]> Git Repo - linux.git/blob - net/can/isotp.c
ravb: Remove setting of RX software timestamp
[linux.git] / net / can / isotp.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3  *
4  * This implementation does not provide ISO-TP specific return values to the
5  * userspace.
6  *
7  * - RX path timeout of data reception leads to -ETIMEDOUT
8  * - RX path SN mismatch leads to -EILSEQ
9  * - RX path data reception with wrong padding leads to -EBADMSG
10  * - TX path flowcontrol reception timeout leads to -ECOMM
11  * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12  * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13  * - when a transfer (tx) is on the run the next write() blocks until it's done
14  * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15  * - as we have static buffers the check whether the PDU fits into the buffer
16  *   is done at FF reception time (no support for sending 'wait frames')
17  *
18  * Copyright (c) 2020 Volkswagen Group Electronic Research
19  * All rights reserved.
20  *
21  * Redistribution and use in source and binary forms, with or without
22  * modification, are permitted provided that the following conditions
23  * are met:
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  * 3. Neither the name of Volkswagen nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * Alternatively, provided that this notice is retained in full, this
34  * software may be distributed under the terms of the GNU General
35  * Public License ("GPL") version 2, in which case the provisions of the
36  * GPL apply INSTEAD OF those given above.
37  *
38  * The provided data structures and external interfaces from this code
39  * are not restricted to be used by modules with a GPL compatible license.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52  * DAMAGE.
53  */
54
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/interrupt.h>
58 #include <linux/spinlock.h>
59 #include <linux/hrtimer.h>
60 #include <linux/wait.h>
61 #include <linux/uio.h>
62 #include <linux/net.h>
63 #include <linux/netdevice.h>
64 #include <linux/socket.h>
65 #include <linux/if_arp.h>
66 #include <linux/skbuff.h>
67 #include <linux/can.h>
68 #include <linux/can/core.h>
69 #include <linux/can/skb.h>
70 #include <linux/can/isotp.h>
71 #include <linux/slab.h>
72 #include <net/sock.h>
73 #include <net/net_namespace.h>
74
75 MODULE_DESCRIPTION("PF_CAN ISO 15765-2 transport protocol");
76 MODULE_LICENSE("Dual BSD/GPL");
77 MODULE_AUTHOR("Oliver Hartkopp <[email protected]>");
78 MODULE_ALIAS("can-proto-6");
79
80 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
81
82 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
83                          (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
84                          (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
85
86 /* Since ISO 15765-2:2016 the CAN isotp protocol supports more than 4095
87  * byte per ISO PDU as the FF_DL can take full 32 bit values (4 Gbyte).
88  * We would need some good concept to handle this between user space and
89  * kernel space. For now set the static buffer to something about 8 kbyte
90  * to be able to test this new functionality.
91  */
92 #define DEFAULT_MAX_PDU_SIZE 8300
93
94 /* maximum PDU size before ISO 15765-2:2016 extension was 4095 */
95 #define MAX_12BIT_PDU_SIZE 4095
96
97 /* limit the isotp pdu size from the optional module parameter to 1MByte */
98 #define MAX_PDU_SIZE (1025 * 1024U)
99
100 static unsigned int max_pdu_size __read_mostly = DEFAULT_MAX_PDU_SIZE;
101 module_param(max_pdu_size, uint, 0444);
102 MODULE_PARM_DESC(max_pdu_size, "maximum isotp pdu size (default "
103                  __stringify(DEFAULT_MAX_PDU_SIZE) ")");
104
105 /* N_PCI type values in bits 7-4 of N_PCI bytes */
106 #define N_PCI_SF 0x00   /* single frame */
107 #define N_PCI_FF 0x10   /* first frame */
108 #define N_PCI_CF 0x20   /* consecutive frame */
109 #define N_PCI_FC 0x30   /* flow control */
110
111 #define N_PCI_SZ 1      /* size of the PCI byte #1 */
112 #define SF_PCI_SZ4 1    /* size of SingleFrame PCI including 4 bit SF_DL */
113 #define SF_PCI_SZ8 2    /* size of SingleFrame PCI including 8 bit SF_DL */
114 #define FF_PCI_SZ12 2   /* size of FirstFrame PCI including 12 bit FF_DL */
115 #define FF_PCI_SZ32 6   /* size of FirstFrame PCI including 32 bit FF_DL */
116 #define FC_CONTENT_SZ 3 /* flow control content size in byte (FS/BS/STmin) */
117
118 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
119 #define ISOTP_ALL_BC_FLAGS (CAN_ISOTP_SF_BROADCAST | CAN_ISOTP_CF_BROADCAST)
120
121 /* Flow Status given in FC frame */
122 #define ISOTP_FC_CTS 0          /* clear to send */
123 #define ISOTP_FC_WT 1           /* wait */
124 #define ISOTP_FC_OVFLW 2        /* overflow */
125
126 #define ISOTP_FC_TIMEOUT 1      /* 1 sec */
127 #define ISOTP_ECHO_TIMEOUT 2    /* 2 secs */
128
129 enum {
130         ISOTP_IDLE = 0,
131         ISOTP_WAIT_FIRST_FC,
132         ISOTP_WAIT_FC,
133         ISOTP_WAIT_DATA,
134         ISOTP_SENDING,
135         ISOTP_SHUTDOWN,
136 };
137
138 struct tpcon {
139         u8 *buf;
140         unsigned int buflen;
141         unsigned int len;
142         unsigned int idx;
143         u32 state;
144         u8 bs;
145         u8 sn;
146         u8 ll_dl;
147         u8 sbuf[DEFAULT_MAX_PDU_SIZE];
148 };
149
150 struct isotp_sock {
151         struct sock sk;
152         int bound;
153         int ifindex;
154         canid_t txid;
155         canid_t rxid;
156         ktime_t tx_gap;
157         ktime_t lastrxcf_tstamp;
158         struct hrtimer rxtimer, txtimer, txfrtimer;
159         struct can_isotp_options opt;
160         struct can_isotp_fc_options rxfc, txfc;
161         struct can_isotp_ll_options ll;
162         u32 frame_txtime;
163         u32 force_tx_stmin;
164         u32 force_rx_stmin;
165         u32 cfecho; /* consecutive frame echo tag */
166         struct tpcon rx, tx;
167         struct list_head notifier;
168         wait_queue_head_t wait;
169         spinlock_t rx_lock; /* protect single thread state machine */
170 };
171
172 static LIST_HEAD(isotp_notifier_list);
173 static DEFINE_SPINLOCK(isotp_notifier_lock);
174 static struct isotp_sock *isotp_busy_notifier;
175
176 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
177 {
178         return (struct isotp_sock *)sk;
179 }
180
181 static u32 isotp_bc_flags(struct isotp_sock *so)
182 {
183         return so->opt.flags & ISOTP_ALL_BC_FLAGS;
184 }
185
186 static bool isotp_register_rxid(struct isotp_sock *so)
187 {
188         /* no broadcast modes => register rx_id for FC frame reception */
189         return (isotp_bc_flags(so) == 0);
190 }
191
192 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
193 {
194         struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
195                                              rxtimer);
196         struct sock *sk = &so->sk;
197
198         if (so->rx.state == ISOTP_WAIT_DATA) {
199                 /* we did not get new data frames in time */
200
201                 /* report 'connection timed out' */
202                 sk->sk_err = ETIMEDOUT;
203                 if (!sock_flag(sk, SOCK_DEAD))
204                         sk_error_report(sk);
205
206                 /* reset rx state */
207                 so->rx.state = ISOTP_IDLE;
208         }
209
210         return HRTIMER_NORESTART;
211 }
212
213 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
214 {
215         struct net_device *dev;
216         struct sk_buff *nskb;
217         struct canfd_frame *ncf;
218         struct isotp_sock *so = isotp_sk(sk);
219         int can_send_ret;
220
221         nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
222         if (!nskb)
223                 return 1;
224
225         dev = dev_get_by_index(sock_net(sk), so->ifindex);
226         if (!dev) {
227                 kfree_skb(nskb);
228                 return 1;
229         }
230
231         can_skb_reserve(nskb);
232         can_skb_prv(nskb)->ifindex = dev->ifindex;
233         can_skb_prv(nskb)->skbcnt = 0;
234
235         nskb->dev = dev;
236         can_skb_set_owner(nskb, sk);
237         ncf = (struct canfd_frame *)nskb->data;
238         skb_put_zero(nskb, so->ll.mtu);
239
240         /* create & send flow control reply */
