1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
75 /* How many pages shrink_list() should reclaim */
76 unsigned long nr_to_reclaim;
79 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
88 struct mem_cgroup *target_mem_cgroup;
91 * Scan pressure balancing between anon and file LRUs
93 unsigned long anon_cost;
94 unsigned long file_cost;
96 /* Can active folios be deactivated as part of reclaim? */
97 #define DEACTIVATE_ANON 1
98 #define DEACTIVATE_FILE 2
99 unsigned int may_deactivate:2;
100 unsigned int force_deactivate:1;
101 unsigned int skipped_deactivate:1;
103 /* Writepage batching in laptop mode; RECLAIM_WRITE */
104 unsigned int may_writepage:1;
106 /* Can mapped folios be reclaimed? */
107 unsigned int may_unmap:1;
109 /* Can folios be swapped as part of reclaim? */
110 unsigned int may_swap:1;
112 /* Proactive reclaim invoked by userspace through memory.reclaim */
113 unsigned int proactive:1;
116 * Cgroup memory below memory.low is protected as long as we
117 * don't threaten to OOM. If any cgroup is reclaimed at
118 * reduced force or passed over entirely due to its memory.low
119 * setting (memcg_low_skipped), and nothing is reclaimed as a
120 * result, then go back for one more cycle that reclaims the protected
121 * memory (memcg_low_reclaim) to avert OOM.
123 unsigned int memcg_low_reclaim:1;
124 unsigned int memcg_low_skipped:1;
126 unsigned int hibernation_mode:1;
128 /* One of the zones is ready for compaction */
129 unsigned int compaction_ready:1;
131 /* There is easily reclaimable cold cache in the current node */
132 unsigned int cache_trim_mode:1;
134 /* The file folios on the current node are dangerously low */
135 unsigned int file_is_tiny:1;
137 /* Always discard instead of demoting to lower tier memory */
138 unsigned int no_demotion:1;
140 /* Allocation order */
143 /* Scan (total_size >> priority) pages at once */
146 /* The highest zone to isolate folios for reclaim from */
149 /* This context's GFP mask */
152 /* Incremented by the number of inactive pages that were scanned */
153 unsigned long nr_scanned;
155 /* Number of pages freed so far during a call to shrink_zones() */
156 unsigned long nr_reclaimed;
160 unsigned int unqueued_dirty;
161 unsigned int congested;
162 unsigned int writeback;
163 unsigned int immediate;
164 unsigned int file_taken;
168 /* for recording the reclaimed slab by now */
169 struct reclaim_state reclaim_state;
172 #ifdef ARCH_HAS_PREFETCHW
173 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
175 if ((_folio)->lru.prev != _base) { \
176 struct folio *prev; \
178 prev = lru_to_folio(&(_folio->lru)); \
179 prefetchw(&prev->_field); \
183 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
187 * From 0 .. 200. Higher means more swappy.
189 int vm_swappiness = 60;
191 static void set_task_reclaim_state(struct task_struct *task,
192 struct reclaim_state *rs)
194 /* Check for an overwrite */
195 WARN_ON_ONCE(rs && task->reclaim_state);
197 /* Check for the nulling of an already-nulled member */
198 WARN_ON_ONCE(!rs && !task->reclaim_state);
200 task->reclaim_state = rs;
203 LIST_HEAD(shrinker_list);
204 DECLARE_RWSEM(shrinker_rwsem);
207 static int shrinker_nr_max;
209 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
210 static inline int shrinker_map_size(int nr_items)
212 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
215 static inline int shrinker_defer_size(int nr_items)
217 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
220 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
223 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
224 lockdep_is_held(&shrinker_rwsem));
227 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
228 int map_size, int defer_size,
229 int old_map_size, int old_defer_size)
231 struct shrinker_info *new, *old;
232 struct mem_cgroup_per_node *pn;
234 int size = map_size + defer_size;
237 pn = memcg->nodeinfo[nid];
238 old = shrinker_info_protected(memcg, nid);
239 /* Not yet online memcg */
243 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
247 new->nr_deferred = (atomic_long_t *)(new + 1);
248 new->map = (void *)new->nr_deferred + defer_size;
250 /* map: set all old bits, clear all new bits */
251 memset(new->map, (int)0xff, old_map_size);
252 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
253 /* nr_deferred: copy old values, clear all new values */
254 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
255 memset((void *)new->nr_deferred + old_defer_size, 0,
256 defer_size - old_defer_size);
258 rcu_assign_pointer(pn->shrinker_info, new);
259 kvfree_rcu(old, rcu);
265 void free_shrinker_info(struct mem_cgroup *memcg)
267 struct mem_cgroup_per_node *pn;
268 struct shrinker_info *info;
272 pn = memcg->nodeinfo[nid];
273 info = rcu_dereference_protected(pn->shrinker_info, true);
275 rcu_assign_pointer(pn->shrinker_info, NULL);
279 int alloc_shrinker_info(struct mem_cgroup *memcg)
281 struct shrinker_info *info;
282 int nid, size, ret = 0;
283 int map_size, defer_size = 0;
285 down_write(&shrinker_rwsem);
286 map_size = shrinker_map_size(shrinker_nr_max);
287 defer_size = shrinker_defer_size(shrinker_nr_max);
288 size = map_size + defer_size;
290 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
292 free_shrinker_info(memcg);
296 info->nr_deferred = (atomic_long_t *)(info + 1);
297 info->map = (void *)info->nr_deferred + defer_size;
298 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
300 up_write(&shrinker_rwsem);
305 static inline bool need_expand(int nr_max)
307 return round_up(nr_max, BITS_PER_LONG) >
308 round_up(shrinker_nr_max, BITS_PER_LONG);
311 static int expand_shrinker_info(int new_id)
314 int new_nr_max = new_id + 1;
315 int map_size, defer_size = 0;
316 int old_map_size, old_defer_size = 0;
317 struct mem_cgroup *memcg;
319 if (!need_expand(new_nr_max))
322 if (!root_mem_cgroup)
325 lockdep_assert_held(&shrinker_rwsem);
327 map_size = shrinker_map_size(new_nr_max);
328 defer_size = shrinker_defer_size(new_nr_max);
329 old_map_size = shrinker_map_size(shrinker_nr_max);
330 old_defer_size = shrinker_defer_size(shrinker_nr_max);
332 memcg = mem_cgroup_iter(NULL, NULL, NULL);
334 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
335 old_map_size, old_defer_size);
337 mem_cgroup_iter_break(NULL, memcg);
340 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
343 shrinker_nr_max = new_nr_max;
348 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
350 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
351 struct shrinker_info *info;
354 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
355 /* Pairs with smp mb in shrink_slab() */
356 smp_mb__before_atomic();
357 set_bit(shrinker_id, info->map);
362 static DEFINE_IDR(shrinker_idr);
364 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
366 int id, ret = -ENOMEM;
368 if (mem_cgroup_disabled())
371 down_write(&shrinker_rwsem);
372 /* This may call shrinker, so it must use down_read_trylock() */
373 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
377 if (id >= shrinker_nr_max) {
378 if (expand_shrinker_info(id)) {
379 idr_remove(&shrinker_idr, id);
386 up_write(&shrinker_rwsem);
390 static void unregister_memcg_shrinker(struct shrinker *shrinker)
392 int id = shrinker->id;
396 lockdep_assert_held(&shrinker_rwsem);
398 idr_remove(&shrinker_idr, id);
401 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
402 struct mem_cgroup *memcg)
404 struct shrinker_info *info;
406 info = shrinker_info_protected(memcg, nid);
407 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
410 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
411 struct mem_cgroup *memcg)
413 struct shrinker_info *info;
415 info = shrinker_info_protected(memcg, nid);
416 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
419 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
423 struct mem_cgroup *parent;
424 struct shrinker_info *child_info, *parent_info;
426 parent = parent_mem_cgroup(memcg);
428 parent = root_mem_cgroup;
430 /* Prevent from concurrent shrinker_info expand */
431 down_read(&shrinker_rwsem);
433 child_info = shrinker_info_protected(memcg, nid);
434 parent_info = shrinker_info_protected(parent, nid);
435 for (i = 0; i < shrinker_nr_max; i++) {
436 nr = atomic_long_read(&child_info->nr_deferred[i]);
437 atomic_long_add(nr, &parent_info->nr_deferred[i]);
440 up_read(&shrinker_rwsem);
443 static bool cgroup_reclaim(struct scan_control *sc)
445 return sc->target_mem_cgroup;
448 static bool global_reclaim(struct scan_control *sc)
450 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
454 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
455 * @sc: scan_control in question
457 * The normal page dirty throttling mechanism in balance_dirty_pages() is
458 * completely broken with the legacy memcg and direct stalling in
459 * shrink_folio_list() is used for throttling instead, which lacks all the
460 * niceties such as fairness, adaptive pausing, bandwidth proportional
461 * allocation and configurability.
463 * This function tests whether the vmscan currently in progress can assume
464 * that the normal dirty throttling mechanism is operational.
466 static bool writeback_throttling_sane(struct scan_control *sc)
468 if (!cgroup_reclaim(sc))
470 #ifdef CONFIG_CGROUP_WRITEBACK
471 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
477 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
482 static void unregister_memcg_shrinker(struct shrinker *shrinker)
486 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
487 struct mem_cgroup *memcg)
492 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
493 struct mem_cgroup *memcg)
498 static bool cgroup_reclaim(struct scan_control *sc)
503 static bool global_reclaim(struct scan_control *sc)
508 static bool writeback_throttling_sane(struct scan_control *sc)
514 static long xchg_nr_deferred(struct shrinker *shrinker,
515 struct shrink_control *sc)
519 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
523 (shrinker->flags & SHRINKER_MEMCG_AWARE))
524 return xchg_nr_deferred_memcg(nid, shrinker,
527 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
531 static long add_nr_deferred(long nr, struct shrinker *shrinker,
532 struct shrink_control *sc)
536 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
540 (shrinker->flags & SHRINKER_MEMCG_AWARE))
541 return add_nr_deferred_memcg(nr, nid, shrinker,
544 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
547 static bool can_demote(int nid, struct scan_control *sc)
549 if (!numa_demotion_enabled)
551 if (sc && sc->no_demotion)
553 if (next_demotion_node(nid) == NUMA_NO_NODE)
559 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
561 struct scan_control *sc)
565 * For non-memcg reclaim, is there
566 * space in any swap device?
568 if (get_nr_swap_pages() > 0)
571 /* Is the memcg below its swap limit? */
572 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
577 * The page can not be swapped.
579 * Can it be reclaimed from this node via demotion?
581 return can_demote(nid, sc);
585 * This misses isolated folios which are not accounted for to save counters.
586 * As the data only determines if reclaim or compaction continues, it is
587 * not expected that isolated folios will be a dominating factor.
589 unsigned long zone_reclaimable_pages(struct zone *zone)
593 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
594 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
595 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
596 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
597 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
603 * lruvec_lru_size - Returns the number of pages on the given LRU list.
604 * @lruvec: lru vector
606 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
608 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
611 unsigned long size = 0;
614 for (zid = 0; zid <= zone_idx; zid++) {
615 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
617 if (!managed_zone(zone))
620 if (!mem_cgroup_disabled())
621 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
623 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
629 * Add a shrinker callback to be called from the vm.
631 static int __prealloc_shrinker(struct shrinker *shrinker)
636 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
637 err = prealloc_memcg_shrinker(shrinker);
641 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
644 size = sizeof(*shrinker->nr_deferred);
645 if (shrinker->flags & SHRINKER_NUMA_AWARE)
648 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
649 if (!shrinker->nr_deferred)
655 #ifdef CONFIG_SHRINKER_DEBUG
656 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
662 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
667 err = __prealloc_shrinker(shrinker);
669 kfree_const(shrinker->name);
670 shrinker->name = NULL;
676 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
678 return __prealloc_shrinker(shrinker);
682 void free_prealloced_shrinker(struct shrinker *shrinker)
684 #ifdef CONFIG_SHRINKER_DEBUG
685 kfree_const(shrinker->name);
686 shrinker->name = NULL;
688 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
689 down_write(&shrinker_rwsem);
690 unregister_memcg_shrinker(shrinker);
691 up_write(&shrinker_rwsem);
695 kfree(shrinker->nr_deferred);
696 shrinker->nr_deferred = NULL;
699 void register_shrinker_prepared(struct shrinker *shrinker)
701 down_write(&shrinker_rwsem);
702 list_add_tail(&shrinker->list, &shrinker_list);
703 shrinker->flags |= SHRINKER_REGISTERED;
704 shrinker_debugfs_add(shrinker);
705 up_write(&shrinker_rwsem);
708 static int __register_shrinker(struct shrinker *shrinker)
710 int err = __prealloc_shrinker(shrinker);
714 register_shrinker_prepared(shrinker);
718 #ifdef CONFIG_SHRINKER_DEBUG
719 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
725 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
730 err = __register_shrinker(shrinker);
732 kfree_const(shrinker->name);
733 shrinker->name = NULL;
738 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
740 return __register_shrinker(shrinker);
743 EXPORT_SYMBOL(register_shrinker);
748 void unregister_shrinker(struct shrinker *shrinker)
750 if (!(shrinker->flags & SHRINKER_REGISTERED))
753 down_write(&shrinker_rwsem);
754 list_del(&shrinker->list);
755 shrinker->flags &= ~SHRINKER_REGISTERED;
756 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
757 unregister_memcg_shrinker(shrinker);
758 shrinker_debugfs_remove(shrinker);
759 up_write(&shrinker_rwsem);
761 kfree(shrinker->nr_deferred);
762 shrinker->nr_deferred = NULL;
764 EXPORT_SYMBOL(unregister_shrinker);
767 * synchronize_shrinkers - Wait for all running shrinkers to complete.
769 * This is equivalent to calling unregister_shrink() and register_shrinker(),
770 * but atomically and with less overhead. This is useful to guarantee that all
771 * shrinker invocations have seen an update, before freeing memory, similar to
774 void synchronize_shrinkers(void)
776 down_write(&shrinker_rwsem);
777 up_write(&shrinker_rwsem);
779 EXPORT_SYMBOL(synchronize_shrinkers);
781 #define SHRINK_BATCH 128
783 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
784 struct shrinker *shrinker, int priority)
786 unsigned long freed = 0;
787 unsigned long long delta;
792 long batch_size = shrinker->batch ? shrinker->batch
794 long scanned = 0, next_deferred;
796 freeable = shrinker->count_objects(shrinker, shrinkctl);
797 if (freeable == 0 || freeable == SHRINK_EMPTY)
801 * copy the current shrinker scan count into a local variable
802 * and zero it so that other concurrent shrinker invocations
803 * don't also do this scanning work.
805 nr = xchg_nr_deferred(shrinker, shrinkctl);
807 if (shrinker->seeks) {
808 delta = freeable >> priority;
810 do_div(delta, shrinker->seeks);
813 * These objects don't require any IO to create. Trim
814 * them aggressively under memory pressure to keep
815 * them from causing refetches in the IO caches.
817 delta = freeable / 2;
820 total_scan = nr >> priority;
822 total_scan = min(total_scan, (2 * freeable));
824 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
825 freeable, delta, total_scan, priority);
828 * Normally, we should not scan less than batch_size objects in one
829 * pass to avoid too frequent shrinker calls, but if the slab has less
830 * than batch_size objects in total and we are really tight on memory,
831 * we will try to reclaim all available objects, otherwise we can end
832 * up failing allocations although there are plenty of reclaimable
833 * objects spread over several slabs with usage less than the
836 * We detect the "tight on memory" situations by looking at the total
837 * number of objects we want to scan (total_scan). If it is greater
838 * than the total number of objects on slab (freeable), we must be
839 * scanning at high prio and therefore should try to reclaim as much as
842 while (total_scan >= batch_size ||
843 total_scan >= freeable) {
845 unsigned long nr_to_scan = min(batch_size, total_scan);
847 shrinkctl->nr_to_scan = nr_to_scan;
848 shrinkctl->nr_scanned = nr_to_scan;
849 ret = shrinker->scan_objects(shrinker, shrinkctl);
850 if (ret == SHRINK_STOP)
854 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
855 total_scan -= shrinkctl->nr_scanned;
856 scanned += shrinkctl->nr_scanned;
862 * The deferred work is increased by any new work (delta) that wasn't
863 * done, decreased by old deferred work that was done now.
865 * And it is capped to two times of the freeable items.
867 next_deferred = max_t(long, (nr + delta - scanned), 0);
868 next_deferred = min(next_deferred, (2 * freeable));
871 * move the unused scan count back into the shrinker in a
872 * manner that handles concurrent updates.
874 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
876 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
881 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
882 struct mem_cgroup *memcg, int priority)
884 struct shrinker_info *info;
885 unsigned long ret, freed = 0;
888 if (!mem_cgroup_online(memcg))
891 if (!down_read_trylock(&shrinker_rwsem))
894 info = shrinker_info_protected(memcg, nid);
898 for_each_set_bit(i, info->map, shrinker_nr_max) {
899 struct shrink_control sc = {
900 .gfp_mask = gfp_mask,
904 struct shrinker *shrinker;
906 shrinker = idr_find(&shrinker_idr, i);
907 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
909 clear_bit(i, info->map);
913 /* Call non-slab shrinkers even though kmem is disabled */
914 if (!memcg_kmem_enabled() &&
915 !(shrinker->flags & SHRINKER_NONSLAB))
918 ret = do_shrink_slab(&sc, shrinker, priority);
919 if (ret == SHRINK_EMPTY) {
920 clear_bit(i, info->map);
922 * After the shrinker reported that it had no objects to
923 * free, but before we cleared the corresponding bit in
924 * the memcg shrinker map, a new object might have been
925 * added. To make sure, we have the bit set in this
926 * case, we invoke the shrinker one more time and reset
927 * the bit if it reports that it is not empty anymore.
928 * The memory barrier here pairs with the barrier in
929 * set_shrinker_bit():
931 * list_lru_add() shrink_slab_memcg()
932 * list_add_tail() clear_bit()
934 * set_bit() do_shrink_slab()
936 smp_mb__after_atomic();
937 ret = do_shrink_slab(&sc, shrinker, priority);
938 if (ret == SHRINK_EMPTY)
941 set_shrinker_bit(memcg, nid, i);
945 if (rwsem_is_contended(&shrinker_rwsem)) {
951 up_read(&shrinker_rwsem);
954 #else /* CONFIG_MEMCG */
955 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
956 struct mem_cgroup *memcg, int priority)
960 #endif /* CONFIG_MEMCG */
963 * shrink_slab - shrink slab caches
964 * @gfp_mask: allocation context
965 * @nid: node whose slab caches to target
966 * @memcg: memory cgroup whose slab caches to target
967 * @priority: the reclaim priority
969 * Call the shrink functions to age shrinkable caches.
971 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
972 * unaware shrinkers will receive a node id of 0 instead.
974 * @memcg specifies the memory cgroup to target. Unaware shrinkers
975 * are called only if it is the root cgroup.
977 * @priority is sc->priority, we take the number of objects and >> by priority
978 * in order to get the scan target.
980 * Returns the number of reclaimed slab objects.
982 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
983 struct mem_cgroup *memcg,
986 unsigned long ret, freed = 0;
987 struct shrinker *shrinker;
990 * The root memcg might be allocated even though memcg is disabled
991 * via "cgroup_disable=memory" boot parameter. This could make
992 * mem_cgroup_is_root() return false, then just run memcg slab
993 * shrink, but skip global shrink. This may result in premature
996 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
997 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
999 if (!down_read_trylock(&shrinker_rwsem))
1002 list_for_each_entry(shrinker, &shrinker_list, list) {
1003 struct shrink_control sc = {
1004 .gfp_mask = gfp_mask,
1009 ret = do_shrink_slab(&sc, shrinker, priority);
1010 if (ret == SHRINK_EMPTY)
1014 * Bail out if someone want to register a new shrinker to
1015 * prevent the registration from being stalled for long periods
1016 * by parallel ongoing shrinking.
1018 if (rwsem_is_contended(&shrinker_rwsem)) {
1019 freed = freed ? : 1;
1024 up_read(&shrinker_rwsem);
1030 static unsigned long drop_slab_node(int nid)
1032 unsigned long freed = 0;
1033 struct mem_cgroup *memcg = NULL;
1035 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1037 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1038 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1043 void drop_slab(void)
1047 unsigned long freed;
1051 for_each_online_node(nid) {
1052 if (fatal_signal_pending(current))
1055 freed += drop_slab_node(nid);
1057 } while ((freed >> shift++) > 1);
1060 static int reclaimer_offset(void)
1062 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1063 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1064 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1065 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1066 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1067 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1068 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1069 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1071 if (current_is_kswapd())
1073 if (current_is_khugepaged())
1074 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1075 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1078 static inline int is_page_cache_freeable(struct folio *folio)
1081 * A freeable page cache folio is referenced only by the caller
1082 * that isolated the folio, the page cache and optional filesystem
1083 * private data at folio->private.
1085 return folio_ref_count(folio) - folio_test_private(folio) ==
1086 1 + folio_nr_pages(folio);
1090 * We detected a synchronous write error writing a folio out. Probably
1091 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1092 * fsync(), msync() or close().
1094 * The tricky part is that after writepage we cannot touch the mapping: nothing
1095 * prevents it from being freed up. But we have a ref on the folio and once
1096 * that folio is locked, the mapping is pinned.
1098 * We're allowed to run sleeping folio_lock() here because we know the caller has
1101 static void handle_write_error(struct address_space *mapping,
1102 struct folio *folio, int error)
1105 if (folio_mapping(folio) == mapping)
1106 mapping_set_error(mapping, error);
1107 folio_unlock(folio);
1110 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1112 int reclaimable = 0, write_pending = 0;
1116 * If kswapd is disabled, reschedule if necessary but do not
1117 * throttle as the system is likely near OOM.
1119 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1123 * If there are a lot of dirty/writeback folios then do not
1124 * throttle as throttling will occur when the folios cycle
1125 * towards the end of the LRU if still under writeback.
