 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
67 /* Primary display where cmdfifo provides part of the payload and
68 * pixelvalve the rest.
70 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
71 /* Secondary display where cmdfifo provides part of the payload and
74 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
76 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
77 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
79 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
80 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
81 /* Command only. Uses TXPKT1H and DISPLAY_NO */
82 # define DSI_TXPKT1C_CMD_CTRL_TX 0
83 /* Command with BTA for either ack or read data. */
84 # define DSI_TXPKT1C_CMD_CTRL_RX 1
85 /* Trigger according to TRIG_CMD */
86 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
87 /* BTA alone for getting error status after a command, or a TE trigger
88 * without a previous command.
90 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
92 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
93 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
94 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
95 # define DSI_TXPKT1C_CMD_EN BIT(0)
97 /* Command packet header. */
98 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
99 #define DSI1_TXPKT1H 0x08
100 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
101 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
102 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
103 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
104 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
105 # define DSI_TXPKT1H_BC_DT_SHIFT 0
107 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
108 #define DSI1_RXPKT1H 0x14
109 # define DSI_RXPKT1H_CRC_ERR BIT(31)
110 # define DSI_RXPKT1H_DET_ERR BIT(30)
111 # define DSI_RXPKT1H_ECC_ERR BIT(29)
112 # define DSI_RXPKT1H_COR_ERR BIT(28)
113 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
114 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
115 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
116 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
117 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
118 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
119 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
120 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
121 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
122 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
123 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
124 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
126 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
127 #define DSI1_RXPKT2H 0x18
128 # define DSI_RXPKT1H_DET_ERR BIT(30)
129 # define DSI_RXPKT1H_ECC_ERR BIT(29)
130 # define DSI_RXPKT1H_COR_ERR BIT(28)
131 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
132 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
133 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
134 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
135 # define DSI_RXPKT1H_DT_SHIFT 0
137 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
138 #define DSI1_TXPKT_CMD_FIFO 0x1c
140 #define DSI0_DISP0_CTRL 0x18
141 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
142 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
143 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
144 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
145 # define DSI_DISP0_LP_STOP_DISABLE 0
146 # define DSI_DISP0_LP_STOP_PERLINE 1
147 # define DSI_DISP0_LP_STOP_PERFRAME 2
149 /* Transmit RGB pixels and null packets only during HACTIVE, instead
150 * of going to LP-STOP.
152 # define DSI_DISP_HACTIVE_NULL BIT(10)
153 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
154 # define DSI_DISP_VBLP_CTRL BIT(9)
155 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
156 # define DSI_DISP_HFP_CTRL BIT(8)
157 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
158 # define DSI_DISP_HBP_CTRL BIT(7)
159 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
160 # define DSI_DISP0_CHANNEL_SHIFT 5
161 /* Enables end events for HSYNC/VSYNC, not just start events. */
162 # define DSI_DISP0_ST_END BIT(4)
163 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
164 # define DSI_DISP0_PFORMAT_SHIFT 2
165 # define DSI_PFORMAT_RGB565 0
166 # define DSI_PFORMAT_RGB666_PACKED 1
167 # define DSI_PFORMAT_RGB666 2
168 # define DSI_PFORMAT_RGB888 3
169 /* Default is VIDEO mode. */
170 # define DSI_DISP0_COMMAND_MODE BIT(1)
171 # define DSI_DISP0_ENABLE BIT(0)
173 #define DSI0_DISP1_CTRL 0x1c
174 #define DSI1_DISP1_CTRL 0x2c
175 /* Format of the data written to TXPKT_PIX_FIFO. */
176 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
177 # define DSI_DISP1_PFORMAT_SHIFT 1
178 # define DSI_DISP1_PFORMAT_16BIT 0
179 # define DSI_DISP1_PFORMAT_24BIT 1
180 # define DSI_DISP1_PFORMAT_32BIT_LE 2
181 # define DSI_DISP1_PFORMAT_32BIT_BE 3
183 /* DISP1 is always command mode. */
184 # define DSI_DISP1_ENABLE BIT(0)
186 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
188 #define DSI0_INT_STAT 0x24
189 #define DSI0_INT_EN 0x28
190 # define DSI1_INT_PHY_D3_ULPS BIT(30)
191 # define DSI1_INT_PHY_D3_STOP BIT(29)
192 # define DSI1_INT_PHY_D2_ULPS BIT(28)
193 # define DSI1_INT_PHY_D2_STOP BIT(27)
194 # define DSI1_INT_PHY_D1_ULPS BIT(26)
195 # define DSI1_INT_PHY_D1_STOP BIT(25)
196 # define DSI1_INT_PHY_D0_ULPS BIT(24)
197 # define DSI1_INT_PHY_D0_STOP BIT(23)
198 # define DSI1_INT_FIFO_ERR BIT(22)
199 # define DSI1_INT_PHY_DIR_RTF BIT(21)
200 # define DSI1_INT_PHY_RXLPDT BIT(20)
201 # define DSI1_INT_PHY_RXTRIG BIT(19)
202 # define DSI1_INT_PHY_D0_LPDT BIT(18)
203 # define DSI1_INT_PHY_DIR_FTR BIT(17)
205 /* Signaled when the clock lane enters the given state. */
206 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
207 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
208 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
210 /* Signaled on timeouts */
211 # define DSI1_INT_PR_TO BIT(13)
212 # define DSI1_INT_TA_TO BIT(12)
213 # define DSI1_INT_LPRX_TO BIT(11)
214 # define DSI1_INT_HSTX_TO BIT(10)
216 /* Contention on a line when trying to drive the line low */
217 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
218 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
220 /* Control error: incorrect line state sequence on data lane 0. */
221 # define DSI1_INT_ERR_CONTROL BIT(7)
222 /* LPDT synchronization error (bits received not a multiple of 8. */
224 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
225 /* Signaled after receiving an error packet from the display in
226 * response to a read.
