1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
55 #include <linux/ethtool.h>
57 #include <linux/socket.h>
58 #include <linux/file.h>
59 #include <linux/net.h>
60 #include <linux/interrupt.h>
61 #include <linux/thread_info.h>
62 #include <linux/rcupdate.h>
63 #include <linux/netdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/seq_file.h>
66 #include <linux/mutex.h>
67 #include <linux/if_bridge.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
93 #include <net/compat.h>
95 #include <net/cls_cgroup.h>
98 #include <linux/netfilter.h>
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
107 #include <linux/ptp_clock_kernel.h>
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
114 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
115 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
116 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 static int sock_close(struct inode *inode, struct file *file);
119 static __poll_t sock_poll(struct file *file,
120 struct poll_table_struct *wait);
121 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
123 static long compat_sock_ioctl(struct file *file,
124 unsigned int cmd, unsigned long arg);
126 static int sock_fasync(int fd, struct file *filp, int on);
127 static ssize_t sock_sendpage(struct file *file, struct page *page,
128 int offset, size_t size, loff_t *ppos, int more);
129 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
130 struct pipe_inode_info *pipe, size_t len,
133 #ifdef CONFIG_PROC_FS
134 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
136 struct socket *sock = f->private_data;
138 if (sock->ops->show_fdinfo)
139 sock->ops->show_fdinfo(m, sock);
142 #define sock_show_fdinfo NULL
146 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
147 * in the operation structures but are done directly via the socketcall() multiplexor.
150 static const struct file_operations socket_file_ops = {
151 .owner = THIS_MODULE,
153 .read_iter = sock_read_iter,
154 .write_iter = sock_write_iter,
156 .unlocked_ioctl = sock_ioctl,
158 .compat_ioctl = compat_sock_ioctl,
161 .release = sock_close,
162 .fasync = sock_fasync,
163 .sendpage = sock_sendpage,
164 .splice_write = generic_splice_sendpage,
165 .splice_read = sock_splice_read,
166 .show_fdinfo = sock_show_fdinfo,
169 static const char * const pf_family_names[] = {
170 [PF_UNSPEC] = "PF_UNSPEC",
171 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
172 [PF_INET] = "PF_INET",
173 [PF_AX25] = "PF_AX25",
175 [PF_APPLETALK] = "PF_APPLETALK",
176 [PF_NETROM] = "PF_NETROM",
177 [PF_BRIDGE] = "PF_BRIDGE",
178 [PF_ATMPVC] = "PF_ATMPVC",
180 [PF_INET6] = "PF_INET6",
181 [PF_ROSE] = "PF_ROSE",
182 [PF_DECnet] = "PF_DECnet",
183 [PF_NETBEUI] = "PF_NETBEUI",
184 [PF_SECURITY] = "PF_SECURITY",
186 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
187 [PF_PACKET] = "PF_PACKET",
189 [PF_ECONET] = "PF_ECONET",
190 [PF_ATMSVC] = "PF_ATMSVC",
193 [PF_IRDA] = "PF_IRDA",
194 [PF_PPPOX] = "PF_PPPOX",
195 [PF_WANPIPE] = "PF_WANPIPE",
198 [PF_MPLS] = "PF_MPLS",
200 [PF_TIPC] = "PF_TIPC",
201 [PF_BLUETOOTH] = "PF_BLUETOOTH",
202 [PF_IUCV] = "PF_IUCV",
203 [PF_RXRPC] = "PF_RXRPC",
204 [PF_ISDN] = "PF_ISDN",
205 [PF_PHONET] = "PF_PHONET",
206 [PF_IEEE802154] = "PF_IEEE802154",
207 [PF_CAIF] = "PF_CAIF",
210 [PF_VSOCK] = "PF_VSOCK",
212 [PF_QIPCRTR] = "PF_QIPCRTR",
215 [PF_MCTP] = "PF_MCTP",
219 * The protocol list. Each protocol is registered in here.
222 static DEFINE_SPINLOCK(net_family_lock);
223 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
227 * Move socket addresses back and forth across the kernel/user
228 * divide and look after the messy bits.
232 * move_addr_to_kernel - copy a socket address into kernel space
233 * @uaddr: Address in user space
234 * @kaddr: Address in kernel space
235 * @ulen: Length in user space
237 * The address is copied into kernel space. If the provided address is
238 * too long an error code of -EINVAL is returned. If the copy gives
239 * invalid addresses -EFAULT is returned. On a success 0 is returned.
242 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
244 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
248 if (copy_from_user(kaddr, uaddr, ulen))
250 return audit_sockaddr(ulen, kaddr);
254 * move_addr_to_user - copy an address to user space
255 * @kaddr: kernel space address
256 * @klen: length of address in kernel
257 * @uaddr: user space address
258 * @ulen: pointer to user length field
260 * The value pointed to by ulen on entry is the buffer length available.
261 * This is overwritten with the buffer space used. -EINVAL is returned
262 * if an overlong buffer is specified or a negative buffer size. -EFAULT
263 * is returned if either the buffer or the length field are not
265 * After copying the data up to the limit the user specifies, the true
266 * length of the data is written over the length limit the user
267 * specified. Zero is returned for a success.
270 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
271 void __user *uaddr, int __user *ulen)
276 BUG_ON(klen > sizeof(struct sockaddr_storage));
277 err = get_user(len, ulen);
285 if (audit_sockaddr(klen, kaddr))
287 if (copy_to_user(uaddr, kaddr, len))
291 * "fromlen shall refer to the value before truncation.."
294 return __put_user(klen, ulen);
297 static struct kmem_cache *sock_inode_cachep __ro_after_init;
299 static struct inode *sock_alloc_inode(struct super_block *sb)
301 struct socket_alloc *ei;
303 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
306 init_waitqueue_head(&ei->socket.wq.wait);
307 ei->socket.wq.fasync_list = NULL;
308 ei->socket.wq.flags = 0;
310 ei->socket.state = SS_UNCONNECTED;
311 ei->socket.flags = 0;
312 ei->socket.ops = NULL;
313 ei->socket.sk = NULL;
314 ei->socket.file = NULL;
316 return &ei->vfs_inode;
319 static void sock_free_inode(struct inode *inode)
321 struct socket_alloc *ei;
323 ei = container_of(inode, struct socket_alloc, vfs_inode);
324 kmem_cache_free(sock_inode_cachep, ei);
327 static void init_once(void *foo)
329 struct socket_alloc *ei = (struct socket_alloc *)foo;
331 inode_init_once(&ei->vfs_inode);
334 static void init_inodecache(void)
336 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
337 sizeof(struct socket_alloc),
339 (SLAB_HWCACHE_ALIGN |
340 SLAB_RECLAIM_ACCOUNT |
341 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
343 BUG_ON(sock_inode_cachep == NULL);
346 static const struct super_operations sockfs_ops = {
347 .alloc_inode = sock_alloc_inode,
348 .free_inode = sock_free_inode,
349 .statfs = simple_statfs,
353 * sockfs_dname() is called from d_path().
355 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
357 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
358 d_inode(dentry)->i_ino);
361 static const struct dentry_operations sockfs_dentry_operations = {
362 .d_dname = sockfs_dname,
365 static int sockfs_xattr_get(const struct xattr_handler *handler,
366 struct dentry *dentry, struct inode *inode,
367 const char *suffix, void *value, size_t size)
370 if (dentry->d_name.len + 1 > size)
372 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
374 return dentry->d_name.len + 1;
377 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
378 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
379 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
381 static const struct xattr_handler sockfs_xattr_handler = {
382 .name = XATTR_NAME_SOCKPROTONAME,
383 .get = sockfs_xattr_get,
386 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
387 struct user_namespace *mnt_userns,
388 struct dentry *dentry, struct inode *inode,
389 const char *suffix, const void *value,
390 size_t size, int flags)
392 /* Handled by LSM. */
396 static const struct xattr_handler sockfs_security_xattr_handler = {
397 .prefix = XATTR_SECURITY_PREFIX,
398 .set = sockfs_security_xattr_set,
401 static const struct xattr_handler *sockfs_xattr_handlers[] = {
402 &sockfs_xattr_handler,
403 &sockfs_security_xattr_handler,
407 static int sockfs_init_fs_context(struct fs_context *fc)
409 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
412 ctx->ops = &sockfs_ops;
413 ctx->dops = &sockfs_dentry_operations;
414 ctx->xattr = sockfs_xattr_handlers;
418 static struct vfsmount *sock_mnt __read_mostly;
420 static struct file_system_type sock_fs_type = {
422 .init_fs_context = sockfs_init_fs_context,
423 .kill_sb = kill_anon_super,
427 * Obtains the first available file descriptor and sets it up for use.