1127 for (i = 0; i < MAX_NR_ZONES; i++) {
1128 struct zone *zone = pgdat->node_zones + i;
1130 if (!managed_zone(zone))
1133 reclaimable += zone_reclaimable_pages(zone);
1134 write_pending += zone_page_state_snapshot(zone,
1135 NR_ZONE_WRITE_PENDING);
1137 if (2 * write_pending <= reclaimable)
1143 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1145 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1150 * Do not throttle IO workers, kthreads other than kswapd or
1151 * workqueues. They may be required for reclaim to make
1152 * forward progress (e.g. journalling workqueues or kthreads).
1154 if (!current_is_kswapd() &&
1155 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1161 * These figures are pulled out of thin air.
1162 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1163 * parallel reclaimers which is a short-lived event so the timeout is
1164 * short. Failing to make progress or waiting on writeback are
1165 * potentially long-lived events so use a longer timeout. This is shaky
1166 * logic as a failure to make progress could be due to anything from
1167 * writeback to a slow device to excessive referenced folios at the tail
1168 * of the inactive LRU.
1171 case VMSCAN_THROTTLE_WRITEBACK:
1174 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1175 WRITE_ONCE(pgdat->nr_reclaim_start,
1176 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1180 case VMSCAN_THROTTLE_CONGESTED:
1182 case VMSCAN_THROTTLE_NOPROGRESS:
1183 if (skip_throttle_noprogress(pgdat)) {
1191 case VMSCAN_THROTTLE_ISOLATED:
1200 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1201 ret = schedule_timeout(timeout);
1202 finish_wait(wqh, &wait);
1204 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1205 atomic_dec(&pgdat->nr_writeback_throttled);
1207 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1208 jiffies_to_usecs(timeout - ret),
1213 * Account for folios written if tasks are throttled waiting on dirty
1214 * folios to clean. If enough folios have been cleaned since throttling
1215 * started then wakeup the throttled tasks.
1217 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1220 unsigned long nr_written;
1222 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1225 * This is an inaccurate read as the per-cpu deltas may not
1226 * be synchronised. However, given that the system is
1227 * writeback throttled, it is not worth taking the penalty
1228 * of getting an accurate count. At worst, the throttle
1229 * timeout guarantees forward progress.
1231 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1232 READ_ONCE(pgdat->nr_reclaim_start);
1234 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1235 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1238 /* possible outcome of pageout() */
1240 /* failed to write folio out, folio is locked */
1242 /* move folio to the active list, folio is locked */
1244 /* folio has been sent to the disk successfully, folio is unlocked */
1246 /* folio is clean and locked */
1251 * pageout is called by shrink_folio_list() for each dirty folio.
1252 * Calls ->writepage().
1254 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1255 struct swap_iocb **plug)
1258 * If the folio is dirty, only perform writeback if that write
1259 * will be non-blocking. To prevent this allocation from being
1260 * stalled by pagecache activity. But note that there may be
1261 * stalls if we need to run get_block(). We could test
1262 * PagePrivate for that.
1264 * If this process is currently in __generic_file_write_iter() against
1265 * this folio's queue, we can perform writeback even if that
1268 * If the folio is swapcache, write it back even if that would
1269 * block, for some throttling. This happens by accident, because
1270 * swap_backing_dev_info is bust: it doesn't reflect the
1271 * congestion state of the swapdevs. Easy to fix, if needed.
1273 if (!is_page_cache_freeable(folio))
1277 * Some data journaling orphaned folios can have
1278 * folio->mapping == NULL while being dirty with clean buffers.
1280 if (folio_test_private(folio)) {
1281 if (try_to_free_buffers(folio)) {
1282 folio_clear_dirty(folio);
1283 pr_info("%s: orphaned folio\n", __func__);
1289 if (mapping->a_ops->writepage == NULL)
1290 return PAGE_ACTIVATE;
1292 if (folio_clear_dirty_for_io(folio)) {
1294 struct writeback_control wbc = {
1295 .sync_mode = WB_SYNC_NONE,
1296 .nr_to_write = SWAP_CLUSTER_MAX,
1298 .range_end = LLONG_MAX,
1303 folio_set_reclaim(folio);
1304 res = mapping->a_ops->writepage(&folio->page, &wbc);
1306 handle_write_error(mapping, folio, res);
1307 if (res == AOP_WRITEPAGE_ACTIVATE) {
1308 folio_clear_reclaim(folio);
1309 return PAGE_ACTIVATE;
1312 if (!folio_test_writeback(folio)) {
1313 /* synchronous write or broken a_ops? */
1314 folio_clear_reclaim(folio);
1316 trace_mm_vmscan_write_folio(folio);
1317 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1318 return PAGE_SUCCESS;
1325 * Same as remove_mapping, but if the folio is removed from the mapping, it
1326 * gets returned with a refcount of 0.
1328 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1329 bool reclaimed, struct mem_cgroup *target_memcg)
1332 void *shadow = NULL;
1334 BUG_ON(!folio_test_locked(folio));
1335 BUG_ON(mapping != folio_mapping(folio));
1337 if (!folio_test_swapcache(folio))
1338 spin_lock(&mapping->host->i_lock);
1339 xa_lock_irq(&mapping->i_pages);
1341 * The non racy check for a busy folio.
1343 * Must be careful with the order of the tests. When someone has
1344 * a ref to the folio, it may be possible that they dirty it then
1345 * drop the reference. So if the dirty flag is tested before the
1346 * refcount here, then the following race may occur:
1348 * get_user_pages(&page);
1349 * [user mapping goes away]
1351 * !folio_test_dirty(folio) [good]
1352 * folio_set_dirty(folio);
1354 * !refcount(folio) [good, discard it]
1356 * [oops, our write_to data is lost]
1358 * Reversing the order of the tests ensures such a situation cannot
1359 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1360 * load is not satisfied before that of folio->_refcount.
1362 * Note that if the dirty flag is always set via folio_mark_dirty,
1363 * and thus under the i_pages lock, then this ordering is not required.
1365 refcount = 1 + folio_nr_pages(folio);
1366 if (!folio_ref_freeze(folio, refcount))
1368 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1369 if (unlikely(folio_test_dirty(folio))) {
1370 folio_ref_unfreeze(folio, refcount);
1374 if (folio_test_swapcache(folio)) {
1375 swp_entry_t swap = folio_swap_entry(folio);
1377 if (reclaimed && !mapping_exiting(mapping))
1378 shadow = workingset_eviction(folio, target_memcg);
1379 __delete_from_swap_cache(folio, swap, shadow);
1380 mem_cgroup_swapout(folio, swap);
1381 xa_unlock_irq(&mapping->i_pages);
1382 put_swap_folio(folio, swap);
1384 void (*free_folio)(struct folio *);
1386 free_folio = mapping->a_ops->free_folio;
1388 * Remember a shadow entry for reclaimed file cache in
1389 * order to detect refaults, thus thrashing, later on.
1391 * But don't store shadows in an address space that is
1392 * already exiting. This is not just an optimization,
1393 * inode reclaim needs to empty out the radix tree or
1394 * the nodes are lost. Don't plant shadows behind its
1397 * We also don't store shadows for DAX mappings because the
1398 * only page cache folios found in these are zero pages
1399 * covering holes, and because we don't want to mix DAX
1400 * exceptional entries and shadow exceptional entries in the
1401 * same address_space.
1403 if (reclaimed && folio_is_file_lru(folio) &&
1404 !mapping_exiting(mapping) && !dax_mapping(mapping))
1405 shadow = workingset_eviction(folio, target_memcg);
1406 __filemap_remove_folio(folio, shadow);
1407 xa_unlock_irq(&mapping->i_pages);
1408 if (mapping_shrinkable(mapping))
1409 inode_add_lru(mapping->host);
1410 spin_unlock(&mapping->host->i_lock);
1419 xa_unlock_irq(&mapping->i_pages);
1420 if (!folio_test_swapcache(folio))
1421 spin_unlock(&mapping->host->i_lock);
1426 * remove_mapping() - Attempt to remove a folio from its mapping.
1427 * @mapping: The address space.
1428 * @folio: The folio to remove.
1430 * If the folio is dirty, under writeback or if someone else has a ref
1431 * on it, removal will fail.
1432 * Return: The number of pages removed from the mapping. 0 if the folio
1433 * could not be removed.
1434 * Context: The caller should have a single refcount on the folio and
1437 long remove_mapping(struct address_space *mapping, struct folio *folio)
1439 if (__remove_mapping(mapping, folio, false, NULL)) {
1441 * Unfreezing the refcount with 1 effectively
1442 * drops the pagecache ref for us without requiring another
1445 folio_ref_unfreeze(folio, 1);
1446 return folio_nr_pages(folio);
1452 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1453 * @folio: Folio to be returned to an LRU list.
1455 * Add previously isolated @folio to appropriate LRU list.
1456 * The folio may still be unevictable for other reasons.
1458 * Context: lru_lock must not be held, interrupts must be enabled.
1460 void folio_putback_lru(struct folio *folio)
1462 folio_add_lru(folio);
1463 folio_put(folio); /* drop ref from isolate */
1466 enum folio_references {
1468 FOLIOREF_RECLAIM_CLEAN,
1473 static enum folio_references folio_check_references(struct folio *folio,
1474 struct scan_control *sc)
1476 int referenced_ptes, referenced_folio;
1477 unsigned long vm_flags;
1479 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1481 referenced_folio = folio_test_clear_referenced(folio);
1484 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1485 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1487 if (vm_flags & VM_LOCKED)
1488 return FOLIOREF_ACTIVATE;
1490 /* rmap lock contention: rotate */
1491 if (referenced_ptes == -1)
1492 return FOLIOREF_KEEP;
1494 if (referenced_ptes) {
1496 * All mapped folios start out with page table
1497 * references from the instantiating fault, so we need
1498 * to look twice if a mapped file/anon folio is used more
1501 * Mark it and spare it for another trip around the
1502 * inactive list. Another page table reference will
1503 * lead to its activation.
1505 * Note: the mark is set for activated folios as well
1506 * so that recently deactivated but used folios are
1507 * quickly recovered.
1509 folio_set_referenced(folio);
1511 if (referenced_folio || referenced_ptes > 1)
1512 return FOLIOREF_ACTIVATE;
1515 * Activate file-backed executable folios after first usage.
1517 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1518 return FOLIOREF_ACTIVATE;
1520 return FOLIOREF_KEEP;
1523 /* Reclaim if clean, defer dirty folios to writeback */
1524 if (referenced_folio && folio_is_file_lru(folio))
1525 return FOLIOREF_RECLAIM_CLEAN;
1527 return FOLIOREF_RECLAIM;
1530 /* Check if a folio is dirty or under writeback */
1531 static void folio_check_dirty_writeback(struct folio *folio,
1532 bool *dirty, bool *writeback)
1534 struct address_space *mapping;
1537 * Anonymous folios are not handled by flushers and must be written
1538 * from reclaim context. Do not stall reclaim based on them.
1539 * MADV_FREE anonymous folios are put into inactive file list too.
1540 * They could be mistakenly treated as file lru. So further anon
1543 if (!folio_is_file_lru(folio) ||
1544 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1550 /* By default assume that the folio flags are accurate */
1551 *dirty = folio_test_dirty(folio);
1552 *writeback = folio_test_writeback(folio);
1554 /* Verify dirty/writeback state if the filesystem supports it */
1555 if (!folio_test_private(folio))
1558 mapping = folio_mapping(folio);
1559 if (mapping && mapping->a_ops->is_dirty_writeback)
1560 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1563 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1565 struct page *target_page;
1566 nodemask_t *allowed_mask;
1567 struct migration_target_control *mtc;
1569 mtc = (struct migration_target_control *)private;
1571 allowed_mask = mtc->nmask;
1573 * make sure we allocate from the target node first also trying to
1574 * demote or reclaim pages from the target node via kswapd if we are
1575 * low on free memory on target node. If we don't do this and if
1576 * we have free memory on the slower(lower) memtier, we would start
1577 * allocating pages from slower(lower) memory tiers without even forcing
1578 * a demotion of cold pages from the target memtier. This can result
1579 * in the kernel placing hot pages in slower(lower) memory tiers.
1582 mtc->gfp_mask |= __GFP_THISNODE;
1583 target_page = alloc_migration_target(page, (unsigned long)mtc);
1587 mtc->gfp_mask &= ~__GFP_THISNODE;
1588 mtc->nmask = allowed_mask;
1590 return alloc_migration_target(page, (unsigned long)mtc);
1594 * Take folios on @demote_folios and attempt to demote them to another node.
1595 * Folios which are not demoted are left on @demote_folios.
1597 static unsigned int demote_folio_list(struct list_head *demote_folios,
1598 struct pglist_data *pgdat)
1600 int target_nid = next_demotion_node(pgdat->node_id);
1601 unsigned int nr_succeeded;
1602 nodemask_t allowed_mask;
1604 struct migration_target_control mtc = {
1606 * Allocate from 'node', or fail quickly and quietly.
1607 * When this happens, 'page' will likely just be discarded
1608 * instead of migrated.
1610 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1611 __GFP_NOMEMALLOC | GFP_NOWAIT,
1613 .nmask = &allowed_mask
1616 if (list_empty(demote_folios))
1619 if (target_nid == NUMA_NO_NODE)
1622 node_get_allowed_targets(pgdat, &allowed_mask);
1624 /* Demotion ignores all cpuset and mempolicy settings */
1625 migrate_pages(demote_folios, alloc_demote_page, NULL,
1626 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1629 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1631 return nr_succeeded;
1634 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1636 if (gfp_mask & __GFP_FS)
1638 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1641 * We can "enter_fs" for swap-cache with only __GFP_IO
1642 * providing this isn't SWP_FS_OPS.
1643 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1644 * but that will never affect SWP_FS_OPS, so the data_race
1647 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1651 * shrink_folio_list() returns the number of reclaimed pages
1653 static unsigned int shrink_folio_list(struct list_head *folio_list,
1654 struct pglist_data *pgdat, struct scan_control *sc,
1655 struct reclaim_stat *stat, bool ignore_references)
1657 LIST_HEAD(ret_folios);
1658 LIST_HEAD(free_folios);
1659 LIST_HEAD(demote_folios);
1660 unsigned int nr_reclaimed = 0;
1661 unsigned int pgactivate = 0;
1662 bool do_demote_pass;
1663 struct swap_iocb *plug = NULL;
1665 memset(stat, 0, sizeof(*stat));
1667 do_demote_pass = can_demote(pgdat->node_id, sc);
1670 while (!list_empty(folio_list)) {
1671 struct address_space *mapping;
1672 struct folio *folio;
1673 enum folio_references references = FOLIOREF_RECLAIM;
1674 bool dirty, writeback;
1675 unsigned int nr_pages;
1679 folio = lru_to_folio(folio_list);
1680 list_del(&folio->lru);
1682 if (!folio_trylock(folio))
1685 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1687 nr_pages = folio_nr_pages(folio);
1689 /* Account the number of base pages */
1690 sc->nr_scanned += nr_pages;
1692 if (unlikely(!folio_evictable(folio)))
1693 goto activate_locked;
1695 if (!sc->may_unmap && folio_mapped(folio))
1698 /* folio_update_gen() tried to promote this page? */
1699 if (lru_gen_enabled() && !ignore_references &&
1700 folio_mapped(folio) && folio_test_referenced(folio))
1704 * The number of dirty pages determines if a node is marked
1705 * reclaim_congested. kswapd will stall and start writing
1706 * folios if the tail of the LRU is all dirty unqueued folios.
1708 folio_check_dirty_writeback(folio, &dirty, &writeback);
1709 if (dirty || writeback)
1710 stat->nr_dirty += nr_pages;
1712 if (dirty && !writeback)
1713 stat->nr_unqueued_dirty += nr_pages;
1716 * Treat this folio as congested if folios are cycling
1717 * through the LRU so quickly that the folios marked
1718 * for immediate reclaim are making it to the end of
1719 * the LRU a second time.
1721 if (writeback && folio_test_reclaim(folio))
1722 stat->nr_congested += nr_pages;
1725 * If a folio at the tail of the LRU is under writeback, there
1726 * are three cases to consider.
1728 * 1) If reclaim is encountering an excessive number
1729 * of folios under writeback and this folio has both
1730 * the writeback and reclaim flags set, then it
1731 * indicates that folios are being queued for I/O but
1732 * are being recycled through the LRU before the I/O
1733 * can complete. Waiting on the folio itself risks an
1734 * indefinite stall if it is impossible to writeback
1735 * the folio due to I/O error or disconnected storage
1736 * so instead note that the LRU is being scanned too
1737 * quickly and the caller can stall after the folio
1738 * list has been processed.
1740 * 2) Global or new memcg reclaim encounters a folio that is
1741 * not marked for immediate reclaim, or the caller does not
1742 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1743 * not to fs). In this case mark the folio for immediate
1744 * reclaim and continue scanning.
1746 * Require may_enter_fs() because we would wait on fs, which
1747 * may not have submitted I/O yet. And the loop driver might
1748 * enter reclaim, and deadlock if it waits on a folio for
1749 * which it is needed to do the write (loop masks off
1750 * __GFP_IO|__GFP_FS for this reason); but more thought
1751 * would probably show more reasons.
1753 * 3) Legacy memcg encounters a folio that already has the
1754 * reclaim flag set. memcg does not have any dirty folio
1755 * throttling so we could easily OOM just because too many
1756 * folios are in writeback and there is nothing else to
1757 * reclaim. Wait for the writeback to complete.
1759 * In cases 1) and 2) we activate the folios to get them out of
1760 * the way while we continue scanning for clean folios on the
1761 * inactive list and refilling from the active list. The
1762 * observation here is that waiting for disk writes is more
1763 * expensive than potentially causing reloads down the line.
1764 * Since they're marked for immediate reclaim, they won't put
1765 * memory pressure on the cache working set any longer than it
1766 * takes to write them to disk.
1768 if (folio_test_writeback(folio)) {
1770 if (current_is_kswapd() &&
1771 folio_test_reclaim(folio) &&
1772 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1773 stat->nr_immediate += nr_pages;
1774 goto activate_locked;
1777 } else if (writeback_throttling_sane(sc) ||
1778 !folio_test_reclaim(folio) ||
1779 !may_enter_fs(folio, sc->gfp_mask)) {
1781 * This is slightly racy -
1782 * folio_end_writeback() might have
1783 * just cleared the reclaim flag, then
1784 * setting the reclaim flag here ends up
1785 * interpreted as the readahead flag - but
1786 * that does not matter enough to care.
1787 * What we do want is for this folio to
1788 * have the reclaim flag set next time
1789 * memcg reclaim reaches the tests above,
1790 * so it will then wait for writeback to
1791 * avoid OOM; and it's also appropriate
1792 * in global reclaim.
1794 folio_set_reclaim(folio);
1795 stat->nr_writeback += nr_pages;
1796 goto activate_locked;
1800 folio_unlock(folio);
1801 folio_wait_writeback(folio);
1802 /* then go back and try same folio again */
1803 list_add_tail(&folio->lru, folio_list);
1808 if (!ignore_references)
1809 references = folio_check_references(folio, sc);
1811 switch (references) {
1812 case FOLIOREF_ACTIVATE:
1813 goto activate_locked;
1815 stat->nr_ref_keep += nr_pages;
1817 case FOLIOREF_RECLAIM:
1818 case FOLIOREF_RECLAIM_CLEAN:
1819 ; /* try to reclaim the folio below */
1823 * Before reclaiming the folio, try to relocate
1824 * its contents to another node.
1826 if (do_demote_pass &&
1827 (thp_migration_supported() || !folio_test_large(folio))) {
1828 list_add(&folio->lru, &demote_folios);
1829 folio_unlock(folio);
1834 * Anonymous process memory has backing store?
1835 * Try to allocate it some swap space here.
1836 * Lazyfree folio could be freed directly
1838 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1839 if (!folio_test_swapcache(folio)) {
1840 if (!(sc->gfp_mask & __GFP_IO))
1842 if (folio_maybe_dma_pinned(folio))
1844 if (folio_test_large(folio)) {
1845 /* cannot split folio, skip it */
1846 if (!can_split_folio(folio, NULL))
1847 goto activate_locked;
1849 * Split folios without a PMD map right
1850 * away. Chances are some or all of the
1851 * tail pages can be freed without IO.
1853 if (!folio_entire_mapcount(folio) &&
1854 split_folio_to_list(folio,
1856 goto activate_locked;
1858 if (!add_to_swap(folio)) {
1859 if (!folio_test_large(folio))
1860 goto activate_locked_split;
1861 /* Fallback to swap normal pages */
1862 if (split_folio_to_list(folio,
1864 goto activate_locked;
1865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1866 count_vm_event(THP_SWPOUT_FALLBACK);
1868 if (!add_to_swap(folio))
1869 goto activate_locked_split;
1872 } else if (folio_test_swapbacked(folio) &&
1873 folio_test_large(folio)) {
1874 /* Split shmem folio */
1875 if (split_folio_to_list(folio, folio_list))
1880 * If the folio was split above, the tail pages will make
1881 * their own pass through this function and be accounted
1884 if ((nr_pages > 1) && !folio_test_large(folio)) {
1885 sc->nr_scanned -= (nr_pages - 1);
1890 * The folio is mapped into the page tables of one or more
1891 * processes. Try to unmap it here.
1893 if (folio_mapped(folio)) {
1894 enum ttu_flags flags = TTU_BATCH_FLUSH;
1895 bool was_swapbacked = folio_test_swapbacked(folio);
1897 if (folio_test_pmd_mappable(folio))
1898 flags |= TTU_SPLIT_HUGE_PMD;
1900 try_to_unmap(folio, flags);
1901 if (folio_mapped(folio)) {
1902 stat->nr_unmap_fail += nr_pages;
1903 if (!was_swapbacked &&
1904 folio_test_swapbacked(folio))
1905 stat->nr_lazyfree_fail += nr_pages;
1906 goto activate_locked;
1910 mapping = folio_mapping(folio);
1911 if (folio_test_dirty(folio)) {
1913 * Only kswapd can writeback filesystem folios
1914 * to avoid risk of stack overflow. But avoid
1915 * injecting inefficient single-folio I/O into
1916 * flusher writeback as much as possible: only
1917 * write folios when we've encountered many
1918 * dirty folios, and when we've already scanned
1919 * the rest of the LRU for clean folios and see
1920 * the same dirty folios again (with the reclaim
1923 if (folio_is_file_lru(folio) &&
1924 (!current_is_kswapd() ||
1925 !folio_test_reclaim(folio) ||
1926 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1928 * Immediately reclaim when written back.
