2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
145 static const char *const af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
161 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
177 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys[AF_MAX];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
224 if (optlen < sizeof(tv))
226 if (copy_from_user(&tv, optval, sizeof(tv)))
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
232 static int warned __read_mostly;
235 if (warned < 10 && net_ratelimit()) {
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
251 static void sock_warn_obsolete_bsdism(const char *name)
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
263 static void sock_disable_timestamp(struct sock *sk, int flag)
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
280 struct sk_buff_head *list = &sk->sk_receive_queue;
282 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283 number of warnings when compiling with -W --ANK
285 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
286 (unsigned)sk->sk_rcvbuf) {
287 atomic_inc(&sk->sk_drops);
291 err = sk_filter(sk, skb);
295 if (!sk_rmem_schedule(sk, skb->truesize)) {
296 atomic_inc(&sk->sk_drops);
301 skb_set_owner_r(skb, sk);
303 /* Cache the SKB length before we tack it onto the receive
304 * queue. Once it is added it no longer belongs to us and
305 * may be freed by other threads of control pulling packets
310 /* we escape from rcu protected region, make sure we dont leak
315 spin_lock_irqsave(&list->lock, flags);
316 skb->dropcount = atomic_read(&sk->sk_drops);
317 __skb_queue_tail(list, skb);
318 spin_unlock_irqrestore(&list->lock, flags);
320 if (!sock_flag(sk, SOCK_DEAD))
321 sk->sk_data_ready(sk, skb_len);
324 EXPORT_SYMBOL(sock_queue_rcv_skb);
326 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
328 int rc = NET_RX_SUCCESS;
330 if (sk_filter(sk, skb))
331 goto discard_and_relse;
335 if (sk_rcvqueues_full(sk, skb)) {
336 atomic_inc(&sk->sk_drops);
337 goto discard_and_relse;
340 bh_lock_sock_nested(sk);
343 if (!sock_owned_by_user(sk)) {
345 * trylock + unlock semantics:
347 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
349 rc = sk_backlog_rcv(sk, skb);
351 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
352 } else if (sk_add_backlog(sk, skb)) {
354 atomic_inc(&sk->sk_drops);
355 goto discard_and_relse;
366 EXPORT_SYMBOL(sk_receive_skb);
368 void sk_reset_txq(struct sock *sk)
370 sk_tx_queue_clear(sk);
372 EXPORT_SYMBOL(sk_reset_txq);
374 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
376 struct dst_entry *dst = __sk_dst_get(sk);
378 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
379 sk_tx_queue_clear(sk);
380 rcu_assign_pointer(sk->sk_dst_cache, NULL);
387 EXPORT_SYMBOL(__sk_dst_check);
389 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
391 struct dst_entry *dst = sk_dst_get(sk);
393 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
401 EXPORT_SYMBOL(sk_dst_check);
403 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
405 int ret = -ENOPROTOOPT;
406 #ifdef CONFIG_NETDEVICES
407 struct net *net = sock_net(sk);
408 char devname[IFNAMSIZ];
413 if (!capable(CAP_NET_RAW))
420 /* Bind this socket to a particular device like "eth0",
421 * as specified in the passed interface name. If the
422 * name is "" or the option length is zero the socket
425 if (optlen > IFNAMSIZ - 1)
426 optlen = IFNAMSIZ - 1;
427 memset(devname, 0, sizeof(devname));
430 if (copy_from_user(devname, optval, optlen))
434 if (devname[0] != '\0') {
435 struct net_device *dev;
438 dev = dev_get_by_name_rcu(net, devname);
440 index = dev->ifindex;
448 sk->sk_bound_dev_if = index;
460 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
463 sock_set_flag(sk, bit);
465 sock_reset_flag(sk, bit);
469 * This is meant for all protocols to use and covers goings on
470 * at the socket level. Everything here is generic.
473 int sock_setsockopt(struct socket *sock, int level, int optname,
474 char __user *optval, unsigned int optlen)
476 struct sock *sk = sock->sk;
483 * Options without arguments
486 if (optname == SO_BINDTODEVICE)
487 return sock_bindtodevice(sk, optval, optlen);
489 if (optlen < sizeof(int))
492 if (get_user(val, (int __user *)optval))
495 valbool = val ? 1 : 0;
501 if (val && !capable(CAP_NET_ADMIN))
504 sock_valbool_flag(sk, SOCK_DBG, valbool);
507 sk->sk_reuse = valbool;
516 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
519 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
522 /* Don't error on this BSD doesn't and if you think
523 about it this is right. Otherwise apps have to
524 play 'guess the biggest size' games. RCVBUF/SNDBUF
525 are treated in BSD as hints */
527 if (val > sysctl_wmem_max)
528 val = sysctl_wmem_max;
530 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
531 if ((val * 2) < SOCK_MIN_SNDBUF)
532 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
534 sk->sk_sndbuf = val * 2;
537 * Wake up sending tasks if we
540 sk->sk_write_space(sk);
544 if (!capable(CAP_NET_ADMIN)) {
551 /* Don't error on this BSD doesn't and if you think
552 about it this is right. Otherwise apps have to
553 play 'guess the biggest size' games. RCVBUF/SNDBUF
554 are treated in BSD as hints */
556 if (val > sysctl_rmem_max)
557 val = sysctl_rmem_max;
559 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
561 * We double it on the way in to account for
562 * "struct sk_buff" etc. overhead. Applications
563 * assume that the SO_RCVBUF setting they make will
564 * allow that much actual data to be received on that
567 * Applications are unaware that "struct sk_buff" and
568 * other overheads allocate from the receive buffer
569 * during socket buffer allocation.
571 * And after considering the possible alternatives,
572 * returning the value we actually used in getsockopt
573 * is the most desirable behavior.