228 # define DSI1_INT_RXPKT2 BIT(5)
229 /* Signaled after receiving a packet. The header and optional short
230 * response will be in RXPKT1H, and a long response will be in the
233 # define DSI1_INT_RXPKT1 BIT(4)
234 # define DSI1_INT_TXPKT2_DONE BIT(3)
235 # define DSI1_INT_TXPKT2_END BIT(2)
236 /* Signaled after all repeats of TXPKT1 are transferred. */
237 # define DSI1_INT_TXPKT1_DONE BIT(1)
238 /* Signaled after each TXPKT1 repeat is scheduled. */
239 # define DSI1_INT_TXPKT1_END BIT(0)
241 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
242 DSI1_INT_ERR_CONTROL | \
243 DSI1_INT_ERR_CONT_LP0 | \
244 DSI1_INT_ERR_CONT_LP1 | \
250 #define DSI0_STAT 0x2c
251 #define DSI0_HSTX_TO_CNT 0x30
252 #define DSI0_LPRX_TO_CNT 0x34
253 #define DSI0_TA_TO_CNT 0x38
254 #define DSI0_PR_TO_CNT 0x3c
255 #define DSI0_PHYC 0x40
256 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
257 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
258 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
259 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
260 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
261 # define DSI1_PHYC_CLANE_ULPS BIT(17)
262 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
263 # define DSI_PHYC_DLANE3_ULPS BIT(13)
264 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
265 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
266 # define DSI0_PHYC_CLANE_ULPS BIT(9)
267 # define DSI_PHYC_DLANE2_ULPS BIT(9)
268 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
269 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
270 # define DSI_PHYC_DLANE1_ULPS BIT(5)
271 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
272 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
273 # define DSI_PHYC_DLANE0_ULPS BIT(1)
274 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
276 #define DSI0_HS_CLT0 0x44
277 #define DSI0_HS_CLT1 0x48
278 #define DSI0_HS_CLT2 0x4c
279 #define DSI0_HS_DLT3 0x50
280 #define DSI0_HS_DLT4 0x54
281 #define DSI0_HS_DLT5 0x58
282 #define DSI0_HS_DLT6 0x5c
283 #define DSI0_HS_DLT7 0x60
285 #define DSI0_PHY_AFEC0 0x64
286 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
287 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
288 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
289 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
290 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
291 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
292 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
293 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
294 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
295 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
296 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
297 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
298 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
299 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
300 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
301 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
302 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
303 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
304 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
305 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
306 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
307 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
308 # define DSI1_PHY_AFEC0_RESET BIT(13)
309 # define DSI1_PHY_AFEC0_PD BIT(12)
310 # define DSI0_PHY_AFEC0_RESET BIT(11)
311 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
312 # define DSI0_PHY_AFEC0_PD BIT(10)
313 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
314 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
315 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
316 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
317 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
318 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
319 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
320 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
321 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
323 #define DSI0_PHY_AFEC1 0x68
324 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
325 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
326 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
327 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
328 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
329 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
331 #define DSI0_TST_SEL 0x6c
332 #define DSI0_TST_MON 0x70
334 # define DSI_ID_VALUE 0x00647369
336 #define DSI1_CTRL 0x00
337 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
338 # define DSI_CTRL_HS_CLKC_SHIFT 14
339 # define DSI_CTRL_HS_CLKC_BYTE 0
340 # define DSI_CTRL_HS_CLKC_DDR2 1
341 # define DSI_CTRL_HS_CLKC_DDR 2
343 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
344 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
345 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
346 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
347 # define DSI_CTRL_CAL_BYTE BIT(9)
348 # define DSI_CTRL_INV_BYTE BIT(8)
349 # define DSI_CTRL_CLR_LDF BIT(7)
350 # define DSI0_CTRL_CLR_PBCF BIT(6)
351 # define DSI1_CTRL_CLR_RXF BIT(6)
352 # define DSI0_CTRL_CLR_CPBCF BIT(5)
353 # define DSI1_CTRL_CLR_PDF BIT(5)
354 # define DSI0_CTRL_CLR_PDF BIT(4)
355 # define DSI1_CTRL_CLR_CDF BIT(4)
356 # define DSI0_CTRL_CLR_CDF BIT(3)
357 # define DSI0_CTRL_CTRL2 BIT(2)
358 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
359 # define DSI0_CTRL_CTRL1 BIT(1)
360 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
361 # define DSI0_CTRL_CTRL0 BIT(0)
362 # define DSI1_CTRL_EN BIT(0)
363 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
364 DSI0_CTRL_CLR_PBCF | \
365 DSI0_CTRL_CLR_CPBCF | \
366 DSI0_CTRL_CLR_PDF | \
368 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
369 DSI1_CTRL_CLR_RXF | \
370 DSI1_CTRL_CLR_PDF | \
373 #define DSI1_TXPKT2C 0x0c
374 #define DSI1_TXPKT2H 0x10
375 #define DSI1_TXPKT_PIX_FIFO 0x20
376 #define DSI1_RXPKT_FIFO 0x24
377 #define DSI1_DISP0_CTRL 0x28
378 #define DSI1_INT_STAT 0x30
379 #define DSI1_INT_EN 0x34
380 /* State reporting bits. These mostly behave like INT_STAT, where
381 * writing a 1 clears the bit.