1929 * Similar in principle to folio_deactivate()
1930 * except we already have the folio isolated
1931 * and know it's dirty
1933 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1935 folio_set_reclaim(folio);
1937 goto activate_locked;
1940 if (references == FOLIOREF_RECLAIM_CLEAN)
1942 if (!may_enter_fs(folio, sc->gfp_mask))
1944 if (!sc->may_writepage)
1948 * Folio is dirty. Flush the TLB if a writable entry
1949 * potentially exists to avoid CPU writes after I/O
1950 * starts and then write it out here.
1952 try_to_unmap_flush_dirty();
1953 switch (pageout(folio, mapping, &plug)) {
1957 goto activate_locked;
1959 stat->nr_pageout += nr_pages;
1961 if (folio_test_writeback(folio))
1963 if (folio_test_dirty(folio))
1967 * A synchronous write - probably a ramdisk. Go
1968 * ahead and try to reclaim the folio.
1970 if (!folio_trylock(folio))
1972 if (folio_test_dirty(folio) ||
1973 folio_test_writeback(folio))
1975 mapping = folio_mapping(folio);
1978 ; /* try to free the folio below */
1983 * If the folio has buffers, try to free the buffer
1984 * mappings associated with this folio. If we succeed
1985 * we try to free the folio as well.
1987 * We do this even if the folio is dirty.
1988 * filemap_release_folio() does not perform I/O, but it
1989 * is possible for a folio to have the dirty flag set,
1990 * but it is actually clean (all its buffers are clean).
1991 * This happens if the buffers were written out directly,
1992 * with submit_bh(). ext3 will do this, as well as
1993 * the blockdev mapping. filemap_release_folio() will
1994 * discover that cleanness and will drop the buffers
1995 * and mark the folio clean - it can be freed.
1997 * Rarely, folios can have buffers and no ->mapping.
1998 * These are the folios which were not successfully
1999 * invalidated in truncate_cleanup_folio(). We try to
2000 * drop those buffers here and if that worked, and the
2001 * folio is no longer mapped into process address space
2002 * (refcount == 1) it can be freed. Otherwise, leave
2003 * the folio on the LRU so it is swappable.
2005 if (folio_has_private(folio)) {
2006 if (!filemap_release_folio(folio, sc->gfp_mask))
2007 goto activate_locked;
2008 if (!mapping && folio_ref_count(folio) == 1) {
2009 folio_unlock(folio);
2010 if (folio_put_testzero(folio))
2014 * rare race with speculative reference.
2015 * the speculative reference will free
2016 * this folio shortly, so we may
2017 * increment nr_reclaimed here (and
2018 * leave it off the LRU).
2020 nr_reclaimed += nr_pages;
2026 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2027 /* follow __remove_mapping for reference */
2028 if (!folio_ref_freeze(folio, 1))
2031 * The folio has only one reference left, which is
2032 * from the isolation. After the caller puts the
2033 * folio back on the lru and drops the reference, the
2034 * folio will be freed anyway. It doesn't matter
2035 * which lru it goes on. So we don't bother checking
2036 * the dirty flag here.
2038 count_vm_events(PGLAZYFREED, nr_pages);
2039 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2040 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2041 sc->target_mem_cgroup))
2044 folio_unlock(folio);
2047 * Folio may get swapped out as a whole, need to account
2050 nr_reclaimed += nr_pages;
2053 * Is there need to periodically free_folio_list? It would
2054 * appear not as the counts should be low
2056 if (unlikely(folio_test_large(folio)))
2057 destroy_large_folio(folio);
2059 list_add(&folio->lru, &free_folios);
2062 activate_locked_split:
2064 * The tail pages that are failed to add into swap cache
2065 * reach here. Fixup nr_scanned and nr_pages.
2068 sc->nr_scanned -= (nr_pages - 1);
2072 /* Not a candidate for swapping, so reclaim swap space. */
2073 if (folio_test_swapcache(folio) &&
2074 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2075 folio_free_swap(folio);
2076 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2077 if (!folio_test_mlocked(folio)) {
2078 int type = folio_is_file_lru(folio);
2079 folio_set_active(folio);
2080 stat->nr_activate[type] += nr_pages;
2081 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2084 folio_unlock(folio);
2086 list_add(&folio->lru, &ret_folios);
2087 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2088 folio_test_unevictable(folio), folio);
2090 /* 'folio_list' is always empty here */
2092 /* Migrate folios selected for demotion */
2093 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2094 /* Folios that could not be demoted are still in @demote_folios */
2095 if (!list_empty(&demote_folios)) {
2096 /* Folios which weren't demoted go back on @folio_list */
2097 list_splice_init(&demote_folios, folio_list);
2100 * goto retry to reclaim the undemoted folios in folio_list if
2103 * Reclaiming directly from top tier nodes is not often desired
2104 * due to it breaking the LRU ordering: in general memory
2105 * should be reclaimed from lower tier nodes and demoted from
2108 * However, disabling reclaim from top tier nodes entirely
2109 * would cause ooms in edge scenarios where lower tier memory
2110 * is unreclaimable for whatever reason, eg memory being
2111 * mlocked or too hot to reclaim. We can disable reclaim
2112 * from top tier nodes in proactive reclaim though as that is
2113 * not real memory pressure.
2115 if (!sc->proactive) {
2116 do_demote_pass = false;
2121 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2123 mem_cgroup_uncharge_list(&free_folios);
2124 try_to_unmap_flush();
2125 free_unref_page_list(&free_folios);
2127 list_splice(&ret_folios, folio_list);
2128 count_vm_events(PGACTIVATE, pgactivate);
2131 swap_write_unplug(plug);
2132 return nr_reclaimed;
2135 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2136 struct list_head *folio_list)
2138 struct scan_control sc = {
2139 .gfp_mask = GFP_KERNEL,
2142 struct reclaim_stat stat;
2143 unsigned int nr_reclaimed;
2144 struct folio *folio, *next;
2145 LIST_HEAD(clean_folios);
2146 unsigned int noreclaim_flag;
2148 list_for_each_entry_safe(folio, next, folio_list, lru) {
2149 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2150 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2151 !folio_test_unevictable(folio)) {
2152 folio_clear_active(folio);
2153 list_move(&folio->lru, &clean_folios);
2158 * We should be safe here since we are only dealing with file pages and
2159 * we are not kswapd and therefore cannot write dirty file pages. But
2160 * call memalloc_noreclaim_save() anyway, just in case these conditions
2161 * change in the future.
2163 noreclaim_flag = memalloc_noreclaim_save();
2164 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2166 memalloc_noreclaim_restore(noreclaim_flag);
2168 list_splice(&clean_folios, folio_list);
2169 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2170 -(long)nr_reclaimed);
2172 * Since lazyfree pages are isolated from file LRU from the beginning,
2173 * they will rotate back to anonymous LRU in the end if it failed to
2174 * discard so isolated count will be mismatched.
2175 * Compensate the isolated count for both LRU lists.
2177 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2178 stat.nr_lazyfree_fail);
2179 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2180 -(long)stat.nr_lazyfree_fail);
2181 return nr_reclaimed;
2185 * Update LRU sizes after isolating pages. The LRU size updates must
2186 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2188 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2189 enum lru_list lru, unsigned long *nr_zone_taken)
2193 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2194 if (!nr_zone_taken[zid])
2197 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2203 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2205 * lruvec->lru_lock is heavily contended. Some of the functions that
2206 * shrink the lists perform better by taking out a batch of pages
2207 * and working on them outside the LRU lock.
2209 * For pagecache intensive workloads, this function is the hottest
2210 * spot in the kernel (apart from copy_*_user functions).
2212 * Lru_lock must be held before calling this function.
2214 * @nr_to_scan: The number of eligible pages to look through on the list.
2215 * @lruvec: The LRU vector to pull pages from.
2216 * @dst: The temp list to put pages on to.
2217 * @nr_scanned: The number of pages that were scanned.
2218 * @sc: The scan_control struct for this reclaim session
2219 * @lru: LRU list id for isolating
2221 * returns how many pages were moved onto *@dst.
2223 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2224 struct lruvec *lruvec, struct list_head *dst,
2225 unsigned long *nr_scanned, struct scan_control *sc,
2228 struct list_head *src = &lruvec->lists[lru];
2229 unsigned long nr_taken = 0;
2230 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2231 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2232 unsigned long skipped = 0;
2233 unsigned long scan, total_scan, nr_pages;
2234 LIST_HEAD(folios_skipped);
2238 while (scan < nr_to_scan && !list_empty(src)) {
2239 struct list_head *move_to = src;
2240 struct folio *folio;
2242 folio = lru_to_folio(src);
2243 prefetchw_prev_lru_folio(folio, src, flags);
2245 nr_pages = folio_nr_pages(folio);
2246 total_scan += nr_pages;
2248 if (folio_zonenum(folio) > sc->reclaim_idx) {
2249 nr_skipped[folio_zonenum(folio)] += nr_pages;
2250 move_to = &folios_skipped;
2255 * Do not count skipped folios because that makes the function
2256 * return with no isolated folios if the LRU mostly contains
2257 * ineligible folios. This causes the VM to not reclaim any
2258 * folios, triggering a premature OOM.
2259 * Account all pages in a folio.
2263 if (!folio_test_lru(folio))
2265 if (!sc->may_unmap && folio_mapped(folio))
2269 * Be careful not to clear the lru flag until after we're
2270 * sure the folio is not being freed elsewhere -- the
2271 * folio release code relies on it.
2273 if (unlikely(!folio_try_get(folio)))
2276 if (!folio_test_clear_lru(folio)) {
2277 /* Another thread is already isolating this folio */
2282 nr_taken += nr_pages;
2283 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2286 list_move(&folio->lru, move_to);
2290 * Splice any skipped folios to the start of the LRU list. Note that
2291 * this disrupts the LRU order when reclaiming for lower zones but
2292 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2293 * scanning would soon rescan the same folios to skip and waste lots
2296 if (!list_empty(&folios_skipped)) {
2299 list_splice(&folios_skipped, src);
2300 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2301 if (!nr_skipped[zid])
2304 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2305 skipped += nr_skipped[zid];
2308 *nr_scanned = total_scan;
2309 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2310 total_scan, skipped, nr_taken,
2311 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2312 update_lru_sizes(lruvec, lru, nr_zone_taken);
2317 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2318 * @folio: Folio to isolate from its LRU list.
2320 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2321 * corresponding to whatever LRU list the folio was on.
2323 * The folio will have its LRU flag cleared. If it was found on the
2324 * active list, it will have the Active flag set. If it was found on the
2325 * unevictable list, it will have the Unevictable flag set. These flags
2326 * may need to be cleared by the caller before letting the page go.
2330 * (1) Must be called with an elevated refcount on the folio. This is a
2331 * fundamental difference from isolate_lru_folios() (which is called
2332 * without a stable reference).
2333 * (2) The lru_lock must not be held.
2334 * (3) Interrupts must be enabled.
2336 * Return: 0 if the folio was removed from an LRU list.
2337 * -EBUSY if the folio was not on an LRU list.
2339 int folio_isolate_lru(struct folio *folio)
2343 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2345 if (folio_test_clear_lru(folio)) {
2346 struct lruvec *lruvec;
2349 lruvec = folio_lruvec_lock_irq(folio);
2350 lruvec_del_folio(lruvec, folio);
2351 unlock_page_lruvec_irq(lruvec);
2359 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2360 * then get rescheduled. When there are massive number of tasks doing page
2361 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2362 * the LRU list will go small and be scanned faster than necessary, leading to
2363 * unnecessary swapping, thrashing and OOM.
2365 static int too_many_isolated(struct pglist_data *pgdat, int file,
2366 struct scan_control *sc)
2368 unsigned long inactive, isolated;
2371 if (current_is_kswapd())
2374 if (!writeback_throttling_sane(sc))
2378 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2379 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2381 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2382 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2386 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2387 * won't get blocked by normal direct-reclaimers, forming a circular
2390 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2393 too_many = isolated > inactive;
2395 /* Wake up tasks throttled due to too_many_isolated. */
2397 wake_throttle_isolated(pgdat);
2403 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2404 * On return, @list is reused as a list of folios to be freed by the caller.
2406 * Returns the number of pages moved to the given lruvec.
2408 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2409 struct list_head *list)
2411 int nr_pages, nr_moved = 0;
2412 LIST_HEAD(folios_to_free);
2414 while (!list_empty(list)) {
2415 struct folio *folio = lru_to_folio(list);
2417 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2418 list_del(&folio->lru);
2419 if (unlikely(!folio_evictable(folio))) {
2420 spin_unlock_irq(&lruvec->lru_lock);
2421 folio_putback_lru(folio);
2422 spin_lock_irq(&lruvec->lru_lock);
2427 * The folio_set_lru needs to be kept here for list integrity.
2429 * #0 move_folios_to_lru #1 release_pages
2430 * if (!folio_put_testzero())
2431 * if (folio_put_testzero())
2432 * !lru //skip lru_lock
2434 * list_add(&folio->lru,)
2435 * list_add(&folio->lru,)
2437 folio_set_lru(folio);
2439 if (unlikely(folio_put_testzero(folio))) {
2440 __folio_clear_lru_flags(folio);
2442 if (unlikely(folio_test_large(folio))) {
2443 spin_unlock_irq(&lruvec->lru_lock);
2444 destroy_large_folio(folio);
2445 spin_lock_irq(&lruvec->lru_lock);
2447 list_add(&folio->lru, &folios_to_free);
2453 * All pages were isolated from the same lruvec (and isolation
2454 * inhibits memcg migration).
2456 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2457 lruvec_add_folio(lruvec, folio);
2458 nr_pages = folio_nr_pages(folio);
2459 nr_moved += nr_pages;
2460 if (folio_test_active(folio))
2461 workingset_age_nonresident(lruvec, nr_pages);
2465 * To save our caller's stack, now use input list for pages to free.
2467 list_splice(&folios_to_free, list);
2473 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2474 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2475 * we should not throttle. Otherwise it is safe to do so.
2477 static int current_may_throttle(void)
2479 return !(current->flags & PF_LOCAL_THROTTLE);
2483 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2484 * of reclaimed pages
2486 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2487 struct lruvec *lruvec, struct scan_control *sc,
2490 LIST_HEAD(folio_list);
2491 unsigned long nr_scanned;
2492 unsigned int nr_reclaimed = 0;
2493 unsigned long nr_taken;
2494 struct reclaim_stat stat;
2495 bool file = is_file_lru(lru);
2496 enum vm_event_item item;
2497 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2498 bool stalled = false;
2500 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2504 /* wait a bit for the reclaimer. */
2506 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2508 /* We are about to die and free our memory. Return now. */
2509 if (fatal_signal_pending(current))
2510 return SWAP_CLUSTER_MAX;
2515 spin_lock_irq(&lruvec->lru_lock);
2517 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2518 &nr_scanned, sc, lru);
2520 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2521 item = PGSCAN_KSWAPD + reclaimer_offset();
2522 if (!cgroup_reclaim(sc))
2523 __count_vm_events(item, nr_scanned);
2524 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2525 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2527 spin_unlock_irq(&lruvec->lru_lock);
2532 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2534 spin_lock_irq(&lruvec->lru_lock);
2535 move_folios_to_lru(lruvec, &folio_list);
2537 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2538 item = PGSTEAL_KSWAPD + reclaimer_offset();
2539 if (!cgroup_reclaim(sc))
2540 __count_vm_events(item, nr_reclaimed);
2541 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2542 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2543 spin_unlock_irq(&lruvec->lru_lock);
2545 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2546 mem_cgroup_uncharge_list(&folio_list);
2547 free_unref_page_list(&folio_list);
2550 * If dirty folios are scanned that are not queued for IO, it
2551 * implies that flushers are not doing their job. This can
2552 * happen when memory pressure pushes dirty folios to the end of
2553 * the LRU before the dirty limits are breached and the dirty
2554 * data has expired. It can also happen when the proportion of
2555 * dirty folios grows not through writes but through memory
2556 * pressure reclaiming all the clean cache. And in some cases,
2557 * the flushers simply cannot keep up with the allocation
2558 * rate. Nudge the flusher threads in case they are asleep.
2560 if (stat.nr_unqueued_dirty == nr_taken) {
2561 wakeup_flusher_threads(WB_REASON_VMSCAN);
2563 * For cgroupv1 dirty throttling is achieved by waking up
2564 * the kernel flusher here and later waiting on folios
2565 * which are in writeback to finish (see shrink_folio_list()).
2567 * Flusher may not be able to issue writeback quickly
2568 * enough for cgroupv1 writeback throttling to work
2569 * on a large system.
2571 if (!writeback_throttling_sane(sc))
2572 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2575 sc->nr.dirty += stat.nr_dirty;
2576 sc->nr.congested += stat.nr_congested;
2577 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2578 sc->nr.writeback += stat.nr_writeback;
2579 sc->nr.immediate += stat.nr_immediate;
2580 sc->nr.taken += nr_taken;
2582 sc->nr.file_taken += nr_taken;
2584 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2585 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2586 return nr_reclaimed;
2590 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2592 * We move them the other way if the folio is referenced by one or more
2595 * If the folios are mostly unmapped, the processing is fast and it is
2596 * appropriate to hold lru_lock across the whole operation. But if
2597 * the folios are mapped, the processing is slow (folio_referenced()), so
2598 * we should drop lru_lock around each folio. It's impossible to balance
2599 * this, so instead we remove the folios from the LRU while processing them.
2600 * It is safe to rely on the active flag against the non-LRU folios in here
2601 * because nobody will play with that bit on a non-LRU folio.
2603 * The downside is that we have to touch folio->_refcount against each folio.
2604 * But we had to alter folio->flags anyway.
2606 static void shrink_active_list(unsigned long nr_to_scan,
2607 struct lruvec *lruvec,
2608 struct scan_control *sc,
2611 unsigned long nr_taken;
2612 unsigned long nr_scanned;
2613 unsigned long vm_flags;
2614 LIST_HEAD(l_hold); /* The folios which were snipped off */
2615 LIST_HEAD(l_active);
2616 LIST_HEAD(l_inactive);
2617 unsigned nr_deactivate, nr_activate;
2618 unsigned nr_rotated = 0;
2619 int file = is_file_lru(lru);
2620 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2624 spin_lock_irq(&lruvec->lru_lock);
2626 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2627 &nr_scanned, sc, lru);
2629 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2631 if (!cgroup_reclaim(sc))
2632 __count_vm_events(PGREFILL, nr_scanned);
2633 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2635 spin_unlock_irq(&lruvec->lru_lock);
2637 while (!list_empty(&l_hold)) {
2638 struct folio *folio;
2641 folio = lru_to_folio(&l_hold);
2642 list_del(&folio->lru);
2644 if (unlikely(!folio_evictable(folio))) {
2645 folio_putback_lru(folio);
2649 if (unlikely(buffer_heads_over_limit)) {
2650 if (folio_test_private(folio) && folio_trylock(folio)) {
2651 if (folio_test_private(folio))
2652 filemap_release_folio(folio, 0);
2653 folio_unlock(folio);
2657 /* Referenced or rmap lock contention: rotate */
2658 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2661 * Identify referenced, file-backed active folios and
2662 * give them one more trip around the active list. So
2663 * that executable code get better chances to stay in
2664 * memory under moderate memory pressure. Anon folios
2665 * are not likely to be evicted by use-once streaming
2666 * IO, plus JVM can create lots of anon VM_EXEC folios,
2667 * so we ignore them here.
2669 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2670 nr_rotated += folio_nr_pages(folio);
2671 list_add(&folio->lru, &l_active);
2676 folio_clear_active(folio); /* we are de-activating */
2677 folio_set_workingset(folio);
2678 list_add(&folio->lru, &l_inactive);
2682 * Move folios back to the lru list.
2684 spin_lock_irq(&lruvec->lru_lock);
2686 nr_activate = move_folios_to_lru(lruvec, &l_active);
2687 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2688 /* Keep all free folios in l_active list */
2689 list_splice(&l_inactive, &l_active);
2691 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2692 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2694 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2695 spin_unlock_irq(&lruvec->lru_lock);
2698 lru_note_cost(lruvec, file, 0, nr_rotated);
2699 mem_cgroup_uncharge_list(&l_active);
2700 free_unref_page_list(&l_active);
2701 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2702 nr_deactivate, nr_rotated, sc->priority, file);
2705 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2706 struct pglist_data *pgdat)
2708 struct reclaim_stat dummy_stat;
2709 unsigned int nr_reclaimed;
2710 struct folio *folio;
2711 struct scan_control sc = {
2712 .gfp_mask = GFP_KERNEL,
2719 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2720 while (!list_empty(folio_list)) {
2721 folio = lru_to_folio(folio_list);
2722 list_del(&folio->lru);
2723 folio_putback_lru(folio);
2726 return nr_reclaimed;
2729 unsigned long reclaim_pages(struct list_head *folio_list)
2732 unsigned int nr_reclaimed = 0;
2733 LIST_HEAD(node_folio_list);
2734 unsigned int noreclaim_flag;
2736 if (list_empty(folio_list))
2737 return nr_reclaimed;
2739 noreclaim_flag = memalloc_noreclaim_save();
2741 nid = folio_nid(lru_to_folio(folio_list));
2743 struct folio *folio = lru_to_folio(folio_list);
2745 if (nid == folio_nid(folio)) {
2746 folio_clear_active(folio);
2747 list_move(&folio->lru, &node_folio_list);
2751 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2752 nid = folio_nid(lru_to_folio(folio_list));
2753 } while (!list_empty(folio_list));
2755 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2757 memalloc_noreclaim_restore(noreclaim_flag);
2759 return nr_reclaimed;
2762 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2763 struct lruvec *lruvec, struct scan_control *sc)
2765 if (is_active_lru(lru)) {
2766 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2767 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2769 sc->skipped_deactivate = 1;
2773 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2777 * The inactive anon list should be small enough that the VM never has
2778 * to do too much work.