575 if ((val * 2) < SOCK_MIN_RCVBUF)
576 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
578 sk->sk_rcvbuf = val * 2;
582 if (!capable(CAP_NET_ADMIN)) {
590 if (sk->sk_protocol == IPPROTO_TCP)
591 tcp_set_keepalive(sk, valbool);
593 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
597 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
601 sk->sk_no_check = valbool;
605 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
606 sk->sk_priority = val;
612 if (optlen < sizeof(ling)) {
613 ret = -EINVAL; /* 1003.1g */
616 if (copy_from_user(&ling, optval, sizeof(ling))) {
621 sock_reset_flag(sk, SOCK_LINGER);
623 #if (BITS_PER_LONG == 32)
624 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
625 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
628 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
629 sock_set_flag(sk, SOCK_LINGER);
634 sock_warn_obsolete_bsdism("setsockopt");
639 set_bit(SOCK_PASSCRED, &sock->flags);
641 clear_bit(SOCK_PASSCRED, &sock->flags);
647 if (optname == SO_TIMESTAMP)
648 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
650 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
651 sock_set_flag(sk, SOCK_RCVTSTAMP);
652 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
654 sock_reset_flag(sk, SOCK_RCVTSTAMP);
655 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
659 case SO_TIMESTAMPING:
660 if (val & ~SOF_TIMESTAMPING_MASK) {
664 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
665 val & SOF_TIMESTAMPING_TX_HARDWARE);
666 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
667 val & SOF_TIMESTAMPING_TX_SOFTWARE);
668 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
669 val & SOF_TIMESTAMPING_RX_HARDWARE);
670 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
671 sock_enable_timestamp(sk,
672 SOCK_TIMESTAMPING_RX_SOFTWARE);
674 sock_disable_timestamp(sk,
675 SOCK_TIMESTAMPING_RX_SOFTWARE);
676 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
677 val & SOF_TIMESTAMPING_SOFTWARE);
678 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
679 val & SOF_TIMESTAMPING_SYS_HARDWARE);
680 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
681 val & SOF_TIMESTAMPING_RAW_HARDWARE);
687 sk->sk_rcvlowat = val ? : 1;
691 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
695 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
698 case SO_ATTACH_FILTER:
700 if (optlen == sizeof(struct sock_fprog)) {
701 struct sock_fprog fprog;
704 if (copy_from_user(&fprog, optval, sizeof(fprog)))
707 ret = sk_attach_filter(&fprog, sk);
711 case SO_DETACH_FILTER:
712 ret = sk_detach_filter(sk);
717 set_bit(SOCK_PASSSEC, &sock->flags);
719 clear_bit(SOCK_PASSSEC, &sock->flags);
722 if (!capable(CAP_NET_ADMIN))
728 /* We implement the SO_SNDLOWAT etc to
729 not be settable (1003.1g 5.3) */
732 sock_set_flag(sk, SOCK_RXQ_OVFL);
734 sock_reset_flag(sk, SOCK_RXQ_OVFL);
743 EXPORT_SYMBOL(sock_setsockopt);
746 int sock_getsockopt(struct socket *sock, int level, int optname,
747 char __user *optval, int __user *optlen)
749 struct sock *sk = sock->sk;
757 int lv = sizeof(int);
760 if (get_user(len, optlen))
765 memset(&v, 0, sizeof(v));
769 v.val = sock_flag(sk, SOCK_DBG);
773 v.val = sock_flag(sk, SOCK_LOCALROUTE);
777 v.val = !!sock_flag(sk, SOCK_BROADCAST);
781 v.val = sk->sk_sndbuf;
785 v.val = sk->sk_rcvbuf;
789 v.val = sk->sk_reuse;
793 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
801 v.val = sk->sk_protocol;
805 v.val = sk->sk_family;
809 v.val = -sock_error(sk);
811 v.val = xchg(&sk->sk_err_soft, 0);
815 v.val = !!sock_flag(sk, SOCK_URGINLINE);
819 v.val = sk->sk_no_check;
823 v.val = sk->sk_priority;
828 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
829 v.ling.l_linger = sk->sk_lingertime / HZ;
833 sock_warn_obsolete_bsdism("getsockopt");
837 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
838 !sock_flag(sk, SOCK_RCVTSTAMPNS);
842 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
845 case SO_TIMESTAMPING:
847 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
848 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
849 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
850 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
851 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
852 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
853 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
854 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
855 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
856 v.val |= SOF_TIMESTAMPING_SOFTWARE;
857 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
858 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
859 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
860 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
864 lv = sizeof(struct timeval);
865 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
869 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
870 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
875 lv = sizeof(struct timeval);
876 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
880 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
881 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
886 v.val = sk->sk_rcvlowat;
894 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
898 if (len > sizeof(sk->sk_peercred))
899 len = sizeof(sk->sk_peercred);
900 if (copy_to_user(optval, &sk->sk_peercred, len))
908 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
912 if (copy_to_user(optval, address, len))
917 /* Dubious BSD thing... Probably nobody even uses it, but
918 * the UNIX standard wants it for whatever reason... -DaveM
921 v.val = sk->sk_state == TCP_LISTEN;
925 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
929 return security_socket_getpeersec_stream(sock, optval, optlen, len);
936 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
945 if (copy_to_user(optval, &v, len))
948 if (put_user(len, optlen))
954 * Initialize an sk_lock.
956 * (We also register the sk_lock with the lock validator.)
958 static inline void sock_lock_init(struct sock *sk)
960 sock_lock_init_class_and_name(sk,
961 af_family_slock_key_strings[sk->sk_family],
962 af_family_slock_keys + sk->sk_family,
963 af_family_key_strings[sk->sk_family],
964 af_family_keys + sk->sk_family);
968 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
969 * even temporarly, because of RCU lookups. sk_node should also be left as is.