241         ncf->can_id = so->txid;
242
243         if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
244                 memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
245                 ncf->len = CAN_MAX_DLEN;
246         } else {
247                 ncf->len = ae + FC_CONTENT_SZ;
248         }
249
250         ncf->data[ae] = N_PCI_FC | flowstatus;
251         ncf->data[ae + 1] = so->rxfc.bs;
252         ncf->data[ae + 2] = so->rxfc.stmin;
253
254         if (ae)
255                 ncf->data[0] = so->opt.ext_address;
256
257         ncf->flags = so->ll.tx_flags;
258
259         can_send_ret = can_send(nskb, 1);
260         if (can_send_ret)
261                 pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
262                                __func__, ERR_PTR(can_send_ret));
263
264         dev_put(dev);
265
266         /* reset blocksize counter */
267         so->rx.bs = 0;
268
269         /* reset last CF frame rx timestamp for rx stmin enforcement */
270         so->lastrxcf_tstamp = ktime_set(0, 0);
271
272         /* start rx timeout watchdog */
273         hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
274                       HRTIMER_MODE_REL_SOFT);
275         return 0;
276 }
277
278 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
279 {
280         struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
281
282         BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
283
284         memset(addr, 0, sizeof(*addr));
285         addr->can_family = AF_CAN;
286         addr->can_ifindex = skb->dev->ifindex;
287
288         if (sock_queue_rcv_skb(sk, skb) < 0)
289                 kfree_skb(skb);
290 }
291
292 static u8 padlen(u8 datalen)
293 {
294         static const u8 plen[] = {
295                 8, 8, 8, 8, 8, 8, 8, 8, 8,      /* 0 - 8 */
296                 12, 12, 12, 12,                 /* 9 - 12 */
297                 16, 16, 16, 16,                 /* 13 - 16 */
298                 20, 20, 20, 20,                 /* 17 - 20 */
299                 24, 24, 24, 24,                 /* 21 - 24 */
300                 32, 32, 32, 32, 32, 32, 32, 32, /* 25 - 32 */
301                 48, 48, 48, 48, 48, 48, 48, 48, /* 33 - 40 */
302                 48, 48, 48, 48, 48, 48, 48, 48  /* 41 - 48 */
303         };
304
305         if (datalen > 48)
306                 return 64;
307
308         return plen[datalen];
309 }
310
311 /* check for length optimization and return 1/true when the check fails */
312 static int check_optimized(struct canfd_frame *cf, int start_index)
313 {
314         /* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
315          * padding would start at this point. E.g. if the padding would
316          * start at cf.data[7] cf->len has to be 7 to be optimal.
317          * Note: The data[] index starts with zero.
318          */
319         if (cf->len <= CAN_MAX_DLEN)
320                 return (cf->len != start_index);
321
322         /* This relation is also valid in the non-linear DLC range, where
323          * we need to take care of the minimal next possible CAN_DL.
324          * The correct check would be (padlen(cf->len) != padlen(start_index)).
325          * But as cf->len can only take discrete values from 12, .., 64 at this
326          * point the padlen(cf->len) is always equal to cf->len.
327          */
328         return (cf->len != padlen(start_index));
329 }
330
331 /* check padding and return 1/true when the check fails */
332 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
333                      int start_index, u8 content)
334 {
335         int i;
336
337         /* no RX_PADDING value => check length of optimized frame length */
338         if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
339                 if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
340                         return check_optimized(cf, start_index);
341
342                 /* no valid test against empty value => ignore frame */
343                 return 1;
344         }
345
346         /* check datalength of correctly padded CAN frame */
347         if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
348             cf->len != padlen(cf->len))
349                 return 1;
350
351         /* check padding content */
352         if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
353                 for (i = start_index; i < cf->len; i++)
354                         if (cf->data[i] != content)
355                                 return 1;
356         }
357         return 0;
358 }
359
360 static void isotp_send_cframe(struct isotp_sock *so);
361
362 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
363 {
364         struct sock *sk = &so->sk;
365
366         if (so->tx.state != ISOTP_WAIT_FC &&
367             so->tx.state != ISOTP_WAIT_FIRST_FC)
368                 return 0;
369
370         hrtimer_cancel(&so->txtimer);
371
372         if ((cf->len < ae + FC_CONTENT_SZ) ||
373             ((so->opt.flags & ISOTP_CHECK_PADDING) &&
374              check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
375                 /* malformed PDU - report 'not a data message' */
376                 sk->sk_err = EBADMSG;
377                 if (!sock_flag(sk, SOCK_DEAD))
378                         sk_error_report(sk);
379
380                 so->tx.state = ISOTP_IDLE;
381                 wake_up_interruptible(&so->wait);
382                 return 1;
383         }
384
385         /* get static/dynamic communication params from first/every FC frame */
386         if (so->tx.state == ISOTP_WAIT_FIRST_FC ||
387             so->opt.flags & CAN_ISOTP_DYN_FC_PARMS) {
388                 so->txfc.bs = cf->data[ae + 1];
389                 so->txfc.stmin = cf->data[ae + 2];
390
391                 /* fix wrong STmin values according spec */
392                 if (so->txfc.stmin > 0x7F &&
393                     (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
394                         so->txfc.stmin = 0x7F;
395
396                 so->tx_gap = ktime_set(0, 0);
397                 /* add transmission time for CAN frame N_As */
398                 so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
399                 /* add waiting time for consecutive frames N_Cs */
400                 if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
401                         so->tx_gap = ktime_add_ns(so->tx_gap,
402                                                   so->force_tx_stmin);
403                 else if (so->txfc.stmin < 0x80)
404                         so->tx_gap = ktime_add_ns(so->tx_gap,
405                                                   so->txfc.stmin * 1000000);
406                 else
407                         so->tx_gap = ktime_add_ns(so->tx_gap,
408                                                   (so->txfc.stmin - 0xF0)
409                                                   * 100000);
410                 so->tx.state = ISOTP_WAIT_FC;
411         }
412
413         switch (cf->data[ae] & 0x0F) {
414         case ISOTP_FC_CTS:
415                 so->tx.bs = 0;
416                 so->tx.state = ISOTP_SENDING;
417                 /* send CF frame and enable echo timeout handling */
418                 hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
419                               HRTIMER_MODE_REL_SOFT);
420                 isotp_send_cframe(so);
421                 break;
422
423         case ISOTP_FC_WT:
424                 /* start timer to wait for next FC frame */
425                 hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
426                               HRTIMER_MODE_REL_SOFT);
427                 break;
428
429         case ISOTP_FC_OVFLW:
430                 /* overflow on receiver side - report 'message too long' */
431                 sk->sk_err = EMSGSIZE;
432                 if (!sock_flag(sk, SOCK_DEAD))
433                         sk_error_report(sk);
434                 fallthrough;
435
436         default:
437                 /* stop this tx job */
438                 so->tx.state = ISOTP_IDLE;
439                 wake_up_interruptible(&so->wait);
440         }
441         return 0;
442 }
443
444 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
445                         struct sk_buff *skb, int len)