383 #define DSI1_STAT 0x38
384 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
385 # define DSI1_STAT_PHY_D3_STOP BIT(30)
386 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
387 # define DSI1_STAT_PHY_D2_STOP BIT(28)
388 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
389 # define DSI1_STAT_PHY_D1_STOP BIT(26)
390 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
391 # define DSI1_STAT_PHY_D0_STOP BIT(24)
392 # define DSI1_STAT_FIFO_ERR BIT(23)
393 # define DSI1_STAT_PHY_RXLPDT BIT(22)
394 # define DSI1_STAT_PHY_RXTRIG BIT(21)
395 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
396 /* Set when in forward direction */
397 # define DSI1_STAT_PHY_DIR BIT(19)
398 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
399 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
400 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
401 # define DSI1_STAT_PR_TO BIT(15)
402 # define DSI1_STAT_TA_TO BIT(14)
403 # define DSI1_STAT_LPRX_TO BIT(13)
404 # define DSI1_STAT_HSTX_TO BIT(12)
405 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
406 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
407 # define DSI1_STAT_ERR_CONTROL BIT(9)
408 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
409 # define DSI1_STAT_RXPKT2 BIT(7)
410 # define DSI1_STAT_RXPKT1 BIT(6)
411 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
412 # define DSI1_STAT_TXPKT2_DONE BIT(4)
413 # define DSI1_STAT_TXPKT2_END BIT(3)
414 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
415 # define DSI1_STAT_TXPKT1_DONE BIT(1)
416 # define DSI1_STAT_TXPKT1_END BIT(0)
418 #define DSI1_HSTX_TO_CNT 0x3c
419 #define DSI1_LPRX_TO_CNT 0x40
420 #define DSI1_TA_TO_CNT 0x44
421 #define DSI1_PR_TO_CNT 0x48
422 #define DSI1_PHYC 0x4c
424 #define DSI1_HS_CLT0 0x50
425 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
426 # define DSI_HS_CLT0_CZERO_SHIFT 18
427 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
428 # define DSI_HS_CLT0_CPRE_SHIFT 9
429 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
430 # define DSI_HS_CLT0_CPREP_SHIFT 0
432 #define DSI1_HS_CLT1 0x54
433 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
434 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
435 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
436 # define DSI_HS_CLT1_CPOST_SHIFT 0
438 #define DSI1_HS_CLT2 0x58
439 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
440 # define DSI_HS_CLT2_WUP_SHIFT 0
442 #define DSI1_HS_DLT3 0x5c
443 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
444 # define DSI_HS_DLT3_EXIT_SHIFT 18
445 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
446 # define DSI_HS_DLT3_ZERO_SHIFT 9
447 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
448 # define DSI_HS_DLT3_PRE_SHIFT 0
450 #define DSI1_HS_DLT4 0x60
451 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
452 # define DSI_HS_DLT4_ANLAT_SHIFT 18
453 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
454 # define DSI_HS_DLT4_TRAIL_SHIFT 9
455 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
456 # define DSI_HS_DLT4_LPX_SHIFT 0
458 #define DSI1_HS_DLT5 0x64
459 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
460 # define DSI_HS_DLT5_INIT_SHIFT 0
462 #define DSI1_HS_DLT6 0x68
463 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
464 # define DSI_HS_DLT6_TA_GET_SHIFT 24
465 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
466 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
467 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
468 # define DSI_HS_DLT6_TA_GO_SHIFT 8
469 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
470 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
472 #define DSI1_HS_DLT7 0x6c
473 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
474 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
476 #define DSI1_PHY_AFEC0 0x70
478 #define DSI1_PHY_AFEC1 0x74
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
483 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
484 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
485 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
486 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
487 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
488 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
490 #define DSI1_TST_SEL 0x78
491 #define DSI1_TST_MON 0x7c
492 #define DSI1_PHY_TST1 0x80
493 #define DSI1_PHY_TST2 0x84
494 #define DSI1_PHY_FIFO_STAT 0x88
495 /* Actually, all registers in the range that aren't otherwise claimed
496 * will return the ID.