429 * These functions create file structures and maps them to fd space
430 * of the current process. On success it returns file descriptor
431 * and file struct implicitly stored in sock->file.
432 * Note that another thread may close file descriptor before we return
433 * from this function. We use the fact that now we do not refer
434 * to socket after mapping. If one day we will need it, this
435 * function will increment ref. count on file by 1.
437 * In any case returned fd MAY BE not valid!
438 * This race condition is unavoidable
439 * with shared fd spaces, we cannot solve it inside kernel,
440 * but we take care of internal coherence yet.
444 * sock_alloc_file - Bind a &socket to a &file
446 * @flags: file status flags
447 * @dname: protocol name
449 * Returns the &file bound with @sock, implicitly storing it
450 * in sock->file. If dname is %NULL, sets to "".
451 * On failure the return is a ERR pointer (see linux/err.h).
452 * This function uses GFP_KERNEL internally.
455 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
460 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
462 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
463 O_RDWR | (flags & O_NONBLOCK),
471 file->private_data = sock;
472 stream_open(SOCK_INODE(sock), file);
475 EXPORT_SYMBOL(sock_alloc_file);
477 static int sock_map_fd(struct socket *sock, int flags)
479 struct file *newfile;
480 int fd = get_unused_fd_flags(flags);
481 if (unlikely(fd < 0)) {
486 newfile = sock_alloc_file(sock, flags, NULL);
487 if (!IS_ERR(newfile)) {
488 fd_install(fd, newfile);
493 return PTR_ERR(newfile);
497 * sock_from_file - Return the &socket bounded to @file.
500 * On failure returns %NULL.
503 struct socket *sock_from_file(struct file *file)
505 if (file->f_op == &socket_file_ops)
506 return file->private_data; /* set in sock_map_fd */
510 EXPORT_SYMBOL(sock_from_file);
513 * sockfd_lookup - Go from a file number to its socket slot
515 * @err: pointer to an error code return
517 * The file handle passed in is locked and the socket it is bound
518 * to is returned. If an error occurs the err pointer is overwritten
519 * with a negative errno code and NULL is returned. The function checks
520 * for both invalid handles and passing a handle which is not a socket.
522 * On a success the socket object pointer is returned.
525 struct socket *sockfd_lookup(int fd, int *err)
536 sock = sock_from_file(file);
543 EXPORT_SYMBOL(sockfd_lookup);
545 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
547 struct fd f = fdget(fd);
552 sock = sock_from_file(f.file);
554 *fput_needed = f.flags & FDPUT_FPUT;
563 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
569 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
579 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
584 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
591 static int sockfs_setattr(struct user_namespace *mnt_userns,
592 struct dentry *dentry, struct iattr *iattr)
594 int err = simple_setattr(&init_user_ns, dentry, iattr);
596 if (!err && (iattr->ia_valid & ATTR_UID)) {
597 struct socket *sock = SOCKET_I(d_inode(dentry));
600 sock->sk->sk_uid = iattr->ia_uid;
608 static const struct inode_operations sockfs_inode_ops = {
609 .listxattr = sockfs_listxattr,
610 .setattr = sockfs_setattr,
614 * sock_alloc - allocate a socket
616 * Allocate a new inode and socket object. The two are bound together
617 * and initialised. The socket is then returned. If we are out of inodes
618 * NULL is returned. This functions uses GFP_KERNEL internally.
621 struct socket *sock_alloc(void)
626 inode = new_inode_pseudo(sock_mnt->mnt_sb);
630 sock = SOCKET_I(inode);
632 inode->i_ino = get_next_ino();
633 inode->i_mode = S_IFSOCK | S_IRWXUGO;
634 inode->i_uid = current_fsuid();
635 inode->i_gid = current_fsgid();
636 inode->i_op = &sockfs_inode_ops;
640 EXPORT_SYMBOL(sock_alloc);
642 static void __sock_release(struct socket *sock, struct inode *inode)
645 struct module *owner = sock->ops->owner;
649 sock->ops->release(sock);
657 if (sock->wq.fasync_list)
658 pr_err("%s: fasync list not empty!\n", __func__);
661 iput(SOCK_INODE(sock));
668 * sock_release - close a socket
669 * @sock: socket to close
671 * The socket is released from the protocol stack if it has a release
672 * callback, and the inode is then released if the socket is bound to
673 * an inode not a file.
675 void sock_release(struct socket *sock)
677 __sock_release(sock, NULL);
679 EXPORT_SYMBOL(sock_release);
681 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
683 u8 flags = *tx_flags;
685 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
686 flags |= SKBTX_HW_TSTAMP;
688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 flags |= SKBTX_SW_TSTAMP;
691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 flags |= SKBTX_SCHED_TSTAMP;
696 EXPORT_SYMBOL(__sock_tx_timestamp);
698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
702 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
704 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
705 inet_sendmsg, sock, msg,
707 BUG_ON(ret == -EIOCBQUEUED);
712 * sock_sendmsg - send a message through @sock
714 * @msg: message to send
716 * Sends @msg through @sock, passing through LSM.
717 * Returns the number of bytes sent, or an error code.
719 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
721 int err = security_socket_sendmsg(sock, msg,
724 return err ?: sock_sendmsg_nosec(sock, msg);
726 EXPORT_SYMBOL(sock_sendmsg);
729 * kernel_sendmsg - send a message through @sock (kernel-space)
731 * @msg: message header
733 * @num: vec array length
734 * @size: total message data size
736 * Builds the message data with @vec and sends it through @sock.
737 * Returns the number of bytes sent, or an error code.
740 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
741 struct kvec *vec, size_t num, size_t size)
743 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
744 return sock_sendmsg(sock, msg);
746 EXPORT_SYMBOL(kernel_sendmsg);
749 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
751 * @msg: message header
752 * @vec: output s/g array
753 * @num: output s/g array length
754 * @size: total message data size
756 * Builds the message data with @vec and sends it through @sock.
757 * Returns the number of bytes sent, or an error code.
758 * Caller must hold @sk.
761 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
762 struct kvec *vec, size_t num, size_t size)
764 struct socket *sock = sk->sk_socket;
766 if (!sock->ops->sendmsg_locked)
767 return sock_no_sendmsg_locked(sk, msg, size);
769 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
771 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
773 EXPORT_SYMBOL(kernel_sendmsg_locked);
775 static bool skb_is_err_queue(const struct sk_buff *skb)
777 /* pkt_type of skbs enqueued on the error queue are set to
778 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
779 * in recvmsg, since skbs received on a local socket will never
780 * have a pkt_type of PACKET_OUTGOING.
782 return skb->pkt_type == PACKET_OUTGOING;
785 /* On transmit, software and hardware timestamps are returned independently.
786 * As the two skb clones share the hardware timestamp, which may be updated
787 * before the software timestamp is received, a hardware TX timestamp may be
788 * returned only if there is no software TX timestamp. Ignore false software
789 * timestamps, which may be made in the __sock_recv_timestamp() call when the
790 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
791 * hardware timestamp.