971 static void sock_copy(struct sock *nsk, const struct sock *osk)
973 #ifdef CONFIG_SECURITY_NETWORK
974 void *sptr = nsk->sk_security;
976 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
977 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
978 sizeof(osk->sk_tx_queue_mapping));
979 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
980 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
981 #ifdef CONFIG_SECURITY_NETWORK
982 nsk->sk_security = sptr;
983 security_sk_clone(osk, nsk);
987 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
991 struct kmem_cache *slab;
995 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
998 if (priority & __GFP_ZERO) {
1000 * caches using SLAB_DESTROY_BY_RCU should let
1001 * sk_node.next un-modified. Special care is taken
1002 * when initializing object to zero.
1004 if (offsetof(struct sock, sk_node.next) != 0)
1005 memset(sk, 0, offsetof(struct sock, sk_node.next));
1006 memset(&sk->sk_node.pprev, 0,
1007 prot->obj_size - offsetof(struct sock,
1012 sk = kmalloc(prot->obj_size, priority);
1015 kmemcheck_annotate_bitfield(sk, flags);
1017 if (security_sk_alloc(sk, family, priority))
1020 if (!try_module_get(prot->owner))
1022 sk_tx_queue_clear(sk);
1028 security_sk_free(sk);
1031 kmem_cache_free(slab, sk);
1037 static void sk_prot_free(struct proto *prot, struct sock *sk)
1039 struct kmem_cache *slab;
1040 struct module *owner;
1042 owner = prot->owner;
1045 security_sk_free(sk);
1047 kmem_cache_free(slab, sk);
1054 * sk_alloc - All socket objects are allocated here
1055 * @net: the applicable net namespace
1056 * @family: protocol family
1057 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1058 * @prot: struct proto associated with this new sock instance
1060 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1065 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1067 sk->sk_family = family;
1069 * See comment in struct sock definition to understand
1070 * why we need sk_prot_creator -acme
1072 sk->sk_prot = sk->sk_prot_creator = prot;
1074 sock_net_set(sk, get_net(net));
1075 atomic_set(&sk->sk_wmem_alloc, 1);
1080 EXPORT_SYMBOL(sk_alloc);
1082 static void __sk_free(struct sock *sk)
1084 struct sk_filter *filter;
1086 if (sk->sk_destruct)
1087 sk->sk_destruct(sk);
1089 filter = rcu_dereference_check(sk->sk_filter,
1090 atomic_read(&sk->sk_wmem_alloc) == 0);
1092 sk_filter_uncharge(sk, filter);
1093 rcu_assign_pointer(sk->sk_filter, NULL);
1096 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1097 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1099 if (atomic_read(&sk->sk_omem_alloc))
1100 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1101 __func__, atomic_read(&sk->sk_omem_alloc));
1103 put_net(sock_net(sk));
1104 sk_prot_free(sk->sk_prot_creator, sk);
1107 void sk_free(struct sock *sk)
1110 * We substract one from sk_wmem_alloc and can know if
1111 * some packets are still in some tx queue.
1112 * If not null, sock_wfree() will call __sk_free(sk) later
1114 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1117 EXPORT_SYMBOL(sk_free);
1120 * Last sock_put should drop referrence to sk->sk_net. It has already
1121 * been dropped in sk_change_net. Taking referrence to stopping namespace
1123 * Take referrence to a socket to remove it from hash _alive_ and after that
1124 * destroy it in the context of init_net.
1126 void sk_release_kernel(struct sock *sk)
1128 if (sk == NULL || sk->sk_socket == NULL)
1132 sock_release(sk->sk_socket);
1133 release_net(sock_net(sk));
1134 sock_net_set(sk, get_net(&init_net));
1137 EXPORT_SYMBOL(sk_release_kernel);
1139 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1143 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1144 if (newsk != NULL) {
1145 struct sk_filter *filter;
1147 sock_copy(newsk, sk);
1150 get_net(sock_net(newsk));
1151 sk_node_init(&newsk->sk_node);
1152 sock_lock_init(newsk);
1153 bh_lock_sock(newsk);
1154 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1155 newsk->sk_backlog.len = 0;
1157 atomic_set(&newsk->sk_rmem_alloc, 0);
1159 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1161 atomic_set(&newsk->sk_wmem_alloc, 1);
1162 atomic_set(&newsk->sk_omem_alloc, 0);
1163 skb_queue_head_init(&newsk->sk_receive_queue);
1164 skb_queue_head_init(&newsk->sk_write_queue);
1165 #ifdef CONFIG_NET_DMA
1166 skb_queue_head_init(&newsk->sk_async_wait_queue);
1169 spin_lock_init(&newsk->sk_dst_lock);
1170 rwlock_init(&newsk->sk_callback_lock);
1171 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1172 af_callback_keys + newsk->sk_family,
1173 af_family_clock_key_strings[newsk->sk_family]);
1175 newsk->sk_dst_cache = NULL;
1176 newsk->sk_wmem_queued = 0;
1177 newsk->sk_forward_alloc = 0;
1178 newsk->sk_send_head = NULL;
1179 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1181 sock_reset_flag(newsk, SOCK_DONE);
1182 skb_queue_head_init(&newsk->sk_error_queue);
1184 filter = newsk->sk_filter;
1186 sk_filter_charge(newsk, filter);
1188 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1189 /* It is still raw copy of parent, so invalidate
1190 * destructor and make plain sk_free() */
1191 newsk->sk_destruct = NULL;
1198 newsk->sk_priority = 0;
1200 * Before updating sk_refcnt, we must commit prior changes to memory
1201 * (Documentation/RCU/rculist_nulls.txt for details)
1204 atomic_set(&newsk->sk_refcnt, 2);
1207 * Increment the counter in the same struct proto as the master