500 /* General DSI hardware state. */
502 struct platform_device *pdev;
504 struct mipi_dsi_host dsi_host;
505 struct drm_encoder *encoder;
506 struct drm_bridge *bridge;
507 bool is_panel_bridge;
511 struct dma_chan *reg_dma_chan;
512 dma_addr_t reg_dma_paddr;
514 dma_addr_t reg_paddr;
516 /* Whether we're on bcm2835's DSI0 or DSI1. */
519 /* DSI channel for the panel we're connected to. */
526 /* Input clock from CPRMAN to the digital PHY, for the DSI
529 struct clk *escape_clock;
531 /* Input clock to the analog PHY, used to generate the DSI bit
534 struct clk *pll_phy_clock;
536 /* HS Clocks generated within the DSI analog PHY. */
537 struct clk_fixed_factor phy_clocks[3];
539 struct clk_hw_onecell_data *clk_onecell;
541 /* Pixel clock output to the pixelvalve, generated from the HS
544 struct clk *pixel_clock;
546 struct completion xfer_completion;
550 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
553 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
555 struct dma_chan *chan = dsi->reg_dma_chan;
556 struct dma_async_tx_descriptor *tx;
560 /* DSI0 should be able to write normally. */
562 writel(val, dsi->regs + offset);
566 *dsi->reg_dma_mem = val;
568 tx = chan->device->device_prep_dma_memcpy(chan,
569 dsi->reg_paddr + offset,
573 DRM_ERROR("Failed to set up DMA register write\n");
577 cookie = tx->tx_submit(tx);
578 ret = dma_submit_error(cookie);
580 DRM_ERROR("Failed to submit DMA: %d\n", ret);
583 ret = dma_sync_wait(chan, cookie);
585 DRM_ERROR("Failed to wait for DMA: %d\n", ret);
588 #define DSI_READ(offset) readl(dsi->regs + (offset))
589 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
590 #define DSI_PORT_READ(offset) \
591 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
592 #define DSI_PORT_WRITE(offset, val) \
593 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
594 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
596 /* VC4 DSI encoder KMS struct */
597 struct vc4_dsi_encoder {
598 struct vc4_encoder base;
602 static inline struct vc4_dsi_encoder *
603 to_vc4_dsi_encoder(struct drm_encoder *encoder)
605 return container_of(encoder, struct vc4_dsi_encoder, base.base);
608 #define DSI_REG(reg) { reg, #reg }
609 static const struct {
615 DSI_REG(DSI0_HSTX_TO_CNT),
616 DSI_REG(DSI0_LPRX_TO_CNT),
617 DSI_REG(DSI0_TA_TO_CNT),
618 DSI_REG(DSI0_PR_TO_CNT),
619 DSI_REG(DSI0_DISP0_CTRL),
620 DSI_REG(DSI0_DISP1_CTRL),
621 DSI_REG(DSI0_INT_STAT),
622 DSI_REG(DSI0_INT_EN),
624 DSI_REG(DSI0_HS_CLT0),
625 DSI_REG(DSI0_HS_CLT1),
626 DSI_REG(DSI0_HS_CLT2),
627 DSI_REG(DSI0_HS_DLT3),
628 DSI_REG(DSI0_HS_DLT4),
629 DSI_REG(DSI0_HS_DLT5),
630 DSI_REG(DSI0_HS_DLT6),
631 DSI_REG(DSI0_HS_DLT7),
632 DSI_REG(DSI0_PHY_AFEC0),
633 DSI_REG(DSI0_PHY_AFEC1),
637 static const struct {
643 DSI_REG(DSI1_HSTX_TO_CNT),
644 DSI_REG(DSI1_LPRX_TO_CNT),
645 DSI_REG(DSI1_TA_TO_CNT),
646 DSI_REG(DSI1_PR_TO_CNT),
647 DSI_REG(DSI1_DISP0_CTRL),
648 DSI_REG(DSI1_DISP1_CTRL),
649 DSI_REG(DSI1_INT_STAT),
650 DSI_REG(DSI1_INT_EN),
652 DSI_REG(DSI1_HS_CLT0),
653 DSI_REG(DSI1_HS_CLT1),
654 DSI_REG(DSI1_HS_CLT2),
655 DSI_REG(DSI1_HS_DLT3),
656 DSI_REG(DSI1_HS_DLT4),
657 DSI_REG(DSI1_HS_DLT5),
658 DSI_REG(DSI1_HS_DLT6),
659 DSI_REG(DSI1_HS_DLT7),
660 DSI_REG(DSI1_PHY_AFEC0),
661 DSI_REG(DSI1_PHY_AFEC1),
665 static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
669 if (dsi->port == 0) {
670 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
671 DRM_INFO("0x%04x (%s): 0x%08x\n",
672 dsi0_regs[i].reg, dsi0_regs[i].name,
673 DSI_READ(dsi0_regs[i].reg));
676 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
677 DRM_INFO("0x%04x (%s): 0x%08x\n",
678 dsi1_regs[i].reg, dsi1_regs[i].name,
679 DSI_READ(dsi1_regs[i].reg));
684 #ifdef CONFIG_DEBUG_FS
685 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
687 struct drm_info_node *node = (struct drm_info_node *)m->private;
688 struct drm_device *drm = node->minor->dev;
689 struct vc4_dev *vc4 = to_vc4_dev(drm);
690 int dsi_index = (uintptr_t)node->info_ent->data;
691 struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
697 if (dsi->port == 0) {
698 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
699 seq_printf(m, "0x%04x (%s): 0x%08x\n",
700 dsi0_regs[i].reg, dsi0_regs[i].name,
701 DSI_READ(dsi0_regs[i].reg));
704 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
705 seq_printf(m, "0x%04x (%s): 0x%08x\n",
706 dsi1_regs[i].reg, dsi1_regs[i].name,
707 DSI_READ(dsi1_regs[i].reg));
715 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
717 drm_encoder_cleanup(encoder);
720 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
721 .destroy = vc4_dsi_encoder_destroy,
724 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
726 u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
729 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
731 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
733 DSI_PORT_WRITE(PHY_AFEC0, afec0);
736 /* Enters or exits Ultra Low Power State. */
737 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
739 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
740 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
741 DSI_PHYC_DLANE0_ULPS |
742 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
743 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
744 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
745 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
746 DSI1_STAT_PHY_D0_ULPS |
747 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
748 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
749 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
750 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
751 DSI1_STAT_PHY_D0_STOP |
752 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
753 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
754 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
757 DSI_PORT_WRITE(STAT, stat_ulps);
758 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
759 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
761 dev_warn(&dsi->pdev->dev,
762 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
763 DSI_PORT_READ(STAT));
764 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
765 vc4_dsi_latch_ulps(dsi, false);
769 /* The DSI module can't be disabled while the module is
770 * generating ULPS state. So, to be able to disable the
771 * module, we have the AFE latch the ULPS state and continue
772 * on to having the module enter STOP.