793 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
795 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
798 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
800 struct scm_ts_pktinfo ts_pktinfo;
801 struct net_device *orig_dev;
803 if (!skb_mac_header_was_set(skb))
806 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
809 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
811 ts_pktinfo.if_index = orig_dev->ifindex;
814 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
815 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
816 sizeof(ts_pktinfo), &ts_pktinfo);
820 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
822 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
825 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
826 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
827 struct scm_timestamping_internal tss;
829 int empty = 1, false_tstamp = 0;
830 struct skb_shared_hwtstamps *shhwtstamps =
833 /* Race occurred between timestamp enabling and packet
834 receiving. Fill in the current time for now. */
835 if (need_software_tstamp && skb->tstamp == 0) {
836 __net_timestamp(skb);
840 if (need_software_tstamp) {
841 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
843 struct __kernel_sock_timeval tv;
845 skb_get_new_timestamp(skb, &tv);
846 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
849 struct __kernel_old_timeval tv;
851 skb_get_timestamp(skb, &tv);
852 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
857 struct __kernel_timespec ts;
859 skb_get_new_timestampns(skb, &ts);
860 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
863 struct __kernel_old_timespec ts;
865 skb_get_timestampns(skb, &ts);
866 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
872 memset(&tss, 0, sizeof(tss));
873 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
874 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
877 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
878 !skb_is_swtx_tstamp(skb, false_tstamp)) {
879 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
880 ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
882 if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
886 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
887 !skb_is_err_queue(skb))
888 put_ts_pktinfo(msg, skb);
892 if (sock_flag(sk, SOCK_TSTAMP_NEW))
893 put_cmsg_scm_timestamping64(msg, &tss);
895 put_cmsg_scm_timestamping(msg, &tss);
897 if (skb_is_err_queue(skb) && skb->len &&
898 SKB_EXT_ERR(skb)->opt_stats)
899 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
900 skb->len, skb->data);
903 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
905 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
910 if (!sock_flag(sk, SOCK_WIFI_STATUS))
912 if (!skb->wifi_acked_valid)
915 ack = skb->wifi_acked;
917 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
919 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
921 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
924 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
925 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
926 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
929 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
932 sock_recv_timestamp(msg, sk, skb);
933 sock_recv_drops(msg, sk, skb);
935 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
937 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
939 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
941 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
944 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
945 inet_recvmsg, sock, msg, msg_data_left(msg),
950 * sock_recvmsg - receive a message from @sock
952 * @msg: message to receive
953 * @flags: message flags
955 * Receives @msg from @sock, passing through LSM. Returns the total number
956 * of bytes received, or an error.
958 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
960 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
962 return err ?: sock_recvmsg_nosec(sock, msg, flags);
964 EXPORT_SYMBOL(sock_recvmsg);
967 * kernel_recvmsg - Receive a message from a socket (kernel space)
968 * @sock: The socket to receive the message from
969 * @msg: Received message
970 * @vec: Input s/g array for message data
971 * @num: Size of input s/g array
972 * @size: Number of bytes to read
973 * @flags: Message flags (MSG_DONTWAIT, etc...)
975 * On return the msg structure contains the scatter/gather array passed in the
976 * vec argument. The array is modified so that it consists of the unfilled
977 * portion of the original array.
979 * The returned value is the total number of bytes received, or an error.
982 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
983 struct kvec *vec, size_t num, size_t size, int flags)
985 msg->msg_control_is_user = false;
986 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
987 return sock_recvmsg(sock, msg, flags);
989 EXPORT_SYMBOL(kernel_recvmsg);
991 static ssize_t sock_sendpage(struct file *file, struct page *page,
992 int offset, size_t size, loff_t *ppos, int more)
997 sock = file->private_data;
999 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1000 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1003 return kernel_sendpage(sock, page, offset, size, flags);
1006 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1007 struct pipe_inode_info *pipe, size_t len,
1010 struct socket *sock = file->private_data;
1012 if (unlikely(!sock->ops->splice_read))
1013 return generic_file_splice_read(file, ppos, pipe, len, flags);
1015 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1018 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1020 struct file *file = iocb->ki_filp;
1021 struct socket *sock = file->private_data;
1022 struct msghdr msg = {.msg_iter = *to,
1026 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1027 msg.msg_flags = MSG_DONTWAIT;
1029 if (iocb->ki_pos != 0)
1032 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1035 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1040 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1042 struct file *file = iocb->ki_filp;
1043 struct socket *sock = file->private_data;
1044 struct msghdr msg = {.msg_iter = *from,
1048 if (iocb->ki_pos != 0)
1051 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1052 msg.msg_flags = MSG_DONTWAIT;
1054 if (sock->type == SOCK_SEQPACKET)
1055 msg.msg_flags |= MSG_EOR;
1057 res = sock_sendmsg(sock, &msg);
1058 *from = msg.msg_iter;
1063 * Atomic setting of ioctl hooks to avoid race
1064 * with module unload.
1067 static DEFINE_MUTEX(br_ioctl_mutex);
1068 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1069 unsigned int cmd, struct ifreq *ifr,
1072 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1073 unsigned int cmd, struct ifreq *ifr,
1076 mutex_lock(&br_ioctl_mutex);
1077 br_ioctl_hook = hook;
1078 mutex_unlock(&br_ioctl_mutex);
1080 EXPORT_SYMBOL(brioctl_set);
1082 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1083 struct ifreq *ifr, void __user *uarg)
1088 request_module("bridge");
1090 mutex_lock(&br_ioctl_mutex);
1092 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1093 mutex_unlock(&br_ioctl_mutex);
1098 static DEFINE_MUTEX(vlan_ioctl_mutex);
1099 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1101 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1103 mutex_lock(&vlan_ioctl_mutex);
1104 vlan_ioctl_hook = hook;
1105 mutex_unlock(&vlan_ioctl_mutex);
1107 EXPORT_SYMBOL(vlan_ioctl_set);
1109 static long sock_do_ioctl(struct net *net, struct socket *sock,
1110 unsigned int cmd, unsigned long arg)
1115 void __user *argp = (void __user *)arg;
1118 err = sock->ops->ioctl(sock, cmd, arg);
1121 * If this ioctl is unknown try to hand it down
1122 * to the NIC driver.
1124 if (err != -ENOIOCTLCMD)
1127 if (get_user_ifreq(&ifr, &data, argp))
1129 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1130 if (!err && need_copyout)
1131 if (put_user_ifreq(&ifr, argp))
1138 * With an ioctl, arg may well be a user mode pointer, but we don't know
1139 * what to do with it - that's up to the protocol still.
1142 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1144 struct socket *sock;
1146 void __user *argp = (void __user *)arg;
1150 sock = file->private_data;
1153 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1157 if (get_user_ifreq(&ifr, &data, argp))
1159 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1160 if (!err && need_copyout)
1161 if (put_user_ifreq(&ifr, argp))
1164 #ifdef CONFIG_WEXT_CORE
1165 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1166 err = wext_handle_ioctl(net, cmd, argp);
1173 if (get_user(pid, (int __user *)argp))
1175 err = f_setown(sock->file, pid, 1);
1179 err = put_user(f_getown(sock->file),
1180 (int __user *)argp);
1186 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1191 if (!vlan_ioctl_hook)
1192 request_module("8021q");
1194 mutex_lock(&vlan_ioctl_mutex);
1195 if (vlan_ioctl_hook)
1196 err = vlan_ioctl_hook(net, argp);
1197 mutex_unlock(&vlan_ioctl_mutex);
1201 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1204 err = open_related_ns(&net->ns, get_net_ns);
1206 case SIOCGSTAMP_OLD:
1207 case SIOCGSTAMPNS_OLD:
1208 if (!sock->ops->gettstamp) {
1212 err = sock->ops->gettstamp(sock, argp,
1213 cmd == SIOCGSTAMP_OLD,
1214 !IS_ENABLED(CONFIG_64BIT));
1216 case SIOCGSTAMP_NEW:
1217 case SIOCGSTAMPNS_NEW:
1218 if (!sock->ops->gettstamp) {
1222 err = sock->ops->gettstamp(sock, argp,
1223 cmd == SIOCGSTAMP_NEW,
1228 err = dev_ifconf(net, argp);
1232 err = sock_do_ioctl(net, sock, cmd, arg);
1239 * sock_create_lite - creates a socket
1240 * @family: protocol family (AF_INET, ...)
1241 * @type: communication type (SOCK_STREAM, ...)
1242 * @protocol: protocol (0, ...)
1245 * Creates a new socket and assigns it to @res, passing through LSM.
1246 * The new socket initialization is not complete, see kernel_accept().
1247 * Returns 0 or an error. On failure @res is set to %NULL.
1248 * This function internally uses GFP_KERNEL.
1251 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1254 struct socket *sock = NULL;
1256 err = security_socket_create(family, type, protocol, 1);
1260 sock = sock_alloc();
1267 err = security_socket_post_create(sock, family, type, protocol, 1);
1279 EXPORT_SYMBOL(sock_create_lite);
1281 /* No kernel lock held - perfect */
1282 static __poll_t sock_poll(struct file *file, poll_table *wait)
1284 struct socket *sock = file->private_data;
1285 __poll_t events = poll_requested_events(wait), flag = 0;
1287 if (!sock->ops->poll)
1290 if (sk_can_busy_loop(sock->sk)) {
1291 /* poll once if requested by the syscall */
1292 if (events & POLL_BUSY_LOOP)
1293 sk_busy_loop(sock->sk, 1);
1295 /* if this socket can poll_ll, tell the system call */
1296 flag = POLL_BUSY_LOOP;
1299 return sock->ops->poll(file, sock, wait) | flag;
1302 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1304 struct socket *sock = file->private_data;
1306 return sock->ops->mmap(file, sock, vma);
1309 static int sock_close(struct inode *inode, struct file *filp)
1311 __sock_release(SOCKET_I(inode), inode);
1316 * Update the socket async list
1318 * Fasync_list locking strategy.
