]> Git Repo - linux.git/blob - net/core/dev.c
ravb: Remove setting of RX software timestamp
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162
163 #include "dev.h"
164 #include "net-sysfs.h"
165
166 static DEFINE_SPINLOCK(ptype_lock);
167 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
168
169 static int netif_rx_internal(struct sk_buff *skb);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173
174 static DEFINE_MUTEX(ifalias_mutex);
175
176 /* protects napi_hash addition/deletion and napi_gen_id */
177 static DEFINE_SPINLOCK(napi_hash_lock);
178
179 static unsigned int napi_gen_id = NR_CPUS;
180 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
181
182 static DECLARE_RWSEM(devnet_rename_sem);
183
184 static inline void dev_base_seq_inc(struct net *net)
185 {
186         unsigned int val = net->dev_base_seq + 1;
187
188         WRITE_ONCE(net->dev_base_seq, val ?: 1);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
194
195         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 #ifndef CONFIG_PREEMPT_RT
204
205 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
206
207 static int __init setup_backlog_napi_threads(char *arg)
208 {
209         static_branch_enable(&use_backlog_threads_key);
210         return 0;
211 }
212 early_param("thread_backlog_napi", setup_backlog_napi_threads);
213
214 static bool use_backlog_threads(void)
215 {
216         return static_branch_unlikely(&use_backlog_threads_key);
217 }
218
219 #else
220
221 static bool use_backlog_threads(void)
222 {
223         return true;
224 }
225
226 #endif
227
228 static inline void backlog_lock_irq_save(struct softnet_data *sd,
229                                          unsigned long *flags)
230 {
231         if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
232                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
233         else
234                 local_irq_save(*flags);
235 }
236
237 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
238 {
239         if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
240                 spin_lock_irq(&sd->input_pkt_queue.lock);
241         else
242                 local_irq_disable();
243 }
244
245 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
246                                               unsigned long *flags)
247 {
248         if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
249                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
250         else
251                 local_irq_restore(*flags);
252 }
253
254 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
255 {
256         if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
257                 spin_unlock_irq(&sd->input_pkt_queue.lock);
258         else
259                 local_irq_enable();
260 }
261
262 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
263                                                        const char *name)
264 {
265         struct netdev_name_node *name_node;
266
267         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
268         if (!name_node)
269                 return NULL;
270         INIT_HLIST_NODE(&name_node->hlist);
271         name_node->dev = dev;
272         name_node->name = name;
273         return name_node;
274 }
275
276 static struct netdev_name_node *
277 netdev_name_node_head_alloc(struct net_device *dev)
278 {
279         struct netdev_name_node *name_node;
280
281         name_node = netdev_name_node_alloc(dev, dev->name);
282         if (!name_node)
283                 return NULL;
284         INIT_LIST_HEAD(&name_node->list);
285         return name_node;
286 }
287
288 static void netdev_name_node_free(struct netdev_name_node *name_node)
289 {
290         kfree(name_node);
291 }
292
293 static void netdev_name_node_add(struct net *net,
294                                  struct netdev_name_node *name_node)
295 {
296         hlist_add_head_rcu(&name_node->hlist,
297                            dev_name_hash(net, name_node->name));
298 }
299
300 static void netdev_name_node_del(struct netdev_name_node *name_node)
301 {
302         hlist_del_rcu(&name_node->hlist);
303 }
304
305 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
306                                                         const char *name)
307 {
308         struct hlist_head *head = dev_name_hash(net, name);
309         struct netdev_name_node *name_node;
310
311         hlist_for_each_entry(name_node, head, hlist)
312                 if (!strcmp(name_node->name, name))
313                         return name_node;
314         return NULL;
315 }
316
317 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
318                                                             const char *name)
319 {
320         struct hlist_head *head = dev_name_hash(net, name);
321         struct netdev_name_node *name_node;
322
323         hlist_for_each_entry_rcu(name_node, head, hlist)
324                 if (!strcmp(name_node->name, name))
325                         return name_node;
326         return NULL;
327 }
328
329 bool netdev_name_in_use(struct net *net, const char *name)
330 {
331         return netdev_name_node_lookup(net, name);
332 }
333 EXPORT_SYMBOL(netdev_name_in_use);
334
335 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
336 {
337         struct netdev_name_node *name_node;
338         struct net *net = dev_net(dev);
339
340         name_node = netdev_name_node_lookup(net, name);
341         if (name_node)
342                 return -EEXIST;
343         name_node = netdev_name_node_alloc(dev, name);
344         if (!name_node)
345                 return -ENOMEM;
346         netdev_name_node_add(net, name_node);
347         /* The node that holds dev->name acts as a head of per-device list. */
348         list_add_tail_rcu(&name_node->list, &dev->name_node->list);
349
350         return 0;
351 }
352
353 static void netdev_name_node_alt_free(struct rcu_head *head)
354 {
355         struct netdev_name_node *name_node =
356                 container_of(head, struct netdev_name_node, rcu);
357
358         kfree(name_node->name);
359         netdev_name_node_free(name_node);
360 }
361
362 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
363 {
364         netdev_name_node_del(name_node);
365         list_del(&name_node->list);
366         call_rcu(&name_node->rcu, netdev_name_node_alt_free);
367 }
368
369 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
370 {
371         struct netdev_name_node *name_node;
372         struct net *net = dev_net(dev);
373
374         name_node = netdev_name_node_lookup(net, name);
375         if (!name_node)
376                 return -ENOENT;
377         /* lookup might have found our primary name or a name belonging
378          * to another device.
379          */
380         if (name_node == dev->name_node || name_node->dev != dev)
381                 return -EINVAL;
382
383         __netdev_name_node_alt_destroy(name_node);
384         return 0;
385 }
386
387 static void netdev_name_node_alt_flush(struct net_device *dev)
388 {
389         struct netdev_name_node *name_node, *tmp;
390
391         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
392                 list_del(&name_node->list);
393                 netdev_name_node_alt_free(&name_node->rcu);
394         }
395 }
396
397 /* Device list insertion */
398 static void list_netdevice(struct net_device *dev)
399 {
400         struct netdev_name_node *name_node;
401         struct net *net = dev_net(dev);
402
403         ASSERT_RTNL();
404
405         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
406         netdev_name_node_add(net, dev->name_node);
407         hlist_add_head_rcu(&dev->index_hlist,
408                            dev_index_hash(net, dev->ifindex));
409
410         netdev_for_each_altname(dev, name_node)
411                 netdev_name_node_add(net, name_node);
412
413         /* We reserved the ifindex, this can't fail */
414         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
415
416         dev_base_seq_inc(net);
417 }
418
419 /* Device list removal
420  * caller must respect a RCU grace period before freeing/reusing dev
421  */
422 static void unlist_netdevice(struct net_device *dev)
423 {
424         struct netdev_name_node *name_node;
425         struct net *net = dev_net(dev);
426
427         ASSERT_RTNL();
428
429         xa_erase(&net->dev_by_index, dev->ifindex);
430
431         netdev_for_each_altname(dev, name_node)
432                 netdev_name_node_del(name_node);
433
434         /* Unlink dev from the device chain */
435         list_del_rcu(&dev->dev_list);
436         netdev_name_node_del(dev->name_node);
437         hlist_del_rcu(&dev->index_hlist);
438
439         dev_base_seq_inc(dev_net(dev));
440 }
441
442 /*
443  *      Our notifier list
444  */
445
446 static RAW_NOTIFIER_HEAD(netdev_chain);
447
448 /*
449  *      Device drivers call our routines to queue packets here. We empty the
450  *      queue in the local softnet handler.
451  */
452
453 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
454         .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
455 };
456 EXPORT_PER_CPU_SYMBOL(softnet_data);
457
458 /* Page_pool has a lockless array/stack to alloc/recycle pages.
459  * PP consumers must pay attention to run APIs in the appropriate context
460  * (e.g. NAPI context).
461  */
462 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
463
464 #ifdef CONFIG_LOCKDEP
465 /*
466  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
467  * according to dev->type
468  */
469 static const unsigned short netdev_lock_type[] = {
470          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
471          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
472          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
473          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
474          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
475          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
476          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
477          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
478          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
479          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
480          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
481          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
482          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
483          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
484          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
485
486 static const char *const netdev_lock_name[] = {
487         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
488         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
489         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
490         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
491         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
492         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
493         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
494         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
495         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
496         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
497         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
498         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
499         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
500         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
501         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
502
503 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
504 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
505
506 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
507 {
508         int i;
509
510         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
511                 if (netdev_lock_type[i] == dev_type)
512                         return i;
513         /* the last key is used by default */
514         return ARRAY_SIZE(netdev_lock_type) - 1;
515 }
516
517 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
518                                                  unsigned short dev_type)
519 {
520         int i;
521
522         i = netdev_lock_pos(dev_type);
523         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
524                                    netdev_lock_name[i]);
525 }
526
527 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
528 {
529         int i;
530
531         i = netdev_lock_pos(dev->type);
532         lockdep_set_class_and_name(&dev->addr_list_lock,
533                                    &netdev_addr_lock_key[i],
534                                    netdev_lock_name[i]);
535 }
536 #else
537 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
538                                                  unsigned short dev_type)
539 {
540 }
541
542 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
543 {
544 }
545 #endif
546
547 /*******************************************************************************
548  *
549  *              Protocol management and registration routines
550  *
551  *******************************************************************************/
552
553
554 /*
555  *      Add a protocol ID to the list. Now that the input handler is
556  *      smarter we can dispense with all the messy stuff that used to be
557  *      here.
558  *
559  *      BEWARE!!! Protocol handlers, mangling input packets,
560  *      MUST BE last in hash buckets and checking protocol handlers
561  *      MUST start from promiscuous ptype_all chain in net_bh.
562  *      It is true now, do not change it.
563  *      Explanation follows: if protocol handler, mangling packet, will
564  *      be the first on list, it is not able to sense, that packet
565  *      is cloned and should be copied-on-write, so that it will
566  *      change it and subsequent readers will get broken packet.
567  *                                                      --ANK (980803)
568  */
569
570 static inline struct list_head *ptype_head(const struct packet_type *pt)
571 {
572         if (pt->type == htons(ETH_P_ALL))
573                 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
574         else
575                 return pt->dev ? &pt->dev->ptype_specific :
576                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
577 }
578
579 /**
580  *      dev_add_pack - add packet handler
581  *      @pt: packet type declaration
582  *
583  *      Add a protocol handler to the networking stack. The passed &packet_type
584  *      is linked into kernel lists and may not be freed until it has been
585  *      removed from the kernel lists.
586  *
587  *      This call does not sleep therefore it can not
588  *      guarantee all CPU's that are in middle of receiving packets
589  *      will see the new packet type (until the next received packet).
590  */
591
592 void dev_add_pack(struct packet_type *pt)
593 {
594         struct list_head *head = ptype_head(pt);
595
596         spin_lock(&ptype_lock);
597         list_add_rcu(&pt->list, head);
598         spin_unlock(&ptype_lock);
599 }
600 EXPORT_SYMBOL(dev_add_pack);
601
602 /**
603  *      __dev_remove_pack        - remove packet handler
604  *      @pt: packet type declaration
605  *
606  *      Remove a protocol handler that was previously added to the kernel
607  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
608  *      from the kernel lists and can be freed or reused once this function
609  *      returns.
610  *
611  *      The packet type might still be in use by receivers
612  *      and must not be freed until after all the CPU's have gone
613  *      through a quiescent state.
614  */
615 void __dev_remove_pack(struct packet_type *pt)
616 {
617         struct list_head *head = ptype_head(pt);
618         struct packet_type *pt1;
619
620         spin_lock(&ptype_lock);
621
622         list_for_each_entry(pt1, head, list) {
623                 if (pt == pt1) {
624                         list_del_rcu(&pt->list);
625                         goto out;
626                 }
627         }
628
629         pr_warn("dev_remove_pack: %p not found\n", pt);
630 out:
631         spin_unlock(&ptype_lock);
632 }
633 EXPORT_SYMBOL(__dev_remove_pack);
634
635 /**
636  *      dev_remove_pack  - remove packet handler
637  *      @pt: packet type declaration
638  *
639  *      Remove a protocol handler that was previously added to the kernel
640  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
641  *      from the kernel lists and can be freed or reused once this function
642  *      returns.
643  *
644  *      This call sleeps to guarantee that no CPU is looking at the packet
645  *      type after return.
646  */
647 void dev_remove_pack(struct packet_type *pt)
648 {
649         __dev_remove_pack(pt);
650
651         synchronize_net();
652 }
653 EXPORT_SYMBOL(dev_remove_pack);
654
655
656 /*******************************************************************************
657  *
658  *                          Device Interface Subroutines
659  *
660  *******************************************************************************/
661
662 /**
663  *      dev_get_iflink  - get 'iflink' value of a interface
664  *      @dev: targeted interface
665  *
666  *      Indicates the ifindex the interface is linked to.
667  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
668  */
669
670 int dev_get_iflink(const struct net_device *dev)
671 {
672         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673                 return dev->netdev_ops->ndo_get_iflink(dev);
674
675         return READ_ONCE(dev->ifindex);
676 }
677 EXPORT_SYMBOL(dev_get_iflink);
678
679 /**
680  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
681  *      @dev: targeted interface
682  *      @skb: The packet.
683  *
684  *      For better visibility of tunnel traffic OVS needs to retrieve
685  *      egress tunnel information for a packet. Following API allows
686  *      user to get this info.
687  */
688 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
689 {
690         struct ip_tunnel_info *info;
691
692         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
693                 return -EINVAL;
694
695         info = skb_tunnel_info_unclone(skb);
696         if (!info)
697                 return -ENOMEM;
698         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
699                 return -EINVAL;
700
701         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
702 }
703 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
704
705 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
706 {
707         int k = stack->num_paths++;
708
709         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
710                 return NULL;
711
712         return &stack->path[k];
713 }
714
715 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
716                           struct net_device_path_stack *stack)
717 {
718         const struct net_device *last_dev;
719         struct net_device_path_ctx ctx = {
720                 .dev    = dev,
721         };
722         struct net_device_path *path;
723         int ret = 0;
724
725         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
726         stack->num_paths = 0;
727         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
728                 last_dev = ctx.dev;
729                 path = dev_fwd_path(stack);
730                 if (!path)
731                         return -1;
732
733                 memset(path, 0, sizeof(struct net_device_path));
734                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
735                 if (ret < 0)
736                         return -1;
737
738                 if (WARN_ON_ONCE(last_dev == ctx.dev))
739                         return -1;
740         }
741
742         if (!ctx.dev)
743                 return ret;
744
745         path = dev_fwd_path(stack);
746         if (!path)
747                 return -1;
748         path->type = DEV_PATH_ETHERNET;
749         path->dev = ctx.dev;
750
751         return ret;
752 }
753 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
754
755 /**
756  *      __dev_get_by_name       - find a device by its name
757  *      @net: the applicable net namespace
758  *      @name: name to find
759  *
760  *      Find an interface by name. Must be called under RTNL semaphore.
761  *      If the name is found a pointer to the device is returned.
762  *      If the name is not found then %NULL is returned. The
763  *      reference counters are not incremented so the caller must be
764  *      careful with locks.
765  */
766
767 struct net_device *__dev_get_by_name(struct net *net, const char *name)
768 {
769         struct netdev_name_node *node_name;
770
771         node_name = netdev_name_node_lookup(net, name);
772         return node_name ? node_name->dev : NULL;
773 }
774 EXPORT_SYMBOL(__dev_get_by_name);
775
776 /**
777  * dev_get_by_name_rcu  - find a device by its name
778  * @net: the applicable net namespace
779  * @name: name to find
780  *
781  * Find an interface by name.
782  * If the name is found a pointer to the device is returned.
783  * If the name is not found then %NULL is returned.
784  * The reference counters are not incremented so the caller must be
785  * careful with locks. The caller must hold RCU lock.
786  */
787
788 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
789 {
790         struct netdev_name_node *node_name;
791
792         node_name = netdev_name_node_lookup_rcu(net, name);
793         return node_name ? node_name->dev : NULL;
794 }
795 EXPORT_SYMBOL(dev_get_by_name_rcu);
796
797 /* Deprecated for new users, call netdev_get_by_name() instead */
798 struct net_device *dev_get_by_name(struct net *net, const char *name)
799 {
800         struct net_device *dev;
801
802         rcu_read_lock();
803         dev = dev_get_by_name_rcu(net, name);
804         dev_hold(dev);
805         rcu_read_unlock();
806         return dev;
807 }
808 EXPORT_SYMBOL(dev_get_by_name);
809
810 /**
811  *      netdev_get_by_name() - find a device by its name
812  *      @net: the applicable net namespace
813  *      @name: name to find
814  *      @tracker: tracking object for the acquired reference
815  *      @gfp: allocation flags for the tracker
816  *
817  *      Find an interface by name. This can be called from any
818  *      context and does its own locking. The returned handle has
819  *      the usage count incremented and the caller must use netdev_put() to
820  *      release it when it is no longer needed. %NULL is returned if no
821  *      matching device is found.
822  */
823 struct net_device *netdev_get_by_name(struct net *net, const char *name,
824                                       netdevice_tracker *tracker, gfp_t gfp)
825 {
826         struct net_device *dev;
827
828         dev = dev_get_by_name(net, name);
829         if (dev)
830                 netdev_tracker_alloc(dev, tracker, gfp);
831         return dev;
832 }
833 EXPORT_SYMBOL(netdev_get_by_name);
834
835 /**
836  *      __dev_get_by_index - find a device by its ifindex
837  *      @net: the applicable net namespace
838  *      @ifindex: index of device
839  *
840  *      Search for an interface by index. Returns %NULL if the device
841  *      is not found or a pointer to the device. The device has not
842  *      had its reference counter increased so the caller must be careful
843  *      about locking. The caller must hold the RTNL semaphore.
844  */
845
846 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
847 {
848         struct net_device *dev;
849         struct hlist_head *head = dev_index_hash(net, ifindex);
850
851         hlist_for_each_entry(dev, head, index_hlist)
852                 if (dev->ifindex == ifindex)
853                         return dev;
854
855         return NULL;
856 }
857 EXPORT_SYMBOL(__dev_get_by_index);
858
859 /**
860  *      dev_get_by_index_rcu - find a device by its ifindex
861  *      @net: the applicable net namespace
862  *      @ifindex: index of device
863  *
864  *      Search for an interface by index. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not
866  *      had its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
871 {
872         struct net_device *dev;
873         struct hlist_head *head = dev_index_hash(net, ifindex);
874
875         hlist_for_each_entry_rcu(dev, head, index_hlist)
876                 if (dev->ifindex == ifindex)
877                         return dev;
878
879         return NULL;
880 }
881 EXPORT_SYMBOL(dev_get_by_index_rcu);
882
883 /* Deprecated for new users, call netdev_get_by_index() instead */
884 struct net_device *dev_get_by_index(struct net *net, int ifindex)
885 {
886         struct net_device *dev;
887
888         rcu_read_lock();
889         dev = dev_get_by_index_rcu(net, ifindex);
890         dev_hold(dev);
891         rcu_read_unlock();
892         return dev;
893 }
894 EXPORT_SYMBOL(dev_get_by_index);
895
896 /**
897  *      netdev_get_by_index() - find a device by its ifindex
898  *      @net: the applicable net namespace
899  *      @ifindex: index of device
900  *      @tracker: tracking object for the acquired reference
901  *      @gfp: allocation flags for the tracker
902  *
903  *      Search for an interface by index. Returns NULL if the device
904  *      is not found or a pointer to the device. The device returned has
905  *      had a reference added and the pointer is safe until the user calls
906  *      netdev_put() to indicate they have finished with it.
907  */
908 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
909                                        netdevice_tracker *tracker, gfp_t gfp)
910 {
911         struct net_device *dev;
912
913         dev = dev_get_by_index(net, ifindex);
914         if (dev)
915                 netdev_tracker_alloc(dev, tracker, gfp);
916         return dev;
917 }
918 EXPORT_SYMBOL(netdev_get_by_index);
919
920 /**
921  *      dev_get_by_napi_id - find a device by napi_id
922  *      @napi_id: ID of the NAPI struct
923  *
924  *      Search for an interface by NAPI ID. Returns %NULL if the device
925  *      is not found or a pointer to the device. The device has not had
926  *      its reference counter increased so the caller must be careful
927  *      about locking. The caller must hold RCU lock.
928  */
929
930 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
931 {
932         struct napi_struct *napi;
933
934         WARN_ON_ONCE(!rcu_read_lock_held());
935
936         if (napi_id < MIN_NAPI_ID)
937                 return NULL;
938
939         napi = napi_by_id(napi_id);
940
941         return napi ? napi->dev : NULL;
942 }
943 EXPORT_SYMBOL(dev_get_by_napi_id);
944
945 static DEFINE_SEQLOCK(netdev_rename_lock);
946
947 void netdev_copy_name(struct net_device *dev, char *name)
948 {
949         unsigned int seq;
950
951         do {
952                 seq = read_seqbegin(&netdev_rename_lock);
953                 strscpy(name, dev->name, IFNAMSIZ);
954         } while (read_seqretry(&netdev_rename_lock, seq));
955 }
956
957 /**
958  *      netdev_get_name - get a netdevice name, knowing its ifindex.
959  *      @net: network namespace
960  *      @name: a pointer to the buffer where the name will be stored.
961  *      @ifindex: the ifindex of the interface to get the name from.
962  */
963 int netdev_get_name(struct net *net, char *name, int ifindex)
964 {
965         struct net_device *dev;
966         int ret;
967
968         rcu_read_lock();
969
970         dev = dev_get_by_index_rcu(net, ifindex);
971         if (!dev) {
972                 ret = -ENODEV;
973                 goto out;
974         }
975
976         netdev_copy_name(dev, name);
977
978         ret = 0;
979 out:
980         rcu_read_unlock();
981         return ret;
982 }
983
984 /**
985  *      dev_getbyhwaddr_rcu - find a device by its hardware address
986  *      @net: the applicable net namespace
987  *      @type: media type of device
988  *      @ha: hardware address
989  *
990  *      Search for an interface by MAC address. Returns NULL if the device
991  *      is not found or a pointer to the device.
992  *      The caller must hold RCU or RTNL.
993  *      The returned device has not had its ref count increased
994  *      and the caller must therefore be careful about locking
995  *
996  */
997
998 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
999                                        const char *ha)
1000 {
1001         struct net_device *dev;
1002
1003         for_each_netdev_rcu(net, dev)
1004                 if (dev->type == type &&
1005                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1006                         return dev;
1007
1008         return NULL;
1009 }
1010 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1011
1012 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1013 {
1014         struct net_device *dev, *ret = NULL;
1015
1016         rcu_read_lock();
1017         for_each_netdev_rcu(net, dev)
1018                 if (dev->type == type) {
1019                         dev_hold(dev);
1020                         ret = dev;
1021                         break;
1022                 }
1023         rcu_read_unlock();
1024         return ret;
1025 }
1026 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1027
1028 /**
1029  *      __dev_get_by_flags - find any device with given flags
1030  *      @net: the applicable net namespace
1031  *      @if_flags: IFF_* values
1032  *      @mask: bitmask of bits in if_flags to check
1033  *
1034  *      Search for any interface with the given flags. Returns NULL if a device
1035  *      is not found or a pointer to the device. Must be called inside
1036  *      rtnl_lock(), and result refcount is unchanged.
1037  */
1038
1039 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1040                                       unsigned short mask)
1041 {
1042         struct net_device *dev, *ret;
1043
1044         ASSERT_RTNL();
1045
1046         ret = NULL;
1047         for_each_netdev(net, dev) {
1048                 if (((dev->flags ^ if_flags) & mask) == 0) {
1049                         ret = dev;
1050                         break;
1051                 }
1052         }
1053         return ret;
1054 }
1055 EXPORT_SYMBOL(__dev_get_by_flags);
1056
1057 /**
1058  *      dev_valid_name - check if name is okay for network device
1059  *      @name: name string
1060  *
1061  *      Network device names need to be valid file names to
1062  *      allow sysfs to work.  We also disallow any kind of
1063  *      whitespace.
1064  */
1065 bool dev_valid_name(const char *name)
1066 {
1067         if (*name == '\0')
1068                 return false;
1069         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1070                 return false;
1071         if (!strcmp(name, ".") || !strcmp(name, ".."))
1072                 return false;
1073
1074         while (*name) {
1075                 if (*name == '/' || *name == ':' || isspace(*name))
1076                         return false;
1077                 name++;
1078         }
1079         return true;
1080 }
1081 EXPORT_SYMBOL(dev_valid_name);
1082
1083 /**
1084  *      __dev_alloc_name - allocate a name for a device
1085  *      @net: network namespace to allocate the device name in
1086  *      @name: name format string
1087  *      @res: result name string
1088  *
1089  *      Passed a format string - eg "lt%d" it will try and find a suitable
1090  *      id. It scans list of devices to build up a free map, then chooses
1091  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1092  *      while allocating the name and adding the device in order to avoid
1093  *      duplicates.
1094  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1095  *      Returns the number of the unit assigned or a negative errno code.
1096  */
1097
1098 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1099 {
1100         int i = 0;
1101         const char *p;
1102         const int max_netdevices = 8*PAGE_SIZE;
1103         unsigned long *inuse;
1104         struct net_device *d;
1105         char buf[IFNAMSIZ];
1106
1107         /* Verify the string as this thing may have come from the user.
1108          * There must be one "%d" and no other "%" characters.
1109          */
1110         p = strchr(name, '%');
1111         if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1112                 return -EINVAL;
1113
1114         /* Use one page as a bit array of possible slots */
1115         inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1116         if (!inuse)
1117                 return -ENOMEM;
1118
1119         for_each_netdev(net, d) {
1120                 struct netdev_name_node *name_node;
1121
1122                 netdev_for_each_altname(d, name_node) {
1123                         if (!sscanf(name_node->name, name, &i))
1124                                 continue;
1125                         if (i < 0 || i >= max_netdevices)
1126                                 continue;
1127
1128                         /* avoid cases where sscanf is not exact inverse of printf */
1129                         snprintf(buf, IFNAMSIZ, name, i);
1130                         if (!strncmp(buf, name_node->name, IFNAMSIZ))
1131                                 __set_bit(i, inuse);
1132                 }
1133                 if (!sscanf(d->name, name, &i))
1134                         continue;
1135                 if (i < 0 || i >= max_netdevices)
1136                         continue;
1137
1138                 /* avoid cases where sscanf is not exact inverse of printf */
1139                 snprintf(buf, IFNAMSIZ, name, i);
1140                 if (!strncmp(buf, d->name, IFNAMSIZ))
1141                         __set_bit(i, inuse);
1142         }
1143
1144         i = find_first_zero_bit(inuse, max_netdevices);
1145         bitmap_free(inuse);
1146         if (i == max_netdevices)
1147                 return -ENFILE;
1148
1149         /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1150         strscpy(buf, name, IFNAMSIZ);
1151         snprintf(res, IFNAMSIZ, buf, i);
1152         return i;
1153 }
1154
1155 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1156 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1157                                const char *want_name, char *out_name,
1158                                int dup_errno)
1159 {
1160         if (!dev_valid_name(want_name))
1161                 return -EINVAL;
1162
1163         if (strchr(want_name, '%'))
1164                 return __dev_alloc_name(net, want_name, out_name);
1165
1166         if (netdev_name_in_use(net, want_name))
1167                 return -dup_errno;
1168         if (out_name != want_name)
1169                 strscpy(out_name, want_name, IFNAMSIZ);
1170         return 0;
1171 }
1172
1173 /**
1174  *      dev_alloc_name - allocate a name for a device
1175  *      @dev: device
1176  *      @name: name format string
1177  *
1178  *      Passed a format string - eg "lt%d" it will try and find a suitable
1179  *      id. It scans list of devices to build up a free map, then chooses
1180  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1181  *      while allocating the name and adding the device in order to avoid
1182  *      duplicates.
1183  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1184  *      Returns the number of the unit assigned or a negative errno code.
1185  */
1186
1187 int dev_alloc_name(struct net_device *dev, const char *name)
1188 {
1189         return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1190 }
1191 EXPORT_SYMBOL(dev_alloc_name);
1192
1193 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1194                               const char *name)
1195 {
1196         int ret;
1197
1198         ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1199         return ret < 0 ? ret : 0;
1200 }
1201
1202 /**
1203  *      dev_change_name - change name of a device
1204  *      @dev: device
1205  *      @newname: name (or format string) must be at least IFNAMSIZ
1206  *
1207  *      Change name of a device, can pass format strings "eth%d".
1208  *      for wildcarding.
1209  */
1210 int dev_change_name(struct net_device *dev, const char *newname)
1211 {
1212         unsigned char old_assign_type;
1213         char oldname[IFNAMSIZ];
1214         int err = 0;
1215         int ret;
1216         struct net *net;
1217
1218         ASSERT_RTNL();
1219         BUG_ON(!dev_net(dev));
1220
1221         net = dev_net(dev);
1222
1223         down_write(&devnet_rename_sem);
1224
1225         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1226                 up_write(&devnet_rename_sem);
1227                 return 0;
1228         }
1229
1230         memcpy(oldname, dev->name, IFNAMSIZ);
1231
1232         write_seqlock_bh(&netdev_rename_lock);
1233         err = dev_get_valid_name(net, dev, newname);
1234         write_sequnlock_bh(&netdev_rename_lock);
1235
1236         if (err < 0) {
1237                 up_write(&devnet_rename_sem);
1238                 return err;
1239         }
1240
1241         if (oldname[0] && !strchr(oldname, '%'))
1242                 netdev_info(dev, "renamed from %s%s\n", oldname,
1243                             dev->flags & IFF_UP ? " (while UP)" : "");
1244
1245         old_assign_type = dev->name_assign_type;
1246         WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1247
1248 rollback:
1249         ret = device_rename(&dev->dev, dev->name);
1250         if (ret) {
1251                 memcpy(dev->name, oldname, IFNAMSIZ);
1252                 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1253                 up_write(&devnet_rename_sem);
1254                 return ret;
1255         }
1256
1257         up_write(&devnet_rename_sem);
1258
1259         netdev_adjacent_rename_links(dev, oldname);
1260
1261         netdev_name_node_del(dev->name_node);
1262
1263         synchronize_net();
1264
1265         netdev_name_node_add(net, dev->name_node);
1266
1267         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1268         ret = notifier_to_errno(ret);
1269
1270         if (ret) {
1271                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1272                 if (err >= 0) {
1273                         err = ret;
1274                         down_write(&devnet_rename_sem);
1275                         write_seqlock_bh(&netdev_rename_lock);
1276                         memcpy(dev->name, oldname, IFNAMSIZ);
1277                         write_sequnlock_bh(&netdev_rename_lock);
1278                         memcpy(oldname, newname, IFNAMSIZ);
1279                         WRITE_ONCE(dev->name_assign_type, old_assign_type);
1280                         old_assign_type = NET_NAME_RENAMED;
1281                         goto rollback;
1282                 } else {
1283                         netdev_err(dev, "name change rollback failed: %d\n",
1284                                    ret);
1285                 }
1286         }
1287
1288         return err;
1289 }
1290
1291 /**
1292  *      dev_set_alias - change ifalias of a device
1293  *      @dev: device
1294  *      @alias: name up to IFALIASZ
1295  *      @len: limit of bytes to copy from info
1296  *
1297  *      Set ifalias for a device,
1298  */
1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301         struct dev_ifalias *new_alias = NULL;
1302
1303         if (len >= IFALIASZ)
1304                 return -EINVAL;
1305
1306         if (len) {
1307                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308                 if (!new_alias)
1309                         return -ENOMEM;
1310
1311                 memcpy(new_alias->ifalias, alias, len);
1312                 new_alias->ifalias[len] = 0;
1313         }
1314
1315         mutex_lock(&ifalias_mutex);
1316         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317                                         mutex_is_locked(&ifalias_mutex));
1318         mutex_unlock(&ifalias_mutex);
1319
1320         if (new_alias)
1321                 kfree_rcu(new_alias, rcuhead);
1322
1323         return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326
1327 /**
1328  *      dev_get_alias - get ifalias of a device
1329  *      @dev: device
1330  *      @name: buffer to store name of ifalias
1331  *      @len: size of buffer
1332  *
1333  *      get ifalias for a device.  Caller must make sure dev cannot go
1334  *      away,  e.g. rcu read lock or own a reference count to device.
1335  */
1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338         const struct dev_ifalias *alias;
1339         int ret = 0;
1340
1341         rcu_read_lock();
1342         alias = rcu_dereference(dev->ifalias);
1343         if (alias)
1344                 ret = snprintf(name, len, "%s", alias->ifalias);
1345         rcu_read_unlock();
1346
1347         return ret;
1348 }
1349
1350 /**
1351  *      netdev_features_change - device changes features
1352  *      @dev: device to cause notification
1353  *
1354  *      Called to indicate a device has changed features.
1355  */
1356 void netdev_features_change(struct net_device *dev)
1357 {
1358         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361
1362 /**
1363  *      netdev_state_change - device changes state
1364  *      @dev: device to cause notification
1365  *
1366  *      Called to indicate a device has changed state. This function calls
1367  *      the notifier chains for netdev_chain and sends a NEWLINK message
1368  *      to the routing socket.
1369  */
1370 void netdev_state_change(struct net_device *dev)
1371 {
1372         if (dev->flags & IFF_UP) {
1373                 struct netdev_notifier_change_info change_info = {
1374                         .info.dev = dev,
1375                 };
1376
1377                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1378                                               &change_info.info);
1379                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380         }
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383
1384 /**
1385  * __netdev_notify_peers - notify network peers about existence of @dev,
1386  * to be called when rtnl lock is already held.
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397         ASSERT_RTNL();
1398         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402
1403 /**
1404  * netdev_notify_peers - notify network peers about existence of @dev
1405  * @dev: network device
1406  *
1407  * Generate traffic such that interested network peers are aware of
1408  * @dev, such as by generating a gratuitous ARP. This may be used when
1409  * a device wants to inform the rest of the network about some sort of
1410  * reconfiguration such as a failover event or virtual machine
1411  * migration.
1412  */
1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415         rtnl_lock();
1416         __netdev_notify_peers(dev);
1417         rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420
1421 static int napi_threaded_poll(void *data);
1422
1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425         int err = 0;
1426
1427         /* Create and wake up the kthread once to put it in
1428          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429          * warning and work with loadavg.
1430          */
1431         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432                                 n->dev->name, n->napi_id);
1433         if (IS_ERR(n->thread)) {
1434                 err = PTR_ERR(n->thread);
1435                 pr_err("kthread_run failed with err %d\n", err);
1436                 n->thread = NULL;
1437         }
1438
1439         return err;
1440 }
1441
1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444         const struct net_device_ops *ops = dev->netdev_ops;
1445         int ret;
1446
1447         ASSERT_RTNL();
1448         dev_addr_check(dev);
1449
1450         if (!netif_device_present(dev)) {
1451                 /* may be detached because parent is runtime-suspended */
1452                 if (dev->dev.parent)
1453                         pm_runtime_resume(dev->dev.parent);
1454                 if (!netif_device_present(dev))
1455                         return -ENODEV;
1456         }
1457
1458         /* Block netpoll from trying to do any rx path servicing.
1459          * If we don't do this there is a chance ndo_poll_controller
1460          * or ndo_poll may be running while we open the device
1461          */
1462         netpoll_poll_disable(dev);
1463
1464         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465         ret = notifier_to_errno(ret);
1466         if (ret)
1467                 return ret;
1468
1469         set_bit(__LINK_STATE_START, &dev->state);
1470
1471         if (ops->ndo_validate_addr)
1472                 ret = ops->ndo_validate_addr(dev);
1473
1474         if (!ret && ops->ndo_open)
1475                 ret = ops->ndo_open(dev);
1476
1477         netpoll_poll_enable(dev);
1478
1479         if (ret)
1480                 clear_bit(__LINK_STATE_START, &dev->state);
1481         else {
1482                 dev->flags |= IFF_UP;
1483                 dev_set_rx_mode(dev);
1484                 dev_activate(dev);
1485                 add_device_randomness(dev->dev_addr, dev->addr_len);
1486         }
1487
1488         return ret;
1489 }
1490
1491 /**
1492  *      dev_open        - prepare an interface for use.
1493  *      @dev: device to open
1494  *      @extack: netlink extended ack
1495  *
1496  *      Takes a device from down to up state. The device's private open
1497  *      function is invoked and then the multicast lists are loaded. Finally
1498  *      the device is moved into the up state and a %NETDEV_UP message is
1499  *      sent to the netdev notifier chain.
1500  *
1501  *      Calling this function on an active interface is a nop. On a failure
1502  *      a negative errno code is returned.
1503  */
1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506         int ret;
1507
1508         if (dev->flags & IFF_UP)
1509                 return 0;
1510
1511         ret = __dev_open(dev, extack);
1512         if (ret < 0)
1513                 return ret;
1514
1515         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516         call_netdevice_notifiers(NETDEV_UP, dev);
1517
1518         return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521
1522 static void __dev_close_many(struct list_head *head)
1523 {
1524         struct net_device *dev;
1525
1526         ASSERT_RTNL();
1527         might_sleep();
1528
1529         list_for_each_entry(dev, head, close_list) {
1530                 /* Temporarily disable netpoll until the interface is down */
1531                 netpoll_poll_disable(dev);
1532
1533                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534
1535                 clear_bit(__LINK_STATE_START, &dev->state);
1536
1537                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1538                  * can be even on different cpu. So just clear netif_running().
1539                  *
1540                  * dev->stop() will invoke napi_disable() on all of it's
1541                  * napi_struct instances on this device.
1542                  */
1543                 smp_mb__after_atomic(); /* Commit netif_running(). */
1544         }
1545
1546         dev_deactivate_many(head);
1547
1548         list_for_each_entry(dev, head, close_list) {
1549                 const struct net_device_ops *ops = dev->netdev_ops;
1550
1551                 /*
1552                  *      Call the device specific close. This cannot fail.
1553                  *      Only if device is UP
1554                  *
1555                  *      We allow it to be called even after a DETACH hot-plug
1556                  *      event.
1557                  */
1558                 if (ops->ndo_stop)
1559                         ops->ndo_stop(dev);
1560
1561                 dev->flags &= ~IFF_UP;
1562                 netpoll_poll_enable(dev);
1563         }
1564 }
1565
1566 static void __dev_close(struct net_device *dev)
1567 {
1568         LIST_HEAD(single);
1569
1570         list_add(&dev->close_list, &single);
1571         __dev_close_many(&single);
1572         list_del(&single);
1573 }
1574
1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577         struct net_device *dev, *tmp;
1578
1579         /* Remove the devices that don't need to be closed */
1580         list_for_each_entry_safe(dev, tmp, head, close_list)
1581                 if (!(dev->flags & IFF_UP))
1582                         list_del_init(&dev->close_list);
1583
1584         __dev_close_many(head);
1585
1586         list_for_each_entry_safe(dev, tmp, head, close_list) {
1587                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1589                 if (unlink)
1590                         list_del_init(&dev->close_list);
1591         }
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594
1595 /**
1596  *      dev_close - shutdown an interface.
1597  *      @dev: device to shutdown
1598  *
1599  *      This function moves an active device into down state. A
1600  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602  *      chain.
1603  */
1604 void dev_close(struct net_device *dev)
1605 {
1606         if (dev->flags & IFF_UP) {
1607                 LIST_HEAD(single);
1608
1609                 list_add(&dev->close_list, &single);
1610                 dev_close_many(&single, true);
1611                 list_del(&single);
1612         }
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615
1616
1617 /**
1618  *      dev_disable_lro - disable Large Receive Offload on a device
1619  *      @dev: device
1620  *
1621  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1622  *      called under RTNL.  This is needed if received packets may be
1623  *      forwarded to another interface.
1624  */
1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627         struct net_device *lower_dev;
1628         struct list_head *iter;
1629
1630         dev->wanted_features &= ~NETIF_F_LRO;
1631         netdev_update_features(dev);
1632
1633         if (unlikely(dev->features & NETIF_F_LRO))
1634                 netdev_WARN(dev, "failed to disable LRO!\n");
1635
1636         netdev_for_each_lower_dev(dev, lower_dev, iter)
1637                 dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640
1641 /**
1642  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643  *      @dev: device
1644  *
1645  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1646  *      called under RTNL.  This is needed if Generic XDP is installed on
1647  *      the device.
1648  */
1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651         dev->wanted_features &= ~NETIF_F_GRO_HW;
1652         netdev_update_features(dev);
1653
1654         if (unlikely(dev->features & NETIF_F_GRO_HW))
1655                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657
1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val)                                          \
1661         case NETDEV_##val:                              \
1662                 return "NETDEV_" __stringify(val);
1663         switch (cmd) {
1664         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675         N(XDP_FEAT_CHANGE)
1676         }
1677 #undef N
1678         return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681
1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683                                    struct net_device *dev)
1684 {
1685         struct netdev_notifier_info info = {
1686                 .dev = dev,
1687         };
1688
1689         return nb->notifier_call(nb, val, &info);
1690 }
1691
1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693                                              struct net_device *dev)
1694 {
1695         int err;
1696
1697         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698         err = notifier_to_errno(err);
1699         if (err)
1700                 return err;
1701
1702         if (!(dev->flags & IFF_UP))
1703                 return 0;
1704
1705         call_netdevice_notifier(nb, NETDEV_UP, dev);
1706         return 0;
1707 }
1708
1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710                                                 struct net_device *dev)
1711 {
1712         if (dev->flags & IFF_UP) {
1713                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714                                         dev);
1715                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716         }
1717         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719
1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721                                                  struct net *net)
1722 {
1723         struct net_device *dev;
1724         int err;
1725
1726         for_each_netdev(net, dev) {
1727                 err = call_netdevice_register_notifiers(nb, dev);
1728                 if (err)
1729                         goto rollback;
1730         }
1731         return 0;
1732
1733 rollback:
1734         for_each_netdev_continue_reverse(net, dev)
1735                 call_netdevice_unregister_notifiers(nb, dev);
1736         return err;
1737 }
1738
1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740                                                     struct net *net)
1741 {
1742         struct net_device *dev;
1743
1744         for_each_netdev(net, dev)
1745                 call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747
1748 static int dev_boot_phase = 1;
1749
1750 /**
1751  * register_netdevice_notifier - register a network notifier block
1752  * @nb: notifier
1753  *
1754  * Register a notifier to be called when network device events occur.
1755  * The notifier passed is linked into the kernel structures and must
1756  * not be reused until it has been unregistered. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * When registered all registration and up events are replayed
1760  * to the new notifier to allow device to have a race free
1761  * view of the network device list.
1762  */
1763
1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766         struct net *net;
1767         int err;
1768
1769         /* Close race with setup_net() and cleanup_net() */
1770         down_write(&pernet_ops_rwsem);
1771         rtnl_lock();
1772         err = raw_notifier_chain_register(&netdev_chain, nb);
1773         if (err)
1774                 goto unlock;
1775         if (dev_boot_phase)
1776                 goto unlock;
1777         for_each_net(net) {
1778                 err = call_netdevice_register_net_notifiers(nb, net);
1779                 if (err)
1780                         goto rollback;
1781         }
1782
1783 unlock:
1784         rtnl_unlock();
1785         up_write(&pernet_ops_rwsem);
1786         return err;
1787
1788 rollback:
1789         for_each_net_continue_reverse(net)
1790                 call_netdevice_unregister_net_notifiers(nb, net);
1791
1792         raw_notifier_chain_unregister(&netdev_chain, nb);
1793         goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796
1797 /**
1798  * unregister_netdevice_notifier - unregister a network notifier block
1799  * @nb: notifier
1800  *
1801  * Unregister a notifier previously registered by
1802  * register_netdevice_notifier(). The notifier is unlinked into the
1803  * kernel structures and may then be reused. A negative errno code
1804  * is returned on a failure.