446 {
447         struct isotp_sock *so = isotp_sk(sk);
448         struct sk_buff *nskb;
449
450         hrtimer_cancel(&so->rxtimer);
451         so->rx.state = ISOTP_IDLE;
452
453         if (!len || len > cf->len - pcilen)
454                 return 1;
455
456         if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
457             check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
458                 /* malformed PDU - report 'not a data message' */
459                 sk->sk_err = EBADMSG;
460                 if (!sock_flag(sk, SOCK_DEAD))
461                         sk_error_report(sk);
462                 return 1;
463         }
464
465         nskb = alloc_skb(len, gfp_any());
466         if (!nskb)
467                 return 1;
468
469         memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
470
471         nskb->tstamp = skb->tstamp;
472         nskb->dev = skb->dev;
473         isotp_rcv_skb(nskb, sk);
474         return 0;
475 }
476
477 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
478 {
479         struct isotp_sock *so = isotp_sk(sk);
480         int i;
481         int off;
482         int ff_pci_sz;
483
484         hrtimer_cancel(&so->rxtimer);
485         so->rx.state = ISOTP_IDLE;
486
487         /* get the used sender LL_DL from the (first) CAN frame data length */
488         so->rx.ll_dl = padlen(cf->len);
489
490         /* the first frame has to use the entire frame up to LL_DL length */
491         if (cf->len != so->rx.ll_dl)
492                 return 1;
493
494         /* get the FF_DL */
495         so->rx.len = (cf->data[ae] & 0x0F) << 8;
496         so->rx.len += cf->data[ae + 1];
497
498         /* Check for FF_DL escape sequence supporting 32 bit PDU length */
499         if (so->rx.len) {
500                 ff_pci_sz = FF_PCI_SZ12;
501         } else {
502                 /* FF_DL = 0 => get real length from next 4 bytes */
503                 so->rx.len = cf->data[ae + 2] << 24;
504                 so->rx.len += cf->data[ae + 3] << 16;
505                 so->rx.len += cf->data[ae + 4] << 8;
506                 so->rx.len += cf->data[ae + 5];
507                 ff_pci_sz = FF_PCI_SZ32;
508         }
509
510         /* take care of a potential SF_DL ESC offset for TX_DL > 8 */
511         off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
512
513         if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
514                 return 1;
515
516         /* PDU size > default => try max_pdu_size */
517         if (so->rx.len > so->rx.buflen && so->rx.buflen < max_pdu_size) {
518                 u8 *newbuf = kmalloc(max_pdu_size, GFP_ATOMIC);
519
520                 if (newbuf) {
521                         so->rx.buf = newbuf;
522                         so->rx.buflen = max_pdu_size;
523                 }
524         }
525
526         if (so->rx.len > so->rx.buflen) {
527                 /* send FC frame with overflow status */
528                 isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
529                 return 1;
530         }
531
532         /* copy the first received data bytes */
533         so->rx.idx = 0;
534         for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
535                 so->rx.buf[so->rx.idx++] = cf->data[i];
536
537         /* initial setup for this pdu reception */
538         so->rx.sn = 1;
539         so->rx.state = ISOTP_WAIT_DATA;
540
541         /* no creation of flow control frames */
542         if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
543                 return 0;
544
545         /* send our first FC frame */
546         isotp_send_fc(sk, ae, ISOTP_FC_CTS);
547         return 0;
548 }
549
550 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
551                         struct sk_buff *skb)
552 {
553         struct isotp_sock *so = isotp_sk(sk);
554         struct sk_buff *nskb;
555         int i;
556
557         if (so->rx.state != ISOTP_WAIT_DATA)
558                 return 0;
559
560         /* drop if timestamp gap is less than force_rx_stmin nano secs */
561         if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
562                 if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
563                     so->force_rx_stmin)
564                         return 0;
565
566                 so->lastrxcf_tstamp = skb->tstamp;
567         }
568
569         hrtimer_cancel(&so->rxtimer);
570
571         /* CFs are never longer than the FF */
572         if (cf->len > so->rx.ll_dl)
573                 return 1;
574
575         /* CFs have usually the LL_DL length */
576         if (cf->len < so->rx.ll_dl) {
577                 /* this is only allowed for the last CF */
578                 if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
579                         return 1;
580         }
581
582         if ((cf->data[ae] & 0x0F) != so->rx.sn) {
583                 /* wrong sn detected - report 'illegal byte sequence' */
584                 sk->sk_err = EILSEQ;
585                 if (!sock_flag(sk, SOCK_DEAD))
586                         sk_error_report(sk);
587
588                 /* reset rx state */
589                 so->rx.state = ISOTP_IDLE;
590                 return 1;
591         }
592         so->rx.sn++;
593         so->rx.sn %= 16;
594
595         for (i = ae + N_PCI_SZ; i < cf->len; i++) {
596                 so->rx.buf[so->rx.idx++] = cf->data[i];
597                 if (so->rx.idx >= so->rx.len)
598                         break;
599         }
600
601         if (so->rx.idx >= so->rx.len) {
602                 /* we are done */
603                 so->rx.state = ISOTP_IDLE;
604
605                 if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
606                     check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
607                         /* malformed PDU - report 'not a data message' */
608                         sk->sk_err = EBADMSG;
609                         if (!sock_flag(sk, SOCK_DEAD))
610                                 sk_error_report(sk);
611                         return 1;
612                 }
613
614                 nskb = alloc_skb(so->rx.len, gfp_any());
615                 if (!nskb)
616                         return 1;
617
618                 memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
619                        so->rx.len);
620
621                 nskb->tstamp = skb->tstamp;
622                 nskb->dev = skb->dev;
623                 isotp_rcv_skb(nskb, sk);
624                 return 0;
625         }
626
627         /* perform blocksize handling, if enabled */
628         if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
629                 /* start rx timeout watchdog */
630                 hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
631                               HRTIMER_MODE_REL_SOFT);
632                 return 0;
633         }
634
635         /* no creation of flow control frames */
636         if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
637                 return 0;
638
639         /* we reached the specified blocksize so->rxfc.bs */
640         isotp_send_fc(sk, ae, ISOTP_FC_CTS);
641         return 0;
642 }
643
644 static void isotp_rcv(struct sk_buff *skb, void *data)
645 {
646         struct sock *sk = (struct sock *)data;
647         struct isotp_sock *so = isotp_sk(sk);
648         struct canfd_frame *cf;
649         int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
650         u8 n_pci_type, sf_dl;
651
652         /* Strictly receive only frames with the configured MTU size
653          * => clear separation of CAN2.0 / CAN FD transport channels
654          */
655         if (skb->len != so->ll.mtu)
656                 return;
657
658         cf = (struct canfd_frame *)skb->data;
659
660         /* if enabled: check reception of my configured extended address */
661         if (ae && cf->data[0] != so->opt.rx_ext_address)
662                 return;
663
664         n_pci_type = cf->data[ae] & 0xF0;
665
666         /* Make sure the state changes and data structures stay consistent at
667          * CAN frame reception time. This locking is not needed in real world
668          * use cases but the inconsistency can be triggered with syzkaller.