1320 * 1. fasync_list is modified only under process context socket lock
1321 * i.e. under semaphore.
1322 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1323 * or under socket lock
1326 static int sock_fasync(int fd, struct file *filp, int on)
1328 struct socket *sock = filp->private_data;
1329 struct sock *sk = sock->sk;
1330 struct socket_wq *wq = &sock->wq;
1336 fasync_helper(fd, filp, on, &wq->fasync_list);
1338 if (!wq->fasync_list)
1339 sock_reset_flag(sk, SOCK_FASYNC);
1341 sock_set_flag(sk, SOCK_FASYNC);
1347 /* This function may be called only under rcu_lock */
1349 int sock_wake_async(struct socket_wq *wq, int how, int band)
1351 if (!wq || !wq->fasync_list)
1355 case SOCK_WAKE_WAITD:
1356 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1359 case SOCK_WAKE_SPACE:
1360 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1365 kill_fasync(&wq->fasync_list, SIGIO, band);
1368 kill_fasync(&wq->fasync_list, SIGURG, band);
1373 EXPORT_SYMBOL(sock_wake_async);
1376 * __sock_create - creates a socket
1377 * @net: net namespace
1378 * @family: protocol family (AF_INET, ...)
1379 * @type: communication type (SOCK_STREAM, ...)
1380 * @protocol: protocol (0, ...)
1382 * @kern: boolean for kernel space sockets
1384 * Creates a new socket and assigns it to @res, passing through LSM.
1385 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1386 * be set to true if the socket resides in kernel space.
1387 * This function internally uses GFP_KERNEL.
1390 int __sock_create(struct net *net, int family, int type, int protocol,
1391 struct socket **res, int kern)
1394 struct socket *sock;
1395 const struct net_proto_family *pf;
1398 * Check protocol is in range
1400 if (family < 0 || family >= NPROTO)
1401 return -EAFNOSUPPORT;
1402 if (type < 0 || type >= SOCK_MAX)
1407 This uglymoron is moved from INET layer to here to avoid
1408 deadlock in module load.
1410 if (family == PF_INET && type == SOCK_PACKET) {
1411 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1416 err = security_socket_create(family, type, protocol, kern);
1421 * Allocate the socket and allow the family to set things up. if
1422 * the protocol is 0, the family is instructed to select an appropriate
1425 sock = sock_alloc();
1427 net_warn_ratelimited("socket: no more sockets\n");
1428 return -ENFILE; /* Not exactly a match, but its the
1429 closest posix thing */
1434 #ifdef CONFIG_MODULES
1435 /* Attempt to load a protocol module if the find failed.
1437 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1438 * requested real, full-featured networking support upon configuration.
1439 * Otherwise module support will break!
1441 if (rcu_access_pointer(net_families[family]) == NULL)
1442 request_module("net-pf-%d", family);
1446 pf = rcu_dereference(net_families[family]);
1447 err = -EAFNOSUPPORT;
1452 * We will call the ->create function, that possibly is in a loadable
1453 * module, so we have to bump that loadable module refcnt first.
1455 if (!try_module_get(pf->owner))
1458 /* Now protected by module ref count */
1461 err = pf->create(net, sock, protocol, kern);
1463 goto out_module_put;
1466 * Now to bump the refcnt of the [loadable] module that owns this
1467 * socket at sock_release time we decrement its refcnt.
1469 if (!try_module_get(sock->ops->owner))
1470 goto out_module_busy;
1473 * Now that we're done with the ->create function, the [loadable]
1474 * module can have its refcnt decremented
1476 module_put(pf->owner);
1477 err = security_socket_post_create(sock, family, type, protocol, kern);
1479 goto out_sock_release;
1485 err = -EAFNOSUPPORT;
1488 module_put(pf->owner);
1495 goto out_sock_release;
1497 EXPORT_SYMBOL(__sock_create);
1500 * sock_create - creates a socket
1501 * @family: protocol family (AF_INET, ...)
1502 * @type: communication type (SOCK_STREAM, ...)
1503 * @protocol: protocol (0, ...)
1506 * A wrapper around __sock_create().
1507 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1510 int sock_create(int family, int type, int protocol, struct socket **res)
1512 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1514 EXPORT_SYMBOL(sock_create);
1517 * sock_create_kern - creates a socket (kernel space)
1518 * @net: net namespace
1519 * @family: protocol family (AF_INET, ...)
1520 * @type: communication type (SOCK_STREAM, ...)
1521 * @protocol: protocol (0, ...)
1524 * A wrapper around __sock_create().
1525 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1528 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1530 return __sock_create(net, family, type, protocol, res, 1);
1532 EXPORT_SYMBOL(sock_create_kern);
1534 int __sys_socket(int family, int type, int protocol)
1537 struct socket *sock;
1540 /* Check the SOCK_* constants for consistency. */
1541 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1542 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1543 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1544 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1546 flags = type & ~SOCK_TYPE_MASK;
1547 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1549 type &= SOCK_TYPE_MASK;
1551 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1552 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1554 retval = sock_create(family, type, protocol, &sock);
1558 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1561 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1563 return __sys_socket(family, type, protocol);
1567 * Create a pair of connected sockets.
1570 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1572 struct socket *sock1, *sock2;
1574 struct file *newfile1, *newfile2;
1577 flags = type & ~SOCK_TYPE_MASK;
1578 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1580 type &= SOCK_TYPE_MASK;
1582 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1583 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1586 * reserve descriptors and make sure we won't fail
1587 * to return them to userland.
1589 fd1 = get_unused_fd_flags(flags);
1590 if (unlikely(fd1 < 0))
1593 fd2 = get_unused_fd_flags(flags);
1594 if (unlikely(fd2 < 0)) {
1599 err = put_user(fd1, &usockvec[0]);
1603 err = put_user(fd2, &usockvec[1]);
1608 * Obtain the first socket and check if the underlying protocol
1609 * supports the socketpair call.
1612 err = sock_create(family, type, protocol, &sock1);
1613 if (unlikely(err < 0))
1616 err = sock_create(family, type, protocol, &sock2);
1617 if (unlikely(err < 0)) {
1618 sock_release(sock1);
1622 err = security_socket_socketpair(sock1, sock2);
1623 if (unlikely(err)) {
1624 sock_release(sock2);
1625 sock_release(sock1);
1629 err = sock1->ops->socketpair(sock1, sock2);
1630 if (unlikely(err < 0)) {
1631 sock_release(sock2);
1632 sock_release(sock1);
1636 newfile1 = sock_alloc_file(sock1, flags, NULL);
1637 if (IS_ERR(newfile1)) {
1638 err = PTR_ERR(newfile1);
1639 sock_release(sock2);
1643 newfile2 = sock_alloc_file(sock2, flags, NULL);
1644 if (IS_ERR(newfile2)) {
1645 err = PTR_ERR(newfile2);
1650 audit_fd_pair(fd1, fd2);
1652 fd_install(fd1, newfile1);
1653 fd_install(fd2, newfile2);
1662 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1663 int __user *, usockvec)
1665 return __sys_socketpair(family, type, protocol, usockvec);
1669 * Bind a name to a socket. Nothing much to do here since it's
1670 * the protocol's responsibility to handle the local address.
1672 * We move the socket address to kernel space before we call
1673 * the protocol layer (having also checked the address is ok).
1676 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1678 struct socket *sock;
1679 struct sockaddr_storage address;
1680 int err, fput_needed;
1682 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1684 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1686 err = security_socket_bind(sock,
1687 (struct sockaddr *)&address,
1690 err = sock->ops->bind(sock,
1694 fput_light(sock->file, fput_needed);
1699 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1701 return __sys_bind(fd, umyaddr, addrlen);
1705 * Perform a listen. Basically, we allow the protocol to do anything
1706 * necessary for a listen, and if that works, we mark the socket as
1707 * ready for listening.