1805  *
1806  * After unregistering unregister and down device events are synthesized
1807  * for all devices on the device list to the removed notifier to remove
1808  * the need for special case cleanup code.
1809  */
1810
1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813         struct net *net;
1814         int err;
1815
1816         /* Close race with setup_net() and cleanup_net() */
1817         down_write(&pernet_ops_rwsem);
1818         rtnl_lock();
1819         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820         if (err)
1821                 goto unlock;
1822
1823         for_each_net(net)
1824                 call_netdevice_unregister_net_notifiers(nb, net);
1825
1826 unlock:
1827         rtnl_unlock();
1828         up_write(&pernet_ops_rwsem);
1829         return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832
1833 static int __register_netdevice_notifier_net(struct net *net,
1834                                              struct notifier_block *nb,
1835                                              bool ignore_call_fail)
1836 {
1837         int err;
1838
1839         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840         if (err)
1841                 return err;
1842         if (dev_boot_phase)
1843                 return 0;
1844
1845         err = call_netdevice_register_net_notifiers(nb, net);
1846         if (err && !ignore_call_fail)
1847                 goto chain_unregister;
1848
1849         return 0;
1850
1851 chain_unregister:
1852         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853         return err;
1854 }
1855
1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857                                                struct notifier_block *nb)
1858 {
1859         int err;
1860
1861         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862         if (err)
1863                 return err;
1864
1865         call_netdevice_unregister_net_notifiers(nb, net);
1866         return 0;
1867 }
1868
1869 /**
1870  * register_netdevice_notifier_net - register a per-netns network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Register a notifier to be called when network device events occur.
1875  * The notifier passed is linked into the kernel structures and must
1876  * not be reused until it has been unregistered. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * When registered all registration and up events are replayed
1880  * to the new notifier to allow device to have a race free
1881  * view of the network device list.
1882  */
1883
1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886         int err;
1887
1888         rtnl_lock();
1889         err = __register_netdevice_notifier_net(net, nb, false);
1890         rtnl_unlock();
1891         return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894
1895 /**
1896  * unregister_netdevice_notifier_net - unregister a per-netns
1897  *                                     network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Unregister a notifier previously registered by
1902  * register_netdevice_notifier_net(). The notifier is unlinked from the
1903  * kernel structures and may then be reused. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * After unregistering unregister and down device events are synthesized
1907  * for all devices on the device list to the removed notifier to remove
1908  * the need for special case cleanup code.
1909  */
1910
1911 int unregister_netdevice_notifier_net(struct net *net,
1912                                       struct notifier_block *nb)
1913 {
1914         int err;
1915
1916         rtnl_lock();
1917         err = __unregister_netdevice_notifier_net(net, nb);
1918         rtnl_unlock();
1919         return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922
1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924                                           struct net *dst_net,
1925                                           struct notifier_block *nb)
1926 {
1927         __unregister_netdevice_notifier_net(src_net, nb);
1928         __register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930
1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932                                         struct notifier_block *nb,
1933                                         struct netdev_net_notifier *nn)
1934 {
1935         int err;
1936
1937         rtnl_lock();
1938         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939         if (!err) {
1940                 nn->nb = nb;
1941                 list_add(&nn->list, &dev->net_notifier_list);
1942         }
1943         rtnl_unlock();
1944         return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947
1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949                                           struct notifier_block *nb,
1950                                           struct netdev_net_notifier *nn)
1951 {
1952         int err;
1953
1954         rtnl_lock();
1955         list_del(&nn->list);
1956         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957         rtnl_unlock();
1958         return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961
1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963                                              struct net *net)
1964 {
1965         struct netdev_net_notifier *nn;
1966
1967         list_for_each_entry(nn, &dev->net_notifier_list, list)
1968                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970
1971 /**
1972  *      call_netdevice_notifiers_info - call all network notifier blocks
1973  *      @val: value passed unmodified to notifier function
1974  *      @info: notifier information data
1975  *
1976  *      Call all network notifier blocks.  Parameters and return value
1977  *      are as for raw_notifier_call_chain().
1978  */
1979
1980 int call_netdevice_notifiers_info(unsigned long val,
1981                                   struct netdev_notifier_info *info)
1982 {
1983         struct net *net = dev_net(info->dev);
1984         int ret;
1985
1986         ASSERT_RTNL();
1987
1988         /* Run per-netns notifier block chain first, then run the global one.
1989          * Hopefully, one day, the global one is going to be removed after
1990          * all notifier block registrators get converted to be per-netns.
1991          */
1992         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993         if (ret & NOTIFY_STOP_MASK)
1994                 return ret;
1995         return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997
1998 /**
1999  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000  *                                             for and rollback on error
2001  *      @val_up: value passed unmodified to notifier function
2002  *      @val_down: value passed unmodified to the notifier function when
2003  *                 recovering from an error on @val_up
2004  *      @info: notifier information data
2005  *
2006  *      Call all per-netns network notifier blocks, but not notifier blocks on
2007  *      the global notifier chain. Parameters and return value are as for
2008  *      raw_notifier_call_chain_robust().
2009  */
2010
2011 static int
2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013                                      unsigned long val_down,
2014                                      struct netdev_notifier_info *info)
2015 {
2016         struct net *net = dev_net(info->dev);
2017
2018         ASSERT_RTNL();
2019
2020         return raw_notifier_call_chain_robust(&net->netdev_chain,
2021                                               val_up, val_down, info);
2022 }
2023
2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025                                            struct net_device *dev,
2026                                            struct netlink_ext_ack *extack)
2027 {
2028         struct netdev_notifier_info info = {
2029                 .dev = dev,
2030                 .extack = extack,
2031         };
2032
2033         return call_netdevice_notifiers_info(val, &info);
2034 }
2035
2036 /**
2037  *      call_netdevice_notifiers - call all network notifier blocks
2038  *      @val: value passed unmodified to notifier function
2039  *      @dev: net_device pointer passed unmodified to notifier function
2040  *
2041  *      Call all network notifier blocks.  Parameters and return value
2042  *      are as for raw_notifier_call_chain().
2043  */
2044
2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047         return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050
2051 /**
2052  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2053  *      @val: value passed unmodified to notifier function
2054  *      @dev: net_device pointer passed unmodified to notifier function
2055  *      @arg: additional u32 argument passed to the notifier function
2056  *
2057  *      Call all network notifier blocks.  Parameters and return value
2058  *      are as for raw_notifier_call_chain().
2059  */
2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061                                         struct net_device *dev, u32 arg)
2062 {
2063         struct netdev_notifier_info_ext info = {
2064                 .info.dev = dev,
2065                 .ext.mtu = arg,
2066         };
2067
2068         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069
2070         return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075
2076 void net_inc_ingress_queue(void)
2077 {
2078         static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081
2082 void net_dec_ingress_queue(void)
2083 {
2084         static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091
2092 void net_inc_egress_queue(void)
2093 {
2094         static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097
2098 void net_dec_egress_queue(void)
2099 {
2100         static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104
2105 #ifdef CONFIG_NET_CLS_ACT
2106 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2107 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2108 #endif
2109
2110 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2111 EXPORT_SYMBOL(netstamp_needed_key);
2112 #ifdef CONFIG_JUMP_LABEL
2113 static atomic_t netstamp_needed_deferred;
2114 static atomic_t netstamp_wanted;
2115 static void netstamp_clear(struct work_struct *work)
2116 {
2117         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2118         int wanted;
2119
2120         wanted = atomic_add_return(deferred, &netstamp_wanted);
2121         if (wanted > 0)
2122                 static_branch_enable(&netstamp_needed_key);
2123         else
2124                 static_branch_disable(&netstamp_needed_key);
2125 }
2126 static DECLARE_WORK(netstamp_work, netstamp_clear);
2127 #endif
2128
2129 void net_enable_timestamp(void)
2130 {
2131 #ifdef CONFIG_JUMP_LABEL
2132         int wanted = atomic_read(&netstamp_wanted);
2133
2134         while (wanted > 0) {
2135                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2136                         return;
2137         }
2138         atomic_inc(&netstamp_needed_deferred);
2139         schedule_work(&netstamp_work);
2140 #else
2141         static_branch_inc(&netstamp_needed_key);
2142 #endif
2143 }
2144 EXPORT_SYMBOL(net_enable_timestamp);
2145
2146 void net_disable_timestamp(void)
2147 {
2148 #ifdef CONFIG_JUMP_LABEL
2149         int wanted = atomic_read(&netstamp_wanted);
2150
2151         while (wanted > 1) {
2152                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2153                         return;
2154         }
2155         atomic_dec(&netstamp_needed_deferred);
2156         schedule_work(&netstamp_work);
2157 #else
2158         static_branch_dec(&netstamp_needed_key);
2159 #endif
2160 }
2161 EXPORT_SYMBOL(net_disable_timestamp);
2162
2163 static inline void net_timestamp_set(struct sk_buff *skb)
2164 {
2165         skb->tstamp = 0;
2166         skb->tstamp_type = SKB_CLOCK_REALTIME;
2167         if (static_branch_unlikely(&netstamp_needed_key))
2168                 skb->tstamp = ktime_get_real();
2169 }
2170
2171 #define net_timestamp_check(COND, SKB)                          \
2172         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2173                 if ((COND) && !(SKB)->tstamp)                   \
2174                         (SKB)->tstamp = ktime_get_real();       \
2175         }                                                       \
2176
2177 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2178 {
2179         return __is_skb_forwardable(dev, skb, true);
2180 }
2181 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2182
2183 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2184                               bool check_mtu)
2185 {
2186         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2187
2188         if (likely(!ret)) {
2189                 skb->protocol = eth_type_trans(skb, dev);
2190                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2191         }
2192
2193         return ret;
2194 }
2195
2196 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2197 {
2198         return __dev_forward_skb2(dev, skb, true);
2199 }
2200 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2201
2202 /**
2203  * dev_forward_skb - loopback an skb to another netif
2204  *
2205  * @dev: destination network device
2206  * @skb: buffer to forward
2207  *
2208  * return values:
2209  *      NET_RX_SUCCESS  (no congestion)
2210  *      NET_RX_DROP     (packet was dropped, but freed)
2211  *
2212  * dev_forward_skb can be used for injecting an skb from the
2213  * start_xmit function of one device into the receive queue
2214  * of another device.
2215  *
2216  * The receiving device may be in another namespace, so
2217  * we have to clear all information in the skb that could
2218  * impact namespace isolation.
2219  */
2220 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2221 {
2222         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2223 }
2224 EXPORT_SYMBOL_GPL(dev_forward_skb);
2225
2226 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2227 {
2228         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2229 }
2230
2231 static inline int deliver_skb(struct sk_buff *skb,
2232                               struct packet_type *pt_prev,
2233                               struct net_device *orig_dev)
2234 {
2235         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2236                 return -ENOMEM;
2237         refcount_inc(&skb->users);
2238         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2239 }
2240
2241 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2242                                           struct packet_type **pt,
2243                                           struct net_device *orig_dev,
2244                                           __be16 type,
2245                                           struct list_head *ptype_list)
2246 {
2247         struct packet_type *ptype, *pt_prev = *pt;
2248
2249         list_for_each_entry_rcu(ptype, ptype_list, list) {
2250                 if (ptype->type != type)
2251                         continue;
2252                 if (pt_prev)
2253                         deliver_skb(skb, pt_prev, orig_dev);
2254                 pt_prev = ptype;
2255         }
2256         *pt = pt_prev;
2257 }
2258
2259 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2260 {
2261         if (!ptype->af_packet_priv || !skb->sk)
2262                 return false;
2263
2264         if (ptype->id_match)
2265                 return ptype->id_match(ptype, skb->sk);
2266         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2267                 return true;
2268
2269         return false;
2270 }
2271
2272 /**
2273  * dev_nit_active - return true if any network interface taps are in use
2274  *
2275  * @dev: network device to check for the presence of taps
2276  */
2277 bool dev_nit_active(struct net_device *dev)
2278 {
2279         return !list_empty(&net_hotdata.ptype_all) ||
2280                !list_empty(&dev->ptype_all);
2281 }
2282 EXPORT_SYMBOL_GPL(dev_nit_active);
2283
2284 /*
2285  *      Support routine. Sends outgoing frames to any network
2286  *      taps currently in use.
2287  */
2288
2289 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2290 {
2291         struct list_head *ptype_list = &net_hotdata.ptype_all;
2292         struct packet_type *ptype, *pt_prev = NULL;
2293         struct sk_buff *skb2 = NULL;
2294
2295         rcu_read_lock();
2296 again:
2297         list_for_each_entry_rcu(ptype, ptype_list, list) {
2298                 if (READ_ONCE(ptype->ignore_outgoing))
2299                         continue;
2300
2301                 /* Never send packets back to the socket
2302                  * they originated from - MvS ([email protected])
2303                  */
2304                 if (skb_loop_sk(ptype, skb))
2305                         continue;
2306
2307                 if (pt_prev) {
2308                         deliver_skb(skb2, pt_prev, skb->dev);
2309                         pt_prev = ptype;
2310                         continue;
2311                 }
2312
2313                 /* need to clone skb, done only once */
2314                 skb2 = skb_clone(skb, GFP_ATOMIC);
2315                 if (!skb2)
2316                         goto out_unlock;
2317
2318                 net_timestamp_set(skb2);
2319
2320                 /* skb->nh should be correctly
2321                  * set by sender, so that the second statement is
2322                  * just protection against buggy protocols.
2323                  */
2324                 skb_reset_mac_header(skb2);
2325
2326                 if (skb_network_header(skb2) < skb2->data ||
2327                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2328                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2329                                              ntohs(skb2->protocol),
2330                                              dev->name);
2331                         skb_reset_network_header(skb2);
2332                 }
2333
2334                 skb2->transport_header = skb2->network_header;
2335                 skb2->pkt_type = PACKET_OUTGOING;
2336                 pt_prev = ptype;
2337         }
2338
2339         if (ptype_list == &net_hotdata.ptype_all) {
2340                 ptype_list = &dev->ptype_all;
2341                 goto again;
2342         }
2343 out_unlock:
2344         if (pt_prev) {
2345                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2346                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2347                 else
2348                         kfree_skb(skb2);
2349         }
2350         rcu_read_unlock();
2351 }
2352 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2353
2354 /**
2355  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2356  * @dev: Network device
2357  * @txq: number of queues available
2358  *
2359  * If real_num_tx_queues is changed the tc mappings may no longer be
2360  * valid. To resolve this verify the tc mapping remains valid and if
2361  * not NULL the mapping. With no priorities mapping to this
2362  * offset/count pair it will no longer be used. In the worst case TC0
2363  * is invalid nothing can be done so disable priority mappings. If is
2364  * expected that drivers will fix this mapping if they can before
2365  * calling netif_set_real_num_tx_queues.
2366  */
2367 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2368 {
2369         int i;
2370         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2371
2372         /* If TC0 is invalidated disable TC mapping */
2373         if (tc->offset + tc->count > txq) {
2374                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2375                 dev->num_tc = 0;
2376                 return;
2377         }
2378
2379         /* Invalidated prio to tc mappings set to TC0 */
2380         for (i = 1; i < TC_BITMASK + 1; i++) {
2381                 int q = netdev_get_prio_tc_map(dev, i);
2382
2383                 tc = &dev->tc_to_txq[q];
2384                 if (tc->offset + tc->count > txq) {
2385                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2386                                     i, q);
2387                         netdev_set_prio_tc_map(dev, i, 0);
2388                 }
2389         }
2390 }
2391
2392 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2393 {
2394         if (dev->num_tc) {
2395                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2396                 int i;
2397
2398                 /* walk through the TCs and see if it falls into any of them */
2399                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2400                         if ((txq - tc->offset) < tc->count)
2401                                 return i;
2402                 }
2403
2404                 /* didn't find it, just return -1 to indicate no match */
2405                 return -1;
2406         }
2407
2408         return 0;
2409 }
2410 EXPORT_SYMBOL(netdev_txq_to_tc);
2411
2412 #ifdef CONFIG_XPS
2413 static struct static_key xps_needed __read_mostly;
2414 static struct static_key xps_rxqs_needed __read_mostly;
2415 static DEFINE_MUTEX(xps_map_mutex);
2416 #define xmap_dereference(P)             \
2417         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2418
2419 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2420                              struct xps_dev_maps *old_maps, int tci, u16 index)
2421 {
2422         struct xps_map *map = NULL;
2423         int pos;
2424
2425         map = xmap_dereference(dev_maps->attr_map[tci]);
2426         if (!map)
2427                 return false;
2428
2429         for (pos = map->len; pos--;) {
2430                 if (map->queues[pos] != index)
2431                         continue;
2432
2433                 if (map->len > 1) {
2434                         map->queues[pos] = map->queues[--map->len];
2435                         break;
2436                 }
2437
2438                 if (old_maps)
2439                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2440                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2441                 kfree_rcu(map, rcu);
2442                 return false;
2443         }
2444
2445         return true;
2446 }
2447
2448 static bool remove_xps_queue_cpu(struct net_device *dev,
2449                                  struct xps_dev_maps *dev_maps,
2450                                  int cpu, u16 offset, u16 count)
2451 {
2452         int num_tc = dev_maps->num_tc;
2453         bool active = false;
2454         int tci;
2455
2456         for (tci = cpu * num_tc; num_tc--; tci++) {
2457                 int i, j;
2458
2459                 for (i = count, j = offset; i--; j++) {
2460                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2461                                 break;
2462                 }
2463
2464                 active |= i < 0;
2465         }
2466
2467         return active;
2468 }
2469
2470 static void reset_xps_maps(struct net_device *dev,
2471                            struct xps_dev_maps *dev_maps,
2472                            enum xps_map_type type)
2473 {
2474         static_key_slow_dec_cpuslocked(&xps_needed);
2475         if (type == XPS_RXQS)
2476                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2477
2478         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2479
2480         kfree_rcu(dev_maps, rcu);
2481 }
2482
2483 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2484                            u16 offset, u16 count)
2485 {
2486         struct xps_dev_maps *dev_maps;
2487         bool active = false;
2488         int i, j;
2489
2490         dev_maps = xmap_dereference(dev->xps_maps[type]);
2491         if (!dev_maps)
2492                 return;
2493
2494         for (j = 0; j < dev_maps->nr_ids; j++)
2495                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2496         if (!active)
2497                 reset_xps_maps(dev, dev_maps, type);
2498
2499         if (type == XPS_CPUS) {
2500                 for (i = offset + (count - 1); count--; i--)
2501                         netdev_queue_numa_node_write(
2502                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2503         }
2504 }
2505
2506 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2507                                    u16 count)
2508 {
2509         if (!static_key_false(&xps_needed))
2510                 return;
2511
2512         cpus_read_lock();
2513         mutex_lock(&xps_map_mutex);
2514
2515         if (static_key_false(&xps_rxqs_needed))
2516                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2517
2518         clean_xps_maps(dev, XPS_CPUS, offset, count);
2519
2520         mutex_unlock(&xps_map_mutex);
2521         cpus_read_unlock();
2522 }
2523
2524 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2525 {
2526         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2527 }
2528
2529 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2530                                       u16 index, bool is_rxqs_map)
2531 {
2532         struct xps_map *new_map;
2533         int alloc_len = XPS_MIN_MAP_ALLOC;
2534         int i, pos;
2535
2536         for (pos = 0; map && pos < map->len; pos++) {
2537                 if (map->queues[pos] != index)
2538                         continue;
2539                 return map;
2540         }
2541
2542         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2543         if (map) {
2544                 if (pos < map->alloc_len)
2545                         return map;
2546
2547                 alloc_len = map->alloc_len * 2;
2548         }
2549
2550         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2551          *  map
2552          */
2553         if (is_rxqs_map)
2554                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2555         else
2556                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2557                                        cpu_to_node(attr_index));
2558         if (!new_map)
2559                 return NULL;
2560
2561         for (i = 0; i < pos; i++)
2562                 new_map->queues[i] = map->queues[i];
2563         new_map->alloc_len = alloc_len;
2564         new_map->len = pos;
2565
2566         return new_map;
2567 }
2568
2569 /* Copy xps maps at a given index */
2570 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2571                               struct xps_dev_maps *new_dev_maps, int index,
2572                               int tc, bool skip_tc)
2573 {
2574         int i, tci = index * dev_maps->num_tc;
2575         struct xps_map *map;
2576
2577         /* copy maps belonging to foreign traffic classes */
2578         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2579                 if (i == tc && skip_tc)
2580                         continue;
2581
2582                 /* fill in the new device map from the old device map */
2583                 map = xmap_dereference(dev_maps->attr_map[tci]);
2584                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2585         }
2586 }
2587
2588 /* Must be called under cpus_read_lock */
2589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2590                           u16 index, enum xps_map_type type)
2591 {
2592         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2593         const unsigned long *online_mask = NULL;
2594         bool active = false, copy = false;
2595         int i, j, tci, numa_node_id = -2;
2596         int maps_sz, num_tc = 1, tc = 0;
2597         struct xps_map *map, *new_map;
2598         unsigned int nr_ids;
2599
2600         WARN_ON_ONCE(index >= dev->num_tx_queues);
2601
2602         if (dev->num_tc) {
2603                 /* Do not allow XPS on subordinate device directly */
2604                 num_tc = dev->num_tc;
2605                 if (num_tc < 0)
2606                         return -EINVAL;
2607
2608                 /* If queue belongs to subordinate dev use its map */
2609                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2610
2611                 tc = netdev_txq_to_tc(dev, index);
2612                 if (tc < 0)
2613                         return -EINVAL;
2614         }
2615
2616         mutex_lock(&xps_map_mutex);
2617
2618         dev_maps = xmap_dereference(dev->xps_maps[type]);
2619         if (type == XPS_RXQS) {
2620                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2621                 nr_ids = dev->num_rx_queues;
2622         } else {
2623                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2624                 if (num_possible_cpus() > 1)
2625                         online_mask = cpumask_bits(cpu_online_mask);
2626                 nr_ids = nr_cpu_ids;
2627         }
2628
2629         if (maps_sz < L1_CACHE_BYTES)
2630                 maps_sz = L1_CACHE_BYTES;
2631
2632         /* The old dev_maps could be larger or smaller than the one we're
2633          * setting up now, as dev->num_tc or nr_ids could have been updated in
2634          * between. We could try to be smart, but let's be safe instead and only
2635          * copy foreign traffic classes if the two map sizes match.
2636          */
2637         if (dev_maps &&
2638             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2639                 copy = true;
2640
2641         /* allocate memory for queue storage */
2642         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2643              j < nr_ids;) {
2644                 if (!new_dev_maps) {
2645                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2646                         if (!new_dev_maps) {
2647                                 mutex_unlock(&xps_map_mutex);
2648                                 return -ENOMEM;
2649                         }
2650
2651                         new_dev_maps->nr_ids = nr_ids;
2652                         new_dev_maps->num_tc = num_tc;
2653                 }
2654
2655                 tci = j * num_tc + tc;
2656                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2657
2658                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2659                 if (!map)
2660                         goto error;
2661
2662                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2663         }
2664
2665         if (!new_dev_maps)
2666                 goto out_no_new_maps;
2667
2668         if (!dev_maps) {
2669                 /* Increment static keys at most once per type */
2670                 static_key_slow_inc_cpuslocked(&xps_needed);
2671                 if (type == XPS_RXQS)
2672                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2673         }
2674
2675         for (j = 0; j < nr_ids; j++) {
2676                 bool skip_tc = false;
2677
2678                 tci = j * num_tc + tc;
2679                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2680                     netif_attr_test_online(j, online_mask, nr_ids)) {
2681                         /* add tx-queue to CPU/rx-queue maps */
2682                         int pos = 0;
2683
2684                         skip_tc = true;
2685
2686                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2687                         while ((pos < map->len) && (map->queues[pos] != index))
2688                                 pos++;
2689
2690                         if (pos == map->len)
2691                                 map->queues[map->len++] = index;
2692 #ifdef CONFIG_NUMA
2693                         if (type == XPS_CPUS) {
2694                                 if (numa_node_id == -2)
2695                                         numa_node_id = cpu_to_node(j);
2696                                 else if (numa_node_id != cpu_to_node(j))
2697                                         numa_node_id = -1;
2698                         }
2699 #endif
2700                 }
2701
2702                 if (copy)
2703                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2704                                           skip_tc);
2705         }
2706
2707         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2708
2709         /* Cleanup old maps */
2710         if (!dev_maps)
2711                 goto out_no_old_maps;
2712
2713         for (j = 0; j < dev_maps->nr_ids; j++) {
2714                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2715                         map = xmap_dereference(dev_maps->attr_map[tci]);
2716                         if (!map)
2717                                 continue;
2718
2719                         if (copy) {
2720                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721                                 if (map == new_map)
2722                                         continue;
2723                         }
2724
2725                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2726                         kfree_rcu(map, rcu);
2727                 }
2728         }
2729
2730         old_dev_maps = dev_maps;
2731
2732 out_no_old_maps:
2733         dev_maps = new_dev_maps;
2734         active = true;
2735
2736 out_no_new_maps:
2737         if (type == XPS_CPUS)
2738                 /* update Tx queue numa node */
2739                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2740                                              (numa_node_id >= 0) ?
2741                                              numa_node_id : NUMA_NO_NODE);
2742
2743         if (!dev_maps)
2744                 goto out_no_maps;
2745
2746         /* removes tx-queue from unused CPUs/rx-queues */
2747         for (j = 0; j < dev_maps->nr_ids; j++) {
2748                 tci = j * dev_maps->num_tc;
2749
2750                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2751                         if (i == tc &&
2752                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2753                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2754                                 continue;
2755
2756                         active |= remove_xps_queue(dev_maps,
2757                                                    copy ? old_dev_maps : NULL,
2758                                                    tci, index);
2759                 }
2760         }
2761
2762         if (old_dev_maps)
2763                 kfree_rcu(old_dev_maps, rcu);
2764
2765         /* free map if not active */
2766         if (!active)
2767                 reset_xps_maps(dev, dev_maps, type);
2768
2769 out_no_maps:
2770         mutex_unlock(&xps_map_mutex);
2771
2772         return 0;
2773 error:
2774         /* remove any maps that we added */
2775         for (j = 0; j < nr_ids; j++) {
2776                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2777                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2778                         map = copy ?
2779                               xmap_dereference(dev_maps->attr_map[tci]) :
2780                               NULL;
2781                         if (new_map && new_map != map)
2782                                 kfree(new_map);
2783                 }
2784         }
2785
2786         mutex_unlock(&xps_map_mutex);
2787
2788         kfree(new_dev_maps);
2789         return -ENOMEM;
2790 }
2791 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2792
2793 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2794                         u16 index)
2795 {
2796         int ret;
2797
2798         cpus_read_lock();
2799         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2800         cpus_read_unlock();
2801
2802         return ret;
2803 }
2804 EXPORT_SYMBOL(netif_set_xps_queue);
2805
2806 #endif
2807 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2808 {
2809         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2810
2811         /* Unbind any subordinate channels */
2812         while (txq-- != &dev->_tx[0]) {
2813                 if (txq->sb_dev)
2814                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2815         }
2816 }
2817
2818 void netdev_reset_tc(struct net_device *dev)
2819 {
2820 #ifdef CONFIG_XPS
2821         netif_reset_xps_queues_gt(dev, 0);
2822 #endif
2823         netdev_unbind_all_sb_channels(dev);
2824
2825         /* Reset TC configuration of device */
2826         dev->num_tc = 0;
2827         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2828         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2829 }
2830 EXPORT_SYMBOL(netdev_reset_tc);
2831
2832 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2833 {
2834         if (tc >= dev->num_tc)
2835                 return -EINVAL;
2836
2837 #ifdef CONFIG_XPS
2838         netif_reset_xps_queues(dev, offset, count);
2839 #endif
2840         dev->tc_to_txq[tc].count = count;
2841         dev->tc_to_txq[tc].offset = offset;
2842         return 0;
2843 }
2844 EXPORT_SYMBOL(netdev_set_tc_queue);
2845
2846 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2847 {
2848         if (num_tc > TC_MAX_QUEUE)
2849                 return -EINVAL;
2850
2851 #ifdef CONFIG_XPS
2852         netif_reset_xps_queues_gt(dev, 0);
2853 #endif
2854         netdev_unbind_all_sb_channels(dev);
2855
2856         dev->num_tc = num_tc;
2857         return 0;
2858 }
2859 EXPORT_SYMBOL(netdev_set_num_tc);
2860
2861 void netdev_unbind_sb_channel(struct net_device *dev,
2862                               struct net_device *sb_dev)
2863 {
2864         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2865
2866 #ifdef CONFIG_XPS
2867         netif_reset_xps_queues_gt(sb_dev, 0);
2868 #endif
2869         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2870         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2871
2872         while (txq-- != &dev->_tx[0]) {
2873                 if (txq->sb_dev == sb_dev)
2874                         txq->sb_dev = NULL;
2875         }
2876 }
2877 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2878
2879 int netdev_bind_sb_channel_queue(struct net_device *dev,
2880                                  struct net_device *sb_dev,
2881                                  u8 tc, u16 count, u16 offset)
2882 {
2883         /* Make certain the sb_dev and dev are already configured */
2884         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2885                 return -EINVAL;
2886
2887         /* We cannot hand out queues we don't have */
2888         if ((offset + count) > dev->real_num_tx_queues)
2889                 return -EINVAL;
2890
2891         /* Record the mapping */
2892         sb_dev->tc_to_txq[tc].count = count;
2893         sb_dev->tc_to_txq[tc].offset = offset;
2894
2895         /* Provide a way for Tx queue to find the tc_to_txq map or
2896          * XPS map for itself.
2897          */
2898         while (count--)
2899                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2900
2901         return 0;
2902 }
2903 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2904
2905 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2906 {
2907         /* Do not use a multiqueue device to represent a subordinate channel */
2908         if (netif_is_multiqueue(dev))
2909                 return -ENODEV;
2910
2911         /* We allow channels 1 - 32767 to be used for subordinate channels.
2912          * Channel 0 is meant to be "native" mode and used only to represent
2913          * the main root device. We allow writing 0 to reset the device back
2914          * to normal mode after being used as a subordinate channel.
2915          */
2916         if (channel > S16_MAX)
2917                 return -EINVAL;
2918
2919         dev->num_tc = -channel;
2920
2921         return 0;
2922 }
2923 EXPORT_SYMBOL(netdev_set_sb_channel);
2924
2925 /*
2926  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2927  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2928  */
2929 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2930 {
2931         bool disabling;
2932         int rc;
2933
2934         disabling = txq < dev->real_num_tx_queues;
2935
2936         if (txq < 1 || txq > dev->num_tx_queues)
2937                 return -EINVAL;
2938
2939         if (dev->reg_state == NETREG_REGISTERED ||
2940             dev->reg_state == NETREG_UNREGISTERING) {
2941                 ASSERT_RTNL();
2942
2943                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2944                                                   txq);
2945                 if (rc)
2946                         return rc;
2947
2948                 if (dev->num_tc)
2949                         netif_setup_tc(dev, txq);
2950
2951                 dev_qdisc_change_real_num_tx(dev, txq);
2952
2953                 dev->real_num_tx_queues = txq;
2954
2955                 if (disabling) {
2956                         synchronize_net();
2957                         qdisc_reset_all_tx_gt(dev, txq);
2958 #ifdef CONFIG_XPS
2959                         netif_reset_xps_queues_gt(dev, txq);
2960 #endif
2961                 }
2962         } else {
2963                 dev->real_num_tx_queues = txq;
2964         }
2965
2966         return 0;
2967 }
2968 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2969
2970 #ifdef CONFIG_SYSFS
2971 /**
2972  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2973  *      @dev: Network device
2974  *      @rxq: Actual number of RX queues
2975  *
2976  *      This must be called either with the rtnl_lock held or before
2977  *      registration of the net device.  Returns 0 on success, or a
2978  *      negative error code.  If called before registration, it always
2979  *      succeeds.
2980  */
2981 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2982 {
2983         int rc;
2984
2985         if (rxq < 1 || rxq > dev->num_rx_queues)
2986                 return -EINVAL;
2987
2988         if (dev->reg_state == NETREG_REGISTERED) {
2989                 ASSERT_RTNL();
2990
2991                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2992                                                   rxq);
2993                 if (rc)
2994                         return rc;
2995         }
2996
2997         dev->real_num_rx_queues = rxq;
2998         return 0;
2999 }
3000 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3001 #endif
3002
3003 /**
3004  *      netif_set_real_num_queues - set actual number of RX and TX queues used
3005  *      @dev: Network device
3006  *      @txq: Actual number of TX queues
3007  *      @rxq: Actual number of RX queues
3008  *
3009  *      Set the real number of both TX and RX queues.
3010  *      Does nothing if the number of queues is already correct.
3011  */
3012 int netif_set_real_num_queues(struct net_device *dev,
3013                               unsigned int txq, unsigned int rxq)
3014 {
3015         unsigned int old_rxq = dev->real_num_rx_queues;
3016         int err;
3017
3018         if (txq < 1 || txq > dev->num_tx_queues ||
3019             rxq < 1 || rxq > dev->num_rx_queues)
3020                 return -EINVAL;
3021
3022         /* Start from increases, so the error path only does decreases -
3023          * decreases can't fail.
3024          */
3025         if (rxq > dev->real_num_rx_queues) {
3026                 err = netif_set_real_num_rx_queues(dev, rxq);
3027                 if (err)
3028                         return err;
3029         }
3030         if (txq > dev->real_num_tx_queues) {
3031                 err = netif_set_real_num_tx_queues(dev, txq);
3032                 if (err)
3033                         goto undo_rx;
3034         }
3035         if (rxq < dev->real_num_rx_queues)
3036                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3037         if (txq < dev->real_num_tx_queues)
3038                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3039
3040         return 0;
3041 undo_rx:
3042         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3043         return err;
3044 }
3045 EXPORT_SYMBOL(netif_set_real_num_queues);
3046
3047 /**
3048  * netif_set_tso_max_size() - set the max size of TSO frames supported
3049  * @dev:        netdev to update
3050  * @size:       max skb->len of a TSO frame
3051  *
3052  * Set the limit on the size of TSO super-frames the device can handle.
3053  * Unless explicitly set the stack will assume the value of
3054  * %GSO_LEGACY_MAX_SIZE.
3055  */
3056 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3057 {
3058         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3059         if (size < READ_ONCE(dev->gso_max_size))
3060                 netif_set_gso_max_size(dev, size);
3061         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3062                 netif_set_gso_ipv4_max_size(dev, size);
3063 }
3064 EXPORT_SYMBOL(netif_set_tso_max_size);
3065
3066 /**
3067  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3068  * @dev:        netdev to update
3069  * @segs:       max number of TCP segments
3070  *
3071  * Set the limit on the number of TCP segments the device can generate from
3072  * a single TSO super-frame.
3073  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3074  */
3075 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3076 {
3077         dev->tso_max_segs = segs;
3078         if (segs < READ_ONCE(dev->gso_max_segs))
3079                 netif_set_gso_max_segs(dev, segs);
3080 }
3081 EXPORT_SYMBOL(netif_set_tso_max_segs);
3082
3083 /**
3084  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3085  * @to:         netdev to update
3086  * @from:       netdev from which to copy the limits
3087  */
3088 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3089 {
3090         netif_set_tso_max_size(to, from->tso_max_size);
3091         netif_set_tso_max_segs(to, from->tso_max_segs);
3092 }
3093 EXPORT_SYMBOL(netif_inherit_tso_max);
3094
3095 /**
3096  * netif_get_num_default_rss_queues - default number of RSS queues
3097  *
3098  * Default value is the number of physical cores if there are only 1 or 2, or
3099  * divided by 2 if there are more.
3100  */
3101 int netif_get_num_default_rss_queues(void)
3102 {
3103         cpumask_var_t cpus;
3104         int cpu, count = 0;
3105
3106         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3107                 return 1;
3108
3109         cpumask_copy(cpus, cpu_online_mask);
3110         for_each_cpu(cpu, cpus) {
3111                 ++count;
3112                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3113         }
3114         free_cpumask_var(cpus);
3115
3116         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3117 }
3118 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3119
3120 static void __netif_reschedule(struct Qdisc *q)
3121 {
3122         struct softnet_data *sd;
3123         unsigned long flags;
3124
3125         local_irq_save(flags);
3126         sd = this_cpu_ptr(&softnet_data);
3127         q->next_sched = NULL;
3128         *sd->output_queue_tailp = q;
3129         sd->output_queue_tailp = &q->next_sched;
3130         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3131         local_irq_restore(flags);
3132 }
3133
3134 void __netif_schedule(struct Qdisc *q)
3135 {
3136         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3137                 __netif_reschedule(q);
3138 }
3139 EXPORT_SYMBOL(__netif_schedule);
3140
3141 struct dev_kfree_skb_cb {
3142         enum skb_drop_reason reason;
3143 };
3144
3145 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3146 {
3147         return (struct dev_kfree_skb_cb *)skb->cb;
3148 }
3149
3150 void netif_schedule_queue(struct netdev_queue *txq)
3151 {
3152         rcu_read_lock();
3153         if (!netif_xmit_stopped(txq)) {
3154                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3155
3156                 __netif_schedule(q);
3157         }
3158         rcu_read_unlock();
3159 }
3160 EXPORT_SYMBOL(netif_schedule_queue);
3161
3162 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3163 {
3164         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3165                 struct Qdisc *q;
3166
3167                 rcu_read_lock();
3168                 q = rcu_dereference(dev_queue->qdisc);
3169                 __netif_schedule(q);
3170                 rcu_read_unlock();
3171         }
3172 }
3173 EXPORT_SYMBOL(netif_tx_wake_queue);
3174
3175 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3176 {
3177         unsigned long flags;
3178
3179         if (unlikely(!skb))
3180                 return;
3181
3182         if (likely(refcount_read(&skb->users) == 1)) {
3183                 smp_rmb();
3184                 refcount_set(&skb->users, 0);
3185         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3186                 return;
3187         }
3188         get_kfree_skb_cb(skb)->reason = reason;
3189         local_irq_save(flags);
3190         skb->next = __this_cpu_read(softnet_data.completion_queue);
3191         __this_cpu_write(softnet_data.completion_queue, skb);
3192         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3193         local_irq_restore(flags);
3194 }
3195 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3196
3197 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3198 {
3199         if (in_hardirq() || irqs_disabled())
3200                 dev_kfree_skb_irq_reason(skb, reason);
3201         else
3202                 kfree_skb_reason(skb, reason);
3203 }
3204 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3205
3206
3207 /**
3208  * netif_device_detach - mark device as removed
3209  * @dev: network device
3210  *
3211  * Mark device as removed from system and therefore no longer available.
3212  */
3213 void netif_device_detach(struct net_device *dev)
3214 {
3215         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3216             netif_running(dev)) {
3217                 netif_tx_stop_all_queues(dev);
3218         }
3219 }
3220 EXPORT_SYMBOL(netif_device_detach);
3221
3222 /**
3223  * netif_device_attach - mark device as attached
3224  * @dev: network device
3225  *
3226  * Mark device as attached from system and restart if needed.
3227  */
3228 void netif_device_attach(struct net_device *dev)
3229 {
3230         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3231             netif_running(dev)) {
3232                 netif_tx_wake_all_queues(dev);
3233                 __netdev_watchdog_up(dev);
3234         }
3235 }
3236 EXPORT_SYMBOL(netif_device_attach);
3237
3238 /*
3239  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3240  * to be used as a distribution range.
3241  */
3242 static u16 skb_tx_hash(const struct net_device *dev,
3243                        const struct net_device *sb_dev,
3244                        struct sk_buff *skb)
3245 {
3246         u32 hash;
3247         u16 qoffset = 0;
3248         u16 qcount = dev->real_num_tx_queues;
3249
3250         if (dev->num_tc) {
3251                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3252
3253                 qoffset = sb_dev->tc_to_txq[tc].offset;
3254                 qcount = sb_dev->tc_to_txq[tc].count;
3255                 if (unlikely(!qcount)) {
3256                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3257                                              sb_dev->name, qoffset, tc);
3258                         qoffset = 0;
3259                         qcount = dev->real_num_tx_queues;
3260                 }
3261         }
3262
3263         if (skb_rx_queue_recorded(skb)) {
3264                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3265                 hash = skb_get_rx_queue(skb);
3266                 if (hash >= qoffset)
3267                         hash -= qoffset;
3268                 while (unlikely(hash >= qcount))
3269                         hash -= qcount;
3270                 return hash + qoffset;
3271         }
3272
3273         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3274 }
3275
3276 void skb_warn_bad_offload(const struct sk_buff *skb)
3277 {
3278         static const netdev_features_t null_features;
3279         struct net_device *dev = skb->dev;
3280         const char *name = "";
3281
3282         if (!net_ratelimit())
3283                 return;
3284
3285         if (dev) {
3286                 if (dev->dev.parent)
3287                         name = dev_driver_string(dev->dev.parent);
3288                 else
3289                         name = netdev_name(dev);
3290         }
3291         skb_dump(KERN_WARNING, skb, false);
3292         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3293              name, dev ? &dev->features : &null_features,
3294              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3295 }
3296
3297 /*
3298  * Invalidate hardware checksum when packet is to be mangled, and
3299  * complete checksum manually on outgoing path.
3300  */
3301 int skb_checksum_help(struct sk_buff *skb)
3302 {
3303         __wsum csum;
3304         int ret = 0, offset;
3305
3306         if (skb->ip_summed == CHECKSUM_COMPLETE)
3307                 goto out_set_summed;
3308
3309         if (unlikely(skb_is_gso(skb))) {
3310                 skb_warn_bad_offload(skb);
3311                 return -EINVAL;
3312         }
3313
3314         /* Before computing a checksum, we should make sure no frag could
3315          * be modified by an external entity : checksum could be wrong.
3316          */
3317         if (skb_has_shared_frag(skb)) {
3318                 ret = __skb_linearize(skb);
3319                 if (ret)
3320                         goto out;
3321         }
3322
3323         offset = skb_checksum_start_offset(skb);
3324         ret = -EINVAL;
3325         if (unlikely(offset >= skb_headlen(skb))) {
3326                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3327                 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3328                           offset, skb_headlen(skb));
3329                 goto out;
3330         }
3331         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3332
3333         offset += skb->csum_offset;
3334         if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3335                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3336                 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3337                           offset + sizeof(__sum16), skb_headlen(skb));
3338                 goto out;
3339         }
3340         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3341         if (ret)
3342                 goto out;
3343
3344         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3345 out_set_summed:
3346         skb->ip_summed = CHECKSUM_NONE;
3347 out:
3348         return ret;
3349 }
3350 EXPORT_SYMBOL(skb_checksum_help);
3351
3352 int skb_crc32c_csum_help(struct sk_buff *skb)
3353 {
3354         __le32 crc32c_csum;
3355         int ret = 0, offset, start;
3356
3357         if (skb->ip_summed != CHECKSUM_PARTIAL)
3358                 goto out;
3359
3360         if (unlikely(skb_is_gso(skb)))
3361                 goto out;
3362
3363         /* Before computing a checksum, we should make sure no frag could
3364          * be modified by an external entity : checksum could be wrong.
