1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
119 * cpu_slab->lock local lock
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
140 * irq, preemption, migration considerations
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH() (true)
194 #define slub_get_cpu_ptr(var) \
199 #define slub_put_cpu_ptr(var) \
204 #define USE_LOCKLESS_FAST_PATH() (false)
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
210 #define __fastpath_inline
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif /* CONFIG_SLUB_DEBUG */
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
224 unsigned int orig_size;
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
239 void *fixup_red_left(struct kmem_cache *s, void *p)
241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 p += s->red_left_pad;
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
257 * Issues still to be resolved:
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
261 * - Variable sizing of the per node arrays
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
267 #ifndef CONFIG_SLUB_TINY
269 * Minimum number of partial slabs. These will be left on the partial
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
272 #define MIN_PARTIAL 5
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
277 * sort the partial list by the number of objects in use.
279 #define MAX_PARTIAL 10
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 SLAB_POISON | SLAB_STORE_USER)
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
297 * Debugging flags that require metadata to be stored in the slab. These get
298 * disabled when slab_debug=O is used and a cache's min order increases with
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
304 #define OO_MASK ((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
307 /* Internal SLUB flags */
309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
319 * Tracking user of a slab.
321 #define TRACK_ADDRS_COUNT 16
323 unsigned long addr; /* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
379 #ifndef CONFIG_SLUB_TINY
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
384 struct kmem_cache_cpu {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
390 freelist_aba_t freelist_tid;
392 struct slab *slab; /* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 struct slab *partial; /* Partially allocated slabs */
396 local_lock_t lock; /* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
401 #endif /* CONFIG_SLUB_TINY */
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
405 #ifdef CONFIG_SLUB_STATS
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
410 raw_cpu_inc(s->cpu_slab->stat[si]);
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
417 #ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
423 * The slab lists for all objects.
425 struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
438 return s->node[node];
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
455 static nodemask_t slab_nodes;
457 #ifndef CONFIG_SLUB_TINY
459 * Workqueue used for flush_cpu_slab().
461 static struct workqueue_struct *flushwq;
464 /********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
469 * Returns freelist pointer (ptr). With hardening, this is obfuscated
470 * with an XOR of the address where the pointer is held and a per-cache
473 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
474 void *ptr, unsigned long ptr_addr)
476 unsigned long encoded;
478 #ifdef CONFIG_SLAB_FREELIST_HARDENED
479 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
481 encoded = (unsigned long)ptr;
483 return (freeptr_t){.v = encoded};
486 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
487 freeptr_t ptr, unsigned long ptr_addr)
491 #ifdef CONFIG_SLAB_FREELIST_HARDENED
492 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
494 decoded = (void *)ptr.v;
499 static inline void *get_freepointer(struct kmem_cache *s, void *object)
501 unsigned long ptr_addr;
504 object = kasan_reset_tag(object);
505 ptr_addr = (unsigned long)object + s->offset;
506 p = *(freeptr_t *)(ptr_addr);
507 return freelist_ptr_decode(s, p, ptr_addr);
510 #ifndef CONFIG_SLUB_TINY
511 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
513 prefetchw(object + s->offset);
518 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
519 * pointer value in the case the current thread loses the race for the next
520 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
521 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
522 * KMSAN will still check all arguments of cmpxchg because of imperfect
523 * handling of inline assembly.
524 * To work around this problem, we apply __no_kmsan_checks to ensure that
525 * get_freepointer_safe() returns initialized memory.
528 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
530 unsigned long freepointer_addr;
533 if (!debug_pagealloc_enabled_static())
534 return get_freepointer(s, object);
536 object = kasan_reset_tag(object);
537 freepointer_addr = (unsigned long)object + s->offset;
538 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
539 return freelist_ptr_decode(s, p, freepointer_addr);
542 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
544 unsigned long freeptr_addr = (unsigned long)object + s->offset;
546 #ifdef CONFIG_SLAB_FREELIST_HARDENED
547 BUG_ON(object == fp); /* naive detection of double free or corruption */
550 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
551 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
555 * See comment in calculate_sizes().
557 static inline bool freeptr_outside_object(struct kmem_cache *s)
559 return s->offset >= s->inuse;
563 * Return offset of the end of info block which is inuse + free pointer if
564 * not overlapping with object.
566 static inline unsigned int get_info_end(struct kmem_cache *s)
568 if (freeptr_outside_object(s))
569 return s->inuse + sizeof(void *);
574 /* Loop over all objects in a slab */
575 #define for_each_object(__p, __s, __addr, __objects) \
576 for (__p = fixup_red_left(__s, __addr); \
577 __p < (__addr) + (__objects) * (__s)->size; \
580 static inline unsigned int order_objects(unsigned int order, unsigned int size)
582 return ((unsigned int)PAGE_SIZE << order) / size;
585 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
588 struct kmem_cache_order_objects x = {
589 (order << OO_SHIFT) + order_objects(order, size)
595 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
597 return x.x >> OO_SHIFT;
600 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
602 return x.x & OO_MASK;
605 #ifdef CONFIG_SLUB_CPU_PARTIAL
606 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
608 unsigned int nr_slabs;
610 s->cpu_partial = nr_objects;
613 * We take the number of objects but actually limit the number of
614 * slabs on the per cpu partial list, in order to limit excessive
615 * growth of the list. For simplicity we assume that the slabs will
618 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
619 s->cpu_partial_slabs = nr_slabs;
622 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
624 return s->cpu_partial_slabs;
628 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
632 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
636 #endif /* CONFIG_SLUB_CPU_PARTIAL */
639 * Per slab locking using the pagelock
641 static __always_inline void slab_lock(struct slab *slab)
643 bit_spin_lock(PG_locked, &slab->__page_flags);
646 static __always_inline void slab_unlock(struct slab *slab)
648 bit_spin_unlock(PG_locked, &slab->__page_flags);
652 __update_freelist_fast(struct slab *slab,
653 void *freelist_old, unsigned long counters_old,
654 void *freelist_new, unsigned long counters_new)
656 #ifdef system_has_freelist_aba
657 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
658 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
660 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667 __update_freelist_slow(struct slab *slab,
668 void *freelist_old, unsigned long counters_old,
669 void *freelist_new, unsigned long counters_new)
674 if (slab->freelist == freelist_old &&
675 slab->counters == counters_old) {
676 slab->freelist = freelist_new;
677 slab->counters = counters_new;
686 * Interrupts must be disabled (for the fallback code to work right), typically
687 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
688 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
689 * allocation/ free operation in hardirq context. Therefore nothing can
690 * interrupt the operation.
692 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
693 void *freelist_old, unsigned long counters_old,
694 void *freelist_new, unsigned long counters_new,
699 if (USE_LOCKLESS_FAST_PATH())
700 lockdep_assert_irqs_disabled();
702 if (s->flags & __CMPXCHG_DOUBLE) {
703 ret = __update_freelist_fast(slab, freelist_old, counters_old,
704 freelist_new, counters_new);
706 ret = __update_freelist_slow(slab, freelist_old, counters_old,
707 freelist_new, counters_new);
713 stat(s, CMPXCHG_DOUBLE_FAIL);
715 #ifdef SLUB_DEBUG_CMPXCHG
716 pr_info("%s %s: cmpxchg double redo ", n, s->name);
722 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
723 void *freelist_old, unsigned long counters_old,
724 void *freelist_new, unsigned long counters_new,
729 if (s->flags & __CMPXCHG_DOUBLE) {
730 ret = __update_freelist_fast(slab, freelist_old, counters_old,
731 freelist_new, counters_new);
735 local_irq_save(flags);
736 ret = __update_freelist_slow(slab, freelist_old, counters_old,
737 freelist_new, counters_new);
738 local_irq_restore(flags);
744 stat(s, CMPXCHG_DOUBLE_FAIL);
746 #ifdef SLUB_DEBUG_CMPXCHG
747 pr_info("%s %s: cmpxchg double redo ", n, s->name);
753 #ifdef CONFIG_SLUB_DEBUG
754 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
755 static DEFINE_SPINLOCK(object_map_lock);
757 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
760 void *addr = slab_address(slab);
763 bitmap_zero(obj_map, slab->objects);
765 for (p = slab->freelist; p; p = get_freepointer(s, p))
766 set_bit(__obj_to_index(s, addr, p), obj_map);
769 #if IS_ENABLED(CONFIG_KUNIT)
770 static bool slab_add_kunit_errors(void)
772 struct kunit_resource *resource;
774 if (!kunit_get_current_test())
777 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
781 (*(int *)resource->data)++;
782 kunit_put_resource(resource);
786 static bool slab_in_kunit_test(void)
788 struct kunit_resource *resource;
790 if (!kunit_get_current_test())
793 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
797 kunit_put_resource(resource);
801 static inline bool slab_add_kunit_errors(void) { return false; }
802 static inline bool slab_in_kunit_test(void) { return false; }
805 static inline unsigned int size_from_object(struct kmem_cache *s)
807 if (s->flags & SLAB_RED_ZONE)
808 return s->size - s->red_left_pad;
813 static inline void *restore_red_left(struct kmem_cache *s, void *p)
815 if (s->flags & SLAB_RED_ZONE)
816 p -= s->red_left_pad;
824 #if defined(CONFIG_SLUB_DEBUG_ON)
825 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
827 static slab_flags_t slub_debug;
830 static char *slub_debug_string;
831 static int disable_higher_order_debug;
834 * slub is about to manipulate internal object metadata. This memory lies
835 * outside the range of the allocated object, so accessing it would normally
836 * be reported by kasan as a bounds error. metadata_access_enable() is used
837 * to tell kasan that these accesses are OK.