1710 int __sys_listen(int fd, int backlog)
1712 struct socket *sock;
1713 int err, fput_needed;
1716 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1718 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1719 if ((unsigned int)backlog > somaxconn)
1720 backlog = somaxconn;
1722 err = security_socket_listen(sock, backlog);
1724 err = sock->ops->listen(sock, backlog);
1726 fput_light(sock->file, fput_needed);
1731 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1733 return __sys_listen(fd, backlog);
1736 int __sys_accept4_file(struct file *file, unsigned file_flags,
1737 struct sockaddr __user *upeer_sockaddr,
1738 int __user *upeer_addrlen, int flags,
1739 unsigned long nofile)
1741 struct socket *sock, *newsock;
1742 struct file *newfile;
1743 int err, len, newfd;
1744 struct sockaddr_storage address;
1746 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1749 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1750 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1752 sock = sock_from_file(file);
1759 newsock = sock_alloc();
1763 newsock->type = sock->type;
1764 newsock->ops = sock->ops;
1767 * We don't need try_module_get here, as the listening socket (sock)
1768 * has the protocol module (sock->ops->owner) held.
1770 __module_get(newsock->ops->owner);
1772 newfd = __get_unused_fd_flags(flags, nofile);
1773 if (unlikely(newfd < 0)) {
1775 sock_release(newsock);
1778 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1779 if (IS_ERR(newfile)) {
1780 err = PTR_ERR(newfile);
1781 put_unused_fd(newfd);
1785 err = security_socket_accept(sock, newsock);
1789 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1794 if (upeer_sockaddr) {
1795 len = newsock->ops->getname(newsock,
1796 (struct sockaddr *)&address, 2);
1798 err = -ECONNABORTED;
1801 err = move_addr_to_user(&address,
1802 len, upeer_sockaddr, upeer_addrlen);
1807 /* File flags are not inherited via accept() unlike another OSes. */
1809 fd_install(newfd, newfile);
1815 put_unused_fd(newfd);
1821 * For accept, we attempt to create a new socket, set up the link
1822 * with the client, wake up the client, then return the new
1823 * connected fd. We collect the address of the connector in kernel
1824 * space and move it to user at the very end. This is unclean because
1825 * we open the socket then return an error.
1827 * 1003.1g adds the ability to recvmsg() to query connection pending
1828 * status to recvmsg. We need to add that support in a way thats
1829 * clean when we restructure accept also.
1832 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1833 int __user *upeer_addrlen, int flags)
1840 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1841 upeer_addrlen, flags,
1842 rlimit(RLIMIT_NOFILE));
1849 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1850 int __user *, upeer_addrlen, int, flags)
1852 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1855 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1856 int __user *, upeer_addrlen)
1858 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1862 * Attempt to connect to a socket with the server address. The address
1863 * is in user space so we verify it is OK and move it to kernel space.
1865 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1868 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1869 * other SEQPACKET protocols that take time to connect() as it doesn't
1870 * include the -EINPROGRESS status for such sockets.
1873 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1874 int addrlen, int file_flags)
1876 struct socket *sock;
1879 sock = sock_from_file(file);
1886 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1890 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1891 sock->file->f_flags | file_flags);
1896 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1903 struct sockaddr_storage address;
1905 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1907 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1914 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1917 return __sys_connect(fd, uservaddr, addrlen);
1921 * Get the local address ('name') of a socket object. Move the obtained
1922 * name to user space.
1925 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1926 int __user *usockaddr_len)
1928 struct socket *sock;
1929 struct sockaddr_storage address;
1930 int err, fput_needed;
1932 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1936 err = security_socket_getsockname(sock);
1940 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1943 /* "err" is actually length in this case */
1944 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1947 fput_light(sock->file, fput_needed);
1952 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1953 int __user *, usockaddr_len)
1955 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1959 * Get the remote address ('name') of a socket object. Move the obtained
1960 * name to user space.
1963 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1964 int __user *usockaddr_len)
1966 struct socket *sock;
1967 struct sockaddr_storage address;
1968 int err, fput_needed;
1970 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1972 err = security_socket_getpeername(sock);
1974 fput_light(sock->file, fput_needed);
1978 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1980 /* "err" is actually length in this case */
1981 err = move_addr_to_user(&address, err, usockaddr,
1983 fput_light(sock->file, fput_needed);
1988 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1989 int __user *, usockaddr_len)
1991 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1995 * Send a datagram to a given address. We move the address into kernel
1996 * space and check the user space data area is readable before invoking
1999 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2000 struct sockaddr __user *addr, int addr_len)
2002 struct socket *sock;
2003 struct sockaddr_storage address;
2009 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2012 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2016 msg.msg_name = NULL;
2017 msg.msg_control = NULL;
2018 msg.msg_controllen = 0;
2019 msg.msg_namelen = 0;
2021 err = move_addr_to_kernel(addr, addr_len, &address);
2024 msg.msg_name = (struct sockaddr *)&address;
2025 msg.msg_namelen = addr_len;
2027 if (sock->file->f_flags & O_NONBLOCK)
2028 flags |= MSG_DONTWAIT;
2029 msg.msg_flags = flags;
2030 err = sock_sendmsg(sock, &msg);
2033 fput_light(sock->file, fput_needed);
2038 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2039 unsigned int, flags, struct sockaddr __user *, addr,
2042 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2046 * Send a datagram down a socket.
2049 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2050 unsigned int, flags)
2052 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2056 * Receive a frame from the socket and optionally record the address of the
2057 * sender. We verify the buffers are writable and if needed move the
2058 * sender address from kernel to user space.
2060 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2061 struct sockaddr __user *addr, int __user *addr_len)
2063 struct socket *sock;
2066 struct sockaddr_storage address;
2070 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2073 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2077 msg.msg_control = NULL;
2078 msg.msg_controllen = 0;
2079 /* Save some cycles and don't copy the address if not needed */
2080 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2081 /* We assume all kernel code knows the size of sockaddr_storage */
2082 msg.msg_namelen = 0;
2083 msg.msg_iocb = NULL;
2085 if (sock->file->f_flags & O_NONBLOCK)
2086 flags |= MSG_DONTWAIT;
2087 err = sock_recvmsg(sock, &msg, flags);
2089 if (err >= 0 && addr != NULL) {
2090 err2 = move_addr_to_user(&address,
2091 msg.msg_namelen, addr, addr_len);
2096 fput_light(sock->file, fput_needed);
2101 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2102 unsigned int, flags, struct sockaddr __user *, addr,
2103 int __user *, addr_len)
2105 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2109 * Receive a datagram from a socket.
2112 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2113 unsigned int, flags)
2115 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2118 static bool sock_use_custom_sol_socket(const struct socket *sock)
2120 const struct sock *sk = sock->sk;
2122 /* Use sock->ops->setsockopt() for MPTCP */
2123 return IS_ENABLED(CONFIG_MPTCP) &&
2124 sk->sk_protocol == IPPROTO_MPTCP &&
2125 sk->sk_type == SOCK_STREAM &&
2126 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2130 * Set a socket option. Because we don't know the option lengths we have
2131 * to pass the user mode parameter for the protocols to sort out.
2133 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2136 sockptr_t optval = USER_SOCKPTR(user_optval);
2137 char *kernel_optval = NULL;
2138 int err, fput_needed;
2139 struct socket *sock;
2144 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2148 err = security_socket_setsockopt(sock, level, optname);
2152 if (!in_compat_syscall())
2153 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2154 user_optval, &optlen,
2164 optval = KERNEL_SOCKPTR(kernel_optval);
2165 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2166 err = sock_setsockopt(sock, level, optname, optval, optlen);
2167 else if (unlikely(!sock->ops->setsockopt))
2170 err = sock->ops->setsockopt(sock, level, optname, optval,
2172 kfree(kernel_optval);
2174 fput_light(sock->file, fput_needed);
2178 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2179 char __user *, optval, int, optlen)
2181 return __sys_setsockopt(fd, level, optname, optval, optlen);
2184 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2188 * Get a socket option. Because we don't know the option lengths we have
2189 * to pass a user mode parameter for the protocols to sort out.
2191 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2194 int err, fput_needed;
2195 struct socket *sock;
2198 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2202 err = security_socket_getsockopt(sock, level, optname);
2206 if (!in_compat_syscall())
2207 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2209 if (level == SOL_SOCKET)
2210 err = sock_getsockopt(sock, level, optname, optval, optlen);
2211 else if (unlikely(!sock->ops->getsockopt))
2214 err = sock->ops->getsockopt(sock, level, optname, optval,
2217 if (!in_compat_syscall())
2218 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2219 optval, optlen, max_optlen,
2222 fput_light(sock->file, fput_needed);
2226 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2227 char __user *, optval, int __user *, optlen)
2229 return __sys_getsockopt(fd, level, optname, optval, optlen);
2233 * Shutdown a socket.