1208 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1209 * is the same as sk->sk_prot->socks, as this field was copied
1212 * This _changes_ the previous behaviour, where
1213 * tcp_create_openreq_child always was incrementing the
1214 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1215 * to be taken into account in all callers. -acme
1217 sk_refcnt_debug_inc(newsk);
1218 sk_set_socket(newsk, NULL);
1219 newsk->sk_wq = NULL;
1221 if (newsk->sk_prot->sockets_allocated)
1222 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1224 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1225 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1226 net_enable_timestamp();
1231 EXPORT_SYMBOL_GPL(sk_clone);
1233 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1235 __sk_dst_set(sk, dst);
1236 sk->sk_route_caps = dst->dev->features;
1237 if (sk->sk_route_caps & NETIF_F_GSO)
1238 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1239 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1240 if (sk_can_gso(sk)) {
1241 if (dst->header_len) {
1242 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1244 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1245 sk->sk_gso_max_size = dst->dev->gso_max_size;
1249 EXPORT_SYMBOL_GPL(sk_setup_caps);
1251 void __init sk_init(void)
1253 if (totalram_pages <= 4096) {
1254 sysctl_wmem_max = 32767;
1255 sysctl_rmem_max = 32767;
1256 sysctl_wmem_default = 32767;
1257 sysctl_rmem_default = 32767;
1258 } else if (totalram_pages >= 131072) {
1259 sysctl_wmem_max = 131071;
1260 sysctl_rmem_max = 131071;
1265 * Simple resource managers for sockets.
1270 * Write buffer destructor automatically called from kfree_skb.
1272 void sock_wfree(struct sk_buff *skb)
1274 struct sock *sk = skb->sk;
1275 unsigned int len = skb->truesize;
1277 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1279 * Keep a reference on sk_wmem_alloc, this will be released
1280 * after sk_write_space() call
1282 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1283 sk->sk_write_space(sk);
1287 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1288 * could not do because of in-flight packets
1290 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1293 EXPORT_SYMBOL(sock_wfree);
1296 * Read buffer destructor automatically called from kfree_skb.
1298 void sock_rfree(struct sk_buff *skb)
1300 struct sock *sk = skb->sk;
1302 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1303 sk_mem_uncharge(skb->sk, skb->truesize);
1305 EXPORT_SYMBOL(sock_rfree);
1308 int sock_i_uid(struct sock *sk)
1312 read_lock(&sk->sk_callback_lock);
1313 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1314 read_unlock(&sk->sk_callback_lock);
1317 EXPORT_SYMBOL(sock_i_uid);
1319 unsigned long sock_i_ino(struct sock *sk)
1323 read_lock(&sk->sk_callback_lock);
1324 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1325 read_unlock(&sk->sk_callback_lock);
1328 EXPORT_SYMBOL(sock_i_ino);
1331 * Allocate a skb from the socket's send buffer.
1333 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1336 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1337 struct sk_buff *skb = alloc_skb(size, priority);
1339 skb_set_owner_w(skb, sk);
1345 EXPORT_SYMBOL(sock_wmalloc);
1348 * Allocate a skb from the socket's receive buffer.
1350 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1353 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1354 struct sk_buff *skb = alloc_skb(size, priority);
1356 skb_set_owner_r(skb, sk);
1364 * Allocate a memory block from the socket's option memory buffer.
1366 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1368 if ((unsigned)size <= sysctl_optmem_max &&
1369 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1371 /* First do the add, to avoid the race if kmalloc
1374 atomic_add(size, &sk->sk_omem_alloc);
1375 mem = kmalloc(size, priority);
1378 atomic_sub(size, &sk->sk_omem_alloc);
1382 EXPORT_SYMBOL(sock_kmalloc);
1385 * Free an option memory block.
1387 void sock_kfree_s(struct sock *sk, void *mem, int size)
1390 atomic_sub(size, &sk->sk_omem_alloc);
1392 EXPORT_SYMBOL(sock_kfree_s);
1394 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1395 I think, these locks should be removed for datagram sockets.
1397 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1401 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1405 if (signal_pending(current))
1407 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1408 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1409 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1411 if (sk->sk_shutdown & SEND_SHUTDOWN)
1415 timeo = schedule_timeout(timeo);
1417 finish_wait(sk_sleep(sk), &wait);
1423 * Generic send/receive buffer handlers
1426 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1427 unsigned long data_len, int noblock,
1430 struct sk_buff *skb;
1435 gfp_mask = sk->sk_allocation;
1436 if (gfp_mask & __GFP_WAIT)
1437 gfp_mask |= __GFP_REPEAT;
1439 timeo = sock_sndtimeo(sk, noblock);
1441 err = sock_error(sk);
1446 if (sk->sk_shutdown & SEND_SHUTDOWN)
1449 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1450 skb = alloc_skb(header_len, gfp_mask);
1455 /* No pages, we're done... */
1459 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1460 skb->truesize += data_len;
1461 skb_shinfo(skb)->nr_frags = npages;
1462 for (i = 0; i < npages; i++) {
1466 page = alloc_pages(sk->sk_allocation, 0);
1469 skb_shinfo(skb)->nr_frags = i;
1474 frag = &skb_shinfo(skb)->frags[i];
1476 frag->page_offset = 0;
1477 frag->size = (data_len >= PAGE_SIZE ?