839 static inline void metadata_access_enable(void)
841 kasan_disable_current();
842 kmsan_disable_current();
845 static inline void metadata_access_disable(void)
847 kmsan_enable_current();
848 kasan_enable_current();
855 /* Verify that a pointer has an address that is valid within a slab page */
856 static inline int check_valid_pointer(struct kmem_cache *s,
857 struct slab *slab, void *object)
864 base = slab_address(slab);
865 object = kasan_reset_tag(object);
866 object = restore_red_left(s, object);
867 if (object < base || object >= base + slab->objects * s->size ||
868 (object - base) % s->size) {
875 static void print_section(char *level, char *text, u8 *addr,
878 metadata_access_enable();
879 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
880 16, 1, kasan_reset_tag((void *)addr), length, 1);
881 metadata_access_disable();
884 static struct track *get_track(struct kmem_cache *s, void *object,
885 enum track_item alloc)
889 p = object + get_info_end(s);
891 return kasan_reset_tag(p + alloc);
894 #ifdef CONFIG_STACKDEPOT
895 static noinline depot_stack_handle_t set_track_prepare(void)
897 depot_stack_handle_t handle;
898 unsigned long entries[TRACK_ADDRS_COUNT];
899 unsigned int nr_entries;
901 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
902 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
907 static inline depot_stack_handle_t set_track_prepare(void)
913 static void set_track_update(struct kmem_cache *s, void *object,
914 enum track_item alloc, unsigned long addr,
915 depot_stack_handle_t handle)
917 struct track *p = get_track(s, object, alloc);
919 #ifdef CONFIG_STACKDEPOT
923 p->cpu = smp_processor_id();
924 p->pid = current->pid;
928 static __always_inline void set_track(struct kmem_cache *s, void *object,
929 enum track_item alloc, unsigned long addr)
931 depot_stack_handle_t handle = set_track_prepare();
933 set_track_update(s, object, alloc, addr, handle);
936 static void init_tracking(struct kmem_cache *s, void *object)
940 if (!(s->flags & SLAB_STORE_USER))
943 p = get_track(s, object, TRACK_ALLOC);
944 memset(p, 0, 2*sizeof(struct track));
947 static void print_track(const char *s, struct track *t, unsigned long pr_time)
949 depot_stack_handle_t handle __maybe_unused;
954 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
955 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
956 #ifdef CONFIG_STACKDEPOT
957 handle = READ_ONCE(t->handle);
959 stack_depot_print(handle);
961 pr_err("object allocation/free stack trace missing\n");
965 void print_tracking(struct kmem_cache *s, void *object)
967 unsigned long pr_time = jiffies;
968 if (!(s->flags & SLAB_STORE_USER))
971 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
972 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
975 static void print_slab_info(const struct slab *slab)
977 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
978 slab, slab->objects, slab->inuse, slab->freelist,
979 &slab->__page_flags);
983 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
984 * family will round up the real request size to these fixed ones, so
985 * there could be an extra area than what is requested. Save the original
986 * request size in the meta data area, for better debug and sanity check.
988 static inline void set_orig_size(struct kmem_cache *s,
989 void *object, unsigned int orig_size)
991 void *p = kasan_reset_tag(object);
992 unsigned int kasan_meta_size;
994 if (!slub_debug_orig_size(s))
998 * KASAN can save its free meta data inside of the object at offset 0.
999 * If this meta data size is larger than 'orig_size', it will overlap
1000 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
1001 * 'orig_size' to be as at least as big as KASAN's meta data.
1003 kasan_meta_size = kasan_metadata_size(s, true);
1004 if (kasan_meta_size > orig_size)
1005 orig_size = kasan_meta_size;
1007 p += get_info_end(s);
1008 p += sizeof(struct track) * 2;
1010 *(unsigned int *)p = orig_size;
1013 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1015 void *p = kasan_reset_tag(object);
1017 if (!slub_debug_orig_size(s))
1018 return s->object_size;
1020 p += get_info_end(s);
1021 p += sizeof(struct track) * 2;
1023 return *(unsigned int *)p;
1026 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1028 set_orig_size(s, (void *)object, s->object_size);
1031 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1033 struct va_format vaf;
1036 va_start(args, fmt);
1039 pr_err("=============================================================================\n");
1040 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1041 pr_err("-----------------------------------------------------------------------------\n\n");
1046 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1048 struct va_format vaf;
1051 if (slab_add_kunit_errors())
1054 va_start(args, fmt);
1057 pr_err("FIX %s: %pV\n", s->name, &vaf);
1061 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1063 unsigned int off; /* Offset of last byte */
1064 u8 *addr = slab_address(slab);
1066 print_tracking(s, p);
1068 print_slab_info(slab);
1070 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1071 p, p - addr, get_freepointer(s, p));
1073 if (s->flags & SLAB_RED_ZONE)
1074 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1076 else if (p > addr + 16)
1077 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1079 print_section(KERN_ERR, "Object ", p,
1080 min_t(unsigned int, s->object_size, PAGE_SIZE));
1081 if (s->flags & SLAB_RED_ZONE)
1082 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1083 s->inuse - s->object_size);
1085 off = get_info_end(s);
1087 if (s->flags & SLAB_STORE_USER)
1088 off += 2 * sizeof(struct track);
1090 if (slub_debug_orig_size(s))
1091 off += sizeof(unsigned int);
1093 off += kasan_metadata_size(s, false);
1095 if (off != size_from_object(s))
1096 /* Beginning of the filler is the free pointer */
1097 print_section(KERN_ERR, "Padding ", p + off,
1098 size_from_object(s) - off);
1103 static void object_err(struct kmem_cache *s, struct slab *slab,
1104 u8 *object, char *reason)
1106 if (slab_add_kunit_errors())
1109 slab_bug(s, "%s", reason);
1110 print_trailer(s, slab, object);
1111 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1114 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1115 void **freelist, void *nextfree)
1117 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1118 !check_valid_pointer(s, slab, nextfree) && freelist) {
1119 object_err(s, slab, *freelist, "Freechain corrupt");
1121 slab_fix(s, "Isolate corrupted freechain");
1128 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1129 const char *fmt, ...)
1134 if (slab_add_kunit_errors())
1137 va_start(args, fmt);
1138 vsnprintf(buf, sizeof(buf), fmt, args);
1140 slab_bug(s, "%s", buf);
1141 print_slab_info(slab);
1143 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1146 static void init_object(struct kmem_cache *s, void *object, u8 val)
1148 u8 *p = kasan_reset_tag(object);
1149 unsigned int poison_size = s->object_size;
1151 if (s->flags & SLAB_RED_ZONE) {
1153 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1154 * the shadow makes it possible to distinguish uninit-value
1155 * from use-after-free.
1157 memset_no_sanitize_memory(p - s->red_left_pad, val,
1160 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1162 * Redzone the extra allocated space by kmalloc than
1163 * requested, and the poison size will be limited to
1164 * the original request size accordingly.
1166 poison_size = get_orig_size(s, object);
1170 if (s->flags & __OBJECT_POISON) {
1171 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1172 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1175 if (s->flags & SLAB_RED_ZONE)
1176 memset_no_sanitize_memory(p + poison_size, val,
1177 s->inuse - poison_size);
1180 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1181 void *from, void *to)
1183 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1184 memset(from, data, to - from);
1188 #define pad_check_attributes noinline __no_kmsan_checks
1190 #define pad_check_attributes
1193 static pad_check_attributes int
1194 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1195 u8 *object, char *what,
1196 u8 *start, unsigned int value, unsigned int bytes)
1200 u8 *addr = slab_address(slab);
1202 metadata_access_enable();
1203 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1204 metadata_access_disable();
1208 end = start + bytes;
1209 while (end > fault && end[-1] == value)
1212 if (slab_add_kunit_errors())
1213 goto skip_bug_print;
1215 slab_bug(s, "%s overwritten", what);
1216 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1217 fault, end - 1, fault - addr,
1221 restore_bytes(s, what, value, fault, end);
1229 * Bytes of the object to be managed.
