]> Git Repo - linux.git/blob - fs/nfs/dir.c
drm/amdgpu: move kfd post_reset out of reset_sriov function
[linux.git] / fs / nfs / dir.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996  Added silly rename for unlink   --okir
10  * 28 Sep 1996  Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine [email protected] 
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
19  */
20
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46
47 #include "nfstrace.h"
48
49 /* #define NFS_DEBUG_VERBOSE 1 */
50
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57
58 const struct file_operations nfs_dir_operations = {
59         .llseek         = nfs_llseek_dir,
60         .read           = generic_read_dir,
61         .iterate_shared = nfs_readdir,
62         .open           = nfs_opendir,
63         .release        = nfs_closedir,
64         .fsync          = nfs_fsync_dir,
65 };
66
67 const struct address_space_operations nfs_dir_aops = {
68         .freepage = nfs_readdir_clear_array,
69 };
70
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73         struct nfs_inode *nfsi = NFS_I(dir);
74         struct nfs_open_dir_context *ctx;
75         ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76         if (ctx != NULL) {
77                 ctx->duped = 0;
78                 ctx->attr_gencount = nfsi->attr_gencount;
79                 ctx->dir_cookie = 0;
80                 ctx->dup_cookie = 0;
81                 ctx->page_index = 0;
82                 spin_lock(&dir->i_lock);
83                 if (list_empty(&nfsi->open_files) &&
84                     (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85                         nfs_set_cache_invalid(dir,
86                                               NFS_INO_INVALID_DATA |
87                                                       NFS_INO_REVAL_FORCED);
88                 list_add(&ctx->list, &nfsi->open_files);
89                 clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
90                 spin_unlock(&dir->i_lock);
91                 return ctx;
92         }
93         return  ERR_PTR(-ENOMEM);
94 }
95
96 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
97 {
98         spin_lock(&dir->i_lock);
99         list_del(&ctx->list);
100         spin_unlock(&dir->i_lock);
101         kfree(ctx);
102 }
103
104 /*
105  * Open file
106  */
107 static int
108 nfs_opendir(struct inode *inode, struct file *filp)
109 {
110         int res = 0;
111         struct nfs_open_dir_context *ctx;
112
113         dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
114
115         nfs_inc_stats(inode, NFSIOS_VFSOPEN);
116
117         ctx = alloc_nfs_open_dir_context(inode);
118         if (IS_ERR(ctx)) {
119                 res = PTR_ERR(ctx);
120                 goto out;
121         }
122         filp->private_data = ctx;
123 out:
124         return res;
125 }
126
127 static int
128 nfs_closedir(struct inode *inode, struct file *filp)
129 {
130         put_nfs_open_dir_context(file_inode(filp), filp->private_data);
131         return 0;
132 }
133
134 struct nfs_cache_array_entry {
135         u64 cookie;
136         u64 ino;
137         const char *name;
138         unsigned int name_len;
139         unsigned char d_type;
140 };
141
142 struct nfs_cache_array {
143         u64 last_cookie;
144         unsigned int size;
145         unsigned char page_full : 1,
146                       page_is_eof : 1,
147                       cookies_are_ordered : 1;
148         struct nfs_cache_array_entry array[];
149 };
150
151 struct nfs_readdir_descriptor {
152         struct file     *file;
153         struct page     *page;
154         struct dir_context *ctx;
155         pgoff_t         page_index;
156         u64             dir_cookie;
157         u64             last_cookie;
158         u64             dup_cookie;
159         loff_t          current_index;
160         loff_t          prev_index;
161
162         __be32          verf[NFS_DIR_VERIFIER_SIZE];
163         unsigned long   dir_verifier;
164         unsigned long   timestamp;
165         unsigned long   gencount;
166         unsigned long   attr_gencount;
167         unsigned int    cache_entry_index;
168         signed char duped;
169         bool plus;
170         bool eof;
171 };
172
173 static void nfs_readdir_array_init(struct nfs_cache_array *array)
174 {
175         memset(array, 0, sizeof(struct nfs_cache_array));
176 }
177
178 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
179 {
180         struct nfs_cache_array *array;
181
182         array = kmap_atomic(page);
183         nfs_readdir_array_init(array);
184         array->last_cookie = last_cookie;
185         array->cookies_are_ordered = 1;
186         kunmap_atomic(array);
187 }
188
189 /*
190  * we are freeing strings created by nfs_add_to_readdir_array()
191  */
192 static
193 void nfs_readdir_clear_array(struct page *page)
194 {
195         struct nfs_cache_array *array;
196         int i;
197
198         array = kmap_atomic(page);
199         for (i = 0; i < array->size; i++)
200                 kfree(array->array[i].name);
201         nfs_readdir_array_init(array);
202         kunmap_atomic(array);
203 }
204
205 static struct page *
206 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
207 {
208         struct page *page = alloc_page(gfp_flags);
209         if (page)
210                 nfs_readdir_page_init_array(page, last_cookie);
211         return page;
212 }
213
214 static void nfs_readdir_page_array_free(struct page *page)
215 {
216         if (page) {
217                 nfs_readdir_clear_array(page);
218                 put_page(page);
219         }
220 }
221
222 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
223 {
224         array->page_is_eof = 1;
225         array->page_full = 1;
226 }
227
228 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
229 {
230         return array->page_full;
231 }
232
233 /*
234  * the caller is responsible for freeing qstr.name
235  * when called by nfs_readdir_add_to_array, the strings will be freed in
236  * nfs_clear_readdir_array()
237  */
238 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
239 {
240         const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
241
242         /*
243          * Avoid a kmemleak false positive. The pointer to the name is stored
244          * in a page cache page which kmemleak does not scan.
245          */
246         if (ret != NULL)
247                 kmemleak_not_leak(ret);
248         return ret;
249 }
250
251 /*
252  * Check that the next array entry lies entirely within the page bounds
253  */
254 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
255 {
256         struct nfs_cache_array_entry *cache_entry;
257
258         if (array->page_full)
259                 return -ENOSPC;
260         cache_entry = &array->array[array->size + 1];
261         if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
262                 array->page_full = 1;
263                 return -ENOSPC;
264         }
265         return 0;
266 }
267
268 static
269 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
270 {
271         struct nfs_cache_array *array;
272         struct nfs_cache_array_entry *cache_entry;
273         const char *name;
274         int ret;
275
276         name = nfs_readdir_copy_name(entry->name, entry->len);
277         if (!name)
278                 return -ENOMEM;
279
280         array = kmap_atomic(page);
281         ret = nfs_readdir_array_can_expand(array);
282         if (ret) {
283                 kfree(name);
284                 goto out;
285         }
286
287         cache_entry = &array->array[array->size];
288         cache_entry->cookie = entry->prev_cookie;
289         cache_entry->ino = entry->ino;
290         cache_entry->d_type = entry->d_type;
291         cache_entry->name_len = entry->len;
292         cache_entry->name = name;
293         array->last_cookie = entry->cookie;
294         if (array->last_cookie <= cache_entry->cookie)
295                 array->cookies_are_ordered = 0;
296         array->size++;
297         if (entry->eof != 0)
298                 nfs_readdir_array_set_eof(array);
299 out:
300         kunmap_atomic(array);
301         return ret;
302 }
303
304 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
305                                                 pgoff_t index, u64 last_cookie)
306 {
307         struct page *page;
308
309         page = grab_cache_page(mapping, index);
310         if (page && !PageUptodate(page)) {
311                 nfs_readdir_page_init_array(page, last_cookie);
312                 if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
313                         nfs_zap_mapping(mapping->host, mapping);
314                 SetPageUptodate(page);
315         }
316
317         return page;
318 }
319
320 static u64 nfs_readdir_page_last_cookie(struct page *page)
321 {
322         struct nfs_cache_array *array;
323         u64 ret;
324
325         array = kmap_atomic(page);
326         ret = array->last_cookie;
327         kunmap_atomic(array);
328         return ret;
329 }
330
331 static bool nfs_readdir_page_needs_filling(struct page *page)
332 {
333         struct nfs_cache_array *array;
334         bool ret;
335
336         array = kmap_atomic(page);
337         ret = !nfs_readdir_array_is_full(array);
338         kunmap_atomic(array);
339         return ret;
340 }
341
342 static void nfs_readdir_page_set_eof(struct page *page)
343 {
344         struct nfs_cache_array *array;
345
346         array = kmap_atomic(page);
347         nfs_readdir_array_set_eof(array);
348         kunmap_atomic(array);
349 }
350
351 static void nfs_readdir_page_unlock_and_put(struct page *page)
352 {
353         unlock_page(page);
354         put_page(page);
355 }
356
357 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
358                                               pgoff_t index, u64 cookie)
359 {
360         struct page *page;
361
362         page = nfs_readdir_page_get_locked(mapping, index, cookie);
363         if (page) {
364                 if (nfs_readdir_page_last_cookie(page) == cookie)
365                         return page;
366                 nfs_readdir_page_unlock_and_put(page);
367         }
368         return NULL;
369 }
370
371 static inline
372 int is_32bit_api(void)
373 {
374 #ifdef CONFIG_COMPAT
375         return in_compat_syscall();
376 #else
377         return (BITS_PER_LONG == 32);
378 #endif
379 }
380
381 static
382 bool nfs_readdir_use_cookie(const struct file *filp)
383 {
384         if ((filp->f_mode & FMODE_32BITHASH) ||
385             (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
386                 return false;
387         return true;
388 }
389
390 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
391                                       struct nfs_readdir_descriptor *desc)
392 {
393         loff_t diff = desc->ctx->pos - desc->current_index;
394         unsigned int index;
395
396         if (diff < 0)
397                 goto out_eof;
398         if (diff >= array->size) {
399                 if (array->page_is_eof)
400                         goto out_eof;
401                 return -EAGAIN;
402         }
403
404         index = (unsigned int)diff;
405         desc->dir_cookie = array->array[index].cookie;
406         desc->cache_entry_index = index;
407         return 0;
408 out_eof:
409         desc->eof = true;
410         return -EBADCOOKIE;
411 }
412
413 static bool
414 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
415 {
416         if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE |
417                                     NFS_INO_INVALID_DATA))
418                 return false;
419         smp_rmb();
420         return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
421 }
422
423 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
424                                               u64 cookie)
425 {
426         if (!array->cookies_are_ordered)
427                 return true;
428         /* Optimisation for monotonically increasing cookies */
429         if (cookie >= array->last_cookie)
430                 return false;
431         if (array->size && cookie < array->array[0].cookie)
432                 return false;
433         return true;
434 }
435
436 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
437                                          struct nfs_readdir_descriptor *desc)
438 {
439         int i;
440         loff_t new_pos;
441         int status = -EAGAIN;
442
443         if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
444                 goto check_eof;
445
446         for (i = 0; i < array->size; i++) {
447                 if (array->array[i].cookie == desc->dir_cookie) {
448                         struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
449
450                         new_pos = desc->current_index + i;
451                         if (desc->attr_gencount != nfsi->attr_gencount ||
452                             !nfs_readdir_inode_mapping_valid(nfsi)) {
453                                 desc->duped = 0;
454                                 desc->attr_gencount = nfsi->attr_gencount;
455                         } else if (new_pos < desc->prev_index) {
456                                 if (desc->duped > 0
457                                     && desc->dup_cookie == desc->dir_cookie) {
458                                         if (printk_ratelimit()) {
459                                                 pr_notice("NFS: directory %pD2 contains a readdir loop."