774 vc4_dsi_latch_ulps(dsi, ulps);
776 DSI_PORT_WRITE(STAT, stat_stop);
777 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
778 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
780 dev_warn(&dsi->pdev->dev,
781 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
782 DSI_PORT_READ(STAT));
783 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
789 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
791 /* The HS timings have to be rounded up to a multiple of 8
792 * because we're using the byte clock.
794 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
797 /* ESC always runs at 100Mhz. */
798 #define ESC_TIME_NS 10
801 dsi_esc_timing(u32 ns)
803 return DIV_ROUND_UP(ns, ESC_TIME_NS);
806 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
808 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
809 struct vc4_dsi *dsi = vc4_encoder->dsi;
810 struct device *dev = &dsi->pdev->dev;
812 vc4_dsi_ulps(dsi, true);
814 clk_disable_unprepare(dsi->pll_phy_clock);
815 clk_disable_unprepare(dsi->escape_clock);
816 clk_disable_unprepare(dsi->pixel_clock);
821 /* Extends the mode's blank intervals to handle BCM2835's integer-only
824 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
825 * driver since most peripherals are hanging off of the PLLD_PER
826 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
827 * the pixel clock), only has an integer divider off of DSI.
829 * To get our panel mode to refresh at the expected 60Hz, we need to
830 * extend the horizontal blank time. This means we drive a
831 * higher-than-expected clock rate to the panel, but that's what the
834 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
835 const struct drm_display_mode *mode,
836 struct drm_display_mode *adjusted_mode)
838 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
839 struct vc4_dsi *dsi = vc4_encoder->dsi;
840 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
841 unsigned long parent_rate = clk_get_rate(phy_parent);
842 unsigned long pixel_clock_hz = mode->clock * 1000;
843 unsigned long pll_clock = pixel_clock_hz * dsi->divider;
846 /* Find what divider gets us a faster clock than the requested
849 for (divider = 1; divider < 8; divider++) {
850 if (parent_rate / divider < pll_clock) {
856 /* Now that we've picked a PLL divider, calculate back to its
859 pll_clock = parent_rate / divider;
860 pixel_clock_hz = pll_clock / dsi->divider;
862 /* Round up the clk_set_rate() request slightly, since
863 * PLLD_DSI1 is an integer divider and its rate selection will
866 adjusted_mode->clock = pixel_clock_hz / 1000 + 1;
868 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
869 adjusted_mode->htotal = pixel_clock_hz / (mode->vrefresh * mode->vtotal);
870 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
871 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
876 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
878 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
879 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
880 struct vc4_dsi *dsi = vc4_encoder->dsi;
881 struct device *dev = &dsi->pdev->dev;
882 bool debug_dump_regs = false;
883 unsigned long hs_clock;
885 /* Minimum LP state duration in escape clock cycles. */
886 u32 lpx = dsi_esc_timing(60);
887 unsigned long pixel_clock_hz = mode->clock * 1000;
888 unsigned long dsip_clock;
889 unsigned long phy_clock;
892 ret = pm_runtime_get_sync(dev);
894 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
898 if (debug_dump_regs) {
899 DRM_INFO("DSI regs before:\n");
900 vc4_dsi_dump_regs(dsi);
903 phy_clock = pixel_clock_hz * dsi->divider;
904 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
906 dev_err(&dsi->pdev->dev,
907 "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
910 /* Reset the DSI and all its fifos. */
912 DSI_CTRL_SOFT_RESET_CFG |
913 DSI_PORT_BIT(CTRL_RESET_FIFOS));
916 DSI_CTRL_HSDT_EOT_DISABLE |
917 DSI_CTRL_RX_LPDT_EOT_DISABLE);
919 /* Clear all stat bits so we see what has happened during enable. */
920 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
922 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
923 if (dsi->port == 0) {
924 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
925 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
928 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
930 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
931 afec0 |= DSI0_PHY_AFEC0_RESET;
933 DSI_PORT_WRITE(PHY_AFEC0, afec0);
935 DSI_PORT_WRITE(PHY_AFEC1,
936 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
937 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
938 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
940 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
941 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
942 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
943 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
944 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
945 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
946 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
949 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
951 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
953 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
955 afec0 |= DSI1_PHY_AFEC0_RESET;
957 DSI_PORT_WRITE(PHY_AFEC0, afec0);
959 DSI_PORT_WRITE(PHY_AFEC1, 0);
961 /* AFEC reset hold time */
965 ret = clk_prepare_enable(dsi->escape_clock);
967 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
971 ret = clk_prepare_enable(dsi->pll_phy_clock);
973 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
977 hs_clock = clk_get_rate(dsi->pll_phy_clock);
979 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
980 * not the pixel clock rate. DSIxP take from the APHY's byte,
981 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
982 * that rate. Separately, a value derived from PIX_CLK_DIV
983 * and HS_CLKC is fed into the PV to divide down to the actual
984 * pixel clock for pushing pixels into DSI.
986 dsip_clock = phy_clock / 8;
987 ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
989 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
993 ret = clk_prepare_enable(dsi->pixel_clock);
995 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
999 /* How many ns one DSI unit interval is. Note that the clock
1000 * is DDR, so there's an extra divide by 2.