2780 * The inactive file list should be small enough to leave most memory
2781 * to the established workingset on the scan-resistant active list,
2782 * but large enough to avoid thrashing the aggregate readahead window.
2784 * Both inactive lists should also be large enough that each inactive
2785 * folio has a chance to be referenced again before it is reclaimed.
2787 * If that fails and refaulting is observed, the inactive list grows.
2789 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2790 * on this LRU, maintained by the pageout code. An inactive_ratio
2791 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2794 * memory ratio inactive
2795 * -------------------------------------
2804 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2806 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2807 unsigned long inactive, active;
2808 unsigned long inactive_ratio;
2811 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2812 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2814 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2816 inactive_ratio = int_sqrt(10 * gb);
2820 return inactive * inactive_ratio < active;
2830 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2833 struct lruvec *target_lruvec;
2835 if (lru_gen_enabled())
2838 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2841 * Flush the memory cgroup stats, so that we read accurate per-memcg
2842 * lruvec stats for heuristics.
2844 mem_cgroup_flush_stats();
2847 * Determine the scan balance between anon and file LRUs.
2849 spin_lock_irq(&target_lruvec->lru_lock);
2850 sc->anon_cost = target_lruvec->anon_cost;
2851 sc->file_cost = target_lruvec->file_cost;
2852 spin_unlock_irq(&target_lruvec->lru_lock);
2855 * Target desirable inactive:active list ratios for the anon
2856 * and file LRU lists.
2858 if (!sc->force_deactivate) {
2859 unsigned long refaults;
2862 * When refaults are being observed, it means a new
2863 * workingset is being established. Deactivate to get
2864 * rid of any stale active pages quickly.
2866 refaults = lruvec_page_state(target_lruvec,
2867 WORKINGSET_ACTIVATE_ANON);
2868 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2869 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2870 sc->may_deactivate |= DEACTIVATE_ANON;
2872 sc->may_deactivate &= ~DEACTIVATE_ANON;
2874 refaults = lruvec_page_state(target_lruvec,
2875 WORKINGSET_ACTIVATE_FILE);
2876 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2877 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2878 sc->may_deactivate |= DEACTIVATE_FILE;
2880 sc->may_deactivate &= ~DEACTIVATE_FILE;
2882 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2885 * If we have plenty of inactive file pages that aren't
2886 * thrashing, try to reclaim those first before touching
2889 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2890 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2891 sc->cache_trim_mode = 1;
2893 sc->cache_trim_mode = 0;
2896 * Prevent the reclaimer from falling into the cache trap: as
2897 * cache pages start out inactive, every cache fault will tip
2898 * the scan balance towards the file LRU. And as the file LRU
2899 * shrinks, so does the window for rotation from references.
2900 * This means we have a runaway feedback loop where a tiny
2901 * thrashing file LRU becomes infinitely more attractive than
2902 * anon pages. Try to detect this based on file LRU size.
2904 if (!cgroup_reclaim(sc)) {
2905 unsigned long total_high_wmark = 0;
2906 unsigned long free, anon;
2909 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2910 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2911 node_page_state(pgdat, NR_INACTIVE_FILE);
2913 for (z = 0; z < MAX_NR_ZONES; z++) {
2914 struct zone *zone = &pgdat->node_zones[z];
2916 if (!managed_zone(zone))
2919 total_high_wmark += high_wmark_pages(zone);
2923 * Consider anon: if that's low too, this isn't a
2924 * runaway file reclaim problem, but rather just
2925 * extreme pressure. Reclaim as per usual then.
2927 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2930 file + free <= total_high_wmark &&
2931 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2932 anon >> sc->priority;
2937 * Determine how aggressively the anon and file LRU lists should be
2940 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2941 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2943 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2946 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2947 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2948 unsigned long anon_cost, file_cost, total_cost;
2949 int swappiness = mem_cgroup_swappiness(memcg);
2950 u64 fraction[ANON_AND_FILE];
2951 u64 denominator = 0; /* gcc */
2952 enum scan_balance scan_balance;
2953 unsigned long ap, fp;
2956 /* If we have no swap space, do not bother scanning anon folios. */
2957 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2958 scan_balance = SCAN_FILE;
2963 * Global reclaim will swap to prevent OOM even with no
2964 * swappiness, but memcg users want to use this knob to
2965 * disable swapping for individual groups completely when
2966 * using the memory controller's swap limit feature would be
2969 if (cgroup_reclaim(sc) && !swappiness) {
2970 scan_balance = SCAN_FILE;
2975 * Do not apply any pressure balancing cleverness when the
2976 * system is close to OOM, scan both anon and file equally
2977 * (unless the swappiness setting disagrees with swapping).
2979 if (!sc->priority && swappiness) {
2980 scan_balance = SCAN_EQUAL;
2985 * If the system is almost out of file pages, force-scan anon.
2987 if (sc->file_is_tiny) {
2988 scan_balance = SCAN_ANON;
2993 * If there is enough inactive page cache, we do not reclaim
2994 * anything from the anonymous working right now.
2996 if (sc->cache_trim_mode) {
2997 scan_balance = SCAN_FILE;
3001 scan_balance = SCAN_FRACT;
3003 * Calculate the pressure balance between anon and file pages.
3005 * The amount of pressure we put on each LRU is inversely
3006 * proportional to the cost of reclaiming each list, as
3007 * determined by the share of pages that are refaulting, times
3008 * the relative IO cost of bringing back a swapped out
3009 * anonymous page vs reloading a filesystem page (swappiness).
3011 * Although we limit that influence to ensure no list gets
3012 * left behind completely: at least a third of the pressure is
3013 * applied, before swappiness.
3015 * With swappiness at 100, anon and file have equal IO cost.
3017 total_cost = sc->anon_cost + sc->file_cost;
3018 anon_cost = total_cost + sc->anon_cost;
3019 file_cost = total_cost + sc->file_cost;
3020 total_cost = anon_cost + file_cost;
3022 ap = swappiness * (total_cost + 1);
3023 ap /= anon_cost + 1;
3025 fp = (200 - swappiness) * (total_cost + 1);
3026 fp /= file_cost + 1;
3030 denominator = ap + fp;
3032 for_each_evictable_lru(lru) {
3033 int file = is_file_lru(lru);
3034 unsigned long lruvec_size;
3035 unsigned long low, min;
3038 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3039 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3044 * Scale a cgroup's reclaim pressure by proportioning
3045 * its current usage to its memory.low or memory.min
3048 * This is important, as otherwise scanning aggression
3049 * becomes extremely binary -- from nothing as we
3050 * approach the memory protection threshold, to totally
3051 * nominal as we exceed it. This results in requiring
3052 * setting extremely liberal protection thresholds. It
3053 * also means we simply get no protection at all if we
3054 * set it too low, which is not ideal.
3056 * If there is any protection in place, we reduce scan
3057 * pressure by how much of the total memory used is
3058 * within protection thresholds.
3060 * There is one special case: in the first reclaim pass,
3061 * we skip over all groups that are within their low
3062 * protection. If that fails to reclaim enough pages to
3063 * satisfy the reclaim goal, we come back and override
3064 * the best-effort low protection. However, we still
3065 * ideally want to honor how well-behaved groups are in
3066 * that case instead of simply punishing them all
3067 * equally. As such, we reclaim them based on how much
3068 * memory they are using, reducing the scan pressure
3069 * again by how much of the total memory used is under
3072 unsigned long cgroup_size = mem_cgroup_size(memcg);
3073 unsigned long protection;
3075 /* memory.low scaling, make sure we retry before OOM */
3076 if (!sc->memcg_low_reclaim && low > min) {
3078 sc->memcg_low_skipped = 1;
3083 /* Avoid TOCTOU with earlier protection check */
3084 cgroup_size = max(cgroup_size, protection);
3086 scan = lruvec_size - lruvec_size * protection /
3090 * Minimally target SWAP_CLUSTER_MAX pages to keep
3091 * reclaim moving forwards, avoiding decrementing
3092 * sc->priority further than desirable.
3094 scan = max(scan, SWAP_CLUSTER_MAX);
3099 scan >>= sc->priority;
3102 * If the cgroup's already been deleted, make sure to
3103 * scrape out the remaining cache.
3105 if (!scan && !mem_cgroup_online(memcg))
3106 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3108 switch (scan_balance) {
3110 /* Scan lists relative to size */
3114 * Scan types proportional to swappiness and
3115 * their relative recent reclaim efficiency.
3116 * Make sure we don't miss the last page on
3117 * the offlined memory cgroups because of a
3120 scan = mem_cgroup_online(memcg) ?
3121 div64_u64(scan * fraction[file], denominator) :
3122 DIV64_U64_ROUND_UP(scan * fraction[file],
3127 /* Scan one type exclusively */
3128 if ((scan_balance == SCAN_FILE) != file)
3132 /* Look ma, no brain */
3141 * Anonymous LRU management is a waste if there is
3142 * ultimately no way to reclaim the memory.
3144 static bool can_age_anon_pages(struct pglist_data *pgdat,
3145 struct scan_control *sc)
3147 /* Aging the anon LRU is valuable if swap is present: */
3148 if (total_swap_pages > 0)
3151 /* Also valuable if anon pages can be demoted: */
3152 return can_demote(pgdat->node_id, sc);
3155 #ifdef CONFIG_LRU_GEN
3157 #ifdef CONFIG_LRU_GEN_ENABLED
3158 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3159 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3161 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3162 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3165 /******************************************************************************
3167 ******************************************************************************/
3169 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3171 #define DEFINE_MAX_SEQ(lruvec) \
3172 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3174 #define DEFINE_MIN_SEQ(lruvec) \
3175 unsigned long min_seq[ANON_AND_FILE] = { \
3176 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3177 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3180 #define for_each_gen_type_zone(gen, type, zone) \
3181 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3182 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3183 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3185 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
3186 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
3188 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3190 struct pglist_data *pgdat = NODE_DATA(nid);
3194 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3196 /* see the comment in mem_cgroup_lruvec() */
3198 lruvec->pgdat = pgdat;
3203 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3205 return &pgdat->__lruvec;
3208 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3210 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3211 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3216 if (!can_demote(pgdat->node_id, sc) &&
3217 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3220 return mem_cgroup_swappiness(memcg);
3223 static int get_nr_gens(struct lruvec *lruvec, int type)
3225 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3228 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3230 /* see the comment on lru_gen_folio */
3231 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3232 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3233 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3236 /******************************************************************************
3238 ******************************************************************************/
3241 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3242 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3243 * bits in a bitmap, k is the number of hash functions and n is the number of
3246 * Page table walkers use one of the two filters to reduce their search space.
3247 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3248 * aging uses the double-buffering technique to flip to the other filter each
3249 * time it produces a new generation. For non-leaf entries that have enough
3250 * leaf entries, the aging carries them over to the next generation in
3251 * walk_pmd_range(); the eviction also report them when walking the rmap
3252 * in lru_gen_look_around().
3254 * For future optimizations:
3255 * 1. It's not necessary to keep both filters all the time. The spare one can be
3256 * freed after the RCU grace period and reallocated if needed again.
3257 * 2. And when reallocating, it's worth scaling its size according to the number
3258 * of inserted entries in the other filter, to reduce the memory overhead on
3259 * small systems and false positives on large systems.
3260 * 3. Jenkins' hash function is an alternative to Knuth's.
3262 #define BLOOM_FILTER_SHIFT 15
3264 static inline int filter_gen_from_seq(unsigned long seq)
3266 return seq % NR_BLOOM_FILTERS;
3269 static void get_item_key(void *item, int *key)
3271 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3273 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3275 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3276 key[1] = hash >> BLOOM_FILTER_SHIFT;
3279 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3282 unsigned long *filter;
3283 int gen = filter_gen_from_seq(seq);
3285 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3289 get_item_key(item, key);
3291 return test_bit(key[0], filter) && test_bit(key[1], filter);
3294 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3297 unsigned long *filter;
3298 int gen = filter_gen_from_seq(seq);
3300 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3304 get_item_key(item, key);
3306 if (!test_bit(key[0], filter))
3307 set_bit(key[0], filter);
3308 if (!test_bit(key[1], filter))
3309 set_bit(key[1], filter);
3312 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3314 unsigned long *filter;
3315 int gen = filter_gen_from_seq(seq);
3317 filter = lruvec->mm_state.filters[gen];
3319 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3323 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3324 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3325 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3328 /******************************************************************************
3330 ******************************************************************************/
3332 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3334 static struct lru_gen_mm_list mm_list = {
3335 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3336 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3341 return &memcg->mm_list;
3343 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3348 void lru_gen_add_mm(struct mm_struct *mm)
3351 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3352 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3354 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3356 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3357 mm->lru_gen.memcg = memcg;
3359 spin_lock(&mm_list->lock);
3361 for_each_node_state(nid, N_MEMORY) {
3362 struct lruvec *lruvec = get_lruvec(memcg, nid);
3364 /* the first addition since the last iteration */
3365 if (lruvec->mm_state.tail == &mm_list->fifo)
3366 lruvec->mm_state.tail = &mm->lru_gen.list;
3369 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3371 spin_unlock(&mm_list->lock);
3374 void lru_gen_del_mm(struct mm_struct *mm)
3377 struct lru_gen_mm_list *mm_list;
3378 struct mem_cgroup *memcg = NULL;
3380 if (list_empty(&mm->lru_gen.list))
3384 memcg = mm->lru_gen.memcg;
3386 mm_list = get_mm_list(memcg);
3388 spin_lock(&mm_list->lock);
3390 for_each_node(nid) {
3391 struct lruvec *lruvec = get_lruvec(memcg, nid);
3393 /* where the last iteration ended (exclusive) */
3394 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3395 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3397 /* where the current iteration continues (inclusive) */
3398 if (lruvec->mm_state.head != &mm->lru_gen.list)
3401 lruvec->mm_state.head = lruvec->mm_state.head->next;
3402 /* the deletion ends the current iteration */
3403 if (lruvec->mm_state.head == &mm_list->fifo)
3404 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3407 list_del_init(&mm->lru_gen.list);
3409 spin_unlock(&mm_list->lock);
3412 mem_cgroup_put(mm->lru_gen.memcg);
3413 mm->lru_gen.memcg = NULL;
3418 void lru_gen_migrate_mm(struct mm_struct *mm)
3420 struct mem_cgroup *memcg;
3421 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3423 VM_WARN_ON_ONCE(task->mm != mm);
3424 lockdep_assert_held(&task->alloc_lock);
3426 /* for mm_update_next_owner() */
3427 if (mem_cgroup_disabled())
3430 /* migration can happen before addition */
3431 if (!mm->lru_gen.memcg)
3435 memcg = mem_cgroup_from_task(task);
3437 if (memcg == mm->lru_gen.memcg)
3440 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3447 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3452 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3455 hist = lru_hist_from_seq(walk->max_seq);
3457 for (i = 0; i < NR_MM_STATS; i++) {
3458 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3459 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3460 walk->mm_stats[i] = 0;
3464 if (NR_HIST_GENS > 1 && last) {
3465 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3467 for (i = 0; i < NR_MM_STATS; i++)
3468 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3472 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3475 unsigned long size = 0;
3476 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3477 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3479 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3482 clear_bit(key, &mm->lru_gen.bitmap);
3484 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3485 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3486 get_mm_counter(mm, MM_ANONPAGES) +
3487 get_mm_counter(mm, MM_SHMEMPAGES);
3490 if (size < MIN_LRU_BATCH)
3493 return !mmget_not_zero(mm);
3496 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3497 struct mm_struct **iter)
3501 struct mm_struct *mm = NULL;
3502 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3503 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3504 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3507 * There are four interesting cases for this page table walker:
3508 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3509 * there is nothing left to do.
3510 * 2. It's the first of the current generation, and it needs to reset
3511 * the Bloom filter for the next generation.
3512 * 3. It reaches the end of mm_list, and it needs to increment
3513 * mm_state->seq; the iteration is done.
3514 * 4. It's the last of the current generation, and it needs to reset the
3515 * mm stats counters for the next generation.
3517 spin_lock(&mm_list->lock);
3519 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3520 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3521 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3523 if (walk->max_seq <= mm_state->seq) {
3529 if (!mm_state->nr_walkers) {
3530 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3532 mm_state->head = mm_list->fifo.next;
3536 while (!mm && mm_state->head != &mm_list->fifo) {
3537 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3539 mm_state->head = mm_state->head->next;
3541 /* force scan for those added after the last iteration */
3542 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3543 mm_state->tail = mm_state->head;
3544 walk->force_scan = true;
3547 if (should_skip_mm(mm, walk))
3551 if (mm_state->head == &mm_list->fifo)
3552 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3555 mm_state->nr_walkers--;
3557 mm_state->nr_walkers++;
3559 if (mm_state->nr_walkers)
3563 reset_mm_stats(lruvec, walk, last);
3565 spin_unlock(&mm_list->lock);
3568 reset_bloom_filter(lruvec, walk->max_seq + 1);
3578 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3580 bool success = false;
3581 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3582 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3583 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3585 spin_lock(&mm_list->lock);
3587 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3589 if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3590 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3592 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3593 reset_mm_stats(lruvec, NULL, true);
3597 spin_unlock(&mm_list->lock);
3602 /******************************************************************************
3603 * refault feedback loop
3604 ******************************************************************************/
3607 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3609 * The P term is refaulted/(evicted+protected) from a tier in the generation
3610 * currently being evicted; the I term is the exponential moving average of the
3611 * P term over the generations previously evicted, using the smoothing factor
3612 * 1/2; the D term isn't supported.
3614 * The setpoint (SP) is always the first tier of one type; the process variable
3615 * (PV) is either any tier of the other type or any other tier of the same
3618 * The error is the difference between the SP and the PV; the correction is to
3619 * turn off protection when SP>PV or turn on protection when SP<PV.
3621 * For future optimizations:
3622 * 1. The D term may discount the other two terms over time so that long-lived
3623 * generations can resist stale information.
3626 unsigned long refaulted;
3627 unsigned long total;
3631 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3632 struct ctrl_pos *pos)
3634 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3635 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3637 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3638 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3639 pos->total = lrugen->avg_total[type][tier] +
3640 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3642 pos->total += lrugen->protected[hist][type][tier - 1];
3646 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3649 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3650 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3651 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3653 lockdep_assert_held(&lruvec->lru_lock);
3655 if (!carryover && !clear)
3658 hist = lru_hist_from_seq(seq);
3660 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3664 sum = lrugen->avg_refaulted[type][tier] +
3665 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3666 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3668 sum = lrugen->avg_total[type][tier] +
3669 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3671 sum += lrugen->protected[hist][type][tier - 1];
3672 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3676 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3677 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3679 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3684 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3687 * Return true if the PV has a limited number of refaults or a lower
3688 * refaulted/total than the SP.
3690 return pv->refaulted < MIN_LRU_BATCH ||
3691 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3692 (sp->refaulted + 1) * pv->total * pv->gain;
3695 /******************************************************************************
3697 ******************************************************************************/
3699 /* promote pages accessed through page tables */
3700 static int folio_update_gen(struct folio *folio, int gen)
3702 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3704 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3705 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3708 /* lru_gen_del_folio() has isolated this page? */
3709 if (!(old_flags & LRU_GEN_MASK)) {
3710 /* for shrink_folio_list() */
3711 new_flags = old_flags | BIT(PG_referenced);
3715 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3716 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3717 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3719 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3722 /* protect pages accessed multiple times through file descriptors */
3723 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3725 int type = folio_is_file_lru(folio);
3726 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3727 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3728 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3730 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3733 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3734 /* folio_update_gen() has promoted this page? */
3735 if (new_gen >= 0 && new_gen != old_gen)
3738 new_gen = (old_gen + 1) % MAX_NR_GENS;
3740 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3741 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3742 /* for folio_end_writeback() */
3744 new_flags |= BIT(PG_reclaim);
3745 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3747 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3752 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3753 int old_gen, int new_gen)
3755 int type = folio_is_file_lru(folio);
3756 int zone = folio_zonenum(folio);
3757 int delta = folio_nr_pages(folio);
3759 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3760 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3764 walk->nr_pages[old_gen][type][zone] -= delta;
3765 walk->nr_pages[new_gen][type][zone] += delta;
3768 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3770 int gen, type, zone;
3771 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3775 for_each_gen_type_zone(gen, type, zone) {
3776 enum lru_list lru = type * LRU_INACTIVE_FILE;
3777 int delta = walk->nr_pages[gen][type][zone];
3782 walk->nr_pages[gen][type][zone] = 0;
3783 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3784 lrugen->nr_pages[gen][type][zone] + delta);
3786 if (lru_gen_is_active(lruvec, gen))
3788 __update_lru_size(lruvec, lru, zone, delta);
3792 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3794 struct address_space *mapping;
3795 struct vm_area_struct *vma = args->vma;
3796 struct lru_gen_mm_walk *walk = args->private;
3798 if (!vma_is_accessible(vma))
3801 if (is_vm_hugetlb_page(vma))
3804 if (!vma_has_recency(vma))
3807 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3810 if (vma == get_gate_vma(vma->vm_mm))
3813 if (vma_is_anonymous(vma))
3814 return !walk->can_swap;
3816 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3819 mapping = vma->vm_file->f_mapping;
3820 if (mapping_unevictable(mapping))
3823 if (shmem_mapping(mapping))
3824 return !walk->can_swap;
3826 /* to exclude special mappings like dax, etc. */
3827 return !mapping->a_ops->read_folio;
3831 * Some userspace memory allocators map many single-page VMAs. Instead of
3832 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3833 * table to reduce zigzags and improve cache performance.