460                                                                 "Please contact your server vendor.  "
461                                                                 "The file: %s has duplicate cookie %llu\n",
462                                                                 desc->file, array->array[i].name, desc->dir_cookie);
463                                         }
464                                         status = -ELOOP;
465                                         goto out;
466                                 }
467                                 desc->dup_cookie = desc->dir_cookie;
468                                 desc->duped = -1;
469                         }
470                         if (nfs_readdir_use_cookie(desc->file))
471                                 desc->ctx->pos = desc->dir_cookie;
472                         else
473                                 desc->ctx->pos = new_pos;
474                         desc->prev_index = new_pos;
475                         desc->cache_entry_index = i;
476                         return 0;
477                 }
478         }
479 check_eof:
480         if (array->page_is_eof) {
481                 status = -EBADCOOKIE;
482                 if (desc->dir_cookie == array->last_cookie)
483                         desc->eof = true;
484         }
485 out:
486         return status;
487 }
488
489 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
490 {
491         struct nfs_cache_array *array;
492         int status;
493
494         array = kmap_atomic(desc->page);
495
496         if (desc->dir_cookie == 0)
497                 status = nfs_readdir_search_for_pos(array, desc);
498         else
499                 status = nfs_readdir_search_for_cookie(array, desc);
500
501         if (status == -EAGAIN) {
502                 desc->last_cookie = array->last_cookie;
503                 desc->current_index += array->size;
504                 desc->page_index++;
505         }
506         kunmap_atomic(array);
507         return status;
508 }
509
510 /* Fill a page with xdr information before transferring to the cache page */
511 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
512                                   __be32 *verf, u64 cookie,
513                                   struct page **pages, size_t bufsize,
514                                   __be32 *verf_res)
515 {
516         struct inode *inode = file_inode(desc->file);
517         struct nfs_readdir_arg arg = {
518                 .dentry = file_dentry(desc->file),
519                 .cred = desc->file->f_cred,
520                 .verf = verf,
521                 .cookie = cookie,
522                 .pages = pages,
523                 .page_len = bufsize,
524                 .plus = desc->plus,
525         };
526         struct nfs_readdir_res res = {
527                 .verf = verf_res,
528         };
529         unsigned long   timestamp, gencount;
530         int             error;
531
532  again:
533         timestamp = jiffies;
534         gencount = nfs_inc_attr_generation_counter();
535         desc->dir_verifier = nfs_save_change_attribute(inode);
536         error = NFS_PROTO(inode)->readdir(&arg, &res);
537         if (error < 0) {
538                 /* We requested READDIRPLUS, but the server doesn't grok it */
539                 if (error == -ENOTSUPP && desc->plus) {
540                         NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
541                         clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
542                         desc->plus = arg.plus = false;
543                         goto again;
544                 }
545                 goto error;
546         }
547         desc->timestamp = timestamp;
548         desc->gencount = gencount;
549 error:
550         return error;
551 }
552
553 static int xdr_decode(struct nfs_readdir_descriptor *desc,
554                       struct nfs_entry *entry, struct xdr_stream *xdr)
555 {
556         struct inode *inode = file_inode(desc->file);
557         int error;
558
559         error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
560         if (error)
561                 return error;
562         entry->fattr->time_start = desc->timestamp;
563         entry->fattr->gencount = desc->gencount;
564         return 0;
565 }
566
567 /* Match file and dirent using either filehandle or fileid
568  * Note: caller is responsible for checking the fsid
569  */
570 static
571 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
572 {
573         struct inode *inode;
574         struct nfs_inode *nfsi;
575
576         if (d_really_is_negative(dentry))
577                 return 0;
578
579         inode = d_inode(dentry);
580         if (is_bad_inode(inode) || NFS_STALE(inode))
581                 return 0;
582
583         nfsi = NFS_I(inode);
584         if (entry->fattr->fileid != nfsi->fileid)
585                 return 0;
586         if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
587                 return 0;
588         return 1;
589 }
590
591 static
592 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
593 {
594         if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
595                 return false;
596         if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
597                 return true;
598         if (ctx->pos == 0)
599                 return true;
600         return false;
601 }
602
603 /*
604  * This function is called by the lookup and getattr code to request the
605  * use of readdirplus to accelerate any future lookups in the same
606  * directory.
607  */
608 void nfs_advise_use_readdirplus(struct inode *dir)
609 {
610         struct nfs_inode *nfsi = NFS_I(dir);
611
612         if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
613             !list_empty(&nfsi->open_files))
614                 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
615 }
616
617 /*
618  * This function is mainly for use by nfs_getattr().
619  *
620  * If this is an 'ls -l', we want to force use of readdirplus.
621  * Do this by checking if there is an active file descriptor
622  * and calling nfs_advise_use_readdirplus, then forcing a
623  * cache flush.
624  */
625 void nfs_force_use_readdirplus(struct inode *dir)
626 {
627         struct nfs_inode *nfsi = NFS_I(dir);
628
629         if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
630             !list_empty(&nfsi->open_files)) {
631                 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
632                 set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
633         }
634 }
635
636 static
637 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
638                 unsigned long dir_verifier)
639 {
640         struct qstr filename = QSTR_INIT(entry->name, entry->len);
641         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
642         struct dentry *dentry;
643         struct dentry *alias;
644         struct inode *inode;
645         int status;
646
647         if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
648                 return;
649         if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
650                 return;
651         if (filename.len == 0)
652                 return;
653         /* Validate that the name doesn't contain any illegal '\0' */
654         if (strnlen(filename.name, filename.len) != filename.len)
655                 return;
656         /* ...or '/' */
657         if (strnchr(filename.name, filename.len, '/'))
658                 return;
659         if (filename.name[0] == '.') {
660                 if (filename.len == 1)
661                         return;
662                 if (filename.len == 2 && filename.name[1] == '.')
663                         return;
664         }
665         filename.hash = full_name_hash(parent, filename.name, filename.len);
666
667         dentry = d_lookup(parent, &filename);
668 again:
669         if (!dentry) {
670                 dentry = d_alloc_parallel(parent, &filename, &wq);
671                 if (IS_ERR(dentry))
672                         return;
673         }
674         if (!d_in_lookup(dentry)) {
675                 /* Is there a mountpoint here? If so, just exit */
676                 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
677                                         &entry->fattr->fsid))
678                         goto out;
679                 if (nfs_same_file(dentry, entry)) {
680                         if (!entry->fh->size)
681                                 goto out;
682                         nfs_set_verifier(dentry, dir_verifier);
683                         status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
684                         if (!status)
685                                 nfs_setsecurity(d_inode(dentry), entry->fattr);
686                         goto out;
687                 } else {
688                         d_invalidate(dentry);
689                         dput(dentry);
690                         dentry = NULL;
691                         goto again;
692                 }
693         }
694         if (!entry->fh->size) {
695                 d_lookup_done(dentry);
696                 goto out;
697         }
698
699         inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
700         alias = d_splice_alias(inode, dentry);
701         d_lookup_done(dentry);
702         if (alias) {
703                 if (IS_ERR(alias))
704                         goto out;
705                 dput(dentry);
706                 dentry = alias;
707         }
708         nfs_set_verifier(dentry, dir_verifier);
709 out:
710         dput(dentry);
711 }
712
713 /* Perform conversion from xdr to cache array */
714 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
715                                    struct nfs_entry *entry,
716                                    struct page **xdr_pages,
717                                    unsigned int buflen,
718                                    struct page **arrays,
719                                    size_t narrays)
720 {
721         struct address_space *mapping = desc->file->f_mapping;
722         struct xdr_stream stream;
723         struct xdr_buf buf;
724         struct page *scratch, *new, *page = *arrays;
725         int status;
726
727         scratch = alloc_page(GFP_KERNEL);
728         if (scratch == NULL)
729                 return -ENOMEM;
730
731         xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
732         xdr_set_scratch_page(&stream, scratch);
733
734         do {
735                 if (entry->fattr->label)
736                         entry->fattr->label->len = NFS4_MAXLABELLEN;
737
738                 status = xdr_decode(desc, entry, &stream);
739                 if (status != 0)
740                         break;
741
742                 if (desc->plus)
743                         nfs_prime_dcache(file_dentry(desc->file), entry,
744                                         desc->dir_verifier);
745
746                 status = nfs_readdir_add_to_array(entry, page);
747                 if (status != -ENOSPC)
748                         continue;
749
750                 if (page->mapping != mapping) {
751                         if (!--narrays)
752                                 break;
753                         new = nfs_readdir_page_array_alloc(entry->prev_cookie,
754                                                            GFP_KERNEL);
755                         if (!new)
756                                 break;
757                         arrays++;
758                         *arrays = page = new;
759                 } else {
760                         new = nfs_readdir_page_get_next(mapping,
761                                                         page->index + 1,
762                                                         entry->prev_cookie);
763                         if (!new)
764                                 break;
765                         if (page != *arrays)
766                                 nfs_readdir_page_unlock_and_put(page);
767                         page = new;
768                 }
769                 status = nfs_readdir_add_to_array(entry, page);
770         } while (!status && !entry->eof);
771
772         switch (status) {
773         case -EBADCOOKIE:
774                 if (entry->eof) {
775                         nfs_readdir_page_set_eof(page);
776                         status = 0;
777                 }
778                 break;
779         case -ENOSPC:
780         case -EAGAIN:
781                 status = 0;
782                 break;
783         }
784
785         if (page != *arrays)
786                 nfs_readdir_page_unlock_and_put(page);
787
788         put_page(scratch);
789         return status;
790 }
791
792 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
793 {
794         while (npages--)
795                 put_page(pages[npages]);
796         kfree(pages);
797 }
798
799 /*
800  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
801  * to nfs_readdir_free_pages()
802  */
803 static struct page **nfs_readdir_alloc_pages(size_t npages)
804 {
805         struct page **pages;
806         size_t i;
807
808         pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
809         if (!pages)
810                 return NULL;
811         for (i = 0; i < npages; i++) {
812                 struct page *page = alloc_page(GFP_KERNEL);
813                 if (page == NULL)
814                         goto out_freepages;
815                 pages[i] = page;
816         }
817         return pages;
818
819 out_freepages:
820         nfs_readdir_free_pages(pages, i);
821         return NULL;
822 }
823
824 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
825                                     __be32 *verf_arg, __be32 *verf_res,
826                                     struct page **arrays, size_t narrays)
827 {
828         struct page **pages;
829         struct page *page = *arrays;
830         struct nfs_entry *entry;
831         size_t array_size;
832         struct inode *inode = file_inode(desc->file);
833         size_t dtsize = NFS_SERVER(inode)->dtsize;
834         int status = -ENOMEM;
835
836         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
837         if (!entry)
838                 return -ENOMEM;
839         entry->cookie = nfs_readdir_page_last_cookie(page);
840         entry->fh = nfs_alloc_fhandle();
841         entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
842         entry->server = NFS_SERVER(inode);
843         if (entry->fh == NULL || entry->fattr == NULL)
844                 goto out;
845
846         array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
847         pages = nfs_readdir_alloc_pages(array_size);
848         if (!pages)
849                 goto out;
850
851         do {
852                 unsigned int pglen;
853                 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
854                                                 pages, dtsize,
855                                                 verf_res);
856                 if (status < 0)
857                         break;
858
859                 pglen = status;
860                 if (pglen == 0) {
861                         nfs_readdir_page_set_eof(page);
862                         break;
863                 }
864
865                 verf_arg = verf_res;
866
867                 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
868                                                  arrays, narrays);
869         } while (!status && nfs_readdir_page_needs_filling(page));
870
871         nfs_readdir_free_pages(pages, array_size);
872 out:
873         nfs_free_fattr(entry->fattr);
874         nfs_free_fhandle(entry->fh);
875         kfree(entry);
876         return status;
877 }
878
879 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
880 {
881         put_page(desc->page);
882         desc->page = NULL;
883 }
884
885 static void
886 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
887 {
888         unlock_page(desc->page);
889         nfs_readdir_page_put(desc);
890 }
891
892 static struct page *
893 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
894 {
895         return nfs_readdir_page_get_locked(desc->file->f_mapping,
896                                            desc->page_index,
897                                            desc->last_cookie);
898 }
899
900 /*
901  * Returns 0 if desc->dir_cookie was found on page desc->page_index
902  * and locks the page to prevent removal from the page cache.