1480 data_len -= PAGE_SIZE;
1483 /* Full success... */
1489 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1490 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1494 if (signal_pending(current))
1496 timeo = sock_wait_for_wmem(sk, timeo);
1499 skb_set_owner_w(skb, sk);
1503 err = sock_intr_errno(timeo);
1508 EXPORT_SYMBOL(sock_alloc_send_pskb);
1510 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1511 int noblock, int *errcode)
1513 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1515 EXPORT_SYMBOL(sock_alloc_send_skb);
1517 static void __lock_sock(struct sock *sk)
1522 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1523 TASK_UNINTERRUPTIBLE);
1524 spin_unlock_bh(&sk->sk_lock.slock);
1526 spin_lock_bh(&sk->sk_lock.slock);
1527 if (!sock_owned_by_user(sk))
1530 finish_wait(&sk->sk_lock.wq, &wait);
1533 static void __release_sock(struct sock *sk)
1535 struct sk_buff *skb = sk->sk_backlog.head;
1538 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1542 struct sk_buff *next = skb->next;
1544 WARN_ON_ONCE(skb_dst_is_noref(skb));
1546 sk_backlog_rcv(sk, skb);
1549 * We are in process context here with softirqs
1550 * disabled, use cond_resched_softirq() to preempt.
1551 * This is safe to do because we've taken the backlog
1554 cond_resched_softirq();
1557 } while (skb != NULL);
1560 } while ((skb = sk->sk_backlog.head) != NULL);
1563 * Doing the zeroing here guarantee we can not loop forever
1564 * while a wild producer attempts to flood us.
1566 sk->sk_backlog.len = 0;
1570 * sk_wait_data - wait for data to arrive at sk_receive_queue
1571 * @sk: sock to wait on
1572 * @timeo: for how long
1574 * Now socket state including sk->sk_err is changed only under lock,
1575 * hence we may omit checks after joining wait queue.
1576 * We check receive queue before schedule() only as optimization;
1577 * it is very likely that release_sock() added new data.
1579 int sk_wait_data(struct sock *sk, long *timeo)
1584 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1585 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1586 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1587 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1588 finish_wait(sk_sleep(sk), &wait);
1591 EXPORT_SYMBOL(sk_wait_data);
1594 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1596 * @size: memory size to allocate
1597 * @kind: allocation type
1599 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1600 * rmem allocation. This function assumes that protocols which have
1601 * memory_pressure use sk_wmem_queued as write buffer accounting.
1603 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1605 struct proto *prot = sk->sk_prot;
1606 int amt = sk_mem_pages(size);
1609 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1610 allocated = atomic_add_return(amt, prot->memory_allocated);
1613 if (allocated <= prot->sysctl_mem[0]) {
1614 if (prot->memory_pressure && *prot->memory_pressure)
1615 *prot->memory_pressure = 0;
1619 /* Under pressure. */
1620 if (allocated > prot->sysctl_mem[1])
1621 if (prot->enter_memory_pressure)
1622 prot->enter_memory_pressure(sk);
1624 /* Over hard limit. */
1625 if (allocated > prot->sysctl_mem[2])
1626 goto suppress_allocation;
1628 /* guarantee minimum buffer size under pressure */
1629 if (kind == SK_MEM_RECV) {
1630 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1632 } else { /* SK_MEM_SEND */
1633 if (sk->sk_type == SOCK_STREAM) {
1634 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1636 } else if (atomic_read(&sk->sk_wmem_alloc) <
1637 prot->sysctl_wmem[0])
1641 if (prot->memory_pressure) {
1644 if (!*prot->memory_pressure)
1646 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1647 if (prot->sysctl_mem[2] > alloc *
1648 sk_mem_pages(sk->sk_wmem_queued +
1649 atomic_read(&sk->sk_rmem_alloc) +
1650 sk->sk_forward_alloc))
1654 suppress_allocation:
1656 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1657 sk_stream_moderate_sndbuf(sk);
1659 /* Fail only if socket is _under_ its sndbuf.
1660 * In this case we cannot block, so that we have to fail.
1662 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1666 /* Alas. Undo changes. */
1667 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1668 atomic_sub(amt, prot->memory_allocated);
1671 EXPORT_SYMBOL(__sk_mem_schedule);
1674 * __sk_reclaim - reclaim memory_allocated
1677 void __sk_mem_reclaim(struct sock *sk)
1679 struct proto *prot = sk->sk_prot;
1681 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1682 prot->memory_allocated);
1683 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1685 if (prot->memory_pressure && *prot->memory_pressure &&
1686 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1687 *prot->memory_pressure = 0;
1689 EXPORT_SYMBOL(__sk_mem_reclaim);
1693 * Set of default routines for initialising struct proto_ops when
1694 * the protocol does not support a particular function. In certain
1695 * cases where it makes no sense for a protocol to have a "do nothing"
1696 * function, some default processing is provided.