3835 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3836 unsigned long *vm_start, unsigned long *vm_end)
3838 unsigned long start = round_up(*vm_end, size);
3839 unsigned long end = (start | ~mask) + 1;
3840 VMA_ITERATOR(vmi, args->mm, start);
3842 VM_WARN_ON_ONCE(mask & size);
3843 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3845 for_each_vma(vmi, args->vma) {
3846 if (end && end <= args->vma->vm_start)
3849 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3852 *vm_start = max(start, args->vma->vm_start);
3853 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3861 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3863 unsigned long pfn = pte_pfn(pte);
3865 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3867 if (!pte_present(pte) || is_zero_pfn(pfn))
3870 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3873 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3879 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3880 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3882 unsigned long pfn = pmd_pfn(pmd);
3884 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3886 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3889 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3892 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3899 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3900 struct pglist_data *pgdat, bool can_swap)
3902 struct folio *folio;
3904 /* try to avoid unnecessary memory loads */
3905 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3908 folio = pfn_folio(pfn);
3909 if (folio_nid(folio) != pgdat->node_id)
3912 if (folio_memcg_rcu(folio) != memcg)
3915 /* file VMAs can contain anon pages from COW */
3916 if (!folio_is_file_lru(folio) && !can_swap)
3922 static bool suitable_to_scan(int total, int young)
3924 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3926 /* suitable if the average number of young PTEs per cacheline is >=1 */
3927 return young * n >= total;
3930 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3931 struct mm_walk *args)
3939 struct lru_gen_mm_walk *walk = args->private;
3940 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3941 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3942 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3944 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3946 ptl = pte_lockptr(args->mm, pmd);
3947 if (!spin_trylock(ptl))
3950 arch_enter_lazy_mmu_mode();
3952 pte = pte_offset_map(pmd, start & PMD_MASK);
3954 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3956 struct folio *folio;
3959 walk->mm_stats[MM_LEAF_TOTAL]++;
3961 pfn = get_pte_pfn(pte[i], args->vma, addr);
3965 if (!pte_young(pte[i])) {
3966 walk->mm_stats[MM_LEAF_OLD]++;
3970 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3974 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3975 VM_WARN_ON_ONCE(true);
3978 walk->mm_stats[MM_LEAF_YOUNG]++;
3980 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3981 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3982 !folio_test_swapcache(folio)))
3983 folio_mark_dirty(folio);
3985 old_gen = folio_update_gen(folio, new_gen);
3986 if (old_gen >= 0 && old_gen != new_gen)
3987 update_batch_size(walk, folio, old_gen, new_gen);
3990 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3995 arch_leave_lazy_mmu_mode();
3998 return suitable_to_scan(total, young);
4001 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
4002 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4003 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4008 struct lru_gen_mm_walk *walk = args->private;
4009 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4010 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4011 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4013 VM_WARN_ON_ONCE(pud_leaf(*pud));
4015 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4018 bitmap_zero(bitmap, MIN_LRU_BATCH);
4022 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4023 if (i && i <= MIN_LRU_BATCH) {
4024 __set_bit(i - 1, bitmap);
4028 pmd = pmd_offset(pud, *first);
4030 ptl = pmd_lockptr(args->mm, pmd);
4031 if (!spin_trylock(ptl))
4034 arch_enter_lazy_mmu_mode();
4038 struct folio *folio;
4040 /* don't round down the first address */
4041 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4043 pfn = get_pmd_pfn(pmd[i], vma, addr);
4047 if (!pmd_trans_huge(pmd[i])) {
4048 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
4049 pmdp_test_and_clear_young(vma, addr, pmd + i);
4053 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4057 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4060 walk->mm_stats[MM_LEAF_YOUNG]++;
4062 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4063 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4064 !folio_test_swapcache(folio)))
4065 folio_mark_dirty(folio);
4067 old_gen = folio_update_gen(folio, new_gen);
4068 if (old_gen >= 0 && old_gen != new_gen)
4069 update_batch_size(walk, folio, old_gen, new_gen);
4071 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4072 } while (i <= MIN_LRU_BATCH);
4074 arch_leave_lazy_mmu_mode();
4080 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4081 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4086 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4087 struct mm_walk *args)
4093 struct vm_area_struct *vma;
4094 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)];
4095 unsigned long first = -1;
4096 struct lru_gen_mm_walk *walk = args->private;
4098 VM_WARN_ON_ONCE(pud_leaf(*pud));
4101 * Finish an entire PMD in two passes: the first only reaches to PTE
4102 * tables to avoid taking the PMD lock; the second, if necessary, takes
4103 * the PMD lock to clear the accessed bit in PMD entries.
4105 pmd = pmd_offset(pud, start & PUD_MASK);
4107 /* walk_pte_range() may call get_next_vma() */
4109 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4110 pmd_t val = pmdp_get_lockless(pmd + i);
4112 next = pmd_addr_end(addr, end);
4114 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4115 walk->mm_stats[MM_LEAF_TOTAL]++;
4119 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4120 if (pmd_trans_huge(val)) {
4121 unsigned long pfn = pmd_pfn(val);
4122 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4124 walk->mm_stats[MM_LEAF_TOTAL]++;
4126 if (!pmd_young(val)) {
4127 walk->mm_stats[MM_LEAF_OLD]++;
4131 /* try to avoid unnecessary memory loads */
4132 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4135 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4139 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4141 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4142 if (!pmd_young(val))
4145 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4148 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4151 walk->mm_stats[MM_NONLEAF_FOUND]++;
4153 if (!walk_pte_range(&val, addr, next, args))
4156 walk->mm_stats[MM_NONLEAF_ADDED]++;
4158 /* carry over to the next generation */
4159 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4162 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4164 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4168 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4169 struct mm_walk *args)
4175 struct lru_gen_mm_walk *walk = args->private;
4177 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4179 pud = pud_offset(p4d, start & P4D_MASK);
4181 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4182 pud_t val = READ_ONCE(pud[i]);
4184 next = pud_addr_end(addr, end);
4186 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4189 walk_pmd_range(&val, addr, next, args);
4191 /* a racy check to curtail the waiting time */
4192 if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4195 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4196 end = (addr | ~PUD_MASK) + 1;
4201 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4204 end = round_up(end, P4D_SIZE);
4206 if (!end || !args->vma)
4209 walk->next_addr = max(end, args->vma->vm_start);
4214 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4216 static const struct mm_walk_ops mm_walk_ops = {
4217 .test_walk = should_skip_vma,
4218 .p4d_entry = walk_pud_range,
4222 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4224 walk->next_addr = FIRST_USER_ADDRESS;
4229 /* folio_update_gen() requires stable folio_memcg() */
4230 if (!mem_cgroup_trylock_pages(memcg))
4233 /* the caller might be holding the lock for write */
4234 if (mmap_read_trylock(mm)) {
4235 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4237 mmap_read_unlock(mm);
4240 mem_cgroup_unlock_pages();
4242 if (walk->batched) {
4243 spin_lock_irq(&lruvec->lru_lock);
4244 reset_batch_size(lruvec, walk);
4245 spin_unlock_irq(&lruvec->lru_lock);
4249 } while (err == -EAGAIN);
4252 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4254 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4256 if (pgdat && current_is_kswapd()) {
4257 VM_WARN_ON_ONCE(walk);
4259 walk = &pgdat->mm_walk;
4260 } else if (!walk && force_alloc) {
4261 VM_WARN_ON_ONCE(current_is_kswapd());
4263 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4266 current->reclaim_state->mm_walk = walk;
4271 static void clear_mm_walk(void)
4273 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4275 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4276 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4278 current->reclaim_state->mm_walk = NULL;
4280 if (!current_is_kswapd())
4284 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4287 int remaining = MAX_LRU_BATCH;
4288 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4289 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4291 if (type == LRU_GEN_ANON && !can_swap)
4294 /* prevent cold/hot inversion if force_scan is true */
4295 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4296 struct list_head *head = &lrugen->folios[old_gen][type][zone];
4298 while (!list_empty(head)) {
4299 struct folio *folio = lru_to_folio(head);
4301 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4302 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4303 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4304 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4306 new_gen = folio_inc_gen(lruvec, folio, false);
4307 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4314 reset_ctrl_pos(lruvec, type, true);
4315 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4320 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4322 int gen, type, zone;
4323 bool success = false;
4324 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4325 DEFINE_MIN_SEQ(lruvec);
4327 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4329 /* find the oldest populated generation */
4330 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4331 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4332 gen = lru_gen_from_seq(min_seq[type]);
4334 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4335 if (!list_empty(&lrugen->folios[gen][type][zone]))
4345 /* see the comment on lru_gen_folio */
4347 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4348 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4351 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4352 if (min_seq[type] == lrugen->min_seq[type])
4355 reset_ctrl_pos(lruvec, type, true);
4356 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4363 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4367 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4369 spin_lock_irq(&lruvec->lru_lock);
4371 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4373 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4374 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4377 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4379 while (!inc_min_seq(lruvec, type, can_swap)) {
4380 spin_unlock_irq(&lruvec->lru_lock);
4382 spin_lock_irq(&lruvec->lru_lock);
4387 * Update the active/inactive LRU sizes for compatibility. Both sides of
4388 * the current max_seq need to be covered, since max_seq+1 can overlap
4389 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4390 * overlap, cold/hot inversion happens.
4392 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4393 next = lru_gen_from_seq(lrugen->max_seq + 1);
4395 for (type = 0; type < ANON_AND_FILE; type++) {
4396 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4397 enum lru_list lru = type * LRU_INACTIVE_FILE;
4398 long delta = lrugen->nr_pages[prev][type][zone] -
4399 lrugen->nr_pages[next][type][zone];
4404 __update_lru_size(lruvec, lru, zone, delta);
4405 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4409 for (type = 0; type < ANON_AND_FILE; type++)
4410 reset_ctrl_pos(lruvec, type, false);
4412 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4413 /* make sure preceding modifications appear */
4414 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4416 spin_unlock_irq(&lruvec->lru_lock);
4419 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4420 struct scan_control *sc, bool can_swap, bool force_scan)
4423 struct lru_gen_mm_walk *walk;
4424 struct mm_struct *mm = NULL;
4425 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4427 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4429 /* see the comment in iterate_mm_list() */
4430 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4436 * If the hardware doesn't automatically set the accessed bit, fallback
4437 * to lru_gen_look_around(), which only clears the accessed bit in a
4438 * handful of PTEs. Spreading the work out over a period of time usually
4439 * is less efficient, but it avoids bursty page faults.
4441 if (!arch_has_hw_pte_young() || !get_cap(LRU_GEN_MM_WALK)) {
4442 success = iterate_mm_list_nowalk(lruvec, max_seq);
4446 walk = set_mm_walk(NULL, true);
4448 success = iterate_mm_list_nowalk(lruvec, max_seq);
4452 walk->lruvec = lruvec;
4453 walk->max_seq = max_seq;
4454 walk->can_swap = can_swap;
4455 walk->force_scan = force_scan;
4458 success = iterate_mm_list(lruvec, walk, &mm);
4460 walk_mm(lruvec, mm, walk);
4466 if (sc->priority <= DEF_PRIORITY - 2)
4467 wait_event_killable(lruvec->mm_state.wait,
4468 max_seq < READ_ONCE(lrugen->max_seq));
4472 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4474 inc_max_seq(lruvec, can_swap, force_scan);
4475 /* either this sees any waiters or they will see updated max_seq */
4476 if (wq_has_sleeper(&lruvec->mm_state.wait))
4477 wake_up_all(&lruvec->mm_state.wait);
4482 /******************************************************************************
4483 * working set protection
4484 ******************************************************************************/
4486 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4488 int gen, type, zone;
4489 unsigned long total = 0;
4490 bool can_swap = get_swappiness(lruvec, sc);
4491 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4492 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4493 DEFINE_MAX_SEQ(lruvec);
4494 DEFINE_MIN_SEQ(lruvec);
4496 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4499 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4500 gen = lru_gen_from_seq(seq);
4502 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4503 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4507 /* whether the size is big enough to be helpful */
4508 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4511 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4512 unsigned long min_ttl)
4515 unsigned long birth;
4516 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4517 DEFINE_MIN_SEQ(lruvec);
4519 /* see the comment on lru_gen_folio */
4520 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4521 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4523 if (time_is_after_jiffies(birth + min_ttl))
4526 if (!lruvec_is_sizable(lruvec, sc))
4529 mem_cgroup_calculate_protection(NULL, memcg);
4531 return !mem_cgroup_below_min(NULL, memcg);
4534 /* to protect the working set of the last N jiffies */
4535 static unsigned long lru_gen_min_ttl __read_mostly;
4537 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4539 struct mem_cgroup *memcg;
4540 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4542 VM_WARN_ON_ONCE(!current_is_kswapd());
4544 /* check the order to exclude compaction-induced reclaim */
4545 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
4548 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4550 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4552 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
4553 mem_cgroup_iter_break(NULL, memcg);
4558 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4561 * The main goal is to OOM kill if every generation from all memcgs is
4562 * younger than min_ttl. However, another possibility is all memcgs are
4563 * either too small or below min.
4565 if (mutex_trylock(&oom_lock)) {
4566 struct oom_control oc = {
4567 .gfp_mask = sc->gfp_mask,
4572 mutex_unlock(&oom_lock);
4576 /******************************************************************************
4577 * rmap/PT walk feedback
4578 ******************************************************************************/
4581 * This function exploits spatial locality when shrink_folio_list() walks the
4582 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4583 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4584 * the PTE table to the Bloom filter. This forms a feedback loop between the
4585 * eviction and the aging.
4587 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4590 unsigned long start;
4592 struct lru_gen_mm_walk *walk;
4594 pte_t *pte = pvmw->pte;
4595 unsigned long addr = pvmw->address;
4596 struct folio *folio = pfn_folio(pvmw->pfn);
4597 struct mem_cgroup *memcg = folio_memcg(folio);
4598 struct pglist_data *pgdat = folio_pgdat(folio);
4599 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4600 DEFINE_MAX_SEQ(lruvec);
4601 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4603 lockdep_assert_held(pvmw->ptl);
4604 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4606 if (spin_is_contended(pvmw->ptl))
4609 /* avoid taking the LRU lock under the PTL when possible */
4610 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4612 start = max(addr & PMD_MASK, pvmw->vma->vm_start);
4613 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4615 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4616 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4617 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4618 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4619 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4621 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4622 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4626 /* folio_update_gen() requires stable folio_memcg() */
4627 if (!mem_cgroup_trylock_pages(memcg))
4630 arch_enter_lazy_mmu_mode();
4632 pte -= (addr - start) / PAGE_SIZE;
4634 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4637 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4641 if (!pte_young(pte[i]))
4644 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4648 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4649 VM_WARN_ON_ONCE(true);
4653 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4654 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4655 !folio_test_swapcache(folio)))
4656 folio_mark_dirty(folio);
4659 old_gen = folio_update_gen(folio, new_gen);
4660 if (old_gen >= 0 && old_gen != new_gen)
4661 update_batch_size(walk, folio, old_gen, new_gen);
4666 old_gen = folio_lru_gen(folio);
4668 folio_set_referenced(folio);
4669 else if (old_gen != new_gen)
4670 folio_activate(folio);
4673 arch_leave_lazy_mmu_mode();
4674 mem_cgroup_unlock_pages();
4676 /* feedback from rmap walkers to page table walkers */
4677 if (suitable_to_scan(i, young))
4678 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4681 /******************************************************************************
4683 ******************************************************************************/
4685 /* see the comment on MEMCG_NR_GENS */
4696 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4698 return READ_ONCE(lruvec->lrugen.seg);
4701 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4705 int bin = get_random_u32_below(MEMCG_NR_BINS);
4706 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4708 spin_lock(&pgdat->memcg_lru.lock);
4710 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4713 new = old = lruvec->lrugen.gen;
4715 /* see the comment on MEMCG_NR_GENS */
4716 if (op == MEMCG_LRU_HEAD)
4717 seg = MEMCG_LRU_HEAD;
4718 else if (op == MEMCG_LRU_TAIL)
4719 seg = MEMCG_LRU_TAIL;
4720 else if (op == MEMCG_LRU_OLD)
4721 new = get_memcg_gen(pgdat->memcg_lru.seq);
4722 else if (op == MEMCG_LRU_YOUNG)
4723 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4725 VM_WARN_ON_ONCE(true);
4727 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4729 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4730 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4732 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4734 pgdat->memcg_lru.nr_memcgs[old]--;
4735 pgdat->memcg_lru.nr_memcgs[new]++;
4737 lruvec->lrugen.gen = new;
4738 WRITE_ONCE(lruvec->lrugen.seg, seg);
4740 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4741 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4743 spin_unlock(&pgdat->memcg_lru.lock);
4746 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4750 int bin = get_random_u32_below(MEMCG_NR_BINS);
4752 for_each_node(nid) {
4753 struct pglist_data *pgdat = NODE_DATA(nid);
4754 struct lruvec *lruvec = get_lruvec(memcg, nid);
4756 spin_lock(&pgdat->memcg_lru.lock);
4758 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4760 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4762 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4763 pgdat->memcg_lru.nr_memcgs[gen]++;
4765 lruvec->lrugen.gen = gen;
4767 spin_unlock(&pgdat->memcg_lru.lock);
4771 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4775 for_each_node(nid) {
4776 struct lruvec *lruvec = get_lruvec(memcg, nid);
4778 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4782 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4787 for_each_node(nid) {
4788 struct pglist_data *pgdat = NODE_DATA(nid);
4789 struct lruvec *lruvec = get_lruvec(memcg, nid);
4791 spin_lock(&pgdat->memcg_lru.lock);
4793 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4795 gen = lruvec->lrugen.gen;
4797 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4798 pgdat->memcg_lru.nr_memcgs[gen]--;
4800 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4801 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4803 spin_unlock(&pgdat->memcg_lru.lock);
4807 void lru_gen_soft_reclaim(struct lruvec *lruvec)
4809 /* see the comment on MEMCG_NR_GENS */
4810 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4811 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4814 #else /* !CONFIG_MEMCG */
4816 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4823 /******************************************************************************
4825 ******************************************************************************/
4827 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4830 int gen = folio_lru_gen(folio);
4831 int type = folio_is_file_lru(folio);
4832 int zone = folio_zonenum(folio);
4833 int delta = folio_nr_pages(folio);
4834 int refs = folio_lru_refs(folio);
4835 int tier = lru_tier_from_refs(refs);
4836 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4838 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4841 if (!folio_evictable(folio)) {
4842 success = lru_gen_del_folio(lruvec, folio, true);
4843 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4844 folio_set_unevictable(folio);
4845 lruvec_add_folio(lruvec, folio);
4846 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4850 /* dirty lazyfree */
4851 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4852 success = lru_gen_del_folio(lruvec, folio, true);
4853 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4854 folio_set_swapbacked(folio);
4855 lruvec_add_folio_tail(lruvec, folio);
4860 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4861 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4866 if (tier > tier_idx) {
4867 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4869 gen = folio_inc_gen(lruvec, folio, false);
4870 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4872 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4873 lrugen->protected[hist][type][tier - 1] + delta);
4874 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4878 /* waiting for writeback */
4879 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4880 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4881 gen = folio_inc_gen(lruvec, folio, true);
4882 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4889 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4893 /* swapping inhibited */
4894 if (!(sc->gfp_mask & __GFP_IO) &&
4895 (folio_test_dirty(folio) ||
4896 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4899 /* raced with release_pages() */
4900 if (!folio_try_get(folio))
4903 /* raced with another isolation */
4904 if (!folio_test_clear_lru(folio)) {
4909 /* see the comment on MAX_NR_TIERS */
4910 if (!folio_test_referenced(folio))
4911 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4913 /* for shrink_folio_list() */
4914 folio_clear_reclaim(folio);
4915 folio_clear_referenced(folio);
4917 success = lru_gen_del_folio(lruvec, folio, true);
4918 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4923 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4924 int type, int tier, struct list_head *list)
4927 enum vm_event_item item;
4931 int remaining = MAX_LRU_BATCH;
4932 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4933 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4935 VM_WARN_ON_ONCE(!list_empty(list));
4937 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4940 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4942 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4945 struct list_head *head = &lrugen->folios[gen][type][zone];
4947 while (!list_empty(head)) {
4948 struct folio *folio = lru_to_folio(head);
4949 int delta = folio_nr_pages(folio);
4951 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4952 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4953 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4954 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4958 if (sort_folio(lruvec, folio, tier))
4960 else if (isolate_folio(lruvec, folio, sc)) {
4961 list_add(&folio->lru, list);
4964 list_move(&folio->lru, &moved);
4968 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4973 list_splice(&moved, head);
4974 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4977 if (!remaining || isolated >= MIN_LRU_BATCH)
4981 item = PGSCAN_KSWAPD + reclaimer_offset();
4982 if (!cgroup_reclaim(sc)) {
4983 __count_vm_events(item, isolated);
4984 __count_vm_events(PGREFILL, sorted);
4986 __count_memcg_events(memcg, item, isolated);
4987 __count_memcg_events(memcg, PGREFILL, sorted);
4988 __count_vm_events(PGSCAN_ANON + type, isolated);
4991 * There might not be eligible folios due to reclaim_idx. Check the
4992 * remaining to prevent livelock if it's not making progress.
4994 return isolated || !remaining ? scanned : 0;
4997 static int get_tier_idx(struct lruvec *lruvec, int type)
5000 struct ctrl_pos sp, pv;
5003 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5004 * This value is chosen because any other tier would have at least twice
5005 * as many refaults as the first tier.
5007 read_ctrl_pos(lruvec, type, 0, 1, &sp);
5008 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5009 read_ctrl_pos(lruvec, type, tier, 2, &pv);
5010 if (!positive_ctrl_err(&sp, &pv))
5017 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5020 struct ctrl_pos sp, pv;
5021 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5024 * Compare the first tier of anon with that of file to determine which
5025 * type to scan. Also need to compare other tiers of the selected type
5026 * with the first tier of the other type to determine the last tier (of
5027 * the selected type) to evict.
5029 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5030 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5031 type = positive_ctrl_err(&sp, &pv);
5033 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5034 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5035 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5036 if (!positive_ctrl_err(&sp, &pv))
5040 *tier_idx = tier - 1;
5045 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5046 int *type_scanned, struct list_head *list)
5052 DEFINE_MIN_SEQ(lruvec);
5055 * Try to make the obvious choice first. When anon and file are both
5056 * available from the same generation, interpret swappiness 1 as file
5057 * first and 200 as anon first.