3365          */
3366         if (unlikely(skb_has_shared_frag(skb))) {
3367                 ret = __skb_linearize(skb);
3368                 if (ret)
3369                         goto out;
3370         }
3371         start = skb_checksum_start_offset(skb);
3372         offset = start + offsetof(struct sctphdr, checksum);
3373         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3374                 ret = -EINVAL;
3375                 goto out;
3376         }
3377
3378         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3379         if (ret)
3380                 goto out;
3381
3382         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3383                                                   skb->len - start, ~(__u32)0,
3384                                                   crc32c_csum_stub));
3385         *(__le32 *)(skb->data + offset) = crc32c_csum;
3386         skb_reset_csum_not_inet(skb);
3387 out:
3388         return ret;
3389 }
3390 EXPORT_SYMBOL(skb_crc32c_csum_help);
3391
3392 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3393 {
3394         __be16 type = skb->protocol;
3395
3396         /* Tunnel gso handlers can set protocol to ethernet. */
3397         if (type == htons(ETH_P_TEB)) {
3398                 struct ethhdr *eth;
3399
3400                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3401                         return 0;
3402
3403                 eth = (struct ethhdr *)skb->data;
3404                 type = eth->h_proto;
3405         }
3406
3407         return vlan_get_protocol_and_depth(skb, type, depth);
3408 }
3409
3410
3411 /* Take action when hardware reception checksum errors are detected. */
3412 #ifdef CONFIG_BUG
3413 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3414 {
3415         netdev_err(dev, "hw csum failure\n");
3416         skb_dump(KERN_ERR, skb, true);
3417         dump_stack();
3418 }
3419
3420 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3421 {
3422         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3423 }
3424 EXPORT_SYMBOL(netdev_rx_csum_fault);
3425 #endif
3426
3427 /* XXX: check that highmem exists at all on the given machine. */
3428 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3429 {
3430 #ifdef CONFIG_HIGHMEM
3431         int i;
3432
3433         if (!(dev->features & NETIF_F_HIGHDMA)) {
3434                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3435                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3436
3437                         if (PageHighMem(skb_frag_page(frag)))
3438                                 return 1;
3439                 }
3440         }
3441 #endif
3442         return 0;
3443 }
3444
3445 /* If MPLS offload request, verify we are testing hardware MPLS features
3446  * instead of standard features for the netdev.
3447  */
3448 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3449 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3450                                            netdev_features_t features,
3451                                            __be16 type)
3452 {
3453         if (eth_p_mpls(type))
3454                 features &= skb->dev->mpls_features;
3455
3456         return features;
3457 }
3458 #else
3459 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460                                            netdev_features_t features,
3461                                            __be16 type)
3462 {
3463         return features;
3464 }
3465 #endif
3466
3467 static netdev_features_t harmonize_features(struct sk_buff *skb,
3468         netdev_features_t features)
3469 {
3470         __be16 type;
3471
3472         type = skb_network_protocol(skb, NULL);
3473         features = net_mpls_features(skb, features, type);
3474
3475         if (skb->ip_summed != CHECKSUM_NONE &&
3476             !can_checksum_protocol(features, type)) {
3477                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3478         }
3479         if (illegal_highdma(skb->dev, skb))
3480                 features &= ~NETIF_F_SG;
3481
3482         return features;
3483 }
3484
3485 netdev_features_t passthru_features_check(struct sk_buff *skb,
3486                                           struct net_device *dev,
3487                                           netdev_features_t features)
3488 {
3489         return features;
3490 }
3491 EXPORT_SYMBOL(passthru_features_check);
3492
3493 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3494                                              struct net_device *dev,
3495                                              netdev_features_t features)
3496 {
3497         return vlan_features_check(skb, features);
3498 }
3499
3500 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3501                                             struct net_device *dev,
3502                                             netdev_features_t features)
3503 {
3504         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3505
3506         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3507                 return features & ~NETIF_F_GSO_MASK;
3508
3509         if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3510                 return features & ~NETIF_F_GSO_MASK;
3511
3512         if (!skb_shinfo(skb)->gso_type) {
3513                 skb_warn_bad_offload(skb);
3514                 return features & ~NETIF_F_GSO_MASK;
3515         }
3516
3517         /* Support for GSO partial features requires software
3518          * intervention before we can actually process the packets
3519          * so we need to strip support for any partial features now
3520          * and we can pull them back in after we have partially
3521          * segmented the frame.
3522          */
3523         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3524                 features &= ~dev->gso_partial_features;
3525
3526         /* Make sure to clear the IPv4 ID mangling feature if the
3527          * IPv4 header has the potential to be fragmented.
3528          */
3529         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3530                 struct iphdr *iph = skb->encapsulation ?
3531                                     inner_ip_hdr(skb) : ip_hdr(skb);
3532
3533                 if (!(iph->frag_off & htons(IP_DF)))
3534                         features &= ~NETIF_F_TSO_MANGLEID;
3535         }
3536
3537         return features;
3538 }
3539
3540 netdev_features_t netif_skb_features(struct sk_buff *skb)
3541 {
3542         struct net_device *dev = skb->dev;
3543         netdev_features_t features = dev->features;
3544
3545         if (skb_is_gso(skb))
3546                 features = gso_features_check(skb, dev, features);
3547
3548         /* If encapsulation offload request, verify we are testing
3549          * hardware encapsulation features instead of standard
3550          * features for the netdev
3551          */
3552         if (skb->encapsulation)
3553                 features &= dev->hw_enc_features;
3554
3555         if (skb_vlan_tagged(skb))
3556                 features = netdev_intersect_features(features,
3557                                                      dev->vlan_features |
3558                                                      NETIF_F_HW_VLAN_CTAG_TX |
3559                                                      NETIF_F_HW_VLAN_STAG_TX);
3560
3561         if (dev->netdev_ops->ndo_features_check)
3562                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3563                                                                 features);
3564         else
3565                 features &= dflt_features_check(skb, dev, features);
3566
3567         return harmonize_features(skb, features);
3568 }
3569 EXPORT_SYMBOL(netif_skb_features);
3570
3571 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3572                     struct netdev_queue *txq, bool more)
3573 {
3574         unsigned int len;
3575         int rc;
3576
3577         if (dev_nit_active(dev))
3578                 dev_queue_xmit_nit(skb, dev);
3579
3580         len = skb->len;
3581         trace_net_dev_start_xmit(skb, dev);
3582         rc = netdev_start_xmit(skb, dev, txq, more);
3583         trace_net_dev_xmit(skb, rc, dev, len);
3584
3585         return rc;
3586 }
3587
3588 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3589                                     struct netdev_queue *txq, int *ret)
3590 {
3591         struct sk_buff *skb = first;
3592         int rc = NETDEV_TX_OK;
3593
3594         while (skb) {
3595                 struct sk_buff *next = skb->next;
3596
3597                 skb_mark_not_on_list(skb);
3598                 rc = xmit_one(skb, dev, txq, next != NULL);
3599                 if (unlikely(!dev_xmit_complete(rc))) {
3600                         skb->next = next;
3601                         goto out;
3602                 }
3603
3604                 skb = next;
3605                 if (netif_tx_queue_stopped(txq) && skb) {
3606                         rc = NETDEV_TX_BUSY;
3607                         break;
3608                 }
3609         }
3610
3611 out:
3612         *ret = rc;
3613         return skb;
3614 }
3615
3616 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3617                                           netdev_features_t features)
3618 {
3619         if (skb_vlan_tag_present(skb) &&
3620             !vlan_hw_offload_capable(features, skb->vlan_proto))
3621                 skb = __vlan_hwaccel_push_inside(skb);
3622         return skb;
3623 }
3624
3625 int skb_csum_hwoffload_help(struct sk_buff *skb,
3626                             const netdev_features_t features)
3627 {
3628         if (unlikely(skb_csum_is_sctp(skb)))
3629                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3630                         skb_crc32c_csum_help(skb);
3631
3632         if (features & NETIF_F_HW_CSUM)
3633                 return 0;
3634
3635         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3636                 switch (skb->csum_offset) {
3637                 case offsetof(struct tcphdr, check):
3638                 case offsetof(struct udphdr, check):
3639                         return 0;
3640                 }
3641         }
3642
3643         return skb_checksum_help(skb);
3644 }
3645 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3646
3647 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3648 {
3649         netdev_features_t features;
3650
3651         features = netif_skb_features(skb);
3652         skb = validate_xmit_vlan(skb, features);
3653         if (unlikely(!skb))
3654                 goto out_null;
3655
3656         skb = sk_validate_xmit_skb(skb, dev);
3657         if (unlikely(!skb))
3658                 goto out_null;
3659
3660         if (netif_needs_gso(skb, features)) {
3661                 struct sk_buff *segs;
3662
3663                 segs = skb_gso_segment(skb, features);
3664                 if (IS_ERR(segs)) {
3665                         goto out_kfree_skb;
3666                 } else if (segs) {
3667                         consume_skb(skb);
3668                         skb = segs;
3669                 }
3670         } else {
3671                 if (skb_needs_linearize(skb, features) &&
3672                     __skb_linearize(skb))
3673                         goto out_kfree_skb;
3674
3675                 /* If packet is not checksummed and device does not
3676                  * support checksumming for this protocol, complete
3677                  * checksumming here.
3678                  */
3679                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3680                         if (skb->encapsulation)
3681                                 skb_set_inner_transport_header(skb,
3682                                                                skb_checksum_start_offset(skb));
3683                         else
3684                                 skb_set_transport_header(skb,
3685                                                          skb_checksum_start_offset(skb));
3686                         if (skb_csum_hwoffload_help(skb, features))
3687                                 goto out_kfree_skb;
3688                 }
3689         }
3690
3691         skb = validate_xmit_xfrm(skb, features, again);
3692
3693         return skb;
3694
3695 out_kfree_skb:
3696         kfree_skb(skb);
3697 out_null:
3698         dev_core_stats_tx_dropped_inc(dev);
3699         return NULL;
3700 }
3701
3702 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3703 {
3704         struct sk_buff *next, *head = NULL, *tail;
3705
3706         for (; skb != NULL; skb = next) {
3707                 next = skb->next;
3708                 skb_mark_not_on_list(skb);
3709
3710                 /* in case skb won't be segmented, point to itself */
3711                 skb->prev = skb;
3712
3713                 skb = validate_xmit_skb(skb, dev, again);
3714                 if (!skb)
3715                         continue;
3716
3717                 if (!head)
3718                         head = skb;
3719                 else
3720                         tail->next = skb;
3721                 /* If skb was segmented, skb->prev points to
3722                  * the last segment. If not, it still contains skb.
3723                  */
3724                 tail = skb->prev;
3725         }
3726         return head;
3727 }
3728 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3729
3730 static void qdisc_pkt_len_init(struct sk_buff *skb)
3731 {
3732         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3733
3734         qdisc_skb_cb(skb)->pkt_len = skb->len;
3735
3736         /* To get more precise estimation of bytes sent on wire,
3737          * we add to pkt_len the headers size of all segments
3738          */
3739         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3740                 u16 gso_segs = shinfo->gso_segs;
3741                 unsigned int hdr_len;
3742
3743                 /* mac layer + network layer */
3744                 hdr_len = skb_transport_offset(skb);
3745
3746                 /* + transport layer */
3747                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3748                         const struct tcphdr *th;
3749                         struct tcphdr _tcphdr;
3750
3751                         th = skb_header_pointer(skb, hdr_len,
3752                                                 sizeof(_tcphdr), &_tcphdr);
3753                         if (likely(th))
3754                                 hdr_len += __tcp_hdrlen(th);
3755                 } else {
3756                         struct udphdr _udphdr;
3757
3758                         if (skb_header_pointer(skb, hdr_len,
3759                                                sizeof(_udphdr), &_udphdr))
3760                                 hdr_len += sizeof(struct udphdr);
3761                 }
3762
3763                 if (shinfo->gso_type & SKB_GSO_DODGY)
3764                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3765                                                 shinfo->gso_size);
3766
3767                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3768         }
3769 }
3770
3771 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3772                              struct sk_buff **to_free,
3773                              struct netdev_queue *txq)
3774 {
3775         int rc;
3776
3777         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3778         if (rc == NET_XMIT_SUCCESS)
3779                 trace_qdisc_enqueue(q, txq, skb);
3780         return rc;
3781 }
3782
3783 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3784                                  struct net_device *dev,
3785                                  struct netdev_queue *txq)
3786 {
3787         spinlock_t *root_lock = qdisc_lock(q);
3788         struct sk_buff *to_free = NULL;
3789         bool contended;
3790         int rc;
3791
3792         qdisc_calculate_pkt_len(skb, q);
3793
3794         tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3795
3796         if (q->flags & TCQ_F_NOLOCK) {
3797                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3798                     qdisc_run_begin(q)) {
3799                         /* Retest nolock_qdisc_is_empty() within the protection
3800                          * of q->seqlock to protect from racing with requeuing.
3801                          */
3802                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3803                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3804                                 __qdisc_run(q);
3805                                 qdisc_run_end(q);
3806
3807                                 goto no_lock_out;
3808                         }
3809
3810                         qdisc_bstats_cpu_update(q, skb);
3811                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3812                             !nolock_qdisc_is_empty(q))
3813                                 __qdisc_run(q);
3814
3815                         qdisc_run_end(q);
3816                         return NET_XMIT_SUCCESS;
3817                 }
3818
3819                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3820                 qdisc_run(q);
3821
3822 no_lock_out:
3823                 if (unlikely(to_free))
3824                         kfree_skb_list_reason(to_free,
3825                                               tcf_get_drop_reason(to_free));
3826                 return rc;
3827         }
3828
3829         if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3830                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3831                 return NET_XMIT_DROP;
3832         }
3833         /*
3834          * Heuristic to force contended enqueues to serialize on a
3835          * separate lock before trying to get qdisc main lock.
3836          * This permits qdisc->running owner to get the lock more
3837          * often and dequeue packets faster.
3838          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3839          * and then other tasks will only enqueue packets. The packets will be
3840          * sent after the qdisc owner is scheduled again. To prevent this
3841          * scenario the task always serialize on the lock.
3842          */
3843         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3844         if (unlikely(contended))
3845                 spin_lock(&q->busylock);
3846
3847         spin_lock(root_lock);
3848         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3849                 __qdisc_drop(skb, &to_free);
3850                 rc = NET_XMIT_DROP;
3851         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3852                    qdisc_run_begin(q)) {
3853                 /*
3854                  * This is a work-conserving queue; there are no old skbs
3855                  * waiting to be sent out; and the qdisc is not running -
3856                  * xmit the skb directly.
3857                  */
3858
3859                 qdisc_bstats_update(q, skb);
3860
3861                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3862                         if (unlikely(contended)) {
3863                                 spin_unlock(&q->busylock);
3864                                 contended = false;
3865                         }
3866                         __qdisc_run(q);
3867                 }
3868
3869                 qdisc_run_end(q);
3870                 rc = NET_XMIT_SUCCESS;
3871         } else {
3872                 WRITE_ONCE(q->owner, smp_processor_id());
3873                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3874                 WRITE_ONCE(q->owner, -1);
3875                 if (qdisc_run_begin(q)) {
3876                         if (unlikely(contended)) {
3877                                 spin_unlock(&q->busylock);
3878                                 contended = false;
3879                         }
3880                         __qdisc_run(q);
3881                         qdisc_run_end(q);
3882                 }
3883         }
3884         spin_unlock(root_lock);
3885         if (unlikely(to_free))
3886                 kfree_skb_list_reason(to_free,
3887                                       tcf_get_drop_reason(to_free));
3888         if (unlikely(contended))
3889                 spin_unlock(&q->busylock);
3890         return rc;
3891 }
3892
3893 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3894 static void skb_update_prio(struct sk_buff *skb)
3895 {
3896         const struct netprio_map *map;
3897         const struct sock *sk;
3898         unsigned int prioidx;
3899
3900         if (skb->priority)
3901                 return;
3902         map = rcu_dereference_bh(skb->dev->priomap);
3903         if (!map)
3904                 return;
3905         sk = skb_to_full_sk(skb);
3906         if (!sk)
3907                 return;
3908
3909         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3910
3911         if (prioidx < map->priomap_len)
3912                 skb->priority = map->priomap[prioidx];
3913 }
3914 #else
3915 #define skb_update_prio(skb)
3916 #endif
3917
3918 /**
3919  *      dev_loopback_xmit - loop back @skb
3920  *      @net: network namespace this loopback is happening in
3921  *      @sk:  sk needed to be a netfilter okfn
3922  *      @skb: buffer to transmit
3923  */
3924 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3925 {
3926         skb_reset_mac_header(skb);
3927         __skb_pull(skb, skb_network_offset(skb));
3928         skb->pkt_type = PACKET_LOOPBACK;
3929         if (skb->ip_summed == CHECKSUM_NONE)
3930                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3931         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3932         skb_dst_force(skb);
3933         netif_rx(skb);
3934         return 0;
3935 }
3936 EXPORT_SYMBOL(dev_loopback_xmit);
3937
3938 #ifdef CONFIG_NET_EGRESS
3939 static struct netdev_queue *
3940 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3941 {
3942         int qm = skb_get_queue_mapping(skb);
3943
3944         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3945 }
3946
3947 #ifndef CONFIG_PREEMPT_RT
3948 static bool netdev_xmit_txqueue_skipped(void)
3949 {
3950         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3951 }
3952
3953 void netdev_xmit_skip_txqueue(bool skip)
3954 {
3955         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3956 }
3957 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3958
3959 #else
3960 static bool netdev_xmit_txqueue_skipped(void)
3961 {
3962         return current->net_xmit.skip_txqueue;
3963 }
3964
3965 void netdev_xmit_skip_txqueue(bool skip)
3966 {
3967         current->net_xmit.skip_txqueue = skip;
3968 }
3969 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3970 #endif
3971 #endif /* CONFIG_NET_EGRESS */
3972
3973 #ifdef CONFIG_NET_XGRESS
3974 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3975                   enum skb_drop_reason *drop_reason)
3976 {
3977         int ret = TC_ACT_UNSPEC;
3978 #ifdef CONFIG_NET_CLS_ACT
3979         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3980         struct tcf_result res;
3981
3982         if (!miniq)
3983                 return ret;
3984
3985         if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3986                 if (tcf_block_bypass_sw(miniq->block))
3987                         return ret;
3988         }
3989
3990         tc_skb_cb(skb)->mru = 0;
3991         tc_skb_cb(skb)->post_ct = false;
3992         tcf_set_drop_reason(skb, *drop_reason);
3993
3994         mini_qdisc_bstats_cpu_update(miniq, skb);
3995         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3996         /* Only tcf related quirks below. */
3997         switch (ret) {
3998         case TC_ACT_SHOT:
3999                 *drop_reason = tcf_get_drop_reason(skb);
4000                 mini_qdisc_qstats_cpu_drop(miniq);
4001                 break;
4002         case TC_ACT_OK:
4003         case TC_ACT_RECLASSIFY:
4004                 skb->tc_index = TC_H_MIN(res.classid);
4005                 break;
4006         }
4007 #endif /* CONFIG_NET_CLS_ACT */
4008         return ret;
4009 }
4010
4011 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4012
4013 void tcx_inc(void)
4014 {
4015         static_branch_inc(&tcx_needed_key);
4016 }
4017
4018 void tcx_dec(void)
4019 {
4020         static_branch_dec(&tcx_needed_key);
4021 }
4022
4023 static __always_inline enum tcx_action_base
4024 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4025         const bool needs_mac)
4026 {
4027         const struct bpf_mprog_fp *fp;
4028         const struct bpf_prog *prog;
4029         int ret = TCX_NEXT;
4030
4031         if (needs_mac)
4032                 __skb_push(skb, skb->mac_len);
4033         bpf_mprog_foreach_prog(entry, fp, prog) {
4034                 bpf_compute_data_pointers(skb);
4035                 ret = bpf_prog_run(prog, skb);
4036                 if (ret != TCX_NEXT)
4037                         break;
4038         }
4039         if (needs_mac)
4040                 __skb_pull(skb, skb->mac_len);
4041         return tcx_action_code(skb, ret);
4042 }
4043
4044 static __always_inline struct sk_buff *
4045 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4046                    struct net_device *orig_dev, bool *another)
4047 {
4048         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4049         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4050         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4051         int sch_ret;
4052
4053         if (!entry)
4054                 return skb;
4055
4056         bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4057         if (*pt_prev) {
4058                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4059                 *pt_prev = NULL;
4060         }
4061
4062         qdisc_skb_cb(skb)->pkt_len = skb->len;
4063         tcx_set_ingress(skb, true);
4064
4065         if (static_branch_unlikely(&tcx_needed_key)) {
4066                 sch_ret = tcx_run(entry, skb, true);
4067                 if (sch_ret != TC_ACT_UNSPEC)
4068                         goto ingress_verdict;
4069         }
4070         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4071 ingress_verdict:
4072         switch (sch_ret) {
4073         case TC_ACT_REDIRECT:
4074                 /* skb_mac_header check was done by BPF, so we can safely
4075                  * push the L2 header back before redirecting to another
4076                  * netdev.
4077                  */
4078                 __skb_push(skb, skb->mac_len);
4079                 if (skb_do_redirect(skb) == -EAGAIN) {
4080                         __skb_pull(skb, skb->mac_len);
4081                         *another = true;
4082                         break;
4083                 }
4084                 *ret = NET_RX_SUCCESS;
4085                 bpf_net_ctx_clear(bpf_net_ctx);
4086                 return NULL;
4087         case TC_ACT_SHOT:
4088                 kfree_skb_reason(skb, drop_reason);
4089                 *ret = NET_RX_DROP;
4090                 bpf_net_ctx_clear(bpf_net_ctx);
4091                 return NULL;
4092         /* used by tc_run */
4093         case TC_ACT_STOLEN:
4094         case TC_ACT_QUEUED:
4095         case TC_ACT_TRAP:
4096                 consume_skb(skb);
4097                 fallthrough;
4098         case TC_ACT_CONSUMED:
4099                 *ret = NET_RX_SUCCESS;
4100                 bpf_net_ctx_clear(bpf_net_ctx);
4101                 return NULL;
4102         }
4103         bpf_net_ctx_clear(bpf_net_ctx);
4104
4105         return skb;
4106 }
4107
4108 static __always_inline struct sk_buff *
4109 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4110 {
4111         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4112         enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4113         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4114         int sch_ret;
4115
4116         if (!entry)
4117                 return skb;
4118
4119         bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4120
4121         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4122          * already set by the caller.
4123          */
4124         if (static_branch_unlikely(&tcx_needed_key)) {
4125                 sch_ret = tcx_run(entry, skb, false);
4126                 if (sch_ret != TC_ACT_UNSPEC)
4127                         goto egress_verdict;
4128         }
4129         sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4130 egress_verdict:
4131         switch (sch_ret) {
4132         case TC_ACT_REDIRECT:
4133                 /* No need to push/pop skb's mac_header here on egress! */
4134                 skb_do_redirect(skb);
4135                 *ret = NET_XMIT_SUCCESS;
4136                 bpf_net_ctx_clear(bpf_net_ctx);
4137                 return NULL;
4138         case TC_ACT_SHOT:
4139                 kfree_skb_reason(skb, drop_reason);
4140                 *ret = NET_XMIT_DROP;
4141                 bpf_net_ctx_clear(bpf_net_ctx);
4142                 return NULL;
4143         /* used by tc_run */
4144         case TC_ACT_STOLEN:
4145         case TC_ACT_QUEUED:
4146         case TC_ACT_TRAP:
4147                 consume_skb(skb);
4148                 fallthrough;
4149         case TC_ACT_CONSUMED:
4150                 *ret = NET_XMIT_SUCCESS;
4151                 bpf_net_ctx_clear(bpf_net_ctx);
4152                 return NULL;
4153         }
4154         bpf_net_ctx_clear(bpf_net_ctx);
4155
4156         return skb;
4157 }
4158 #else
4159 static __always_inline struct sk_buff *
4160 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4161                    struct net_device *orig_dev, bool *another)
4162 {
4163         return skb;
4164 }
4165
4166 static __always_inline struct sk_buff *
4167 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4168 {
4169         return skb;
4170 }
4171 #endif /* CONFIG_NET_XGRESS */
4172
4173 #ifdef CONFIG_XPS
4174 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4175                                struct xps_dev_maps *dev_maps, unsigned int tci)
4176 {
4177         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4178         struct xps_map *map;
4179         int queue_index = -1;
4180
4181         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4182                 return queue_index;
4183
4184         tci *= dev_maps->num_tc;
4185         tci += tc;
4186
4187         map = rcu_dereference(dev_maps->attr_map[tci]);
4188         if (map) {
4189                 if (map->len == 1)
4190                         queue_index = map->queues[0];
4191                 else
4192                         queue_index = map->queues[reciprocal_scale(
4193                                                 skb_get_hash(skb), map->len)];
4194                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4195                         queue_index = -1;
4196         }
4197         return queue_index;
4198 }
4199 #endif
4200
4201 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4202                          struct sk_buff *skb)
4203 {
4204 #ifdef CONFIG_XPS
4205         struct xps_dev_maps *dev_maps;
4206         struct sock *sk = skb->sk;
4207         int queue_index = -1;
4208
4209         if (!static_key_false(&xps_needed))
4210                 return -1;
4211
4212         rcu_read_lock();
4213         if (!static_key_false(&xps_rxqs_needed))
4214                 goto get_cpus_map;
4215
4216         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4217         if (dev_maps) {
4218                 int tci = sk_rx_queue_get(sk);
4219
4220                 if (tci >= 0)
4221                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4222                                                           tci);
4223         }
4224
4225 get_cpus_map:
4226         if (queue_index < 0) {
4227                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4228                 if (dev_maps) {
4229                         unsigned int tci = skb->sender_cpu - 1;
4230
4231                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4232                                                           tci);
4233                 }
4234         }
4235         rcu_read_unlock();
4236
4237         return queue_index;
4238 #else
4239         return -1;
4240 #endif
4241 }
4242
4243 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4244                      struct net_device *sb_dev)
4245 {
4246         return 0;
4247 }
4248 EXPORT_SYMBOL(dev_pick_tx_zero);
4249
4250 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4251                        struct net_device *sb_dev)
4252 {
4253         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4254 }
4255 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4256
4257 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4258                      struct net_device *sb_dev)
4259 {
4260         struct sock *sk = skb->sk;
4261         int queue_index = sk_tx_queue_get(sk);
4262
4263         sb_dev = sb_dev ? : dev;
4264
4265         if (queue_index < 0 || skb->ooo_okay ||
4266             queue_index >= dev->real_num_tx_queues) {
4267                 int new_index = get_xps_queue(dev, sb_dev, skb);
4268
4269                 if (new_index < 0)
4270                         new_index = skb_tx_hash(dev, sb_dev, skb);
4271
4272                 if (queue_index != new_index && sk &&
4273                     sk_fullsock(sk) &&
4274                     rcu_access_pointer(sk->sk_dst_cache))
4275                         sk_tx_queue_set(sk, new_index);
4276
4277                 queue_index = new_index;
4278         }
4279
4280         return queue_index;
4281 }
4282 EXPORT_SYMBOL(netdev_pick_tx);
4283
4284 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4285                                          struct sk_buff *skb,
4286                                          struct net_device *sb_dev)
4287 {
4288         int queue_index = 0;
4289
4290 #ifdef CONFIG_XPS
4291         u32 sender_cpu = skb->sender_cpu - 1;
4292
4293         if (sender_cpu >= (u32)NR_CPUS)
4294                 skb->sender_cpu = raw_smp_processor_id() + 1;
4295 #endif
4296
4297         if (dev->real_num_tx_queues != 1) {
4298                 const struct net_device_ops *ops = dev->netdev_ops;
4299
4300                 if (ops->ndo_select_queue)
4301                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4302                 else
4303                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4304
4305                 queue_index = netdev_cap_txqueue(dev, queue_index);
4306         }
4307
4308         skb_set_queue_mapping(skb, queue_index);
4309         return netdev_get_tx_queue(dev, queue_index);
4310 }
4311
4312 /**
4313  * __dev_queue_xmit() - transmit a buffer
4314  * @skb:        buffer to transmit
4315  * @sb_dev:     suboordinate device used for L2 forwarding offload
4316  *
4317  * Queue a buffer for transmission to a network device. The caller must
4318  * have set the device and priority and built the buffer before calling
4319  * this function. The function can be called from an interrupt.
4320  *
4321  * When calling this method, interrupts MUST be enabled. This is because
4322  * the BH enable code must have IRQs enabled so that it will not deadlock.
4323  *
4324  * Regardless of the return value, the skb is consumed, so it is currently
4325  * difficult to retry a send to this method. (You can bump the ref count
4326  * before sending to hold a reference for retry if you are careful.)
4327  *
4328  * Return:
4329  * * 0                          - buffer successfully transmitted
4330  * * positive qdisc return code - NET_XMIT_DROP etc.
4331  * * negative errno             - other errors
4332  */
4333 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4334 {
4335         struct net_device *dev = skb->dev;
4336         struct netdev_queue *txq = NULL;
4337         struct Qdisc *q;
4338         int rc = -ENOMEM;
4339         bool again = false;
4340
4341         skb_reset_mac_header(skb);
4342         skb_assert_len(skb);
4343
4344         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4345                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4346
4347         /* Disable soft irqs for various locks below. Also
4348          * stops preemption for RCU.
4349          */
4350         rcu_read_lock_bh();
4351
4352         skb_update_prio(skb);
4353
4354         qdisc_pkt_len_init(skb);
4355         tcx_set_ingress(skb, false);
4356 #ifdef CONFIG_NET_EGRESS
4357         if (static_branch_unlikely(&egress_needed_key)) {
4358                 if (nf_hook_egress_active()) {
4359                         skb = nf_hook_egress(skb, &rc, dev);
4360                         if (!skb)
4361                                 goto out;
4362                 }
4363
4364                 netdev_xmit_skip_txqueue(false);
4365
4366                 nf_skip_egress(skb, true);
4367                 skb = sch_handle_egress(skb, &rc, dev);
4368                 if (!skb)
4369                         goto out;
4370                 nf_skip_egress(skb, false);
4371
4372                 if (netdev_xmit_txqueue_skipped())
4373                         txq = netdev_tx_queue_mapping(dev, skb);
4374         }
4375 #endif
4376         /* If device/qdisc don't need skb->dst, release it right now while
4377          * its hot in this cpu cache.
4378          */
4379         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4380                 skb_dst_drop(skb);
4381         else
4382                 skb_dst_force(skb);
4383
4384         if (!txq)
4385                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4386
4387         q = rcu_dereference_bh(txq->qdisc);
4388
4389         trace_net_dev_queue(skb);
4390         if (q->enqueue) {
4391                 rc = __dev_xmit_skb(skb, q, dev, txq);
4392                 goto out;
4393         }
4394
4395         /* The device has no queue. Common case for software devices:
4396          * loopback, all the sorts of tunnels...
4397
4398          * Really, it is unlikely that netif_tx_lock protection is necessary
4399          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4400          * counters.)
4401          * However, it is possible, that they rely on protection
4402          * made by us here.
4403
4404          * Check this and shot the lock. It is not prone from deadlocks.
4405          *Either shot noqueue qdisc, it is even simpler 8)
4406          */
4407         if (dev->flags & IFF_UP) {
4408                 int cpu = smp_processor_id(); /* ok because BHs are off */
4409
4410                 /* Other cpus might concurrently change txq->xmit_lock_owner
4411                  * to -1 or to their cpu id, but not to our id.
4412                  */
4413                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4414                         if (dev_xmit_recursion())
4415                                 goto recursion_alert;
4416
4417                         skb = validate_xmit_skb(skb, dev, &again);
4418                         if (!skb)
4419                                 goto out;
4420
4421                         HARD_TX_LOCK(dev, txq, cpu);
4422
4423                         if (!netif_xmit_stopped(txq)) {
4424                                 dev_xmit_recursion_inc();
4425                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4426                                 dev_xmit_recursion_dec();
4427                                 if (dev_xmit_complete(rc)) {
4428                                         HARD_TX_UNLOCK(dev, txq);
4429                                         goto out;
4430                                 }
4431                         }
4432                         HARD_TX_UNLOCK(dev, txq);
4433                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4434                                              dev->name);
4435                 } else {
4436                         /* Recursion is detected! It is possible,
4437                          * unfortunately
4438                          */
4439 recursion_alert:
4440                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4441                                              dev->name);
4442                 }
4443         }
4444
4445         rc = -ENETDOWN;
4446         rcu_read_unlock_bh();
4447
4448         dev_core_stats_tx_dropped_inc(dev);
4449         kfree_skb_list(skb);
4450         return rc;
4451 out:
4452         rcu_read_unlock_bh();
4453         return rc;
4454 }
4455 EXPORT_SYMBOL(__dev_queue_xmit);
4456
4457 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4458 {
4459         struct net_device *dev = skb->dev;
4460         struct sk_buff *orig_skb = skb;
4461         struct netdev_queue *txq;
4462         int ret = NETDEV_TX_BUSY;
4463         bool again = false;
4464
4465         if (unlikely(!netif_running(dev) ||
4466                      !netif_carrier_ok(dev)))
4467                 goto drop;
4468
4469         skb = validate_xmit_skb_list(skb, dev, &again);
4470         if (skb != orig_skb)
4471                 goto drop;
4472
4473         skb_set_queue_mapping(skb, queue_id);
4474         txq = skb_get_tx_queue(dev, skb);
4475
4476         local_bh_disable();
4477
4478         dev_xmit_recursion_inc();
4479         HARD_TX_LOCK(dev, txq, smp_processor_id());
4480         if (!netif_xmit_frozen_or_drv_stopped(txq))
4481                 ret = netdev_start_xmit(skb, dev, txq, false);
4482         HARD_TX_UNLOCK(dev, txq);
4483         dev_xmit_recursion_dec();
4484
4485         local_bh_enable();
4486         return ret;
4487 drop:
4488         dev_core_stats_tx_dropped_inc(dev);
4489         kfree_skb_list(skb);
4490         return NET_XMIT_DROP;
4491 }
4492 EXPORT_SYMBOL(__dev_direct_xmit);
4493
4494 /*************************************************************************
4495  *                      Receiver routines
4496  *************************************************************************/
4497 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4498
4499 int weight_p __read_mostly = 64;           /* old backlog weight */
4500 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4501 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4502
4503 /* Called with irq disabled */
4504 static inline void ____napi_schedule(struct softnet_data *sd,
4505                                      struct napi_struct *napi)
4506 {
4507         struct task_struct *thread;
4508
4509         lockdep_assert_irqs_disabled();
4510
4511         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4512                 /* Paired with smp_mb__before_atomic() in
4513                  * napi_enable()/dev_set_threaded().
4514                  * Use READ_ONCE() to guarantee a complete
4515                  * read on napi->thread. Only call
4516                  * wake_up_process() when it's not NULL.
4517                  */
4518                 thread = READ_ONCE(napi->thread);
4519                 if (thread) {
4520                         if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4521                                 goto use_local_napi;
4522
4523                         set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4524                         wake_up_process(thread);
4525                         return;
4526                 }
4527         }
4528
4529 use_local_napi:
4530         list_add_tail(&napi->poll_list, &sd->poll_list);
4531         WRITE_ONCE(napi->list_owner, smp_processor_id());
4532         /* If not called from net_rx_action()
4533          * we have to raise NET_RX_SOFTIRQ.
4534          */
4535         if (!sd->in_net_rx_action)
4536                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4537 }
4538
4539 #ifdef CONFIG_RPS
4540
4541 struct static_key_false rps_needed __read_mostly;
4542 EXPORT_SYMBOL(rps_needed);
4543 struct static_key_false rfs_needed __read_mostly;
4544 EXPORT_SYMBOL(rfs_needed);
4545
4546 static struct rps_dev_flow *
4547 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4548             struct rps_dev_flow *rflow, u16 next_cpu)
4549 {
4550         if (next_cpu < nr_cpu_ids) {
4551                 u32 head;
4552 #ifdef CONFIG_RFS_ACCEL
4553                 struct netdev_rx_queue *rxqueue;
4554                 struct rps_dev_flow_table *flow_table;
4555                 struct rps_dev_flow *old_rflow;
4556                 u16 rxq_index;
4557                 u32 flow_id;
4558                 int rc;
4559
4560                 /* Should we steer this flow to a different hardware queue? */
4561                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4562                     !(dev->features & NETIF_F_NTUPLE))
4563                         goto out;
4564                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4565                 if (rxq_index == skb_get_rx_queue(skb))
4566                         goto out;
4567
4568                 rxqueue = dev->_rx + rxq_index;
4569                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4570                 if (!flow_table)
4571                         goto out;
4572                 flow_id = skb_get_hash(skb) & flow_table->mask;
4573                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4574                                                         rxq_index, flow_id);
4575                 if (rc < 0)
4576                         goto out;
4577                 old_rflow = rflow;
4578                 rflow = &flow_table->flows[flow_id];
4579                 WRITE_ONCE(rflow->filter, rc);
4580                 if (old_rflow->filter == rc)
4581                         WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4582         out:
4583 #endif
4584                 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4585                 rps_input_queue_tail_save(&rflow->last_qtail, head);
4586         }
4587
4588         WRITE_ONCE(rflow->cpu, next_cpu);
4589         return rflow;
4590 }
4591
4592 /*
4593  * get_rps_cpu is called from netif_receive_skb and returns the target
4594  * CPU from the RPS map of the receiving queue for a given skb.
4595  * rcu_read_lock must be held on entry.
4596  */
4597 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4598                        struct rps_dev_flow **rflowp)
4599 {
4600         const struct rps_sock_flow_table *sock_flow_table;
4601         struct netdev_rx_queue *rxqueue = dev->_rx;
4602         struct rps_dev_flow_table *flow_table;
4603         struct rps_map *map;
4604         int cpu = -1;
4605         u32 tcpu;
4606         u32 hash;
4607
4608         if (skb_rx_queue_recorded(skb)) {
4609                 u16 index = skb_get_rx_queue(skb);
4610
4611                 if (unlikely(index >= dev->real_num_rx_queues)) {
4612                         WARN_ONCE(dev->real_num_rx_queues > 1,
4613                                   "%s received packet on queue %u, but number "
4614                                   "of RX queues is %u\n",
4615                                   dev->name, index, dev->real_num_rx_queues);
4616                         goto done;
4617                 }
4618                 rxqueue += index;
4619         }
4620
4621         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4622
4623         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4624         map = rcu_dereference(rxqueue->rps_map);
4625         if (!flow_table && !map)
4626                 goto done;
4627
4628         skb_reset_network_header(skb);
4629         hash = skb_get_hash(skb);
4630         if (!hash)
4631                 goto done;
4632
4633         sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4634         if (flow_table && sock_flow_table) {
4635                 struct rps_dev_flow *rflow;
4636                 u32 next_cpu;
4637                 u32 ident;
4638
4639                 /* First check into global flow table if there is a match.
4640                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4641                  */
4642                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4643                 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4644                         goto try_rps;
4645
4646                 next_cpu = ident & net_hotdata.rps_cpu_mask;
4647
4648                 /* OK, now we know there is a match,
4649                  * we can look at the local (per receive queue) flow table
4650                  */
4651                 rflow = &flow_table->flows[hash & flow_table->mask];
4652                 tcpu = rflow->cpu;
4653
4654                 /*
4655                  * If the desired CPU (where last recvmsg was done) is
4656                  * different from current CPU (one in the rx-queue flow
4657                  * table entry), switch if one of the following holds:
4658                  *   - Current CPU is unset (>= nr_cpu_ids).
4659                  *   - Current CPU is offline.
4660                  *   - The current CPU's queue tail has advanced beyond the
4661                  *     last packet that was enqueued using this table entry.
4662                  *     This guarantees that all previous packets for the flow
4663                  *     have been dequeued, thus preserving in order delivery.
4664                  */
4665                 if (unlikely(tcpu != next_cpu) &&
4666                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4667                      ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4668                       rflow->last_qtail)) >= 0)) {
4669                         tcpu = next_cpu;
4670                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4671                 }
4672
4673                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4674                         *rflowp = rflow;
4675                         cpu = tcpu;
4676                         goto done;
4677                 }
4678         }
4679
4680 try_rps:
4681
4682         if (map) {
4683                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4684                 if (cpu_online(tcpu)) {
4685                         cpu = tcpu;
4686                         goto done;
4687                 }
4688         }
4689
4690 done:
4691         return cpu;
4692 }
4693
4694 #ifdef CONFIG_RFS_ACCEL
4695
4696 /**
4697  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4698  * @dev: Device on which the filter was set
4699  * @rxq_index: RX queue index
4700  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4701  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4702  *
4703  * Drivers that implement ndo_rx_flow_steer() should periodically call
4704  * this function for each installed filter and remove the filters for
4705  * which it returns %true.
4706  */
4707 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4708                          u32 flow_id, u16 filter_id)
4709 {
4710         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4711         struct rps_dev_flow_table *flow_table;
4712         struct rps_dev_flow *rflow;
4713         bool expire = true;
4714         unsigned int cpu;
4715
4716         rcu_read_lock();
4717         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4718         if (flow_table && flow_id <= flow_table->mask) {
4719                 rflow = &flow_table->flows[flow_id];
4720                 cpu = READ_ONCE(rflow->cpu);
4721                 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4722                     ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4723                            READ_ONCE(rflow->last_qtail)) <
4724                      (int)(10 * flow_table->mask)))
4725                         expire = false;
4726         }
4727         rcu_read_unlock();
4728         return expire;
4729 }
4730 EXPORT_SYMBOL(rps_may_expire_flow);
4731
4732 #endif /* CONFIG_RFS_ACCEL */
4733
4734 /* Called from hardirq (IPI) context */
4735 static void rps_trigger_softirq(void *data)
4736 {
4737         struct softnet_data *sd = data;
4738
4739         ____napi_schedule(sd, &sd->backlog);
4740         sd->received_rps++;
4741 }
4742
4743 #endif /* CONFIG_RPS */
4744
4745 /* Called from hardirq (IPI) context */
4746 static void trigger_rx_softirq(void *data)
4747 {
4748         struct softnet_data *sd = data;
4749
4750         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4751         smp_store_release(&sd->defer_ipi_scheduled, 0);
4752 }
4753
4754 /*
4755  * After we queued a packet into sd->input_pkt_queue,
4756  * we need to make sure this queue is serviced soon.
4757  *
4758  * - If this is another cpu queue, link it to our rps_ipi_list,
4759  *   and make sure we will process rps_ipi_list from net_rx_action().
4760  *
4761  * - If this is our own queue, NAPI schedule our backlog.
4762  *   Note that this also raises NET_RX_SOFTIRQ.