903  */
904 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
905 {
906         struct inode *inode = file_inode(desc->file);
907         struct nfs_inode *nfsi = NFS_I(inode);
908         __be32 verf[NFS_DIR_VERIFIER_SIZE];
909         int res;
910
911         desc->page = nfs_readdir_page_get_cached(desc);
912         if (!desc->page)
913                 return -ENOMEM;
914         if (nfs_readdir_page_needs_filling(desc->page)) {
915                 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
916                                                &desc->page, 1);
917                 if (res < 0) {
918                         nfs_readdir_page_unlock_and_put_cached(desc);
919                         if (res == -EBADCOOKIE || res == -ENOTSYNC) {
920                                 invalidate_inode_pages2(desc->file->f_mapping);
921                                 desc->page_index = 0;
922                                 return -EAGAIN;
923                         }
924                         return res;
925                 }
926                 /*
927                  * Set the cookie verifier if the page cache was empty
928                  */
929                 if (desc->page_index == 0)
930                         memcpy(nfsi->cookieverf, verf,
931                                sizeof(nfsi->cookieverf));
932         }
933         res = nfs_readdir_search_array(desc);
934         if (res == 0)
935                 return 0;
936         nfs_readdir_page_unlock_and_put_cached(desc);
937         return res;
938 }
939
940 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
941 {
942         struct address_space *mapping = desc->file->f_mapping;
943         struct inode *dir = file_inode(desc->file);
944         unsigned int dtsize = NFS_SERVER(dir)->dtsize;
945         loff_t size = i_size_read(dir);
946
947         /*
948          * Default to uncached readdir if the page cache is empty, and
949          * we're looking for a non-zero cookie in a large directory.
950          */
951         return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
952 }
953
954 /* Search for desc->dir_cookie from the beginning of the page cache */
955 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
956 {
957         int res;
958
959         if (nfs_readdir_dont_search_cache(desc))
960                 return -EBADCOOKIE;
961
962         do {
963                 if (desc->page_index == 0) {
964                         desc->current_index = 0;
965                         desc->prev_index = 0;
966                         desc->last_cookie = 0;
967                 }
968                 res = find_and_lock_cache_page(desc);
969         } while (res == -EAGAIN);
970         return res;
971 }
972
973 /*
974  * Once we've found the start of the dirent within a page: fill 'er up...
975  */
976 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
977                            const __be32 *verf)
978 {
979         struct file     *file = desc->file;
980         struct nfs_cache_array *array;
981         unsigned int i = 0;
982
983         array = kmap(desc->page);
984         for (i = desc->cache_entry_index; i < array->size; i++) {
985                 struct nfs_cache_array_entry *ent;
986
987                 ent = &array->array[i];
988                 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
989                     nfs_compat_user_ino64(ent->ino), ent->d_type)) {
990                         desc->eof = true;
991                         break;
992                 }
993                 memcpy(desc->verf, verf, sizeof(desc->verf));
994                 if (i < (array->size-1))
995                         desc->dir_cookie = array->array[i+1].cookie;
996                 else
997                         desc->dir_cookie = array->last_cookie;
998                 if (nfs_readdir_use_cookie(file))
999                         desc->ctx->pos = desc->dir_cookie;
1000                 else
1001                         desc->ctx->pos++;
1002                 if (desc->duped != 0)
1003                         desc->duped = 1;
1004         }
1005         if (array->page_is_eof)
1006                 desc->eof = true;
1007
1008         kunmap(desc->page);
1009         dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1010                         (unsigned long long)desc->dir_cookie);
1011 }
1012
1013 /*
1014  * If we cannot find a cookie in our cache, we suspect that this is
1015  * because it points to a deleted file, so we ask the server to return
1016  * whatever it thinks is the next entry. We then feed this to filldir.
1017  * If all goes well, we should then be able to find our way round the
1018  * cache on the next call to readdir_search_pagecache();
1019  *
1020  * NOTE: we cannot add the anonymous page to the pagecache because
1021  *       the data it contains might not be page aligned. Besides,
1022  *       we should already have a complete representation of the
1023  *       directory in the page cache by the time we get here.
1024  */
1025 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1026 {
1027         struct page     **arrays;
1028         size_t          i, sz = 512;
1029         __be32          verf[NFS_DIR_VERIFIER_SIZE];
1030         int             status = -ENOMEM;
1031
1032         dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1033                         (unsigned long long)desc->dir_cookie);
1034
1035         arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1036         if (!arrays)
1037                 goto out;
1038         arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1039         if (!arrays[0])
1040                 goto out;
1041
1042         desc->page_index = 0;
1043         desc->last_cookie = desc->dir_cookie;
1044         desc->duped = 0;
1045
1046         status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1047
1048         for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1049                 desc->page = arrays[i];
1050                 nfs_do_filldir(desc, verf);
1051         }
1052         desc->page = NULL;
1053
1054
1055         for (i = 0; i < sz && arrays[i]; i++)
1056                 nfs_readdir_page_array_free(arrays[i]);
1057 out:
1058         kfree(arrays);
1059         dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1060         return status;
1061 }
1062
1063 /* The file offset position represents the dirent entry number.  A
1064    last cookie cache takes care of the common case of reading the
1065    whole directory.
1066  */
1067 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1068 {
1069         struct dentry   *dentry = file_dentry(file);
1070         struct inode    *inode = d_inode(dentry);
1071         struct nfs_inode *nfsi = NFS_I(inode);
1072         struct nfs_open_dir_context *dir_ctx = file->private_data;
1073         struct nfs_readdir_descriptor *desc;
1074         pgoff_t page_index;
1075         int res;
1076
1077         dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1078                         file, (long long)ctx->pos);
1079         nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1080
1081         /*
1082          * ctx->pos points to the dirent entry number.
1083          * *desc->dir_cookie has the cookie for the next entry. We have
1084          * to either find the entry with the appropriate number or
1085          * revalidate the cookie.
1086          */
1087         if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1088                 res = nfs_revalidate_mapping(inode, file->f_mapping);
1089                 if (res < 0)
1090                         goto out;
1091         }
1092
1093         res = -ENOMEM;
1094         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1095         if (!desc)
1096                 goto out;
1097         desc->file = file;
1098         desc->ctx = ctx;
1099         desc->plus = nfs_use_readdirplus(inode, ctx);
1100
1101         spin_lock(&file->f_lock);
1102         desc->dir_cookie = dir_ctx->dir_cookie;
1103         desc->dup_cookie = dir_ctx->dup_cookie;
1104         desc->duped = dir_ctx->duped;
1105         page_index = dir_ctx->page_index;
1106         desc->attr_gencount = dir_ctx->attr_gencount;
1107         memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1108         spin_unlock(&file->f_lock);
1109
1110         if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1111             list_is_singular(&nfsi->open_files))
1112                 invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1113
1114         do {
1115                 res = readdir_search_pagecache(desc);
1116
1117                 if (res == -EBADCOOKIE) {
1118                         res = 0;
1119                         /* This means either end of directory */
1120                         if (desc->dir_cookie && !desc->eof) {
1121                                 /* Or that the server has 'lost' a cookie */
1122                                 res = uncached_readdir(desc);
1123                                 if (res == 0)
1124                                         continue;
1125                                 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1126                                         res = 0;
1127                         }
1128                         break;
1129                 }
1130                 if (res == -ETOOSMALL && desc->plus) {
1131                         clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1132                         nfs_zap_caches(inode);
1133                         desc->page_index = 0;
1134                         desc->plus = false;
1135                         desc->eof = false;
1136                         continue;
1137                 }
1138                 if (res < 0)
1139                         break;
1140
1141                 nfs_do_filldir(desc, nfsi->cookieverf);
1142                 nfs_readdir_page_unlock_and_put_cached(desc);
1143         } while (!desc->eof);
1144
1145         spin_lock(&file->f_lock);
1146         dir_ctx->dir_cookie = desc->dir_cookie;
1147         dir_ctx->dup_cookie = desc->dup_cookie;
1148         dir_ctx->duped = desc->duped;
1149         dir_ctx->attr_gencount = desc->attr_gencount;
1150         dir_ctx->page_index = desc->page_index;
1151         memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1152         spin_unlock(&file->f_lock);
1153
1154         kfree(desc);
1155
1156 out:
1157         dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1158         return res;
1159 }
1160
1161 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1162 {
1163         struct nfs_open_dir_context *dir_ctx = filp->private_data;
1164
1165         dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1166                         filp, offset, whence);
1167
1168         switch (whence) {
1169         default:
1170                 return -EINVAL;
1171         case SEEK_SET:
1172                 if (offset < 0)
1173                         return -EINVAL;
1174                 spin_lock(&filp->f_lock);
1175                 break;
1176         case SEEK_CUR:
1177                 if (offset == 0)
1178                         return filp->f_pos;
1179                 spin_lock(&filp->f_lock);
1180                 offset += filp->f_pos;
1181                 if (offset < 0) {
1182                         spin_unlock(&filp->f_lock);
1183                         return -EINVAL;
1184                 }
1185         }
1186         if (offset != filp->f_pos) {
1187                 filp->f_pos = offset;
1188                 if (nfs_readdir_use_cookie(filp))
1189                         dir_ctx->dir_cookie = offset;
1190                 else
1191                         dir_ctx->dir_cookie = 0;
1192                 if (offset == 0)
1193                         memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1194                 dir_ctx->duped = 0;
1195         }
1196         spin_unlock(&filp->f_lock);
1197         return offset;
1198 }
1199
1200 /*
1201  * All directory operations under NFS are synchronous, so fsync()
1202  * is a dummy operation.