5060 type = LRU_GEN_FILE;
5061 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5062 type = LRU_GEN_ANON;
5063 else if (swappiness == 1)
5064 type = LRU_GEN_FILE;
5065 else if (swappiness == 200)
5066 type = LRU_GEN_ANON;
5068 type = get_type_to_scan(lruvec, swappiness, &tier);
5070 for (i = !swappiness; i < ANON_AND_FILE; i++) {
5072 tier = get_tier_idx(lruvec, type);
5074 scanned = scan_folios(lruvec, sc, type, tier, list);
5082 *type_scanned = type;
5087 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5094 struct folio *folio;
5096 enum vm_event_item item;
5097 struct reclaim_stat stat;
5098 struct lru_gen_mm_walk *walk;
5099 bool skip_retry = false;
5100 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5101 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5103 spin_lock_irq(&lruvec->lru_lock);
5105 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5107 scanned += try_to_inc_min_seq(lruvec, swappiness);
5109 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5112 spin_unlock_irq(&lruvec->lru_lock);
5114 if (list_empty(&list))
5117 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5118 sc->nr_reclaimed += reclaimed;
5120 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5121 if (!folio_evictable(folio)) {
5122 list_del(&folio->lru);
5123 folio_putback_lru(folio);
5127 if (folio_test_reclaim(folio) &&
5128 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5129 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5130 if (folio_test_workingset(folio))
5131 folio_set_referenced(folio);
5135 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5136 folio_mapped(folio) || folio_test_locked(folio) ||
5137 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5138 /* don't add rejected folios to the oldest generation */
5139 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5144 /* retry folios that may have missed folio_rotate_reclaimable() */
5145 list_move(&folio->lru, &clean);
5146 sc->nr_scanned -= folio_nr_pages(folio);
5149 spin_lock_irq(&lruvec->lru_lock);
5151 move_folios_to_lru(lruvec, &list);
5153 walk = current->reclaim_state->mm_walk;
5154 if (walk && walk->batched)
5155 reset_batch_size(lruvec, walk);
5157 item = PGSTEAL_KSWAPD + reclaimer_offset();
5158 if (!cgroup_reclaim(sc))
5159 __count_vm_events(item, reclaimed);
5160 __count_memcg_events(memcg, item, reclaimed);
5161 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5163 spin_unlock_irq(&lruvec->lru_lock);
5165 mem_cgroup_uncharge_list(&list);
5166 free_unref_page_list(&list);
5168 INIT_LIST_HEAD(&list);
5169 list_splice_init(&clean, &list);
5171 if (!list_empty(&list)) {
5179 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5180 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5182 int gen, type, zone;
5183 unsigned long old = 0;
5184 unsigned long young = 0;
5185 unsigned long total = 0;
5186 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5187 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5188 DEFINE_MIN_SEQ(lruvec);
5190 /* whether this lruvec is completely out of cold folios */
5191 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5196 for (type = !can_swap; type < ANON_AND_FILE; type++) {
5199 for (seq = min_seq[type]; seq <= max_seq; seq++) {
5200 unsigned long size = 0;
5202 gen = lru_gen_from_seq(seq);
5204 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5205 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5210 else if (seq + MIN_NR_GENS == max_seq)
5215 /* try to scrape all its memory if this memcg was deleted */
5216 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
5219 * The aging tries to be lazy to reduce the overhead, while the eviction
5220 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5221 * ideal number of generations is MIN_NR_GENS+1.
5223 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5227 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5228 * of the total number of pages for each generation. A reasonable range
5229 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5230 * aging cares about the upper bound of hot pages, while the eviction
5231 * cares about the lower bound of cold pages.
5233 if (young * MIN_NR_GENS > total)
5235 if (old * (MIN_NR_GENS + 2) < total)
5242 * For future optimizations:
5243 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5246 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5248 unsigned long nr_to_scan;
5249 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5250 DEFINE_MAX_SEQ(lruvec);
5252 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5255 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5258 /* skip the aging path at the default priority */
5259 if (sc->priority == DEF_PRIORITY)
5262 /* skip this lruvec as it's low on cold folios */
5263 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5266 static unsigned long get_nr_to_reclaim(struct scan_control *sc)
5268 /* don't abort memcg reclaim to ensure fairness */
5269 if (!global_reclaim(sc))
5272 return max(sc->nr_to_reclaim, compact_gap(sc->order));
5275 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5278 unsigned long scanned = 0;
5279 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5280 int swappiness = get_swappiness(lruvec, sc);
5282 /* clean file folios are more likely to exist */
5283 if (swappiness && !(sc->gfp_mask & __GFP_IO))
5289 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5290 if (nr_to_scan <= 0)
5293 delta = evict_folios(lruvec, sc, swappiness);
5298 if (scanned >= nr_to_scan)
5301 if (sc->nr_reclaimed >= nr_to_reclaim)
5307 /* whether try_to_inc_max_seq() was successful */
5308 return nr_to_scan < 0;
5311 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5314 unsigned long scanned = sc->nr_scanned;
5315 unsigned long reclaimed = sc->nr_reclaimed;
5316 int seg = lru_gen_memcg_seg(lruvec);
5317 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5318 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5320 /* see the comment on MEMCG_NR_GENS */
5321 if (!lruvec_is_sizable(lruvec, sc))
5322 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5324 mem_cgroup_calculate_protection(NULL, memcg);
5326 if (mem_cgroup_below_min(NULL, memcg))
5327 return MEMCG_LRU_YOUNG;
5329 if (mem_cgroup_below_low(NULL, memcg)) {
5330 /* see the comment on MEMCG_NR_GENS */
5331 if (seg != MEMCG_LRU_TAIL)
5332 return MEMCG_LRU_TAIL;
5334 memcg_memory_event(memcg, MEMCG_LOW);
5337 success = try_to_shrink_lruvec(lruvec, sc);
5339 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5342 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5343 sc->nr_reclaimed - reclaimed);
5345 sc->nr_reclaimed += current->reclaim_state->reclaimed_slab;
5346 current->reclaim_state->reclaimed_slab = 0;
5348 return success ? MEMCG_LRU_YOUNG : 0;
5353 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5358 struct lruvec *lruvec;
5359 struct lru_gen_folio *lrugen;
5360 const struct hlist_nulls_node *pos;
5362 struct mem_cgroup *memcg = NULL;
5363 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
5365 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5367 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5371 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5373 lru_gen_rotate_memcg(lruvec, op);
5375 mem_cgroup_put(memcg);
5377 lruvec = container_of(lrugen, struct lruvec, lrugen);
5378 memcg = lruvec_memcg(lruvec);
5380 if (!mem_cgroup_tryget(memcg)) {
5388 op = shrink_one(lruvec, sc);
5390 if (sc->nr_reclaimed >= nr_to_reclaim)
5398 /* restart if raced with lru_gen_rotate_memcg() */
5399 if (gen != get_nulls_value(pos))
5402 /* try the rest of the bins of the current generation */
5403 bin = get_memcg_bin(bin + 1);
5404 if (bin != first_bin)
5408 lru_gen_rotate_memcg(lruvec, op);
5410 mem_cgroup_put(memcg);
5413 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5415 struct blk_plug plug;
5417 VM_WARN_ON_ONCE(global_reclaim(sc));
5418 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5422 blk_start_plug(&plug);
5424 set_mm_walk(NULL, sc->proactive);
5426 if (try_to_shrink_lruvec(lruvec, sc))
5427 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5431 blk_finish_plug(&plug);
5434 #else /* !CONFIG_MEMCG */
5436 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5441 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5448 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
5451 unsigned long reclaimable;
5452 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
5454 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
5457 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
5458 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
5459 * estimated reclaimed_to_scanned_ratio = inactive / total.
5461 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
5462 if (get_swappiness(lruvec, sc))
5463 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
5465 reclaimable /= MEMCG_NR_GENS;
5467 /* round down reclaimable and round up sc->nr_to_reclaim */
5468 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
5470 sc->priority = clamp(priority, 0, DEF_PRIORITY);
5473 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5475 struct blk_plug plug;
5476 unsigned long reclaimed = sc->nr_reclaimed;
5478 VM_WARN_ON_ONCE(!global_reclaim(sc));
5481 * Unmapped clean folios are already prioritized. Scanning for more of
5482 * them is likely futile and can cause high reclaim latency when there
5483 * is a large number of memcgs.
5485 if (!sc->may_writepage || !sc->may_unmap)
5490 blk_start_plug(&plug);
5492 set_mm_walk(pgdat, sc->proactive);
5494 set_initial_priority(pgdat, sc);
5496 if (current_is_kswapd())
5497 sc->nr_reclaimed = 0;
5499 if (mem_cgroup_disabled())
5500 shrink_one(&pgdat->__lruvec, sc);
5502 shrink_many(pgdat, sc);
5504 if (current_is_kswapd())
5505 sc->nr_reclaimed += reclaimed;
5509 blk_finish_plug(&plug);
5511 /* kswapd should never fail */
5512 pgdat->kswapd_failures = 0;
5515 /******************************************************************************
5517 ******************************************************************************/
5519 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5521 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5523 if (lrugen->enabled) {
5526 for_each_evictable_lru(lru) {
5527 if (!list_empty(&lruvec->lists[lru]))
5531 int gen, type, zone;
5533 for_each_gen_type_zone(gen, type, zone) {
5534 if (!list_empty(&lrugen->folios[gen][type][zone]))
5542 static bool fill_evictable(struct lruvec *lruvec)
5545 int remaining = MAX_LRU_BATCH;
5547 for_each_evictable_lru(lru) {
5548 int type = is_file_lru(lru);
5549 bool active = is_active_lru(lru);
5550 struct list_head *head = &lruvec->lists[lru];
5552 while (!list_empty(head)) {
5554 struct folio *folio = lru_to_folio(head);
5556 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5557 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5558 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5559 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5561 lruvec_del_folio(lruvec, folio);
5562 success = lru_gen_add_folio(lruvec, folio, false);
5563 VM_WARN_ON_ONCE(!success);
5573 static bool drain_evictable(struct lruvec *lruvec)
5575 int gen, type, zone;
5576 int remaining = MAX_LRU_BATCH;
5578 for_each_gen_type_zone(gen, type, zone) {
5579 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5581 while (!list_empty(head)) {
5583 struct folio *folio = lru_to_folio(head);
5585 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5586 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5587 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5588 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5590 success = lru_gen_del_folio(lruvec, folio, false);
5591 VM_WARN_ON_ONCE(!success);
5592 lruvec_add_folio(lruvec, folio);
5602 static void lru_gen_change_state(bool enabled)
5604 static DEFINE_MUTEX(state_mutex);
5606 struct mem_cgroup *memcg;
5611 mutex_lock(&state_mutex);
5613 if (enabled == lru_gen_enabled())
5617 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5619 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5621 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5625 for_each_node(nid) {
5626 struct lruvec *lruvec = get_lruvec(memcg, nid);
5628 spin_lock_irq(&lruvec->lru_lock);
5630 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5631 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5633 lruvec->lrugen.enabled = enabled;
5635 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5636 spin_unlock_irq(&lruvec->lru_lock);
5638 spin_lock_irq(&lruvec->lru_lock);
5641 spin_unlock_irq(&lruvec->lru_lock);
5645 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5647 mutex_unlock(&state_mutex);
5653 /******************************************************************************
5655 ******************************************************************************/
5657 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5659 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5662 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5663 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5664 const char *buf, size_t len)
5668 if (kstrtouint(buf, 0, &msecs))
5671 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5676 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5677 min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5680 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5682 unsigned int caps = 0;
5684 if (get_cap(LRU_GEN_CORE))
5685 caps |= BIT(LRU_GEN_CORE);
5687 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5688 caps |= BIT(LRU_GEN_MM_WALK);
5690 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5691 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5693 return sysfs_emit(buf, "0x%04x\n", caps);
5696 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5697 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5698 const char *buf, size_t len)
5703 if (tolower(*buf) == 'n')
5705 else if (tolower(*buf) == 'y')
5707 else if (kstrtouint(buf, 0, &caps))
5710 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5711 bool enabled = caps & BIT(i);
5713 if (i == LRU_GEN_CORE)
5714 lru_gen_change_state(enabled);
5716 static_branch_enable(&lru_gen_caps[i]);
5718 static_branch_disable(&lru_gen_caps[i]);
5724 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5725 enabled, 0644, show_enabled, store_enabled
5728 static struct attribute *lru_gen_attrs[] = {
5729 &lru_gen_min_ttl_attr.attr,
5730 &lru_gen_enabled_attr.attr,
5734 static struct attribute_group lru_gen_attr_group = {
5736 .attrs = lru_gen_attrs,
5739 /******************************************************************************
5741 ******************************************************************************/
5743 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5745 struct mem_cgroup *memcg;
5746 loff_t nr_to_skip = *pos;
5748 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5750 return ERR_PTR(-ENOMEM);
5752 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5756 for_each_node_state(nid, N_MEMORY) {
5758 return get_lruvec(memcg, nid);
5760 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5765 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5767 if (!IS_ERR_OR_NULL(v))
5768 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5774 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5776 int nid = lruvec_pgdat(v)->node_id;
5777 struct mem_cgroup *memcg = lruvec_memcg(v);
5781 nid = next_memory_node(nid);
5782 if (nid == MAX_NUMNODES) {
5783 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5787 nid = first_memory_node;
5790 return get_lruvec(memcg, nid);
5793 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5794 unsigned long max_seq, unsigned long *min_seq,
5799 int hist = lru_hist_from_seq(seq);
5800 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5802 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5803 seq_printf(m, " %10d", tier);
5804 for (type = 0; type < ANON_AND_FILE; type++) {
5805 const char *s = " ";
5806 unsigned long n[3] = {};
5808 if (seq == max_seq) {
5810 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5811 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5812 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5814 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5815 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5817 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5820 for (i = 0; i < 3; i++)
5821 seq_printf(m, " %10lu%c", n[i], s[i]);
5827 for (i = 0; i < NR_MM_STATS; i++) {
5828 const char *s = " ";
5829 unsigned long n = 0;
5831 if (seq == max_seq && NR_HIST_GENS == 1) {
5833 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5834 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5836 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5839 seq_printf(m, " %10lu%c", n, s[i]);
5844 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5845 static int lru_gen_seq_show(struct seq_file *m, void *v)
5848 bool full = !debugfs_real_fops(m->file)->write;
5849 struct lruvec *lruvec = v;
5850 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5851 int nid = lruvec_pgdat(lruvec)->node_id;
5852 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5853 DEFINE_MAX_SEQ(lruvec);
5854 DEFINE_MIN_SEQ(lruvec);
5856 if (nid == first_memory_node) {
5857 const char *path = memcg ? m->private : "";
5861 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5863 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5866 seq_printf(m, " node %5d\n", nid);
5869 seq = min_seq[LRU_GEN_ANON];
5870 else if (max_seq >= MAX_NR_GENS)
5871 seq = max_seq - MAX_NR_GENS + 1;
5875 for (; seq <= max_seq; seq++) {
5877 int gen = lru_gen_from_seq(seq);
5878 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5880 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5882 for (type = 0; type < ANON_AND_FILE; type++) {
5883 unsigned long size = 0;
5884 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5886 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5887 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5889 seq_printf(m, " %10lu%c", size, mark);
5895 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5901 static const struct seq_operations lru_gen_seq_ops = {
5902 .start = lru_gen_seq_start,
5903 .stop = lru_gen_seq_stop,
5904 .next = lru_gen_seq_next,
5905 .show = lru_gen_seq_show,
5908 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5909 bool can_swap, bool force_scan)
5911 DEFINE_MAX_SEQ(lruvec);
5912 DEFINE_MIN_SEQ(lruvec);
5920 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5923 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5928 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5929 int swappiness, unsigned long nr_to_reclaim)
5931 DEFINE_MAX_SEQ(lruvec);
5933 if (seq + MIN_NR_GENS > max_seq)
5936 sc->nr_reclaimed = 0;
5938 while (!signal_pending(current)) {
5939 DEFINE_MIN_SEQ(lruvec);
5941 if (seq < min_seq[!swappiness])
5944 if (sc->nr_reclaimed >= nr_to_reclaim)
5947 if (!evict_folios(lruvec, sc, swappiness))
5956 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5957 struct scan_control *sc, int swappiness, unsigned long opt)
5959 struct lruvec *lruvec;
5961 struct mem_cgroup *memcg = NULL;
5963 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5966 if (!mem_cgroup_disabled()) {
5969 memcg = mem_cgroup_from_id(memcg_id);
5970 if (!mem_cgroup_tryget(memcg))
5979 if (memcg_id != mem_cgroup_id(memcg))
5982 lruvec = get_lruvec(memcg, nid);
5985 swappiness = get_swappiness(lruvec, sc);
5986 else if (swappiness > 200)
5991 err = run_aging(lruvec, seq, sc, swappiness, opt);
5994 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5998 mem_cgroup_put(memcg);
6003 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
6004 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6005 size_t len, loff_t *pos)
6010 struct blk_plug plug;
6012 struct scan_control sc = {
6013 .may_writepage = true,
6016 .reclaim_idx = MAX_NR_ZONES - 1,
6017 .gfp_mask = GFP_KERNEL,
6020 buf = kvmalloc(len + 1, GFP_KERNEL);
6024 if (copy_from_user(buf, src, len)) {
6029 set_task_reclaim_state(current, &sc.reclaim_state);
6030 flags = memalloc_noreclaim_save();
6031 blk_start_plug(&plug);
6032 if (!set_mm_walk(NULL, true)) {
6040 while ((cur = strsep(&next, ",;\n"))) {
6044 unsigned int memcg_id;
6047 unsigned int swappiness = -1;
6048 unsigned long opt = -1;
6050 cur = skip_spaces(cur);
6054 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6055 &seq, &end, &swappiness, &end, &opt, &end);
6056 if (n < 4 || cur[end]) {
6061 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6067 blk_finish_plug(&plug);
6068 memalloc_noreclaim_restore(flags);
6069 set_task_reclaim_state(current, NULL);
6076 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6078 return seq_open(file, &lru_gen_seq_ops);
6081 static const struct file_operations lru_gen_rw_fops = {
6082 .open = lru_gen_seq_open,
6084 .write = lru_gen_seq_write,
6085 .llseek = seq_lseek,
6086 .release = seq_release,
6089 static const struct file_operations lru_gen_ro_fops = {
6090 .open = lru_gen_seq_open,
6092 .llseek = seq_lseek,
6093 .release = seq_release,
6096 /******************************************************************************
6098 ******************************************************************************/
6100 void lru_gen_init_lruvec(struct lruvec *lruvec)
6103 int gen, type, zone;
6104 struct lru_gen_folio *lrugen = &lruvec->lrugen;
6106 lrugen->max_seq = MIN_NR_GENS + 1;
6107 lrugen->enabled = lru_gen_enabled();
6109 for (i = 0; i <= MIN_NR_GENS + 1; i++)
6110 lrugen->timestamps[i] = jiffies;
6112 for_each_gen_type_zone(gen, type, zone)
6113 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6115 lruvec->mm_state.seq = MIN_NR_GENS;
6116 init_waitqueue_head(&lruvec->mm_state.wait);
6121 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6125 spin_lock_init(&pgdat->memcg_lru.lock);
6127 for (i = 0; i < MEMCG_NR_GENS; i++) {
6128 for (j = 0; j < MEMCG_NR_BINS; j++)
6129 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6133 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6135 INIT_LIST_HEAD(&memcg->mm_list.fifo);
6136 spin_lock_init(&memcg->mm_list.lock);
6139 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6144 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6146 for_each_node(nid) {
6147 struct lruvec *lruvec = get_lruvec(memcg, nid);
6149 VM_WARN_ON_ONCE(lruvec->mm_state.nr_walkers);
6150 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6151 sizeof(lruvec->lrugen.nr_pages)));
6153 lruvec->lrugen.list.next = LIST_POISON1;
6155 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6156 bitmap_free(lruvec->mm_state.filters[i]);
6157 lruvec->mm_state.filters[i] = NULL;
6162 #endif /* CONFIG_MEMCG */
6164 static int __init init_lru_gen(void)
6166 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6167 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6169 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6170 pr_err("lru_gen: failed to create sysfs group\n");
6172 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6173 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6177 late_initcall(init_lru_gen);
6179 #else /* !CONFIG_LRU_GEN */
6181 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6185 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6189 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6193 #endif /* CONFIG_LRU_GEN */
6195 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6197 unsigned long nr[NR_LRU_LISTS];
6198 unsigned long targets[NR_LRU_LISTS];
6199 unsigned long nr_to_scan;
6201 unsigned long nr_reclaimed = 0;
6202 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6203 bool proportional_reclaim;
6204 struct blk_plug plug;
6206 if (lru_gen_enabled() && !global_reclaim(sc)) {
6207 lru_gen_shrink_lruvec(lruvec, sc);
6211 get_scan_count(lruvec, sc, nr);
6213 /* Record the original scan target for proportional adjustments later */
6214 memcpy(targets, nr, sizeof(nr));
6217 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6218 * event that can occur when there is little memory pressure e.g.
6219 * multiple streaming readers/writers. Hence, we do not abort scanning
6220 * when the requested number of pages are reclaimed when scanning at
6221 * DEF_PRIORITY on the assumption that the fact we are direct
6222 * reclaiming implies that kswapd is not keeping up and it is best to
6223 * do a batch of work at once. For memcg reclaim one check is made to
6224 * abort proportional reclaim if either the file or anon lru has already
6225 * dropped to zero at the first pass.
6227 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6228 sc->priority == DEF_PRIORITY);
6230 blk_start_plug(&plug);
6231 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6232 nr[LRU_INACTIVE_FILE]) {
6233 unsigned long nr_anon, nr_file, percentage;
6234 unsigned long nr_scanned;
6236 for_each_evictable_lru(lru) {
6238 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6239 nr[lru] -= nr_to_scan;
6241 nr_reclaimed += shrink_list(lru, nr_to_scan,
6248 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6252 * For kswapd and memcg, reclaim at least the number of pages
6253 * requested. Ensure that the anon and file LRUs are scanned
6254 * proportionally what was requested by get_scan_count(). We
6255 * stop reclaiming one LRU and reduce the amount scanning
6256 * proportional to the original scan target.