4763  */
4764 static void napi_schedule_rps(struct softnet_data *sd)
4765 {
4766         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4767
4768 #ifdef CONFIG_RPS
4769         if (sd != mysd) {
4770                 if (use_backlog_threads()) {
4771                         __napi_schedule_irqoff(&sd->backlog);
4772                         return;
4773                 }
4774
4775                 sd->rps_ipi_next = mysd->rps_ipi_list;
4776                 mysd->rps_ipi_list = sd;
4777
4778                 /* If not called from net_rx_action() or napi_threaded_poll()
4779                  * we have to raise NET_RX_SOFTIRQ.
4780                  */
4781                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4782                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4783                 return;
4784         }
4785 #endif /* CONFIG_RPS */
4786         __napi_schedule_irqoff(&mysd->backlog);
4787 }
4788
4789 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4790 {
4791         unsigned long flags;
4792
4793         if (use_backlog_threads()) {
4794                 backlog_lock_irq_save(sd, &flags);
4795
4796                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4797                         __napi_schedule_irqoff(&sd->backlog);
4798
4799                 backlog_unlock_irq_restore(sd, &flags);
4800
4801         } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4802                 smp_call_function_single_async(cpu, &sd->defer_csd);
4803         }
4804 }
4805
4806 #ifdef CONFIG_NET_FLOW_LIMIT
4807 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4808 #endif
4809
4810 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4811 {
4812 #ifdef CONFIG_NET_FLOW_LIMIT
4813         struct sd_flow_limit *fl;
4814         struct softnet_data *sd;
4815         unsigned int old_flow, new_flow;
4816
4817         if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4818                 return false;
4819
4820         sd = this_cpu_ptr(&softnet_data);
4821
4822         rcu_read_lock();
4823         fl = rcu_dereference(sd->flow_limit);
4824         if (fl) {
4825                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4826                 old_flow = fl->history[fl->history_head];
4827                 fl->history[fl->history_head] = new_flow;
4828
4829                 fl->history_head++;
4830                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4831
4832                 if (likely(fl->buckets[old_flow]))
4833                         fl->buckets[old_flow]--;
4834
4835                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4836                         fl->count++;
4837                         rcu_read_unlock();
4838                         return true;
4839                 }
4840         }
4841         rcu_read_unlock();
4842 #endif
4843         return false;
4844 }
4845
4846 /*
4847  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4848  * queue (may be a remote CPU queue).
4849  */
4850 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4851                               unsigned int *qtail)
4852 {
4853         enum skb_drop_reason reason;
4854         struct softnet_data *sd;
4855         unsigned long flags;
4856         unsigned int qlen;
4857         int max_backlog;
4858         u32 tail;
4859
4860         reason = SKB_DROP_REASON_DEV_READY;
4861         if (!netif_running(skb->dev))
4862                 goto bad_dev;
4863
4864         reason = SKB_DROP_REASON_CPU_BACKLOG;
4865         sd = &per_cpu(softnet_data, cpu);
4866
4867         qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4868         max_backlog = READ_ONCE(net_hotdata.max_backlog);
4869         if (unlikely(qlen > max_backlog))
4870                 goto cpu_backlog_drop;
4871         backlog_lock_irq_save(sd, &flags);
4872         qlen = skb_queue_len(&sd->input_pkt_queue);
4873         if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4874                 if (!qlen) {
4875                         /* Schedule NAPI for backlog device. We can use
4876                          * non atomic operation as we own the queue lock.
4877                          */
4878                         if (!__test_and_set_bit(NAPI_STATE_SCHED,
4879                                                 &sd->backlog.state))
4880                                 napi_schedule_rps(sd);
4881                 }
4882                 __skb_queue_tail(&sd->input_pkt_queue, skb);
4883                 tail = rps_input_queue_tail_incr(sd);
4884                 backlog_unlock_irq_restore(sd, &flags);
4885
4886                 /* save the tail outside of the critical section */
4887                 rps_input_queue_tail_save(qtail, tail);
4888                 return NET_RX_SUCCESS;
4889         }
4890
4891         backlog_unlock_irq_restore(sd, &flags);
4892
4893 cpu_backlog_drop:
4894         atomic_inc(&sd->dropped);
4895 bad_dev:
4896         dev_core_stats_rx_dropped_inc(skb->dev);
4897         kfree_skb_reason(skb, reason);
4898         return NET_RX_DROP;
4899 }
4900
4901 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4902 {
4903         struct net_device *dev = skb->dev;
4904         struct netdev_rx_queue *rxqueue;
4905
4906         rxqueue = dev->_rx;
4907
4908         if (skb_rx_queue_recorded(skb)) {
4909                 u16 index = skb_get_rx_queue(skb);
4910
4911                 if (unlikely(index >= dev->real_num_rx_queues)) {
4912                         WARN_ONCE(dev->real_num_rx_queues > 1,
4913                                   "%s received packet on queue %u, but number "
4914                                   "of RX queues is %u\n",
4915                                   dev->name, index, dev->real_num_rx_queues);
4916
4917                         return rxqueue; /* Return first rxqueue */
4918                 }
4919                 rxqueue += index;
4920         }
4921         return rxqueue;
4922 }
4923
4924 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4925                              struct bpf_prog *xdp_prog)
4926 {
4927         void *orig_data, *orig_data_end, *hard_start;
4928         struct netdev_rx_queue *rxqueue;
4929         bool orig_bcast, orig_host;
4930         u32 mac_len, frame_sz;
4931         __be16 orig_eth_type;
4932         struct ethhdr *eth;
4933         u32 metalen, act;
4934         int off;
4935
4936         /* The XDP program wants to see the packet starting at the MAC
4937          * header.
4938          */
4939         mac_len = skb->data - skb_mac_header(skb);
4940         hard_start = skb->data - skb_headroom(skb);
4941
4942         /* SKB "head" area always have tailroom for skb_shared_info */
4943         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4944         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4945
4946         rxqueue = netif_get_rxqueue(skb);
4947         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4948         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4949                          skb_headlen(skb) + mac_len, true);
4950         if (skb_is_nonlinear(skb)) {
4951                 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4952                 xdp_buff_set_frags_flag(xdp);
4953         } else {
4954                 xdp_buff_clear_frags_flag(xdp);
4955         }
4956
4957         orig_data_end = xdp->data_end;
4958         orig_data = xdp->data;
4959         eth = (struct ethhdr *)xdp->data;
4960         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4961         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4962         orig_eth_type = eth->h_proto;
4963
4964         act = bpf_prog_run_xdp(xdp_prog, xdp);
4965
4966         /* check if bpf_xdp_adjust_head was used */
4967         off = xdp->data - orig_data;
4968         if (off) {
4969                 if (off > 0)
4970                         __skb_pull(skb, off);
4971                 else if (off < 0)
4972                         __skb_push(skb, -off);
4973
4974                 skb->mac_header += off;
4975                 skb_reset_network_header(skb);
4976         }
4977
4978         /* check if bpf_xdp_adjust_tail was used */
4979         off = xdp->data_end - orig_data_end;
4980         if (off != 0) {
4981                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4982                 skb->len += off; /* positive on grow, negative on shrink */
4983         }
4984
4985         /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4986          * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4987          */
4988         if (xdp_buff_has_frags(xdp))
4989                 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4990         else
4991                 skb->data_len = 0;
4992
4993         /* check if XDP changed eth hdr such SKB needs update */
4994         eth = (struct ethhdr *)xdp->data;
4995         if ((orig_eth_type != eth->h_proto) ||
4996             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4997                                                   skb->dev->dev_addr)) ||
4998             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4999                 __skb_push(skb, ETH_HLEN);
5000                 skb->pkt_type = PACKET_HOST;
5001                 skb->protocol = eth_type_trans(skb, skb->dev);
5002         }
5003
5004         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5005          * before calling us again on redirect path. We do not call do_redirect
5006          * as we leave that up to the caller.
5007          *
5008          * Caller is responsible for managing lifetime of skb (i.e. calling
5009          * kfree_skb in response to actions it cannot handle/XDP_DROP).
5010          */
5011         switch (act) {
5012         case XDP_REDIRECT:
5013         case XDP_TX:
5014                 __skb_push(skb, mac_len);
5015                 break;
5016         case XDP_PASS:
5017                 metalen = xdp->data - xdp->data_meta;
5018                 if (metalen)
5019                         skb_metadata_set(skb, metalen);
5020                 break;
5021         }
5022
5023         return act;
5024 }
5025
5026 static int
5027 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5028 {
5029         struct sk_buff *skb = *pskb;
5030         int err, hroom, troom;
5031
5032         if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5033                 return 0;
5034
5035         /* In case we have to go down the path and also linearize,
5036          * then lets do the pskb_expand_head() work just once here.
5037          */
5038         hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5039         troom = skb->tail + skb->data_len - skb->end;
5040         err = pskb_expand_head(skb,
5041                                hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5042                                troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5043         if (err)
5044                 return err;
5045
5046         return skb_linearize(skb);
5047 }
5048
5049 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5050                                      struct xdp_buff *xdp,
5051                                      struct bpf_prog *xdp_prog)
5052 {
5053         struct sk_buff *skb = *pskb;
5054         u32 mac_len, act = XDP_DROP;
5055
5056         /* Reinjected packets coming from act_mirred or similar should
5057          * not get XDP generic processing.
5058          */
5059         if (skb_is_redirected(skb))
5060                 return XDP_PASS;
5061
5062         /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5063          * bytes. This is the guarantee that also native XDP provides,
5064          * thus we need to do it here as well.
5065          */
5066         mac_len = skb->data - skb_mac_header(skb);
5067         __skb_push(skb, mac_len);
5068
5069         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5070             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5071                 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5072                         goto do_drop;
5073         }
5074
5075         __skb_pull(*pskb, mac_len);
5076
5077         act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5078         switch (act) {
5079         case XDP_REDIRECT:
5080         case XDP_TX:
5081         case XDP_PASS:
5082                 break;
5083         default:
5084                 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5085                 fallthrough;
5086         case XDP_ABORTED:
5087                 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5088                 fallthrough;
5089         case XDP_DROP:
5090         do_drop:
5091                 kfree_skb(*pskb);
5092                 break;
5093         }
5094
5095         return act;
5096 }
5097
5098 /* When doing generic XDP we have to bypass the qdisc layer and the
5099  * network taps in order to match in-driver-XDP behavior. This also means
5100  * that XDP packets are able to starve other packets going through a qdisc,
5101  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5102  * queues, so they do not have this starvation issue.
5103  */
5104 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5105 {
5106         struct net_device *dev = skb->dev;
5107         struct netdev_queue *txq;
5108         bool free_skb = true;
5109         int cpu, rc;
5110
5111         txq = netdev_core_pick_tx(dev, skb, NULL);
5112         cpu = smp_processor_id();
5113         HARD_TX_LOCK(dev, txq, cpu);
5114         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5115                 rc = netdev_start_xmit(skb, dev, txq, 0);
5116                 if (dev_xmit_complete(rc))
5117                         free_skb = false;
5118         }
5119         HARD_TX_UNLOCK(dev, txq);
5120         if (free_skb) {
5121                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5122                 dev_core_stats_tx_dropped_inc(dev);
5123                 kfree_skb(skb);
5124         }
5125 }
5126
5127 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5128
5129 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5130 {
5131         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5132
5133         if (xdp_prog) {
5134                 struct xdp_buff xdp;
5135                 u32 act;
5136                 int err;
5137
5138                 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5139                 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5140                 if (act != XDP_PASS) {
5141                         switch (act) {
5142                         case XDP_REDIRECT:
5143                                 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5144                                                               &xdp, xdp_prog);
5145                                 if (err)
5146                                         goto out_redir;
5147                                 break;
5148                         case XDP_TX:
5149                                 generic_xdp_tx(*pskb, xdp_prog);
5150                                 break;
5151                         }
5152                         bpf_net_ctx_clear(bpf_net_ctx);
5153                         return XDP_DROP;
5154                 }
5155                 bpf_net_ctx_clear(bpf_net_ctx);
5156         }
5157         return XDP_PASS;
5158 out_redir:
5159         bpf_net_ctx_clear(bpf_net_ctx);
5160         kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5161         return XDP_DROP;
5162 }
5163 EXPORT_SYMBOL_GPL(do_xdp_generic);
5164
5165 static int netif_rx_internal(struct sk_buff *skb)
5166 {
5167         int ret;
5168
5169         net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5170
5171         trace_netif_rx(skb);
5172
5173 #ifdef CONFIG_RPS
5174         if (static_branch_unlikely(&rps_needed)) {
5175                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5176                 int cpu;
5177
5178                 rcu_read_lock();
5179
5180                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5181                 if (cpu < 0)
5182                         cpu = smp_processor_id();
5183
5184                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5185
5186                 rcu_read_unlock();
5187         } else
5188 #endif
5189         {
5190                 unsigned int qtail;
5191
5192                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5193         }
5194         return ret;
5195 }
5196
5197 /**
5198  *      __netif_rx      -       Slightly optimized version of netif_rx
5199  *      @skb: buffer to post
5200  *
5201  *      This behaves as netif_rx except that it does not disable bottom halves.
5202  *      As a result this function may only be invoked from the interrupt context
5203  *      (either hard or soft interrupt).
5204  */
5205 int __netif_rx(struct sk_buff *skb)
5206 {
5207         int ret;
5208
5209         lockdep_assert_once(hardirq_count() | softirq_count());
5210
5211         trace_netif_rx_entry(skb);
5212         ret = netif_rx_internal(skb);
5213         trace_netif_rx_exit(ret);
5214         return ret;
5215 }
5216 EXPORT_SYMBOL(__netif_rx);
5217
5218 /**
5219  *      netif_rx        -       post buffer to the network code
5220  *      @skb: buffer to post
5221  *
5222  *      This function receives a packet from a device driver and queues it for
5223  *      the upper (protocol) levels to process via the backlog NAPI device. It
5224  *      always succeeds. The buffer may be dropped during processing for
5225  *      congestion control or by the protocol layers.
5226  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5227  *      driver should use NAPI and GRO.
5228  *      This function can used from interrupt and from process context. The
5229  *      caller from process context must not disable interrupts before invoking
5230  *      this function.
5231  *
5232  *      return values:
5233  *      NET_RX_SUCCESS  (no congestion)
5234  *      NET_RX_DROP     (packet was dropped)
5235  *
5236  */
5237 int netif_rx(struct sk_buff *skb)
5238 {
5239         bool need_bh_off = !(hardirq_count() | softirq_count());
5240         int ret;
5241
5242         if (need_bh_off)
5243                 local_bh_disable();
5244         trace_netif_rx_entry(skb);
5245         ret = netif_rx_internal(skb);
5246         trace_netif_rx_exit(ret);
5247         if (need_bh_off)
5248                 local_bh_enable();
5249         return ret;
5250 }
5251 EXPORT_SYMBOL(netif_rx);
5252
5253 static __latent_entropy void net_tx_action(struct softirq_action *h)
5254 {
5255         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5256
5257         if (sd->completion_queue) {
5258                 struct sk_buff *clist;
5259
5260                 local_irq_disable();
5261                 clist = sd->completion_queue;
5262                 sd->completion_queue = NULL;
5263                 local_irq_enable();
5264
5265                 while (clist) {
5266                         struct sk_buff *skb = clist;
5267
5268                         clist = clist->next;
5269
5270                         WARN_ON(refcount_read(&skb->users));
5271                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5272                                 trace_consume_skb(skb, net_tx_action);
5273                         else
5274                                 trace_kfree_skb(skb, net_tx_action,
5275                                                 get_kfree_skb_cb(skb)->reason, NULL);
5276
5277                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5278                                 __kfree_skb(skb);
5279                         else
5280                                 __napi_kfree_skb(skb,
5281                                                  get_kfree_skb_cb(skb)->reason);
5282                 }
5283         }
5284
5285         if (sd->output_queue) {
5286                 struct Qdisc *head;
5287
5288                 local_irq_disable();
5289                 head = sd->output_queue;
5290                 sd->output_queue = NULL;
5291                 sd->output_queue_tailp = &sd->output_queue;
5292                 local_irq_enable();
5293
5294                 rcu_read_lock();
5295
5296                 while (head) {
5297                         struct Qdisc *q = head;
5298                         spinlock_t *root_lock = NULL;
5299
5300                         head = head->next_sched;
5301
5302                         /* We need to make sure head->next_sched is read
5303                          * before clearing __QDISC_STATE_SCHED
5304                          */
5305                         smp_mb__before_atomic();
5306
5307                         if (!(q->flags & TCQ_F_NOLOCK)) {
5308                                 root_lock = qdisc_lock(q);
5309                                 spin_lock(root_lock);
5310                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5311                                                      &q->state))) {
5312                                 /* There is a synchronize_net() between
5313                                  * STATE_DEACTIVATED flag being set and
5314                                  * qdisc_reset()/some_qdisc_is_busy() in
5315                                  * dev_deactivate(), so we can safely bail out
5316                                  * early here to avoid data race between
5317                                  * qdisc_deactivate() and some_qdisc_is_busy()
5318                                  * for lockless qdisc.
5319                                  */
5320                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5321                                 continue;
5322                         }
5323
5324                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5325                         qdisc_run(q);
5326                         if (root_lock)
5327                                 spin_unlock(root_lock);
5328                 }
5329
5330                 rcu_read_unlock();
5331         }
5332
5333         xfrm_dev_backlog(sd);
5334 }
5335
5336 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5337 /* This hook is defined here for ATM LANE */
5338 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5339                              unsigned char *addr) __read_mostly;
5340 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5341 #endif
5342
5343 /**
5344  *      netdev_is_rx_handler_busy - check if receive handler is registered
5345  *      @dev: device to check
5346  *
5347  *      Check if a receive handler is already registered for a given device.
5348  *      Return true if there one.
5349  *
5350  *      The caller must hold the rtnl_mutex.
5351  */
5352 bool netdev_is_rx_handler_busy(struct net_device *dev)
5353 {
5354         ASSERT_RTNL();
5355         return dev && rtnl_dereference(dev->rx_handler);
5356 }
5357 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5358
5359 /**
5360  *      netdev_rx_handler_register - register receive handler
5361  *      @dev: device to register a handler for
5362  *      @rx_handler: receive handler to register
5363  *      @rx_handler_data: data pointer that is used by rx handler
5364  *
5365  *      Register a receive handler for a device. This handler will then be
5366  *      called from __netif_receive_skb. A negative errno code is returned
5367  *      on a failure.
5368  *
5369  *      The caller must hold the rtnl_mutex.
5370  *
5371  *      For a general description of rx_handler, see enum rx_handler_result.
5372  */
5373 int netdev_rx_handler_register(struct net_device *dev,
5374                                rx_handler_func_t *rx_handler,
5375                                void *rx_handler_data)
5376 {
5377         if (netdev_is_rx_handler_busy(dev))
5378                 return -EBUSY;
5379
5380         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5381                 return -EINVAL;
5382
5383         /* Note: rx_handler_data must be set before rx_handler */
5384         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5385         rcu_assign_pointer(dev->rx_handler, rx_handler);
5386
5387         return 0;
5388 }
5389 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5390
5391 /**
5392  *      netdev_rx_handler_unregister - unregister receive handler
5393  *      @dev: device to unregister a handler from
5394  *
5395  *      Unregister a receive handler from a device.
5396  *
5397  *      The caller must hold the rtnl_mutex.
5398  */
5399 void netdev_rx_handler_unregister(struct net_device *dev)
5400 {
5401
5402         ASSERT_RTNL();
5403         RCU_INIT_POINTER(dev->rx_handler, NULL);
5404         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5405          * section has a guarantee to see a non NULL rx_handler_data
5406          * as well.
5407          */
5408         synchronize_net();
5409         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5410 }
5411 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5412
5413 /*
5414  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5415  * the special handling of PFMEMALLOC skbs.
5416  */
5417 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5418 {
5419         switch (skb->protocol) {
5420         case htons(ETH_P_ARP):
5421         case htons(ETH_P_IP):
5422         case htons(ETH_P_IPV6):
5423         case htons(ETH_P_8021Q):
5424         case htons(ETH_P_8021AD):
5425                 return true;
5426         default:
5427                 return false;
5428         }
5429 }
5430
5431 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5432                              int *ret, struct net_device *orig_dev)
5433 {
5434         if (nf_hook_ingress_active(skb)) {
5435                 int ingress_retval;
5436
5437                 if (*pt_prev) {
5438                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5439                         *pt_prev = NULL;
5440                 }
5441
5442                 rcu_read_lock();
5443                 ingress_retval = nf_hook_ingress(skb);
5444                 rcu_read_unlock();
5445                 return ingress_retval;
5446         }
5447         return 0;
5448 }
5449
5450 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5451                                     struct packet_type **ppt_prev)
5452 {
5453         struct packet_type *ptype, *pt_prev;
5454         rx_handler_func_t *rx_handler;
5455         struct sk_buff *skb = *pskb;
5456         struct net_device *orig_dev;
5457         bool deliver_exact = false;
5458         int ret = NET_RX_DROP;
5459         __be16 type;
5460
5461         net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5462
5463         trace_netif_receive_skb(skb);
5464
5465         orig_dev = skb->dev;
5466
5467         skb_reset_network_header(skb);
5468         if (!skb_transport_header_was_set(skb))
5469                 skb_reset_transport_header(skb);
5470         skb_reset_mac_len(skb);
5471
5472         pt_prev = NULL;
5473
5474 another_round:
5475         skb->skb_iif = skb->dev->ifindex;
5476
5477         __this_cpu_inc(softnet_data.processed);
5478
5479         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5480                 int ret2;
5481
5482                 migrate_disable();
5483                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5484                                       &skb);
5485                 migrate_enable();
5486
5487                 if (ret2 != XDP_PASS) {
5488                         ret = NET_RX_DROP;
5489                         goto out;
5490                 }
5491         }
5492
5493         if (eth_type_vlan(skb->protocol)) {
5494                 skb = skb_vlan_untag(skb);
5495                 if (unlikely(!skb))
5496                         goto out;
5497         }
5498
5499         if (skb_skip_tc_classify(skb))
5500                 goto skip_classify;
5501
5502         if (pfmemalloc)
5503                 goto skip_taps;
5504
5505         list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5506                 if (pt_prev)
5507                         ret = deliver_skb(skb, pt_prev, orig_dev);
5508                 pt_prev = ptype;
5509         }
5510
5511         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5512                 if (pt_prev)
5513                         ret = deliver_skb(skb, pt_prev, orig_dev);
5514                 pt_prev = ptype;
5515         }
5516
5517 skip_taps:
5518 #ifdef CONFIG_NET_INGRESS
5519         if (static_branch_unlikely(&ingress_needed_key)) {
5520                 bool another = false;
5521
5522                 nf_skip_egress(skb, true);
5523                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5524                                          &another);
5525                 if (another)
5526                         goto another_round;
5527                 if (!skb)
5528                         goto out;
5529
5530                 nf_skip_egress(skb, false);
5531                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5532                         goto out;
5533         }
5534 #endif
5535         skb_reset_redirect(skb);
5536 skip_classify:
5537         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5538                 goto drop;
5539
5540         if (skb_vlan_tag_present(skb)) {
5541                 if (pt_prev) {
5542                         ret = deliver_skb(skb, pt_prev, orig_dev);
5543                         pt_prev = NULL;
5544                 }
5545                 if (vlan_do_receive(&skb))
5546                         goto another_round;
5547                 else if (unlikely(!skb))
5548                         goto out;
5549         }
5550
5551         rx_handler = rcu_dereference(skb->dev->rx_handler);
5552         if (rx_handler) {
5553                 if (pt_prev) {
5554                         ret = deliver_skb(skb, pt_prev, orig_dev);
5555                         pt_prev = NULL;
5556                 }
5557                 switch (rx_handler(&skb)) {
5558                 case RX_HANDLER_CONSUMED:
5559                         ret = NET_RX_SUCCESS;
5560                         goto out;
5561                 case RX_HANDLER_ANOTHER:
5562                         goto another_round;
5563                 case RX_HANDLER_EXACT:
5564                         deliver_exact = true;
5565                         break;
5566                 case RX_HANDLER_PASS:
5567                         break;
5568                 default:
5569                         BUG();
5570                 }
5571         }
5572
5573         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5574 check_vlan_id:
5575                 if (skb_vlan_tag_get_id(skb)) {
5576                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5577                          * find vlan device.
5578                          */
5579                         skb->pkt_type = PACKET_OTHERHOST;
5580                 } else if (eth_type_vlan(skb->protocol)) {
5581                         /* Outer header is 802.1P with vlan 0, inner header is
5582                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5583                          * not find vlan dev for vlan id 0.
5584                          */
5585                         __vlan_hwaccel_clear_tag(skb);
5586                         skb = skb_vlan_untag(skb);
5587                         if (unlikely(!skb))
5588                                 goto out;
5589                         if (vlan_do_receive(&skb))
5590                                 /* After stripping off 802.1P header with vlan 0
5591                                  * vlan dev is found for inner header.
5592                                  */
5593                                 goto another_round;
5594                         else if (unlikely(!skb))
5595                                 goto out;
5596                         else
5597                                 /* We have stripped outer 802.1P vlan 0 header.
5598                                  * But could not find vlan dev.
5599                                  * check again for vlan id to set OTHERHOST.
5600                                  */
5601                                 goto check_vlan_id;
5602                 }
5603                 /* Note: we might in the future use prio bits
5604                  * and set skb->priority like in vlan_do_receive()
5605                  * For the time being, just ignore Priority Code Point
5606                  */
5607                 __vlan_hwaccel_clear_tag(skb);
5608         }
5609
5610         type = skb->protocol;
5611
5612         /* deliver only exact match when indicated */
5613         if (likely(!deliver_exact)) {
5614                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5615                                        &ptype_base[ntohs(type) &
5616                                                    PTYPE_HASH_MASK]);
5617         }
5618
5619         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5620                                &orig_dev->ptype_specific);
5621
5622         if (unlikely(skb->dev != orig_dev)) {
5623                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5624                                        &skb->dev->ptype_specific);
5625         }
5626
5627         if (pt_prev) {
5628                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5629                         goto drop;
5630                 *ppt_prev = pt_prev;
5631         } else {
5632 drop:
5633                 if (!deliver_exact)
5634                         dev_core_stats_rx_dropped_inc(skb->dev);
5635                 else
5636                         dev_core_stats_rx_nohandler_inc(skb->dev);
5637                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5638                 /* Jamal, now you will not able to escape explaining
5639                  * me how you were going to use this. :-)
5640                  */
5641                 ret = NET_RX_DROP;
5642         }
5643
5644 out:
5645         /* The invariant here is that if *ppt_prev is not NULL
5646          * then skb should also be non-NULL.
5647          *
5648          * Apparently *ppt_prev assignment above holds this invariant due to
5649          * skb dereferencing near it.
5650          */
5651         *pskb = skb;
5652         return ret;
5653 }
5654
5655 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5656 {
5657         struct net_device *orig_dev = skb->dev;
5658         struct packet_type *pt_prev = NULL;
5659         int ret;
5660
5661         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5662         if (pt_prev)
5663                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5664                                          skb->dev, pt_prev, orig_dev);
5665         return ret;
5666 }
5667
5668 /**
5669  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5670  *      @skb: buffer to process
5671  *
5672  *      More direct receive version of netif_receive_skb().  It should
5673  *      only be used by callers that have a need to skip RPS and Generic XDP.
5674  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5675  *
5676  *      This function may only be called from softirq context and interrupts
5677  *      should be enabled.
5678  *
5679  *      Return values (usually ignored):
5680  *      NET_RX_SUCCESS: no congestion
5681  *      NET_RX_DROP: packet was dropped
5682  */
5683 int netif_receive_skb_core(struct sk_buff *skb)
5684 {
5685         int ret;
5686
5687         rcu_read_lock();
5688         ret = __netif_receive_skb_one_core(skb, false);
5689         rcu_read_unlock();
5690
5691         return ret;
5692 }
5693 EXPORT_SYMBOL(netif_receive_skb_core);
5694
5695 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5696                                                   struct packet_type *pt_prev,
5697                                                   struct net_device *orig_dev)
5698 {
5699         struct sk_buff *skb, *next;
5700
5701         if (!pt_prev)
5702                 return;
5703         if (list_empty(head))
5704                 return;
5705         if (pt_prev->list_func != NULL)
5706                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5707                                    ip_list_rcv, head, pt_prev, orig_dev);
5708         else
5709                 list_for_each_entry_safe(skb, next, head, list) {
5710                         skb_list_del_init(skb);
5711                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5712                 }
5713 }
5714
5715 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5716 {
5717         /* Fast-path assumptions:
5718          * - There is no RX handler.
5719          * - Only one packet_type matches.
5720          * If either of these fails, we will end up doing some per-packet
5721          * processing in-line, then handling the 'last ptype' for the whole
5722          * sublist.  This can't cause out-of-order delivery to any single ptype,
5723          * because the 'last ptype' must be constant across the sublist, and all
5724          * other ptypes are handled per-packet.
5725          */
5726         /* Current (common) ptype of sublist */
5727         struct packet_type *pt_curr = NULL;
5728         /* Current (common) orig_dev of sublist */
5729         struct net_device *od_curr = NULL;
5730         struct list_head sublist;
5731         struct sk_buff *skb, *next;
5732
5733         INIT_LIST_HEAD(&sublist);
5734         list_for_each_entry_safe(skb, next, head, list) {
5735                 struct net_device *orig_dev = skb->dev;
5736                 struct packet_type *pt_prev = NULL;
5737
5738                 skb_list_del_init(skb);
5739                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5740                 if (!pt_prev)
5741                         continue;
5742                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5743                         /* dispatch old sublist */
5744                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5745                         /* start new sublist */
5746                         INIT_LIST_HEAD(&sublist);
5747                         pt_curr = pt_prev;
5748                         od_curr = orig_dev;
5749                 }
5750                 list_add_tail(&skb->list, &sublist);
5751         }
5752
5753         /* dispatch final sublist */
5754         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5755 }
5756
5757 static int __netif_receive_skb(struct sk_buff *skb)
5758 {
5759         int ret;
5760
5761         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5762                 unsigned int noreclaim_flag;
5763
5764                 /*
5765                  * PFMEMALLOC skbs are special, they should
5766                  * - be delivered to SOCK_MEMALLOC sockets only
5767                  * - stay away from userspace
5768                  * - have bounded memory usage
5769                  *
5770                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5771                  * context down to all allocation sites.
5772                  */
5773                 noreclaim_flag = memalloc_noreclaim_save();
5774                 ret = __netif_receive_skb_one_core(skb, true);
5775                 memalloc_noreclaim_restore(noreclaim_flag);
5776         } else
5777                 ret = __netif_receive_skb_one_core(skb, false);
5778
5779         return ret;
5780 }
5781
5782 static void __netif_receive_skb_list(struct list_head *head)
5783 {
5784         unsigned long noreclaim_flag = 0;
5785         struct sk_buff *skb, *next;
5786         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5787
5788         list_for_each_entry_safe(skb, next, head, list) {
5789                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5790                         struct list_head sublist;
5791
5792                         /* Handle the previous sublist */
5793                         list_cut_before(&sublist, head, &skb->list);
5794                         if (!list_empty(&sublist))
5795                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5796                         pfmemalloc = !pfmemalloc;
5797                         /* See comments in __netif_receive_skb */
5798                         if (pfmemalloc)
5799                                 noreclaim_flag = memalloc_noreclaim_save();
5800                         else
5801                                 memalloc_noreclaim_restore(noreclaim_flag);
5802                 }
5803         }
5804         /* Handle the remaining sublist */
5805         if (!list_empty(head))
5806                 __netif_receive_skb_list_core(head, pfmemalloc);
5807         /* Restore pflags */
5808         if (pfmemalloc)
5809                 memalloc_noreclaim_restore(noreclaim_flag);
5810 }
5811
5812 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5813 {
5814         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5815         struct bpf_prog *new = xdp->prog;
5816         int ret = 0;
5817
5818         switch (xdp->command) {
5819         case XDP_SETUP_PROG:
5820                 rcu_assign_pointer(dev->xdp_prog, new);
5821                 if (old)
5822                         bpf_prog_put(old);
5823
5824                 if (old && !new) {
5825                         static_branch_dec(&generic_xdp_needed_key);
5826                 } else if (new && !old) {
5827                         static_branch_inc(&generic_xdp_needed_key);
5828                         dev_disable_lro(dev);
5829                         dev_disable_gro_hw(dev);
5830                 }
5831                 break;
5832
5833         default:
5834                 ret = -EINVAL;
5835                 break;
5836         }
5837
5838         return ret;
5839 }
5840
5841 static int netif_receive_skb_internal(struct sk_buff *skb)
5842 {
5843         int ret;
5844
5845         net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5846
5847         if (skb_defer_rx_timestamp(skb))
5848                 return NET_RX_SUCCESS;
5849
5850         rcu_read_lock();
5851 #ifdef CONFIG_RPS
5852         if (static_branch_unlikely(&rps_needed)) {
5853                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5854                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5855
5856                 if (cpu >= 0) {
5857                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5858                         rcu_read_unlock();
5859                         return ret;
5860                 }
5861         }
5862 #endif
5863         ret = __netif_receive_skb(skb);
5864         rcu_read_unlock();
5865         return ret;
5866 }
5867
5868 void netif_receive_skb_list_internal(struct list_head *head)
5869 {
5870         struct sk_buff *skb, *next;
5871         struct list_head sublist;
5872
5873         INIT_LIST_HEAD(&sublist);
5874         list_for_each_entry_safe(skb, next, head, list) {
5875                 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5876                                     skb);
5877                 skb_list_del_init(skb);
5878                 if (!skb_defer_rx_timestamp(skb))
5879                         list_add_tail(&skb->list, &sublist);
5880         }
5881         list_splice_init(&sublist, head);
5882
5883         rcu_read_lock();
5884 #ifdef CONFIG_RPS
5885         if (static_branch_unlikely(&rps_needed)) {
5886                 list_for_each_entry_safe(skb, next, head, list) {
5887                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5888                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5889
5890                         if (cpu >= 0) {
5891                                 /* Will be handled, remove from list */
5892                                 skb_list_del_init(skb);
5893                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5894                         }
5895                 }
5896         }
5897 #endif
5898         __netif_receive_skb_list(head);
5899         rcu_read_unlock();
5900 }
5901
5902 /**
5903  *      netif_receive_skb - process receive buffer from network
5904  *      @skb: buffer to process
5905  *
5906  *      netif_receive_skb() is the main receive data processing function.
5907  *      It always succeeds. The buffer may be dropped during processing
5908  *      for congestion control or by the protocol layers.
5909  *
5910  *      This function may only be called from softirq context and interrupts
5911  *      should be enabled.
5912  *
5913  *      Return values (usually ignored):
5914  *      NET_RX_SUCCESS: no congestion
5915  *      NET_RX_DROP: packet was dropped
5916  */
5917 int netif_receive_skb(struct sk_buff *skb)
5918 {
5919         int ret;
5920
5921         trace_netif_receive_skb_entry(skb);
5922
5923         ret = netif_receive_skb_internal(skb);
5924         trace_netif_receive_skb_exit(ret);
5925
5926         return ret;
5927 }
5928 EXPORT_SYMBOL(netif_receive_skb);
5929
5930 /**
5931  *      netif_receive_skb_list - process many receive buffers from network
5932  *      @head: list of skbs to process.
5933  *
5934  *      Since return value of netif_receive_skb() is normally ignored, and
5935  *      wouldn't be meaningful for a list, this function returns void.
5936  *
5937  *      This function may only be called from softirq context and interrupts
5938  *      should be enabled.
5939  */
5940 void netif_receive_skb_list(struct list_head *head)
5941 {
5942         struct sk_buff *skb;
5943
5944         if (list_empty(head))
5945                 return;
5946         if (trace_netif_receive_skb_list_entry_enabled()) {
5947                 list_for_each_entry(skb, head, list)
5948                         trace_netif_receive_skb_list_entry(skb);
5949         }
5950         netif_receive_skb_list_internal(head);
5951         trace_netif_receive_skb_list_exit(0);
5952 }
5953 EXPORT_SYMBOL(netif_receive_skb_list);
5954
5955 static DEFINE_PER_CPU(struct work_struct, flush_works);
5956
5957 /* Network device is going away, flush any packets still pending */
5958 static void flush_backlog(struct work_struct *work)
5959 {
5960         struct sk_buff *skb, *tmp;
5961         struct softnet_data *sd;
5962
5963         local_bh_disable();
5964         sd = this_cpu_ptr(&softnet_data);
5965
5966         backlog_lock_irq_disable(sd);
5967         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5968                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5969                         __skb_unlink(skb, &sd->input_pkt_queue);
5970                         dev_kfree_skb_irq(skb);
5971                         rps_input_queue_head_incr(sd);
5972                 }
5973         }
5974         backlog_unlock_irq_enable(sd);
5975
5976         local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5977         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5978                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5979                         __skb_unlink(skb, &sd->process_queue);
5980                         kfree_skb(skb);
5981                         rps_input_queue_head_incr(sd);
5982                 }
5983         }
5984         local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5985         local_bh_enable();
5986 }
5987
5988 static bool flush_required(int cpu)
5989 {
5990 #if IS_ENABLED(CONFIG_RPS)
5991         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5992         bool do_flush;
5993
5994         backlog_lock_irq_disable(sd);
5995
5996         /* as insertion into process_queue happens with the rps lock held,
5997          * process_queue access may race only with dequeue
5998          */
5999         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6000                    !skb_queue_empty_lockless(&sd->process_queue);
6001         backlog_unlock_irq_enable(sd);
6002
6003         return do_flush;
6004 #endif
6005         /* without RPS we can't safely check input_pkt_queue: during a
6006          * concurrent remote skb_queue_splice() we can detect as empty both
6007          * input_pkt_queue and process_queue even if the latter could end-up
6008          * containing a lot of packets.
6009          */
6010         return true;
6011 }
6012
6013 static void flush_all_backlogs(void)
6014 {
6015         static cpumask_t flush_cpus;
6016         unsigned int cpu;
6017
6018         /* since we are under rtnl lock protection we can use static data
6019          * for the cpumask and avoid allocating on stack the possibly
6020          * large mask
6021          */
6022         ASSERT_RTNL();
6023
6024         cpus_read_lock();
6025
6026         cpumask_clear(&flush_cpus);
6027         for_each_online_cpu(cpu) {
6028                 if (flush_required(cpu)) {
6029                         queue_work_on(cpu, system_highpri_wq,
6030                                       per_cpu_ptr(&flush_works, cpu));
6031                         cpumask_set_cpu(cpu, &flush_cpus);
6032                 }
6033         }
6034
6035         /* we can have in flight packet[s] on the cpus we are not flushing,
6036          * synchronize_net() in unregister_netdevice_many() will take care of
6037          * them
6038          */
6039         for_each_cpu(cpu, &flush_cpus)
6040                 flush_work(per_cpu_ptr(&flush_works, cpu));
6041
6042         cpus_read_unlock();
6043 }
6044
6045 static void net_rps_send_ipi(struct softnet_data *remsd)
6046 {
6047 #ifdef CONFIG_RPS
6048         while (remsd) {
6049                 struct softnet_data *next = remsd->rps_ipi_next;
6050
6051                 if (cpu_online(remsd->cpu))
6052                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6053                 remsd = next;
6054         }
6055 #endif
6056 }
6057
6058 /*
6059  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6060  * Note: called with local irq disabled, but exits with local irq enabled.
6061  */
6062 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6063 {
6064 #ifdef CONFIG_RPS
6065         struct softnet_data *remsd = sd->rps_ipi_list;
6066
6067         if (!use_backlog_threads() && remsd) {
6068                 sd->rps_ipi_list = NULL;
6069
6070                 local_irq_enable();
6071
6072                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6073                 net_rps_send_ipi(remsd);
6074         } else
6075 #endif
6076                 local_irq_enable();
6077 }
6078
6079 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6080 {
6081 #ifdef CONFIG_RPS
6082         return !use_backlog_threads() && sd->rps_ipi_list;
6083 #else
6084         return false;
6085 #endif
6086 }
6087
6088 static int process_backlog(struct napi_struct *napi, int quota)
6089 {
6090         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6091         bool again = true;
6092         int work = 0;
6093
6094         /* Check if we have pending ipi, its better to send them now,
6095          * not waiting net_rx_action() end.
6096          */
6097         if (sd_has_rps_ipi_waiting(sd)) {
6098                 local_irq_disable();
6099                 net_rps_action_and_irq_enable(sd);
6100         }
6101
6102         napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6103         while (again) {
6104                 struct sk_buff *skb;
6105
6106                 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6107                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6108                         local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6109                         rcu_read_lock();
6110                         __netif_receive_skb(skb);
6111                         rcu_read_unlock();
6112                         if (++work >= quota) {
6113                                 rps_input_queue_head_add(sd, work);
6114                                 return work;
6115                         }
6116
6117                         local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6118                 }
6119                 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6120
6121                 backlog_lock_irq_disable(sd);
6122                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6123                         /*
6124                          * Inline a custom version of __napi_complete().
6125                          * only current cpu owns and manipulates this napi,
6126                          * and NAPI_STATE_SCHED is the only possible flag set
6127                          * on backlog.
6128                          * We can use a plain write instead of clear_bit(),
6129                          * and we dont need an smp_mb() memory barrier.
6130                          */
6131                         napi->state &= NAPIF_STATE_THREADED;
6132                         again = false;
6133                 } else {
6134                         local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6135                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6136                                                    &sd->process_queue);
6137                         local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6138                 }
6139                 backlog_unlock_irq_enable(sd);
6140         }
6141
6142         if (work)
6143                 rps_input_queue_head_add(sd, work);
6144         return work;
6145 }
6146
6147 /**
6148  * __napi_schedule - schedule for receive
6149  * @n: entry to schedule
6150  *
6151  * The entry's receive function will be scheduled to run.
6152  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6153  */
6154 void __napi_schedule(struct napi_struct *n)
6155 {
6156         unsigned long flags;
6157
6158         local_irq_save(flags);
6159         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6160         local_irq_restore(flags);
6161 }
6162 EXPORT_SYMBOL(__napi_schedule);
6163
6164 /**
6165  *      napi_schedule_prep - check if napi can be scheduled
6166  *      @n: napi context
6167  *
6168  * Test if NAPI routine is already running, and if not mark
6169  * it as running.  This is used as a condition variable to
6170  * insure only one NAPI poll instance runs.  We also make
6171  * sure there is no pending NAPI disable.
6172  */
6173 bool napi_schedule_prep(struct napi_struct *n)
6174 {
6175         unsigned long new, val = READ_ONCE(n->state);
6176
6177         do {
6178                 if (unlikely(val & NAPIF_STATE_DISABLE))
6179                         return false;
6180                 new = val | NAPIF_STATE_SCHED;
6181
6182                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6183                  * This was suggested by Alexander Duyck, as compiler
6184                  * emits better code than :
6185                  * if (val & NAPIF_STATE_SCHED)
6186                  *     new |= NAPIF_STATE_MISSED;
6187                  */
6188                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6189                                                    NAPIF_STATE_MISSED;
6190         } while (!try_cmpxchg(&n->state, &val, new));
6191
6192         return !(val & NAPIF_STATE_SCHED);
6193 }
6194 EXPORT_SYMBOL(napi_schedule_prep);
6195
6196 /**
6197  * __napi_schedule_irqoff - schedule for receive
6198  * @n: entry to schedule
6199  *
6200  * Variant of __napi_schedule() assuming hard irqs are masked.