1203  */
1204 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1205                          int datasync)
1206 {
1207         dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1208
1209         nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1210         return 0;
1211 }
1212
1213 /**
1214  * nfs_force_lookup_revalidate - Mark the directory as having changed
1215  * @dir: pointer to directory inode
1216  *
1217  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1218  * full lookup on all child dentries of 'dir' whenever a change occurs
1219  * on the server that might have invalidated our dcache.
1220  *
1221  * Note that we reserve bit '0' as a tag to let us know when a dentry
1222  * was revalidated while holding a delegation on its inode.
1223  *
1224  * The caller should be holding dir->i_lock
1225  */
1226 void nfs_force_lookup_revalidate(struct inode *dir)
1227 {
1228         NFS_I(dir)->cache_change_attribute += 2;
1229 }
1230 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1231
1232 /**
1233  * nfs_verify_change_attribute - Detects NFS remote directory changes
1234  * @dir: pointer to parent directory inode
1235  * @verf: previously saved change attribute
1236  *
1237  * Return "false" if the verifiers doesn't match the change attribute.
1238  * This would usually indicate that the directory contents have changed on
1239  * the server, and that any dentries need revalidating.
1240  */
1241 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1242 {
1243         return (verf & ~1UL) == nfs_save_change_attribute(dir);
1244 }
1245
1246 static void nfs_set_verifier_delegated(unsigned long *verf)
1247 {
1248         *verf |= 1UL;
1249 }
1250
1251 #if IS_ENABLED(CONFIG_NFS_V4)
1252 static void nfs_unset_verifier_delegated(unsigned long *verf)
1253 {
1254         *verf &= ~1UL;
1255 }
1256 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1257
1258 static bool nfs_test_verifier_delegated(unsigned long verf)
1259 {
1260         return verf & 1;
1261 }
1262
1263 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1264 {
1265         return nfs_test_verifier_delegated(dentry->d_time);
1266 }
1267
1268 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1269 {
1270         struct inode *inode = d_inode(dentry);
1271         struct inode *dir = d_inode(dentry->d_parent);
1272
1273         if (!nfs_verify_change_attribute(dir, verf))
1274                 return;
1275         if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1276                 nfs_set_verifier_delegated(&verf);
1277         dentry->d_time = verf;
1278 }
1279
1280 /**
1281  * nfs_set_verifier - save a parent directory verifier in the dentry
1282  * @dentry: pointer to dentry
1283  * @verf: verifier to save
1284  *
1285  * Saves the parent directory verifier in @dentry. If the inode has
1286  * a delegation, we also tag the dentry as having been revalidated
1287  * while holding a delegation so that we know we don't have to
1288  * look it up again after a directory change.
1289  */
1290 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1291 {
1292
1293         spin_lock(&dentry->d_lock);
1294         nfs_set_verifier_locked(dentry, verf);
1295         spin_unlock(&dentry->d_lock);
1296 }
1297 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1298
1299 #if IS_ENABLED(CONFIG_NFS_V4)
1300 /**
1301  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1302  * @inode: pointer to inode
1303  *
1304  * Iterates through the dentries in the inode alias list and clears
1305  * the tag used to indicate that the dentry has been revalidated
1306  * while holding a delegation.
1307  * This function is intended for use when the delegation is being
1308  * returned or revoked.
1309  */
1310 void nfs_clear_verifier_delegated(struct inode *inode)
1311 {
1312         struct dentry *alias;
1313
1314         if (!inode)
1315                 return;
1316         spin_lock(&inode->i_lock);
1317         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1318                 spin_lock(&alias->d_lock);
1319                 nfs_unset_verifier_delegated(&alias->d_time);
1320                 spin_unlock(&alias->d_lock);
1321         }
1322         spin_unlock(&inode->i_lock);
1323 }
1324 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1325 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1326
1327 /*
1328  * A check for whether or not the parent directory has changed.
1329  * In the case it has, we assume that the dentries are untrustworthy
1330  * and may need to be looked up again.
1331  * If rcu_walk prevents us from performing a full check, return 0.
1332  */
1333 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1334                               int rcu_walk)
1335 {
1336         if (IS_ROOT(dentry))
1337                 return 1;
1338         if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1339                 return 0;
1340         if (!nfs_verify_change_attribute(dir, dentry->d_time))
1341                 return 0;
1342         /* Revalidate nfsi->cache_change_attribute before we declare a match */
1343         if (nfs_mapping_need_revalidate_inode(dir)) {
1344                 if (rcu_walk)
1345                         return 0;
1346                 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1347                         return 0;
1348         }
1349         if (!nfs_verify_change_attribute(dir, dentry->d_time))
1350                 return 0;
1351         return 1;
1352 }
1353
1354 /*
1355  * Use intent information to check whether or not we're going to do
1356  * an O_EXCL create using this path component.
1357  */
1358 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1359 {
1360         if (NFS_PROTO(dir)->version == 2)
1361                 return 0;
1362         return flags & LOOKUP_EXCL;
1363 }
1364
1365 /*
1366  * Inode and filehandle revalidation for lookups.
1367  *
1368  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1369  * or if the intent information indicates that we're about to open this
1370  * particular file and the "nocto" mount flag is not set.
1371  *
1372  */
1373 static
1374 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1375 {
1376         struct nfs_server *server = NFS_SERVER(inode);
1377         int ret;
1378
1379         if (IS_AUTOMOUNT(inode))
1380                 return 0;
1381
1382         if (flags & LOOKUP_OPEN) {
1383                 switch (inode->i_mode & S_IFMT) {
1384                 case S_IFREG:
1385                         /* A NFSv4 OPEN will revalidate later */
1386                         if (server->caps & NFS_CAP_ATOMIC_OPEN)
1387                                 goto out;
1388                         fallthrough;
1389                 case S_IFDIR:
1390                         if (server->flags & NFS_MOUNT_NOCTO)
1391                                 break;
1392                         /* NFS close-to-open cache consistency validation */
1393                         goto out_force;
1394                 }
1395         }
1396
1397         /* VFS wants an on-the-wire revalidation */
1398         if (flags & LOOKUP_REVAL)
1399                 goto out_force;
1400 out:
1401         return (inode->i_nlink == 0) ? -ESTALE : 0;
1402 out_force:
1403         if (flags & LOOKUP_RCU)
1404                 return -ECHILD;
1405         ret = __nfs_revalidate_inode(server, inode);
1406         if (ret != 0)
1407                 return ret;
1408         goto out;
1409 }
1410
1411 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1412 {
1413         spin_lock(&inode->i_lock);
1414         nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1415         spin_unlock(&inode->i_lock);
1416 }
1417
1418 /*
1419  * We judge how long we want to trust negative
1420  * dentries by looking at the parent inode mtime.
1421  *
1422  * If parent mtime has changed, we revalidate, else we wait for a
1423  * period corresponding to the parent's attribute cache timeout value.
1424  *
1425  * If LOOKUP_RCU prevents us from performing a full check, return 1
1426  * suggesting a reval is needed.
1427  *
1428  * Note that when creating a new file, or looking up a rename target,
1429  * then it shouldn't be necessary to revalidate a negative dentry.
1430  */
1431 static inline
1432 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1433                        unsigned int flags)
1434 {
1435         if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1436                 return 0;
1437         if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1438                 return 1;
1439         return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1440 }
1441
1442 static int
1443 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1444                            struct inode *inode, int error)
1445 {
1446         switch (error) {
1447         case 1:
1448                 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1449                         __func__, dentry);
1450                 return 1;
1451         case 0:
1452                 /*
1453                  * We can't d_drop the root of a disconnected tree:
1454                  * its d_hash is on the s_anon list and d_drop() would hide
1455                  * it from shrink_dcache_for_unmount(), leading to busy
1456                  * inodes on unmount and further oopses.
1457                  */
1458                 if (inode && IS_ROOT(dentry))
1459                         return 1;
1460                 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1461                                 __func__, dentry);
1462                 return 0;
1463         }
1464         dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1465                                 __func__, dentry, error);
1466         return error;
1467 }
1468
1469 static int
1470 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1471                                unsigned int flags)
1472 {
1473         int ret = 1;
1474         if (nfs_neg_need_reval(dir, dentry, flags)) {
1475                 if (flags & LOOKUP_RCU)
1476                         return -ECHILD;
1477                 ret = 0;
1478         }
1479         return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1480 }
1481
1482 static int
1483 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1484                                 struct inode *inode)
1485 {
1486         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1487         return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1488 }
1489
1490 static int
1491 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1492                              struct inode *inode)
1493 {
1494         struct nfs_fh *fhandle;
1495         struct nfs_fattr *fattr;
1496         unsigned long dir_verifier;
1497         int ret;
1498
1499         ret = -ENOMEM;
1500         fhandle = nfs_alloc_fhandle();
1501         fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1502         if (fhandle == NULL || fattr == NULL)
1503                 goto out;
1504
1505         dir_verifier = nfs_save_change_attribute(dir);
1506         ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1507         if (ret < 0) {
1508                 switch (ret) {
1509                 case -ESTALE:
1510                 case -ENOENT:
1511                         ret = 0;
1512                         break;
1513                 case -ETIMEDOUT:
1514                         if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1515                                 ret = 1;
1516                 }
1517                 goto out;
1518         }
1519         ret = 0;
1520         if (nfs_compare_fh(NFS_FH(inode), fhandle))
1521                 goto out;
1522         if (nfs_refresh_inode(inode, fattr) < 0)
1523                 goto out;
1524
1525         nfs_setsecurity(inode, fattr);
1526         nfs_set_verifier(dentry, dir_verifier);
1527
1528         /* set a readdirplus hint that we had a cache miss */
1529         nfs_force_use_readdirplus(dir);
1530         ret = 1;
1531 out:
1532         nfs_free_fattr(fattr);
1533         nfs_free_fhandle(fhandle);
1534
1535         /*
1536          * If the lookup failed despite the dentry change attribute being
1537          * a match, then we should revalidate the directory cache.
1538          */
1539         if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1540                 nfs_mark_dir_for_revalidate(dir);
1541         return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1542 }
1543
1544 /*
1545  * This is called every time the dcache has a lookup hit,
1546  * and we should check whether we can really trust that
1547  * lookup.
1548  *
1549  * NOTE! The hit can be a negative hit too, don't assume
1550  * we have an inode!
1551  *
1552  * If the parent directory is seen to have changed, we throw out the
1553  * cached dentry and do a new lookup.