6258 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6259 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6262 * It's just vindictive to attack the larger once the smaller
6263 * has gone to zero. And given the way we stop scanning the
6264 * smaller below, this makes sure that we only make one nudge
6265 * towards proportionality once we've got nr_to_reclaim.
6267 if (!nr_file || !nr_anon)
6270 if (nr_file > nr_anon) {
6271 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6272 targets[LRU_ACTIVE_ANON] + 1;
6274 percentage = nr_anon * 100 / scan_target;
6276 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6277 targets[LRU_ACTIVE_FILE] + 1;
6279 percentage = nr_file * 100 / scan_target;
6282 /* Stop scanning the smaller of the LRU */
6284 nr[lru + LRU_ACTIVE] = 0;
6287 * Recalculate the other LRU scan count based on its original
6288 * scan target and the percentage scanning already complete
6290 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6291 nr_scanned = targets[lru] - nr[lru];
6292 nr[lru] = targets[lru] * (100 - percentage) / 100;
6293 nr[lru] -= min(nr[lru], nr_scanned);
6296 nr_scanned = targets[lru] - nr[lru];
6297 nr[lru] = targets[lru] * (100 - percentage) / 100;
6298 nr[lru] -= min(nr[lru], nr_scanned);
6300 blk_finish_plug(&plug);
6301 sc->nr_reclaimed += nr_reclaimed;
6304 * Even if we did not try to evict anon pages at all, we want to
6305 * rebalance the anon lru active/inactive ratio.
6307 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6308 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6309 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6310 sc, LRU_ACTIVE_ANON);
6313 /* Use reclaim/compaction for costly allocs or under memory pressure */
6314 static bool in_reclaim_compaction(struct scan_control *sc)
6316 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6317 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6318 sc->priority < DEF_PRIORITY - 2))
6325 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6326 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6327 * true if more pages should be reclaimed such that when the page allocator
6328 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6329 * It will give up earlier than that if there is difficulty reclaiming pages.
6331 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6332 unsigned long nr_reclaimed,
6333 struct scan_control *sc)
6335 unsigned long pages_for_compaction;
6336 unsigned long inactive_lru_pages;
6339 /* If not in reclaim/compaction mode, stop */
6340 if (!in_reclaim_compaction(sc))
6344 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6345 * number of pages that were scanned. This will return to the caller
6346 * with the risk reclaim/compaction and the resulting allocation attempt
6347 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6348 * allocations through requiring that the full LRU list has been scanned
6349 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6350 * scan, but that approximation was wrong, and there were corner cases
6351 * where always a non-zero amount of pages were scanned.
6356 /* If compaction would go ahead or the allocation would succeed, stop */
6357 for (z = 0; z <= sc->reclaim_idx; z++) {
6358 struct zone *zone = &pgdat->node_zones[z];
6359 if (!managed_zone(zone))
6362 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6363 case COMPACT_SUCCESS:
6364 case COMPACT_CONTINUE:
6367 /* check next zone */
6373 * If we have not reclaimed enough pages for compaction and the
6374 * inactive lists are large enough, continue reclaiming
6376 pages_for_compaction = compact_gap(sc->order);
6377 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6378 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6379 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6381 return inactive_lru_pages > pages_for_compaction;
6384 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6386 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6387 struct mem_cgroup *memcg;
6389 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6391 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6392 unsigned long reclaimed;
6393 unsigned long scanned;
6396 * This loop can become CPU-bound when target memcgs
6397 * aren't eligible for reclaim - either because they
6398 * don't have any reclaimable pages, or because their
6399 * memory is explicitly protected. Avoid soft lockups.
6403 mem_cgroup_calculate_protection(target_memcg, memcg);
6405 if (mem_cgroup_below_min(target_memcg, memcg)) {
6408 * If there is no reclaimable memory, OOM.
6411 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6414 * Respect the protection only as long as
6415 * there is an unprotected supply
6416 * of reclaimable memory from other cgroups.
6418 if (!sc->memcg_low_reclaim) {
6419 sc->memcg_low_skipped = 1;
6422 memcg_memory_event(memcg, MEMCG_LOW);
6425 reclaimed = sc->nr_reclaimed;
6426 scanned = sc->nr_scanned;
6428 shrink_lruvec(lruvec, sc);
6430 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6433 /* Record the group's reclaim efficiency */
6435 vmpressure(sc->gfp_mask, memcg, false,
6436 sc->nr_scanned - scanned,
6437 sc->nr_reclaimed - reclaimed);
6439 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6442 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6444 struct reclaim_state *reclaim_state = current->reclaim_state;
6445 unsigned long nr_reclaimed, nr_scanned;
6446 struct lruvec *target_lruvec;
6447 bool reclaimable = false;
6449 if (lru_gen_enabled() && global_reclaim(sc)) {
6450 lru_gen_shrink_node(pgdat, sc);
6454 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6457 memset(&sc->nr, 0, sizeof(sc->nr));
6459 nr_reclaimed = sc->nr_reclaimed;
6460 nr_scanned = sc->nr_scanned;
6462 prepare_scan_count(pgdat, sc);
6464 shrink_node_memcgs(pgdat, sc);
6466 if (reclaim_state) {
6467 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6468 reclaim_state->reclaimed_slab = 0;
6471 /* Record the subtree's reclaim efficiency */
6473 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6474 sc->nr_scanned - nr_scanned,
6475 sc->nr_reclaimed - nr_reclaimed);
6477 if (sc->nr_reclaimed - nr_reclaimed)
6480 if (current_is_kswapd()) {
6482 * If reclaim is isolating dirty pages under writeback,
6483 * it implies that the long-lived page allocation rate
6484 * is exceeding the page laundering rate. Either the
6485 * global limits are not being effective at throttling
6486 * processes due to the page distribution throughout
6487 * zones or there is heavy usage of a slow backing
6488 * device. The only option is to throttle from reclaim
6489 * context which is not ideal as there is no guarantee
6490 * the dirtying process is throttled in the same way
6491 * balance_dirty_pages() manages.
6493 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6494 * count the number of pages under pages flagged for
6495 * immediate reclaim and stall if any are encountered
6496 * in the nr_immediate check below.
6498 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6499 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6501 /* Allow kswapd to start writing pages during reclaim.*/
6502 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6503 set_bit(PGDAT_DIRTY, &pgdat->flags);
6506 * If kswapd scans pages marked for immediate
6507 * reclaim and under writeback (nr_immediate), it
6508 * implies that pages are cycling through the LRU
6509 * faster than they are written so forcibly stall
6510 * until some pages complete writeback.
6512 if (sc->nr.immediate)
6513 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6517 * Tag a node/memcg as congested if all the dirty pages were marked
6518 * for writeback and immediate reclaim (counted in nr.congested).
6520 * Legacy memcg will stall in page writeback so avoid forcibly
6521 * stalling in reclaim_throttle().
6523 if ((current_is_kswapd() ||
6524 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6525 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6526 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6529 * Stall direct reclaim for IO completions if the lruvec is
6530 * node is congested. Allow kswapd to continue until it
6531 * starts encountering unqueued dirty pages or cycling through
6532 * the LRU too quickly.
6534 if (!current_is_kswapd() && current_may_throttle() &&
6535 !sc->hibernation_mode &&
6536 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6537 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6539 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6544 * Kswapd gives up on balancing particular nodes after too
6545 * many failures to reclaim anything from them and goes to
6546 * sleep. On reclaim progress, reset the failure counter. A
6547 * successful direct reclaim run will revive a dormant kswapd.
6550 pgdat->kswapd_failures = 0;
6554 * Returns true if compaction should go ahead for a costly-order request, or
6555 * the allocation would already succeed without compaction. Return false if we
6556 * should reclaim first.
6558 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6560 unsigned long watermark;
6561 enum compact_result suitable;
6563 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6564 if (suitable == COMPACT_SUCCESS)
6565 /* Allocation should succeed already. Don't reclaim. */
6567 if (suitable == COMPACT_SKIPPED)
6568 /* Compaction cannot yet proceed. Do reclaim. */
6572 * Compaction is already possible, but it takes time to run and there
6573 * are potentially other callers using the pages just freed. So proceed
6574 * with reclaim to make a buffer of free pages available to give
6575 * compaction a reasonable chance of completing and allocating the page.
6576 * Note that we won't actually reclaim the whole buffer in one attempt
6577 * as the target watermark in should_continue_reclaim() is lower. But if
6578 * we are already above the high+gap watermark, don't reclaim at all.
6580 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6582 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6585 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6588 * If reclaim is making progress greater than 12% efficiency then
6589 * wake all the NOPROGRESS throttled tasks.
6591 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6592 wait_queue_head_t *wqh;
6594 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6595 if (waitqueue_active(wqh))
6602 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6603 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6604 * under writeback and marked for immediate reclaim at the tail of the
6607 if (current_is_kswapd() || cgroup_reclaim(sc))
6610 /* Throttle if making no progress at high prioities. */
6611 if (sc->priority == 1 && !sc->nr_reclaimed)
6612 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6616 * This is the direct reclaim path, for page-allocating processes. We only
6617 * try to reclaim pages from zones which will satisfy the caller's allocation
6620 * If a zone is deemed to be full of pinned pages then just give it a light
6621 * scan then give up on it.
6623 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6627 unsigned long nr_soft_reclaimed;
6628 unsigned long nr_soft_scanned;
6630 pg_data_t *last_pgdat = NULL;
6631 pg_data_t *first_pgdat = NULL;
6634 * If the number of buffer_heads in the machine exceeds the maximum
6635 * allowed level, force direct reclaim to scan the highmem zone as
6636 * highmem pages could be pinning lowmem pages storing buffer_heads
6638 orig_mask = sc->gfp_mask;
6639 if (buffer_heads_over_limit) {
6640 sc->gfp_mask |= __GFP_HIGHMEM;
6641 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6644 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6645 sc->reclaim_idx, sc->nodemask) {
6647 * Take care memory controller reclaiming has small influence
6650 if (!cgroup_reclaim(sc)) {
6651 if (!cpuset_zone_allowed(zone,
6652 GFP_KERNEL | __GFP_HARDWALL))
6656 * If we already have plenty of memory free for
6657 * compaction in this zone, don't free any more.
6658 * Even though compaction is invoked for any
6659 * non-zero order, only frequent costly order
6660 * reclamation is disruptive enough to become a
6661 * noticeable problem, like transparent huge
6664 if (IS_ENABLED(CONFIG_COMPACTION) &&
6665 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6666 compaction_ready(zone, sc)) {
6667 sc->compaction_ready = true;
6672 * Shrink each node in the zonelist once. If the
6673 * zonelist is ordered by zone (not the default) then a
6674 * node may be shrunk multiple times but in that case
6675 * the user prefers lower zones being preserved.
6677 if (zone->zone_pgdat == last_pgdat)
6681 * This steals pages from memory cgroups over softlimit
6682 * and returns the number of reclaimed pages and
6683 * scanned pages. This works for global memory pressure
6684 * and balancing, not for a memcg's limit.
6686 nr_soft_scanned = 0;
6687 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6688 sc->order, sc->gfp_mask,
6690 sc->nr_reclaimed += nr_soft_reclaimed;
6691 sc->nr_scanned += nr_soft_scanned;
6692 /* need some check for avoid more shrink_zone() */
6696 first_pgdat = zone->zone_pgdat;
6698 /* See comment about same check for global reclaim above */
6699 if (zone->zone_pgdat == last_pgdat)
6701 last_pgdat = zone->zone_pgdat;
6702 shrink_node(zone->zone_pgdat, sc);
6706 consider_reclaim_throttle(first_pgdat, sc);
6709 * Restore to original mask to avoid the impact on the caller if we
6710 * promoted it to __GFP_HIGHMEM.
6712 sc->gfp_mask = orig_mask;
6715 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6717 struct lruvec *target_lruvec;
6718 unsigned long refaults;
6720 if (lru_gen_enabled())
6723 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6724 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6725 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6726 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6727 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6731 * This is the main entry point to direct page reclaim.
6733 * If a full scan of the inactive list fails to free enough memory then we
6734 * are "out of memory" and something needs to be killed.
6736 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6737 * high - the zone may be full of dirty or under-writeback pages, which this
6738 * caller can't do much about. We kick the writeback threads and take explicit
6739 * naps in the hope that some of these pages can be written. But if the
6740 * allocating task holds filesystem locks which prevent writeout this might not
6741 * work, and the allocation attempt will fail.
6743 * returns: 0, if no pages reclaimed
6744 * else, the number of pages reclaimed
6746 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6747 struct scan_control *sc)
6749 int initial_priority = sc->priority;
6750 pg_data_t *last_pgdat;
6754 delayacct_freepages_start();
6756 if (!cgroup_reclaim(sc))
6757 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6761 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6764 shrink_zones(zonelist, sc);
6766 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6769 if (sc->compaction_ready)
6773 * If we're getting trouble reclaiming, start doing
6774 * writepage even in laptop mode.
6776 if (sc->priority < DEF_PRIORITY - 2)
6777 sc->may_writepage = 1;
6778 } while (--sc->priority >= 0);
6781 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6783 if (zone->zone_pgdat == last_pgdat)
6785 last_pgdat = zone->zone_pgdat;
6787 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6789 if (cgroup_reclaim(sc)) {
6790 struct lruvec *lruvec;
6792 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6794 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6798 delayacct_freepages_end();
6800 if (sc->nr_reclaimed)
6801 return sc->nr_reclaimed;
6803 /* Aborted reclaim to try compaction? don't OOM, then */
6804 if (sc->compaction_ready)
6808 * We make inactive:active ratio decisions based on the node's
6809 * composition of memory, but a restrictive reclaim_idx or a
6810 * memory.low cgroup setting can exempt large amounts of
6811 * memory from reclaim. Neither of which are very common, so
6812 * instead of doing costly eligibility calculations of the
6813 * entire cgroup subtree up front, we assume the estimates are
6814 * good, and retry with forcible deactivation if that fails.
6816 if (sc->skipped_deactivate) {
6817 sc->priority = initial_priority;
6818 sc->force_deactivate = 1;
6819 sc->skipped_deactivate = 0;
6823 /* Untapped cgroup reserves? Don't OOM, retry. */
6824 if (sc->memcg_low_skipped) {
6825 sc->priority = initial_priority;
6826 sc->force_deactivate = 0;
6827 sc->memcg_low_reclaim = 1;
6828 sc->memcg_low_skipped = 0;
6835 static bool allow_direct_reclaim(pg_data_t *pgdat)
6838 unsigned long pfmemalloc_reserve = 0;
6839 unsigned long free_pages = 0;
6843 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6846 for (i = 0; i <= ZONE_NORMAL; i++) {
6847 zone = &pgdat->node_zones[i];
6848 if (!managed_zone(zone))
6851 if (!zone_reclaimable_pages(zone))
6854 pfmemalloc_reserve += min_wmark_pages(zone);
6855 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6858 /* If there are no reserves (unexpected config) then do not throttle */
6859 if (!pfmemalloc_reserve)
6862 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6864 /* kswapd must be awake if processes are being throttled */
6865 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6866 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6867 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6869 wake_up_interruptible(&pgdat->kswapd_wait);
6876 * Throttle direct reclaimers if backing storage is backed by the network
6877 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6878 * depleted. kswapd will continue to make progress and wake the processes
6879 * when the low watermark is reached.
6881 * Returns true if a fatal signal was delivered during throttling. If this
6882 * happens, the page allocator should not consider triggering the OOM killer.
6884 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6885 nodemask_t *nodemask)
6889 pg_data_t *pgdat = NULL;
6892 * Kernel threads should not be throttled as they may be indirectly
6893 * responsible for cleaning pages necessary for reclaim to make forward
6894 * progress. kjournald for example may enter direct reclaim while
6895 * committing a transaction where throttling it could forcing other
6896 * processes to block on log_wait_commit().
6898 if (current->flags & PF_KTHREAD)
6902 * If a fatal signal is pending, this process should not throttle.
6903 * It should return quickly so it can exit and free its memory
6905 if (fatal_signal_pending(current))
6909 * Check if the pfmemalloc reserves are ok by finding the first node
6910 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6911 * GFP_KERNEL will be required for allocating network buffers when
6912 * swapping over the network so ZONE_HIGHMEM is unusable.
6914 * Throttling is based on the first usable node and throttled processes
6915 * wait on a queue until kswapd makes progress and wakes them. There
6916 * is an affinity then between processes waking up and where reclaim
6917 * progress has been made assuming the process wakes on the same node.
6918 * More importantly, processes running on remote nodes will not compete
6919 * for remote pfmemalloc reserves and processes on different nodes
6920 * should make reasonable progress.
6922 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6923 gfp_zone(gfp_mask), nodemask) {
6924 if (zone_idx(zone) > ZONE_NORMAL)
6927 /* Throttle based on the first usable node */
6928 pgdat = zone->zone_pgdat;
6929 if (allow_direct_reclaim(pgdat))
6934 /* If no zone was usable by the allocation flags then do not throttle */
6938 /* Account for the throttling */
6939 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6942 * If the caller cannot enter the filesystem, it's possible that it
6943 * is due to the caller holding an FS lock or performing a journal
6944 * transaction in the case of a filesystem like ext[3|4]. In this case,
6945 * it is not safe to block on pfmemalloc_wait as kswapd could be
6946 * blocked waiting on the same lock. Instead, throttle for up to a
6947 * second before continuing.
6949 if (!(gfp_mask & __GFP_FS))
6950 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6951 allow_direct_reclaim(pgdat), HZ);
6953 /* Throttle until kswapd wakes the process */
6954 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6955 allow_direct_reclaim(pgdat));
6957 if (fatal_signal_pending(current))
6964 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6965 gfp_t gfp_mask, nodemask_t *nodemask)
6967 unsigned long nr_reclaimed;
6968 struct scan_control sc = {
6969 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6970 .gfp_mask = current_gfp_context(gfp_mask),
6971 .reclaim_idx = gfp_zone(gfp_mask),
6973 .nodemask = nodemask,
6974 .priority = DEF_PRIORITY,
6975 .may_writepage = !laptop_mode,
6981 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6982 * Confirm they are large enough for max values.
6984 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6985 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6986 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6989 * Do not enter reclaim if fatal signal was delivered while throttled.
6990 * 1 is returned so that the page allocator does not OOM kill at this
6993 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6996 set_task_reclaim_state(current, &sc.reclaim_state);
6997 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6999 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7001 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7002 set_task_reclaim_state(current, NULL);
7004 return nr_reclaimed;
7009 /* Only used by soft limit reclaim. Do not reuse for anything else. */
7010 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7011 gfp_t gfp_mask, bool noswap,
7013 unsigned long *nr_scanned)
7015 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7016 struct scan_control sc = {
7017 .nr_to_reclaim = SWAP_CLUSTER_MAX,
7018 .target_mem_cgroup = memcg,
7019 .may_writepage = !laptop_mode,
7021 .reclaim_idx = MAX_NR_ZONES - 1,
7022 .may_swap = !noswap,
7025 WARN_ON_ONCE(!current->reclaim_state);
7027 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7028 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7030 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7034 * NOTE: Although we can get the priority field, using it
7035 * here is not a good idea, since it limits the pages we can scan.
7036 * if we don't reclaim here, the shrink_node from balance_pgdat
7037 * will pick up pages from other mem cgroup's as well. We hack
7038 * the priority and make it zero.
7040 shrink_lruvec(lruvec, &sc);
7042 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7044 *nr_scanned = sc.nr_scanned;
7046 return sc.nr_reclaimed;
7049 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7050 unsigned long nr_pages,
7052 unsigned int reclaim_options)
7054 unsigned long nr_reclaimed;
7055 unsigned int noreclaim_flag;
7056 struct scan_control sc = {
7057 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7058 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7059 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7060 .reclaim_idx = MAX_NR_ZONES - 1,
7061 .target_mem_cgroup = memcg,
7062 .priority = DEF_PRIORITY,
7063 .may_writepage = !laptop_mode,
7065 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7066 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7069 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7070 * equal pressure on all the nodes. This is based on the assumption that
7071 * the reclaim does not bail out early.
7073 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7075 set_task_reclaim_state(current, &sc.reclaim_state);
7076 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7077 noreclaim_flag = memalloc_noreclaim_save();
7079 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7081 memalloc_noreclaim_restore(noreclaim_flag);
7082 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7083 set_task_reclaim_state(current, NULL);
7085 return nr_reclaimed;
7089 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7091 struct mem_cgroup *memcg;
7092 struct lruvec *lruvec;
7094 if (lru_gen_enabled()) {
7095 lru_gen_age_node(pgdat, sc);
7099 if (!can_age_anon_pages(pgdat, sc))
7102 lruvec = mem_cgroup_lruvec(NULL, pgdat);
7103 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7106 memcg = mem_cgroup_iter(NULL, NULL, NULL);
7108 lruvec = mem_cgroup_lruvec(memcg, pgdat);
7109 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7110 sc, LRU_ACTIVE_ANON);
7111 memcg = mem_cgroup_iter(NULL, memcg, NULL);
7115 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7121 * Check for watermark boosts top-down as the higher zones
7122 * are more likely to be boosted. Both watermarks and boosts
7123 * should not be checked at the same time as reclaim would
7124 * start prematurely when there is no boosting and a lower
7127 for (i = highest_zoneidx; i >= 0; i--) {
7128 zone = pgdat->node_zones + i;
7129 if (!managed_zone(zone))
7132 if (zone->watermark_boost)
7140 * Returns true if there is an eligible zone balanced for the request order
7141 * and highest_zoneidx
7143 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7146 unsigned long mark = -1;
7150 * Check watermarks bottom-up as lower zones are more likely to
7153 for (i = 0; i <= highest_zoneidx; i++) {
7154 zone = pgdat->node_zones + i;
7156 if (!managed_zone(zone))
7159 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7160 mark = wmark_pages(zone, WMARK_PROMO);
7162 mark = high_wmark_pages(zone);
7163 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7168 * If a node has no managed zone within highest_zoneidx, it does not
7169 * need balancing by definition. This can happen if a zone-restricted
7170 * allocation tries to wake a remote kswapd.