2236 int __sys_shutdown_sock(struct socket *sock, int how)
2240 err = security_socket_shutdown(sock, how);
2242 err = sock->ops->shutdown(sock, how);
2247 int __sys_shutdown(int fd, int how)
2249 int err, fput_needed;
2250 struct socket *sock;
2252 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2254 err = __sys_shutdown_sock(sock, how);
2255 fput_light(sock->file, fput_needed);
2260 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2262 return __sys_shutdown(fd, how);
2265 /* A couple of helpful macros for getting the address of the 32/64 bit
2266 * fields which are the same type (int / unsigned) on our platforms.
2268 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2269 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2270 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2272 struct used_address {
2273 struct sockaddr_storage name;
2274 unsigned int name_len;
2277 int __copy_msghdr_from_user(struct msghdr *kmsg,
2278 struct user_msghdr __user *umsg,
2279 struct sockaddr __user **save_addr,
2280 struct iovec __user **uiov, size_t *nsegs)
2282 struct user_msghdr msg;
2285 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2288 kmsg->msg_control_is_user = true;
2289 kmsg->msg_control_user = msg.msg_control;
2290 kmsg->msg_controllen = msg.msg_controllen;
2291 kmsg->msg_flags = msg.msg_flags;
2293 kmsg->msg_namelen = msg.msg_namelen;
2295 kmsg->msg_namelen = 0;
2297 if (kmsg->msg_namelen < 0)
2300 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2301 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2304 *save_addr = msg.msg_name;
2306 if (msg.msg_name && kmsg->msg_namelen) {
2308 err = move_addr_to_kernel(msg.msg_name,
2315 kmsg->msg_name = NULL;
2316 kmsg->msg_namelen = 0;
2319 if (msg.msg_iovlen > UIO_MAXIOV)
2322 kmsg->msg_iocb = NULL;
2323 *uiov = msg.msg_iov;
2324 *nsegs = msg.msg_iovlen;
2328 static int copy_msghdr_from_user(struct msghdr *kmsg,
2329 struct user_msghdr __user *umsg,
2330 struct sockaddr __user **save_addr,
2333 struct user_msghdr msg;
2336 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2341 err = import_iovec(save_addr ? READ : WRITE,
2342 msg.msg_iov, msg.msg_iovlen,
2343 UIO_FASTIOV, iov, &kmsg->msg_iter);
2344 return err < 0 ? err : 0;
2347 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2348 unsigned int flags, struct used_address *used_address,
2349 unsigned int allowed_msghdr_flags)
2351 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2352 __aligned(sizeof(__kernel_size_t));
2353 /* 20 is size of ipv6_pktinfo */
2354 unsigned char *ctl_buf = ctl;
2360 if (msg_sys->msg_controllen > INT_MAX)
2362 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2363 ctl_len = msg_sys->msg_controllen;
2364 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2366 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2370 ctl_buf = msg_sys->msg_control;
2371 ctl_len = msg_sys->msg_controllen;
2372 } else if (ctl_len) {
2373 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2374 CMSG_ALIGN(sizeof(struct cmsghdr)));
2375 if (ctl_len > sizeof(ctl)) {
2376 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2377 if (ctl_buf == NULL)
2381 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2383 msg_sys->msg_control = ctl_buf;
2384 msg_sys->msg_control_is_user = false;
2386 msg_sys->msg_flags = flags;
2388 if (sock->file->f_flags & O_NONBLOCK)
2389 msg_sys->msg_flags |= MSG_DONTWAIT;
2391 * If this is sendmmsg() and current destination address is same as
2392 * previously succeeded address, omit asking LSM's decision.
2393 * used_address->name_len is initialized to UINT_MAX so that the first
2394 * destination address never matches.
2396 if (used_address && msg_sys->msg_name &&
2397 used_address->name_len == msg_sys->msg_namelen &&
2398 !memcmp(&used_address->name, msg_sys->msg_name,
2399 used_address->name_len)) {
2400 err = sock_sendmsg_nosec(sock, msg_sys);
2403 err = sock_sendmsg(sock, msg_sys);
2405 * If this is sendmmsg() and sending to current destination address was
2406 * successful, remember it.
2408 if (used_address && err >= 0) {
2409 used_address->name_len = msg_sys->msg_namelen;
2410 if (msg_sys->msg_name)
2411 memcpy(&used_address->name, msg_sys->msg_name,
2412 used_address->name_len);
2417 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2422 int sendmsg_copy_msghdr(struct msghdr *msg,
2423 struct user_msghdr __user *umsg, unsigned flags,
2428 if (flags & MSG_CMSG_COMPAT) {
2429 struct compat_msghdr __user *msg_compat;
2431 msg_compat = (struct compat_msghdr __user *) umsg;
2432 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2434 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2442 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2443 struct msghdr *msg_sys, unsigned int flags,
2444 struct used_address *used_address,
2445 unsigned int allowed_msghdr_flags)
2447 struct sockaddr_storage address;
2448 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2451 msg_sys->msg_name = &address;
2453 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2457 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2458 allowed_msghdr_flags);
2464 * BSD sendmsg interface
2466 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2469 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2472 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2473 bool forbid_cmsg_compat)
2475 int fput_needed, err;
2476 struct msghdr msg_sys;
2477 struct socket *sock;
2479 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2482 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2486 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2488 fput_light(sock->file, fput_needed);
2493 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2495 return __sys_sendmsg(fd, msg, flags, true);
2499 * Linux sendmmsg interface
2502 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2503 unsigned int flags, bool forbid_cmsg_compat)
2505 int fput_needed, err, datagrams;
2506 struct socket *sock;
2507 struct mmsghdr __user *entry;
2508 struct compat_mmsghdr __user *compat_entry;
2509 struct msghdr msg_sys;
2510 struct used_address used_address;
2511 unsigned int oflags = flags;
2513 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2516 if (vlen > UIO_MAXIOV)
2521 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2525 used_address.name_len = UINT_MAX;
2527 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2531 while (datagrams < vlen) {
2532 if (datagrams == vlen - 1)
2535 if (MSG_CMSG_COMPAT & flags) {
2536 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2537 &msg_sys, flags, &used_address, MSG_EOR);
2540 err = __put_user(err, &compat_entry->msg_len);
2543 err = ___sys_sendmsg(sock,
2544 (struct user_msghdr __user *)entry,
2545 &msg_sys, flags, &used_address, MSG_EOR);
2548 err = put_user(err, &entry->msg_len);
2555 if (msg_data_left(&msg_sys))
2560 fput_light(sock->file, fput_needed);
2562 /* We only return an error if no datagrams were able to be sent */
2569 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2570 unsigned int, vlen, unsigned int, flags)
2572 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2575 int recvmsg_copy_msghdr(struct msghdr *msg,
2576 struct user_msghdr __user *umsg, unsigned flags,
2577 struct sockaddr __user **uaddr,
2582 if (MSG_CMSG_COMPAT & flags) {
2583 struct compat_msghdr __user *msg_compat;
2585 msg_compat = (struct compat_msghdr __user *) umsg;
2586 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2588 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2596 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2597 struct user_msghdr __user *msg,
2598 struct sockaddr __user *uaddr,
2599 unsigned int flags, int nosec)
2601 struct compat_msghdr __user *msg_compat =
2602 (struct compat_msghdr __user *) msg;
2603 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2604 struct sockaddr_storage addr;
2605 unsigned long cmsg_ptr;
2609 msg_sys->msg_name = &addr;
2610 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2611 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2613 /* We assume all kernel code knows the size of sockaddr_storage */
2614 msg_sys->msg_namelen = 0;
2616 if (sock->file->f_flags & O_NONBLOCK)
2617 flags |= MSG_DONTWAIT;
2619 if (unlikely(nosec))
2620 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2622 err = sock_recvmsg(sock, msg_sys, flags);
2628 if (uaddr != NULL) {
2629 err = move_addr_to_user(&addr,
2630 msg_sys->msg_namelen, uaddr,
2635 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2639 if (MSG_CMSG_COMPAT & flags)
2640 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2641 &msg_compat->msg_controllen);
2643 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2644 &msg->msg_controllen);
2652 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2653 struct msghdr *msg_sys, unsigned int flags, int nosec)
2655 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2656 /* user mode address pointers */
2657 struct sockaddr __user *uaddr;
2660 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2664 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2670 * BSD recvmsg interface
2673 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2674 struct user_msghdr __user *umsg,
2675 struct sockaddr __user *uaddr, unsigned int flags)
2677 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2680 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2681 bool forbid_cmsg_compat)
2683 int fput_needed, err;
2684 struct msghdr msg_sys;
2685 struct socket *sock;
2687 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2690 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2694 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2696 fput_light(sock->file, fput_needed);
2701 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2702 unsigned int, flags)
2704 return __sys_recvmsg(fd, msg, flags, true);
2708 * Linux recvmmsg interface
2711 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2712 unsigned int vlen, unsigned int flags,
2713 struct timespec64 *timeout)
2715 int fput_needed, err, datagrams;
2716 struct socket *sock;
2717 struct mmsghdr __user *entry;
2718 struct compat_mmsghdr __user *compat_entry;
2719 struct msghdr msg_sys;
2720 struct timespec64 end_time;
2721 struct timespec64 timeout64;
2724 poll_select_set_timeout(&end_time, timeout->tv_sec,
2730 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2734 if (likely(!(flags & MSG_ERRQUEUE))) {
2735 err = sock_error(sock->sk);
2743 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2745 while (datagrams < vlen) {
2747 * No need to ask LSM for more than the first datagram.