669          */
670         spin_lock(&so->rx_lock);
671
672         if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
673                 /* check rx/tx path half duplex expectations */
674                 if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
675                     (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
676                         goto out_unlock;
677         }
678
679         switch (n_pci_type) {
680         case N_PCI_FC:
681                 /* tx path: flow control frame containing the FC parameters */
682                 isotp_rcv_fc(so, cf, ae);
683                 break;
684
685         case N_PCI_SF:
686                 /* rx path: single frame
687                  *
688                  * As we do not have a rx.ll_dl configuration, we can only test
689                  * if the CAN frames payload length matches the LL_DL == 8
690                  * requirements - no matter if it's CAN 2.0 or CAN FD
691                  */
692
693                 /* get the SF_DL from the N_PCI byte */
694                 sf_dl = cf->data[ae] & 0x0F;
695
696                 if (cf->len <= CAN_MAX_DLEN) {
697                         isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
698                 } else {
699                         if (can_is_canfd_skb(skb)) {
700                                 /* We have a CAN FD frame and CAN_DL is greater than 8:
701                                  * Only frames with the SF_DL == 0 ESC value are valid.
702                                  *
703                                  * If so take care of the increased SF PCI size
704                                  * (SF_PCI_SZ8) to point to the message content behind
705                                  * the extended SF PCI info and get the real SF_DL
706                                  * length value from the formerly first data byte.
707                                  */
708                                 if (sf_dl == 0)
709                                         isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
710                                                      cf->data[SF_PCI_SZ4 + ae]);
711                         }
712                 }
713                 break;
714
715         case N_PCI_FF:
716                 /* rx path: first frame */
717                 isotp_rcv_ff(sk, cf, ae);
718                 break;
719
720         case N_PCI_CF:
721                 /* rx path: consecutive frame */
722                 isotp_rcv_cf(sk, cf, ae, skb);
723                 break;
724         }
725
726 out_unlock:
727         spin_unlock(&so->rx_lock);
728 }
729
730 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
731                                  int ae, int off)
732 {
733         int pcilen = N_PCI_SZ + ae + off;
734         int space = so->tx.ll_dl - pcilen;
735         int num = min_t(int, so->tx.len - so->tx.idx, space);
736         int i;
737
738         cf->can_id = so->txid;
739         cf->len = num + pcilen;
740
741         if (num < space) {
742                 if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
743                         /* user requested padding */
744                         cf->len = padlen(cf->len);
745                         memset(cf->data, so->opt.txpad_content, cf->len);
746                 } else if (cf->len > CAN_MAX_DLEN) {
747                         /* mandatory padding for CAN FD frames */
748                         cf->len = padlen(cf->len);
749                         memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
750                                cf->len);
751                 }
752         }
753
754         for (i = 0; i < num; i++)
755                 cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
756
757         if (ae)
758                 cf->data[0] = so->opt.ext_address;
759 }
760
761 static void isotp_send_cframe(struct isotp_sock *so)
762 {
763         struct sock *sk = &so->sk;
764         struct sk_buff *skb;
765         struct net_device *dev;
766         struct canfd_frame *cf;
767         int can_send_ret;
768         int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
769
770         dev = dev_get_by_index(sock_net(sk), so->ifindex);
771         if (!dev)
772                 return;
773
774         skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), GFP_ATOMIC);
775         if (!skb) {
776                 dev_put(dev);
777                 return;
778         }
779
780         can_skb_reserve(skb);
781         can_skb_prv(skb)->ifindex = dev->ifindex;
782         can_skb_prv(skb)->skbcnt = 0;
783
784         cf = (struct canfd_frame *)skb->data;
785         skb_put_zero(skb, so->ll.mtu);
786
787         /* create consecutive frame */
788         isotp_fill_dataframe(cf, so, ae, 0);
789
790         /* place consecutive frame N_PCI in appropriate index */
791         cf->data[ae] = N_PCI_CF | so->tx.sn++;
792         so->tx.sn %= 16;
793         so->tx.bs++;
794
795         cf->flags = so->ll.tx_flags;
796
797         skb->dev = dev;
798         can_skb_set_owner(skb, sk);
799
800         /* cfecho should have been zero'ed by init/isotp_rcv_echo() */
801         if (so->cfecho)
802                 pr_notice_once("can-isotp: cfecho is %08X != 0\n", so->cfecho);
803
804         /* set consecutive frame echo tag */
805         so->cfecho = *(u32 *)cf->data;
806
807         /* send frame with local echo enabled */
808         can_send_ret = can_send(skb, 1);
809         if (can_send_ret) {
810                 pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
811                                __func__, ERR_PTR(can_send_ret));
812                 if (can_send_ret == -ENOBUFS)
813                         pr_notice_once("can-isotp: tx queue is full\n");
814         }
815         dev_put(dev);
816 }
817
818 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
819                                 int ae)
820 {
821         int i;
822         int ff_pci_sz;
823
824         cf->can_id = so->txid;
825         cf->len = so->tx.ll_dl;
826         if (ae)
827                 cf->data[0] = so->opt.ext_address;
828
829         /* create N_PCI bytes with 12/32 bit FF_DL data length */
830         if (so->tx.len > MAX_12BIT_PDU_SIZE) {
831                 /* use 32 bit FF_DL notation */
832                 cf->data[ae] = N_PCI_FF;
833                 cf->data[ae + 1] = 0;
834                 cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
835                 cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
836                 cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
837                 cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
838                 ff_pci_sz = FF_PCI_SZ32;
839         } else {
840                 /* use 12 bit FF_DL notation */
841                 cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
842                 cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
843                 ff_pci_sz = FF_PCI_SZ12;
844         }
845
846         /* add first data bytes depending on ae */