1230 * If the freepointer may overlay the object then the free
1231 * pointer is at the middle of the object.
1233 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1236 * object + s->object_size
1237 * Padding to reach word boundary. This is also used for Redzoning.
1238 * Padding is extended by another word if Redzoning is enabled and
1239 * object_size == inuse.
1241 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1242 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1245 * Meta data starts here.
1247 * A. Free pointer (if we cannot overwrite object on free)
1248 * B. Tracking data for SLAB_STORE_USER
1249 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1250 * D. Padding to reach required alignment boundary or at minimum
1251 * one word if debugging is on to be able to detect writes
1252 * before the word boundary.
1254 * Padding is done using 0x5a (POISON_INUSE)
1257 * Nothing is used beyond s->size.
1259 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1260 * ignored. And therefore no slab options that rely on these boundaries
1261 * may be used with merged slabcaches.
1264 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1266 unsigned long off = get_info_end(s); /* The end of info */
1268 if (s->flags & SLAB_STORE_USER) {
1269 /* We also have user information there */
1270 off += 2 * sizeof(struct track);
1272 if (s->flags & SLAB_KMALLOC)
1273 off += sizeof(unsigned int);
1276 off += kasan_metadata_size(s, false);
1278 if (size_from_object(s) == off)
1281 return check_bytes_and_report(s, slab, p, "Object padding",
1282 p + off, POISON_INUSE, size_from_object(s) - off);
1285 /* Check the pad bytes at the end of a slab page */
1286 static pad_check_attributes void
1287 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1296 if (!(s->flags & SLAB_POISON))
1299 start = slab_address(slab);
1300 length = slab_size(slab);
1301 end = start + length;
1302 remainder = length % s->size;
1306 pad = end - remainder;
1307 metadata_access_enable();
1308 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1309 metadata_access_disable();
1312 while (end > fault && end[-1] == POISON_INUSE)
1315 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1316 fault, end - 1, fault - start);
1317 print_section(KERN_ERR, "Padding ", pad, remainder);
1319 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1322 static int check_object(struct kmem_cache *s, struct slab *slab,
1323 void *object, u8 val)
1326 u8 *endobject = object + s->object_size;
1327 unsigned int orig_size, kasan_meta_size;
1330 if (s->flags & SLAB_RED_ZONE) {
1331 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1332 object - s->red_left_pad, val, s->red_left_pad))
1335 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1336 endobject, val, s->inuse - s->object_size))
1339 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1340 orig_size = get_orig_size(s, object);
1342 if (s->object_size > orig_size &&
1343 !check_bytes_and_report(s, slab, object,
1344 "kmalloc Redzone", p + orig_size,
1345 val, s->object_size - orig_size)) {
1350 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1351 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1352 endobject, POISON_INUSE,
1353 s->inuse - s->object_size))
1358 if (s->flags & SLAB_POISON) {
1359 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1361 * KASAN can save its free meta data inside of the
1362 * object at offset 0. Thus, skip checking the part of
1363 * the redzone that overlaps with the meta data.
1365 kasan_meta_size = kasan_metadata_size(s, true);
1366 if (kasan_meta_size < s->object_size - 1 &&
1367 !check_bytes_and_report(s, slab, p, "Poison",
1368 p + kasan_meta_size, POISON_FREE,
1369 s->object_size - kasan_meta_size - 1))
1371 if (kasan_meta_size < s->object_size &&
1372 !check_bytes_and_report(s, slab, p, "End Poison",
1373 p + s->object_size - 1, POISON_END, 1))
1377 * check_pad_bytes cleans up on its own.
1379 if (!check_pad_bytes(s, slab, p))
1384 * Cannot check freepointer while object is allocated if
1385 * object and freepointer overlap.
1387 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1388 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1389 object_err(s, slab, p, "Freepointer corrupt");
1391 * No choice but to zap it and thus lose the remainder
1392 * of the free objects in this slab. May cause
1393 * another error because the object count is now wrong.
1395 set_freepointer(s, p, NULL);
1399 if (!ret && !slab_in_kunit_test()) {
1400 print_trailer(s, slab, object);
1401 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1407 static int check_slab(struct kmem_cache *s, struct slab *slab)
1411 if (!folio_test_slab(slab_folio(slab))) {
1412 slab_err(s, slab, "Not a valid slab page");
1416 maxobj = order_objects(slab_order(slab), s->size);
1417 if (slab->objects > maxobj) {
1418 slab_err(s, slab, "objects %u > max %u",
1419 slab->objects, maxobj);
1422 if (slab->inuse > slab->objects) {
1423 slab_err(s, slab, "inuse %u > max %u",
1424 slab->inuse, slab->objects);
1427 /* Slab_pad_check fixes things up after itself */
1428 slab_pad_check(s, slab);
1433 * Determine if a certain object in a slab is on the freelist. Must hold the
1434 * slab lock to guarantee that the chains are in a consistent state.
1436 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1440 void *object = NULL;
1443 fp = slab->freelist;
1444 while (fp && nr <= slab->objects) {
1447 if (!check_valid_pointer(s, slab, fp)) {
1449 object_err(s, slab, object,
1450 "Freechain corrupt");
1451 set_freepointer(s, object, NULL);
1453 slab_err(s, slab, "Freepointer corrupt");
1454 slab->freelist = NULL;
1455 slab->inuse = slab->objects;
1456 slab_fix(s, "Freelist cleared");
1462 fp = get_freepointer(s, object);
1466 max_objects = order_objects(slab_order(slab), s->size);
1467 if (max_objects > MAX_OBJS_PER_PAGE)
1468 max_objects = MAX_OBJS_PER_PAGE;
1470 if (slab->objects != max_objects) {
1471 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1472 slab->objects, max_objects);
1473 slab->objects = max_objects;
1474 slab_fix(s, "Number of objects adjusted");
1476 if (slab->inuse != slab->objects - nr) {
1477 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1478 slab->inuse, slab->objects - nr);
1479 slab->inuse = slab->objects - nr;
1480 slab_fix(s, "Object count adjusted");
1482 return search == NULL;
1485 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1488 if (s->flags & SLAB_TRACE) {
1489 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1491 alloc ? "alloc" : "free",
1492 object, slab->inuse,
1496 print_section(KERN_INFO, "Object ", (void *)object,
1504 * Tracking of fully allocated slabs for debugging purposes.
1506 static void add_full(struct kmem_cache *s,
1507 struct kmem_cache_node *n, struct slab *slab)
1509 if (!(s->flags & SLAB_STORE_USER))
1512 lockdep_assert_held(&n->list_lock);
1513 list_add(&slab->slab_list, &n->full);
1516 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1518 if (!(s->flags & SLAB_STORE_USER))
1521 lockdep_assert_held(&n->list_lock);
1522 list_del(&slab->slab_list);
1525 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1527 return atomic_long_read(&n->nr_slabs);
1530 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1532 struct kmem_cache_node *n = get_node(s, node);
1534 atomic_long_inc(&n->nr_slabs);
1535 atomic_long_add(objects, &n->total_objects);
1537 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1539 struct kmem_cache_node *n = get_node(s, node);
1541 atomic_long_dec(&n->nr_slabs);
1542 atomic_long_sub(objects, &n->total_objects);
1545 /* Object debug checks for alloc/free paths */
1546 static void setup_object_debug(struct kmem_cache *s, void *object)
1548 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1551 init_object(s, object, SLUB_RED_INACTIVE);
1552 init_tracking(s, object);
1556 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1558 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1561 metadata_access_enable();
1562 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1563 metadata_access_disable();
1566 static inline int alloc_consistency_checks(struct kmem_cache *s,
1567 struct slab *slab, void *object)
1569 if (!check_slab(s, slab))
1572 if (!check_valid_pointer(s, slab, object)) {
1573 object_err(s, slab, object, "Freelist Pointer check fails");
1577 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1583 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1584 struct slab *slab, void *object, int orig_size)
1586 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1587 if (!alloc_consistency_checks(s, slab, object))
1591 /* Success. Perform special debug activities for allocs */
1592 trace(s, slab, object, 1);
1593 set_orig_size(s, object, orig_size);
1594 init_object(s, object, SLUB_RED_ACTIVE);
1598 if (folio_test_slab(slab_folio(slab))) {
1600 * If this is a slab page then lets do the best we can
1601 * to avoid issues in the future. Marking all objects
1602 * as used avoids touching the remaining objects.