1554  */
1555 static int
1556 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1557                          unsigned int flags)
1558 {
1559         struct inode *inode;
1560         int error;
1561
1562         nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1563         inode = d_inode(dentry);
1564
1565         if (!inode)
1566                 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1567
1568         if (is_bad_inode(inode)) {
1569                 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1570                                 __func__, dentry);
1571                 goto out_bad;
1572         }
1573
1574         if (nfs_verifier_is_delegated(dentry))
1575                 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1576
1577         /* Force a full look up iff the parent directory has changed */
1578         if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1579             nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1580                 error = nfs_lookup_verify_inode(inode, flags);
1581                 if (error) {
1582                         if (error == -ESTALE)
1583                                 nfs_mark_dir_for_revalidate(dir);
1584                         goto out_bad;
1585                 }
1586                 nfs_advise_use_readdirplus(dir);
1587                 goto out_valid;
1588         }
1589
1590         if (flags & LOOKUP_RCU)
1591                 return -ECHILD;
1592
1593         if (NFS_STALE(inode))
1594                 goto out_bad;
1595
1596         trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1597         error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1598         trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1599         return error;
1600 out_valid:
1601         return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1602 out_bad:
1603         if (flags & LOOKUP_RCU)
1604                 return -ECHILD;
1605         return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1606 }
1607
1608 static int
1609 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1610                         int (*reval)(struct inode *, struct dentry *, unsigned int))
1611 {
1612         struct dentry *parent;
1613         struct inode *dir;
1614         int ret;
1615
1616         if (flags & LOOKUP_RCU) {
1617                 parent = READ_ONCE(dentry->d_parent);
1618                 dir = d_inode_rcu(parent);
1619                 if (!dir)
1620                         return -ECHILD;
1621                 ret = reval(dir, dentry, flags);
1622                 if (parent != READ_ONCE(dentry->d_parent))
1623                         return -ECHILD;
1624         } else {
1625                 parent = dget_parent(dentry);
1626                 ret = reval(d_inode(parent), dentry, flags);
1627                 dput(parent);
1628         }
1629         return ret;
1630 }
1631
1632 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1633 {
1634         return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1635 }
1636
1637 /*
1638  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1639  * when we don't really care about the dentry name. This is called when a
1640  * pathwalk ends on a dentry that was not found via a normal lookup in the
1641  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1642  *
1643  * In this situation, we just want to verify that the inode itself is OK
1644  * since the dentry might have changed on the server.
1645  */
1646 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1647 {
1648         struct inode *inode = d_inode(dentry);
1649         int error = 0;
1650
1651         /*
1652          * I believe we can only get a negative dentry here in the case of a
1653          * procfs-style symlink. Just assume it's correct for now, but we may
1654          * eventually need to do something more here.
1655          */
1656         if (!inode) {
1657                 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1658                                 __func__, dentry);
1659                 return 1;
1660         }
1661
1662         if (is_bad_inode(inode)) {
1663                 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1664                                 __func__, dentry);
1665                 return 0;
1666         }
1667
1668         error = nfs_lookup_verify_inode(inode, flags);
1669         dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1670                         __func__, inode->i_ino, error ? "invalid" : "valid");
1671         return !error;
1672 }
1673
1674 /*
1675  * This is called from dput() when d_count is going to 0.
1676  */
1677 static int nfs_dentry_delete(const struct dentry *dentry)
1678 {
1679         dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1680                 dentry, dentry->d_flags);
1681
1682         /* Unhash any dentry with a stale inode */
1683         if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1684                 return 1;
1685
1686         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1687                 /* Unhash it, so that ->d_iput() would be called */
1688                 return 1;
1689         }
1690         if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1691                 /* Unhash it, so that ancestors of killed async unlink
1692                  * files will be cleaned up during umount */
1693                 return 1;
1694         }
1695         return 0;
1696
1697 }
1698
1699 /* Ensure that we revalidate inode->i_nlink */
1700 static void nfs_drop_nlink(struct inode *inode)
1701 {
1702         spin_lock(&inode->i_lock);
1703         /* drop the inode if we're reasonably sure this is the last link */
1704         if (inode->i_nlink > 0)
1705                 drop_nlink(inode);
1706         NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1707         nfs_set_cache_invalid(
1708                 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1709                                NFS_INO_INVALID_NLINK);
1710         spin_unlock(&inode->i_lock);
1711 }
1712
1713 /*
1714  * Called when the dentry loses inode.
1715  * We use it to clean up silly-renamed files.
1716  */
1717 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1718 {
1719         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1720                 nfs_complete_unlink(dentry, inode);
1721                 nfs_drop_nlink(inode);
1722         }
1723         iput(inode);
1724 }
1725
1726 static void nfs_d_release(struct dentry *dentry)
1727 {
1728         /* free cached devname value, if it survived that far */
1729         if (unlikely(dentry->d_fsdata)) {
1730                 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1731                         WARN_ON(1);
1732                 else
1733                         kfree(dentry->d_fsdata);
1734         }
1735 }
1736
1737 const struct dentry_operations nfs_dentry_operations = {
1738         .d_revalidate   = nfs_lookup_revalidate,
1739         .d_weak_revalidate      = nfs_weak_revalidate,
1740         .d_delete       = nfs_dentry_delete,
1741         .d_iput         = nfs_dentry_iput,
1742         .d_automount    = nfs_d_automount,
1743         .d_release      = nfs_d_release,
1744 };
1745 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1746
1747 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1748 {
1749         struct dentry *res;
1750         struct inode *inode = NULL;
1751         struct nfs_fh *fhandle = NULL;
1752         struct nfs_fattr *fattr = NULL;
1753         unsigned long dir_verifier;
1754         int error;
1755
1756         dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1757         nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1758
1759         if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1760                 return ERR_PTR(-ENAMETOOLONG);
1761
1762         /*
1763          * If we're doing an exclusive create, optimize away the lookup
1764          * but don't hash the dentry.
1765          */
1766         if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1767                 return NULL;
1768
1769         res = ERR_PTR(-ENOMEM);
1770         fhandle = nfs_alloc_fhandle();
1771         fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1772         if (fhandle == NULL || fattr == NULL)
1773                 goto out;
1774
1775         dir_verifier = nfs_save_change_attribute(dir);
1776         trace_nfs_lookup_enter(dir, dentry, flags);
1777         error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1778         if (error == -ENOENT)
1779                 goto no_entry;
1780         if (error < 0) {
1781                 res = ERR_PTR(error);
1782                 goto out;
1783         }
1784         inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1785         res = ERR_CAST(inode);
1786         if (IS_ERR(res))
1787                 goto out;
1788
1789         /* Notify readdir to use READDIRPLUS */
1790         nfs_force_use_readdirplus(dir);
1791
1792 no_entry:
1793         res = d_splice_alias(inode, dentry);
1794         if (res != NULL) {
1795                 if (IS_ERR(res))
1796                         goto out;
1797                 dentry = res;
1798         }
1799         nfs_set_verifier(dentry, dir_verifier);
1800 out:
1801         trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1802         nfs_free_fattr(fattr);
1803         nfs_free_fhandle(fhandle);
1804         return res;
1805 }
1806 EXPORT_SYMBOL_GPL(nfs_lookup);
1807
1808 #if IS_ENABLED(CONFIG_NFS_V4)
1809 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1810
1811 const struct dentry_operations nfs4_dentry_operations = {
1812         .d_revalidate   = nfs4_lookup_revalidate,
1813         .d_weak_revalidate      = nfs_weak_revalidate,
1814         .d_delete       = nfs_dentry_delete,
1815         .d_iput         = nfs_dentry_iput,
1816         .d_automount    = nfs_d_automount,
1817         .d_release      = nfs_d_release,
1818 };
1819 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1820
1821 static fmode_t flags_to_mode(int flags)
1822 {
1823         fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1824         if ((flags & O_ACCMODE) != O_WRONLY)
1825                 res |= FMODE_READ;
1826         if ((flags & O_ACCMODE) != O_RDONLY)
1827                 res |= FMODE_WRITE;
1828         return res;
1829 }
1830
1831 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1832 {
1833         return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1834 }
1835
1836 static int do_open(struct inode *inode, struct file *filp)
1837 {
1838         nfs_fscache_open_file(inode, filp);
1839         return 0;
1840 }
1841
1842 static int nfs_finish_open(struct nfs_open_context *ctx,
1843                            struct dentry *dentry,
1844                            struct file *file, unsigned open_flags)
1845 {
1846         int err;
1847
1848         err = finish_open(file, dentry, do_open);
1849         if (err)
1850                 goto out;
1851         if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1852                 nfs_file_set_open_context(file, ctx);
1853         else
1854                 err = -EOPENSTALE;
1855 out:
1856         return err;
1857 }
1858
1859 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1860                     struct file *file, unsigned open_flags,
1861                     umode_t mode)
1862 {
1863         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1864         struct nfs_open_context *ctx;
1865         struct dentry *res;
1866         struct iattr attr = { .ia_valid = ATTR_OPEN };
1867         struct inode *inode;
1868         unsigned int lookup_flags = 0;
1869         bool switched = false;
1870         int created = 0;
1871         int err;
1872
1873         /* Expect a negative dentry */
1874         BUG_ON(d_inode(dentry));
1875
1876         dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1877                         dir->i_sb->s_id, dir->i_ino, dentry);
1878
1879         err = nfs_check_flags(open_flags);
1880         if (err)
1881                 return err;
1882
1883         /* NFS only supports OPEN on regular files */
1884         if ((open_flags & O_DIRECTORY)) {
1885                 if (!d_in_lookup(dentry)) {
1886                         /*
1887                          * Hashed negative dentry with O_DIRECTORY: dentry was
1888                          * revalidated and is fine, no need to perform lookup
1889                          * again
1890                          */
1891                         return -ENOENT;
1892                 }
1893                 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1894                 goto no_open;
1895         }
1896
1897         if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1898                 return -ENAMETOOLONG;
1899
1900         if (open_flags & O_CREAT) {
1901                 struct nfs_server *server = NFS_SERVER(dir);
1902
1903                 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1904                         mode &= ~current_umask();
1905
1906                 attr.ia_valid |= ATTR_MODE;
1907                 attr.ia_mode = mode;
1908         }
1909         if (open_flags & O_TRUNC) {
1910                 attr.ia_valid |= ATTR_SIZE;
1911                 attr.ia_size = 0;
1912         }
1913
1914         if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1915                 d_drop(dentry);
1916                 switched = true;
1917                 dentry = d_alloc_parallel(dentry->d_parent,
1918                                           &dentry->d_name, &wq);
1919                 if (IS_ERR(dentry))
1920                         return PTR_ERR(dentry);
1921                 if (unlikely(!d_in_lookup(dentry)))
1922                         return finish_no_open(file, dentry);
1923         }
1924
1925         ctx = create_nfs_open_context(dentry, open_flags, file);
1926         err = PTR_ERR(ctx);
1927         if (IS_ERR(ctx))
1928                 goto out;
1929
1930         trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1931         inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1932         if (created)
1933                 file->f_mode |= FMODE_CREATED;
1934         if (IS_ERR(inode)) {
1935                 err = PTR_ERR(inode);
1936                 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1937                 put_nfs_open_context(ctx);
1938                 d_drop(dentry);
1939                 switch (err) {
1940                 case -ENOENT:
1941                         d_splice_alias(NULL, dentry);
1942                         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1943                         break;
1944                 case -EISDIR:
1945                 case -ENOTDIR:
1946                         goto no_open;
1947                 case -ELOOP:
1948                         if (!(open_flags & O_NOFOLLOW))
1949                                 goto no_open;
1950                         break;
1951                         /* case -EINVAL: */
1952                 default:
1953                         break;
1954                 }
1955                 goto out;
1956         }
1957
1958         err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1959         trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1960         put_nfs_open_context(ctx);
1961 out:
1962         if (unlikely(switched)) {
1963                 d_lookup_done(dentry);
1964                 dput(dentry);
1965         }
1966         return err;
1967
1968 no_open:
1969         res = nfs_lookup(dir, dentry, lookup_flags);
1970         if (switched) {
1971                 d_lookup_done(dentry);
1972                 if (!res)
1973                         res = dentry;
1974                 else
1975                         dput(dentry);
1976         }
1977         if (IS_ERR(res))
1978                 return PTR_ERR(res);
1979         return finish_no_open(file, res);
1980 }
1981 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1982
1983 static int
1984 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1985                           unsigned int flags)
1986 {
1987         struct inode *inode;
1988
1989         if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1990                 goto full_reval;
1991         if (d_mountpoint(dentry))
1992                 goto full_reval;
1993
1994         inode = d_inode(dentry);
1995
1996         /* We can't create new files in nfs_open_revalidate(), so we
1997          * optimize away revalidation of negative dentries.