847         for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
848                 cf->data[i] = so->tx.buf[so->tx.idx++];
849
850         so->tx.sn = 1;
851 }
852
853 static void isotp_rcv_echo(struct sk_buff *skb, void *data)
854 {
855         struct sock *sk = (struct sock *)data;
856         struct isotp_sock *so = isotp_sk(sk);
857         struct canfd_frame *cf = (struct canfd_frame *)skb->data;
858
859         /* only handle my own local echo CF/SF skb's (no FF!) */
860         if (skb->sk != sk || so->cfecho != *(u32 *)cf->data)
861                 return;
862
863         /* cancel local echo timeout */
864         hrtimer_cancel(&so->txtimer);
865
866         /* local echo skb with consecutive frame has been consumed */
867         so->cfecho = 0;
868
869         if (so->tx.idx >= so->tx.len) {
870                 /* we are done */
871                 so->tx.state = ISOTP_IDLE;
872                 wake_up_interruptible(&so->wait);
873                 return;
874         }
875
876         if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
877                 /* stop and wait for FC with timeout */
878                 so->tx.state = ISOTP_WAIT_FC;
879                 hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
880                               HRTIMER_MODE_REL_SOFT);
881                 return;
882         }
883
884         /* no gap between data frames needed => use burst mode */
885         if (!so->tx_gap) {
886                 /* enable echo timeout handling */
887                 hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
888                               HRTIMER_MODE_REL_SOFT);
889                 isotp_send_cframe(so);
890                 return;
891         }
892
893         /* start timer to send next consecutive frame with correct delay */
894         hrtimer_start(&so->txfrtimer, so->tx_gap, HRTIMER_MODE_REL_SOFT);
895 }
896
897 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
898 {
899         struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
900                                              txtimer);
901         struct sock *sk = &so->sk;
902
903         /* don't handle timeouts in IDLE or SHUTDOWN state */
904         if (so->tx.state == ISOTP_IDLE || so->tx.state == ISOTP_SHUTDOWN)
905                 return HRTIMER_NORESTART;
906
907         /* we did not get any flow control or echo frame in time */
908
909         /* report 'communication error on send' */
910         sk->sk_err = ECOMM;
911         if (!sock_flag(sk, SOCK_DEAD))
912                 sk_error_report(sk);
913
914         /* reset tx state */
915         so->tx.state = ISOTP_IDLE;
916         wake_up_interruptible(&so->wait);
917
918         return HRTIMER_NORESTART;
919 }
920
921 static enum hrtimer_restart isotp_txfr_timer_handler(struct hrtimer *hrtimer)
922 {
923         struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
924                                              txfrtimer);
925
926         /* start echo timeout handling and cover below protocol error */
927         hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
928                       HRTIMER_MODE_REL_SOFT);
929
930         /* cfecho should be consumed by isotp_rcv_echo() here */
931         if (so->tx.state == ISOTP_SENDING && !so->cfecho)
932                 isotp_send_cframe(so);
933
934         return HRTIMER_NORESTART;
935 }
936
937 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
938 {
939         struct sock *sk = sock->sk;
940         struct isotp_sock *so = isotp_sk(sk);
941         struct sk_buff *skb;
942         struct net_device *dev;
943         struct canfd_frame *cf;
944         int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
945         int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
946         s64 hrtimer_sec = ISOTP_ECHO_TIMEOUT;
947         int off;
948         int err;
949
950         if (!so->bound || so->tx.state == ISOTP_SHUTDOWN)
951                 return -EADDRNOTAVAIL;
952
953         while (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE) {
954                 /* we do not support multiple buffers - for now */
955                 if (msg->msg_flags & MSG_DONTWAIT)
956                         return -EAGAIN;
957
958                 if (so->tx.state == ISOTP_SHUTDOWN)
959                         return -EADDRNOTAVAIL;
960
961                 /* wait for complete transmission of current pdu */
962                 err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
963                 if (err)
964                         goto err_event_drop;
965         }
966
967         /* PDU size > default => try max_pdu_size */
968         if (size > so->tx.buflen && so->tx.buflen < max_pdu_size) {
969                 u8 *newbuf = kmalloc(max_pdu_size, GFP_KERNEL);
970
971                 if (newbuf) {
972                         so->tx.buf = newbuf;
973                         so->tx.buflen = max_pdu_size;
974                 }
975         }
976
977         if (!size || size > so->tx.buflen) {
978                 err = -EINVAL;
979                 goto err_out_drop;
980         }
981
982         /* take care of a potential SF_DL ESC offset for TX_DL > 8 */
983         off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
984
985         /* does the given data fit into a single frame for SF_BROADCAST? */
986         if ((isotp_bc_flags(so) == CAN_ISOTP_SF_BROADCAST) &&
987             (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
988                 err = -EINVAL;
989                 goto err_out_drop;
990         }
991
992         err = memcpy_from_msg(so->tx.buf, msg, size);
993         if (err < 0)
994                 goto err_out_drop;
995
996         dev = dev_get_by_index(sock_net(sk), so->ifindex);
997         if (!dev) {
998                 err = -ENXIO;
999                 goto err_out_drop;
1000         }
1001
1002         skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
1003                                   msg->msg_flags & MSG_DONTWAIT, &err);
1004         if (!skb) {
1005                 dev_put(dev);
1006                 goto err_out_drop;
1007         }
1008
1009         can_skb_reserve(skb);
1010         can_skb_prv(skb)->ifindex = dev->ifindex;
1011         can_skb_prv(skb)->skbcnt = 0;
1012
1013         so->tx.len = size;
1014         so->tx.idx = 0;
1015
1016         cf = (struct canfd_frame *)skb->data;
1017         skb_put_zero(skb, so->ll.mtu);
1018
1019         /* cfecho should have been zero'ed by init / former isotp_rcv_echo() */
1020         if (so->cfecho)
1021                 pr_notice_once("can-isotp: uninit cfecho %08X\n", so->cfecho);
1022
1023         /* check for single frame transmission depending on TX_DL */
1024         if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
1025                 /* The message size generally fits into a SingleFrame - good.
1026                  *
1027                  * SF_DL ESC offset optimization:
1028                  *
1029                  * When TX_DL is greater 8 but the message would still fit
1030                  * into a 8 byte CAN frame, we can omit the offset.