1604 slab_fix(s, "Marking all objects used");
1605 slab->inuse = slab->objects;
1606 slab->freelist = NULL;
1611 static inline int free_consistency_checks(struct kmem_cache *s,
1612 struct slab *slab, void *object, unsigned long addr)
1614 if (!check_valid_pointer(s, slab, object)) {
1615 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1619 if (on_freelist(s, slab, object)) {
1620 object_err(s, slab, object, "Object already free");
1624 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1627 if (unlikely(s != slab->slab_cache)) {
1628 if (!folio_test_slab(slab_folio(slab))) {
1629 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1631 } else if (!slab->slab_cache) {
1632 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1636 object_err(s, slab, object,
1637 "page slab pointer corrupt.");
1644 * Parse a block of slab_debug options. Blocks are delimited by ';'
1646 * @str: start of block
1647 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1648 * @slabs: return start of list of slabs, or NULL when there's no list
1649 * @init: assume this is initial parsing and not per-kmem-create parsing
1651 * returns the start of next block if there's any, or NULL
1654 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1656 bool higher_order_disable = false;
1658 /* Skip any completely empty blocks */
1659 while (*str && *str == ';')
1664 * No options but restriction on slabs. This means full
1665 * debugging for slabs matching a pattern.
1667 *flags = DEBUG_DEFAULT_FLAGS;
1672 /* Determine which debug features should be switched on */
1673 for (; *str && *str != ',' && *str != ';'; str++) {
1674 switch (tolower(*str)) {
1679 *flags |= SLAB_CONSISTENCY_CHECKS;
1682 *flags |= SLAB_RED_ZONE;
1685 *flags |= SLAB_POISON;
1688 *flags |= SLAB_STORE_USER;
1691 *flags |= SLAB_TRACE;
1694 *flags |= SLAB_FAILSLAB;
1698 * Avoid enabling debugging on caches if its minimum
1699 * order would increase as a result.
1701 higher_order_disable = true;
1705 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1714 /* Skip over the slab list */
1715 while (*str && *str != ';')
1718 /* Skip any completely empty blocks */
1719 while (*str && *str == ';')
1722 if (init && higher_order_disable)
1723 disable_higher_order_debug = 1;
1731 static int __init setup_slub_debug(char *str)
1734 slab_flags_t global_flags;
1737 bool global_slub_debug_changed = false;
1738 bool slab_list_specified = false;
1740 global_flags = DEBUG_DEFAULT_FLAGS;
1741 if (*str++ != '=' || !*str)
1743 * No options specified. Switch on full debugging.
1749 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1752 global_flags = flags;
1753 global_slub_debug_changed = true;
1755 slab_list_specified = true;
1756 if (flags & SLAB_STORE_USER)
1757 stack_depot_request_early_init();
1762 * For backwards compatibility, a single list of flags with list of
1763 * slabs means debugging is only changed for those slabs, so the global
1764 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1765 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1766 * long as there is no option specifying flags without a slab list.
1768 if (slab_list_specified) {
1769 if (!global_slub_debug_changed)
1770 global_flags = slub_debug;
1771 slub_debug_string = saved_str;
1774 slub_debug = global_flags;
1775 if (slub_debug & SLAB_STORE_USER)
1776 stack_depot_request_early_init();
1777 if (slub_debug != 0 || slub_debug_string)
1778 static_branch_enable(&slub_debug_enabled);
1780 static_branch_disable(&slub_debug_enabled);
1781 if ((static_branch_unlikely(&init_on_alloc) ||
1782 static_branch_unlikely(&init_on_free)) &&
1783 (slub_debug & SLAB_POISON))
1784 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1788 __setup("slab_debug", setup_slub_debug);
1789 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1792 * kmem_cache_flags - apply debugging options to the cache
1793 * @flags: flags to set
1794 * @name: name of the cache
1796 * Debug option(s) are applied to @flags. In addition to the debug
1797 * option(s), if a slab name (or multiple) is specified i.e.
1798 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1799 * then only the select slabs will receive the debug option(s).
1801 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1806 slab_flags_t block_flags;
1807 slab_flags_t slub_debug_local = slub_debug;
1809 if (flags & SLAB_NO_USER_FLAGS)
1813 * If the slab cache is for debugging (e.g. kmemleak) then
1814 * don't store user (stack trace) information by default,
1815 * but let the user enable it via the command line below.
1817 if (flags & SLAB_NOLEAKTRACE)
1818 slub_debug_local &= ~SLAB_STORE_USER;
1821 next_block = slub_debug_string;
1822 /* Go through all blocks of debug options, see if any matches our slab's name */
1823 while (next_block) {
1824 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1827 /* Found a block that has a slab list, search it */
1832 end = strchrnul(iter, ',');
1833 if (next_block && next_block < end)
1834 end = next_block - 1;
1836 glob = strnchr(iter, end - iter, '*');
1838 cmplen = glob - iter;
1840 cmplen = max_t(size_t, len, (end - iter));
1842 if (!strncmp(name, iter, cmplen)) {
1843 flags |= block_flags;
1847 if (!*end || *end == ';')
1853 return flags | slub_debug_local;
1855 #else /* !CONFIG_SLUB_DEBUG */
1856 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1858 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1860 static inline bool alloc_debug_processing(struct kmem_cache *s,
1861 struct slab *slab, void *object, int orig_size) { return true; }
1863 static inline bool free_debug_processing(struct kmem_cache *s,
1864 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1865 unsigned long addr, depot_stack_handle_t handle) { return true; }
1867 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1868 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1869 void *object, u8 val) { return 1; }
1870 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1871 static inline void set_track(struct kmem_cache *s, void *object,
1872 enum track_item alloc, unsigned long addr) {}
1873 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1874 struct slab *slab) {}
1875 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1876 struct slab *slab) {}
1877 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1881 #define slub_debug 0
1883 #define disable_higher_order_debug 0
1885 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1887 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1889 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1892 #ifndef CONFIG_SLUB_TINY
1893 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1894 void **freelist, void *nextfree)
1899 #endif /* CONFIG_SLUB_DEBUG */
1901 #ifdef CONFIG_SLAB_OBJ_EXT
1903 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1905 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1907 struct slabobj_ext *slab_exts;
1908 struct slab *obj_exts_slab;
1910 obj_exts_slab = virt_to_slab(obj_exts);
1911 slab_exts = slab_obj_exts(obj_exts_slab);
1913 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1914 obj_exts_slab, obj_exts);
1915 /* codetag should be NULL */
1916 WARN_ON(slab_exts[offs].ref.ct);
1917 set_codetag_empty(&slab_exts[offs].ref);
1921 static inline void mark_failed_objexts_alloc(struct slab *slab)
1923 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1926 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1927 struct slabobj_ext *vec, unsigned int objects)
1930 * If vector previously failed to allocate then we have live
1931 * objects with no tag reference. Mark all references in this
1932 * vector as empty to avoid warnings later on.
1934 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1937 for (i = 0; i < objects; i++)
1938 set_codetag_empty(&vec[i].ref);
1942 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1944 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1945 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1946 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1947 struct slabobj_ext *vec, unsigned int objects) {}
1949 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1952 * The allocated objcg pointers array is not accounted directly.
1953 * Moreover, it should not come from DMA buffer and is not readily
1954 * reclaimable. So those GFP bits should be masked off.
1956 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1957 __GFP_ACCOUNT | __GFP_NOFAIL)
1959 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1960 gfp_t gfp, bool new_slab)
1962 unsigned int objects = objs_per_slab(s, slab);
1963 unsigned long new_exts;
1964 unsigned long old_exts;
1965 struct slabobj_ext *vec;
1967 gfp &= ~OBJCGS_CLEAR_MASK;
1968 /* Prevent recursive extension vector allocation */
1969 gfp |= __GFP_NO_OBJ_EXT;
1970 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1973 /* Mark vectors which failed to allocate */
1975 mark_failed_objexts_alloc(slab);
1980 new_exts = (unsigned long)vec;
1982 new_exts |= MEMCG_DATA_OBJEXTS;
1984 old_exts = READ_ONCE(slab->obj_exts);
1985 handle_failed_objexts_alloc(old_exts, vec, objects);
1988 * If the slab is brand new and nobody can yet access its
1989 * obj_exts, no synchronization is required and obj_exts can
1990 * be simply assigned.
1992 slab->obj_exts = new_exts;
1993 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1994 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1996 * If the slab is already in use, somebody can allocate and
1997 * assign slabobj_exts in parallel. In this case the existing
1998 * objcg vector should be reused.
2000 mark_objexts_empty(vec);
2005 kmemleak_not_leak(vec);
2009 static inline void free_slab_obj_exts(struct slab *slab)
2011 struct slabobj_ext *obj_exts;
2013 obj_exts = slab_obj_exts(slab);
2018 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2019 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2020 * warning if slab has extensions but the extension of an object is
2021 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2022 * the extension for obj_exts is expected to be NULL.
2024 mark_objexts_empty(obj_exts);
2029 static inline bool need_slab_obj_ext(void)
2031 if (mem_alloc_profiling_enabled())
2035 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2036 * inside memcg_slab_post_alloc_hook. No other users for now.