6201  *
6202  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6203  * because the interrupt disabled assumption might not be true
6204  * due to force-threaded interrupts and spinlock substitution.
6205  */
6206 void __napi_schedule_irqoff(struct napi_struct *n)
6207 {
6208         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6209                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6210         else
6211                 __napi_schedule(n);
6212 }
6213 EXPORT_SYMBOL(__napi_schedule_irqoff);
6214
6215 bool napi_complete_done(struct napi_struct *n, int work_done)
6216 {
6217         unsigned long flags, val, new, timeout = 0;
6218         bool ret = true;
6219
6220         /*
6221          * 1) Don't let napi dequeue from the cpu poll list
6222          *    just in case its running on a different cpu.
6223          * 2) If we are busy polling, do nothing here, we have
6224          *    the guarantee we will be called later.
6225          */
6226         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6227                                  NAPIF_STATE_IN_BUSY_POLL)))
6228                 return false;
6229
6230         if (work_done) {
6231                 if (n->gro_bitmask)
6232                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6233                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6234         }
6235         if (n->defer_hard_irqs_count > 0) {
6236                 n->defer_hard_irqs_count--;
6237                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6238                 if (timeout)
6239                         ret = false;
6240         }
6241         if (n->gro_bitmask) {
6242                 /* When the NAPI instance uses a timeout and keeps postponing
6243                  * it, we need to bound somehow the time packets are kept in
6244                  * the GRO layer
6245                  */
6246                 napi_gro_flush(n, !!timeout);
6247         }
6248
6249         gro_normal_list(n);
6250
6251         if (unlikely(!list_empty(&n->poll_list))) {
6252                 /* If n->poll_list is not empty, we need to mask irqs */
6253                 local_irq_save(flags);
6254                 list_del_init(&n->poll_list);
6255                 local_irq_restore(flags);
6256         }
6257         WRITE_ONCE(n->list_owner, -1);
6258
6259         val = READ_ONCE(n->state);
6260         do {
6261                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6262
6263                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6264                               NAPIF_STATE_SCHED_THREADED |
6265                               NAPIF_STATE_PREFER_BUSY_POLL);
6266
6267                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6268                  * because we will call napi->poll() one more time.
6269                  * This C code was suggested by Alexander Duyck to help gcc.
6270                  */
6271                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6272                                                     NAPIF_STATE_SCHED;
6273         } while (!try_cmpxchg(&n->state, &val, new));
6274
6275         if (unlikely(val & NAPIF_STATE_MISSED)) {
6276                 __napi_schedule(n);
6277                 return false;
6278         }
6279
6280         if (timeout)
6281                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6282                               HRTIMER_MODE_REL_PINNED);
6283         return ret;
6284 }
6285 EXPORT_SYMBOL(napi_complete_done);
6286
6287 /* must be called under rcu_read_lock(), as we dont take a reference */
6288 struct napi_struct *napi_by_id(unsigned int napi_id)
6289 {
6290         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6291         struct napi_struct *napi;
6292
6293         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6294                 if (napi->napi_id == napi_id)
6295                         return napi;
6296
6297         return NULL;
6298 }
6299
6300 static void skb_defer_free_flush(struct softnet_data *sd)
6301 {
6302         struct sk_buff *skb, *next;
6303
6304         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6305         if (!READ_ONCE(sd->defer_list))
6306                 return;
6307
6308         spin_lock(&sd->defer_lock);
6309         skb = sd->defer_list;
6310         sd->defer_list = NULL;
6311         sd->defer_count = 0;
6312         spin_unlock(&sd->defer_lock);
6313
6314         while (skb != NULL) {
6315                 next = skb->next;
6316                 napi_consume_skb(skb, 1);
6317                 skb = next;
6318         }
6319 }
6320
6321 #if defined(CONFIG_NET_RX_BUSY_POLL)
6322
6323 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6324 {
6325         if (!skip_schedule) {
6326                 gro_normal_list(napi);
6327                 __napi_schedule(napi);
6328                 return;
6329         }
6330
6331         if (napi->gro_bitmask) {
6332                 /* flush too old packets
6333                  * If HZ < 1000, flush all packets.
6334                  */
6335                 napi_gro_flush(napi, HZ >= 1000);
6336         }
6337
6338         gro_normal_list(napi);
6339         clear_bit(NAPI_STATE_SCHED, &napi->state);
6340 }
6341
6342 enum {
6343         NAPI_F_PREFER_BUSY_POLL = 1,
6344         NAPI_F_END_ON_RESCHED   = 2,
6345 };
6346
6347 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6348                            unsigned flags, u16 budget)
6349 {
6350         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6351         bool skip_schedule = false;
6352         unsigned long timeout;
6353         int rc;
6354
6355         /* Busy polling means there is a high chance device driver hard irq
6356          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6357          * set in napi_schedule_prep().
6358          * Since we are about to call napi->poll() once more, we can safely
6359          * clear NAPI_STATE_MISSED.
6360          *
6361          * Note: x86 could use a single "lock and ..." instruction
6362          * to perform these two clear_bit()
6363          */
6364         clear_bit(NAPI_STATE_MISSED, &napi->state);
6365         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6366
6367         local_bh_disable();
6368         bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6369
6370         if (flags & NAPI_F_PREFER_BUSY_POLL) {
6371                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6372                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6373                 if (napi->defer_hard_irqs_count && timeout) {
6374                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6375                         skip_schedule = true;
6376                 }
6377         }
6378
6379         /* All we really want here is to re-enable device interrupts.
6380          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6381          */
6382         rc = napi->poll(napi, budget);
6383         /* We can't gro_normal_list() here, because napi->poll() might have
6384          * rearmed the napi (napi_complete_done()) in which case it could
6385          * already be running on another CPU.
6386          */
6387         trace_napi_poll(napi, rc, budget);
6388         netpoll_poll_unlock(have_poll_lock);
6389         if (rc == budget)
6390                 __busy_poll_stop(napi, skip_schedule);
6391         bpf_net_ctx_clear(bpf_net_ctx);
6392         local_bh_enable();
6393 }
6394
6395 static void __napi_busy_loop(unsigned int napi_id,
6396                       bool (*loop_end)(void *, unsigned long),
6397                       void *loop_end_arg, unsigned flags, u16 budget)
6398 {
6399         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6400         int (*napi_poll)(struct napi_struct *napi, int budget);
6401         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6402         void *have_poll_lock = NULL;
6403         struct napi_struct *napi;
6404
6405         WARN_ON_ONCE(!rcu_read_lock_held());
6406
6407 restart:
6408         napi_poll = NULL;
6409
6410         napi = napi_by_id(napi_id);
6411         if (!napi)
6412                 return;
6413
6414         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6415                 preempt_disable();
6416         for (;;) {
6417                 int work = 0;
6418
6419                 local_bh_disable();
6420                 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6421                 if (!napi_poll) {
6422                         unsigned long val = READ_ONCE(napi->state);
6423
6424                         /* If multiple threads are competing for this napi,
6425                          * we avoid dirtying napi->state as much as we can.
6426                          */
6427                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6428                                    NAPIF_STATE_IN_BUSY_POLL)) {
6429                                 if (flags & NAPI_F_PREFER_BUSY_POLL)
6430                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6431                                 goto count;
6432                         }
6433                         if (cmpxchg(&napi->state, val,
6434                                     val | NAPIF_STATE_IN_BUSY_POLL |
6435                                           NAPIF_STATE_SCHED) != val) {
6436                                 if (flags & NAPI_F_PREFER_BUSY_POLL)
6437                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6438                                 goto count;
6439                         }
6440                         have_poll_lock = netpoll_poll_lock(napi);
6441                         napi_poll = napi->poll;
6442                 }
6443                 work = napi_poll(napi, budget);
6444                 trace_napi_poll(napi, work, budget);
6445                 gro_normal_list(napi);
6446 count:
6447                 if (work > 0)
6448                         __NET_ADD_STATS(dev_net(napi->dev),
6449                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6450                 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6451                 bpf_net_ctx_clear(bpf_net_ctx);
6452                 local_bh_enable();
6453
6454                 if (!loop_end || loop_end(loop_end_arg, start_time))
6455                         break;
6456
6457                 if (unlikely(need_resched())) {
6458                         if (flags & NAPI_F_END_ON_RESCHED)
6459                                 break;
6460                         if (napi_poll)
6461                                 busy_poll_stop(napi, have_poll_lock, flags, budget);
6462                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6463                                 preempt_enable();
6464                         rcu_read_unlock();
6465                         cond_resched();
6466                         rcu_read_lock();
6467                         if (loop_end(loop_end_arg, start_time))
6468                                 return;
6469                         goto restart;
6470                 }
6471                 cpu_relax();
6472         }
6473         if (napi_poll)
6474                 busy_poll_stop(napi, have_poll_lock, flags, budget);
6475         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6476                 preempt_enable();
6477 }
6478
6479 void napi_busy_loop_rcu(unsigned int napi_id,
6480                         bool (*loop_end)(void *, unsigned long),
6481                         void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6482 {
6483         unsigned flags = NAPI_F_END_ON_RESCHED;
6484
6485         if (prefer_busy_poll)
6486                 flags |= NAPI_F_PREFER_BUSY_POLL;
6487
6488         __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6489 }
6490
6491 void napi_busy_loop(unsigned int napi_id,
6492                     bool (*loop_end)(void *, unsigned long),
6493                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6494 {
6495         unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6496
6497         rcu_read_lock();
6498         __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6499         rcu_read_unlock();
6500 }
6501 EXPORT_SYMBOL(napi_busy_loop);
6502
6503 #endif /* CONFIG_NET_RX_BUSY_POLL */
6504
6505 static void napi_hash_add(struct napi_struct *napi)
6506 {
6507         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6508                 return;
6509
6510         spin_lock(&napi_hash_lock);
6511
6512         /* 0..NR_CPUS range is reserved for sender_cpu use */
6513         do {
6514                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6515                         napi_gen_id = MIN_NAPI_ID;
6516         } while (napi_by_id(napi_gen_id));
6517         napi->napi_id = napi_gen_id;
6518
6519         hlist_add_head_rcu(&napi->napi_hash_node,
6520                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6521
6522         spin_unlock(&napi_hash_lock);
6523 }
6524
6525 /* Warning : caller is responsible to make sure rcu grace period
6526  * is respected before freeing memory containing @napi
6527  */
6528 static void napi_hash_del(struct napi_struct *napi)
6529 {
6530         spin_lock(&napi_hash_lock);
6531
6532         hlist_del_init_rcu(&napi->napi_hash_node);
6533
6534         spin_unlock(&napi_hash_lock);
6535 }
6536
6537 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6538 {
6539         struct napi_struct *napi;
6540
6541         napi = container_of(timer, struct napi_struct, timer);
6542
6543         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6544          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6545          */
6546         if (!napi_disable_pending(napi) &&
6547             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6548                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6549                 __napi_schedule_irqoff(napi);
6550         }
6551
6552         return HRTIMER_NORESTART;
6553 }
6554
6555 static void init_gro_hash(struct napi_struct *napi)
6556 {
6557         int i;
6558
6559         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6560                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6561                 napi->gro_hash[i].count = 0;
6562         }
6563         napi->gro_bitmask = 0;
6564 }
6565
6566 int dev_set_threaded(struct net_device *dev, bool threaded)
6567 {
6568         struct napi_struct *napi;
6569         int err = 0;
6570
6571         if (dev->threaded == threaded)
6572                 return 0;
6573
6574         if (threaded) {
6575                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6576                         if (!napi->thread) {
6577                                 err = napi_kthread_create(napi);
6578                                 if (err) {
6579                                         threaded = false;
6580                                         break;
6581                                 }
6582                         }
6583                 }
6584         }
6585
6586         WRITE_ONCE(dev->threaded, threaded);
6587
6588         /* Make sure kthread is created before THREADED bit
6589          * is set.
6590          */
6591         smp_mb__before_atomic();
6592
6593         /* Setting/unsetting threaded mode on a napi might not immediately
6594          * take effect, if the current napi instance is actively being
6595          * polled. In this case, the switch between threaded mode and
6596          * softirq mode will happen in the next round of napi_schedule().
6597          * This should not cause hiccups/stalls to the live traffic.
6598          */
6599         list_for_each_entry(napi, &dev->napi_list, dev_list)
6600                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6601
6602         return err;
6603 }
6604 EXPORT_SYMBOL(dev_set_threaded);
6605
6606 /**
6607  * netif_queue_set_napi - Associate queue with the napi
6608  * @dev: device to which NAPI and queue belong
6609  * @queue_index: Index of queue
6610  * @type: queue type as RX or TX
6611  * @napi: NAPI context, pass NULL to clear previously set NAPI
6612  *
6613  * Set queue with its corresponding napi context. This should be done after
6614  * registering the NAPI handler for the queue-vector and the queues have been
6615  * mapped to the corresponding interrupt vector.
6616  */
6617 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6618                           enum netdev_queue_type type, struct napi_struct *napi)
6619 {
6620         struct netdev_rx_queue *rxq;
6621         struct netdev_queue *txq;
6622
6623         if (WARN_ON_ONCE(napi && !napi->dev))
6624                 return;
6625         if (dev->reg_state >= NETREG_REGISTERED)
6626                 ASSERT_RTNL();
6627
6628         switch (type) {
6629         case NETDEV_QUEUE_TYPE_RX:
6630                 rxq = __netif_get_rx_queue(dev, queue_index);
6631                 rxq->napi = napi;
6632                 return;
6633         case NETDEV_QUEUE_TYPE_TX:
6634                 txq = netdev_get_tx_queue(dev, queue_index);
6635                 txq->napi = napi;
6636                 return;
6637         default:
6638                 return;
6639         }
6640 }
6641 EXPORT_SYMBOL(netif_queue_set_napi);
6642
6643 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6644                            int (*poll)(struct napi_struct *, int), int weight)
6645 {
6646         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6647                 return;
6648
6649         INIT_LIST_HEAD(&napi->poll_list);
6650         INIT_HLIST_NODE(&napi->napi_hash_node);
6651         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6652         napi->timer.function = napi_watchdog;
6653         init_gro_hash(napi);
6654         napi->skb = NULL;
6655         INIT_LIST_HEAD(&napi->rx_list);
6656         napi->rx_count = 0;
6657         napi->poll = poll;
6658         if (weight > NAPI_POLL_WEIGHT)
6659                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6660                                 weight);
6661         napi->weight = weight;
6662         napi->dev = dev;
6663 #ifdef CONFIG_NETPOLL
6664         napi->poll_owner = -1;
6665 #endif
6666         napi->list_owner = -1;
6667         set_bit(NAPI_STATE_SCHED, &napi->state);
6668         set_bit(NAPI_STATE_NPSVC, &napi->state);
6669         list_add_rcu(&napi->dev_list, &dev->napi_list);
6670         napi_hash_add(napi);
6671         napi_get_frags_check(napi);
6672         /* Create kthread for this napi if dev->threaded is set.
6673          * Clear dev->threaded if kthread creation failed so that
6674          * threaded mode will not be enabled in napi_enable().
6675          */
6676         if (dev->threaded && napi_kthread_create(napi))
6677                 dev->threaded = false;
6678         netif_napi_set_irq(napi, -1);
6679 }
6680 EXPORT_SYMBOL(netif_napi_add_weight);
6681
6682 void napi_disable(struct napi_struct *n)
6683 {
6684         unsigned long val, new;
6685
6686         might_sleep();
6687         set_bit(NAPI_STATE_DISABLE, &n->state);
6688
6689         val = READ_ONCE(n->state);
6690         do {
6691                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6692                         usleep_range(20, 200);
6693                         val = READ_ONCE(n->state);
6694                 }
6695
6696                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6697                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6698         } while (!try_cmpxchg(&n->state, &val, new));
6699
6700         hrtimer_cancel(&n->timer);
6701
6702         clear_bit(NAPI_STATE_DISABLE, &n->state);
6703 }
6704 EXPORT_SYMBOL(napi_disable);
6705
6706 /**
6707  *      napi_enable - enable NAPI scheduling
6708  *      @n: NAPI context
6709  *
6710  * Resume NAPI from being scheduled on this context.
6711  * Must be paired with napi_disable.
6712  */
6713 void napi_enable(struct napi_struct *n)
6714 {
6715         unsigned long new, val = READ_ONCE(n->state);
6716
6717         do {
6718                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6719
6720                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6721                 if (n->dev->threaded && n->thread)
6722                         new |= NAPIF_STATE_THREADED;
6723         } while (!try_cmpxchg(&n->state, &val, new));
6724 }
6725 EXPORT_SYMBOL(napi_enable);
6726
6727 static void flush_gro_hash(struct napi_struct *napi)
6728 {
6729         int i;
6730
6731         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6732                 struct sk_buff *skb, *n;
6733
6734                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6735                         kfree_skb(skb);
6736                 napi->gro_hash[i].count = 0;
6737         }
6738 }
6739
6740 /* Must be called in process context */
6741 void __netif_napi_del(struct napi_struct *napi)
6742 {
6743         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6744                 return;
6745
6746         napi_hash_del(napi);
6747         list_del_rcu(&napi->dev_list);
6748         napi_free_frags(napi);
6749
6750         flush_gro_hash(napi);
6751         napi->gro_bitmask = 0;
6752
6753         if (napi->thread) {
6754                 kthread_stop(napi->thread);
6755                 napi->thread = NULL;
6756         }
6757 }
6758 EXPORT_SYMBOL(__netif_napi_del);
6759
6760 static int __napi_poll(struct napi_struct *n, bool *repoll)
6761 {
6762         int work, weight;
6763
6764         weight = n->weight;
6765
6766         /* This NAPI_STATE_SCHED test is for avoiding a race
6767          * with netpoll's poll_napi().  Only the entity which
6768          * obtains the lock and sees NAPI_STATE_SCHED set will
6769          * actually make the ->poll() call.  Therefore we avoid
6770          * accidentally calling ->poll() when NAPI is not scheduled.
6771          */
6772         work = 0;
6773         if (napi_is_scheduled(n)) {
6774                 work = n->poll(n, weight);
6775                 trace_napi_poll(n, work, weight);
6776
6777                 xdp_do_check_flushed(n);
6778         }
6779
6780         if (unlikely(work > weight))
6781                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6782                                 n->poll, work, weight);
6783
6784         if (likely(work < weight))
6785                 return work;
6786
6787         /* Drivers must not modify the NAPI state if they
6788          * consume the entire weight.  In such cases this code
6789          * still "owns" the NAPI instance and therefore can
6790          * move the instance around on the list at-will.
6791          */
6792         if (unlikely(napi_disable_pending(n))) {
6793                 napi_complete(n);
6794                 return work;
6795         }
6796
6797         /* The NAPI context has more processing work, but busy-polling
6798          * is preferred. Exit early.
6799          */
6800         if (napi_prefer_busy_poll(n)) {
6801                 if (napi_complete_done(n, work)) {
6802                         /* If timeout is not set, we need to make sure
6803                          * that the NAPI is re-scheduled.
6804                          */
6805                         napi_schedule(n);
6806                 }
6807                 return work;
6808         }
6809
6810         if (n->gro_bitmask) {
6811                 /* flush too old packets
6812                  * If HZ < 1000, flush all packets.
6813                  */
6814                 napi_gro_flush(n, HZ >= 1000);
6815         }
6816
6817         gro_normal_list(n);
6818
6819         /* Some drivers may have called napi_schedule
6820          * prior to exhausting their budget.
6821          */
6822         if (unlikely(!list_empty(&n->poll_list))) {
6823                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6824                              n->dev ? n->dev->name : "backlog");
6825                 return work;
6826         }
6827
6828         *repoll = true;
6829
6830         return work;
6831 }
6832
6833 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6834 {
6835         bool do_repoll = false;
6836         void *have;
6837         int work;
6838
6839         list_del_init(&n->poll_list);
6840
6841         have = netpoll_poll_lock(n);
6842
6843         work = __napi_poll(n, &do_repoll);
6844
6845         if (do_repoll)
6846                 list_add_tail(&n->poll_list, repoll);
6847
6848         netpoll_poll_unlock(have);
6849
6850         return work;
6851 }
6852
6853 static int napi_thread_wait(struct napi_struct *napi)
6854 {
6855         set_current_state(TASK_INTERRUPTIBLE);
6856
6857         while (!kthread_should_stop()) {
6858                 /* Testing SCHED_THREADED bit here to make sure the current
6859                  * kthread owns this napi and could poll on this napi.
6860                  * Testing SCHED bit is not enough because SCHED bit might be
6861                  * set by some other busy poll thread or by napi_disable().
6862                  */
6863                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6864                         WARN_ON(!list_empty(&napi->poll_list));
6865                         __set_current_state(TASK_RUNNING);
6866                         return 0;
6867                 }
6868
6869                 schedule();
6870                 set_current_state(TASK_INTERRUPTIBLE);
6871         }
6872         __set_current_state(TASK_RUNNING);
6873
6874         return -1;
6875 }
6876
6877 static void napi_threaded_poll_loop(struct napi_struct *napi)
6878 {
6879         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6880         struct softnet_data *sd;
6881         unsigned long last_qs = jiffies;
6882
6883         for (;;) {
6884                 bool repoll = false;
6885                 void *have;
6886
6887                 local_bh_disable();
6888                 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6889
6890                 sd = this_cpu_ptr(&softnet_data);
6891                 sd->in_napi_threaded_poll = true;
6892
6893                 have = netpoll_poll_lock(napi);
6894                 __napi_poll(napi, &repoll);
6895                 netpoll_poll_unlock(have);
6896
6897                 sd->in_napi_threaded_poll = false;
6898                 barrier();
6899
6900                 if (sd_has_rps_ipi_waiting(sd)) {
6901                         local_irq_disable();
6902                         net_rps_action_and_irq_enable(sd);
6903                 }
6904                 skb_defer_free_flush(sd);
6905                 bpf_net_ctx_clear(bpf_net_ctx);
6906                 local_bh_enable();
6907
6908                 if (!repoll)
6909                         break;
6910
6911                 rcu_softirq_qs_periodic(last_qs);
6912                 cond_resched();
6913         }
6914 }
6915
6916 static int napi_threaded_poll(void *data)
6917 {
6918         struct napi_struct *napi = data;
6919
6920         while (!napi_thread_wait(napi))
6921                 napi_threaded_poll_loop(napi);
6922
6923         return 0;
6924 }
6925
6926 static __latent_entropy void net_rx_action(struct softirq_action *h)
6927 {
6928         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6929         unsigned long time_limit = jiffies +
6930                 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6931         struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6932         int budget = READ_ONCE(net_hotdata.netdev_budget);
6933         LIST_HEAD(list);
6934         LIST_HEAD(repoll);
6935
6936         bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6937 start:
6938         sd->in_net_rx_action = true;
6939         local_irq_disable();
6940         list_splice_init(&sd->poll_list, &list);
6941         local_irq_enable();
6942
6943         for (;;) {
6944                 struct napi_struct *n;
6945
6946                 skb_defer_free_flush(sd);
6947
6948                 if (list_empty(&list)) {
6949                         if (list_empty(&repoll)) {
6950                                 sd->in_net_rx_action = false;
6951                                 barrier();
6952                                 /* We need to check if ____napi_schedule()
6953                                  * had refilled poll_list while
6954                                  * sd->in_net_rx_action was true.
6955                                  */
6956                                 if (!list_empty(&sd->poll_list))
6957                                         goto start;
6958                                 if (!sd_has_rps_ipi_waiting(sd))
6959                                         goto end;
6960                         }
6961                         break;
6962                 }
6963
6964                 n = list_first_entry(&list, struct napi_struct, poll_list);
6965                 budget -= napi_poll(n, &repoll);
6966
6967                 /* If softirq window is exhausted then punt.
6968                  * Allow this to run for 2 jiffies since which will allow
6969                  * an average latency of 1.5/HZ.
6970                  */
6971                 if (unlikely(budget <= 0 ||
6972                              time_after_eq(jiffies, time_limit))) {
6973                         sd->time_squeeze++;
6974                         break;
6975                 }
6976         }
6977
6978         local_irq_disable();
6979
6980         list_splice_tail_init(&sd->poll_list, &list);
6981         list_splice_tail(&repoll, &list);
6982         list_splice(&list, &sd->poll_list);
6983         if (!list_empty(&sd->poll_list))
6984                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6985         else
6986                 sd->in_net_rx_action = false;
6987
6988         net_rps_action_and_irq_enable(sd);
6989 end:
6990         bpf_net_ctx_clear(bpf_net_ctx);
6991 }
6992
6993 struct netdev_adjacent {
6994         struct net_device *dev;
6995         netdevice_tracker dev_tracker;
6996
6997         /* upper master flag, there can only be one master device per list */
6998         bool master;
6999
7000         /* lookup ignore flag */
7001         bool ignore;
7002
7003         /* counter for the number of times this device was added to us */
7004         u16 ref_nr;
7005
7006         /* private field for the users */
7007         void *private;
7008
7009         struct list_head list;
7010         struct rcu_head rcu;
7011 };
7012
7013 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7014                                                  struct list_head *adj_list)
7015 {
7016         struct netdev_adjacent *adj;
7017
7018         list_for_each_entry(adj, adj_list, list) {
7019                 if (adj->dev == adj_dev)
7020                         return adj;
7021         }
7022         return NULL;
7023 }
7024
7025 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7026                                     struct netdev_nested_priv *priv)
7027 {
7028         struct net_device *dev = (struct net_device *)priv->data;
7029
7030         return upper_dev == dev;
7031 }
7032
7033 /**
7034  * netdev_has_upper_dev - Check if device is linked to an upper device
7035  * @dev: device
7036  * @upper_dev: upper device to check
7037  *
7038  * Find out if a device is linked to specified upper device and return true
7039  * in case it is. Note that this checks only immediate upper device,
7040  * not through a complete stack of devices. The caller must hold the RTNL lock.
7041  */
7042 bool netdev_has_upper_dev(struct net_device *dev,
7043                           struct net_device *upper_dev)
7044 {
7045         struct netdev_nested_priv priv = {
7046                 .data = (void *)upper_dev,
7047         };
7048
7049         ASSERT_RTNL();
7050
7051         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7052                                              &priv);
7053 }
7054 EXPORT_SYMBOL(netdev_has_upper_dev);
7055
7056 /**
7057  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7058  * @dev: device
7059  * @upper_dev: upper device to check
7060  *
7061  * Find out if a device is linked to specified upper device and return true
7062  * in case it is. Note that this checks the entire upper device chain.
7063  * The caller must hold rcu lock.
7064  */
7065
7066 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7067                                   struct net_device *upper_dev)
7068 {
7069         struct netdev_nested_priv priv = {
7070                 .data = (void *)upper_dev,
7071         };
7072
7073         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7074                                                &priv);
7075 }
7076 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7077
7078 /**
7079  * netdev_has_any_upper_dev - Check if device is linked to some device
7080  * @dev: device
7081  *
7082  * Find out if a device is linked to an upper device and return true in case
7083  * it is. The caller must hold the RTNL lock.
7084  */
7085 bool netdev_has_any_upper_dev(struct net_device *dev)
7086 {
7087         ASSERT_RTNL();
7088
7089         return !list_empty(&dev->adj_list.upper);
7090 }
7091 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7092
7093 /**
7094  * netdev_master_upper_dev_get - Get master upper device
7095  * @dev: device
7096  *
7097  * Find a master upper device and return pointer to it or NULL in case
7098  * it's not there. The caller must hold the RTNL lock.
7099  */
7100 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7101 {
7102         struct netdev_adjacent *upper;
7103
7104         ASSERT_RTNL();
7105
7106         if (list_empty(&dev->adj_list.upper))
7107                 return NULL;
7108
7109         upper = list_first_entry(&dev->adj_list.upper,
7110                                  struct netdev_adjacent, list);
7111         if (likely(upper->master))
7112                 return upper->dev;
7113         return NULL;
7114 }
7115 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7116
7117 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7118 {
7119         struct netdev_adjacent *upper;
7120
7121         ASSERT_RTNL();
7122
7123         if (list_empty(&dev->adj_list.upper))
7124                 return NULL;
7125
7126         upper = list_first_entry(&dev->adj_list.upper,
7127                                  struct netdev_adjacent, list);
7128         if (likely(upper->master) && !upper->ignore)
7129                 return upper->dev;
7130         return NULL;
7131 }
7132
7133 /**
7134  * netdev_has_any_lower_dev - Check if device is linked to some device
7135  * @dev: device
7136  *
7137  * Find out if a device is linked to a lower device and return true in case
7138  * it is. The caller must hold the RTNL lock.
7139  */
7140 static bool netdev_has_any_lower_dev(struct net_device *dev)
7141 {
7142         ASSERT_RTNL();
7143
7144         return !list_empty(&dev->adj_list.lower);
7145 }
7146
7147 void *netdev_adjacent_get_private(struct list_head *adj_list)
7148 {
7149         struct netdev_adjacent *adj;
7150
7151         adj = list_entry(adj_list, struct netdev_adjacent, list);
7152
7153         return adj->private;
7154 }
7155 EXPORT_SYMBOL(netdev_adjacent_get_private);
7156
7157 /**
7158  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7159  * @dev: device
7160  * @iter: list_head ** of the current position
7161  *
7162  * Gets the next device from the dev's upper list, starting from iter
7163  * position. The caller must hold RCU read lock.
7164  */
7165 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7166                                                  struct list_head **iter)
7167 {
7168         struct netdev_adjacent *upper;
7169
7170         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7171
7172         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7173
7174         if (&upper->list == &dev->adj_list.upper)
7175                 return NULL;
7176
7177         *iter = &upper->list;
7178
7179         return upper->dev;
7180 }
7181 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7182
7183 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7184                                                   struct list_head **iter,
7185                                                   bool *ignore)
7186 {
7187         struct netdev_adjacent *upper;
7188
7189         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7190
7191         if (&upper->list == &dev->adj_list.upper)
7192                 return NULL;
7193
7194         *iter = &upper->list;
7195         *ignore = upper->ignore;
7196
7197         return upper->dev;
7198 }
7199
7200 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7201                                                     struct list_head **iter)
7202 {
7203         struct netdev_adjacent *upper;
7204
7205         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7206
7207         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7208
7209         if (&upper->list == &dev->adj_list.upper)
7210                 return NULL;
7211
7212         *iter = &upper->list;
7213
7214         return upper->dev;
7215 }
7216
7217 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7218                                        int (*fn)(struct net_device *dev,
7219                                          struct netdev_nested_priv *priv),
7220                                        struct netdev_nested_priv *priv)
7221 {
7222         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7223         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7224         int ret, cur = 0;
7225         bool ignore;
7226
7227         now = dev;
7228         iter = &dev->adj_list.upper;
7229
7230         while (1) {
7231                 if (now != dev) {
7232                         ret = fn(now, priv);
7233                         if (ret)
7234                                 return ret;
7235                 }
7236
7237                 next = NULL;
7238                 while (1) {
7239                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7240                         if (!udev)
7241                                 break;
7242                         if (ignore)
7243                                 continue;
7244
7245                         next = udev;
7246                         niter = &udev->adj_list.upper;
7247                         dev_stack[cur] = now;
7248                         iter_stack[cur++] = iter;
7249                         break;
7250                 }
7251
7252                 if (!next) {
7253                         if (!cur)
7254                                 return 0;
7255                         next = dev_stack[--cur];
7256                         niter = iter_stack[cur];
7257                 }
7258
7259                 now = next;
7260                 iter = niter;
7261         }
7262
7263         return 0;
7264 }
7265
7266 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7267                                   int (*fn)(struct net_device *dev,
7268                                             struct netdev_nested_priv *priv),
7269                                   struct netdev_nested_priv *priv)
7270 {
7271         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7272         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7273         int ret, cur = 0;
7274
7275         now = dev;
7276         iter = &dev->adj_list.upper;
7277
7278         while (1) {
7279                 if (now != dev) {
7280                         ret = fn(now, priv);
7281                         if (ret)
7282                                 return ret;
7283                 }
7284
7285                 next = NULL;
7286                 while (1) {
7287                         udev = netdev_next_upper_dev_rcu(now, &iter);
7288                         if (!udev)
7289                                 break;
7290
7291                         next = udev;
7292                         niter = &udev->adj_list.upper;
7293                         dev_stack[cur] = now;
7294                         iter_stack[cur++] = iter;
7295                         break;
7296                 }
7297
7298                 if (!next) {
7299                         if (!cur)
7300                                 return 0;
7301                         next = dev_stack[--cur];
7302                         niter = iter_stack[cur];
7303                 }
7304
7305                 now = next;
7306                 iter = niter;
7307         }
7308
7309         return 0;
7310 }
7311 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7312
7313 static bool __netdev_has_upper_dev(struct net_device *dev,
7314                                    struct net_device *upper_dev)
7315 {
7316         struct netdev_nested_priv priv = {
7317                 .flags = 0,
7318                 .data = (void *)upper_dev,
7319         };
7320
7321         ASSERT_RTNL();
7322
7323         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7324                                            &priv);
7325 }
7326
7327 /**
7328  * netdev_lower_get_next_private - Get the next ->private from the
7329  *                                 lower neighbour list
7330  * @dev: device
7331  * @iter: list_head ** of the current position
7332  *
7333  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7334  * list, starting from iter position. The caller must hold either hold the
7335  * RTNL lock or its own locking that guarantees that the neighbour lower
7336  * list will remain unchanged.
7337  */
7338 void *netdev_lower_get_next_private(struct net_device *dev,
7339                                     struct list_head **iter)
7340 {
7341         struct netdev_adjacent *lower;
7342
7343         lower = list_entry(*iter, struct netdev_adjacent, list);
7344
7345         if (&lower->list == &dev->adj_list.lower)
7346                 return NULL;
7347
7348         *iter = lower->list.next;
7349
7350         return lower->private;
7351 }
7352 EXPORT_SYMBOL(netdev_lower_get_next_private);
7353
7354 /**
7355  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7356  *                                     lower neighbour list, RCU
7357  *                                     variant
7358  * @dev: device
7359  * @iter: list_head ** of the current position
7360  *
7361  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7362  * list, starting from iter position. The caller must hold RCU read lock.
7363  */
7364 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7365                                         struct list_head **iter)
7366 {
7367         struct netdev_adjacent *lower;
7368
7369         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7370
7371         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7372
7373         if (&lower->list == &dev->adj_list.lower)
7374                 return NULL;
7375
7376         *iter = &lower->list;
7377
7378         return lower->private;
7379 }
7380 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7381
7382 /**
7383  * netdev_lower_get_next - Get the next device from the lower neighbour
7384  *                         list
7385  * @dev: device
7386  * @iter: list_head ** of the current position
7387  *
7388  * Gets the next netdev_adjacent from the dev's lower neighbour
7389  * list, starting from iter position. The caller must hold RTNL lock or
7390  * its own locking that guarantees that the neighbour lower
7391  * list will remain unchanged.
7392  */
7393 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7394 {
7395         struct netdev_adjacent *lower;
7396
7397         lower = list_entry(*iter, struct netdev_adjacent, list);
7398
7399         if (&lower->list == &dev->adj_list.lower)
7400                 return NULL;
7401
7402         *iter = lower->list.next;
7403
7404         return lower->dev;
7405 }
7406 EXPORT_SYMBOL(netdev_lower_get_next);
7407
7408 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7409                                                 struct list_head **iter)
7410 {
7411         struct netdev_adjacent *lower;
7412
7413         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7414
7415         if (&lower->list == &dev->adj_list.lower)
7416                 return NULL;
7417
7418         *iter = &lower->list;
7419
7420         return lower->dev;
7421 }
7422
7423 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7424                                                   struct list_head **iter,
7425                                                   bool *ignore)
7426 {
7427         struct netdev_adjacent *lower;
7428
7429         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7430
7431         if (&lower->list == &dev->adj_list.lower)
7432                 return NULL;
7433
7434         *iter = &lower->list;
7435         *ignore = lower->ignore;
7436
7437         return lower->dev;
7438 }
7439
7440 int netdev_walk_all_lower_dev(struct net_device *dev,
7441                               int (*fn)(struct net_device *dev,
7442                                         struct netdev_nested_priv *priv),
7443                               struct netdev_nested_priv *priv)
7444 {
7445         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7446         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7447         int ret, cur = 0;
7448
7449         now = dev;
7450         iter = &dev->adj_list.lower;
7451
7452         while (1) {
7453                 if (now != dev) {
7454                         ret = fn(now, priv);
7455                         if (ret)
7456                                 return ret;
7457                 }
7458
7459                 next = NULL;
7460                 while (1) {
7461                         ldev = netdev_next_lower_dev(now, &iter);
7462                         if (!ldev)
7463                                 break;
7464
7465                         next = ldev;
7466                         niter = &ldev->adj_list.lower;
7467                         dev_stack[cur] = now;
7468                         iter_stack[cur++] = iter;
7469                         break;
7470                 }
7471
7472                 if (!next) {
7473                         if (!cur)
7474                                 return 0;
7475                         next = dev_stack[--cur];
7476                         niter = iter_stack[cur];
7477                 }
7478
7479                 now = next;
7480                 iter = niter;
7481         }
7482
7483         return 0;
7484 }
7485 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7486
7487 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7488                                        int (*fn)(struct net_device *dev,
7489                                          struct netdev_nested_priv *priv),
7490                                        struct netdev_nested_priv *priv)
7491 {
7492         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7493         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7494         int ret, cur = 0;
7495         bool ignore;
7496
7497         now = dev;
7498         iter = &dev->adj_list.lower;
7499
7500         while (1) {
7501                 if (now != dev) {
7502                         ret = fn(now, priv);
7503                         if (ret)
7504                                 return ret;
7505                 }
7506
7507                 next = NULL;
7508                 while (1) {
7509                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7510                         if (!ldev)
7511                                 break;
7512                         if (ignore)
7513                                 continue;
7514
7515                         next = ldev;
7516                         niter = &ldev->adj_list.lower;
7517                         dev_stack[cur] = now;
7518                         iter_stack[cur++] = iter;
7519                         break;
7520                 }
7521
7522                 if (!next) {
7523                         if (!cur)
7524                                 return 0;
7525                         next = dev_stack[--cur];
7526                         niter = iter_stack[cur];
7527                 }
7528
7529                 now = next;
7530                 iter = niter;
7531         }
7532
7533         return 0;
7534 }
7535
7536 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7537                                              struct list_head **iter)
7538 {
7539         struct netdev_adjacent *lower;
7540
7541         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7542         if (&lower->list == &dev->adj_list.lower)
7543                 return NULL;
7544
7545         *iter = &lower->list;
7546
7547         return lower->dev;
7548 }
7549 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7550
7551 static u8 __netdev_upper_depth(struct net_device *dev)
7552 {
7553         struct net_device *udev;
7554         struct list_head *iter;
7555         u8 max_depth = 0;
7556         bool ignore;
7557
7558         for (iter = &dev->adj_list.upper,
7559              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7560              udev;
7561              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7562                 if (ignore)
7563                         continue;
7564                 if (max_depth < udev->upper_level)
7565                         max_depth = udev->upper_level;
7566         }
7567
7568         return max_depth;
7569 }
7570
7571 static u8 __netdev_lower_depth(struct net_device *dev)
7572 {
7573         struct net_device *ldev;
7574         struct list_head *iter;
7575         u8 max_depth = 0;
7576         bool ignore;
7577
7578         for (iter = &dev->adj_list.lower,
7579              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7580              ldev;
7581              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7582                 if (ignore)
7583                         continue;
7584                 if (max_depth < ldev->lower_level)
7585                         max_depth = ldev->lower_level;
7586         }
7587
7588         return max_depth;
7589 }
7590
7591 static int __netdev_update_upper_level(struct net_device *dev,
7592                                        struct netdev_nested_priv *__unused)
7593 {
7594         dev->upper_level = __netdev_upper_depth(dev) + 1;
7595         return 0;
7596 }
7597
7598 #ifdef CONFIG_LOCKDEP
7599 static LIST_HEAD(net_unlink_list);
7600
7601 static void net_unlink_todo(struct net_device *dev)
7602 {
7603         if (list_empty(&dev->unlink_list))
7604                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7605 }
7606 #endif
7607
7608 static int __netdev_update_lower_level(struct net_device *dev,
7609                                        struct netdev_nested_priv *priv)
7610 {
7611         dev->lower_level = __netdev_lower_depth(dev) + 1;
7612
7613 #ifdef CONFIG_LOCKDEP
7614         if (!priv)
7615                 return 0;
7616
7617         if (priv->flags & NESTED_SYNC_IMM)
7618                 dev->nested_level = dev->lower_level - 1;
7619         if (priv->flags & NESTED_SYNC_TODO)
7620                 net_unlink_todo(dev);
7621 #endif
7622         return 0;
7623 }
7624
7625 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7626                                   int (*fn)(struct net_device *dev,
7627                                             struct netdev_nested_priv *priv),
7628                                   struct netdev_nested_priv *priv)
7629 {
7630         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7631         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7632         int ret, cur = 0;
7633
7634         now = dev;
7635         iter = &dev->adj_list.lower;
7636
7637         while (1) {
7638                 if (now != dev) {
7639                         ret = fn(now, priv);
7640                         if (ret)
7641                                 return ret;
7642                 }
7643
7644                 next = NULL;
7645                 while (1) {
7646                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7647                         if (!ldev)
7648                                 break;
7649
7650                         next = ldev;
7651                         niter = &ldev->adj_list.lower;
7652                         dev_stack[cur] = now;
7653                         iter_stack[cur++] = iter;
7654                         break;
7655                 }
7656
7657                 if (!next) {
7658                         if (!cur)
7659                                 return 0;
7660                         next = dev_stack[--cur];
7661                         niter = iter_stack[cur];
7662                 }
7663
7664                 now = next;
7665                 iter = niter;
7666         }
7667
7668         return 0;
7669 }
7670 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7671
7672 /**
7673  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7674  *                                     lower neighbour list, RCU
7675  *                                     variant
7676  * @dev: device
7677  *
7678  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7679  * list. The caller must hold RCU read lock.
7680  */
7681 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7682 {
7683         struct netdev_adjacent *lower;
7684
7685         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7686                         struct netdev_adjacent, list);
7687         if (lower)
7688                 return lower->private;
7689         return NULL;
7690 }
7691 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7692
7693 /**
7694  * netdev_master_upper_dev_get_rcu - Get master upper device
7695  * @dev: device
7696  *
7697  * Find a master upper device and return pointer to it or NULL in case
7698  * it's not there. The caller must hold the RCU read lock.