1002 ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1004 DSI_PORT_WRITE(HS_CLT0,
1005 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1006 DSI_HS_CLT0_CZERO) |
1007 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1009 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1010 DSI_HS_CLT0_CPREP));
1012 DSI_PORT_WRITE(HS_CLT1,
1013 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1014 DSI_HS_CLT1_CTRAIL) |
1015 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1016 DSI_HS_CLT1_CPOST));
1018 DSI_PORT_WRITE(HS_CLT2,
1019 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1022 DSI_PORT_WRITE(HS_DLT3,
1023 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1025 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1027 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1030 DSI_PORT_WRITE(HS_DLT4,
1031 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1033 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1034 dsi_hs_timing(ui_ns, 60, 4)),
1035 DSI_HS_DLT4_TRAIL) |
1036 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1038 /* T_INIT is how long STOP is driven after power-up to
1039 * indicate to the slave (also coming out of power-up) that
1040 * master init is complete, and should be greater than the
1041 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
1042 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1043 * T_INIT,SLAVE, while allowing protocols on top of it to give
1044 * greater minimums. The vc4 firmware uses an extremely
1045 * conservative 5ms, and we maintain that here.
1047 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1048 5 * 1000 * 1000, 0),
1051 DSI_PORT_WRITE(HS_DLT6,
1052 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1053 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1054 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1055 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1057 DSI_PORT_WRITE(HS_DLT7,
1058 VC4_SET_FIELD(dsi_esc_timing(1000000),
1059 DSI_HS_DLT7_LP_WUP));
1061 DSI_PORT_WRITE(PHYC,
1062 DSI_PHYC_DLANE0_ENABLE |
1063 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1064 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1065 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1066 DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1067 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1068 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1070 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1071 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1073 DSI_PORT_WRITE(CTRL,
1074 DSI_PORT_READ(CTRL) |
1077 /* HS timeout in HS clock cycles: disabled. */
1078 DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1079 /* LP receive timeout in HS clocks. */
1080 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1081 /* Bus turnaround timeout */
1082 DSI_PORT_WRITE(TA_TO_CNT, 100000);
1083 /* Display reset sequence timeout */
1084 DSI_PORT_WRITE(PR_TO_CNT, 100000);
1086 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1087 DSI_PORT_WRITE(DISP0_CTRL,
1088 VC4_SET_FIELD(dsi->divider,
1089 DSI_DISP0_PIX_CLK_DIV) |
1090 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1091 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1092 DSI_DISP0_LP_STOP_CTRL) |
1096 DSI_PORT_WRITE(DISP0_CTRL,
1097 DSI_DISP0_COMMAND_MODE |
1101 /* Set up DISP1 for transferring long command payloads through
1104 DSI_PORT_WRITE(DISP1_CTRL,
1105 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1106 DSI_DISP1_PFORMAT) |
1109 /* Ungate the block. */
1111 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1113 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1115 /* Bring AFE out of reset. */
1116 if (dsi->port == 0) {
1118 DSI_PORT_WRITE(PHY_AFEC0,
1119 DSI_PORT_READ(PHY_AFEC0) &
1120 ~DSI1_PHY_AFEC0_RESET);
1123 vc4_dsi_ulps(dsi, false);
1125 if (debug_dump_regs) {
1126 DRM_INFO("DSI regs after:\n");
1127 vc4_dsi_dump_regs(dsi);
1131 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1132 const struct mipi_dsi_msg *msg)
1134 struct vc4_dsi *dsi = host_to_dsi(host);
1135 struct mipi_dsi_packet packet;
1136 u32 pkth = 0, pktc = 0;
1138 bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1139 u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1141 mipi_dsi_create_packet(&packet, msg);
1143 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1144 pkth |= VC4_SET_FIELD(packet.header[1] |
1145 (packet.header[2] << 8),
1146 DSI_TXPKT1H_BC_PARAM);
1148 /* Divide data across the various FIFOs we have available.
1149 * The command FIFO takes byte-oriented data, but is of
1150 * limited size. The pixel FIFO (never actually used for
1151 * pixel data in reality) is word oriented, and substantially
1152 * larger. So, we use the pixel FIFO for most of the data,
1153 * sending the residual bytes in the command FIFO at the start.
1155 * With this arrangement, the command FIFO will never get full.
1157 if (packet.payload_length <= 16) {
1158 cmd_fifo_len = packet.payload_length;
1161 cmd_fifo_len = (packet.payload_length %
1162 DSI_PIX_FIFO_WIDTH);
1163 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1164 DSI_PIX_FIFO_WIDTH);
1167 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1169 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1173 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1174 DSI_TXPKT1C_CMD_CTRL);
1176 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1177 DSI_TXPKT1C_CMD_CTRL);
1180 for (i = 0; i < cmd_fifo_len; i++)
1181 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1182 for (i = 0; i < pix_fifo_len; i++) {
1183 const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1185 DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1192 if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1193 pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1195 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1197 /* Send one copy of the packet. Larger repeats are used for pixel
1198 * data in command mode.