1699 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1703 EXPORT_SYMBOL(sock_no_bind);
1705 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1710 EXPORT_SYMBOL(sock_no_connect);
1712 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1716 EXPORT_SYMBOL(sock_no_socketpair);
1718 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1722 EXPORT_SYMBOL(sock_no_accept);
1724 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1729 EXPORT_SYMBOL(sock_no_getname);
1731 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1735 EXPORT_SYMBOL(sock_no_poll);
1737 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1741 EXPORT_SYMBOL(sock_no_ioctl);
1743 int sock_no_listen(struct socket *sock, int backlog)
1747 EXPORT_SYMBOL(sock_no_listen);
1749 int sock_no_shutdown(struct socket *sock, int how)
1753 EXPORT_SYMBOL(sock_no_shutdown);
1755 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1756 char __user *optval, unsigned int optlen)
1760 EXPORT_SYMBOL(sock_no_setsockopt);
1762 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1763 char __user *optval, int __user *optlen)
1767 EXPORT_SYMBOL(sock_no_getsockopt);
1769 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1774 EXPORT_SYMBOL(sock_no_sendmsg);
1776 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1777 size_t len, int flags)
1781 EXPORT_SYMBOL(sock_no_recvmsg);
1783 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1785 /* Mirror missing mmap method error code */
1788 EXPORT_SYMBOL(sock_no_mmap);
1790 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1793 struct msghdr msg = {.msg_flags = flags};
1795 char *kaddr = kmap(page);
1796 iov.iov_base = kaddr + offset;
1798 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1802 EXPORT_SYMBOL(sock_no_sendpage);
1805 * Default Socket Callbacks
1808 static void sock_def_wakeup(struct sock *sk)
1810 struct socket_wq *wq;
1813 wq = rcu_dereference(sk->sk_wq);
1814 if (wq_has_sleeper(wq))
1815 wake_up_interruptible_all(&wq->wait);
1819 static void sock_def_error_report(struct sock *sk)
1821 struct socket_wq *wq;
1824 wq = rcu_dereference(sk->sk_wq);
1825 if (wq_has_sleeper(wq))
1826 wake_up_interruptible_poll(&wq->wait, POLLERR);
1827 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1831 static void sock_def_readable(struct sock *sk, int len)
1833 struct socket_wq *wq;
1836 wq = rcu_dereference(sk->sk_wq);
1837 if (wq_has_sleeper(wq))
1838 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1839 POLLRDNORM | POLLRDBAND);
1840 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1844 static void sock_def_write_space(struct sock *sk)
1846 struct socket_wq *wq;
1850 /* Do not wake up a writer until he can make "significant"
1853 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1854 wq = rcu_dereference(sk->sk_wq);
1855 if (wq_has_sleeper(wq))
1856 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1857 POLLWRNORM | POLLWRBAND);
1859 /* Should agree with poll, otherwise some programs break */
1860 if (sock_writeable(sk))
1861 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1867 static void sock_def_destruct(struct sock *sk)
1869 kfree(sk->sk_protinfo);
1872 void sk_send_sigurg(struct sock *sk)
1874 if (sk->sk_socket && sk->sk_socket->file)
1875 if (send_sigurg(&sk->sk_socket->file->f_owner))
1876 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1878 EXPORT_SYMBOL(sk_send_sigurg);
1880 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1881 unsigned long expires)
1883 if (!mod_timer(timer, expires))
1886 EXPORT_SYMBOL(sk_reset_timer);
1888 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1890 if (timer_pending(timer) && del_timer(timer))
1893 EXPORT_SYMBOL(sk_stop_timer);
1895 void sock_init_data(struct socket *sock, struct sock *sk)
1897 skb_queue_head_init(&sk->sk_receive_queue);
1898 skb_queue_head_init(&sk->sk_write_queue);
1899 skb_queue_head_init(&sk->sk_error_queue);
1900 #ifdef CONFIG_NET_DMA
1901 skb_queue_head_init(&sk->sk_async_wait_queue);
1904 sk->sk_send_head = NULL;
1906 init_timer(&sk->sk_timer);
1908 sk->sk_allocation = GFP_KERNEL;
1909 sk->sk_rcvbuf = sysctl_rmem_default;
1910 sk->sk_sndbuf = sysctl_wmem_default;
1911 sk->sk_state = TCP_CLOSE;
1912 sk_set_socket(sk, sock);
1914 sock_set_flag(sk, SOCK_ZAPPED);
1917 sk->sk_type = sock->type;
1918 sk->sk_wq = sock->wq;
1923 spin_lock_init(&sk->sk_dst_lock);
1924 rwlock_init(&sk->sk_callback_lock);
1925 lockdep_set_class_and_name(&sk->sk_callback_lock,
1926 af_callback_keys + sk->sk_family,
1927 af_family_clock_key_strings[sk->sk_family]);
1929 sk->sk_state_change = sock_def_wakeup;
1930 sk->sk_data_ready = sock_def_readable;
1931 sk->sk_write_space = sock_def_write_space;
1932 sk->sk_error_report = sock_def_error_report;
1933 sk->sk_destruct = sock_def_destruct;
1935 sk->sk_sndmsg_page = NULL;
1936 sk->sk_sndmsg_off = 0;
1938 sk->sk_peercred.pid = 0;
1939 sk->sk_peercred.uid = -1;
1940 sk->sk_peercred.gid = -1;
1941 sk->sk_write_pending = 0;
1942 sk->sk_rcvlowat = 1;
1943 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1944 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1946 sk->sk_stamp = ktime_set(-1L, 0);
1949 * Before updating sk_refcnt, we must commit prior changes to memory
1950 * (Documentation/RCU/rculist_nulls.txt for details)
1953 atomic_set(&sk->sk_refcnt, 1);
1954 atomic_set(&sk->sk_drops, 0);
1956 EXPORT_SYMBOL(sock_init_data);
1958 void lock_sock_nested(struct sock *sk, int subclass)
1961 spin_lock_bh(&sk->sk_lock.slock);
1962 if (sk->sk_lock.owned)
1964 sk->sk_lock.owned = 1;
1965 spin_unlock(&sk->sk_lock.slock);
1967 * The sk_lock has mutex_lock() semantics here:
1969 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1972 EXPORT_SYMBOL(lock_sock_nested);
1974 void release_sock(struct sock *sk)
1977 * The sk_lock has mutex_unlock() semantics:
1979 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1981 spin_lock_bh(&sk->sk_lock.slock);
1982 if (sk->sk_backlog.tail)
1984 sk->sk_lock.owned = 0;
1985 if (waitqueue_active(&sk->sk_lock.wq))
1986 wake_up(&sk->sk_lock.wq);
1987 spin_unlock_bh(&sk->sk_lock.slock);
1989 EXPORT_SYMBOL(release_sock);
1991 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1994 if (!sock_flag(sk, SOCK_TIMESTAMP))
1995 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1996 tv = ktime_to_timeval(sk->sk_stamp);
1997 if (tv.tv_sec == -1)
1999 if (tv.tv_sec == 0) {
2000 sk->sk_stamp = ktime_get_real();
2001 tv = ktime_to_timeval(sk->sk_stamp);
2003 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2005 EXPORT_SYMBOL(sock_get_timestamp);
2007 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2010 if (!sock_flag(sk, SOCK_TIMESTAMP))
2011 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2012 ts = ktime_to_timespec(sk->sk_stamp);
2013 if (ts.tv_sec == -1)
2015 if (ts.tv_sec == 0) {
2016 sk->sk_stamp = ktime_get_real();
2017 ts = ktime_to_timespec(sk->sk_stamp);
2019 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2021 EXPORT_SYMBOL(sock_get_timestampns);
2023 void sock_enable_timestamp(struct sock *sk, int flag)
2025 if (!sock_flag(sk, flag)) {
2026 sock_set_flag(sk, flag);
2028 * we just set one of the two flags which require net
2029 * time stamping, but time stamping might have been on
2030 * already because of the other one
2033 flag == SOCK_TIMESTAMP ?