1998          */
1999         if (inode == NULL)
2000                 goto full_reval;
2001
2002         if (nfs_verifier_is_delegated(dentry))
2003                 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2004
2005         /* NFS only supports OPEN on regular files */
2006         if (!S_ISREG(inode->i_mode))
2007                 goto full_reval;
2008
2009         /* We cannot do exclusive creation on a positive dentry */
2010         if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2011                 goto reval_dentry;
2012
2013         /* Check if the directory changed */
2014         if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2015                 goto reval_dentry;
2016
2017         /* Let f_op->open() actually open (and revalidate) the file */
2018         return 1;
2019 reval_dentry:
2020         if (flags & LOOKUP_RCU)
2021                 return -ECHILD;
2022         return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2023
2024 full_reval:
2025         return nfs_do_lookup_revalidate(dir, dentry, flags);
2026 }
2027
2028 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2029 {
2030         return __nfs_lookup_revalidate(dentry, flags,
2031                         nfs4_do_lookup_revalidate);
2032 }
2033
2034 #endif /* CONFIG_NFSV4 */
2035
2036 struct dentry *
2037 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2038                                 struct nfs_fattr *fattr)
2039 {
2040         struct dentry *parent = dget_parent(dentry);
2041         struct inode *dir = d_inode(parent);
2042         struct inode *inode;
2043         struct dentry *d;
2044         int error;
2045
2046         d_drop(dentry);
2047
2048         if (fhandle->size == 0) {
2049                 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2050                 if (error)
2051                         goto out_error;
2052         }
2053         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2054         if (!(fattr->valid & NFS_ATTR_FATTR)) {
2055                 struct nfs_server *server = NFS_SB(dentry->d_sb);
2056                 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2057                                 fattr, NULL);
2058                 if (error < 0)
2059                         goto out_error;
2060         }
2061         inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2062         d = d_splice_alias(inode, dentry);
2063 out:
2064         dput(parent);
2065         return d;
2066 out_error:
2067         d = ERR_PTR(error);
2068         goto out;
2069 }
2070 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2071
2072 /*
2073  * Code common to create, mkdir, and mknod.
2074  */
2075 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2076                                 struct nfs_fattr *fattr)
2077 {
2078         struct dentry *d;
2079
2080         d = nfs_add_or_obtain(dentry, fhandle, fattr);
2081         if (IS_ERR(d))
2082                 return PTR_ERR(d);
2083
2084         /* Callers don't care */
2085         dput(d);
2086         return 0;
2087 }
2088 EXPORT_SYMBOL_GPL(nfs_instantiate);
2089
2090 /*
2091  * Following a failed create operation, we drop the dentry rather
2092  * than retain a negative dentry. This avoids a problem in the event
2093  * that the operation succeeded on the server, but an error in the
2094  * reply path made it appear to have failed.
2095  */
2096 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2097                struct dentry *dentry, umode_t mode, bool excl)
2098 {
2099         struct iattr attr;
2100         int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2101         int error;
2102
2103         dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2104                         dir->i_sb->s_id, dir->i_ino, dentry);
2105
2106         attr.ia_mode = mode;
2107         attr.ia_valid = ATTR_MODE;
2108
2109         trace_nfs_create_enter(dir, dentry, open_flags);
2110         error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2111         trace_nfs_create_exit(dir, dentry, open_flags, error);
2112         if (error != 0)
2113                 goto out_err;
2114         return 0;
2115 out_err:
2116         d_drop(dentry);
2117         return error;
2118 }
2119 EXPORT_SYMBOL_GPL(nfs_create);
2120
2121 /*
2122  * See comments for nfs_proc_create regarding failed operations.
2123  */
2124 int
2125 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2126           struct dentry *dentry, umode_t mode, dev_t rdev)
2127 {
2128         struct iattr attr;
2129         int status;
2130
2131         dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2132                         dir->i_sb->s_id, dir->i_ino, dentry);
2133
2134         attr.ia_mode = mode;
2135         attr.ia_valid = ATTR_MODE;
2136
2137         trace_nfs_mknod_enter(dir, dentry);
2138         status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2139         trace_nfs_mknod_exit(dir, dentry, status);
2140         if (status != 0)
2141                 goto out_err;
2142         return 0;
2143 out_err:
2144         d_drop(dentry);
2145         return status;
2146 }
2147 EXPORT_SYMBOL_GPL(nfs_mknod);
2148
2149 /*
2150  * See comments for nfs_proc_create regarding failed operations.
2151  */
2152 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2153               struct dentry *dentry, umode_t mode)
2154 {
2155         struct iattr attr;
2156         int error;
2157
2158         dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2159                         dir->i_sb->s_id, dir->i_ino, dentry);
2160
2161         attr.ia_valid = ATTR_MODE;
2162         attr.ia_mode = mode | S_IFDIR;
2163
2164         trace_nfs_mkdir_enter(dir, dentry);
2165         error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2166         trace_nfs_mkdir_exit(dir, dentry, error);
2167         if (error != 0)
2168                 goto out_err;
2169         return 0;
2170 out_err:
2171         d_drop(dentry);
2172         return error;
2173 }
2174 EXPORT_SYMBOL_GPL(nfs_mkdir);
2175
2176 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2177 {
2178         if (simple_positive(dentry))
2179                 d_delete(dentry);
2180 }
2181
2182 static void nfs_dentry_remove_handle_error(struct inode *dir,
2183                                            struct dentry *dentry, int error)
2184 {
2185         switch (error) {
2186         case -ENOENT:
2187                 d_delete(dentry);
2188                 fallthrough;
2189         case 0:
2190                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2191         }
2192 }
2193
2194 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2195 {
2196         int error;
2197
2198         dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2199                         dir->i_sb->s_id, dir->i_ino, dentry);
2200
2201         trace_nfs_rmdir_enter(dir, dentry);
2202         if (d_really_is_positive(dentry)) {
2203                 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2204                 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2205                 /* Ensure the VFS deletes this inode */
2206                 switch (error) {
2207                 case 0:
2208                         clear_nlink(d_inode(dentry));
2209                         break;
2210                 case -ENOENT:
2211                         nfs_dentry_handle_enoent(dentry);
2212                 }
2213                 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2214         } else
2215                 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2216         nfs_dentry_remove_handle_error(dir, dentry, error);
2217         trace_nfs_rmdir_exit(dir, dentry, error);
2218
2219         return error;
2220 }
2221 EXPORT_SYMBOL_GPL(nfs_rmdir);
2222
2223 /*
2224  * Remove a file after making sure there are no pending writes,
2225  * and after checking that the file has only one user. 
2226  *
2227  * We invalidate the attribute cache and free the inode prior to the operation
2228  * to avoid possible races if the server reuses the inode.
2229  */
2230 static int nfs_safe_remove(struct dentry *dentry)
2231 {
2232         struct inode *dir = d_inode(dentry->d_parent);
2233         struct inode *inode = d_inode(dentry);
2234         int error = -EBUSY;
2235                 
2236         dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2237
2238         /* If the dentry was sillyrenamed, we simply call d_delete() */
2239         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2240                 error = 0;
2241                 goto out;
2242         }
2243
2244         trace_nfs_remove_enter(dir, dentry);
2245         if (inode != NULL) {
2246                 error = NFS_PROTO(dir)->remove(dir, dentry);
2247                 if (error == 0)
2248                         nfs_drop_nlink(inode);
2249         } else
2250                 error = NFS_PROTO(dir)->remove(dir, dentry);
2251         if (error == -ENOENT)
2252                 nfs_dentry_handle_enoent(dentry);
2253         trace_nfs_remove_exit(dir, dentry, error);
2254 out:
2255         return error;
2256 }
2257
2258 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2259  *  belongs to an active ".nfs..." file and we return -EBUSY.
2260  *
2261  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2262  */
2263 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2264 {
2265         int error;
2266         int need_rehash = 0;
2267
2268         dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2269                 dir->i_ino, dentry);
2270
2271         trace_nfs_unlink_enter(dir, dentry);
2272         spin_lock(&dentry->d_lock);
2273         if (d_count(dentry) > 1) {
2274                 spin_unlock(&dentry->d_lock);
2275                 /* Start asynchronous writeout of the inode */
2276                 write_inode_now(d_inode(dentry), 0);
2277                 error = nfs_sillyrename(dir, dentry);
2278                 goto out;
2279         }
2280         if (!d_unhashed(dentry)) {
2281                 __d_drop(dentry);
2282                 need_rehash = 1;
2283         }
2284         spin_unlock(&dentry->d_lock);
2285         error = nfs_safe_remove(dentry);
2286         nfs_dentry_remove_handle_error(dir, dentry, error);
2287         if (need_rehash)
2288                 d_rehash(dentry);
2289 out:
2290         trace_nfs_unlink_exit(dir, dentry, error);
2291         return error;
2292 }
2293 EXPORT_SYMBOL_GPL(nfs_unlink);
2294
2295 /*
2296  * To create a symbolic link, most file systems instantiate a new inode,
2297  * add a page to it containing the path, then write it out to the disk
2298  * using prepare_write/commit_write.
2299  *
2300  * Unfortunately the NFS client can't create the in-core inode first
2301  * because it needs a file handle to create an in-core inode (see
2302  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2303  * symlink request has completed on the server.