1031                  * This prevents a protocol caused length extension from
1032                  * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
1033                  */
1034                 if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
1035                         off = 0;
1036
1037                 isotp_fill_dataframe(cf, so, ae, off);
1038
1039                 /* place single frame N_PCI w/o length in appropriate index */
1040                 cf->data[ae] = N_PCI_SF;
1041
1042                 /* place SF_DL size value depending on the SF_DL ESC offset */
1043                 if (off)
1044                         cf->data[SF_PCI_SZ4 + ae] = size;
1045                 else
1046                         cf->data[ae] |= size;
1047
1048                 /* set CF echo tag for isotp_rcv_echo() (SF-mode) */
1049                 so->cfecho = *(u32 *)cf->data;
1050         } else {
1051                 /* send first frame */
1052
1053                 isotp_create_fframe(cf, so, ae);
1054
1055                 if (isotp_bc_flags(so) == CAN_ISOTP_CF_BROADCAST) {
1056                         /* set timer for FC-less operation (STmin = 0) */
1057                         if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
1058                                 so->tx_gap = ktime_set(0, so->force_tx_stmin);
1059                         else
1060                                 so->tx_gap = ktime_set(0, so->frame_txtime);
1061
1062                         /* disable wait for FCs due to activated block size */
1063                         so->txfc.bs = 0;
1064
1065                         /* set CF echo tag for isotp_rcv_echo() (CF-mode) */
1066                         so->cfecho = *(u32 *)cf->data;
1067                 } else {
1068                         /* standard flow control check */
1069                         so->tx.state = ISOTP_WAIT_FIRST_FC;
1070
1071                         /* start timeout for FC */
1072                         hrtimer_sec = ISOTP_FC_TIMEOUT;
1073
1074                         /* no CF echo tag for isotp_rcv_echo() (FF-mode) */
1075                         so->cfecho = 0;
1076                 }
1077         }
1078
1079         hrtimer_start(&so->txtimer, ktime_set(hrtimer_sec, 0),
1080                       HRTIMER_MODE_REL_SOFT);
1081
1082         /* send the first or only CAN frame */
1083         cf->flags = so->ll.tx_flags;
1084
1085         skb->dev = dev;
1086         skb->sk = sk;
1087         err = can_send(skb, 1);
1088         dev_put(dev);
1089         if (err) {
1090                 pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
1091                                __func__, ERR_PTR(err));
1092
1093                 /* no transmission -> no timeout monitoring */
1094                 hrtimer_cancel(&so->txtimer);
1095
1096                 /* reset consecutive frame echo tag */
1097                 so->cfecho = 0;
1098
1099                 goto err_out_drop;
1100         }
1101
1102         if (wait_tx_done) {
1103                 /* wait for complete transmission of current pdu */
1104                 err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1105                 if (err)
1106                         goto err_event_drop;
1107
1108                 err = sock_error(sk);
1109                 if (err)
1110                         return err;
1111         }
1112
1113         return size;
1114
1115 err_event_drop:
1116         /* got signal: force tx state machine to be idle */
1117         so->tx.state = ISOTP_IDLE;
1118         hrtimer_cancel(&so->txfrtimer);
1119         hrtimer_cancel(&so->txtimer);
1120 err_out_drop:
1121         /* drop this PDU and unlock a potential wait queue */
1122         so->tx.state = ISOTP_IDLE;
1123         wake_up_interruptible(&so->wait);
1124
1125         return err;
1126 }
1127
1128 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1129                          int flags)
1130 {
1131         struct sock *sk = sock->sk;
1132         struct sk_buff *skb;
1133         struct isotp_sock *so = isotp_sk(sk);
1134         int ret = 0;
1135
1136         if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK | MSG_CMSG_COMPAT))
1137                 return -EINVAL;
1138
1139         if (!so->bound)
1140                 return -EADDRNOTAVAIL;
1141
1142         skb = skb_recv_datagram(sk, flags, &ret);
1143         if (!skb)
1144                 return ret;
1145
1146         if (size < skb->len)
1147                 msg->msg_flags |= MSG_TRUNC;
1148         else
1149                 size = skb->len;
1150
1151         ret = memcpy_to_msg(msg, skb->data, size);
1152         if (ret < 0)
1153                 goto out_err;
1154
1155         sock_recv_cmsgs(msg, sk, skb);
1156
1157         if (msg->msg_name) {
1158                 __sockaddr_check_size(ISOTP_MIN_NAMELEN);
1159                 msg->msg_namelen = ISOTP_MIN_NAMELEN;
1160                 memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1161         }
1162
1163         /* set length of return value */
1164         ret = (flags & MSG_TRUNC) ? skb->len : size;
1165
1166 out_err:
1167         skb_free_datagram(sk, skb);
1168
1169         return ret;
1170 }
1171
1172 static int isotp_release(struct socket *sock)
1173 {
1174         struct sock *sk = sock->sk;
1175         struct isotp_sock *so;
1176         struct net *net;
1177
1178         if (!sk)
1179                 return 0;
1180
1181         so = isotp_sk(sk);
1182         net = sock_net(sk);
1183
1184         /* wait for complete transmission of current pdu */
1185         while (wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE) == 0 &&
1186                cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SHUTDOWN) != ISOTP_IDLE)
1187                 ;
1188
1189         /* force state machines to be idle also when a signal occurred */
1190         so->tx.state = ISOTP_SHUTDOWN;
1191         so->rx.state = ISOTP_IDLE;
1192
1193         spin_lock(&isotp_notifier_lock);
1194         while (isotp_busy_notifier == so) {
1195                 spin_unlock(&isotp_notifier_lock);
1196                 schedule_timeout_uninterruptible(1);
1197                 spin_lock(&isotp_notifier_lock);
1198         }
1199         list_del(&so->notifier);
1200         spin_unlock(&isotp_notifier_lock);
1201
1202         lock_sock(sk);
1203
1204         /* remove current filters & unregister */
1205         if (so->bound) {
1206                 if (so->ifindex) {
1207                         struct net_device *dev;
1208
1209                         dev = dev_get_by_index(net, so->ifindex);
1210                         if (dev) {
1211                                 if (isotp_register_rxid(so))
1212                                         can_rx_unregister(net, dev, so->rxid,
1213                                                           SINGLE_MASK(so->rxid),
1214                                                           isotp_rcv, sk);
1215
1216                                 can_rx_unregister(net, dev, so->txid,
1217                                                   SINGLE_MASK(so->txid),
1218                                                   isotp_rcv_echo, sk);
1219                                 dev_put(dev);
1220                                 synchronize_rcu();
1221                         }
1222                 }
1223         }
1224
1225         hrtimer_cancel(&so->txfrtimer);
1226         hrtimer_cancel(&so->txtimer);
1227         hrtimer_cancel(&so->rxtimer);
1228
1229         so->ifindex = 0;
1230         so->bound = 0;
1231
1232         if (so->rx.buf != so->rx.sbuf)
1233                 kfree(so->rx.buf);
1234
1235         if (so->tx.buf != so->tx.sbuf)
1236                 kfree(so->tx.buf);
1237
1238         sock_orphan(sk);
1239         sock->sk = NULL;
1240
1241         release_sock(sk);
1242         sock_put(sk);
1243
1244         return 0;
1245 }
1246
1247 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1248 {
1249         struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1250         struct sock *sk = sock->sk;
1251         struct isotp_sock *so = isotp_sk(sk);
1252         struct net *net = sock_net(sk);
1253         int ifindex;
1254         struct net_device *dev;
1255         canid_t tx_id = addr->can_addr.tp.tx_id;
1256         canid_t rx_id = addr->can_addr.tp.rx_id;
1257         int err = 0;
1258         int notify_enetdown = 0;
1259
1260         if (len < ISOTP_MIN_NAMELEN)
1261                 return -EINVAL;
1262
1263         if (addr->can_family != AF_CAN)
1264                 return -EINVAL;
1265
1266         /* sanitize tx CAN identifier */