7699  */
7700 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7701 {
7702         struct netdev_adjacent *upper;
7703
7704         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7705                                        struct netdev_adjacent, list);
7706         if (upper && likely(upper->master))
7707                 return upper->dev;
7708         return NULL;
7709 }
7710 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7711
7712 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7713                               struct net_device *adj_dev,
7714                               struct list_head *dev_list)
7715 {
7716         char linkname[IFNAMSIZ+7];
7717
7718         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7719                 "upper_%s" : "lower_%s", adj_dev->name);
7720         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7721                                  linkname);
7722 }
7723 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7724                                char *name,
7725                                struct list_head *dev_list)
7726 {
7727         char linkname[IFNAMSIZ+7];
7728
7729         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7730                 "upper_%s" : "lower_%s", name);
7731         sysfs_remove_link(&(dev->dev.kobj), linkname);
7732 }
7733
7734 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7735                                                  struct net_device *adj_dev,
7736                                                  struct list_head *dev_list)
7737 {
7738         return (dev_list == &dev->adj_list.upper ||
7739                 dev_list == &dev->adj_list.lower) &&
7740                 net_eq(dev_net(dev), dev_net(adj_dev));
7741 }
7742
7743 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7744                                         struct net_device *adj_dev,
7745                                         struct list_head *dev_list,
7746                                         void *private, bool master)
7747 {
7748         struct netdev_adjacent *adj;
7749         int ret;
7750
7751         adj = __netdev_find_adj(adj_dev, dev_list);
7752
7753         if (adj) {
7754                 adj->ref_nr += 1;
7755                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7756                          dev->name, adj_dev->name, adj->ref_nr);
7757
7758                 return 0;
7759         }
7760
7761         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7762         if (!adj)
7763                 return -ENOMEM;
7764
7765         adj->dev = adj_dev;
7766         adj->master = master;
7767         adj->ref_nr = 1;
7768         adj->private = private;
7769         adj->ignore = false;
7770         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7771
7772         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7773                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7774
7775         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7776                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7777                 if (ret)
7778                         goto free_adj;
7779         }
7780
7781         /* Ensure that master link is always the first item in list. */
7782         if (master) {
7783                 ret = sysfs_create_link(&(dev->dev.kobj),
7784                                         &(adj_dev->dev.kobj), "master");
7785                 if (ret)
7786                         goto remove_symlinks;
7787
7788                 list_add_rcu(&adj->list, dev_list);
7789         } else {
7790                 list_add_tail_rcu(&adj->list, dev_list);
7791         }
7792
7793         return 0;
7794
7795 remove_symlinks:
7796         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7797                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7798 free_adj:
7799         netdev_put(adj_dev, &adj->dev_tracker);
7800         kfree(adj);
7801
7802         return ret;
7803 }
7804
7805 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7806                                          struct net_device *adj_dev,
7807                                          u16 ref_nr,
7808                                          struct list_head *dev_list)
7809 {
7810         struct netdev_adjacent *adj;
7811
7812         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7813                  dev->name, adj_dev->name, ref_nr);
7814
7815         adj = __netdev_find_adj(adj_dev, dev_list);
7816
7817         if (!adj) {
7818                 pr_err("Adjacency does not exist for device %s from %s\n",
7819                        dev->name, adj_dev->name);
7820                 WARN_ON(1);
7821                 return;
7822         }
7823
7824         if (adj->ref_nr > ref_nr) {
7825                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7826                          dev->name, adj_dev->name, ref_nr,
7827                          adj->ref_nr - ref_nr);
7828                 adj->ref_nr -= ref_nr;
7829                 return;
7830         }
7831
7832         if (adj->master)
7833                 sysfs_remove_link(&(dev->dev.kobj), "master");
7834
7835         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7836                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7837
7838         list_del_rcu(&adj->list);
7839         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7840                  adj_dev->name, dev->name, adj_dev->name);
7841         netdev_put(adj_dev, &adj->dev_tracker);
7842         kfree_rcu(adj, rcu);
7843 }
7844
7845 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7846                                             struct net_device *upper_dev,
7847                                             struct list_head *up_list,
7848                                             struct list_head *down_list,
7849                                             void *private, bool master)
7850 {
7851         int ret;
7852
7853         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7854                                            private, master);
7855         if (ret)
7856                 return ret;
7857
7858         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7859                                            private, false);
7860         if (ret) {
7861                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7862                 return ret;
7863         }
7864
7865         return 0;
7866 }
7867
7868 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7869                                                struct net_device *upper_dev,
7870                                                u16 ref_nr,
7871                                                struct list_head *up_list,
7872                                                struct list_head *down_list)
7873 {
7874         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7875         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7876 }
7877
7878 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7879                                                 struct net_device *upper_dev,
7880                                                 void *private, bool master)
7881 {
7882         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7883                                                 &dev->adj_list.upper,
7884                                                 &upper_dev->adj_list.lower,
7885                                                 private, master);
7886 }
7887
7888 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7889                                                    struct net_device *upper_dev)
7890 {
7891         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7892                                            &dev->adj_list.upper,
7893                                            &upper_dev->adj_list.lower);
7894 }
7895
7896 static int __netdev_upper_dev_link(struct net_device *dev,
7897                                    struct net_device *upper_dev, bool master,
7898                                    void *upper_priv, void *upper_info,
7899                                    struct netdev_nested_priv *priv,
7900                                    struct netlink_ext_ack *extack)
7901 {
7902         struct netdev_notifier_changeupper_info changeupper_info = {
7903                 .info = {
7904                         .dev = dev,
7905                         .extack = extack,
7906                 },
7907                 .upper_dev = upper_dev,
7908                 .master = master,
7909                 .linking = true,
7910                 .upper_info = upper_info,
7911         };
7912         struct net_device *master_dev;
7913         int ret = 0;
7914
7915         ASSERT_RTNL();
7916
7917         if (dev == upper_dev)
7918                 return -EBUSY;
7919
7920         /* To prevent loops, check if dev is not upper device to upper_dev. */
7921         if (__netdev_has_upper_dev(upper_dev, dev))
7922                 return -EBUSY;
7923
7924         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7925                 return -EMLINK;
7926
7927         if (!master) {
7928                 if (__netdev_has_upper_dev(dev, upper_dev))
7929                         return -EEXIST;
7930         } else {
7931                 master_dev = __netdev_master_upper_dev_get(dev);
7932                 if (master_dev)
7933                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7934         }
7935
7936         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7937                                             &changeupper_info.info);
7938         ret = notifier_to_errno(ret);
7939         if (ret)
7940                 return ret;
7941
7942         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7943                                                    master);
7944         if (ret)
7945                 return ret;
7946
7947         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7948                                             &changeupper_info.info);
7949         ret = notifier_to_errno(ret);
7950         if (ret)
7951                 goto rollback;
7952
7953         __netdev_update_upper_level(dev, NULL);
7954         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7955
7956         __netdev_update_lower_level(upper_dev, priv);
7957         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7958                                     priv);
7959
7960         return 0;
7961
7962 rollback:
7963         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7964
7965         return ret;
7966 }
7967
7968 /**
7969  * netdev_upper_dev_link - Add a link to the upper device
7970  * @dev: device
7971  * @upper_dev: new upper device
7972  * @extack: netlink extended ack
7973  *
7974  * Adds a link to device which is upper to this one. The caller must hold
7975  * the RTNL lock. On a failure a negative errno code is returned.
7976  * On success the reference counts are adjusted and the function
7977  * returns zero.
7978  */
7979 int netdev_upper_dev_link(struct net_device *dev,
7980                           struct net_device *upper_dev,
7981                           struct netlink_ext_ack *extack)
7982 {
7983         struct netdev_nested_priv priv = {
7984                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7985                 .data = NULL,
7986         };
7987
7988         return __netdev_upper_dev_link(dev, upper_dev, false,
7989                                        NULL, NULL, &priv, extack);
7990 }
7991 EXPORT_SYMBOL(netdev_upper_dev_link);
7992
7993 /**
7994  * netdev_master_upper_dev_link - Add a master link to the upper device
7995  * @dev: device
7996  * @upper_dev: new upper device
7997  * @upper_priv: upper device private
7998  * @upper_info: upper info to be passed down via notifier
7999  * @extack: netlink extended ack
8000  *
8001  * Adds a link to device which is upper to this one. In this case, only
8002  * one master upper device can be linked, although other non-master devices
8003  * might be linked as well. The caller must hold the RTNL lock.
8004  * On a failure a negative errno code is returned. On success the reference
8005  * counts are adjusted and the function returns zero.
8006  */
8007 int netdev_master_upper_dev_link(struct net_device *dev,
8008                                  struct net_device *upper_dev,
8009                                  void *upper_priv, void *upper_info,
8010                                  struct netlink_ext_ack *extack)
8011 {
8012         struct netdev_nested_priv priv = {
8013                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8014                 .data = NULL,
8015         };
8016
8017         return __netdev_upper_dev_link(dev, upper_dev, true,
8018                                        upper_priv, upper_info, &priv, extack);
8019 }
8020 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8021
8022 static void __netdev_upper_dev_unlink(struct net_device *dev,
8023                                       struct net_device *upper_dev,
8024                                       struct netdev_nested_priv *priv)
8025 {
8026         struct netdev_notifier_changeupper_info changeupper_info = {
8027                 .info = {
8028                         .dev = dev,
8029                 },
8030                 .upper_dev = upper_dev,
8031                 .linking = false,
8032         };
8033
8034         ASSERT_RTNL();
8035
8036         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8037
8038         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8039                                       &changeupper_info.info);
8040
8041         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8042
8043         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8044                                       &changeupper_info.info);
8045
8046         __netdev_update_upper_level(dev, NULL);
8047         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8048
8049         __netdev_update_lower_level(upper_dev, priv);
8050         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8051                                     priv);
8052 }
8053
8054 /**
8055  * netdev_upper_dev_unlink - Removes a link to upper device
8056  * @dev: device
8057  * @upper_dev: new upper device
8058  *
8059  * Removes a link to device which is upper to this one. The caller must hold
8060  * the RTNL lock.
8061  */
8062 void netdev_upper_dev_unlink(struct net_device *dev,
8063                              struct net_device *upper_dev)
8064 {
8065         struct netdev_nested_priv priv = {
8066                 .flags = NESTED_SYNC_TODO,
8067                 .data = NULL,
8068         };
8069
8070         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8071 }
8072 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8073
8074 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8075                                       struct net_device *lower_dev,
8076                                       bool val)
8077 {
8078         struct netdev_adjacent *adj;
8079
8080         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8081         if (adj)
8082                 adj->ignore = val;
8083
8084         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8085         if (adj)
8086                 adj->ignore = val;
8087 }
8088
8089 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8090                                         struct net_device *lower_dev)
8091 {
8092         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8093 }
8094
8095 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8096                                        struct net_device *lower_dev)
8097 {
8098         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8099 }
8100
8101 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8102                                    struct net_device *new_dev,
8103                                    struct net_device *dev,
8104                                    struct netlink_ext_ack *extack)
8105 {
8106         struct netdev_nested_priv priv = {
8107                 .flags = 0,
8108                 .data = NULL,
8109         };
8110         int err;
8111
8112         if (!new_dev)
8113                 return 0;
8114
8115         if (old_dev && new_dev != old_dev)
8116                 netdev_adjacent_dev_disable(dev, old_dev);
8117         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8118                                       extack);
8119         if (err) {
8120                 if (old_dev && new_dev != old_dev)
8121                         netdev_adjacent_dev_enable(dev, old_dev);
8122                 return err;
8123         }
8124
8125         return 0;
8126 }
8127 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8128
8129 void netdev_adjacent_change_commit(struct net_device *old_dev,
8130                                    struct net_device *new_dev,
8131                                    struct net_device *dev)
8132 {
8133         struct netdev_nested_priv priv = {
8134                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8135                 .data = NULL,
8136         };
8137
8138         if (!new_dev || !old_dev)
8139                 return;
8140
8141         if (new_dev == old_dev)
8142                 return;
8143
8144         netdev_adjacent_dev_enable(dev, old_dev);
8145         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8146 }
8147 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8148
8149 void netdev_adjacent_change_abort(struct net_device *old_dev,
8150                                   struct net_device *new_dev,
8151                                   struct net_device *dev)
8152 {
8153         struct netdev_nested_priv priv = {
8154                 .flags = 0,
8155                 .data = NULL,
8156         };
8157
8158         if (!new_dev)
8159                 return;
8160
8161         if (old_dev && new_dev != old_dev)
8162                 netdev_adjacent_dev_enable(dev, old_dev);
8163
8164         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8165 }
8166 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8167
8168 /**
8169  * netdev_bonding_info_change - Dispatch event about slave change
8170  * @dev: device
8171  * @bonding_info: info to dispatch
8172  *
8173  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8174  * The caller must hold the RTNL lock.
8175  */
8176 void netdev_bonding_info_change(struct net_device *dev,
8177                                 struct netdev_bonding_info *bonding_info)
8178 {
8179         struct netdev_notifier_bonding_info info = {
8180                 .info.dev = dev,
8181         };
8182
8183         memcpy(&info.bonding_info, bonding_info,
8184                sizeof(struct netdev_bonding_info));
8185         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8186                                       &info.info);
8187 }
8188 EXPORT_SYMBOL(netdev_bonding_info_change);
8189
8190 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8191                                            struct netlink_ext_ack *extack)
8192 {
8193         struct netdev_notifier_offload_xstats_info info = {
8194                 .info.dev = dev,
8195                 .info.extack = extack,
8196                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8197         };
8198         int err;
8199         int rc;
8200
8201         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8202                                          GFP_KERNEL);
8203         if (!dev->offload_xstats_l3)
8204                 return -ENOMEM;
8205
8206         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8207                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
8208                                                   &info.info);
8209         err = notifier_to_errno(rc);
8210         if (err)
8211                 goto free_stats;
8212
8213         return 0;
8214
8215 free_stats:
8216         kfree(dev->offload_xstats_l3);
8217         dev->offload_xstats_l3 = NULL;
8218         return err;
8219 }
8220
8221 int netdev_offload_xstats_enable(struct net_device *dev,
8222                                  enum netdev_offload_xstats_type type,
8223                                  struct netlink_ext_ack *extack)
8224 {
8225         ASSERT_RTNL();
8226
8227         if (netdev_offload_xstats_enabled(dev, type))
8228                 return -EALREADY;
8229
8230         switch (type) {
8231         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8232                 return netdev_offload_xstats_enable_l3(dev, extack);
8233         }
8234
8235         WARN_ON(1);
8236         return -EINVAL;
8237 }
8238 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8239
8240 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8241 {
8242         struct netdev_notifier_offload_xstats_info info = {
8243                 .info.dev = dev,
8244                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8245         };
8246
8247         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8248                                       &info.info);
8249         kfree(dev->offload_xstats_l3);
8250         dev->offload_xstats_l3 = NULL;
8251 }
8252
8253 int netdev_offload_xstats_disable(struct net_device *dev,
8254                                   enum netdev_offload_xstats_type type)
8255 {
8256         ASSERT_RTNL();
8257
8258         if (!netdev_offload_xstats_enabled(dev, type))
8259                 return -EALREADY;
8260
8261         switch (type) {
8262         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8263                 netdev_offload_xstats_disable_l3(dev);
8264                 return 0;
8265         }
8266
8267         WARN_ON(1);
8268         return -EINVAL;
8269 }
8270 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8271
8272 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8273 {
8274         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8275 }
8276
8277 static struct rtnl_hw_stats64 *
8278 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8279                               enum netdev_offload_xstats_type type)
8280 {
8281         switch (type) {
8282         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8283                 return dev->offload_xstats_l3;
8284         }
8285
8286         WARN_ON(1);
8287         return NULL;
8288 }
8289
8290 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8291                                    enum netdev_offload_xstats_type type)
8292 {
8293         ASSERT_RTNL();
8294
8295         return netdev_offload_xstats_get_ptr(dev, type);
8296 }
8297 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8298
8299 struct netdev_notifier_offload_xstats_ru {
8300         bool used;
8301 };
8302
8303 struct netdev_notifier_offload_xstats_rd {
8304         struct rtnl_hw_stats64 stats;
8305         bool used;
8306 };
8307
8308 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8309                                   const struct rtnl_hw_stats64 *src)
8310 {
8311         dest->rx_packets          += src->rx_packets;
8312         dest->tx_packets          += src->tx_packets;
8313         dest->rx_bytes            += src->rx_bytes;
8314         dest->tx_bytes            += src->tx_bytes;
8315         dest->rx_errors           += src->rx_errors;
8316         dest->tx_errors           += src->tx_errors;
8317         dest->rx_dropped          += src->rx_dropped;
8318         dest->tx_dropped          += src->tx_dropped;
8319         dest->multicast           += src->multicast;
8320 }
8321
8322 static int netdev_offload_xstats_get_used(struct net_device *dev,
8323                                           enum netdev_offload_xstats_type type,
8324                                           bool *p_used,
8325                                           struct netlink_ext_ack *extack)
8326 {
8327         struct netdev_notifier_offload_xstats_ru report_used = {};
8328         struct netdev_notifier_offload_xstats_info info = {
8329                 .info.dev = dev,
8330                 .info.extack = extack,
8331                 .type = type,
8332                 .report_used = &report_used,
8333         };
8334         int rc;
8335
8336         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8337         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8338                                            &info.info);
8339         *p_used = report_used.used;
8340         return notifier_to_errno(rc);
8341 }
8342
8343 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8344                                            enum netdev_offload_xstats_type type,
8345                                            struct rtnl_hw_stats64 *p_stats,
8346                                            bool *p_used,
8347                                            struct netlink_ext_ack *extack)
8348 {
8349         struct netdev_notifier_offload_xstats_rd report_delta = {};
8350         struct netdev_notifier_offload_xstats_info info = {
8351                 .info.dev = dev,
8352                 .info.extack = extack,
8353                 .type = type,
8354                 .report_delta = &report_delta,
8355         };
8356         struct rtnl_hw_stats64 *stats;
8357         int rc;
8358
8359         stats = netdev_offload_xstats_get_ptr(dev, type);
8360         if (WARN_ON(!stats))
8361                 return -EINVAL;
8362
8363         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8364                                            &info.info);
8365
8366         /* Cache whatever we got, even if there was an error, otherwise the
8367          * successful stats retrievals would get lost.
8368          */
8369         netdev_hw_stats64_add(stats, &report_delta.stats);
8370
8371         if (p_stats)
8372                 *p_stats = *stats;
8373         *p_used = report_delta.used;
8374
8375         return notifier_to_errno(rc);
8376 }
8377
8378 int netdev_offload_xstats_get(struct net_device *dev,
8379                               enum netdev_offload_xstats_type type,
8380                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8381                               struct netlink_ext_ack *extack)
8382 {
8383         ASSERT_RTNL();
8384
8385         if (p_stats)
8386                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8387                                                        p_used, extack);
8388         else
8389                 return netdev_offload_xstats_get_used(dev, type, p_used,
8390                                                       extack);
8391 }
8392 EXPORT_SYMBOL(netdev_offload_xstats_get);
8393
8394 void
8395 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8396                                    const struct rtnl_hw_stats64 *stats)
8397 {
8398         report_delta->used = true;
8399         netdev_hw_stats64_add(&report_delta->stats, stats);
8400 }
8401 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8402
8403 void
8404 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8405 {
8406         report_used->used = true;
8407 }
8408 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8409
8410 void netdev_offload_xstats_push_delta(struct net_device *dev,
8411                                       enum netdev_offload_xstats_type type,
8412                                       const struct rtnl_hw_stats64 *p_stats)
8413 {
8414         struct rtnl_hw_stats64 *stats;
8415
8416         ASSERT_RTNL();
8417
8418         stats = netdev_offload_xstats_get_ptr(dev, type);
8419         if (WARN_ON(!stats))
8420                 return;
8421
8422         netdev_hw_stats64_add(stats, p_stats);
8423 }
8424 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8425
8426 /**
8427  * netdev_get_xmit_slave - Get the xmit slave of master device
8428  * @dev: device
8429  * @skb: The packet
8430  * @all_slaves: assume all the slaves are active
8431  *
8432  * The reference counters are not incremented so the caller must be
8433  * careful with locks. The caller must hold RCU lock.
8434  * %NULL is returned if no slave is found.
8435  */
8436
8437 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8438                                          struct sk_buff *skb,
8439                                          bool all_slaves)
8440 {
8441         const struct net_device_ops *ops = dev->netdev_ops;
8442
8443         if (!ops->ndo_get_xmit_slave)
8444                 return NULL;
8445         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8446 }
8447 EXPORT_SYMBOL(netdev_get_xmit_slave);
8448
8449 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8450                                                   struct sock *sk)
8451 {
8452         const struct net_device_ops *ops = dev->netdev_ops;
8453
8454         if (!ops->ndo_sk_get_lower_dev)
8455                 return NULL;
8456         return ops->ndo_sk_get_lower_dev(dev, sk);
8457 }
8458
8459 /**
8460  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8461  * @dev: device
8462  * @sk: the socket
8463  *
8464  * %NULL is returned if no lower device is found.
8465  */
8466
8467 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8468                                             struct sock *sk)
8469 {
8470         struct net_device *lower;
8471
8472         lower = netdev_sk_get_lower_dev(dev, sk);
8473         while (lower) {
8474                 dev = lower;
8475                 lower = netdev_sk_get_lower_dev(dev, sk);
8476         }
8477
8478         return dev;
8479 }
8480 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8481
8482 static void netdev_adjacent_add_links(struct net_device *dev)
8483 {
8484         struct netdev_adjacent *iter;
8485
8486         struct net *net = dev_net(dev);
8487
8488         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8489                 if (!net_eq(net, dev_net(iter->dev)))
8490                         continue;
8491                 netdev_adjacent_sysfs_add(iter->dev, dev,
8492                                           &iter->dev->adj_list.lower);
8493                 netdev_adjacent_sysfs_add(dev, iter->dev,
8494                                           &dev->adj_list.upper);
8495         }
8496
8497         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8498                 if (!net_eq(net, dev_net(iter->dev)))
8499                         continue;
8500                 netdev_adjacent_sysfs_add(iter->dev, dev,
8501                                           &iter->dev->adj_list.upper);
8502                 netdev_adjacent_sysfs_add(dev, iter->dev,
8503                                           &dev->adj_list.lower);
8504         }
8505 }
8506
8507 static void netdev_adjacent_del_links(struct net_device *dev)
8508 {
8509         struct netdev_adjacent *iter;
8510
8511         struct net *net = dev_net(dev);
8512
8513         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8514                 if (!net_eq(net, dev_net(iter->dev)))
8515                         continue;
8516                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8517                                           &iter->dev->adj_list.lower);
8518                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8519                                           &dev->adj_list.upper);
8520         }
8521
8522         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8523                 if (!net_eq(net, dev_net(iter->dev)))
8524                         continue;
8525                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8526                                           &iter->dev->adj_list.upper);
8527                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8528                                           &dev->adj_list.lower);
8529         }
8530 }
8531
8532 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8533 {
8534         struct netdev_adjacent *iter;
8535
8536         struct net *net = dev_net(dev);
8537
8538         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8539                 if (!net_eq(net, dev_net(iter->dev)))
8540                         continue;
8541                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8542                                           &iter->dev->adj_list.lower);
8543                 netdev_adjacent_sysfs_add(iter->dev, dev,
8544                                           &iter->dev->adj_list.lower);
8545         }
8546
8547         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8548                 if (!net_eq(net, dev_net(iter->dev)))
8549                         continue;
8550                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8551                                           &iter->dev->adj_list.upper);
8552                 netdev_adjacent_sysfs_add(iter->dev, dev,
8553                                           &iter->dev->adj_list.upper);
8554         }
8555 }
8556
8557 void *netdev_lower_dev_get_private(struct net_device *dev,
8558                                    struct net_device *lower_dev)
8559 {
8560         struct netdev_adjacent *lower;
8561
8562         if (!lower_dev)
8563                 return NULL;
8564         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8565         if (!lower)
8566                 return NULL;
8567
8568         return lower->private;
8569 }
8570 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8571
8572
8573 /**
8574  * netdev_lower_state_changed - Dispatch event about lower device state change
8575  * @lower_dev: device
8576  * @lower_state_info: state to dispatch
8577  *
8578  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8579  * The caller must hold the RTNL lock.
8580  */
8581 void netdev_lower_state_changed(struct net_device *lower_dev,
8582                                 void *lower_state_info)
8583 {
8584         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8585                 .info.dev = lower_dev,
8586         };
8587
8588         ASSERT_RTNL();
8589         changelowerstate_info.lower_state_info = lower_state_info;
8590         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8591                                       &changelowerstate_info.info);
8592 }
8593 EXPORT_SYMBOL(netdev_lower_state_changed);
8594
8595 static void dev_change_rx_flags(struct net_device *dev, int flags)
8596 {
8597         const struct net_device_ops *ops = dev->netdev_ops;
8598
8599         if (ops->ndo_change_rx_flags)
8600                 ops->ndo_change_rx_flags(dev, flags);
8601 }
8602
8603 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8604 {
8605         unsigned int old_flags = dev->flags;
8606         unsigned int promiscuity, flags;
8607         kuid_t uid;
8608         kgid_t gid;
8609
8610         ASSERT_RTNL();
8611
8612         promiscuity = dev->promiscuity + inc;
8613         if (promiscuity == 0) {
8614                 /*
8615                  * Avoid overflow.
8616                  * If inc causes overflow, untouch promisc and return error.
8617                  */
8618                 if (unlikely(inc > 0)) {
8619                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8620                         return -EOVERFLOW;
8621                 }
8622                 flags = old_flags & ~IFF_PROMISC;
8623         } else {
8624                 flags = old_flags | IFF_PROMISC;
8625         }
8626         WRITE_ONCE(dev->promiscuity, promiscuity);
8627         if (flags != old_flags) {
8628                 WRITE_ONCE(dev->flags, flags);
8629                 netdev_info(dev, "%s promiscuous mode\n",
8630                             dev->flags & IFF_PROMISC ? "entered" : "left");
8631                 if (audit_enabled) {
8632                         current_uid_gid(&uid, &gid);
8633                         audit_log(audit_context(), GFP_ATOMIC,
8634                                   AUDIT_ANOM_PROMISCUOUS,
8635                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8636                                   dev->name, (dev->flags & IFF_PROMISC),
8637                                   (old_flags & IFF_PROMISC),
8638                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8639                                   from_kuid(&init_user_ns, uid),
8640                                   from_kgid(&init_user_ns, gid),
8641                                   audit_get_sessionid(current));
8642                 }
8643
8644                 dev_change_rx_flags(dev, IFF_PROMISC);
8645         }
8646         if (notify)
8647                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8648         return 0;
8649 }
8650
8651 /**
8652  *      dev_set_promiscuity     - update promiscuity count on a device
8653  *      @dev: device
8654  *      @inc: modifier
8655  *
8656  *      Add or remove promiscuity from a device. While the count in the device
8657  *      remains above zero the interface remains promiscuous. Once it hits zero
8658  *      the device reverts back to normal filtering operation. A negative inc
8659  *      value is used to drop promiscuity on the device.
8660  *      Return 0 if successful or a negative errno code on error.
8661  */
8662 int dev_set_promiscuity(struct net_device *dev, int inc)
8663 {
8664         unsigned int old_flags = dev->flags;
8665         int err;
8666
8667         err = __dev_set_promiscuity(dev, inc, true);
8668         if (err < 0)
8669                 return err;
8670         if (dev->flags != old_flags)
8671                 dev_set_rx_mode(dev);
8672         return err;
8673 }
8674 EXPORT_SYMBOL(dev_set_promiscuity);
8675
8676 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8677 {
8678         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8679         unsigned int allmulti, flags;
8680
8681         ASSERT_RTNL();
8682
8683         allmulti = dev->allmulti + inc;
8684         if (allmulti == 0) {
8685                 /*
8686                  * Avoid overflow.
8687                  * If inc causes overflow, untouch allmulti and return error.
8688                  */
8689                 if (unlikely(inc > 0)) {
8690                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8691                         return -EOVERFLOW;
8692                 }
8693                 flags = old_flags & ~IFF_ALLMULTI;
8694         } else {
8695                 flags = old_flags | IFF_ALLMULTI;
8696         }
8697         WRITE_ONCE(dev->allmulti, allmulti);
8698         if (flags != old_flags) {
8699                 WRITE_ONCE(dev->flags, flags);
8700                 netdev_info(dev, "%s allmulticast mode\n",
8701                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8702                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8703                 dev_set_rx_mode(dev);
8704                 if (notify)
8705                         __dev_notify_flags(dev, old_flags,
8706                                            dev->gflags ^ old_gflags, 0, NULL);
8707         }
8708         return 0;
8709 }
8710
8711 /**
8712  *      dev_set_allmulti        - update allmulti count on a device
8713  *      @dev: device
8714  *      @inc: modifier
8715  *
8716  *      Add or remove reception of all multicast frames to a device. While the
8717  *      count in the device remains above zero the interface remains listening
8718  *      to all interfaces. Once it hits zero the device reverts back to normal
8719  *      filtering operation. A negative @inc value is used to drop the counter
8720  *      when releasing a resource needing all multicasts.
8721  *      Return 0 if successful or a negative errno code on error.
8722  */
8723
8724 int dev_set_allmulti(struct net_device *dev, int inc)
8725 {
8726         return __dev_set_allmulti(dev, inc, true);
8727 }
8728 EXPORT_SYMBOL(dev_set_allmulti);
8729
8730 /*
8731  *      Upload unicast and multicast address lists to device and
8732  *      configure RX filtering. When the device doesn't support unicast
8733  *      filtering it is put in promiscuous mode while unicast addresses
8734  *      are present.
8735  */
8736 void __dev_set_rx_mode(struct net_device *dev)
8737 {
8738         const struct net_device_ops *ops = dev->netdev_ops;
8739
8740         /* dev_open will call this function so the list will stay sane. */
8741         if (!(dev->flags&IFF_UP))
8742                 return;
8743
8744         if (!netif_device_present(dev))
8745                 return;
8746
8747         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8748                 /* Unicast addresses changes may only happen under the rtnl,
8749                  * therefore calling __dev_set_promiscuity here is safe.
8750                  */
8751                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8752                         __dev_set_promiscuity(dev, 1, false);
8753                         dev->uc_promisc = true;
8754                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8755                         __dev_set_promiscuity(dev, -1, false);
8756                         dev->uc_promisc = false;
8757                 }
8758         }
8759
8760         if (ops->ndo_set_rx_mode)
8761                 ops->ndo_set_rx_mode(dev);
8762 }
8763
8764 void dev_set_rx_mode(struct net_device *dev)
8765 {
8766         netif_addr_lock_bh(dev);
8767         __dev_set_rx_mode(dev);
8768         netif_addr_unlock_bh(dev);
8769 }
8770
8771 /**
8772  *      dev_get_flags - get flags reported to userspace
8773  *      @dev: device
8774  *
8775  *      Get the combination of flag bits exported through APIs to userspace.
8776  */
8777 unsigned int dev_get_flags(const struct net_device *dev)
8778 {
8779         unsigned int flags;
8780
8781         flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8782                                 IFF_ALLMULTI |
8783                                 IFF_RUNNING |
8784                                 IFF_LOWER_UP |
8785                                 IFF_DORMANT)) |
8786                 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
8787                                 IFF_ALLMULTI));
8788
8789         if (netif_running(dev)) {
8790                 if (netif_oper_up(dev))
8791                         flags |= IFF_RUNNING;
8792                 if (netif_carrier_ok(dev))
8793                         flags |= IFF_LOWER_UP;
8794                 if (netif_dormant(dev))
8795                         flags |= IFF_DORMANT;
8796         }
8797
8798         return flags;
8799 }
8800 EXPORT_SYMBOL(dev_get_flags);
8801
8802 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8803                        struct netlink_ext_ack *extack)
8804 {
8805         unsigned int old_flags = dev->flags;
8806         int ret;
8807
8808         ASSERT_RTNL();
8809
8810         /*
8811          *      Set the flags on our device.
8812          */
8813
8814         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8815                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8816                                IFF_AUTOMEDIA)) |
8817                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8818                                     IFF_ALLMULTI));
8819
8820         /*
8821          *      Load in the correct multicast list now the flags have changed.
8822          */
8823
8824         if ((old_flags ^ flags) & IFF_MULTICAST)
8825                 dev_change_rx_flags(dev, IFF_MULTICAST);
8826
8827         dev_set_rx_mode(dev);
8828
8829         /*
8830          *      Have we downed the interface. We handle IFF_UP ourselves
8831          *      according to user attempts to set it, rather than blindly
8832          *      setting it.
8833          */
8834
8835         ret = 0;
8836         if ((old_flags ^ flags) & IFF_UP) {
8837                 if (old_flags & IFF_UP)
8838                         __dev_close(dev);
8839                 else
8840                         ret = __dev_open(dev, extack);
8841         }
8842
8843         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8844                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8845                 unsigned int old_flags = dev->flags;
8846
8847                 dev->gflags ^= IFF_PROMISC;
8848
8849                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8850                         if (dev->flags != old_flags)
8851                                 dev_set_rx_mode(dev);
8852         }
8853
8854         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8855          * is important. Some (broken) drivers set IFF_PROMISC, when
8856          * IFF_ALLMULTI is requested not asking us and not reporting.
8857          */
8858         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8859                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8860
8861                 dev->gflags ^= IFF_ALLMULTI;
8862                 __dev_set_allmulti(dev, inc, false);
8863         }
8864
8865         return ret;
8866 }
8867
8868 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8869                         unsigned int gchanges, u32 portid,
8870                         const struct nlmsghdr *nlh)
8871 {
8872         unsigned int changes = dev->flags ^ old_flags;
8873
8874         if (gchanges)
8875                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8876
8877         if (changes & IFF_UP) {
8878                 if (dev->flags & IFF_UP)
8879                         call_netdevice_notifiers(NETDEV_UP, dev);
8880                 else
8881                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8882         }
8883
8884         if (dev->flags & IFF_UP &&
8885             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8886                 struct netdev_notifier_change_info change_info = {
8887                         .info = {
8888                                 .dev = dev,
8889                         },
8890                         .flags_changed = changes,
8891                 };
8892
8893                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8894         }
8895 }
8896
8897 /**
8898  *      dev_change_flags - change device settings
8899  *      @dev: device
8900  *      @flags: device state flags
8901  *      @extack: netlink extended ack
8902  *
8903  *      Change settings on device based state flags. The flags are
8904  *      in the userspace exported format.
8905  */
8906 int dev_change_flags(struct net_device *dev, unsigned int flags,
8907                      struct netlink_ext_ack *extack)
8908 {
8909         int ret;
8910         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8911
8912         ret = __dev_change_flags(dev, flags, extack);
8913         if (ret < 0)
8914                 return ret;
8915
8916         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8917         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8918         return ret;
8919 }
8920 EXPORT_SYMBOL(dev_change_flags);
8921
8922 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8923 {
8924         const struct net_device_ops *ops = dev->netdev_ops;
8925
8926         if (ops->ndo_change_mtu)
8927                 return ops->ndo_change_mtu(dev, new_mtu);
8928
8929         /* Pairs with all the lockless reads of dev->mtu in the stack */
8930         WRITE_ONCE(dev->mtu, new_mtu);
8931         return 0;
8932 }
8933 EXPORT_SYMBOL(__dev_set_mtu);
8934
8935 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8936                      struct netlink_ext_ack *extack)
8937 {
8938         /* MTU must be positive, and in range */
8939         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8940                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8941                 return -EINVAL;
8942         }
8943
8944         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8945                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8946                 return -EINVAL;
8947         }
8948         return 0;
8949 }
8950
8951 /**
8952  *      dev_set_mtu_ext - Change maximum transfer unit
8953  *      @dev: device
8954  *      @new_mtu: new transfer unit
8955  *      @extack: netlink extended ack
8956  *
8957  *      Change the maximum transfer size of the network device.
8958  */
8959 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8960                     struct netlink_ext_ack *extack)
8961 {
8962         int err, orig_mtu;
8963
8964         if (new_mtu == dev->mtu)
8965                 return 0;
8966
8967         err = dev_validate_mtu(dev, new_mtu, extack);
8968         if (err)
8969                 return err;
8970
8971         if (!netif_device_present(dev))
8972                 return -ENODEV;
8973
8974         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8975         err = notifier_to_errno(err);
8976         if (err)
8977                 return err;
8978
8979         orig_mtu = dev->mtu;
8980         err = __dev_set_mtu(dev, new_mtu);
8981
8982         if (!err) {
8983                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8984                                                    orig_mtu);
8985                 err = notifier_to_errno(err);
8986                 if (err) {
8987                         /* setting mtu back and notifying everyone again,
8988                          * so that they have a chance to revert changes.
8989                          */
8990                         __dev_set_mtu(dev, orig_mtu);
8991                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8992                                                      new_mtu);
8993                 }
8994         }
8995         return err;
8996 }
8997
8998 int dev_set_mtu(struct net_device *dev, int new_mtu)
8999 {
9000         struct netlink_ext_ack extack;
9001         int err;
9002
9003         memset(&extack, 0, sizeof(extack));
9004         err = dev_set_mtu_ext(dev, new_mtu, &extack);
9005         if (err && extack._msg)
9006                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9007         return err;
9008 }
9009 EXPORT_SYMBOL(dev_set_mtu);
9010
9011 /**
9012  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
9013  *      @dev: device
9014  *      @new_len: new tx queue length
9015  */
9016 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9017 {
9018         unsigned int orig_len = dev->tx_queue_len;
9019         int res;
9020
9021         if (new_len != (unsigned int)new_len)
9022                 return -ERANGE;
9023
9024         if (new_len != orig_len) {
9025                 WRITE_ONCE(dev->tx_queue_len, new_len);
9026                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9027                 res = notifier_to_errno(res);
9028                 if (res)
9029                         goto err_rollback;
9030                 res = dev_qdisc_change_tx_queue_len(dev);
9031                 if (res)
9032                         goto err_rollback;
9033         }
9034
9035         return 0;
9036
9037 err_rollback:
9038         netdev_err(dev, "refused to change device tx_queue_len\n");
9039         WRITE_ONCE(dev->tx_queue_len, orig_len);
9040         return res;
9041 }
9042
9043 /**
9044  *      dev_set_group - Change group this device belongs to
9045  *      @dev: device
9046  *      @new_group: group this device should belong to
9047  */
9048 void dev_set_group(struct net_device *dev, int new_group)
9049 {
9050         dev->group = new_group;
9051 }
9052
9053 /**
9054  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9055  *      @dev: device
9056  *      @addr: new address
9057  *      @extack: netlink extended ack
9058  */
9059 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9060                               struct netlink_ext_ack *extack)
9061 {
9062         struct netdev_notifier_pre_changeaddr_info info = {
9063                 .info.dev = dev,
9064                 .info.extack = extack,
9065                 .dev_addr = addr,
9066         };
9067         int rc;
9068
9069         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9070         return notifier_to_errno(rc);
9071 }
9072 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9073
9074 /**
9075  *      dev_set_mac_address - Change Media Access Control Address
9076  *      @dev: device
9077  *      @sa: new address
9078  *      @extack: netlink extended ack
9079  *
9080  *      Change the hardware (MAC) address of the device
9081  */
9082 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9083                         struct netlink_ext_ack *extack)
9084 {
9085         const struct net_device_ops *ops = dev->netdev_ops;
9086         int err;
9087
9088         if (!ops->ndo_set_mac_address)
9089                 return -EOPNOTSUPP;
9090         if (sa->sa_family != dev->type)
9091                 return -EINVAL;
9092         if (!netif_device_present(dev))
9093                 return -ENODEV;
9094         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9095         if (err)
9096                 return err;
9097         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9098                 err = ops->ndo_set_mac_address(dev, sa);
9099                 if (err)
9100                         return err;
9101         }
9102         dev->addr_assign_type = NET_ADDR_SET;
9103         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9104         add_device_randomness(dev->dev_addr, dev->addr_len);
9105         return 0;
9106 }
9107 EXPORT_SYMBOL(dev_set_mac_address);
9108
9109 DECLARE_RWSEM(dev_addr_sem);
9110
9111 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9112                              struct netlink_ext_ack *extack)
9113 {
9114         int ret;
9115
9116         down_write(&dev_addr_sem);
9117         ret = dev_set_mac_address(dev, sa, extack);
9118         up_write(&dev_addr_sem);
9119         return ret;
9120 }
9121 EXPORT_SYMBOL(dev_set_mac_address_user);
9122
9123 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9124 {
9125         size_t size = sizeof(sa->sa_data_min);
9126         struct net_device *dev;
9127         int ret = 0;
9128
9129         down_read(&dev_addr_sem);
9130         rcu_read_lock();
9131
9132         dev = dev_get_by_name_rcu(net, dev_name);
9133         if (!dev) {
9134                 ret = -ENODEV;
9135                 goto unlock;
9136         }
9137         if (!dev->addr_len)
9138                 memset(sa->sa_data, 0, size);
9139         else
9140                 memcpy(sa->sa_data, dev->dev_addr,
9141                        min_t(size_t, size, dev->addr_len));
9142         sa->sa_family = dev->type;
9143
9144 unlock:
9145         rcu_read_unlock();
9146         up_read(&dev_addr_sem);
9147         return ret;
9148 }
9149 EXPORT_SYMBOL(dev_get_mac_address);
9150
9151 /**
9152  *      dev_change_carrier - Change device carrier
9153  *      @dev: device
9154  *      @new_carrier: new value
9155  *
9156  *      Change device carrier
9157  */
9158 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9159 {
9160         const struct net_device_ops *ops = dev->netdev_ops;
9161
9162         if (!ops->ndo_change_carrier)
9163                 return -EOPNOTSUPP;
9164         if (!netif_device_present(dev))
9165                 return -ENODEV;
9166         return ops->ndo_change_carrier(dev, new_carrier);
9167 }
9168
9169 /**
9170  *      dev_get_phys_port_id - Get device physical port ID
9171  *      @dev: device
9172  *      @ppid: port ID
9173  *
9174  *      Get device physical port ID
9175  */
9176 int dev_get_phys_port_id(struct net_device *dev,
9177                          struct netdev_phys_item_id *ppid)
9178 {
9179         const struct net_device_ops *ops = dev->netdev_ops;
9180
9181         if (!ops->ndo_get_phys_port_id)
9182                 return -EOPNOTSUPP;
9183         return ops->ndo_get_phys_port_id(dev, ppid);
9184 }
9185
9186 /**
9187  *      dev_get_phys_port_name - Get device physical port name
9188  *      @dev: device
9189  *      @name: port name
9190  *      @len: limit of bytes to copy to name
9191  *
9192  *      Get device physical port name
9193  */
9194 int dev_get_phys_port_name(struct net_device *dev,
9195                            char *name, size_t len)
9196 {
9197         const struct net_device_ops *ops = dev->netdev_ops;
9198         int err;
9199
9200         if (ops->ndo_get_phys_port_name) {
9201                 err = ops->ndo_get_phys_port_name(dev, name, len);
9202                 if (err != -EOPNOTSUPP)
9203                         return err;
9204         }
9205         return devlink_compat_phys_port_name_get(dev, name, len);
9206 }
9207
9208 /**
9209  *      dev_get_port_parent_id - Get the device's port parent identifier
9210  *      @dev: network device
9211  *      @ppid: pointer to a storage for the port's parent identifier
9212  *      @recurse: allow/disallow recursion to lower devices
9213  *
9214  *      Get the devices's port parent identifier
9215  */
9216 int dev_get_port_parent_id(struct net_device *dev,
9217                            struct netdev_phys_item_id *ppid,
9218                            bool recurse)
9219 {
9220         const struct net_device_ops *ops = dev->netdev_ops;
9221         struct netdev_phys_item_id first = { };
9222         struct net_device *lower_dev;
9223         struct list_head *iter;
9224         int err;
9225
9226         if (ops->ndo_get_port_parent_id) {
9227                 err = ops->ndo_get_port_parent_id(dev, ppid);
9228                 if (err != -EOPNOTSUPP)
9229                         return err;
9230         }
9231
9232         err = devlink_compat_switch_id_get(dev, ppid);
9233         if (!recurse || err != -EOPNOTSUPP)
9234                 return err;
9235
9236         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9237                 err = dev_get_port_parent_id(lower_dev, ppid, true);
9238                 if (err)
9239                         break;
9240                 if (!first.id_len)
9241                         first = *ppid;
9242                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9243                         return -EOPNOTSUPP;
9244         }
9245
9246         return err;
9247 }
9248 EXPORT_SYMBOL(dev_get_port_parent_id);
9249
9250 /**
9251  *      netdev_port_same_parent_id - Indicate if two network devices have
9252  *      the same port parent identifier
9253  *      @a: first network device
9254  *      @b: second network device
9255  */
9256 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9257 {
9258         struct netdev_phys_item_id a_id = { };
9259         struct netdev_phys_item_id b_id = { };
9260
9261         if (dev_get_port_parent_id(a, &a_id, true) ||
9262             dev_get_port_parent_id(b, &b_id, true))
9263                 return false;
9264
9265         return netdev_phys_item_id_same(&a_id, &b_id);
9266 }
9267 EXPORT_SYMBOL(netdev_port_same_parent_id);
9268
9269 /**
9270  *      dev_change_proto_down - set carrier according to proto_down.