2041 #else /* CONFIG_SLAB_OBJ_EXT */
2043 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2044 gfp_t gfp, bool new_slab)
2049 static inline void free_slab_obj_exts(struct slab *slab)
2053 static inline bool need_slab_obj_ext(void)
2058 #endif /* CONFIG_SLAB_OBJ_EXT */
2060 #ifdef CONFIG_MEM_ALLOC_PROFILING
2062 static inline struct slabobj_ext *
2063 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2070 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2073 if (flags & __GFP_NO_OBJ_EXT)
2076 slab = virt_to_slab(p);
2077 if (!slab_obj_exts(slab) &&
2078 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2079 "%s, %s: Failed to create slab extension vector!\n",
2083 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2087 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2089 if (need_slab_obj_ext()) {
2090 struct slabobj_ext *obj_exts;
2092 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2094 * Currently obj_exts is used only for allocation profiling.
2095 * If other users appear then mem_alloc_profiling_enabled()
2096 * check should be added before alloc_tag_add().
2098 if (likely(obj_exts))
2099 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2104 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2107 struct slabobj_ext *obj_exts;
2110 if (!mem_alloc_profiling_enabled())
2113 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2114 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2117 obj_exts = slab_obj_exts(slab);
2121 for (i = 0; i < objects; i++) {
2122 unsigned int off = obj_to_index(s, slab, p[i]);
2124 alloc_tag_sub(&obj_exts[off].ref, s->size);
2128 #else /* CONFIG_MEM_ALLOC_PROFILING */
2131 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2136 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2141 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2146 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2148 static __fastpath_inline
2149 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2150 gfp_t flags, size_t size, void **p)
2152 if (likely(!memcg_kmem_online()))
2155 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2158 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2161 if (likely(size == 1)) {
2162 memcg_alloc_abort_single(s, *p);
2165 kmem_cache_free_bulk(s, size, p);
2171 static __fastpath_inline
2172 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2175 struct slabobj_ext *obj_exts;
2177 if (!memcg_kmem_online())
2180 obj_exts = slab_obj_exts(slab);
2181 if (likely(!obj_exts))
2184 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2186 #else /* CONFIG_MEMCG */
2187 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2188 struct list_lru *lru,
2189 gfp_t flags, size_t size,
2195 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2196 void **p, int objects)
2199 #endif /* CONFIG_MEMCG */
2202 * Hooks for other subsystems that check memory allocations. In a typical
2203 * production configuration these hooks all should produce no code at all.
2205 * Returns true if freeing of the object can proceed, false if its reuse
2206 * was delayed by KASAN quarantine, or it was returned to KFENCE.
2208 static __always_inline
2209 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2211 kmemleak_free_recursive(x, s->flags);
2212 kmsan_slab_free(s, x);
2214 debug_check_no_locks_freed(x, s->object_size);
2216 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2217 debug_check_no_obj_freed(x, s->object_size);
2219 /* Use KCSAN to help debug racy use-after-free. */
2220 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2221 __kcsan_check_access(x, s->object_size,
2222 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2228 * As memory initialization might be integrated into KASAN,
2229 * kasan_slab_free and initialization memset's must be
2230 * kept together to avoid discrepancies in behavior.
2232 * The initialization memset's clear the object and the metadata,
2233 * but don't touch the SLAB redzone.
2235 * The object's freepointer is also avoided if stored outside the
2238 if (unlikely(init)) {
2242 inuse = get_info_end(s);
2243 if (!kasan_has_integrated_init())
2244 memset(kasan_reset_tag(x), 0, s->object_size);
2245 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2246 memset((char *)kasan_reset_tag(x) + inuse, 0,
2247 s->size - inuse - rsize);
2249 /* KASAN might put x into memory quarantine, delaying its reuse. */
2250 return !kasan_slab_free(s, x, init);
2253 static __fastpath_inline
2254 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2260 void *old_tail = *tail;
2263 if (is_kfence_address(next)) {
2264 slab_free_hook(s, next, false);
2268 /* Head and tail of the reconstructed freelist */
2272 init = slab_want_init_on_free(s);
2276 next = get_freepointer(s, object);
2278 /* If object's reuse doesn't have to be delayed */
2279 if (likely(slab_free_hook(s, object, init))) {
2280 /* Move object to the new freelist */
2281 set_freepointer(s, object, *head);
2287 * Adjust the reconstructed freelist depth
2288 * accordingly if object's reuse is delayed.
2292 } while (object != old_tail);
2294 return *head != NULL;
2297 static void *setup_object(struct kmem_cache *s, void *object)
2299 setup_object_debug(s, object);
2300 object = kasan_init_slab_obj(s, object);
2301 if (unlikely(s->ctor)) {
2302 kasan_unpoison_new_object(s, object);
2304 kasan_poison_new_object(s, object);
2310 * Slab allocation and freeing
2312 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2313 struct kmem_cache_order_objects oo)
2315 struct folio *folio;
2317 unsigned int order = oo_order(oo);
2319 folio = (struct folio *)alloc_pages_node(node, flags, order);
2323 slab = folio_slab(folio);
2324 __folio_set_slab(folio);
2325 /* Make the flag visible before any changes to folio->mapping */
2327 if (folio_is_pfmemalloc(folio))
2328 slab_set_pfmemalloc(slab);
2333 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2334 /* Pre-initialize the random sequence cache */
2335 static int init_cache_random_seq(struct kmem_cache *s)
2337 unsigned int count = oo_objects(s->oo);
2340 /* Bailout if already initialised */
2344 err = cache_random_seq_create(s, count, GFP_KERNEL);
2346 pr_err("SLUB: Unable to initialize free list for %s\n",
2351 /* Transform to an offset on the set of pages */
2352 if (s->random_seq) {
2355 for (i = 0; i < count; i++)
2356 s->random_seq[i] *= s->size;
2361 /* Initialize each random sequence freelist per cache */
2362 static void __init init_freelist_randomization(void)
2364 struct kmem_cache *s;
2366 mutex_lock(&slab_mutex);
2368 list_for_each_entry(s, &slab_caches, list)
2369 init_cache_random_seq(s);
2371 mutex_unlock(&slab_mutex);
2374 /* Get the next entry on the pre-computed freelist randomized */
2375 static void *next_freelist_entry(struct kmem_cache *s,
2376 unsigned long *pos, void *start,
2377 unsigned long page_limit,
2378 unsigned long freelist_count)
2383 * If the target page allocation failed, the number of objects on the
2384 * page might be smaller than the usual size defined by the cache.
2387 idx = s->random_seq[*pos];
2389 if (*pos >= freelist_count)
2391 } while (unlikely(idx >= page_limit));
2393 return (char *)start + idx;
2396 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2397 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2402 unsigned long idx, pos, page_limit, freelist_count;
2404 if (slab->objects < 2 || !s->random_seq)
2407 freelist_count = oo_objects(s->oo);
2408 pos = get_random_u32_below(freelist_count);
2410 page_limit = slab->objects * s->size;
2411 start = fixup_red_left(s, slab_address(slab));
2413 /* First entry is used as the base of the freelist */
2414 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2415 cur = setup_object(s, cur);
2416 slab->freelist = cur;
2418 for (idx = 1; idx < slab->objects; idx++) {
2419 next = next_freelist_entry(s, &pos, start, page_limit,
2421 next = setup_object(s, next);
2422 set_freepointer(s, cur, next);
2425 set_freepointer(s, cur, NULL);
2430 static inline int init_cache_random_seq(struct kmem_cache *s)
2434 static inline void init_freelist_randomization(void) { }
2435 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2439 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2441 static __always_inline void account_slab(struct slab *slab, int order,
2442 struct kmem_cache *s, gfp_t gfp)
2444 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2445 alloc_slab_obj_exts(slab, s, gfp, true);
2447 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2448 PAGE_SIZE << order);
2451 static __always_inline void unaccount_slab(struct slab *slab, int order,
2452 struct kmem_cache *s)
2454 if (memcg_kmem_online() || need_slab_obj_ext())
2455 free_slab_obj_exts(slab);
2457 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2458 -(PAGE_SIZE << order));
2461 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2464 struct kmem_cache_order_objects oo = s->oo;
2466 void *start, *p, *next;
2470 flags &= gfp_allowed_mask;
2472 flags |= s->allocflags;
2475 * Let the initial higher-order allocation fail under memory pressure
2476 * so we fall-back to the minimum order allocation.
2478 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2479 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2480 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2482 slab = alloc_slab_page(alloc_gfp, node, oo);
2483 if (unlikely(!slab)) {
2487 * Allocation may have failed due to fragmentation.