2304  *
2305  * So instead we allocate a raw page, copy the symname into it, then do
2306  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2307  * now have a new file handle and can instantiate an in-core NFS inode
2308  * and move the raw page into its mapping.
2309  */
2310 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2311                 struct dentry *dentry, const char *symname)
2312 {
2313         struct page *page;
2314         char *kaddr;
2315         struct iattr attr;
2316         unsigned int pathlen = strlen(symname);
2317         int error;
2318
2319         dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2320                 dir->i_ino, dentry, symname);
2321
2322         if (pathlen > PAGE_SIZE)
2323                 return -ENAMETOOLONG;
2324
2325         attr.ia_mode = S_IFLNK | S_IRWXUGO;
2326         attr.ia_valid = ATTR_MODE;
2327
2328         page = alloc_page(GFP_USER);
2329         if (!page)
2330                 return -ENOMEM;
2331
2332         kaddr = page_address(page);
2333         memcpy(kaddr, symname, pathlen);
2334         if (pathlen < PAGE_SIZE)
2335                 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2336
2337         trace_nfs_symlink_enter(dir, dentry);
2338         error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2339         trace_nfs_symlink_exit(dir, dentry, error);
2340         if (error != 0) {
2341                 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2342                         dir->i_sb->s_id, dir->i_ino,
2343                         dentry, symname, error);
2344                 d_drop(dentry);
2345                 __free_page(page);
2346                 return error;
2347         }
2348
2349         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2350
2351         /*
2352          * No big deal if we can't add this page to the page cache here.
2353          * READLINK will get the missing page from the server if needed.
2354          */
2355         if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2356                                                         GFP_KERNEL)) {
2357                 SetPageUptodate(page);
2358                 unlock_page(page);
2359                 /*
2360                  * add_to_page_cache_lru() grabs an extra page refcount.
2361                  * Drop it here to avoid leaking this page later.
2362                  */
2363                 put_page(page);
2364         } else
2365                 __free_page(page);
2366
2367         return 0;
2368 }
2369 EXPORT_SYMBOL_GPL(nfs_symlink);
2370
2371 int
2372 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2373 {
2374         struct inode *inode = d_inode(old_dentry);
2375         int error;
2376
2377         dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2378                 old_dentry, dentry);
2379
2380         trace_nfs_link_enter(inode, dir, dentry);
2381         d_drop(dentry);
2382         error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2383         if (error == 0) {
2384                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2385                 ihold(inode);
2386                 d_add(dentry, inode);
2387         }
2388         trace_nfs_link_exit(inode, dir, dentry, error);
2389         return error;
2390 }
2391 EXPORT_SYMBOL_GPL(nfs_link);
2392
2393 /*
2394  * RENAME
2395  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2396  * different file handle for the same inode after a rename (e.g. when
2397  * moving to a different directory). A fail-safe method to do so would
2398  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2399  * rename the old file using the sillyrename stuff. This way, the original
2400  * file in old_dir will go away when the last process iput()s the inode.
2401  *
2402  * FIXED.
2403  * 
2404  * It actually works quite well. One needs to have the possibility for
2405  * at least one ".nfs..." file in each directory the file ever gets
2406  * moved or linked to which happens automagically with the new
2407  * implementation that only depends on the dcache stuff instead of
2408  * using the inode layer
2409  *
2410  * Unfortunately, things are a little more complicated than indicated
2411  * above. For a cross-directory move, we want to make sure we can get
2412  * rid of the old inode after the operation.  This means there must be
2413  * no pending writes (if it's a file), and the use count must be 1.
2414  * If these conditions are met, we can drop the dentries before doing
2415  * the rename.
2416  */
2417 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2418                struct dentry *old_dentry, struct inode *new_dir,
2419                struct dentry *new_dentry, unsigned int flags)
2420 {
2421         struct inode *old_inode = d_inode(old_dentry);
2422         struct inode *new_inode = d_inode(new_dentry);
2423         struct dentry *dentry = NULL, *rehash = NULL;
2424         struct rpc_task *task;
2425         int error = -EBUSY;
2426
2427         if (flags)
2428                 return -EINVAL;
2429
2430         dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2431                  old_dentry, new_dentry,
2432                  d_count(new_dentry));
2433
2434         trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2435         /*
2436          * For non-directories, check whether the target is busy and if so,
2437          * make a copy of the dentry and then do a silly-rename. If the
2438          * silly-rename succeeds, the copied dentry is hashed and becomes
2439          * the new target.
2440          */
2441         if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2442                 /*
2443                  * To prevent any new references to the target during the
2444                  * rename, we unhash the dentry in advance.
2445                  */
2446                 if (!d_unhashed(new_dentry)) {
2447                         d_drop(new_dentry);
2448                         rehash = new_dentry;
2449                 }
2450
2451                 if (d_count(new_dentry) > 2) {
2452                         int err;
2453
2454                         /* copy the target dentry's name */
2455                         dentry = d_alloc(new_dentry->d_parent,
2456                                          &new_dentry->d_name);
2457                         if (!dentry)
2458                                 goto out;
2459
2460                         /* silly-rename the existing target ... */
2461                         err = nfs_sillyrename(new_dir, new_dentry);
2462                         if (err)
2463                                 goto out;
2464
2465                         new_dentry = dentry;
2466                         rehash = NULL;
2467                         new_inode = NULL;
2468                 }
2469         }
2470
2471         task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2472         if (IS_ERR(task)) {
2473                 error = PTR_ERR(task);
2474                 goto out;
2475         }
2476
2477         error = rpc_wait_for_completion_task(task);
2478         if (error != 0) {
2479                 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2480                 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2481                 smp_wmb();
2482         } else
2483                 error = task->tk_status;
2484         rpc_put_task(task);
2485         /* Ensure the inode attributes are revalidated */
2486         if (error == 0) {
2487                 spin_lock(&old_inode->i_lock);
2488                 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2489                 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2490                                                          NFS_INO_INVALID_CTIME |
2491                                                          NFS_INO_REVAL_FORCED);
2492                 spin_unlock(&old_inode->i_lock);
2493         }
2494 out:
2495         if (rehash)
2496                 d_rehash(rehash);
2497         trace_nfs_rename_exit(old_dir, old_dentry,
2498                         new_dir, new_dentry, error);
2499         if (!error) {
2500                 if (new_inode != NULL)
2501                         nfs_drop_nlink(new_inode);
2502                 /*
2503                  * The d_move() should be here instead of in an async RPC completion
2504                  * handler because we need the proper locks to move the dentry.  If
2505                  * we're interrupted by a signal, the async RPC completion handler
2506                  * should mark the directories for revalidation.
2507                  */
2508                 d_move(old_dentry, new_dentry);
2509                 nfs_set_verifier(old_dentry,
2510                                         nfs_save_change_attribute(new_dir));
2511         } else if (error == -ENOENT)
2512                 nfs_dentry_handle_enoent(old_dentry);
2513
2514         /* new dentry created? */
2515         if (dentry)
2516                 dput(dentry);
2517         return error;
2518 }
2519 EXPORT_SYMBOL_GPL(nfs_rename);
2520
2521 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2522 static LIST_HEAD(nfs_access_lru_list);
2523 static atomic_long_t nfs_access_nr_entries;
2524
2525 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2526 module_param(nfs_access_max_cachesize, ulong, 0644);
2527 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2528
2529 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2530 {
2531         put_cred(entry->cred);
2532         kfree_rcu(entry, rcu_head);
2533         smp_mb__before_atomic();
2534         atomic_long_dec(&nfs_access_nr_entries);
2535         smp_mb__after_atomic();
2536 }
2537
2538 static void nfs_access_free_list(struct list_head *head)
2539 {
2540         struct nfs_access_entry *cache;
2541
2542         while (!list_empty(head)) {
2543                 cache = list_entry(head->next, struct nfs_access_entry, lru);
2544                 list_del(&cache->lru);
2545                 nfs_access_free_entry(cache);
2546         }
2547 }
2548
2549 static unsigned long
2550 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2551 {
2552         LIST_HEAD(head);
2553         struct nfs_inode *nfsi, *next;
2554         struct nfs_access_entry *cache;
2555         long freed = 0;
2556
2557         spin_lock(&nfs_access_lru_lock);
2558         list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2559                 struct inode *inode;
2560
2561                 if (nr_to_scan-- == 0)
2562                         break;
2563                 inode = &nfsi->vfs_inode;
2564                 spin_lock(&inode->i_lock);
2565                 if (list_empty(&nfsi->access_cache_entry_lru))
2566                         goto remove_lru_entry;
2567                 cache = list_entry(nfsi->access_cache_entry_lru.next,
2568                                 struct nfs_access_entry, lru);
2569                 list_move(&cache->lru, &head);
2570                 rb_erase(&cache->rb_node, &nfsi->access_cache);
2571                 freed++;
2572                 if (!list_empty(&nfsi->access_cache_entry_lru))
2573                         list_move_tail(&nfsi->access_cache_inode_lru,
2574                                         &nfs_access_lru_list);
2575                 else {
2576 remove_lru_entry:
2577                         list_del_init(&nfsi->access_cache_inode_lru);
2578                         smp_mb__before_atomic();
2579                         clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2580                         smp_mb__after_atomic();
2581                 }
2582                 spin_unlock(&inode->i_lock);
2583         }
2584         spin_unlock(&nfs_access_lru_lock);
2585         nfs_access_free_list(&head);
2586         return freed;
2587 }
2588
2589 unsigned long
2590 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2591 {
2592         int nr_to_scan = sc->nr_to_scan;
2593         gfp_t gfp_mask = sc->gfp_mask;
2594
2595         if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2596                 return SHRINK_STOP;
2597         return nfs_do_access_cache_scan(nr_to_scan);
2598 }
2599
2600
2601 unsigned long
2602 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2603 {
2604         return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2605 }
2606
2607 static void
2608 nfs_access_cache_enforce_limit(void)
2609 {
2610         long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2611         unsigned long diff;
2612         unsigned int nr_to_scan;
2613
2614         if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2615                 return;
2616         nr_to_scan = 100;
2617         diff = nr_entries - nfs_access_max_cachesize;
2618         if (diff < nr_to_scan)
2619                 nr_to_scan = diff;
2620         nfs_do_access_cache_scan(nr_to_scan);
2621 }
2622
2623 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2624 {
2625         struct rb_root *root_node = &nfsi->access_cache;
2626         struct rb_node *n;
2627         struct nfs_access_entry *entry;
2628
2629         /* Unhook entries from the cache */
2630         while ((n = rb_first(root_node)) != NULL) {
2631                 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2632                 rb_erase(n, root_node);
2633                 list_move(&entry->lru, head);
2634         }
2635         nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2636 }
2637
2638 void nfs_access_zap_cache(struct inode *inode)
2639 {
2640         LIST_HEAD(head);
2641
2642         if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2643                 return;
2644         /* Remove from global LRU init */
2645         spin_lock(&nfs_access_lru_lock);
2646         if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2647                 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2648
2649         spin_lock(&inode->i_lock);
2650         __nfs_access_zap_cache(NFS_I(inode), &head);
2651         spin_unlock(&inode->i_lock);
2652         spin_unlock(&nfs_access_lru_lock);
2653         nfs_access_free_list(&head);
2654 }
2655 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2656
2657 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2658 {
2659         struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2660
2661         while (n != NULL) {
2662                 struct nfs_access_entry *entry =
2663                         rb_entry(n, struct nfs_access_entry, rb_node);
2664                 int cmp = cred_fscmp(cred, entry->cred);
2665
2666                 if (cmp < 0)
2667                         n = n->rb_left;
2668                 else if (cmp > 0)
2669                         n = n->rb_right;
2670                 else
2671                         return entry;
2672         }
2673         return NULL;
2674 }
2675
2676 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2677 {
2678         struct nfs_inode *nfsi = NFS_I(inode);
2679         struct nfs_access_entry *cache;
2680         bool retry = true;
2681         int err;
2682
2683         spin_lock(&inode->i_lock);
2684         for(;;) {
2685                 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2686                         goto out_zap;
2687                 cache = nfs_access_search_rbtree(inode, cred);
2688                 err = -ENOENT;
2689                 if (cache == NULL)
2690                         goto out;
2691                 /* Found an entry, is our attribute cache valid? */
2692                 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2693                         break;
2694                 if (!retry)
2695                         break;
2696                 err = -ECHILD;
2697                 if (!may_block)
2698                         goto out;
2699                 spin_unlock(&inode->i_lock);
2700                 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2701                 if (err)
2702                         return err;
2703                 spin_lock(&inode->i_lock);
2704                 retry = false;
2705         }
2706         res->cred = cache->cred;
2707         res->mask = cache->mask;
2708         list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2709         err = 0;
2710 out:
2711         spin_unlock(&inode->i_lock);
2712         return err;
2713 out_zap:
2714         spin_unlock(&inode->i_lock);
2715         nfs_access_zap_cache(inode);
2716         return -ENOENT;
2717 }
2718
2719 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2720 {
2721         /* Only check the most recently returned cache entry,
2722          * but do it without locking.