1200 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1202 pktc |= DSI_TXPKT1C_CMD_EN;
1204 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1205 DSI_TXPKT1C_DISPLAY_NO);
1207 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1208 DSI_TXPKT1C_DISPLAY_NO);
1211 /* Enable the appropriate interrupt for the transfer completion. */
1212 dsi->xfer_result = 0;
1213 reinit_completion(&dsi->xfer_completion);
1214 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1216 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1217 DSI1_INT_PHY_DIR_RTF));
1219 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1220 DSI1_INT_TXPKT1_DONE));
1223 /* Send the packet. */
1224 DSI_PORT_WRITE(TXPKT1H, pkth);
1225 DSI_PORT_WRITE(TXPKT1C, pktc);
1227 if (!wait_for_completion_timeout(&dsi->xfer_completion,
1228 msecs_to_jiffies(1000))) {
1229 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1230 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1231 DSI_PORT_READ(INT_STAT));
1234 ret = dsi->xfer_result;
1237 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1240 goto reset_fifo_and_return;
1242 if (ret == 0 && msg->rx_len) {
1243 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1244 u8 *msg_rx = msg->rx_buf;
1246 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1247 u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1248 DSI_RXPKT1H_BC_PARAM);
1250 if (rxlen != msg->rx_len) {
1251 DRM_ERROR("DSI returned %db, expecting %db\n",
1252 rxlen, (int)msg->rx_len);
1254 goto reset_fifo_and_return;
1257 for (i = 0; i < msg->rx_len; i++)
1258 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1260 /* FINISHME: Handle AWER */
1262 msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1263 DSI_RXPKT1H_SHORT_0);
1264 if (msg->rx_len > 1) {
1265 msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1266 DSI_RXPKT1H_SHORT_1);
1273 reset_fifo_and_return:
1274 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1276 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1278 DSI_PORT_WRITE(CTRL,
1279 DSI_PORT_READ(CTRL) |
1280 DSI_PORT_BIT(CTRL_RESET_FIFOS));
1282 DSI_PORT_WRITE(TXPKT1C, 0);
1283 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1287 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1288 struct mipi_dsi_device *device)
1290 struct vc4_dsi *dsi = host_to_dsi(host);
1293 dsi->lanes = device->lanes;
1294 dsi->channel = device->channel;
1295 dsi->mode_flags = device->mode_flags;
1297 switch (device->format) {
1298 case MIPI_DSI_FMT_RGB888:
1299 dsi->format = DSI_PFORMAT_RGB888;
1300 dsi->divider = 24 / dsi->lanes;
1302 case MIPI_DSI_FMT_RGB666:
1303 dsi->format = DSI_PFORMAT_RGB666;
1304 dsi->divider = 24 / dsi->lanes;
1306 case MIPI_DSI_FMT_RGB666_PACKED:
1307 dsi->format = DSI_PFORMAT_RGB666_PACKED;
1308 dsi->divider = 18 / dsi->lanes;
1310 case MIPI_DSI_FMT_RGB565:
1311 dsi->format = DSI_PFORMAT_RGB565;
1312 dsi->divider = 16 / dsi->lanes;
1315 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1320 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1321 dev_err(&dsi->pdev->dev,
1322 "Only VIDEO mode panels supported currently.\n");
1326 dsi->bridge = of_drm_find_bridge(device->dev.of_node);
1328 struct drm_panel *panel =
1329 of_drm_find_panel(device->dev.of_node);
1331 dsi->bridge = drm_panel_bridge_add(panel,
1332 DRM_MODE_CONNECTOR_DSI);
1333 if (IS_ERR(dsi->bridge)) {
1334 ret = PTR_ERR(dsi->bridge);
1338 dsi->is_panel_bridge = true;
1341 return drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1344 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1345 struct mipi_dsi_device *device)
1347 struct vc4_dsi *dsi = host_to_dsi(host);
1349 if (dsi->is_panel_bridge) {
1350 drm_panel_bridge_remove(dsi->bridge);
1357 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1358 .attach = vc4_dsi_host_attach,
1359 .detach = vc4_dsi_host_detach,
1360 .transfer = vc4_dsi_host_transfer,
1363 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1364 .disable = vc4_dsi_encoder_disable,
1365 .enable = vc4_dsi_encoder_enable,
1366 .mode_fixup = vc4_dsi_encoder_mode_fixup,
1369 static const struct of_device_id vc4_dsi_dt_match[] = {
1370 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1374 static void dsi_handle_error(struct vc4_dsi *dsi,
1375 irqreturn_t *ret, u32 stat, u32 bit,
1381 DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1385 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1387 struct vc4_dsi *dsi = data;
1388 u32 stat = DSI_PORT_READ(INT_STAT);
1389 irqreturn_t ret = IRQ_NONE;
1391 DSI_PORT_WRITE(INT_STAT, stat);
1393 dsi_handle_error(dsi, &ret, stat,
1394 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1395 dsi_handle_error(dsi, &ret, stat,
1396 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1397 dsi_handle_error(dsi, &ret, stat,
1398 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1399 dsi_handle_error(dsi, &ret, stat,
1400 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1401 dsi_handle_error(dsi, &ret, stat,
1402 DSI1_INT_HSTX_TO, "HSTX timeout");
1403 dsi_handle_error(dsi, &ret, stat,
1404 DSI1_INT_LPRX_TO, "LPRX timeout");
1405 dsi_handle_error(dsi, &ret, stat,
1406 DSI1_INT_TA_TO, "turnaround timeout");
1407 dsi_handle_error(dsi, &ret, stat,
1408 DSI1_INT_PR_TO, "peripheral reset timeout");
1410 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1411 complete(&dsi->xfer_completion);
1413 } else if (stat & DSI1_INT_HSTX_TO) {
1414 complete(&dsi->xfer_completion);
1415 dsi->xfer_result = -ETIMEDOUT;
1423 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1424 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1428 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1430 struct device *dev = &dsi->pdev->dev;
1431 const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1432 static const struct {
1433 const char *dsi0_name, *dsi1_name;
1436 { "dsi0_byte", "dsi1_byte", 8 },
1437 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1438 { "dsi0_ddr", "dsi1_ddr", 2 },
1442 dsi->clk_onecell = devm_kzalloc(dev,
1443 sizeof(*dsi->clk_onecell) +
1444 ARRAY_SIZE(phy_clocks) *
1445 sizeof(struct clk_hw *),
1447 if (!dsi->clk_onecell)
1449 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1451 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1452 struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1453 struct clk_init_data init;
1456 /* We just use core fixed factor clock ops for the PHY
1457 * clocks. The clocks are actually gated by the
1458 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1459 * setting if we use the DDR/DDR2 clocks. However,
1460 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1461 * setting both our parent DSI PLL's rate and this
1462 * clock's rate, so it knows if DDR/DDR2 are going to
1463 * be used and could enable the gates itself.