2488 * Try a lower order alloc if possible
2490 slab = alloc_slab_page(alloc_gfp, node, oo);
2491 if (unlikely(!slab))
2493 stat(s, ORDER_FALLBACK);
2496 slab->objects = oo_objects(oo);
2500 account_slab(slab, oo_order(oo), s, flags);
2502 slab->slab_cache = s;
2504 kasan_poison_slab(slab);
2506 start = slab_address(slab);
2508 setup_slab_debug(s, slab, start);
2510 shuffle = shuffle_freelist(s, slab);
2513 start = fixup_red_left(s, start);
2514 start = setup_object(s, start);
2515 slab->freelist = start;
2516 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2518 next = setup_object(s, next);
2519 set_freepointer(s, p, next);
2522 set_freepointer(s, p, NULL);
2528 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2530 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2531 flags = kmalloc_fix_flags(flags);
2533 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2535 return allocate_slab(s,
2536 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2539 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2541 struct folio *folio = slab_folio(slab);
2542 int order = folio_order(folio);
2543 int pages = 1 << order;
2545 __slab_clear_pfmemalloc(slab);
2546 folio->mapping = NULL;
2547 /* Make the mapping reset visible before clearing the flag */
2549 __folio_clear_slab(folio);
2550 mm_account_reclaimed_pages(pages);
2551 unaccount_slab(slab, order, s);
2552 __free_pages(&folio->page, order);
2555 static void rcu_free_slab(struct rcu_head *h)
2557 struct slab *slab = container_of(h, struct slab, rcu_head);
2559 __free_slab(slab->slab_cache, slab);
2562 static void free_slab(struct kmem_cache *s, struct slab *slab)
2564 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2567 slab_pad_check(s, slab);
2568 for_each_object(p, s, slab_address(slab), slab->objects)
2569 check_object(s, slab, p, SLUB_RED_INACTIVE);
2572 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2573 call_rcu(&slab->rcu_head, rcu_free_slab);
2575 __free_slab(s, slab);
2578 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2580 dec_slabs_node(s, slab_nid(slab), slab->objects);
2585 * SLUB reuses PG_workingset bit to keep track of whether it's on
2586 * the per-node partial list.
2588 static inline bool slab_test_node_partial(const struct slab *slab)
2590 return folio_test_workingset(slab_folio(slab));
2593 static inline void slab_set_node_partial(struct slab *slab)
2595 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2598 static inline void slab_clear_node_partial(struct slab *slab)
2600 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2604 * Management of partially allocated slabs.
2607 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2610 if (tail == DEACTIVATE_TO_TAIL)
2611 list_add_tail(&slab->slab_list, &n->partial);
2613 list_add(&slab->slab_list, &n->partial);
2614 slab_set_node_partial(slab);
2617 static inline void add_partial(struct kmem_cache_node *n,
2618 struct slab *slab, int tail)
2620 lockdep_assert_held(&n->list_lock);
2621 __add_partial(n, slab, tail);
2624 static inline void remove_partial(struct kmem_cache_node *n,
2627 lockdep_assert_held(&n->list_lock);
2628 list_del(&slab->slab_list);
2629 slab_clear_node_partial(slab);
2634 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2635 * slab from the n->partial list. Remove only a single object from the slab, do
2636 * the alloc_debug_processing() checks and leave the slab on the list, or move
2637 * it to full list if it was the last free object.
2639 static void *alloc_single_from_partial(struct kmem_cache *s,
2640 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2644 lockdep_assert_held(&n->list_lock);
2646 object = slab->freelist;
2647 slab->freelist = get_freepointer(s, object);
2650 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2651 remove_partial(n, slab);
2655 if (slab->inuse == slab->objects) {
2656 remove_partial(n, slab);
2657 add_full(s, n, slab);
2664 * Called only for kmem_cache_debug() caches to allocate from a freshly
2665 * allocated slab. Allocate a single object instead of whole freelist
2666 * and put the slab to the partial (or full) list.
2668 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2669 struct slab *slab, int orig_size)
2671 int nid = slab_nid(slab);
2672 struct kmem_cache_node *n = get_node(s, nid);
2673 unsigned long flags;
2677 object = slab->freelist;
2678 slab->freelist = get_freepointer(s, object);
2681 if (!alloc_debug_processing(s, slab, object, orig_size))
2683 * It's not really expected that this would fail on a
2684 * freshly allocated slab, but a concurrent memory
2685 * corruption in theory could cause that.
2689 spin_lock_irqsave(&n->list_lock, flags);
2691 if (slab->inuse == slab->objects)
2692 add_full(s, n, slab);
2694 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2696 inc_slabs_node(s, nid, slab->objects);
2697 spin_unlock_irqrestore(&n->list_lock, flags);
2702 #ifdef CONFIG_SLUB_CPU_PARTIAL
2703 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2705 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2708 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2711 * Try to allocate a partial slab from a specific node.
2713 static struct slab *get_partial_node(struct kmem_cache *s,
2714 struct kmem_cache_node *n,
2715 struct partial_context *pc)
2717 struct slab *slab, *slab2, *partial = NULL;
2718 unsigned long flags;
2719 unsigned int partial_slabs = 0;
2722 * Racy check. If we mistakenly see no partial slabs then we
2723 * just allocate an empty slab. If we mistakenly try to get a
2724 * partial slab and there is none available then get_partial()
2727 if (!n || !n->nr_partial)
2730 spin_lock_irqsave(&n->list_lock, flags);
2731 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2732 if (!pfmemalloc_match(slab, pc->flags))
2735 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2736 void *object = alloc_single_from_partial(s, n, slab,
2740 pc->object = object;
2746 remove_partial(n, slab);
2750 stat(s, ALLOC_FROM_PARTIAL);
2752 if ((slub_get_cpu_partial(s) == 0)) {
2756 put_cpu_partial(s, slab, 0);
2757 stat(s, CPU_PARTIAL_NODE);
2759 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2764 spin_unlock_irqrestore(&n->list_lock, flags);
2769 * Get a slab from somewhere. Search in increasing NUMA distances.
2771 static struct slab *get_any_partial(struct kmem_cache *s,
2772 struct partial_context *pc)
2775 struct zonelist *zonelist;
2778 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2780 unsigned int cpuset_mems_cookie;
2783 * The defrag ratio allows a configuration of the tradeoffs between
2784 * inter node defragmentation and node local allocations. A lower
2785 * defrag_ratio increases the tendency to do local allocations
2786 * instead of attempting to obtain partial slabs from other nodes.
2788 * If the defrag_ratio is set to 0 then kmalloc() always
2789 * returns node local objects. If the ratio is higher then kmalloc()
2790 * may return off node objects because partial slabs are obtained
2791 * from other nodes and filled up.
2793 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2794 * (which makes defrag_ratio = 1000) then every (well almost)
2795 * allocation will first attempt to defrag slab caches on other nodes.
2796 * This means scanning over all nodes to look for partial slabs which
2797 * may be expensive if we do it every time we are trying to find a slab
2798 * with available objects.
2800 if (!s->remote_node_defrag_ratio ||
2801 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2805 cpuset_mems_cookie = read_mems_allowed_begin();
2806 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2807 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2808 struct kmem_cache_node *n;
2810 n = get_node(s, zone_to_nid(zone));
2812 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2813 n->nr_partial > s->min_partial) {
2814 slab = get_partial_node(s, n, pc);
2817 * Don't check read_mems_allowed_retry()
2818 * here - if mems_allowed was updated in
2819 * parallel, that was a harmless race
2820 * between allocation and the cpuset
2827 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2828 #endif /* CONFIG_NUMA */
2833 * Get a partial slab, lock it and return it.
2835 static struct slab *get_partial(struct kmem_cache *s, int node,
2836 struct partial_context *pc)
2839 int searchnode = node;
2841 if (node == NUMA_NO_NODE)
2842 searchnode = numa_mem_id();
2844 slab = get_partial_node(s, get_node(s, searchnode), pc);
2845 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2848 return get_any_partial(s, pc);
2851 #ifndef CONFIG_SLUB_TINY
2853 #ifdef CONFIG_PREEMPTION
2855 * Calculate the next globally unique transaction for disambiguation
2856 * during cmpxchg. The transactions start with the cpu number and are then
2857 * incremented by CONFIG_NR_CPUS.
2859 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2862 * No preemption supported therefore also no need to check for
2866 #endif /* CONFIG_PREEMPTION */
2868 static inline unsigned long next_tid(unsigned long tid)
2870 return tid + TID_STEP;
2873 #ifdef SLUB_DEBUG_CMPXCHG
2874 static inline unsigned int tid_to_cpu(unsigned long tid)
2876 return tid % TID_STEP;
2879 static inline unsigned long tid_to_event(unsigned long tid)
2881 return tid / TID_STEP;
2885 static inline unsigned int init_tid(int cpu)
2890 static inline void note_cmpxchg_failure(const char *n,
2891 const struct kmem_cache *s, unsigned long tid)
2893 #ifdef SLUB_DEBUG_CMPXCHG
2894 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2896 pr_info("%s %s: cmpxchg redo ", n, s->name);
2898 #ifdef CONFIG_PREEMPTION
2899 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2900 pr_warn("due to cpu change %d -> %d\n",
2901 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2904 if (tid_to_event(tid) != tid_to_event(actual_tid))
2905 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2906 tid_to_event(tid), tid_to_event(actual_tid));
2908 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2909 actual_tid, tid, next_tid(tid));
2911 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2914 static void init_kmem_cache_cpus(struct kmem_cache *s)
2917 struct kmem_cache_cpu *c;
2919 for_each_possible_cpu(cpu) {
2920 c = per_cpu_ptr(s->cpu_slab, cpu);
2921 local_lock_init(&c->lock);
2922 c->tid = init_tid(cpu);
2927 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2928 * unfreezes the slabs and puts it on the proper list.