1267         if (tx_id & CAN_EFF_FLAG)
1268                 tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1269         else
1270                 tx_id &= CAN_SFF_MASK;
1271
1272         /* give feedback on wrong CAN-ID value */
1273         if (tx_id != addr->can_addr.tp.tx_id)
1274                 return -EINVAL;
1275
1276         /* sanitize rx CAN identifier (if needed) */
1277         if (isotp_register_rxid(so)) {
1278                 if (rx_id & CAN_EFF_FLAG)
1279                         rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1280                 else
1281                         rx_id &= CAN_SFF_MASK;
1282
1283                 /* give feedback on wrong CAN-ID value */
1284                 if (rx_id != addr->can_addr.tp.rx_id)
1285                         return -EINVAL;
1286         }
1287
1288         if (!addr->can_ifindex)
1289                 return -ENODEV;
1290
1291         lock_sock(sk);
1292
1293         if (so->bound) {
1294                 err = -EINVAL;
1295                 goto out;
1296         }
1297
1298         /* ensure different CAN IDs when the rx_id is to be registered */
1299         if (isotp_register_rxid(so) && rx_id == tx_id) {
1300                 err = -EADDRNOTAVAIL;
1301                 goto out;
1302         }
1303
1304         dev = dev_get_by_index(net, addr->can_ifindex);
1305         if (!dev) {
1306                 err = -ENODEV;
1307                 goto out;
1308         }
1309         if (dev->type != ARPHRD_CAN) {
1310                 dev_put(dev);
1311                 err = -ENODEV;
1312                 goto out;
1313         }
1314         if (dev->mtu < so->ll.mtu) {
1315                 dev_put(dev);
1316                 err = -EINVAL;
1317                 goto out;
1318         }
1319         if (!(dev->flags & IFF_UP))
1320                 notify_enetdown = 1;
1321
1322         ifindex = dev->ifindex;
1323
1324         if (isotp_register_rxid(so))
1325                 can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1326                                 isotp_rcv, sk, "isotp", sk);
1327
1328         /* no consecutive frame echo skb in flight */
1329         so->cfecho = 0;
1330
1331         /* register for echo skb's */
1332         can_rx_register(net, dev, tx_id, SINGLE_MASK(tx_id),
1333                         isotp_rcv_echo, sk, "isotpe", sk);
1334
1335         dev_put(dev);
1336
1337         /* switch to new settings */
1338         so->ifindex = ifindex;
1339         so->rxid = rx_id;
1340         so->txid = tx_id;
1341         so->bound = 1;
1342
1343 out:
1344         release_sock(sk);
1345
1346         if (notify_enetdown) {
1347                 sk->sk_err = ENETDOWN;
1348                 if (!sock_flag(sk, SOCK_DEAD))
1349                         sk_error_report(sk);
1350         }
1351
1352         return err;
1353 }
1354
1355 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1356 {
1357         struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1358         struct sock *sk = sock->sk;
1359         struct isotp_sock *so = isotp_sk(sk);
1360
1361         if (peer)
1362                 return -EOPNOTSUPP;
1363
1364         memset(addr, 0, ISOTP_MIN_NAMELEN);
1365         addr->can_family = AF_CAN;
1366         addr->can_ifindex = so->ifindex;
1367         addr->can_addr.tp.rx_id = so->rxid;
1368         addr->can_addr.tp.tx_id = so->txid;
1369
1370         return ISOTP_MIN_NAMELEN;
1371 }
1372
1373 static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1374                             sockptr_t optval, unsigned int optlen)
1375 {
1376         struct sock *sk = sock->sk;
1377         struct isotp_sock *so = isotp_sk(sk);
1378         int ret = 0;
1379
1380         if (so->bound)
1381                 return -EISCONN;
1382
1383         switch (optname) {
1384         case CAN_ISOTP_OPTS:
1385                 if (optlen != sizeof(struct can_isotp_options))
1386                         return -EINVAL;
1387
1388                 if (copy_from_sockptr(&so->opt, optval, optlen))
1389                         return -EFAULT;
1390
1391                 /* no separate rx_ext_address is given => use ext_address */
1392                 if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1393                         so->opt.rx_ext_address = so->opt.ext_address;
1394
1395                 /* these broadcast flags are not allowed together */
1396                 if (isotp_bc_flags(so) == ISOTP_ALL_BC_FLAGS) {
1397                         /* CAN_ISOTP_SF_BROADCAST is prioritized */
1398                         so->opt.flags &= ~CAN_ISOTP_CF_BROADCAST;
1399
1400                         /* give user feedback on wrong config attempt */
1401                         ret = -EINVAL;
1402                 }
1403
1404                 /* check for frame_txtime changes (0 => no changes) */
1405                 if (so->opt.frame_txtime) {
1406                         if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
1407                                 so->frame_txtime = 0;
1408                         else
1409                                 so->frame_txtime = so->opt.frame_txtime;
1410                 }
1411                 break;
1412
1413         case CAN_ISOTP_RECV_FC:
1414                 if (optlen != sizeof(struct can_isotp_fc_options))
1415                         return -EINVAL;
1416
1417                 if (copy_from_sockptr(&so->rxfc, optval, optlen))
1418                         return -EFAULT;
1419                 break;
1420
1421         case CAN_ISOTP_TX_STMIN:
1422                 if (optlen != sizeof(u32))
1423                         return -EINVAL;
1424
1425                 if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1426                         return -EFAULT;
1427                 break;
1428
1429         case CAN_ISOTP_RX_STMIN:
1430                 if (optlen != sizeof(u32))
1431                         return -EINVAL;
1432
1433                 if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1434                         return -EFAULT;
1435                 break;
1436
1437         case CAN_ISOTP_LL_OPTS:
1438                 if (optlen == sizeof(struct can_isotp_ll_options)) {
1439                         struct can_isotp_ll_options ll;
1440
1441                         if (copy_from_sockptr(&ll, optval, optlen))
1442                                 return -EFAULT;
1443
1444                         /* check for correct ISO 11898-1 DLC data length */
1445                         if (ll.tx_dl != padlen(ll.tx_dl))
1446                                 return -EINVAL;
1447
1448                         if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1449                                 return -EINVAL;
1450
1451                         if (ll.mtu == CAN_MTU &&
1452                             (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1453                                 return -EINVAL;
1454
1455                         memcpy(&so->ll, &ll, sizeof(ll));
1456
1457                         /* set ll_dl for tx path to similar place as for rx */
1458                         so->tx.ll_dl = ll.tx_dl;
1459                 } else {
1460                         return -EINVAL;
1461                 }
1462                 break;
1463
1464         default:
1465                 ret = -ENOPROTOOPT;
1466         }
1467
1468         return ret;
1469 }
1470
1471 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1472                             sockptr_t optval, unsigned int optlen)
1473
1474 {
1475         struct sock *sk = sock->sk;
1476         int ret;
1477
1478         if (level != SOL_CAN_ISOTP)
1479                 return -EINVAL;
1480
1481         lock_sock(sk);
1482         ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1483         release_sock(sk);
1484         return ret;
1485 }
1486
1487 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1488                             char __user *optval, int __user *optlen)
1489 {
1490         struct sock *sk = sock->sk;
1491         struct isotp_sock *so = isotp_sk(sk);
1492         int len;
1493         void *val;
1494
1495         if (level != SOL_CAN_ISOTP)
1496                 return -EINVAL;
1497         if (get_user(len, optlen))
1498                 return -EFAULT;
1499         if (len < 0)
1500                 return -EINVAL;
1501
1502         switch (optname) {
1503         case CAN_ISOTP_OPTS:
1504                 len = min_t(int, len, sizeof(struct can_isotp_options));
1505                 val = &so->opt;
1506                 break;
1507
1508         case CAN_ISOTP_RECV_FC:
1509                 len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1510                 val = &so->rxfc;
1511                 break;
1512
1513         case CAN_ISOTP_TX_STMIN:
1514                 len = min_t(int, len, sizeof(u32));
1515                 val = &so->force_tx_stmin;
1516                 break;
1517
1518         case CAN_ISOTP_RX_STMIN:
1519                 len = min_t(int, len, sizeof(u32));
1520                 val = &so->force_rx_stmin;
1521                 break;
1522
1523         case CAN_ISOTP_LL_OPTS:
1524                 len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1525                 val = &so->ll;
1526                 break;
1527
1528         default:
1529                 return -ENOPROTOOPT;
1530         }
1531
1532         if (put_user(len, optlen))
1533                 return -EFAULT;
1534         if (copy_to_user(optval, val, len))
1535                 return -EFAULT;
1536         return 0;
1537 }
1538
1539 static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1540                          struct net_device *dev)
1541 {
1542         struct sock *sk = &so->sk;
1543
1544         if (!net_eq(dev_net(dev), sock_net(sk)))
1545                 return;
1546
1547         if (so->ifindex != dev->ifindex)
1548                 return;
1549
1550         switch (msg) {
1551         case NETDEV_UNREGISTER:
1552                 lock_sock(sk);
1553                 /* remove current filters & unregister */
1554                 if (so->bound) {
1555                         if (isotp_register_rxid(so))
1556                                 can_rx_unregister(dev_net(dev), dev, so->rxid,
1557                                                   SINGLE_MASK(so->rxid),
1558                                                   isotp_rcv, sk);
1559
1560                         can_rx_unregister(dev_net(dev), dev, so->txid,
1561                                           SINGLE_MASK(so->txid),
1562                                           isotp_rcv_echo, sk);
1563                 }
1564
1565                 so->ifindex = 0;
1566                 so->bound  = 0;
1567                 release_sock(sk);
1568
1569                 sk->sk_err = ENODEV;
1570                 if (!sock_flag(sk, SOCK_DEAD))
1571                         sk_error_report(sk);
1572                 break;
1573
1574         case NETDEV_DOWN:
1575                 sk->sk_err = ENETDOWN;
1576                 if (!sock_flag(sk, SOCK_DEAD))
1577                         sk_error_report(sk);
1578                 break;
1579         }
1580 }
1581
1582 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1583                           void *ptr)
1584 {
1585         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1586
1587         if (dev->type != ARPHRD_CAN)
1588                 return NOTIFY_DONE;
1589         if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1590                 return NOTIFY_DONE;
1591         if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1592                 return NOTIFY_DONE;
1593
1594         spin_lock(&isotp_notifier_lock);
1595         list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1596                 spin_unlock(&isotp_notifier_lock);
1597                 isotp_notify(isotp_busy_notifier, msg, dev);
1598                 spin_lock(&isotp_notifier_lock);
1599         }
1600         isotp_busy_notifier = NULL;
1601         spin_unlock(&isotp_notifier_lock);
1602         return NOTIFY_DONE;
1603 }
1604
1605 static int isotp_init(struct sock *sk)
1606 {
1607         struct isotp_sock *so = isotp_sk(sk);
1608
1609         so->ifindex = 0;
1610         so->bound = 0;
1611
1612         so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1613         so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1614         so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1615         so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1616         so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1617         so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1618         so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1619         so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1620         so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1621         so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1622         so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1623         so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1624         so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1625
1626         /* set ll_dl for tx path to similar place as for rx */
1627         so->tx.ll_dl = so->ll.tx_dl;
1628
1629         so->rx.state = ISOTP_IDLE;
1630         so->tx.state = ISOTP_IDLE;
1631
1632         so->rx.buf = so->rx.sbuf;
1633         so->tx.buf = so->tx.sbuf;
1634         so->rx.buflen = ARRAY_SIZE(so->rx.sbuf);
1635         so->tx.buflen = ARRAY_SIZE(so->tx.sbuf);
1636
1637         hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1638         so->rxtimer.function = isotp_rx_timer_handler;
1639         hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1640         so->txtimer.function = isotp_tx_timer_handler;
1641         hrtimer_init(&so->txfrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1642         so->txfrtimer.function = isotp_txfr_timer_handler;
1643
1644         init_waitqueue_head(&so->wait);
1645         spin_lock_init(&so->rx_lock);
1646
1647         spin_lock(&isotp_notifier_lock);
1648         list_add_tail(&so->notifier, &isotp_notifier_list);
1649         spin_unlock(&isotp_notifier_lock);
1650
1651         return 0;
1652 }
1653
1654 static __poll_t isotp_poll(struct file *file, struct socket *sock, poll_table *wait)
1655 {
1656         struct sock *sk = sock->sk;
1657         struct isotp_sock *so = isotp_sk(sk);
1658
1659         __poll_t mask = datagram_poll(file, sock, wait);
1660         poll_wait(file, &so->wait, wait);
1661
1662         /* Check for false positives due to TX state */
1663         if ((mask & EPOLLWRNORM) && (so->tx.state != ISOTP_IDLE))
1664                 mask &= ~(EPOLLOUT | EPOLLWRNORM);
1665
1666         return mask;
1667 }
1668
1669 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1670                                   unsigned long arg)
1671 {
1672         /* no ioctls for socket layer -> hand it down to NIC layer */
1673         return -ENOIOCTLCMD;
1674 }
1675
1676 static const struct proto_ops isotp_ops = {
1677         .family = PF_CAN,
1678         .release = isotp_release,
1679         .bind = isotp_bind,
1680         .connect = sock_no_connect,
1681         .socketpair = sock_no_socketpair,
1682         .accept = sock_no_accept,
1683         .getname = isotp_getname,
1684         .poll = isotp_poll,
1685         .ioctl = isotp_sock_no_ioctlcmd,
1686         .gettstamp = sock_gettstamp,
1687         .listen = sock_no_listen,
1688         .shutdown = sock_no_shutdown,
1689         .setsockopt = isotp_setsockopt,
1690         .getsockopt = isotp_getsockopt,
1691         .sendmsg = isotp_sendmsg,
1692         .recvmsg = isotp_recvmsg,
1693         .mmap = sock_no_mmap,
1694 };
1695
1696 static struct proto isotp_proto __read_mostly = {
1697         .name = "CAN_ISOTP",
1698         .owner = THIS_MODULE,
1699         .obj_size = sizeof(struct isotp_sock),
1700         .init = isotp_init,
1701 };
1702
1703 static const struct can_proto isotp_can_proto = {
1704         .type = SOCK_DGRAM,
1705         .protocol = CAN_ISOTP,
1706         .ops = &isotp_ops,
1707         .prot = &isotp_proto,
1708 };
1709
1710 static struct notifier_block canisotp_notifier = {
1711         .notifier_call = isotp_notifier
1712 };
1713
1714 static __init int isotp_module_init(void)
1715 {
1716         int err;
1717
1718         max_pdu_size = max_t(unsigned int, max_pdu_size, MAX_12BIT_PDU_SIZE);
1719         max_pdu_size = min_t(unsigned int, max_pdu_size, MAX_PDU_SIZE);
1720
1721         pr_info("can: isotp protocol (max_pdu_size %d)\n", max_pdu_size);
1722
1723         err = can_proto_register(&isotp_can_proto);
1724         if (err < 0)
1725                 pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1726         else
1727                 register_netdevice_notifier(&canisotp_notifier);
1728
1729         return err;
1730 }
1731
1732 static __exit void isotp_module_exit(void)
1733 {
1734         can_proto_unregister(&isotp_can_proto);
1735         unregister_netdevice_notifier(&canisotp_notifier);
1736 }
1737
1738 module_init(isotp_module_init);
1739 module_exit(isotp_module_exit);
This page took 0.131234 seconds and 4 git commands to generate.