1466 fix->div = phy_clocks[i].div;
1467 fix->hw.init = &init;
1469 memset(&init, 0, sizeof(init));
1470 init.parent_names = &parent_name;
1471 init.num_parents = 1;
1473 init.name = phy_clocks[i].dsi1_name;
1475 init.name = phy_clocks[i].dsi0_name;
1476 init.ops = &clk_fixed_factor_ops;
1478 ret = devm_clk_hw_register(dev, &fix->hw);
1482 dsi->clk_onecell->hws[i] = &fix->hw;
1485 return of_clk_add_hw_provider(dev->of_node,
1486 of_clk_hw_onecell_get,
1490 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1492 struct platform_device *pdev = to_platform_device(dev);
1493 struct drm_device *drm = dev_get_drvdata(master);
1494 struct vc4_dev *vc4 = to_vc4_dev(drm);
1495 struct vc4_dsi *dsi;
1496 struct vc4_dsi_encoder *vc4_dsi_encoder;
1497 const struct of_device_id *match;
1498 dma_cap_mask_t dma_mask;
1501 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1505 match = of_match_device(vc4_dsi_dt_match, dev);
1509 dsi->port = (uintptr_t)match->data;
1511 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1513 if (!vc4_dsi_encoder)
1515 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1516 vc4_dsi_encoder->dsi = dsi;
1517 dsi->encoder = &vc4_dsi_encoder->base.base;
1520 dsi->regs = vc4_ioremap_regs(pdev, 0);
1521 if (IS_ERR(dsi->regs))
1522 return PTR_ERR(dsi->regs);
1524 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1525 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1526 DSI_PORT_READ(ID), DSI_ID_VALUE);
1530 /* DSI1 has a broken AXI slave that doesn't respond to writes
1531 * from the ARM. It does handle writes from the DMA engine,
1532 * so set up a channel for talking to it.
1534 if (dsi->port == 1) {
1535 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1536 &dsi->reg_dma_paddr,
1538 if (!dsi->reg_dma_mem) {
1539 DRM_ERROR("Failed to get DMA memory\n");
1543 dma_cap_zero(dma_mask);
1544 dma_cap_set(DMA_MEMCPY, dma_mask);
1545 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1546 if (IS_ERR(dsi->reg_dma_chan)) {
1547 ret = PTR_ERR(dsi->reg_dma_chan);
1548 if (ret != -EPROBE_DEFER)
1549 DRM_ERROR("Failed to get DMA channel: %d\n",
1554 /* Get the physical address of the device's registers. The
1555 * struct resource for the regs gives us the bus address
1558 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1562 init_completion(&dsi->xfer_completion);
1563 /* At startup enable error-reporting interrupts and nothing else. */
1564 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1565 /* Clear any existing interrupt state. */
1566 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1568 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1569 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1571 if (ret != -EPROBE_DEFER)
1572 dev_err(dev, "Failed to get interrupt: %d\n", ret);
1576 dsi->escape_clock = devm_clk_get(dev, "escape");
1577 if (IS_ERR(dsi->escape_clock)) {
1578 ret = PTR_ERR(dsi->escape_clock);
1579 if (ret != -EPROBE_DEFER)
1580 dev_err(dev, "Failed to get escape clock: %d\n", ret);
1584 dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1585 if (IS_ERR(dsi->pll_phy_clock)) {
1586 ret = PTR_ERR(dsi->pll_phy_clock);
1587 if (ret != -EPROBE_DEFER)
1588 dev_err(dev, "Failed to get phy clock: %d\n", ret);
1592 dsi->pixel_clock = devm_clk_get(dev, "pixel");
1593 if (IS_ERR(dsi->pixel_clock)) {
1594 ret = PTR_ERR(dsi->pixel_clock);
1595 if (ret != -EPROBE_DEFER)
1596 dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1600 /* The esc clock rate is supposed to always be 100Mhz. */
1601 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1603 dev_err(dev, "Failed to set esc clock: %d\n", ret);
1607 ret = vc4_dsi_init_phy_clocks(dsi);
1614 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1615 DRM_MODE_ENCODER_DSI, NULL);
1616 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1618 dsi->dsi_host.ops = &vc4_dsi_host_ops;
1619 dsi->dsi_host.dev = dev;
1621 mipi_dsi_host_register(&dsi->dsi_host);
1623 dev_set_drvdata(dev, dsi);
1625 pm_runtime_enable(dev);
1630 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1633 struct drm_device *drm = dev_get_drvdata(master);
1634 struct vc4_dev *vc4 = to_vc4_dev(drm);
1635 struct vc4_dsi *dsi = dev_get_drvdata(dev);
1637 pm_runtime_disable(dev);
1639 vc4_dsi_encoder_destroy(dsi->encoder);
1641 mipi_dsi_host_unregister(&dsi->dsi_host);
1647 static const struct component_ops vc4_dsi_ops = {
1648 .bind = vc4_dsi_bind,
1649 .unbind = vc4_dsi_unbind,
1652 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1654 return component_add(&pdev->dev, &vc4_dsi_ops);
1657 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1659 component_del(&pdev->dev, &vc4_dsi_ops);
1663 struct platform_driver vc4_dsi_driver = {
1664 .probe = vc4_dsi_dev_probe,
1665 .remove = vc4_dsi_dev_remove,
1668 .of_match_table = vc4_dsi_dt_match,