9271  *
9272  *      @dev: device
9273  *      @proto_down: new value
9274  */
9275 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9276 {
9277         if (!dev->change_proto_down)
9278                 return -EOPNOTSUPP;
9279         if (!netif_device_present(dev))
9280                 return -ENODEV;
9281         if (proto_down)
9282                 netif_carrier_off(dev);
9283         else
9284                 netif_carrier_on(dev);
9285         WRITE_ONCE(dev->proto_down, proto_down);
9286         return 0;
9287 }
9288
9289 /**
9290  *      dev_change_proto_down_reason - proto down reason
9291  *
9292  *      @dev: device
9293  *      @mask: proto down mask
9294  *      @value: proto down value
9295  */
9296 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9297                                   u32 value)
9298 {
9299         u32 proto_down_reason;
9300         int b;
9301
9302         if (!mask) {
9303                 proto_down_reason = value;
9304         } else {
9305                 proto_down_reason = dev->proto_down_reason;
9306                 for_each_set_bit(b, &mask, 32) {
9307                         if (value & (1 << b))
9308                                 proto_down_reason |= BIT(b);
9309                         else
9310                                 proto_down_reason &= ~BIT(b);
9311                 }
9312         }
9313         WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9314 }
9315
9316 struct bpf_xdp_link {
9317         struct bpf_link link;
9318         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9319         int flags;
9320 };
9321
9322 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9323 {
9324         if (flags & XDP_FLAGS_HW_MODE)
9325                 return XDP_MODE_HW;
9326         if (flags & XDP_FLAGS_DRV_MODE)
9327                 return XDP_MODE_DRV;
9328         if (flags & XDP_FLAGS_SKB_MODE)
9329                 return XDP_MODE_SKB;
9330         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9331 }
9332
9333 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9334 {
9335         switch (mode) {
9336         case XDP_MODE_SKB:
9337                 return generic_xdp_install;
9338         case XDP_MODE_DRV:
9339         case XDP_MODE_HW:
9340                 return dev->netdev_ops->ndo_bpf;
9341         default:
9342                 return NULL;
9343         }
9344 }
9345
9346 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9347                                          enum bpf_xdp_mode mode)
9348 {
9349         return dev->xdp_state[mode].link;
9350 }
9351
9352 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9353                                      enum bpf_xdp_mode mode)
9354 {
9355         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9356
9357         if (link)
9358                 return link->link.prog;
9359         return dev->xdp_state[mode].prog;
9360 }
9361
9362 u8 dev_xdp_prog_count(struct net_device *dev)
9363 {
9364         u8 count = 0;
9365         int i;
9366
9367         for (i = 0; i < __MAX_XDP_MODE; i++)
9368                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9369                         count++;
9370         return count;
9371 }
9372 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9373
9374 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9375 {
9376         if (!dev->netdev_ops->ndo_bpf)
9377                 return -EOPNOTSUPP;
9378
9379         return dev->netdev_ops->ndo_bpf(dev, bpf);
9380 }
9381 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9382
9383 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9384 {
9385         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9386
9387         return prog ? prog->aux->id : 0;
9388 }
9389
9390 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9391                              struct bpf_xdp_link *link)
9392 {
9393         dev->xdp_state[mode].link = link;
9394         dev->xdp_state[mode].prog = NULL;
9395 }
9396
9397 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9398                              struct bpf_prog *prog)
9399 {
9400         dev->xdp_state[mode].link = NULL;
9401         dev->xdp_state[mode].prog = prog;
9402 }
9403
9404 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9405                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9406                            u32 flags, struct bpf_prog *prog)
9407 {
9408         struct netdev_bpf xdp;
9409         int err;
9410
9411         memset(&xdp, 0, sizeof(xdp));
9412         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9413         xdp.extack = extack;
9414         xdp.flags = flags;
9415         xdp.prog = prog;
9416
9417         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9418          * "moved" into driver), so they don't increment it on their own, but
9419          * they do decrement refcnt when program is detached or replaced.
9420          * Given net_device also owns link/prog, we need to bump refcnt here
9421          * to prevent drivers from underflowing it.
9422          */
9423         if (prog)
9424                 bpf_prog_inc(prog);
9425         err = bpf_op(dev, &xdp);
9426         if (err) {
9427                 if (prog)
9428                         bpf_prog_put(prog);
9429                 return err;
9430         }
9431
9432         if (mode != XDP_MODE_HW)
9433                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9434
9435         return 0;
9436 }
9437
9438 static void dev_xdp_uninstall(struct net_device *dev)
9439 {
9440         struct bpf_xdp_link *link;
9441         struct bpf_prog *prog;
9442         enum bpf_xdp_mode mode;
9443         bpf_op_t bpf_op;
9444
9445         ASSERT_RTNL();
9446
9447         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9448                 prog = dev_xdp_prog(dev, mode);
9449                 if (!prog)
9450                         continue;
9451
9452                 bpf_op = dev_xdp_bpf_op(dev, mode);
9453                 if (!bpf_op)
9454                         continue;
9455
9456                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9457
9458                 /* auto-detach link from net device */
9459                 link = dev_xdp_link(dev, mode);
9460                 if (link)
9461                         link->dev = NULL;
9462                 else
9463                         bpf_prog_put(prog);
9464
9465                 dev_xdp_set_link(dev, mode, NULL);
9466         }
9467 }
9468
9469 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9470                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9471                           struct bpf_prog *old_prog, u32 flags)
9472 {
9473         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9474         struct bpf_prog *cur_prog;
9475         struct net_device *upper;
9476         struct list_head *iter;
9477         enum bpf_xdp_mode mode;
9478         bpf_op_t bpf_op;
9479         int err;
9480
9481         ASSERT_RTNL();
9482
9483         /* either link or prog attachment, never both */
9484         if (link && (new_prog || old_prog))
9485                 return -EINVAL;
9486         /* link supports only XDP mode flags */
9487         if (link && (flags & ~XDP_FLAGS_MODES)) {
9488                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9489                 return -EINVAL;
9490         }
9491         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9492         if (num_modes > 1) {
9493                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9494                 return -EINVAL;
9495         }
9496         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9497         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9498                 NL_SET_ERR_MSG(extack,
9499                                "More than one program loaded, unset mode is ambiguous");
9500                 return -EINVAL;
9501         }
9502         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9503         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9504                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9505                 return -EINVAL;
9506         }
9507
9508         mode = dev_xdp_mode(dev, flags);
9509         /* can't replace attached link */
9510         if (dev_xdp_link(dev, mode)) {
9511                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9512                 return -EBUSY;
9513         }
9514
9515         /* don't allow if an upper device already has a program */
9516         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9517                 if (dev_xdp_prog_count(upper) > 0) {
9518                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9519                         return -EEXIST;
9520                 }
9521         }
9522
9523         cur_prog = dev_xdp_prog(dev, mode);
9524         /* can't replace attached prog with link */
9525         if (link && cur_prog) {
9526                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9527                 return -EBUSY;
9528         }
9529         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9530                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9531                 return -EEXIST;
9532         }
9533
9534         /* put effective new program into new_prog */
9535         if (link)
9536                 new_prog = link->link.prog;
9537
9538         if (new_prog) {
9539                 bool offload = mode == XDP_MODE_HW;
9540                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9541                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9542
9543                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9544                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9545                         return -EBUSY;
9546                 }
9547                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9548                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9549                         return -EEXIST;
9550                 }
9551                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9552                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9553                         return -EINVAL;
9554                 }
9555                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9556                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9557                         return -EINVAL;
9558                 }
9559                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9560                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9561                         return -EINVAL;
9562                 }
9563                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9564                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9565                         return -EINVAL;
9566                 }
9567         }
9568
9569         /* don't call drivers if the effective program didn't change */
9570         if (new_prog != cur_prog) {
9571                 bpf_op = dev_xdp_bpf_op(dev, mode);
9572                 if (!bpf_op) {
9573                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9574                         return -EOPNOTSUPP;
9575                 }
9576
9577                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9578                 if (err)
9579                         return err;
9580         }
9581
9582         if (link)
9583                 dev_xdp_set_link(dev, mode, link);
9584         else
9585                 dev_xdp_set_prog(dev, mode, new_prog);
9586         if (cur_prog)
9587                 bpf_prog_put(cur_prog);
9588
9589         return 0;
9590 }
9591
9592 static int dev_xdp_attach_link(struct net_device *dev,
9593                                struct netlink_ext_ack *extack,
9594                                struct bpf_xdp_link *link)
9595 {
9596         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9597 }
9598
9599 static int dev_xdp_detach_link(struct net_device *dev,
9600                                struct netlink_ext_ack *extack,
9601                                struct bpf_xdp_link *link)
9602 {
9603         enum bpf_xdp_mode mode;
9604         bpf_op_t bpf_op;
9605
9606         ASSERT_RTNL();
9607
9608         mode = dev_xdp_mode(dev, link->flags);
9609         if (dev_xdp_link(dev, mode) != link)
9610                 return -EINVAL;
9611
9612         bpf_op = dev_xdp_bpf_op(dev, mode);
9613         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9614         dev_xdp_set_link(dev, mode, NULL);
9615         return 0;
9616 }
9617
9618 static void bpf_xdp_link_release(struct bpf_link *link)
9619 {
9620         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9621
9622         rtnl_lock();
9623
9624         /* if racing with net_device's tear down, xdp_link->dev might be
9625          * already NULL, in which case link was already auto-detached
9626          */
9627         if (xdp_link->dev) {
9628                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9629                 xdp_link->dev = NULL;
9630         }
9631
9632         rtnl_unlock();
9633 }
9634
9635 static int bpf_xdp_link_detach(struct bpf_link *link)
9636 {
9637         bpf_xdp_link_release(link);
9638         return 0;
9639 }
9640
9641 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9642 {
9643         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9644
9645         kfree(xdp_link);
9646 }
9647
9648 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9649                                      struct seq_file *seq)
9650 {
9651         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9652         u32 ifindex = 0;
9653
9654         rtnl_lock();
9655         if (xdp_link->dev)
9656                 ifindex = xdp_link->dev->ifindex;
9657         rtnl_unlock();
9658
9659         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9660 }
9661
9662 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9663                                        struct bpf_link_info *info)
9664 {
9665         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9666         u32 ifindex = 0;
9667
9668         rtnl_lock();
9669         if (xdp_link->dev)
9670                 ifindex = xdp_link->dev->ifindex;
9671         rtnl_unlock();
9672
9673         info->xdp.ifindex = ifindex;
9674         return 0;
9675 }
9676
9677 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9678                                struct bpf_prog *old_prog)
9679 {
9680         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9681         enum bpf_xdp_mode mode;
9682         bpf_op_t bpf_op;
9683         int err = 0;
9684
9685         rtnl_lock();
9686
9687         /* link might have been auto-released already, so fail */
9688         if (!xdp_link->dev) {
9689                 err = -ENOLINK;
9690                 goto out_unlock;
9691         }
9692
9693         if (old_prog && link->prog != old_prog) {
9694                 err = -EPERM;
9695                 goto out_unlock;
9696         }
9697         old_prog = link->prog;
9698         if (old_prog->type != new_prog->type ||
9699             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9700                 err = -EINVAL;
9701                 goto out_unlock;
9702         }
9703
9704         if (old_prog == new_prog) {
9705                 /* no-op, don't disturb drivers */
9706                 bpf_prog_put(new_prog);
9707                 goto out_unlock;
9708         }
9709
9710         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9711         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9712         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9713                               xdp_link->flags, new_prog);
9714         if (err)
9715                 goto out_unlock;
9716
9717         old_prog = xchg(&link->prog, new_prog);
9718         bpf_prog_put(old_prog);
9719
9720 out_unlock:
9721         rtnl_unlock();
9722         return err;
9723 }
9724
9725 static const struct bpf_link_ops bpf_xdp_link_lops = {
9726         .release = bpf_xdp_link_release,
9727         .dealloc = bpf_xdp_link_dealloc,
9728         .detach = bpf_xdp_link_detach,
9729         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9730         .fill_link_info = bpf_xdp_link_fill_link_info,
9731         .update_prog = bpf_xdp_link_update,
9732 };
9733
9734 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9735 {
9736         struct net *net = current->nsproxy->net_ns;
9737         struct bpf_link_primer link_primer;
9738         struct netlink_ext_ack extack = {};
9739         struct bpf_xdp_link *link;
9740         struct net_device *dev;
9741         int err, fd;
9742
9743         rtnl_lock();
9744         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9745         if (!dev) {
9746                 rtnl_unlock();
9747                 return -EINVAL;
9748         }
9749
9750         link = kzalloc(sizeof(*link), GFP_USER);
9751         if (!link) {
9752                 err = -ENOMEM;
9753                 goto unlock;
9754         }
9755
9756         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9757         link->dev = dev;
9758         link->flags = attr->link_create.flags;
9759
9760         err = bpf_link_prime(&link->link, &link_primer);
9761         if (err) {
9762                 kfree(link);
9763                 goto unlock;
9764         }
9765
9766         err = dev_xdp_attach_link(dev, &extack, link);
9767         rtnl_unlock();
9768
9769         if (err) {
9770                 link->dev = NULL;
9771                 bpf_link_cleanup(&link_primer);
9772                 trace_bpf_xdp_link_attach_failed(extack._msg);
9773                 goto out_put_dev;
9774         }
9775
9776         fd = bpf_link_settle(&link_primer);
9777         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9778         dev_put(dev);
9779         return fd;
9780
9781 unlock:
9782         rtnl_unlock();
9783
9784 out_put_dev:
9785         dev_put(dev);
9786         return err;
9787 }
9788
9789 /**
9790  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9791  *      @dev: device
9792  *      @extack: netlink extended ack
9793  *      @fd: new program fd or negative value to clear
9794  *      @expected_fd: old program fd that userspace expects to replace or clear
9795  *      @flags: xdp-related flags
9796  *
9797  *      Set or clear a bpf program for a device
9798  */
9799 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9800                       int fd, int expected_fd, u32 flags)
9801 {
9802         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9803         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9804         int err;
9805
9806         ASSERT_RTNL();
9807
9808         if (fd >= 0) {
9809                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9810                                                  mode != XDP_MODE_SKB);
9811                 if (IS_ERR(new_prog))
9812                         return PTR_ERR(new_prog);
9813         }
9814
9815         if (expected_fd >= 0) {
9816                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9817                                                  mode != XDP_MODE_SKB);
9818                 if (IS_ERR(old_prog)) {
9819                         err = PTR_ERR(old_prog);
9820                         old_prog = NULL;
9821                         goto err_out;
9822                 }
9823         }
9824
9825         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9826
9827 err_out:
9828         if (err && new_prog)
9829                 bpf_prog_put(new_prog);
9830         if (old_prog)
9831                 bpf_prog_put(old_prog);
9832         return err;
9833 }
9834
9835 /**
9836  * dev_index_reserve() - allocate an ifindex in a namespace
9837  * @net: the applicable net namespace
9838  * @ifindex: requested ifindex, pass %0 to get one allocated
9839  *
9840  * Allocate a ifindex for a new device. Caller must either use the ifindex
9841  * to store the device (via list_netdevice()) or call dev_index_release()
9842  * to give the index up.
9843  *
9844  * Return: a suitable unique value for a new device interface number or -errno.
9845  */
9846 static int dev_index_reserve(struct net *net, u32 ifindex)
9847 {
9848         int err;
9849
9850         if (ifindex > INT_MAX) {
9851                 DEBUG_NET_WARN_ON_ONCE(1);
9852                 return -EINVAL;
9853         }
9854
9855         if (!ifindex)
9856                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9857                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9858         else
9859                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9860         if (err < 0)
9861                 return err;
9862
9863         return ifindex;
9864 }
9865
9866 static void dev_index_release(struct net *net, int ifindex)
9867 {
9868         /* Expect only unused indexes, unlist_netdevice() removes the used */
9869         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9870 }
9871
9872 /* Delayed registration/unregisteration */
9873 LIST_HEAD(net_todo_list);
9874 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9875 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9876
9877 static void net_set_todo(struct net_device *dev)
9878 {
9879         list_add_tail(&dev->todo_list, &net_todo_list);
9880 }
9881
9882 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9883         struct net_device *upper, netdev_features_t features)
9884 {
9885         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9886         netdev_features_t feature;
9887         int feature_bit;
9888
9889         for_each_netdev_feature(upper_disables, feature_bit) {
9890                 feature = __NETIF_F_BIT(feature_bit);
9891                 if (!(upper->wanted_features & feature)
9892                     && (features & feature)) {
9893                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9894                                    &feature, upper->name);
9895                         features &= ~feature;
9896                 }
9897         }
9898
9899         return features;
9900 }
9901
9902 static void netdev_sync_lower_features(struct net_device *upper,
9903         struct net_device *lower, netdev_features_t features)
9904 {
9905         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9906         netdev_features_t feature;
9907         int feature_bit;
9908
9909         for_each_netdev_feature(upper_disables, feature_bit) {
9910                 feature = __NETIF_F_BIT(feature_bit);
9911                 if (!(features & feature) && (lower->features & feature)) {
9912                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9913                                    &feature, lower->name);
9914                         lower->wanted_features &= ~feature;
9915                         __netdev_update_features(lower);
9916
9917                         if (unlikely(lower->features & feature))
9918                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9919                                             &feature, lower->name);
9920                         else
9921                                 netdev_features_change(lower);
9922                 }
9923         }
9924 }
9925
9926 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9927 {
9928         netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9929         bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9930         bool hw_csum = features & NETIF_F_HW_CSUM;
9931
9932         return ip_csum || hw_csum;
9933 }
9934
9935 static netdev_features_t netdev_fix_features(struct net_device *dev,
9936         netdev_features_t features)
9937 {
9938         /* Fix illegal checksum combinations */
9939         if ((features & NETIF_F_HW_CSUM) &&
9940             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9941                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9942                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9943         }
9944
9945         /* TSO requires that SG is present as well. */
9946         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9947                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9948                 features &= ~NETIF_F_ALL_TSO;
9949         }
9950
9951         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9952                                         !(features & NETIF_F_IP_CSUM)) {
9953                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9954                 features &= ~NETIF_F_TSO;
9955                 features &= ~NETIF_F_TSO_ECN;
9956         }
9957
9958         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9959                                          !(features & NETIF_F_IPV6_CSUM)) {
9960                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9961                 features &= ~NETIF_F_TSO6;
9962         }
9963
9964         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9965         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9966                 features &= ~NETIF_F_TSO_MANGLEID;
9967
9968         /* TSO ECN requires that TSO is present as well. */
9969         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9970                 features &= ~NETIF_F_TSO_ECN;
9971
9972         /* Software GSO depends on SG. */
9973         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9974                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9975                 features &= ~NETIF_F_GSO;
9976         }
9977
9978         /* GSO partial features require GSO partial be set */
9979         if ((features & dev->gso_partial_features) &&
9980             !(features & NETIF_F_GSO_PARTIAL)) {
9981                 netdev_dbg(dev,
9982                            "Dropping partially supported GSO features since no GSO partial.\n");
9983                 features &= ~dev->gso_partial_features;
9984         }
9985
9986         if (!(features & NETIF_F_RXCSUM)) {
9987                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9988                  * successfully merged by hardware must also have the
9989                  * checksum verified by hardware.  If the user does not
9990                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9991                  */
9992                 if (features & NETIF_F_GRO_HW) {
9993                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9994                         features &= ~NETIF_F_GRO_HW;
9995                 }
9996         }
9997
9998         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9999         if (features & NETIF_F_RXFCS) {
10000                 if (features & NETIF_F_LRO) {
10001                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10002                         features &= ~NETIF_F_LRO;
10003                 }
10004
10005                 if (features & NETIF_F_GRO_HW) {
10006                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10007                         features &= ~NETIF_F_GRO_HW;
10008                 }
10009         }
10010
10011         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10012                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10013                 features &= ~NETIF_F_LRO;
10014         }
10015
10016         if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10017                 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10018                 features &= ~NETIF_F_HW_TLS_TX;
10019         }
10020
10021         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10022                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10023                 features &= ~NETIF_F_HW_TLS_RX;
10024         }
10025
10026         if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10027                 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10028                 features &= ~NETIF_F_GSO_UDP_L4;
10029         }
10030
10031         return features;
10032 }
10033
10034 int __netdev_update_features(struct net_device *dev)
10035 {
10036         struct net_device *upper, *lower;
10037         netdev_features_t features;
10038         struct list_head *iter;
10039         int err = -1;
10040
10041         ASSERT_RTNL();
10042
10043         features = netdev_get_wanted_features(dev);
10044
10045         if (dev->netdev_ops->ndo_fix_features)
10046                 features = dev->netdev_ops->ndo_fix_features(dev, features);
10047
10048         /* driver might be less strict about feature dependencies */
10049         features = netdev_fix_features(dev, features);
10050
10051         /* some features can't be enabled if they're off on an upper device */
10052         netdev_for_each_upper_dev_rcu(dev, upper, iter)
10053                 features = netdev_sync_upper_features(dev, upper, features);
10054
10055         if (dev->features == features)
10056                 goto sync_lower;
10057
10058         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10059                 &dev->features, &features);
10060
10061         if (dev->netdev_ops->ndo_set_features)
10062                 err = dev->netdev_ops->ndo_set_features(dev, features);
10063         else
10064                 err = 0;
10065
10066         if (unlikely(err < 0)) {
10067                 netdev_err(dev,
10068                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
10069                         err, &features, &dev->features);
10070                 /* return non-0 since some features might have changed and
10071                  * it's better to fire a spurious notification than miss it
10072                  */
10073                 return -1;
10074         }
10075
10076 sync_lower:
10077         /* some features must be disabled on lower devices when disabled
10078          * on an upper device (think: bonding master or bridge)
10079          */
10080         netdev_for_each_lower_dev(dev, lower, iter)
10081                 netdev_sync_lower_features(dev, lower, features);
10082
10083         if (!err) {
10084                 netdev_features_t diff = features ^ dev->features;
10085
10086                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10087                         /* udp_tunnel_{get,drop}_rx_info both need
10088                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10089                          * device, or they won't do anything.
10090                          * Thus we need to update dev->features
10091                          * *before* calling udp_tunnel_get_rx_info,
10092                          * but *after* calling udp_tunnel_drop_rx_info.
10093                          */
10094                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10095                                 dev->features = features;
10096                                 udp_tunnel_get_rx_info(dev);
10097                         } else {
10098                                 udp_tunnel_drop_rx_info(dev);
10099                         }
10100                 }
10101
10102                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10103                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10104                                 dev->features = features;
10105                                 err |= vlan_get_rx_ctag_filter_info(dev);
10106                         } else {
10107                                 vlan_drop_rx_ctag_filter_info(dev);
10108                         }
10109                 }
10110
10111                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10112                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10113                                 dev->features = features;
10114                                 err |= vlan_get_rx_stag_filter_info(dev);
10115                         } else {
10116                                 vlan_drop_rx_stag_filter_info(dev);
10117                         }
10118                 }
10119
10120                 dev->features = features;
10121         }
10122
10123         return err < 0 ? 0 : 1;
10124 }
10125
10126 /**
10127  *      netdev_update_features - recalculate device features
10128  *      @dev: the device to check
10129  *
10130  *      Recalculate dev->features set and send notifications if it
10131  *      has changed. Should be called after driver or hardware dependent
10132  *      conditions might have changed that influence the features.
10133  */
10134 void netdev_update_features(struct net_device *dev)
10135 {
10136         if (__netdev_update_features(dev))
10137                 netdev_features_change(dev);
10138 }
10139 EXPORT_SYMBOL(netdev_update_features);
10140
10141 /**
10142  *      netdev_change_features - recalculate device features
10143  *      @dev: the device to check
10144  *
10145  *      Recalculate dev->features set and send notifications even
10146  *      if they have not changed. Should be called instead of
10147  *      netdev_update_features() if also dev->vlan_features might
10148  *      have changed to allow the changes to be propagated to stacked
10149  *      VLAN devices.
10150  */
10151 void netdev_change_features(struct net_device *dev)
10152 {
10153         __netdev_update_features(dev);
10154         netdev_features_change(dev);
10155 }
10156 EXPORT_SYMBOL(netdev_change_features);
10157
10158 /**
10159  *      netif_stacked_transfer_operstate -      transfer operstate
10160  *      @rootdev: the root or lower level device to transfer state from
10161  *      @dev: the device to transfer operstate to
10162  *
10163  *      Transfer operational state from root to device. This is normally
10164  *      called when a stacking relationship exists between the root
10165  *      device and the device(a leaf device).
10166  */
10167 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10168                                         struct net_device *dev)
10169 {
10170         if (rootdev->operstate == IF_OPER_DORMANT)
10171                 netif_dormant_on(dev);
10172         else
10173                 netif_dormant_off(dev);
10174
10175         if (rootdev->operstate == IF_OPER_TESTING)
10176                 netif_testing_on(dev);
10177         else
10178                 netif_testing_off(dev);
10179
10180         if (netif_carrier_ok(rootdev))
10181                 netif_carrier_on(dev);
10182         else
10183                 netif_carrier_off(dev);
10184 }
10185 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10186
10187 static int netif_alloc_rx_queues(struct net_device *dev)
10188 {
10189         unsigned int i, count = dev->num_rx_queues;
10190         struct netdev_rx_queue *rx;
10191         size_t sz = count * sizeof(*rx);
10192         int err = 0;
10193
10194         BUG_ON(count < 1);
10195
10196         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10197         if (!rx)
10198                 return -ENOMEM;
10199
10200         dev->_rx = rx;
10201
10202         for (i = 0; i < count; i++) {
10203                 rx[i].dev = dev;
10204
10205                 /* XDP RX-queue setup */
10206                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10207                 if (err < 0)
10208                         goto err_rxq_info;
10209         }
10210         return 0;
10211
10212 err_rxq_info:
10213         /* Rollback successful reg's and free other resources */
10214         while (i--)
10215                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10216         kvfree(dev->_rx);
10217         dev->_rx = NULL;
10218         return err;
10219 }
10220
10221 static void netif_free_rx_queues(struct net_device *dev)
10222 {
10223         unsigned int i, count = dev->num_rx_queues;
10224
10225         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10226         if (!dev->_rx)
10227                 return;
10228
10229         for (i = 0; i < count; i++)
10230                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10231
10232         kvfree(dev->_rx);
10233 }
10234
10235 static void netdev_init_one_queue(struct net_device *dev,
10236                                   struct netdev_queue *queue, void *_unused)
10237 {
10238         /* Initialize queue lock */
10239         spin_lock_init(&queue->_xmit_lock);
10240         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10241         queue->xmit_lock_owner = -1;
10242         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10243         queue->dev = dev;
10244 #ifdef CONFIG_BQL
10245         dql_init(&queue->dql, HZ);
10246 #endif
10247 }
10248
10249 static void netif_free_tx_queues(struct net_device *dev)
10250 {
10251         kvfree(dev->_tx);
10252 }
10253
10254 static int netif_alloc_netdev_queues(struct net_device *dev)
10255 {
10256         unsigned int count = dev->num_tx_queues;
10257         struct netdev_queue *tx;
10258         size_t sz = count * sizeof(*tx);
10259
10260         if (count < 1 || count > 0xffff)
10261                 return -EINVAL;
10262
10263         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10264         if (!tx)
10265                 return -ENOMEM;
10266
10267         dev->_tx = tx;
10268
10269         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10270         spin_lock_init(&dev->tx_global_lock);
10271
10272         return 0;
10273 }
10274
10275 void netif_tx_stop_all_queues(struct net_device *dev)
10276 {
10277         unsigned int i;
10278
10279         for (i = 0; i < dev->num_tx_queues; i++) {
10280                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10281
10282                 netif_tx_stop_queue(txq);
10283         }
10284 }
10285 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10286
10287 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10288 {
10289         void __percpu *v;
10290
10291         /* Drivers implementing ndo_get_peer_dev must support tstat
10292          * accounting, so that skb_do_redirect() can bump the dev's
10293          * RX stats upon network namespace switch.
10294          */
10295         if (dev->netdev_ops->ndo_get_peer_dev &&
10296             dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10297                 return -EOPNOTSUPP;
10298
10299         switch (dev->pcpu_stat_type) {
10300         case NETDEV_PCPU_STAT_NONE:
10301                 return 0;
10302         case NETDEV_PCPU_STAT_LSTATS:
10303                 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10304                 break;
10305         case NETDEV_PCPU_STAT_TSTATS:
10306                 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10307                 break;
10308         case NETDEV_PCPU_STAT_DSTATS:
10309                 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10310                 break;
10311         default:
10312                 return -EINVAL;
10313         }
10314
10315         return v ? 0 : -ENOMEM;
10316 }
10317
10318 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10319 {
10320         switch (dev->pcpu_stat_type) {
10321         case NETDEV_PCPU_STAT_NONE:
10322                 return;
10323         case NETDEV_PCPU_STAT_LSTATS:
10324                 free_percpu(dev->lstats);
10325                 break;
10326         case NETDEV_PCPU_STAT_TSTATS:
10327                 free_percpu(dev->tstats);
10328                 break;
10329         case NETDEV_PCPU_STAT_DSTATS:
10330                 free_percpu(dev->dstats);
10331                 break;
10332         }
10333 }
10334
10335 static void netdev_free_phy_link_topology(struct net_device *dev)
10336 {
10337         struct phy_link_topology *topo = dev->link_topo;
10338
10339         if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10340                 xa_destroy(&topo->phys);
10341                 kfree(topo);
10342                 dev->link_topo = NULL;
10343         }
10344 }
10345
10346 /**
10347  * register_netdevice() - register a network device
10348  * @dev: device to register
10349  *
10350  * Take a prepared network device structure and make it externally accessible.
10351  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10352  * Callers must hold the rtnl lock - you may want register_netdev()
10353  * instead of this.
10354  */
10355 int register_netdevice(struct net_device *dev)
10356 {
10357         int ret;
10358         struct net *net = dev_net(dev);
10359
10360         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10361                      NETDEV_FEATURE_COUNT);
10362         BUG_ON(dev_boot_phase);
10363         ASSERT_RTNL();
10364
10365         might_sleep();
10366
10367         /* When net_device's are persistent, this will be fatal. */
10368         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10369         BUG_ON(!net);
10370
10371         ret = ethtool_check_ops(dev->ethtool_ops);
10372         if (ret)
10373                 return ret;
10374
10375         /* rss ctx ID 0 is reserved for the default context, start from 1 */
10376         xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10377         mutex_init(&dev->ethtool->rss_lock);
10378
10379         spin_lock_init(&dev->addr_list_lock);
10380         netdev_set_addr_lockdep_class(dev);
10381
10382         ret = dev_get_valid_name(net, dev, dev->name);
10383         if (ret < 0)
10384                 goto out;
10385
10386         ret = -ENOMEM;
10387         dev->name_node = netdev_name_node_head_alloc(dev);
10388         if (!dev->name_node)
10389                 goto out;
10390
10391         /* Init, if this function is available */
10392         if (dev->netdev_ops->ndo_init) {
10393                 ret = dev->netdev_ops->ndo_init(dev);
10394                 if (ret) {
10395                         if (ret > 0)
10396                                 ret = -EIO;
10397                         goto err_free_name;
10398                 }
10399         }
10400
10401         if (((dev->hw_features | dev->features) &
10402              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10403             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10404              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10405                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10406                 ret = -EINVAL;
10407                 goto err_uninit;
10408         }
10409
10410         ret = netdev_do_alloc_pcpu_stats(dev);
10411         if (ret)
10412                 goto err_uninit;
10413
10414         ret = dev_index_reserve(net, dev->ifindex);
10415         if (ret < 0)
10416                 goto err_free_pcpu;
10417         dev->ifindex = ret;
10418
10419         /* Transfer changeable features to wanted_features and enable
10420          * software offloads (GSO and GRO).
10421          */
10422         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10423         dev->features |= NETIF_F_SOFT_FEATURES;
10424
10425         if (dev->udp_tunnel_nic_info) {
10426                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10427                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10428         }
10429
10430         dev->wanted_features = dev->features & dev->hw_features;
10431
10432         if (!(dev->flags & IFF_LOOPBACK))
10433                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10434
10435         /* If IPv4 TCP segmentation offload is supported we should also
10436          * allow the device to enable segmenting the frame with the option
10437          * of ignoring a static IP ID value.  This doesn't enable the
10438          * feature itself but allows the user to enable it later.
10439          */
10440         if (dev->hw_features & NETIF_F_TSO)
10441                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10442         if (dev->vlan_features & NETIF_F_TSO)
10443                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10444         if (dev->mpls_features & NETIF_F_TSO)
10445                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10446         if (dev->hw_enc_features & NETIF_F_TSO)
10447                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10448
10449         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10450          */
10451         dev->vlan_features |= NETIF_F_HIGHDMA;
10452
10453         /* Make NETIF_F_SG inheritable to tunnel devices.
10454          */
10455         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10456
10457         /* Make NETIF_F_SG inheritable to MPLS.
10458          */
10459         dev->mpls_features |= NETIF_F_SG;
10460
10461         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10462         ret = notifier_to_errno(ret);
10463         if (ret)
10464                 goto err_ifindex_release;
10465
10466         ret = netdev_register_kobject(dev);
10467
10468         WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10469
10470         if (ret)
10471                 goto err_uninit_notify;
10472
10473         __netdev_update_features(dev);
10474
10475         /*
10476          *      Default initial state at registry is that the
10477          *      device is present.
10478          */
10479
10480         set_bit(__LINK_STATE_PRESENT, &dev->state);
10481
10482         linkwatch_init_dev(dev);
10483
10484         dev_init_scheduler(dev);
10485
10486         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10487         list_netdevice(dev);
10488
10489         add_device_randomness(dev->dev_addr, dev->addr_len);
10490
10491         /* If the device has permanent device address, driver should
10492          * set dev_addr and also addr_assign_type should be set to
10493          * NET_ADDR_PERM (default value).
10494          */
10495         if (dev->addr_assign_type == NET_ADDR_PERM)
10496                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10497
10498         /* Notify protocols, that a new device appeared. */
10499         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10500         ret = notifier_to_errno(ret);
10501         if (ret) {
10502                 /* Expect explicit free_netdev() on failure */
10503                 dev->needs_free_netdev = false;
10504                 unregister_netdevice_queue(dev, NULL);
10505                 goto out;
10506         }
10507         /*
10508          *      Prevent userspace races by waiting until the network
10509          *      device is fully setup before sending notifications.
10510          */
10511         if (!dev->rtnl_link_ops ||
10512             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10513                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10514
10515 out:
10516         return ret;
10517
10518 err_uninit_notify:
10519         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10520 err_ifindex_release:
10521         dev_index_release(net, dev->ifindex);
10522 err_free_pcpu:
10523         netdev_do_free_pcpu_stats(dev);
10524 err_uninit:
10525         if (dev->netdev_ops->ndo_uninit)
10526                 dev->netdev_ops->ndo_uninit(dev);
10527         if (dev->priv_destructor)
10528                 dev->priv_destructor(dev);
10529 err_free_name:
10530         netdev_name_node_free(dev->name_node);
10531         goto out;
10532 }
10533 EXPORT_SYMBOL(register_netdevice);
10534
10535 /* Initialize the core of a dummy net device.
10536  * This is useful if you are calling this function after alloc_netdev(),
10537  * since it does not memset the net_device fields.
10538  */
10539 static void init_dummy_netdev_core(struct net_device *dev)
10540 {
10541         /* make sure we BUG if trying to hit standard
10542          * register/unregister code path
10543          */
10544         dev->reg_state = NETREG_DUMMY;
10545
10546         /* NAPI wants this */
10547         INIT_LIST_HEAD(&dev->napi_list);
10548
10549         /* a dummy interface is started by default */
10550         set_bit(__LINK_STATE_PRESENT, &dev->state);
10551         set_bit(__LINK_STATE_START, &dev->state);
10552
10553         /* napi_busy_loop stats accounting wants this */
10554         dev_net_set(dev, &init_net);
10555
10556         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10557          * because users of this 'device' dont need to change
10558          * its refcount.
10559          */
10560 }
10561
10562 /**
10563  *      init_dummy_netdev       - init a dummy network device for NAPI
10564  *      @dev: device to init
10565  *
10566  *      This takes a network device structure and initializes the minimum
10567  *      amount of fields so it can be used to schedule NAPI polls without
10568  *      registering a full blown interface. This is to be used by drivers
10569  *      that need to tie several hardware interfaces to a single NAPI
10570  *      poll scheduler due to HW limitations.
10571  */
10572 void init_dummy_netdev(struct net_device *dev)
10573 {
10574         /* Clear everything. Note we don't initialize spinlocks
10575          * as they aren't supposed to be taken by any of the
10576          * NAPI code and this dummy netdev is supposed to be
10577          * only ever used for NAPI polls
10578          */
10579         memset(dev, 0, sizeof(struct net_device));
10580         init_dummy_netdev_core(dev);
10581 }
10582 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10583
10584 /**
10585  *      register_netdev - register a network device
10586  *      @dev: device to register
10587  *
10588  *      Take a completed network device structure and add it to the kernel
10589  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10590  *      chain. 0 is returned on success. A negative errno code is returned
10591  *      on a failure to set up the device, or if the name is a duplicate.
10592  *
10593  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10594  *      and expands the device name if you passed a format string to
10595  *      alloc_netdev.
10596  */
10597 int register_netdev(struct net_device *dev)
10598 {
10599         int err;
10600
10601         if (rtnl_lock_killable())
10602                 return -EINTR;
10603         err = register_netdevice(dev);
10604         rtnl_unlock();
10605         return err;
10606 }
10607 EXPORT_SYMBOL(register_netdev);
10608
10609 int netdev_refcnt_read(const struct net_device *dev)
10610 {
10611 #ifdef CONFIG_PCPU_DEV_REFCNT
10612         int i, refcnt = 0;
10613
10614         for_each_possible_cpu(i)
10615                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10616         return refcnt;
10617 #else
10618         return refcount_read(&dev->dev_refcnt);
10619 #endif
10620 }
10621 EXPORT_SYMBOL(netdev_refcnt_read);
10622
10623 int netdev_unregister_timeout_secs __read_mostly = 10;
10624
10625 #define WAIT_REFS_MIN_MSECS 1
10626 #define WAIT_REFS_MAX_MSECS 250
10627 /**
10628  * netdev_wait_allrefs_any - wait until all references are gone.
10629  * @list: list of net_devices to wait on
10630  *
10631  * This is called when unregistering network devices.
10632  *
10633  * Any protocol or device that holds a reference should register
10634  * for netdevice notification, and cleanup and put back the
10635  * reference if they receive an UNREGISTER event.
10636  * We can get stuck here if buggy protocols don't correctly
10637  * call dev_put.
10638  */
10639 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10640 {
10641         unsigned long rebroadcast_time, warning_time;
10642         struct net_device *dev;
10643         int wait = 0;
10644
10645         rebroadcast_time = warning_time = jiffies;
10646
10647         list_for_each_entry(dev, list, todo_list)
10648                 if (netdev_refcnt_read(dev) == 1)
10649                         return dev;
10650
10651         while (true) {
10652                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10653                         rtnl_lock();
10654
10655                         /* Rebroadcast unregister notification */
10656                         list_for_each_entry(dev, list, todo_list)
10657                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10658
10659                         __rtnl_unlock();
10660                         rcu_barrier();
10661                         rtnl_lock();
10662
10663                         list_for_each_entry(dev, list, todo_list)
10664                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10665                                              &dev->state)) {
10666                                         /* We must not have linkwatch events
10667                                          * pending on unregister. If this
10668                                          * happens, we simply run the queue
10669                                          * unscheduled, resulting in a noop
10670                                          * for this device.
10671                                          */
10672                                         linkwatch_run_queue();
10673                                         break;
10674                                 }
10675
10676                         __rtnl_unlock();
10677
10678                         rebroadcast_time = jiffies;
10679                 }
10680
10681                 rcu_barrier();
10682
10683                 if (!wait) {
10684                         wait = WAIT_REFS_MIN_MSECS;
10685                 } else {
10686                         msleep(wait);
10687                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10688                 }
10689
10690                 list_for_each_entry(dev, list, todo_list)
10691                         if (netdev_refcnt_read(dev) == 1)
10692                                 return dev;
10693
10694                 if (time_after(jiffies, warning_time +
10695                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10696                         list_for_each_entry(dev, list, todo_list) {
10697                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10698                                          dev->name, netdev_refcnt_read(dev));
10699                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10700                         }
10701
10702                         warning_time = jiffies;
10703                 }
10704         }
10705 }
10706
10707 /* The sequence is:
10708  *
10709  *      rtnl_lock();
10710  *      ...
10711  *      register_netdevice(x1);
10712  *      register_netdevice(x2);
10713  *      ...
10714  *      unregister_netdevice(y1);
10715  *      unregister_netdevice(y2);
10716  *      ...
10717  *      rtnl_unlock();
10718  *      free_netdev(y1);
10719  *      free_netdev(y2);
10720  *
10721  * We are invoked by rtnl_unlock().
10722  * This allows us to deal with problems:
10723  * 1) We can delete sysfs objects which invoke hotplug
10724  *    without deadlocking with linkwatch via keventd.
10725  * 2) Since we run with the RTNL semaphore not held, we can sleep
10726  *    safely in order to wait for the netdev refcnt to drop to zero.
10727  *
10728  * We must not return until all unregister events added during
10729  * the interval the lock was held have been completed.