2723          */
2724         struct nfs_inode *nfsi = NFS_I(inode);
2725         struct nfs_access_entry *cache;
2726         int err = -ECHILD;
2727         struct list_head *lh;
2728
2729         rcu_read_lock();
2730         if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2731                 goto out;
2732         lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2733         cache = list_entry(lh, struct nfs_access_entry, lru);
2734         if (lh == &nfsi->access_cache_entry_lru ||
2735             cred_fscmp(cred, cache->cred) != 0)
2736                 cache = NULL;
2737         if (cache == NULL)
2738                 goto out;
2739         if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2740                 goto out;
2741         res->cred = cache->cred;
2742         res->mask = cache->mask;
2743         err = 0;
2744 out:
2745         rcu_read_unlock();
2746         return err;
2747 }
2748
2749 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2750 nfs_access_entry *res, bool may_block)
2751 {
2752         int status;
2753
2754         status = nfs_access_get_cached_rcu(inode, cred, res);
2755         if (status != 0)
2756                 status = nfs_access_get_cached_locked(inode, cred, res,
2757                     may_block);
2758
2759         return status;
2760 }
2761 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2762
2763 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2764 {
2765         struct nfs_inode *nfsi = NFS_I(inode);
2766         struct rb_root *root_node = &nfsi->access_cache;
2767         struct rb_node **p = &root_node->rb_node;
2768         struct rb_node *parent = NULL;
2769         struct nfs_access_entry *entry;
2770         int cmp;
2771
2772         spin_lock(&inode->i_lock);
2773         while (*p != NULL) {
2774                 parent = *p;
2775                 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2776                 cmp = cred_fscmp(set->cred, entry->cred);
2777
2778                 if (cmp < 0)
2779                         p = &parent->rb_left;
2780                 else if (cmp > 0)
2781                         p = &parent->rb_right;
2782                 else
2783                         goto found;
2784         }
2785         rb_link_node(&set->rb_node, parent, p);
2786         rb_insert_color(&set->rb_node, root_node);
2787         list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2788         spin_unlock(&inode->i_lock);
2789         return;
2790 found:
2791         rb_replace_node(parent, &set->rb_node, root_node);
2792         list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2793         list_del(&entry->lru);
2794         spin_unlock(&inode->i_lock);
2795         nfs_access_free_entry(entry);
2796 }
2797
2798 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2799 {
2800         struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2801         if (cache == NULL)
2802                 return;
2803         RB_CLEAR_NODE(&cache->rb_node);
2804         cache->cred = get_cred(set->cred);
2805         cache->mask = set->mask;
2806
2807         /* The above field assignments must be visible
2808          * before this item appears on the lru.  We cannot easily
2809          * use rcu_assign_pointer, so just force the memory barrier.
2810          */
2811         smp_wmb();
2812         nfs_access_add_rbtree(inode, cache);
2813
2814         /* Update accounting */
2815         smp_mb__before_atomic();
2816         atomic_long_inc(&nfs_access_nr_entries);
2817         smp_mb__after_atomic();
2818
2819         /* Add inode to global LRU list */
2820         if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2821                 spin_lock(&nfs_access_lru_lock);
2822                 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2823                         list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2824                                         &nfs_access_lru_list);
2825                 spin_unlock(&nfs_access_lru_lock);
2826         }
2827         nfs_access_cache_enforce_limit();
2828 }
2829 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2830
2831 #define NFS_MAY_READ (NFS_ACCESS_READ)
2832 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2833                 NFS_ACCESS_EXTEND | \
2834                 NFS_ACCESS_DELETE)
2835 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2836                 NFS_ACCESS_EXTEND)
2837 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2838 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2839 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2840 static int
2841 nfs_access_calc_mask(u32 access_result, umode_t umode)
2842 {
2843         int mask = 0;
2844
2845         if (access_result & NFS_MAY_READ)
2846                 mask |= MAY_READ;
2847         if (S_ISDIR(umode)) {
2848                 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2849                         mask |= MAY_WRITE;
2850                 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2851                         mask |= MAY_EXEC;
2852         } else if (S_ISREG(umode)) {
2853                 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2854                         mask |= MAY_WRITE;
2855                 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2856                         mask |= MAY_EXEC;
2857         } else if (access_result & NFS_MAY_WRITE)
2858                         mask |= MAY_WRITE;
2859         return mask;
2860 }
2861
2862 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2863 {
2864         entry->mask = access_result;
2865 }
2866 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2867
2868 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2869 {
2870         struct nfs_access_entry cache;
2871         bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2872         int cache_mask = -1;
2873         int status;
2874
2875         trace_nfs_access_enter(inode);
2876
2877         status = nfs_access_get_cached(inode, cred, &cache, may_block);
2878         if (status == 0)
2879                 goto out_cached;
2880
2881         status = -ECHILD;
2882         if (!may_block)
2883                 goto out;
2884
2885         /*
2886          * Determine which access bits we want to ask for...
2887          */
2888         cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2889         if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2890                 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2891                     NFS_ACCESS_XALIST;
2892         }
2893         if (S_ISDIR(inode->i_mode))
2894                 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2895         else
2896                 cache.mask |= NFS_ACCESS_EXECUTE;
2897         cache.cred = cred;
2898         status = NFS_PROTO(inode)->access(inode, &cache);
2899         if (status != 0) {
2900                 if (status == -ESTALE) {
2901                         if (!S_ISDIR(inode->i_mode))
2902                                 nfs_set_inode_stale(inode);
2903                         else
2904                                 nfs_zap_caches(inode);
2905                 }
2906                 goto out;
2907         }
2908         nfs_access_add_cache(inode, &cache);
2909 out_cached:
2910         cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2911         if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2912                 status = -EACCES;
2913 out:
2914         trace_nfs_access_exit(inode, mask, cache_mask, status);
2915         return status;
2916 }
2917
2918 static int nfs_open_permission_mask(int openflags)
2919 {
2920         int mask = 0;
2921
2922         if (openflags & __FMODE_EXEC) {
2923                 /* ONLY check exec rights */
2924                 mask = MAY_EXEC;
2925         } else {
2926                 if ((openflags & O_ACCMODE) != O_WRONLY)
2927                         mask |= MAY_READ;
2928                 if ((openflags & O_ACCMODE) != O_RDONLY)
2929                         mask |= MAY_WRITE;
2930         }
2931
2932         return mask;
2933 }
2934
2935 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2936 {
2937         return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2938 }
2939 EXPORT_SYMBOL_GPL(nfs_may_open);
2940
2941 static int nfs_execute_ok(struct inode *inode, int mask)
2942 {
2943         struct nfs_server *server = NFS_SERVER(inode);
2944         int ret = 0;
2945
2946         if (S_ISDIR(inode->i_mode))
2947                 return 0;
2948         if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2949                 if (mask & MAY_NOT_BLOCK)
2950                         return -ECHILD;
2951                 ret = __nfs_revalidate_inode(server, inode);
2952         }
2953         if (ret == 0 && !execute_ok(inode))
2954                 ret = -EACCES;
2955         return ret;
2956 }
2957
2958 int nfs_permission(struct user_namespace *mnt_userns,
2959                    struct inode *inode,
2960                    int mask)
2961 {
2962         const struct cred *cred = current_cred();
2963         int res = 0;
2964
2965         nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2966
2967         if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2968                 goto out;
2969         /* Is this sys_access() ? */
2970         if (mask & (MAY_ACCESS | MAY_CHDIR))
2971                 goto force_lookup;
2972
2973         switch (inode->i_mode & S_IFMT) {
2974                 case S_IFLNK:
2975                         goto out;
2976                 case S_IFREG:
2977                         if ((mask & MAY_OPEN) &&
2978                            nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2979                                 return 0;
2980                         break;
2981                 case S_IFDIR:
2982                         /*
2983                          * Optimize away all write operations, since the server
2984                          * will check permissions when we perform the op.
2985                          */
2986                         if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2987                                 goto out;
2988         }
2989
2990 force_lookup:
2991         if (!NFS_PROTO(inode)->access)
2992                 goto out_notsup;
2993
2994         res = nfs_do_access(inode, cred, mask);
2995 out:
2996         if (!res && (mask & MAY_EXEC))
2997                 res = nfs_execute_ok(inode, mask);
2998
2999         dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3000                 inode->i_sb->s_id, inode->i_ino, mask, res);
3001         return res;
3002 out_notsup:
3003         if (mask & MAY_NOT_BLOCK)
3004                 return -ECHILD;
3005
3006         res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3007                                                   NFS_INO_INVALID_OTHER);
3008         if (res == 0)
3009                 res = generic_permission(&init_user_ns, inode, mask);
3010         goto out;
3011 }
3012 EXPORT_SYMBOL_GPL(nfs_permission);
This page took 0.196229 seconds and 4 git commands to generate.