2034 SOCK_TIMESTAMPING_RX_SOFTWARE :
2036 net_enable_timestamp();
2041 * Get a socket option on an socket.
2043 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2044 * asynchronous errors should be reported by getsockopt. We assume
2045 * this means if you specify SO_ERROR (otherwise whats the point of it).
2047 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2048 char __user *optval, int __user *optlen)
2050 struct sock *sk = sock->sk;
2052 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2054 EXPORT_SYMBOL(sock_common_getsockopt);
2056 #ifdef CONFIG_COMPAT
2057 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2058 char __user *optval, int __user *optlen)
2060 struct sock *sk = sock->sk;
2062 if (sk->sk_prot->compat_getsockopt != NULL)
2063 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2065 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2067 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2070 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2071 struct msghdr *msg, size_t size, int flags)
2073 struct sock *sk = sock->sk;
2077 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2078 flags & ~MSG_DONTWAIT, &addr_len);
2080 msg->msg_namelen = addr_len;
2083 EXPORT_SYMBOL(sock_common_recvmsg);
2086 * Set socket options on an inet socket.
2088 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2089 char __user *optval, unsigned int optlen)
2091 struct sock *sk = sock->sk;
2093 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2095 EXPORT_SYMBOL(sock_common_setsockopt);
2097 #ifdef CONFIG_COMPAT
2098 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2099 char __user *optval, unsigned int optlen)
2101 struct sock *sk = sock->sk;
2103 if (sk->sk_prot->compat_setsockopt != NULL)
2104 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2106 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2108 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2111 void sk_common_release(struct sock *sk)
2113 if (sk->sk_prot->destroy)
2114 sk->sk_prot->destroy(sk);
2117 * Observation: when sock_common_release is called, processes have
2118 * no access to socket. But net still has.
2119 * Step one, detach it from networking:
2121 * A. Remove from hash tables.
2124 sk->sk_prot->unhash(sk);
2127 * In this point socket cannot receive new packets, but it is possible
2128 * that some packets are in flight because some CPU runs receiver and
2129 * did hash table lookup before we unhashed socket. They will achieve
2130 * receive queue and will be purged by socket destructor.
2132 * Also we still have packets pending on receive queue and probably,
2133 * our own packets waiting in device queues. sock_destroy will drain
2134 * receive queue, but transmitted packets will delay socket destruction
2135 * until the last reference will be released.
2140 xfrm_sk_free_policy(sk);
2142 sk_refcnt_debug_release(sk);
2145 EXPORT_SYMBOL(sk_common_release);
2147 static DEFINE_RWLOCK(proto_list_lock);
2148 static LIST_HEAD(proto_list);
2150 #ifdef CONFIG_PROC_FS
2151 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2153 int val[PROTO_INUSE_NR];
2156 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2158 #ifdef CONFIG_NET_NS
2159 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2161 int cpu = smp_processor_id();
2162 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2164 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2166 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2168 int cpu, idx = prot->inuse_idx;
2171 for_each_possible_cpu(cpu)
2172 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2174 return res >= 0 ? res : 0;
2176 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2178 static int __net_init sock_inuse_init_net(struct net *net)
2180 net->core.inuse = alloc_percpu(struct prot_inuse);
2181 return net->core.inuse ? 0 : -ENOMEM;
2184 static void __net_exit sock_inuse_exit_net(struct net *net)
2186 free_percpu(net->core.inuse);
2189 static struct pernet_operations net_inuse_ops = {
2190 .init = sock_inuse_init_net,
2191 .exit = sock_inuse_exit_net,
2194 static __init int net_inuse_init(void)
2196 if (register_pernet_subsys(&net_inuse_ops))
2197 panic("Cannot initialize net inuse counters");
2202 core_initcall(net_inuse_init);
2204 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2206 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2208 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2210 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2212 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2214 int cpu, idx = prot->inuse_idx;
2217 for_each_possible_cpu(cpu)
2218 res += per_cpu(prot_inuse, cpu).val[idx];
2220 return res >= 0 ? res : 0;
2222 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2225 static void assign_proto_idx(struct proto *prot)
2227 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2229 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2230 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2234 set_bit(prot->inuse_idx, proto_inuse_idx);
2237 static void release_proto_idx(struct proto *prot)
2239 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2240 clear_bit(prot->inuse_idx, proto_inuse_idx);
2243 static inline void assign_proto_idx(struct proto *prot)
2247 static inline void release_proto_idx(struct proto *prot)
2252 int proto_register(struct proto *prot, int alloc_slab)