10730  */
10731 void netdev_run_todo(void)
10732 {
10733         struct net_device *dev, *tmp;
10734         struct list_head list;
10735         int cnt;
10736 #ifdef CONFIG_LOCKDEP
10737         struct list_head unlink_list;
10738
10739         list_replace_init(&net_unlink_list, &unlink_list);
10740
10741         while (!list_empty(&unlink_list)) {
10742                 struct net_device *dev = list_first_entry(&unlink_list,
10743                                                           struct net_device,
10744                                                           unlink_list);
10745                 list_del_init(&dev->unlink_list);
10746                 dev->nested_level = dev->lower_level - 1;
10747         }
10748 #endif
10749
10750         /* Snapshot list, allow later requests */
10751         list_replace_init(&net_todo_list, &list);
10752
10753         __rtnl_unlock();
10754
10755         /* Wait for rcu callbacks to finish before next phase */
10756         if (!list_empty(&list))
10757                 rcu_barrier();
10758
10759         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10760                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10761                         netdev_WARN(dev, "run_todo but not unregistering\n");
10762                         list_del(&dev->todo_list);
10763                         continue;
10764                 }
10765
10766                 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10767                 linkwatch_sync_dev(dev);
10768         }
10769
10770         cnt = 0;
10771         while (!list_empty(&list)) {
10772                 dev = netdev_wait_allrefs_any(&list);
10773                 list_del(&dev->todo_list);
10774
10775                 /* paranoia */
10776                 BUG_ON(netdev_refcnt_read(dev) != 1);
10777                 BUG_ON(!list_empty(&dev->ptype_all));
10778                 BUG_ON(!list_empty(&dev->ptype_specific));
10779                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10780                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10781
10782                 netdev_do_free_pcpu_stats(dev);
10783                 if (dev->priv_destructor)
10784                         dev->priv_destructor(dev);
10785                 if (dev->needs_free_netdev)
10786                         free_netdev(dev);
10787
10788                 cnt++;
10789
10790                 /* Free network device */
10791                 kobject_put(&dev->dev.kobj);
10792         }
10793         if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10794                 wake_up(&netdev_unregistering_wq);
10795 }
10796
10797 /* Collate per-cpu network dstats statistics
10798  *
10799  * Read per-cpu network statistics from dev->dstats and populate the related
10800  * fields in @s.
10801  */
10802 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10803                              const struct pcpu_dstats __percpu *dstats)
10804 {
10805         int cpu;
10806
10807         for_each_possible_cpu(cpu) {
10808                 u64 rx_packets, rx_bytes, rx_drops;
10809                 u64 tx_packets, tx_bytes, tx_drops;
10810                 const struct pcpu_dstats *stats;
10811                 unsigned int start;
10812
10813                 stats = per_cpu_ptr(dstats, cpu);
10814                 do {
10815                         start = u64_stats_fetch_begin(&stats->syncp);
10816                         rx_packets = u64_stats_read(&stats->rx_packets);
10817                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10818                         rx_drops   = u64_stats_read(&stats->rx_drops);
10819                         tx_packets = u64_stats_read(&stats->tx_packets);
10820                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10821                         tx_drops   = u64_stats_read(&stats->tx_drops);
10822                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10823
10824                 s->rx_packets += rx_packets;
10825                 s->rx_bytes   += rx_bytes;
10826                 s->rx_dropped += rx_drops;
10827                 s->tx_packets += tx_packets;
10828                 s->tx_bytes   += tx_bytes;
10829                 s->tx_dropped += tx_drops;
10830         }
10831 }
10832
10833 /* ndo_get_stats64 implementation for dtstats-based accounting.
10834  *
10835  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10836  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10837  */
10838 static void dev_get_dstats64(const struct net_device *dev,
10839                              struct rtnl_link_stats64 *s)
10840 {
10841         netdev_stats_to_stats64(s, &dev->stats);
10842         dev_fetch_dstats(s, dev->dstats);
10843 }
10844
10845 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10846  * all the same fields in the same order as net_device_stats, with only
10847  * the type differing, but rtnl_link_stats64 may have additional fields
10848  * at the end for newer counters.
10849  */
10850 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10851                              const struct net_device_stats *netdev_stats)
10852 {
10853         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10854         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10855         u64 *dst = (u64 *)stats64;
10856
10857         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10858         for (i = 0; i < n; i++)
10859                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10860         /* zero out counters that only exist in rtnl_link_stats64 */
10861         memset((char *)stats64 + n * sizeof(u64), 0,
10862                sizeof(*stats64) - n * sizeof(u64));
10863 }
10864 EXPORT_SYMBOL(netdev_stats_to_stats64);
10865
10866 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10867                 struct net_device *dev)
10868 {
10869         struct net_device_core_stats __percpu *p;
10870
10871         p = alloc_percpu_gfp(struct net_device_core_stats,
10872                              GFP_ATOMIC | __GFP_NOWARN);
10873
10874         if (p && cmpxchg(&dev->core_stats, NULL, p))
10875                 free_percpu(p);
10876
10877         /* This READ_ONCE() pairs with the cmpxchg() above */
10878         return READ_ONCE(dev->core_stats);
10879 }
10880
10881 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10882 {
10883         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10884         struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10885         unsigned long __percpu *field;
10886
10887         if (unlikely(!p)) {
10888                 p = netdev_core_stats_alloc(dev);
10889                 if (!p)
10890                         return;
10891         }
10892
10893         field = (unsigned long __percpu *)((void __percpu *)p + offset);
10894         this_cpu_inc(*field);
10895 }
10896 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10897
10898 /**
10899  *      dev_get_stats   - get network device statistics
10900  *      @dev: device to get statistics from
10901  *      @storage: place to store stats
10902  *
10903  *      Get network statistics from device. Return @storage.
10904  *      The device driver may provide its own method by setting
10905  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10906  *      otherwise the internal statistics structure is used.
10907  */
10908 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10909                                         struct rtnl_link_stats64 *storage)
10910 {
10911         const struct net_device_ops *ops = dev->netdev_ops;
10912         const struct net_device_core_stats __percpu *p;
10913
10914         if (ops->ndo_get_stats64) {
10915                 memset(storage, 0, sizeof(*storage));
10916                 ops->ndo_get_stats64(dev, storage);
10917         } else if (ops->ndo_get_stats) {
10918                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10919         } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10920                 dev_get_tstats64(dev, storage);
10921         } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10922                 dev_get_dstats64(dev, storage);
10923         } else {
10924                 netdev_stats_to_stats64(storage, &dev->stats);
10925         }
10926
10927         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10928         p = READ_ONCE(dev->core_stats);
10929         if (p) {
10930                 const struct net_device_core_stats *core_stats;
10931                 int i;
10932
10933                 for_each_possible_cpu(i) {
10934                         core_stats = per_cpu_ptr(p, i);
10935                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10936                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10937                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10938                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10939                 }
10940         }
10941         return storage;
10942 }
10943 EXPORT_SYMBOL(dev_get_stats);
10944
10945 /**
10946  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10947  *      @s: place to store stats
10948  *      @netstats: per-cpu network stats to read from
10949  *
10950  *      Read per-cpu network statistics and populate the related fields in @s.
10951  */
10952 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10953                            const struct pcpu_sw_netstats __percpu *netstats)
10954 {
10955         int cpu;
10956
10957         for_each_possible_cpu(cpu) {
10958                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10959                 const struct pcpu_sw_netstats *stats;
10960                 unsigned int start;
10961
10962                 stats = per_cpu_ptr(netstats, cpu);
10963                 do {
10964                         start = u64_stats_fetch_begin(&stats->syncp);
10965                         rx_packets = u64_stats_read(&stats->rx_packets);
10966                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10967                         tx_packets = u64_stats_read(&stats->tx_packets);
10968                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10969                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10970
10971                 s->rx_packets += rx_packets;
10972                 s->rx_bytes   += rx_bytes;
10973                 s->tx_packets += tx_packets;
10974                 s->tx_bytes   += tx_bytes;
10975         }
10976 }
10977 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10978
10979 /**
10980  *      dev_get_tstats64 - ndo_get_stats64 implementation
10981  *      @dev: device to get statistics from
10982  *      @s: place to store stats
10983  *
10984  *      Populate @s from dev->stats and dev->tstats. Can be used as
10985  *      ndo_get_stats64() callback.
10986  */
10987 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10988 {
10989         netdev_stats_to_stats64(s, &dev->stats);
10990         dev_fetch_sw_netstats(s, dev->tstats);
10991 }
10992 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10993
10994 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10995 {
10996         struct netdev_queue *queue = dev_ingress_queue(dev);
10997
10998 #ifdef CONFIG_NET_CLS_ACT
10999         if (queue)
11000                 return queue;
11001         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11002         if (!queue)
11003                 return NULL;
11004         netdev_init_one_queue(dev, queue, NULL);
11005         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11006         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11007         rcu_assign_pointer(dev->ingress_queue, queue);
11008 #endif
11009         return queue;
11010 }
11011
11012 static const struct ethtool_ops default_ethtool_ops;
11013
11014 void netdev_set_default_ethtool_ops(struct net_device *dev,
11015                                     const struct ethtool_ops *ops)
11016 {
11017         if (dev->ethtool_ops == &default_ethtool_ops)
11018                 dev->ethtool_ops = ops;
11019 }
11020 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11021
11022 /**
11023  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11024  * @dev: netdev to enable the IRQ coalescing on
11025  *
11026  * Sets a conservative default for SW IRQ coalescing. Users can use
11027  * sysfs attributes to override the default values.
11028  */
11029 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11030 {
11031         WARN_ON(dev->reg_state == NETREG_REGISTERED);
11032
11033         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11034                 dev->gro_flush_timeout = 20000;
11035                 dev->napi_defer_hard_irqs = 1;
11036         }
11037 }
11038 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11039
11040 /**
11041  * alloc_netdev_mqs - allocate network device
11042  * @sizeof_priv: size of private data to allocate space for
11043  * @name: device name format string
11044  * @name_assign_type: origin of device name
11045  * @setup: callback to initialize device
11046  * @txqs: the number of TX subqueues to allocate
11047  * @rxqs: the number of RX subqueues to allocate
11048  *
11049  * Allocates a struct net_device with private data area for driver use
11050  * and performs basic initialization.  Also allocates subqueue structs
11051  * for each queue on the device.
11052  */
11053 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11054                 unsigned char name_assign_type,
11055                 void (*setup)(struct net_device *),
11056                 unsigned int txqs, unsigned int rxqs)
11057 {
11058         struct net_device *dev;
11059
11060         BUG_ON(strlen(name) >= sizeof(dev->name));
11061
11062         if (txqs < 1) {
11063                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11064                 return NULL;
11065         }
11066
11067         if (rxqs < 1) {
11068                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11069                 return NULL;
11070         }
11071
11072         dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11073                        GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11074         if (!dev)
11075                 return NULL;
11076
11077         dev->priv_len = sizeof_priv;
11078
11079         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11080 #ifdef CONFIG_PCPU_DEV_REFCNT
11081         dev->pcpu_refcnt = alloc_percpu(int);
11082         if (!dev->pcpu_refcnt)
11083                 goto free_dev;
11084         __dev_hold(dev);
11085 #else
11086         refcount_set(&dev->dev_refcnt, 1);
11087 #endif
11088
11089         if (dev_addr_init(dev))
11090                 goto free_pcpu;
11091
11092         dev_mc_init(dev);
11093         dev_uc_init(dev);
11094
11095         dev_net_set(dev, &init_net);
11096
11097         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11098         dev->xdp_zc_max_segs = 1;
11099         dev->gso_max_segs = GSO_MAX_SEGS;
11100         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11101         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11102         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11103         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11104         dev->tso_max_segs = TSO_MAX_SEGS;
11105         dev->upper_level = 1;
11106         dev->lower_level = 1;
11107 #ifdef CONFIG_LOCKDEP
11108         dev->nested_level = 0;
11109         INIT_LIST_HEAD(&dev->unlink_list);
11110 #endif
11111
11112         INIT_LIST_HEAD(&dev->napi_list);
11113         INIT_LIST_HEAD(&dev->unreg_list);
11114         INIT_LIST_HEAD(&dev->close_list);
11115         INIT_LIST_HEAD(&dev->link_watch_list);
11116         INIT_LIST_HEAD(&dev->adj_list.upper);
11117         INIT_LIST_HEAD(&dev->adj_list.lower);
11118         INIT_LIST_HEAD(&dev->ptype_all);
11119         INIT_LIST_HEAD(&dev->ptype_specific);
11120         INIT_LIST_HEAD(&dev->net_notifier_list);
11121 #ifdef CONFIG_NET_SCHED
11122         hash_init(dev->qdisc_hash);
11123 #endif
11124
11125         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11126         setup(dev);
11127
11128         if (!dev->tx_queue_len) {
11129                 dev->priv_flags |= IFF_NO_QUEUE;
11130                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11131         }
11132
11133         dev->num_tx_queues = txqs;
11134         dev->real_num_tx_queues = txqs;
11135         if (netif_alloc_netdev_queues(dev))
11136                 goto free_all;
11137
11138         dev->num_rx_queues = rxqs;
11139         dev->real_num_rx_queues = rxqs;
11140         if (netif_alloc_rx_queues(dev))
11141                 goto free_all;
11142         dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11143         if (!dev->ethtool)
11144                 goto free_all;
11145
11146         strscpy(dev->name, name);
11147         dev->name_assign_type = name_assign_type;
11148         dev->group = INIT_NETDEV_GROUP;
11149         if (!dev->ethtool_ops)
11150                 dev->ethtool_ops = &default_ethtool_ops;
11151
11152         nf_hook_netdev_init(dev);
11153
11154         return dev;
11155
11156 free_all:
11157         free_netdev(dev);
11158         return NULL;
11159
11160 free_pcpu:
11161 #ifdef CONFIG_PCPU_DEV_REFCNT
11162         free_percpu(dev->pcpu_refcnt);
11163 free_dev:
11164 #endif
11165         kvfree(dev);
11166         return NULL;
11167 }
11168 EXPORT_SYMBOL(alloc_netdev_mqs);
11169
11170 /**
11171  * free_netdev - free network device
11172  * @dev: device
11173  *
11174  * This function does the last stage of destroying an allocated device
11175  * interface. The reference to the device object is released. If this
11176  * is the last reference then it will be freed.Must be called in process
11177  * context.
11178  */
11179 void free_netdev(struct net_device *dev)
11180 {
11181         struct napi_struct *p, *n;
11182
11183         might_sleep();
11184
11185         /* When called immediately after register_netdevice() failed the unwind
11186          * handling may still be dismantling the device. Handle that case by
11187          * deferring the free.
11188          */
11189         if (dev->reg_state == NETREG_UNREGISTERING) {
11190                 ASSERT_RTNL();
11191                 dev->needs_free_netdev = true;
11192                 return;
11193         }
11194
11195         kfree(dev->ethtool);
11196         netif_free_tx_queues(dev);
11197         netif_free_rx_queues(dev);
11198
11199         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11200
11201         /* Flush device addresses */
11202         dev_addr_flush(dev);
11203
11204         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11205                 netif_napi_del(p);
11206
11207         ref_tracker_dir_exit(&dev->refcnt_tracker);
11208 #ifdef CONFIG_PCPU_DEV_REFCNT
11209         free_percpu(dev->pcpu_refcnt);
11210         dev->pcpu_refcnt = NULL;
11211 #endif
11212         free_percpu(dev->core_stats);
11213         dev->core_stats = NULL;
11214         free_percpu(dev->xdp_bulkq);
11215         dev->xdp_bulkq = NULL;
11216
11217         netdev_free_phy_link_topology(dev);
11218
11219         /*  Compatibility with error handling in drivers */
11220         if (dev->reg_state == NETREG_UNINITIALIZED ||
11221             dev->reg_state == NETREG_DUMMY) {
11222                 kvfree(dev);
11223                 return;
11224         }
11225
11226         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11227         WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11228
11229         /* will free via device release */
11230         put_device(&dev->dev);
11231 }
11232 EXPORT_SYMBOL(free_netdev);
11233
11234 /**
11235  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11236  * @sizeof_priv: size of private data to allocate space for
11237  *
11238  * Return: the allocated net_device on success, NULL otherwise
11239  */
11240 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11241 {
11242         return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11243                             init_dummy_netdev_core);
11244 }
11245 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11246
11247 /**
11248  *      synchronize_net -  Synchronize with packet receive processing
11249  *
11250  *      Wait for packets currently being received to be done.
11251  *      Does not block later packets from starting.
11252  */
11253 void synchronize_net(void)
11254 {
11255         might_sleep();
11256         if (rtnl_is_locked())
11257                 synchronize_rcu_expedited();
11258         else
11259                 synchronize_rcu();
11260 }
11261 EXPORT_SYMBOL(synchronize_net);
11262
11263 static void netdev_rss_contexts_free(struct net_device *dev)
11264 {
11265         struct ethtool_rxfh_context *ctx;
11266         unsigned long context;
11267
11268         mutex_lock(&dev->ethtool->rss_lock);
11269         xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11270                 struct ethtool_rxfh_param rxfh;
11271
11272                 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11273                 rxfh.key = ethtool_rxfh_context_key(ctx);
11274                 rxfh.hfunc = ctx->hfunc;
11275                 rxfh.input_xfrm = ctx->input_xfrm;
11276                 rxfh.rss_context = context;
11277                 rxfh.rss_delete = true;
11278
11279                 xa_erase(&dev->ethtool->rss_ctx, context);
11280                 if (dev->ethtool_ops->create_rxfh_context)
11281                         dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11282                                                               context, NULL);
11283                 else
11284                         dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11285                 kfree(ctx);
11286         }
11287         xa_destroy(&dev->ethtool->rss_ctx);
11288         mutex_unlock(&dev->ethtool->rss_lock);
11289 }
11290
11291 /**
11292  *      unregister_netdevice_queue - remove device from the kernel
11293  *      @dev: device
11294  *      @head: list
11295  *
11296  *      This function shuts down a device interface and removes it
11297  *      from the kernel tables.
11298  *      If head not NULL, device is queued to be unregistered later.
11299  *
11300  *      Callers must hold the rtnl semaphore.  You may want
11301  *      unregister_netdev() instead of this.
11302  */
11303
11304 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11305 {
11306         ASSERT_RTNL();
11307
11308         if (head) {
11309                 list_move_tail(&dev->unreg_list, head);
11310         } else {
11311                 LIST_HEAD(single);
11312
11313                 list_add(&dev->unreg_list, &single);
11314                 unregister_netdevice_many(&single);
11315         }
11316 }
11317 EXPORT_SYMBOL(unregister_netdevice_queue);
11318
11319 void unregister_netdevice_many_notify(struct list_head *head,
11320                                       u32 portid, const struct nlmsghdr *nlh)
11321 {
11322         struct net_device *dev, *tmp;
11323         LIST_HEAD(close_head);
11324         int cnt = 0;
11325
11326         BUG_ON(dev_boot_phase);
11327         ASSERT_RTNL();
11328
11329         if (list_empty(head))
11330                 return;
11331
11332         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11333                 /* Some devices call without registering
11334                  * for initialization unwind. Remove those
11335                  * devices and proceed with the remaining.
11336                  */
11337                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11338                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11339                                  dev->name, dev);
11340
11341                         WARN_ON(1);
11342                         list_del(&dev->unreg_list);
11343                         continue;
11344                 }
11345                 dev->dismantle = true;
11346                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11347         }
11348
11349         /* If device is running, close it first. */
11350         list_for_each_entry(dev, head, unreg_list)
11351                 list_add_tail(&dev->close_list, &close_head);
11352         dev_close_many(&close_head, true);
11353
11354         list_for_each_entry(dev, head, unreg_list) {
11355                 /* And unlink it from device chain. */
11356                 unlist_netdevice(dev);
11357                 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11358         }
11359         flush_all_backlogs();
11360
11361         synchronize_net();
11362
11363         list_for_each_entry(dev, head, unreg_list) {
11364                 struct sk_buff *skb = NULL;
11365
11366                 /* Shutdown queueing discipline. */
11367                 dev_shutdown(dev);
11368                 dev_tcx_uninstall(dev);
11369                 dev_xdp_uninstall(dev);
11370                 bpf_dev_bound_netdev_unregister(dev);
11371
11372                 netdev_offload_xstats_disable_all(dev);
11373
11374                 /* Notify protocols, that we are about to destroy
11375                  * this device. They should clean all the things.
11376                  */
11377                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11378
11379                 if (!dev->rtnl_link_ops ||
11380                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11381                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11382                                                      GFP_KERNEL, NULL, 0,
11383                                                      portid, nlh);
11384
11385                 /*
11386                  *      Flush the unicast and multicast chains
11387                  */
11388                 dev_uc_flush(dev);
11389                 dev_mc_flush(dev);
11390
11391                 netdev_name_node_alt_flush(dev);
11392                 netdev_name_node_free(dev->name_node);
11393
11394                 netdev_rss_contexts_free(dev);
11395
11396                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11397
11398                 if (dev->netdev_ops->ndo_uninit)
11399                         dev->netdev_ops->ndo_uninit(dev);
11400
11401                 mutex_destroy(&dev->ethtool->rss_lock);
11402
11403                 if (skb)
11404                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11405
11406                 /* Notifier chain MUST detach us all upper devices. */
11407                 WARN_ON(netdev_has_any_upper_dev(dev));
11408                 WARN_ON(netdev_has_any_lower_dev(dev));
11409
11410                 /* Remove entries from kobject tree */
11411                 netdev_unregister_kobject(dev);
11412 #ifdef CONFIG_XPS
11413                 /* Remove XPS queueing entries */
11414                 netif_reset_xps_queues_gt(dev, 0);
11415 #endif
11416         }
11417
11418         synchronize_net();
11419
11420         list_for_each_entry(dev, head, unreg_list) {
11421                 netdev_put(dev, &dev->dev_registered_tracker);
11422                 net_set_todo(dev);
11423                 cnt++;
11424         }
11425         atomic_add(cnt, &dev_unreg_count);
11426
11427         list_del(head);
11428 }
11429
11430 /**
11431  *      unregister_netdevice_many - unregister many devices
11432  *      @head: list of devices
11433  *
11434  *  Note: As most callers use a stack allocated list_head,
11435  *  we force a list_del() to make sure stack won't be corrupted later.
11436  */
11437 void unregister_netdevice_many(struct list_head *head)
11438 {
11439         unregister_netdevice_many_notify(head, 0, NULL);
11440 }
11441 EXPORT_SYMBOL(unregister_netdevice_many);
11442
11443 /**
11444  *      unregister_netdev - remove device from the kernel
11445  *      @dev: device
11446  *
11447  *      This function shuts down a device interface and removes it
11448  *      from the kernel tables.
11449  *
11450  *      This is just a wrapper for unregister_netdevice that takes
11451  *      the rtnl semaphore.  In general you want to use this and not
11452  *      unregister_netdevice.
11453  */
11454 void unregister_netdev(struct net_device *dev)
11455 {
11456         rtnl_lock();
11457         unregister_netdevice(dev);
11458         rtnl_unlock();
11459 }
11460 EXPORT_SYMBOL(unregister_netdev);
11461
11462 /**
11463  *      __dev_change_net_namespace - move device to different nethost namespace
11464  *      @dev: device
11465  *      @net: network namespace
11466  *      @pat: If not NULL name pattern to try if the current device name
11467  *            is already taken in the destination network namespace.
11468  *      @new_ifindex: If not zero, specifies device index in the target
11469  *                    namespace.
11470  *
11471  *      This function shuts down a device interface and moves it
11472  *      to a new network namespace. On success 0 is returned, on
11473  *      a failure a netagive errno code is returned.
11474  *
11475  *      Callers must hold the rtnl semaphore.
11476  */
11477
11478 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11479                                const char *pat, int new_ifindex)
11480 {
11481         struct netdev_name_node *name_node;
11482         struct net *net_old = dev_net(dev);
11483         char new_name[IFNAMSIZ] = {};
11484         int err, new_nsid;
11485
11486         ASSERT_RTNL();
11487
11488         /* Don't allow namespace local devices to be moved. */
11489         err = -EINVAL;
11490         if (dev->netns_local)
11491                 goto out;
11492
11493         /* Ensure the device has been registered */
11494         if (dev->reg_state != NETREG_REGISTERED)
11495                 goto out;
11496
11497         /* Get out if there is nothing todo */
11498         err = 0;
11499         if (net_eq(net_old, net))
11500                 goto out;
11501
11502         /* Pick the destination device name, and ensure
11503          * we can use it in the destination network namespace.
11504          */
11505         err = -EEXIST;
11506         if (netdev_name_in_use(net, dev->name)) {
11507                 /* We get here if we can't use the current device name */
11508                 if (!pat)
11509                         goto out;
11510                 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11511                 if (err < 0)
11512                         goto out;
11513         }
11514         /* Check that none of the altnames conflicts. */
11515         err = -EEXIST;
11516         netdev_for_each_altname(dev, name_node)
11517                 if (netdev_name_in_use(net, name_node->name))
11518                         goto out;
11519
11520         /* Check that new_ifindex isn't used yet. */
11521         if (new_ifindex) {
11522                 err = dev_index_reserve(net, new_ifindex);
11523                 if (err < 0)
11524                         goto out;
11525         } else {
11526                 /* If there is an ifindex conflict assign a new one */
11527                 err = dev_index_reserve(net, dev->ifindex);
11528                 if (err == -EBUSY)
11529                         err = dev_index_reserve(net, 0);
11530                 if (err < 0)
11531                         goto out;
11532                 new_ifindex = err;
11533         }
11534
11535         /*
11536          * And now a mini version of register_netdevice unregister_netdevice.
11537          */
11538
11539         /* If device is running close it first. */
11540         dev_close(dev);
11541
11542         /* And unlink it from device chain */
11543         unlist_netdevice(dev);
11544
11545         synchronize_net();
11546
11547         /* Shutdown queueing discipline. */
11548         dev_shutdown(dev);
11549
11550         /* Notify protocols, that we are about to destroy
11551          * this device. They should clean all the things.
11552          *
11553          * Note that dev->reg_state stays at NETREG_REGISTERED.
11554          * This is wanted because this way 8021q and macvlan know
11555          * the device is just moving and can keep their slaves up.
11556          */
11557         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11558         rcu_barrier();
11559
11560         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11561
11562         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11563                             new_ifindex);
11564
11565         /*
11566          *      Flush the unicast and multicast chains
11567          */
11568         dev_uc_flush(dev);
11569         dev_mc_flush(dev);
11570
11571         /* Send a netdev-removed uevent to the old namespace */
11572         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11573         netdev_adjacent_del_links(dev);
11574
11575         /* Move per-net netdevice notifiers that are following the netdevice */
11576         move_netdevice_notifiers_dev_net(dev, net);
11577
11578         /* Actually switch the network namespace */
11579         dev_net_set(dev, net);
11580         dev->ifindex = new_ifindex;
11581
11582         if (new_name[0]) {
11583                 /* Rename the netdev to prepared name */
11584                 write_seqlock_bh(&netdev_rename_lock);
11585                 strscpy(dev->name, new_name, IFNAMSIZ);
11586                 write_sequnlock_bh(&netdev_rename_lock);
11587         }
11588
11589         /* Fixup kobjects */
11590         dev_set_uevent_suppress(&dev->dev, 1);
11591         err = device_rename(&dev->dev, dev->name);
11592         dev_set_uevent_suppress(&dev->dev, 0);
11593         WARN_ON(err);
11594
11595         /* Send a netdev-add uevent to the new namespace */
11596         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11597         netdev_adjacent_add_links(dev);
11598
11599         /* Adapt owner in case owning user namespace of target network
11600          * namespace is different from the original one.
11601          */
11602         err = netdev_change_owner(dev, net_old, net);
11603         WARN_ON(err);
11604
11605         /* Add the device back in the hashes */
11606         list_netdevice(dev);
11607
11608         /* Notify protocols, that a new device appeared. */
11609         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11610
11611         /*
11612          *      Prevent userspace races by waiting until the network
11613          *      device is fully setup before sending notifications.
11614          */
11615         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11616
11617         synchronize_net();
11618         err = 0;
11619 out:
11620         return err;
11621 }
11622 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11623
11624 static int dev_cpu_dead(unsigned int oldcpu)
11625 {
11626         struct sk_buff **list_skb;
11627         struct sk_buff *skb;
11628         unsigned int cpu;
11629         struct softnet_data *sd, *oldsd, *remsd = NULL;
11630
11631         local_irq_disable();
11632         cpu = smp_processor_id();
11633         sd = &per_cpu(softnet_data, cpu);
11634         oldsd = &per_cpu(softnet_data, oldcpu);
11635
11636         /* Find end of our completion_queue. */
11637         list_skb = &sd->completion_queue;
11638         while (*list_skb)
11639                 list_skb = &(*list_skb)->next;
11640         /* Append completion queue from offline CPU. */
11641         *list_skb = oldsd->completion_queue;
11642         oldsd->completion_queue = NULL;
11643
11644         /* Append output queue from offline CPU. */
11645         if (oldsd->output_queue) {
11646                 *sd->output_queue_tailp = oldsd->output_queue;
11647                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11648                 oldsd->output_queue = NULL;
11649                 oldsd->output_queue_tailp = &oldsd->output_queue;
11650         }
11651         /* Append NAPI poll list from offline CPU, with one exception :
11652          * process_backlog() must be called by cpu owning percpu backlog.
11653          * We properly handle process_queue & input_pkt_queue later.
11654          */
11655         while (!list_empty(&oldsd->poll_list)) {
11656                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11657                                                             struct napi_struct,
11658                                                             poll_list);
11659
11660                 list_del_init(&napi->poll_list);
11661                 if (napi->poll == process_backlog)
11662                         napi->state &= NAPIF_STATE_THREADED;
11663                 else
11664                         ____napi_schedule(sd, napi);
11665         }
11666
11667         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11668         local_irq_enable();
11669
11670         if (!use_backlog_threads()) {
11671 #ifdef CONFIG_RPS
11672                 remsd = oldsd->rps_ipi_list;
11673                 oldsd->rps_ipi_list = NULL;
11674 #endif
11675                 /* send out pending IPI's on offline CPU */
11676                 net_rps_send_ipi(remsd);
11677         }
11678
11679         /* Process offline CPU's input_pkt_queue */
11680         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11681                 netif_rx(skb);
11682                 rps_input_queue_head_incr(oldsd);
11683         }
11684         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11685                 netif_rx(skb);
11686                 rps_input_queue_head_incr(oldsd);
11687         }
11688
11689         return 0;
11690 }
11691
11692 /**
11693  *      netdev_increment_features - increment feature set by one
11694  *      @all: current feature set
11695  *      @one: new feature set
11696  *      @mask: mask feature set
11697  *
11698  *      Computes a new feature set after adding a device with feature set
11699  *      @one to the master device with current feature set @all.  Will not
11700  *      enable anything that is off in @mask. Returns the new feature set.
11701  */
11702 netdev_features_t netdev_increment_features(netdev_features_t all,
11703         netdev_features_t one, netdev_features_t mask)
11704 {
11705         if (mask & NETIF_F_HW_CSUM)
11706                 mask |= NETIF_F_CSUM_MASK;
11707         mask |= NETIF_F_VLAN_CHALLENGED;
11708
11709         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11710         all &= one | ~NETIF_F_ALL_FOR_ALL;
11711
11712         /* If one device supports hw checksumming, set for all. */
11713         if (all & NETIF_F_HW_CSUM)
11714                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11715
11716         return all;
11717 }
11718 EXPORT_SYMBOL(netdev_increment_features);
11719
11720 static struct hlist_head * __net_init netdev_create_hash(void)
11721 {
11722         int i;
11723         struct hlist_head *hash;
11724
11725         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11726         if (hash != NULL)
11727                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11728                         INIT_HLIST_HEAD(&hash[i]);
11729
11730         return hash;
11731 }
11732
11733 /* Initialize per network namespace state */
11734 static int __net_init netdev_init(struct net *net)
11735 {
11736         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11737                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11738
11739         INIT_LIST_HEAD(&net->dev_base_head);
11740
11741         net->dev_name_head = netdev_create_hash();
11742         if (net->dev_name_head == NULL)
11743                 goto err_name;
11744
11745         net->dev_index_head = netdev_create_hash();
11746         if (net->dev_index_head == NULL)
11747                 goto err_idx;
11748
11749         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11750
11751         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11752
11753         return 0;
11754
11755 err_idx:
11756         kfree(net->dev_name_head);
11757 err_name:
11758         return -ENOMEM;
11759 }
11760
11761 /**
11762  *      netdev_drivername - network driver for the device
11763  *      @dev: network device
11764  *
11765  *      Determine network driver for device.
11766  */
11767 const char *netdev_drivername(const struct net_device *dev)
11768 {
11769         const struct device_driver *driver;
11770         const struct device *parent;
11771         const char *empty = "";
11772
11773         parent = dev->dev.parent;
11774         if (!parent)
11775                 return empty;
11776
11777         driver = parent->driver;
11778         if (driver && driver->name)
11779                 return driver->name;
11780         return empty;
11781 }
11782
11783 static void __netdev_printk(const char *level, const struct net_device *dev,
11784                             struct va_format *vaf)
11785 {
11786         if (dev && dev->dev.parent) {
11787                 dev_printk_emit(level[1] - '0',
11788                                 dev->dev.parent,
11789                                 "%s %s %s%s: %pV",
11790                                 dev_driver_string(dev->dev.parent),
11791                                 dev_name(dev->dev.parent),
11792                                 netdev_name(dev), netdev_reg_state(dev),
11793                                 vaf);
11794         } else if (dev) {
11795                 printk("%s%s%s: %pV",
11796                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11797         } else {
11798                 printk("%s(NULL net_device): %pV", level, vaf);
11799         }
11800 }
11801
11802 void netdev_printk(const char *level, const struct net_device *dev,
11803                    const char *format, ...)
11804 {
11805         struct va_format vaf;
11806         va_list args;
11807
11808         va_start(args, format);
11809
11810         vaf.fmt = format;
11811         vaf.va = &args;
11812
11813         __netdev_printk(level, dev, &vaf);
11814
11815         va_end(args);
11816 }
11817 EXPORT_SYMBOL(netdev_printk);
11818
11819 #define define_netdev_printk_level(func, level)                 \
11820 void func(const struct net_device *dev, const char *fmt, ...)   \
11821 {                                                               \
11822         struct va_format vaf;                                   \
11823         va_list args;                                           \
11824                                                                 \
11825         va_start(args, fmt);                                    \
11826                                                                 \
11827         vaf.fmt = fmt;                                          \
11828         vaf.va = &args;                                         \
11829                                                                 \
11830         __netdev_printk(level, dev, &vaf);                      \
11831                                                                 \
11832         va_end(args);                                           \
11833 }                                                               \
11834 EXPORT_SYMBOL(func);
11835
11836 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11837 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11838 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11839 define_netdev_printk_level(netdev_err, KERN_ERR);
11840 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11841 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11842 define_netdev_printk_level(netdev_info, KERN_INFO);
11843
11844 static void __net_exit netdev_exit(struct net *net)
11845 {
11846         kfree(net->dev_name_head);
11847         kfree(net->dev_index_head);
11848         xa_destroy(&net->dev_by_index);
11849         if (net != &init_net)
11850                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11851 }
11852
11853 static struct pernet_operations __net_initdata netdev_net_ops = {
11854         .init = netdev_init,
11855         .exit = netdev_exit,
11856 };
11857
11858 static void __net_exit default_device_exit_net(struct net *net)
11859 {
11860         struct netdev_name_node *name_node, *tmp;
11861         struct net_device *dev, *aux;
11862         /*
11863          * Push all migratable network devices back to the
11864          * initial network namespace
11865          */
11866         ASSERT_RTNL();
11867         for_each_netdev_safe(net, dev, aux) {
11868                 int err;
11869                 char fb_name[IFNAMSIZ];
11870
11871                 /* Ignore unmoveable devices (i.e. loopback) */
11872                 if (dev->netns_local)
11873                         continue;
11874
11875                 /* Leave virtual devices for the generic cleanup */
11876                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11877                         continue;
11878
11879                 /* Push remaining network devices to init_net */
11880                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11881                 if (netdev_name_in_use(&init_net, fb_name))
11882                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11883
11884                 netdev_for_each_altname_safe(dev, name_node, tmp)
11885                         if (netdev_name_in_use(&init_net, name_node->name))
11886                                 __netdev_name_node_alt_destroy(name_node);
11887
11888                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11889                 if (err) {
11890                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11891                                  __func__, dev->name, err);
11892                         BUG();
11893                 }
11894         }
11895 }
11896
11897 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11898 {
11899         /* At exit all network devices most be removed from a network
11900          * namespace.  Do this in the reverse order of registration.
11901          * Do this across as many network namespaces as possible to
11902          * improve batching efficiency.
11903          */
11904         struct net_device *dev;
11905         struct net *net;
11906         LIST_HEAD(dev_kill_list);
11907
11908         rtnl_lock();
11909         list_for_each_entry(net, net_list, exit_list) {
11910                 default_device_exit_net(net);
11911                 cond_resched();
11912         }
11913
11914         list_for_each_entry(net, net_list, exit_list) {
11915                 for_each_netdev_reverse(net, dev) {
11916                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11917                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11918                         else
11919                                 unregister_netdevice_queue(dev, &dev_kill_list);
11920                 }
11921         }
11922         unregister_netdevice_many(&dev_kill_list);
11923         rtnl_unlock();
11924 }
11925
11926 static struct pernet_operations __net_initdata default_device_ops = {
11927         .exit_batch = default_device_exit_batch,
11928 };
11929
11930 static void __init net_dev_struct_check(void)
11931 {
11932         /* TX read-mostly hotpath */
11933         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11934         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11935         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11936         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11937         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11938         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11939         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11940         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11941         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11942         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11943         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11944         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11945         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11946 #ifdef CONFIG_XPS
11947         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11948 #endif
11949 #ifdef CONFIG_NETFILTER_EGRESS
11950         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11951 #endif
11952 #ifdef CONFIG_NET_XGRESS
11953         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11954 #endif
11955         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11956
11957         /* TXRX read-mostly hotpath */
11958         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11959         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11960         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11961         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11962         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11963         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11964         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11965
11966         /* RX read-mostly hotpath */
11967         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11968         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11969         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11970         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11971         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11972         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11973         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11974         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11975         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11976         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11977         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11978 #ifdef CONFIG_NETPOLL
11979         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11980 #endif
11981 #ifdef CONFIG_NET_XGRESS
11982         CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11983 #endif
11984         CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11985 }
11986
11987 /*
11988  *      Initialize the DEV module. At boot time this walks the device list and
11989  *      unhooks any devices that fail to initialise (normally hardware not
11990  *      present) and leaves us with a valid list of present and active devices.
11991  *
11992  */
11993
11994 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11995 #define SYSTEM_PERCPU_PAGE_POOL_SIZE    ((1 << 20) / PAGE_SIZE)
11996
11997 static int net_page_pool_create(int cpuid)
11998 {
11999 #if IS_ENABLED(CONFIG_PAGE_POOL)
12000         struct page_pool_params page_pool_params = {
12001                 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12002                 .flags = PP_FLAG_SYSTEM_POOL,
12003                 .nid = cpu_to_mem(cpuid),
12004         };
12005         struct page_pool *pp_ptr;
12006
12007         pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12008         if (IS_ERR(pp_ptr))
12009                 return -ENOMEM;
12010
12011         per_cpu(system_page_pool, cpuid) = pp_ptr;
12012 #endif
12013         return 0;
12014 }
12015
12016 static int backlog_napi_should_run(unsigned int cpu)
12017 {
12018         struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12019         struct napi_struct *napi = &sd->backlog;
12020
12021         return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12022 }
12023
12024 static void run_backlog_napi(unsigned int cpu)
12025 {
12026         struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12027
12028         napi_threaded_poll_loop(&sd->backlog);
12029 }
12030
12031 static void backlog_napi_setup(unsigned int cpu)
12032 {
12033         struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12034         struct napi_struct *napi = &sd->backlog;
12035
12036         napi->thread = this_cpu_read(backlog_napi);
12037         set_bit(NAPI_STATE_THREADED, &napi->state);
12038 }
12039
12040 static struct smp_hotplug_thread backlog_threads = {
12041         .store                  = &backlog_napi,
12042         .thread_should_run      = backlog_napi_should_run,
12043         .thread_fn              = run_backlog_napi,
12044         .thread_comm            = "backlog_napi/%u",
12045         .setup                  = backlog_napi_setup,
12046 };
12047
12048 /*
12049  *       This is called single threaded during boot, so no need
12050  *       to take the rtnl semaphore.
12051  */
12052 static int __init net_dev_init(void)
12053 {
12054         int i, rc = -ENOMEM;
12055
12056         BUG_ON(!dev_boot_phase);
12057
12058         net_dev_struct_check();
12059
12060         if (dev_proc_init())
12061                 goto out;
12062
12063         if (netdev_kobject_init())
12064                 goto out;
12065
12066         for (i = 0; i < PTYPE_HASH_SIZE; i++)
12067                 INIT_LIST_HEAD(&ptype_base[i]);
12068
12069         if (register_pernet_subsys(&netdev_net_ops))
12070                 goto out;
12071
12072         /*
12073          *      Initialise the packet receive queues.
12074          */
12075
12076         for_each_possible_cpu(i) {
12077                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12078                 struct softnet_data *sd = &per_cpu(softnet_data, i);
12079
12080                 INIT_WORK(flush, flush_backlog);
12081
12082                 skb_queue_head_init(&sd->input_pkt_queue);
12083                 skb_queue_head_init(&sd->process_queue);
12084 #ifdef CONFIG_XFRM_OFFLOAD
12085                 skb_queue_head_init(&sd->xfrm_backlog);
12086 #endif
12087                 INIT_LIST_HEAD(&sd->poll_list);
12088                 sd->output_queue_tailp = &sd->output_queue;
12089 #ifdef CONFIG_RPS
12090                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12091                 sd->cpu = i;
12092 #endif
12093                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12094                 spin_lock_init(&sd->defer_lock);
12095
12096                 init_gro_hash(&sd->backlog);
12097                 sd->backlog.poll = process_backlog;
12098                 sd->backlog.weight = weight_p;
12099                 INIT_LIST_HEAD(&sd->backlog.poll_list);
12100
12101                 if (net_page_pool_create(i))
12102                         goto out;
12103         }
12104         if (use_backlog_threads())
12105                 smpboot_register_percpu_thread(&backlog_threads);
12106
12107         dev_boot_phase = 0;
12108
12109         /* The loopback device is special if any other network devices
12110          * is present in a network namespace the loopback device must
12111          * be present. Since we now dynamically allocate and free the
12112          * loopback device ensure this invariant is maintained by
12113          * keeping the loopback device as the first device on the
12114          * list of network devices.  Ensuring the loopback devices
12115          * is the first device that appears and the last network device
12116          * that disappears.
12117          */
12118         if (register_pernet_device(&loopback_net_ops))
12119                 goto out;
12120
12121         if (register_pernet_device(&default_device_ops))
12122                 goto out;
12123
12124         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12125         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12126
12127         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12128                                        NULL, dev_cpu_dead);
12129         WARN_ON(rc < 0);
12130         rc = 0;
12131
12132         /* avoid static key IPIs to isolated CPUs */
12133         if (housekeeping_enabled(HK_TYPE_MISC))
12134                 net_enable_timestamp();
12135 out:
12136         if (rc < 0) {
12137                 for_each_possible_cpu(i) {
12138                         struct page_pool *pp_ptr;
12139
12140                         pp_ptr = per_cpu(system_page_pool, i);
12141                         if (!pp_ptr)
12142                                 continue;
12143
12144                         page_pool_destroy(pp_ptr);
12145                         per_cpu(system_page_pool, i) = NULL;
12146                 }
12147         }
12148
12149         return rc;
12150 }
12151
12152 subsys_initcall(net_dev_init);
This page took 0.724187 seconds and 4 git commands to generate.