7178 /* Clear pgdat state for congested, dirty or under writeback. */
7179 static void clear_pgdat_congested(pg_data_t *pgdat)
7181 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7183 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
7184 clear_bit(PGDAT_DIRTY, &pgdat->flags);
7185 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7189 * Prepare kswapd for sleeping. This verifies that there are no processes
7190 * waiting in throttle_direct_reclaim() and that watermarks have been met.
7192 * Returns true if kswapd is ready to sleep
7194 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7195 int highest_zoneidx)
7198 * The throttled processes are normally woken up in balance_pgdat() as
7199 * soon as allow_direct_reclaim() is true. But there is a potential
7200 * race between when kswapd checks the watermarks and a process gets
7201 * throttled. There is also a potential race if processes get
7202 * throttled, kswapd wakes, a large process exits thereby balancing the
7203 * zones, which causes kswapd to exit balance_pgdat() before reaching
7204 * the wake up checks. If kswapd is going to sleep, no process should
7205 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7206 * the wake up is premature, processes will wake kswapd and get
7207 * throttled again. The difference from wake ups in balance_pgdat() is
7208 * that here we are under prepare_to_wait().
7210 if (waitqueue_active(&pgdat->pfmemalloc_wait))
7211 wake_up_all(&pgdat->pfmemalloc_wait);
7213 /* Hopeless node, leave it to direct reclaim */
7214 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7217 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7218 clear_pgdat_congested(pgdat);
7226 * kswapd shrinks a node of pages that are at or below the highest usable
7227 * zone that is currently unbalanced.
7229 * Returns true if kswapd scanned at least the requested number of pages to
7230 * reclaim or if the lack of progress was due to pages under writeback.
7231 * This is used to determine if the scanning priority needs to be raised.
7233 static bool kswapd_shrink_node(pg_data_t *pgdat,
7234 struct scan_control *sc)
7239 /* Reclaim a number of pages proportional to the number of zones */
7240 sc->nr_to_reclaim = 0;
7241 for (z = 0; z <= sc->reclaim_idx; z++) {
7242 zone = pgdat->node_zones + z;
7243 if (!managed_zone(zone))
7246 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7250 * Historically care was taken to put equal pressure on all zones but
7251 * now pressure is applied based on node LRU order.
7253 shrink_node(pgdat, sc);
7256 * Fragmentation may mean that the system cannot be rebalanced for
7257 * high-order allocations. If twice the allocation size has been
7258 * reclaimed then recheck watermarks only at order-0 to prevent
7259 * excessive reclaim. Assume that a process requested a high-order
7260 * can direct reclaim/compact.
7262 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7265 return sc->nr_scanned >= sc->nr_to_reclaim;
7268 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7270 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7275 for (i = 0; i <= highest_zoneidx; i++) {
7276 zone = pgdat->node_zones + i;
7278 if (!managed_zone(zone))
7282 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7284 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7289 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7291 update_reclaim_active(pgdat, highest_zoneidx, true);
7295 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7297 update_reclaim_active(pgdat, highest_zoneidx, false);
7301 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7302 * that are eligible for use by the caller until at least one zone is
7305 * Returns the order kswapd finished reclaiming at.
7307 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7308 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7309 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7310 * or lower is eligible for reclaim until at least one usable zone is
7313 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7316 unsigned long nr_soft_reclaimed;
7317 unsigned long nr_soft_scanned;
7318 unsigned long pflags;
7319 unsigned long nr_boost_reclaim;
7320 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7323 struct scan_control sc = {
7324 .gfp_mask = GFP_KERNEL,
7329 set_task_reclaim_state(current, &sc.reclaim_state);
7330 psi_memstall_enter(&pflags);
7331 __fs_reclaim_acquire(_THIS_IP_);
7333 count_vm_event(PAGEOUTRUN);
7336 * Account for the reclaim boost. Note that the zone boost is left in
7337 * place so that parallel allocations that are near the watermark will
7338 * stall or direct reclaim until kswapd is finished.
7340 nr_boost_reclaim = 0;
7341 for (i = 0; i <= highest_zoneidx; i++) {
7342 zone = pgdat->node_zones + i;
7343 if (!managed_zone(zone))
7346 nr_boost_reclaim += zone->watermark_boost;
7347 zone_boosts[i] = zone->watermark_boost;
7349 boosted = nr_boost_reclaim;
7352 set_reclaim_active(pgdat, highest_zoneidx);
7353 sc.priority = DEF_PRIORITY;
7355 unsigned long nr_reclaimed = sc.nr_reclaimed;
7356 bool raise_priority = true;
7360 sc.reclaim_idx = highest_zoneidx;
7363 * If the number of buffer_heads exceeds the maximum allowed
7364 * then consider reclaiming from all zones. This has a dual
7365 * purpose -- on 64-bit systems it is expected that
7366 * buffer_heads are stripped during active rotation. On 32-bit
7367 * systems, highmem pages can pin lowmem memory and shrinking
7368 * buffers can relieve lowmem pressure. Reclaim may still not
7369 * go ahead if all eligible zones for the original allocation
7370 * request are balanced to avoid excessive reclaim from kswapd.
7372 if (buffer_heads_over_limit) {
7373 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7374 zone = pgdat->node_zones + i;
7375 if (!managed_zone(zone))
7384 * If the pgdat is imbalanced then ignore boosting and preserve
7385 * the watermarks for a later time and restart. Note that the
7386 * zone watermarks will be still reset at the end of balancing
7387 * on the grounds that the normal reclaim should be enough to
7388 * re-evaluate if boosting is required when kswapd next wakes.
7390 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7391 if (!balanced && nr_boost_reclaim) {
7392 nr_boost_reclaim = 0;
7397 * If boosting is not active then only reclaim if there are no
7398 * eligible zones. Note that sc.reclaim_idx is not used as
7399 * buffer_heads_over_limit may have adjusted it.
7401 if (!nr_boost_reclaim && balanced)
7404 /* Limit the priority of boosting to avoid reclaim writeback */
7405 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7406 raise_priority = false;
7409 * Do not writeback or swap pages for boosted reclaim. The
7410 * intent is to relieve pressure not issue sub-optimal IO
7411 * from reclaim context. If no pages are reclaimed, the
7412 * reclaim will be aborted.
7414 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7415 sc.may_swap = !nr_boost_reclaim;
7418 * Do some background aging, to give pages a chance to be
7419 * referenced before reclaiming. All pages are rotated
7420 * regardless of classzone as this is about consistent aging.
7422 kswapd_age_node(pgdat, &sc);
7425 * If we're getting trouble reclaiming, start doing writepage
7426 * even in laptop mode.
7428 if (sc.priority < DEF_PRIORITY - 2)
7429 sc.may_writepage = 1;
7431 /* Call soft limit reclaim before calling shrink_node. */
7433 nr_soft_scanned = 0;
7434 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7435 sc.gfp_mask, &nr_soft_scanned);
7436 sc.nr_reclaimed += nr_soft_reclaimed;
7439 * There should be no need to raise the scanning priority if
7440 * enough pages are already being scanned that that high
7441 * watermark would be met at 100% efficiency.
7443 if (kswapd_shrink_node(pgdat, &sc))
7444 raise_priority = false;
7447 * If the low watermark is met there is no need for processes
7448 * to be throttled on pfmemalloc_wait as they should not be
7449 * able to safely make forward progress. Wake them
7451 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7452 allow_direct_reclaim(pgdat))
7453 wake_up_all(&pgdat->pfmemalloc_wait);
7455 /* Check if kswapd should be suspending */
7456 __fs_reclaim_release(_THIS_IP_);
7457 ret = try_to_freeze();
7458 __fs_reclaim_acquire(_THIS_IP_);
7459 if (ret || kthread_should_stop())
7463 * Raise priority if scanning rate is too low or there was no
7464 * progress in reclaiming pages
7466 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7467 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7470 * If reclaim made no progress for a boost, stop reclaim as
7471 * IO cannot be queued and it could be an infinite loop in
7472 * extreme circumstances.
7474 if (nr_boost_reclaim && !nr_reclaimed)
7477 if (raise_priority || !nr_reclaimed)
7479 } while (sc.priority >= 1);
7481 if (!sc.nr_reclaimed)
7482 pgdat->kswapd_failures++;
7485 clear_reclaim_active(pgdat, highest_zoneidx);
7487 /* If reclaim was boosted, account for the reclaim done in this pass */
7489 unsigned long flags;
7491 for (i = 0; i <= highest_zoneidx; i++) {
7492 if (!zone_boosts[i])
7495 /* Increments are under the zone lock */
7496 zone = pgdat->node_zones + i;
7497 spin_lock_irqsave(&zone->lock, flags);
7498 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7499 spin_unlock_irqrestore(&zone->lock, flags);
7503 * As there is now likely space, wakeup kcompact to defragment
7506 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7509 snapshot_refaults(NULL, pgdat);
7510 __fs_reclaim_release(_THIS_IP_);
7511 psi_memstall_leave(&pflags);
7512 set_task_reclaim_state(current, NULL);
7515 * Return the order kswapd stopped reclaiming at as
7516 * prepare_kswapd_sleep() takes it into account. If another caller
7517 * entered the allocator slow path while kswapd was awake, order will
7518 * remain at the higher level.
7524 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7525 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7526 * not a valid index then either kswapd runs for first time or kswapd couldn't
7527 * sleep after previous reclaim attempt (node is still unbalanced). In that
7528 * case return the zone index of the previous kswapd reclaim cycle.
7530 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7531 enum zone_type prev_highest_zoneidx)
7533 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7535 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7538 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7539 unsigned int highest_zoneidx)
7544 if (freezing(current) || kthread_should_stop())
7547 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7550 * Try to sleep for a short interval. Note that kcompactd will only be
7551 * woken if it is possible to sleep for a short interval. This is
7552 * deliberate on the assumption that if reclaim cannot keep an
7553 * eligible zone balanced that it's also unlikely that compaction will
7556 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7558 * Compaction records what page blocks it recently failed to
7559 * isolate pages from and skips them in the future scanning.
7560 * When kswapd is going to sleep, it is reasonable to assume
7561 * that pages and compaction may succeed so reset the cache.
7563 reset_isolation_suitable(pgdat);
7566 * We have freed the memory, now we should compact it to make
7567 * allocation of the requested order possible.
7569 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7571 remaining = schedule_timeout(HZ/10);
7574 * If woken prematurely then reset kswapd_highest_zoneidx and
7575 * order. The values will either be from a wakeup request or
7576 * the previous request that slept prematurely.
7579 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7580 kswapd_highest_zoneidx(pgdat,
7583 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7584 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7587 finish_wait(&pgdat->kswapd_wait, &wait);
7588 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7592 * After a short sleep, check if it was a premature sleep. If not, then
7593 * go fully to sleep until explicitly woken up.
7596 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7597 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7600 * vmstat counters are not perfectly accurate and the estimated
7601 * value for counters such as NR_FREE_PAGES can deviate from the
7602 * true value by nr_online_cpus * threshold. To avoid the zone
7603 * watermarks being breached while under pressure, we reduce the
7604 * per-cpu vmstat threshold while kswapd is awake and restore
7605 * them before going back to sleep.
7607 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7609 if (!kthread_should_stop())
7612 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7615 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7617 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7619 finish_wait(&pgdat->kswapd_wait, &wait);
7623 * The background pageout daemon, started as a kernel thread
7624 * from the init process.
7626 * This basically trickles out pages so that we have _some_
7627 * free memory available even if there is no other activity
7628 * that frees anything up. This is needed for things like routing
7629 * etc, where we otherwise might have all activity going on in
7630 * asynchronous contexts that cannot page things out.
7632 * If there are applications that are active memory-allocators
7633 * (most normal use), this basically shouldn't matter.
7635 static int kswapd(void *p)
7637 unsigned int alloc_order, reclaim_order;
7638 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7639 pg_data_t *pgdat = (pg_data_t *)p;
7640 struct task_struct *tsk = current;
7641 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7643 if (!cpumask_empty(cpumask))
7644 set_cpus_allowed_ptr(tsk, cpumask);
7647 * Tell the memory management that we're a "memory allocator",
7648 * and that if we need more memory we should get access to it
7649 * regardless (see "__alloc_pages()"). "kswapd" should
7650 * never get caught in the normal page freeing logic.
7652 * (Kswapd normally doesn't need memory anyway, but sometimes
7653 * you need a small amount of memory in order to be able to
7654 * page out something else, and this flag essentially protects
7655 * us from recursively trying to free more memory as we're
7656 * trying to free the first piece of memory in the first place).
7658 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7661 WRITE_ONCE(pgdat->kswapd_order, 0);
7662 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7663 atomic_set(&pgdat->nr_writeback_throttled, 0);
7667 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7668 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7672 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7675 /* Read the new order and highest_zoneidx */
7676 alloc_order = READ_ONCE(pgdat->kswapd_order);
7677 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7679 WRITE_ONCE(pgdat->kswapd_order, 0);
7680 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7682 ret = try_to_freeze();
7683 if (kthread_should_stop())
7687 * We can speed up thawing tasks if we don't call balance_pgdat
7688 * after returning from the refrigerator
7694 * Reclaim begins at the requested order but if a high-order
7695 * reclaim fails then kswapd falls back to reclaiming for
7696 * order-0. If that happens, kswapd will consider sleeping
7697 * for the order it finished reclaiming at (reclaim_order)
7698 * but kcompactd is woken to compact for the original
7699 * request (alloc_order).
7701 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7703 reclaim_order = balance_pgdat(pgdat, alloc_order,
7705 if (reclaim_order < alloc_order)
7706 goto kswapd_try_sleep;
7709 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7715 * A zone is low on free memory or too fragmented for high-order memory. If
7716 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7717 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7718 * has failed or is not needed, still wake up kcompactd if only compaction is
7721 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7722 enum zone_type highest_zoneidx)
7725 enum zone_type curr_idx;
7727 if (!managed_zone(zone))
7730 if (!cpuset_zone_allowed(zone, gfp_flags))
7733 pgdat = zone->zone_pgdat;
7734 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7736 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7737 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7739 if (READ_ONCE(pgdat->kswapd_order) < order)
7740 WRITE_ONCE(pgdat->kswapd_order, order);
7742 if (!waitqueue_active(&pgdat->kswapd_wait))
7745 /* Hopeless node, leave it to direct reclaim if possible */
7746 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7747 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7748 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7750 * There may be plenty of free memory available, but it's too
7751 * fragmented for high-order allocations. Wake up kcompactd
7752 * and rely on compaction_suitable() to determine if it's
7753 * needed. If it fails, it will defer subsequent attempts to
7754 * ratelimit its work.
7756 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7757 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7761 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7763 wake_up_interruptible(&pgdat->kswapd_wait);
7766 #ifdef CONFIG_HIBERNATION
7768 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7771 * Rather than trying to age LRUs the aim is to preserve the overall
7772 * LRU order by reclaiming preferentially
7773 * inactive > active > active referenced > active mapped
7775 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7777 struct scan_control sc = {
7778 .nr_to_reclaim = nr_to_reclaim,
7779 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7780 .reclaim_idx = MAX_NR_ZONES - 1,
7781 .priority = DEF_PRIORITY,
7785 .hibernation_mode = 1,
7787 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7788 unsigned long nr_reclaimed;
7789 unsigned int noreclaim_flag;
7791 fs_reclaim_acquire(sc.gfp_mask);
7792 noreclaim_flag = memalloc_noreclaim_save();
7793 set_task_reclaim_state(current, &sc.reclaim_state);
7795 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7797 set_task_reclaim_state(current, NULL);
7798 memalloc_noreclaim_restore(noreclaim_flag);
7799 fs_reclaim_release(sc.gfp_mask);
7801 return nr_reclaimed;
7803 #endif /* CONFIG_HIBERNATION */
7806 * This kswapd start function will be called by init and node-hot-add.
7808 void kswapd_run(int nid)
7810 pg_data_t *pgdat = NODE_DATA(nid);
7812 pgdat_kswapd_lock(pgdat);
7813 if (!pgdat->kswapd) {
7814 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7815 if (IS_ERR(pgdat->kswapd)) {
7816 /* failure at boot is fatal */
7817 BUG_ON(system_state < SYSTEM_RUNNING);
7818 pr_err("Failed to start kswapd on node %d\n", nid);
7819 pgdat->kswapd = NULL;
7822 pgdat_kswapd_unlock(pgdat);
7826 * Called by memory hotplug when all memory in a node is offlined. Caller must
7827 * be holding mem_hotplug_begin/done().
7829 void kswapd_stop(int nid)
7831 pg_data_t *pgdat = NODE_DATA(nid);
7832 struct task_struct *kswapd;
7834 pgdat_kswapd_lock(pgdat);
7835 kswapd = pgdat->kswapd;
7837 kthread_stop(kswapd);
7838 pgdat->kswapd = NULL;
7840 pgdat_kswapd_unlock(pgdat);
7843 static int __init kswapd_init(void)
7848 for_each_node_state(nid, N_MEMORY)
7853 module_init(kswapd_init)
7859 * If non-zero call node_reclaim when the number of free pages falls below
7862 int node_reclaim_mode __read_mostly;
7865 * Priority for NODE_RECLAIM. This determines the fraction of pages
7866 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7869 #define NODE_RECLAIM_PRIORITY 4
7872 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7875 int sysctl_min_unmapped_ratio = 1;
7878 * If the number of slab pages in a zone grows beyond this percentage then
7879 * slab reclaim needs to occur.
7881 int sysctl_min_slab_ratio = 5;
7883 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7885 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7886 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7887 node_page_state(pgdat, NR_ACTIVE_FILE);
7890 * It's possible for there to be more file mapped pages than
7891 * accounted for by the pages on the file LRU lists because
7892 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7894 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7897 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7898 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7900 unsigned long nr_pagecache_reclaimable;
7901 unsigned long delta = 0;
7904 * If RECLAIM_UNMAP is set, then all file pages are considered
7905 * potentially reclaimable. Otherwise, we have to worry about
7906 * pages like swapcache and node_unmapped_file_pages() provides
7909 if (node_reclaim_mode & RECLAIM_UNMAP)
7910 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7912 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7914 /* If we can't clean pages, remove dirty pages from consideration */
7915 if (!(node_reclaim_mode & RECLAIM_WRITE))
7916 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7918 /* Watch for any possible underflows due to delta */
7919 if (unlikely(delta > nr_pagecache_reclaimable))
7920 delta = nr_pagecache_reclaimable;
7922 return nr_pagecache_reclaimable - delta;
7926 * Try to free up some pages from this node through reclaim.
7928 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7930 /* Minimum pages needed in order to stay on node */
7931 const unsigned long nr_pages = 1 << order;
7932 struct task_struct *p = current;
7933 unsigned int noreclaim_flag;
7934 struct scan_control sc = {
7935 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7936 .gfp_mask = current_gfp_context(gfp_mask),
7938 .priority = NODE_RECLAIM_PRIORITY,
7939 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7940 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7942 .reclaim_idx = gfp_zone(gfp_mask),
7944 unsigned long pflags;
7946 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7950 psi_memstall_enter(&pflags);
7951 fs_reclaim_acquire(sc.gfp_mask);
7953 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7955 noreclaim_flag = memalloc_noreclaim_save();
7956 set_task_reclaim_state(p, &sc.reclaim_state);
7958 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7959 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7961 * Free memory by calling shrink node with increasing
7962 * priorities until we have enough memory freed.
7965 shrink_node(pgdat, &sc);
7966 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7969 set_task_reclaim_state(p, NULL);
7970 memalloc_noreclaim_restore(noreclaim_flag);
7971 fs_reclaim_release(sc.gfp_mask);
7972 psi_memstall_leave(&pflags);
7974 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7976 return sc.nr_reclaimed >= nr_pages;
7979 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7984 * Node reclaim reclaims unmapped file backed pages and
7985 * slab pages if we are over the defined limits.
7987 * A small portion of unmapped file backed pages is needed for
7988 * file I/O otherwise pages read by file I/O will be immediately
7989 * thrown out if the node is overallocated. So we do not reclaim
7990 * if less than a specified percentage of the node is used by
7991 * unmapped file backed pages.
7993 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7994 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7995 pgdat->min_slab_pages)
7996 return NODE_RECLAIM_FULL;
7999 * Do not scan if the allocation should not be delayed.
8001 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8002 return NODE_RECLAIM_NOSCAN;
8005 * Only run node reclaim on the local node or on nodes that do not
8006 * have associated processors. This will favor the local processor
8007 * over remote processors and spread off node memory allocations
8008 * as wide as possible.
8010 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8011 return NODE_RECLAIM_NOSCAN;
8013 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8014 return NODE_RECLAIM_NOSCAN;
8016 ret = __node_reclaim(pgdat, gfp_mask, order);
8017 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8020 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8026 void check_move_unevictable_pages(struct pagevec *pvec)
8028 struct folio_batch fbatch;
8031 folio_batch_init(&fbatch);
8032 for (i = 0; i < pvec->nr; i++) {
8033 struct page *page = pvec->pages[i];
8035 if (PageTransTail(page))
8037 folio_batch_add(&fbatch, page_folio(page));
8039 check_move_unevictable_folios(&fbatch);
8041 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
8044 * check_move_unevictable_folios - Move evictable folios to appropriate zone
8046 * @fbatch: Batch of lru folios to check.
8048 * Checks folios for evictability, if an evictable folio is in the unevictable
8049 * lru list, moves it to the appropriate evictable lru list. This function
8050 * should be only used for lru folios.
8052 void check_move_unevictable_folios(struct folio_batch *fbatch)
8054 struct lruvec *lruvec = NULL;
8059 for (i = 0; i < fbatch->nr; i++) {
8060 struct folio *folio = fbatch->folios[i];
8061 int nr_pages = folio_nr_pages(folio);
8063 pgscanned += nr_pages;
8065 /* block memcg migration while the folio moves between lrus */
8066 if (!folio_test_clear_lru(folio))
8069 lruvec = folio_lruvec_relock_irq(folio, lruvec);
8070 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8071 lruvec_del_folio(lruvec, folio);
8072 folio_clear_unevictable(folio);
8073 lruvec_add_folio(lruvec, folio);
8074 pgrescued += nr_pages;
8076 folio_set_lru(folio);
8080 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8081 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8082 unlock_page_lruvec_irq(lruvec);
8083 } else if (pgscanned) {
8084 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8087 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);