2749 if (MSG_CMSG_COMPAT & flags) {
2750 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2751 &msg_sys, flags & ~MSG_WAITFORONE,
2755 err = __put_user(err, &compat_entry->msg_len);
2758 err = ___sys_recvmsg(sock,
2759 (struct user_msghdr __user *)entry,
2760 &msg_sys, flags & ~MSG_WAITFORONE,
2764 err = put_user(err, &entry->msg_len);
2772 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2773 if (flags & MSG_WAITFORONE)
2774 flags |= MSG_DONTWAIT;
2777 ktime_get_ts64(&timeout64);
2778 *timeout = timespec64_sub(end_time, timeout64);
2779 if (timeout->tv_sec < 0) {
2780 timeout->tv_sec = timeout->tv_nsec = 0;
2784 /* Timeout, return less than vlen datagrams */
2785 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2789 /* Out of band data, return right away */
2790 if (msg_sys.msg_flags & MSG_OOB)
2798 if (datagrams == 0) {
2804 * We may return less entries than requested (vlen) if the
2805 * sock is non block and there aren't enough datagrams...
2807 if (err != -EAGAIN) {
2809 * ... or if recvmsg returns an error after we
2810 * received some datagrams, where we record the
2811 * error to return on the next call or if the
2812 * app asks about it using getsockopt(SO_ERROR).
2814 sock->sk->sk_err = -err;
2817 fput_light(sock->file, fput_needed);
2822 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2823 unsigned int vlen, unsigned int flags,
2824 struct __kernel_timespec __user *timeout,
2825 struct old_timespec32 __user *timeout32)
2828 struct timespec64 timeout_sys;
2830 if (timeout && get_timespec64(&timeout_sys, timeout))
2833 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2836 if (!timeout && !timeout32)
2837 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2839 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2844 if (timeout && put_timespec64(&timeout_sys, timeout))
2845 datagrams = -EFAULT;
2847 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2848 datagrams = -EFAULT;
2853 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2854 unsigned int, vlen, unsigned int, flags,
2855 struct __kernel_timespec __user *, timeout)
2857 if (flags & MSG_CMSG_COMPAT)
2860 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2863 #ifdef CONFIG_COMPAT_32BIT_TIME
2864 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2865 unsigned int, vlen, unsigned int, flags,
2866 struct old_timespec32 __user *, timeout)
2868 if (flags & MSG_CMSG_COMPAT)
2871 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2875 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2876 /* Argument list sizes for sys_socketcall */
2877 #define AL(x) ((x) * sizeof(unsigned long))
2878 static const unsigned char nargs[21] = {
2879 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2880 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2881 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2888 * System call vectors.
2890 * Argument checking cleaned up. Saved 20% in size.
2891 * This function doesn't need to set the kernel lock because
2892 * it is set by the callees.
2895 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2897 unsigned long a[AUDITSC_ARGS];
2898 unsigned long a0, a1;
2902 if (call < 1 || call > SYS_SENDMMSG)
2904 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2907 if (len > sizeof(a))
2910 /* copy_from_user should be SMP safe. */
2911 if (copy_from_user(a, args, len))
2914 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2923 err = __sys_socket(a0, a1, a[2]);
2926 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2929 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2932 err = __sys_listen(a0, a1);
2935 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2936 (int __user *)a[2], 0);
2938 case SYS_GETSOCKNAME:
2940 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2941 (int __user *)a[2]);
2943 case SYS_GETPEERNAME:
2945 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2946 (int __user *)a[2]);
2948 case SYS_SOCKETPAIR:
2949 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2952 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2956 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2957 (struct sockaddr __user *)a[4], a[5]);
2960 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2964 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2965 (struct sockaddr __user *)a[4],
2966 (int __user *)a[5]);
2969 err = __sys_shutdown(a0, a1);
2971 case SYS_SETSOCKOPT:
2972 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2975 case SYS_GETSOCKOPT:
2977 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2978 (int __user *)a[4]);
2981 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2985 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2989 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2993 if (IS_ENABLED(CONFIG_64BIT))
2994 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2996 (struct __kernel_timespec __user *)a[4],
2999 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3001 (struct old_timespec32 __user *)a[4]);
3004 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3005 (int __user *)a[2], a[3]);
3014 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3017 * sock_register - add a socket protocol handler
3018 * @ops: description of protocol
3020 * This function is called by a protocol handler that wants to
3021 * advertise its address family, and have it linked into the
3022 * socket interface. The value ops->family corresponds to the
3023 * socket system call protocol family.
3025 int sock_register(const struct net_proto_family *ops)
3029 if (ops->family >= NPROTO) {
3030 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3034 spin_lock(&net_family_lock);
3035 if (rcu_dereference_protected(net_families[ops->family],
3036 lockdep_is_held(&net_family_lock)))
3039 rcu_assign_pointer(net_families[ops->family], ops);
3042 spin_unlock(&net_family_lock);
3044 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3047 EXPORT_SYMBOL(sock_register);
3050 * sock_unregister - remove a protocol handler
3051 * @family: protocol family to remove
3053 * This function is called by a protocol handler that wants to
3054 * remove its address family, and have it unlinked from the
3055 * new socket creation.
3057 * If protocol handler is a module, then it can use module reference
3058 * counts to protect against new references. If protocol handler is not
3059 * a module then it needs to provide its own protection in
3060 * the ops->create routine.
3062 void sock_unregister(int family)
3064 BUG_ON(family < 0 || family >= NPROTO);
3066 spin_lock(&net_family_lock);
3067 RCU_INIT_POINTER(net_families[family], NULL);
3068 spin_unlock(&net_family_lock);
3072 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3074 EXPORT_SYMBOL(sock_unregister);
3076 bool sock_is_registered(int family)
3078 return family < NPROTO && rcu_access_pointer(net_families[family]);
3081 static int __init sock_init(void)
3085 * Initialize the network sysctl infrastructure.
3087 err = net_sysctl_init();
3092 * Initialize skbuff SLAB cache
3097 * Initialize the protocols module.
3102 err = register_filesystem(&sock_fs_type);
3105 sock_mnt = kern_mount(&sock_fs_type);
3106 if (IS_ERR(sock_mnt)) {
3107 err = PTR_ERR(sock_mnt);
3111 /* The real protocol initialization is performed in later initcalls.
3114 #ifdef CONFIG_NETFILTER
3115 err = netfilter_init();
3120 ptp_classifier_init();
3126 unregister_filesystem(&sock_fs_type);
3130 core_initcall(sock_init); /* early initcall */
3132 #ifdef CONFIG_PROC_FS
3133 void socket_seq_show(struct seq_file *seq)
3135 seq_printf(seq, "sockets: used %d\n",
3136 sock_inuse_get(seq->private));
3138 #endif /* CONFIG_PROC_FS */
3140 /* Handle the fact that while struct ifreq has the same *layout* on
3141 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3142 * which are handled elsewhere, it still has different *size* due to
3143 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3144 * resulting in struct ifreq being 32 and 40 bytes respectively).
3145 * As a result, if the struct happens to be at the end of a page and
3146 * the next page isn't readable/writable, we get a fault. To prevent
3147 * that, copy back and forth to the full size.