2255 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2256 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2259 if (prot->slab == NULL) {
2260 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2265 if (prot->rsk_prot != NULL) {
2266 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2267 if (prot->rsk_prot->slab_name == NULL)
2268 goto out_free_sock_slab;
2270 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2271 prot->rsk_prot->obj_size, 0,
2272 SLAB_HWCACHE_ALIGN, NULL);
2274 if (prot->rsk_prot->slab == NULL) {
2275 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2277 goto out_free_request_sock_slab_name;
2281 if (prot->twsk_prot != NULL) {
2282 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2284 if (prot->twsk_prot->twsk_slab_name == NULL)
2285 goto out_free_request_sock_slab;
2287 prot->twsk_prot->twsk_slab =
2288 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2289 prot->twsk_prot->twsk_obj_size,
2291 SLAB_HWCACHE_ALIGN |
2294 if (prot->twsk_prot->twsk_slab == NULL)
2295 goto out_free_timewait_sock_slab_name;
2299 write_lock(&proto_list_lock);
2300 list_add(&prot->node, &proto_list);
2301 assign_proto_idx(prot);
2302 write_unlock(&proto_list_lock);
2305 out_free_timewait_sock_slab_name:
2306 kfree(prot->twsk_prot->twsk_slab_name);
2307 out_free_request_sock_slab:
2308 if (prot->rsk_prot && prot->rsk_prot->slab) {
2309 kmem_cache_destroy(prot->rsk_prot->slab);
2310 prot->rsk_prot->slab = NULL;
2312 out_free_request_sock_slab_name:
2314 kfree(prot->rsk_prot->slab_name);
2316 kmem_cache_destroy(prot->slab);
2321 EXPORT_SYMBOL(proto_register);
2323 void proto_unregister(struct proto *prot)
2325 write_lock(&proto_list_lock);
2326 release_proto_idx(prot);
2327 list_del(&prot->node);
2328 write_unlock(&proto_list_lock);
2330 if (prot->slab != NULL) {
2331 kmem_cache_destroy(prot->slab);
2335 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2336 kmem_cache_destroy(prot->rsk_prot->slab);
2337 kfree(prot->rsk_prot->slab_name);
2338 prot->rsk_prot->slab = NULL;
2341 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2342 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2343 kfree(prot->twsk_prot->twsk_slab_name);
2344 prot->twsk_prot->twsk_slab = NULL;
2347 EXPORT_SYMBOL(proto_unregister);
2349 #ifdef CONFIG_PROC_FS
2350 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2351 __acquires(proto_list_lock)
2353 read_lock(&proto_list_lock);
2354 return seq_list_start_head(&proto_list, *pos);
2357 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2359 return seq_list_next(v, &proto_list, pos);
2362 static void proto_seq_stop(struct seq_file *seq, void *v)
2363 __releases(proto_list_lock)
2365 read_unlock(&proto_list_lock);
2368 static char proto_method_implemented(const void *method)
2370 return method == NULL ? 'n' : 'y';
2373 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2375 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2376 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2379 sock_prot_inuse_get(seq_file_net(seq), proto),
2380 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2381 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2383 proto->slab == NULL ? "no" : "yes",
2384 module_name(proto->owner),
2385 proto_method_implemented(proto->close),
2386 proto_method_implemented(proto->connect),
2387 proto_method_implemented(proto->disconnect),
2388 proto_method_implemented(proto->accept),
2389 proto_method_implemented(proto->ioctl),
2390 proto_method_implemented(proto->init),
2391 proto_method_implemented(proto->destroy),
2392 proto_method_implemented(proto->shutdown),
2393 proto_method_implemented(proto->setsockopt),
2394 proto_method_implemented(proto->getsockopt),
2395 proto_method_implemented(proto->sendmsg),
2396 proto_method_implemented(proto->recvmsg),
2397 proto_method_implemented(proto->sendpage),
2398 proto_method_implemented(proto->bind),
2399 proto_method_implemented(proto->backlog_rcv),
2400 proto_method_implemented(proto->hash),
2401 proto_method_implemented(proto->unhash),
2402 proto_method_implemented(proto->get_port),
2403 proto_method_implemented(proto->enter_memory_pressure));
2406 static int proto_seq_show(struct seq_file *seq, void *v)
2408 if (v == &proto_list)
2409 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2418 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2420 proto_seq_printf(seq, list_entry(v, struct proto, node));
2424 static const struct seq_operations proto_seq_ops = {
2425 .start = proto_seq_start,
2426 .next = proto_seq_next,
2427 .stop = proto_seq_stop,
2428 .show = proto_seq_show,
2431 static int proto_seq_open(struct inode *inode, struct file *file)
2433 return seq_open_net(inode, file, &proto_seq_ops,
2434 sizeof(struct seq_net_private));
2437 static const struct file_operations proto_seq_fops = {
2438 .owner = THIS_MODULE,
2439 .open = proto_seq_open,
2441 .llseek = seq_lseek,
2442 .release = seq_release_net,
2445 static __net_init int proto_init_net(struct net *net)
2447 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2453 static __net_exit void proto_exit_net(struct net *net)
2455 proc_net_remove(net, "protocols");
2459 static __net_initdata struct pernet_operations proto_net_ops = {
2460 .init = proto_init_net,
2461 .exit = proto_exit_net,
2464 static int __init proto_init(void)
2466 return register_pernet_subsys(&proto_net_ops);
2469 subsys_initcall(proto_init);
2471 #endif /* PROC_FS */