2929 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2932 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2935 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2937 void *nextfree, *freelist_iter, *freelist_tail;
2938 int tail = DEACTIVATE_TO_HEAD;
2939 unsigned long flags = 0;
2943 if (READ_ONCE(slab->freelist)) {
2944 stat(s, DEACTIVATE_REMOTE_FREES);
2945 tail = DEACTIVATE_TO_TAIL;
2949 * Stage one: Count the objects on cpu's freelist as free_delta and
2950 * remember the last object in freelist_tail for later splicing.
2952 freelist_tail = NULL;
2953 freelist_iter = freelist;
2954 while (freelist_iter) {
2955 nextfree = get_freepointer(s, freelist_iter);
2958 * If 'nextfree' is invalid, it is possible that the object at
2959 * 'freelist_iter' is already corrupted. So isolate all objects
2960 * starting at 'freelist_iter' by skipping them.
2962 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2965 freelist_tail = freelist_iter;
2968 freelist_iter = nextfree;
2972 * Stage two: Unfreeze the slab while splicing the per-cpu
2973 * freelist to the head of slab's freelist.
2976 old.freelist = READ_ONCE(slab->freelist);
2977 old.counters = READ_ONCE(slab->counters);
2978 VM_BUG_ON(!old.frozen);
2980 /* Determine target state of the slab */
2981 new.counters = old.counters;
2983 if (freelist_tail) {
2984 new.inuse -= free_delta;
2985 set_freepointer(s, freelist_tail, old.freelist);
2986 new.freelist = freelist;
2988 new.freelist = old.freelist;
2990 } while (!slab_update_freelist(s, slab,
2991 old.freelist, old.counters,
2992 new.freelist, new.counters,
2993 "unfreezing slab"));
2996 * Stage three: Manipulate the slab list based on the updated state.
2998 if (!new.inuse && n->nr_partial >= s->min_partial) {
2999 stat(s, DEACTIVATE_EMPTY);
3000 discard_slab(s, slab);
3002 } else if (new.freelist) {
3003 spin_lock_irqsave(&n->list_lock, flags);
3004 add_partial(n, slab, tail);
3005 spin_unlock_irqrestore(&n->list_lock, flags);
3008 stat(s, DEACTIVATE_FULL);
3012 #ifdef CONFIG_SLUB_CPU_PARTIAL
3013 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3015 struct kmem_cache_node *n = NULL, *n2 = NULL;
3016 struct slab *slab, *slab_to_discard = NULL;
3017 unsigned long flags = 0;
3019 while (partial_slab) {
3020 slab = partial_slab;
3021 partial_slab = slab->next;
3023 n2 = get_node(s, slab_nid(slab));
3026 spin_unlock_irqrestore(&n->list_lock, flags);
3029 spin_lock_irqsave(&n->list_lock, flags);
3032 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3033 slab->next = slab_to_discard;
3034 slab_to_discard = slab;
3036 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3037 stat(s, FREE_ADD_PARTIAL);
3042 spin_unlock_irqrestore(&n->list_lock, flags);
3044 while (slab_to_discard) {
3045 slab = slab_to_discard;
3046 slab_to_discard = slab_to_discard->next;
3048 stat(s, DEACTIVATE_EMPTY);
3049 discard_slab(s, slab);
3055 * Put all the cpu partial slabs to the node partial list.
3057 static void put_partials(struct kmem_cache *s)
3059 struct slab *partial_slab;
3060 unsigned long flags;
3062 local_lock_irqsave(&s->cpu_slab->lock, flags);
3063 partial_slab = this_cpu_read(s->cpu_slab->partial);
3064 this_cpu_write(s->cpu_slab->partial, NULL);
3065 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3068 __put_partials(s, partial_slab);
3071 static void put_partials_cpu(struct kmem_cache *s,
3072 struct kmem_cache_cpu *c)
3074 struct slab *partial_slab;
3076 partial_slab = slub_percpu_partial(c);
3080 __put_partials(s, partial_slab);
3084 * Put a slab into a partial slab slot if available.
3086 * If we did not find a slot then simply move all the partials to the
3087 * per node partial list.
3089 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3091 struct slab *oldslab;
3092 struct slab *slab_to_put = NULL;
3093 unsigned long flags;
3096 local_lock_irqsave(&s->cpu_slab->lock, flags);
3098 oldslab = this_cpu_read(s->cpu_slab->partial);
3101 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3103 * Partial array is full. Move the existing set to the
3104 * per node partial list. Postpone the actual unfreezing
3105 * outside of the critical section.
3107 slab_to_put = oldslab;
3110 slabs = oldslab->slabs;
3116 slab->slabs = slabs;
3117 slab->next = oldslab;
3119 this_cpu_write(s->cpu_slab->partial, slab);
3121 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3124 __put_partials(s, slab_to_put);
3125 stat(s, CPU_PARTIAL_DRAIN);
3129 #else /* CONFIG_SLUB_CPU_PARTIAL */
3131 static inline void put_partials(struct kmem_cache *s) { }
3132 static inline void put_partials_cpu(struct kmem_cache *s,
3133 struct kmem_cache_cpu *c) { }
3135 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3137 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3139 unsigned long flags;
3143 local_lock_irqsave(&s->cpu_slab->lock, flags);
3146 freelist = c->freelist;
3150 c->tid = next_tid(c->tid);
3152 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3155 deactivate_slab(s, slab, freelist);
3156 stat(s, CPUSLAB_FLUSH);
3160 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3162 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3163 void *freelist = c->freelist;
3164 struct slab *slab = c->slab;
3168 c->tid = next_tid(c->tid);
3171 deactivate_slab(s, slab, freelist);
3172 stat(s, CPUSLAB_FLUSH);
3175 put_partials_cpu(s, c);
3178 struct slub_flush_work {
3179 struct work_struct work;
3180 struct kmem_cache *s;
3187 * Called from CPU work handler with migration disabled.
3189 static void flush_cpu_slab(struct work_struct *w)
3191 struct kmem_cache *s;
3192 struct kmem_cache_cpu *c;
3193 struct slub_flush_work *sfw;
3195 sfw = container_of(w, struct slub_flush_work, work);
3198 c = this_cpu_ptr(s->cpu_slab);
3206 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3208 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3210 return c->slab || slub_percpu_partial(c);
3213 static DEFINE_MUTEX(flush_lock);
3214 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3216 static void flush_all_cpus_locked(struct kmem_cache *s)
3218 struct slub_flush_work *sfw;
3221 lockdep_assert_cpus_held();
3222 mutex_lock(&flush_lock);
3224 for_each_online_cpu(cpu) {
3225 sfw = &per_cpu(slub_flush, cpu);
3226 if (!has_cpu_slab(cpu, s)) {
3230 INIT_WORK(&sfw->work, flush_cpu_slab);
3233 queue_work_on(cpu, flushwq, &sfw->work);
3236 for_each_online_cpu(cpu) {
3237 sfw = &per_cpu(slub_flush, cpu);
3240 flush_work(&sfw->work);
3243 mutex_unlock(&flush_lock);
3246 static void flush_all(struct kmem_cache *s)
3249 flush_all_cpus_locked(s);
3254 * Use the cpu notifier to insure that the cpu slabs are flushed when
3257 static int slub_cpu_dead(unsigned int cpu)
3259 struct kmem_cache *s;
3261 mutex_lock(&slab_mutex);
3262 list_for_each_entry(s, &slab_caches, list)
3263 __flush_cpu_slab(s, cpu);
3264 mutex_unlock(&slab_mutex);
3268 #else /* CONFIG_SLUB_TINY */
3269 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3270 static inline void flush_all(struct kmem_cache *s) { }
3271 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3272 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3273 #endif /* CONFIG_SLUB_TINY */
3276 * Check if the objects in a per cpu structure fit numa
3277 * locality expectations.