3149 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3151 if (in_compat_syscall()) {
3152 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3154 memset(ifr, 0, sizeof(*ifr));
3155 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3159 *ifrdata = compat_ptr(ifr32->ifr_data);
3164 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3168 *ifrdata = ifr->ifr_data;
3172 EXPORT_SYMBOL(get_user_ifreq);
3174 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3176 size_t size = sizeof(*ifr);
3178 if (in_compat_syscall())
3179 size = sizeof(struct compat_ifreq);
3181 if (copy_to_user(arg, ifr, size))
3186 EXPORT_SYMBOL(put_user_ifreq);
3188 #ifdef CONFIG_COMPAT
3189 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3191 compat_uptr_t uptr32;
3196 if (get_user_ifreq(&ifr, NULL, uifr32))
3199 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3202 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3203 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3205 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3207 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3208 if (put_user_ifreq(&ifr, uifr32))
3214 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3215 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3216 struct compat_ifreq __user *u_ifreq32)
3221 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3223 ifreq.ifr_data = data;
3225 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3228 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3229 * for some operations; this forces use of the newer bridge-utils that
3230 * use compatible ioctls
3232 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3236 if (get_user(tmp, argp))
3238 if (tmp == BRCTL_GET_VERSION)
3239 return BRCTL_VERSION + 1;
3243 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3244 unsigned int cmd, unsigned long arg)
3246 void __user *argp = compat_ptr(arg);
3247 struct sock *sk = sock->sk;
3248 struct net *net = sock_net(sk);
3250 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3251 return sock_ioctl(file, cmd, (unsigned long)argp);
3256 return old_bridge_ioctl(argp);
3258 return compat_siocwandev(net, argp);
3259 case SIOCGSTAMP_OLD:
3260 case SIOCGSTAMPNS_OLD:
3261 if (!sock->ops->gettstamp)
3262 return -ENOIOCTLCMD;
3263 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3264 !COMPAT_USE_64BIT_TIME);
3267 case SIOCBONDSLAVEINFOQUERY:
3268 case SIOCBONDINFOQUERY:
3271 return compat_ifr_data_ioctl(net, cmd, argp);
3282 case SIOCGSTAMP_NEW:
3283 case SIOCGSTAMPNS_NEW:
3285 return sock_ioctl(file, cmd, arg);
3304 case SIOCSIFHWBROADCAST:
3306 case SIOCGIFBRDADDR:
3307 case SIOCSIFBRDADDR:
3308 case SIOCGIFDSTADDR:
3309 case SIOCSIFDSTADDR:
3310 case SIOCGIFNETMASK:
3311 case SIOCSIFNETMASK:
3323 case SIOCBONDENSLAVE:
3324 case SIOCBONDRELEASE:
3325 case SIOCBONDSETHWADDR:
3326 case SIOCBONDCHANGEACTIVE:
3333 return sock_do_ioctl(net, sock, cmd, arg);
3336 return -ENOIOCTLCMD;
3339 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3342 struct socket *sock = file->private_data;
3343 int ret = -ENOIOCTLCMD;
3350 if (sock->ops->compat_ioctl)
3351 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3353 if (ret == -ENOIOCTLCMD &&
3354 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3355 ret = compat_wext_handle_ioctl(net, cmd, arg);
3357 if (ret == -ENOIOCTLCMD)
3358 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3365 * kernel_bind - bind an address to a socket (kernel space)
3368 * @addrlen: length of address
3370 * Returns 0 or an error.
3373 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3375 return sock->ops->bind(sock, addr, addrlen);
3377 EXPORT_SYMBOL(kernel_bind);
3380 * kernel_listen - move socket to listening state (kernel space)
3382 * @backlog: pending connections queue size
3384 * Returns 0 or an error.
3387 int kernel_listen(struct socket *sock, int backlog)
3389 return sock->ops->listen(sock, backlog);
3391 EXPORT_SYMBOL(kernel_listen);
3394 * kernel_accept - accept a connection (kernel space)
3395 * @sock: listening socket
3396 * @newsock: new connected socket
3399 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3400 * If it fails, @newsock is guaranteed to be %NULL.
3401 * Returns 0 or an error.
3404 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3406 struct sock *sk = sock->sk;
3409 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3414 err = sock->ops->accept(sock, *newsock, flags, true);
3416 sock_release(*newsock);
3421 (*newsock)->ops = sock->ops;
3422 __module_get((*newsock)->ops->owner);
3427 EXPORT_SYMBOL(kernel_accept);
3430 * kernel_connect - connect a socket (kernel space)
3433 * @addrlen: address length
3434 * @flags: flags (O_NONBLOCK, ...)
3436 * For datagram sockets, @addr is the address to which datagrams are sent
3437 * by default, and the only address from which datagrams are received.
3438 * For stream sockets, attempts to connect to @addr.
3439 * Returns 0 or an error code.
3442 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3445 return sock->ops->connect(sock, addr, addrlen, flags);
3447 EXPORT_SYMBOL(kernel_connect);
3450 * kernel_getsockname - get the address which the socket is bound (kernel space)
3452 * @addr: address holder
3454 * Fills the @addr pointer with the address which the socket is bound.
3455 * Returns 0 or an error code.
3458 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3460 return sock->ops->getname(sock, addr, 0);
3462 EXPORT_SYMBOL(kernel_getsockname);
3465 * kernel_getpeername - get the address which the socket is connected (kernel space)
3467 * @addr: address holder
3469 * Fills the @addr pointer with the address which the socket is connected.
3470 * Returns 0 or an error code.
3473 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3475 return sock->ops->getname(sock, addr, 1);
3477 EXPORT_SYMBOL(kernel_getpeername);
3480 * kernel_sendpage - send a &page through a socket (kernel space)
3483 * @offset: page offset
3484 * @size: total size in bytes
3485 * @flags: flags (MSG_DONTWAIT, ...)
3487 * Returns the total amount sent in bytes or an error.
3490 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3491 size_t size, int flags)
3493 if (sock->ops->sendpage) {
3494 /* Warn in case the improper page to zero-copy send */
3495 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3496 return sock->ops->sendpage(sock, page, offset, size, flags);
3498 return sock_no_sendpage(sock, page, offset, size, flags);
3500 EXPORT_SYMBOL(kernel_sendpage);
3503 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3506 * @offset: page offset
3507 * @size: total size in bytes
3508 * @flags: flags (MSG_DONTWAIT, ...)
3510 * Returns the total amount sent in bytes or an error.
3511 * Caller must hold @sk.
3514 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3515 size_t size, int flags)
3517 struct socket *sock = sk->sk_socket;
3519 if (sock->ops->sendpage_locked)
3520 return sock->ops->sendpage_locked(sk, page, offset, size,
3523 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3525 EXPORT_SYMBOL(kernel_sendpage_locked);
3528 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3530 * @how: connection part
3532 * Returns 0 or an error.
3535 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3537 return sock->ops->shutdown(sock, how);
3539 EXPORT_SYMBOL(kernel_sock_shutdown);
3542 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3545 * This routine returns the IP overhead imposed by a socket i.e.
3546 * the length of the underlying IP header, depending on whether
3547 * this is an IPv4 or IPv6 socket and the length from IP options turned
3548 * on at the socket. Assumes that the caller has a lock on the socket.
3551 u32 kernel_sock_ip_overhead(struct sock *sk)
3553 struct inet_sock *inet;
3554 struct ip_options_rcu *opt;
3556 #if IS_ENABLED(CONFIG_IPV6)
3557 struct ipv6_pinfo *np;
3558 struct ipv6_txoptions *optv6 = NULL;
3559 #endif /* IS_ENABLED(CONFIG_IPV6) */
3564 switch (sk->sk_family) {
3567 overhead += sizeof(struct iphdr);
3568 opt = rcu_dereference_protected(inet->inet_opt,
3569 sock_owned_by_user(sk));
3571 overhead += opt->opt.optlen;
3573 #if IS_ENABLED(CONFIG_IPV6)
3576 overhead += sizeof(struct ipv6hdr);
3578 optv6 = rcu_dereference_protected(np->opt,
3579 sock_owned_by_user(sk));
3581 overhead += (optv6->opt_flen + optv6->opt_nflen);
3583 #endif /* IS_ENABLED(CONFIG_IPV6) */
3584 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3588 EXPORT_SYMBOL(kernel_sock_ip_overhead);