3279 static inline int node_match(struct slab *slab, int node)
3282 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3288 #ifdef CONFIG_SLUB_DEBUG
3289 static int count_free(struct slab *slab)
3291 return slab->objects - slab->inuse;
3294 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3296 return atomic_long_read(&n->total_objects);
3299 /* Supports checking bulk free of a constructed freelist */
3300 static inline bool free_debug_processing(struct kmem_cache *s,
3301 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3302 unsigned long addr, depot_stack_handle_t handle)
3304 bool checks_ok = false;
3305 void *object = head;
3308 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3309 if (!check_slab(s, slab))
3313 if (slab->inuse < *bulk_cnt) {
3314 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3315 slab->inuse, *bulk_cnt);
3321 if (++cnt > *bulk_cnt)
3324 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3325 if (!free_consistency_checks(s, slab, object, addr))
3329 if (s->flags & SLAB_STORE_USER)
3330 set_track_update(s, object, TRACK_FREE, addr, handle);
3331 trace(s, slab, object, 0);
3332 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3333 init_object(s, object, SLUB_RED_INACTIVE);
3335 /* Reached end of constructed freelist yet? */
3336 if (object != tail) {
3337 object = get_freepointer(s, object);
3343 if (cnt != *bulk_cnt) {
3344 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3352 slab_fix(s, "Object at 0x%p not freed", object);
3356 #endif /* CONFIG_SLUB_DEBUG */
3358 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3359 static unsigned long count_partial(struct kmem_cache_node *n,
3360 int (*get_count)(struct slab *))
3362 unsigned long flags;
3363 unsigned long x = 0;
3366 spin_lock_irqsave(&n->list_lock, flags);
3367 list_for_each_entry(slab, &n->partial, slab_list)
3368 x += get_count(slab);
3369 spin_unlock_irqrestore(&n->list_lock, flags);
3372 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3374 #ifdef CONFIG_SLUB_DEBUG
3375 #define MAX_PARTIAL_TO_SCAN 10000
3377 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3379 unsigned long flags;
3380 unsigned long x = 0;
3383 spin_lock_irqsave(&n->list_lock, flags);
3384 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3385 list_for_each_entry(slab, &n->partial, slab_list)
3386 x += slab->objects - slab->inuse;
3389 * For a long list, approximate the total count of objects in
3390 * it to meet the limit on the number of slabs to scan.
3391 * Scan from both the list's head and tail for better accuracy.
3393 unsigned long scanned = 0;
3395 list_for_each_entry(slab, &n->partial, slab_list) {
3396 x += slab->objects - slab->inuse;
3397 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3400 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3401 x += slab->objects - slab->inuse;
3402 if (++scanned == MAX_PARTIAL_TO_SCAN)
3405 x = mult_frac(x, n->nr_partial, scanned);
3406 x = min(x, node_nr_objs(n));
3408 spin_unlock_irqrestore(&n->list_lock, flags);
3412 static noinline void
3413 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3415 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3416 DEFAULT_RATELIMIT_BURST);
3418 struct kmem_cache_node *n;
3420 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3423 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3424 nid, gfpflags, &gfpflags);
3425 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3426 s->name, s->object_size, s->size, oo_order(s->oo),
3429 if (oo_order(s->min) > get_order(s->object_size))
3430 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3433 for_each_kmem_cache_node(s, node, n) {
3434 unsigned long nr_slabs;
3435 unsigned long nr_objs;
3436 unsigned long nr_free;
3438 nr_free = count_partial_free_approx(n);
3439 nr_slabs = node_nr_slabs(n);
3440 nr_objs = node_nr_objs(n);
3442 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3443 node, nr_slabs, nr_objs, nr_free);
3446 #else /* CONFIG_SLUB_DEBUG */
3448 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3451 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3453 if (unlikely(slab_test_pfmemalloc(slab)))
3454 return gfp_pfmemalloc_allowed(gfpflags);
3459 #ifndef CONFIG_SLUB_TINY
3461 __update_cpu_freelist_fast(struct kmem_cache *s,
3462 void *freelist_old, void *freelist_new,
3465 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3466 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3468 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3469 &old.full, new.full);
3473 * Check the slab->freelist and either transfer the freelist to the
3474 * per cpu freelist or deactivate the slab.
3476 * The slab is still frozen if the return value is not NULL.
3478 * If this function returns NULL then the slab has been unfrozen.
3480 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3483 unsigned long counters;
3486 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3489 freelist = slab->freelist;
3490 counters = slab->counters;
3492 new.counters = counters;
3494 new.inuse = slab->objects;
3495 new.frozen = freelist != NULL;
3497 } while (!__slab_update_freelist(s, slab,
3506 * Freeze the partial slab and return the pointer to the freelist.
3508 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3511 unsigned long counters;
3515 freelist = slab->freelist;
3516 counters = slab->counters;
3518 new.counters = counters;
3519 VM_BUG_ON(new.frozen);
3521 new.inuse = slab->objects;
3524 } while (!slab_update_freelist(s, slab,
3533 * Slow path. The lockless freelist is empty or we need to perform
3536 * Processing is still very fast if new objects have been freed to the
3537 * regular freelist. In that case we simply take over the regular freelist
3538 * as the lockless freelist and zap the regular freelist.
3540 * If that is not working then we fall back to the partial lists. We take the
3541 * first element of the freelist as the object to allocate now and move the
3542 * rest of the freelist to the lockless freelist.
3544 * And if we were unable to get a new slab from the partial slab lists then
3545 * we need to allocate a new slab. This is the slowest path since it involves
3546 * a call to the page allocator and the setup of a new slab.
3548 * Version of __slab_alloc to use when we know that preemption is
3549 * already disabled (which is the case for bulk allocation).
3551 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3552 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3556 unsigned long flags;
3557 struct partial_context pc;
3558 bool try_thisnode = true;
3560 stat(s, ALLOC_SLOWPATH);
3564 slab = READ_ONCE(c->slab);
3567 * if the node is not online or has no normal memory, just
3568 * ignore the node constraint
3570 if (unlikely(node != NUMA_NO_NODE &&
3571 !node_isset(node, slab_nodes)))
3572 node = NUMA_NO_NODE;
3576 if (unlikely(!node_match(slab, node))) {
3578 * same as above but node_match() being false already
3579 * implies node != NUMA_NO_NODE
3581 if (!node_isset(node, slab_nodes)) {
3582 node = NUMA_NO_NODE;
3584 stat(s, ALLOC_NODE_MISMATCH);
3585 goto deactivate_slab;
3590 * By rights, we should be searching for a slab page that was
3591 * PFMEMALLOC but right now, we are losing the pfmemalloc
3592 * information when the page leaves the per-cpu allocator
3594 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3595 goto deactivate_slab;
3597 /* must check again c->slab in case we got preempted and it changed */
3598 local_lock_irqsave(&s->cpu_slab->lock, flags);
3599 if (unlikely(slab != c->slab)) {
3600 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3603 freelist = c->freelist;
3607 freelist = get_freelist(s, slab);
3611 c->tid = next_tid(c->tid);
3612 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3613 stat(s, DEACTIVATE_BYPASS);
3617 stat(s, ALLOC_REFILL);
3621 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3624 * freelist is pointing to the list of objects to be used.
3625 * slab is pointing to the slab from which the objects are obtained.
3626 * That slab must be frozen for per cpu allocations to work.
3628 VM_BUG_ON(!c->slab->frozen);
3629 c->freelist = get_freepointer(s, freelist);
3630 c->tid = next_tid(c->tid);
3631 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3636 local_lock_irqsave(&s->cpu_slab->lock, flags);
3637 if (slab != c->slab) {
3638 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3641 freelist = c->freelist;
3644 c->tid = next_tid(c->tid);
3645 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3646 deactivate_slab(s, slab, freelist);
3650 #ifdef CONFIG_SLUB_CPU_PARTIAL
3651 while (slub_percpu_partial(c)) {
3652 local_lock_irqsave(&s->cpu_slab->lock, flags);
3653 if (unlikely(c->slab)) {
3654 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3657 if (unlikely(!slub_percpu_partial(c))) {
3658 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3659 /* we were preempted and partial list got empty */
3663 slab = slub_percpu_partial(c);
3664 slub_set_percpu_partial(c, slab);
3666 if (likely(node_match(slab, node) &&
3667 pfmemalloc_match(slab, gfpflags))) {
3669 freelist = get_freelist(s, slab);
3670 VM_BUG_ON(!freelist);
3671 stat(s, CPU_PARTIAL_ALLOC);
3675 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3678 __put_partials(s, slab);
3684 pc.flags = gfpflags;
3686 * When a preferred node is indicated but no __GFP_THISNODE
3688 * 1) try to get a partial slab from target node only by having
3689 * __GFP_THISNODE in pc.flags for get_partial()
3690 * 2) if 1) failed, try to allocate a new slab from target node with
3691 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3692 * 3) if 2) failed, retry with original gfpflags which will allow
3693 * get_partial() try partial lists of other nodes before potentially
3694 * allocating new page from other nodes
3696 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3698 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3700 pc.orig_size = orig_size;
3701 slab = get_partial(s, node, &pc);
3703 if (kmem_cache_debug(s)) {
3704 freelist = pc.object;
3706 * For debug caches here we had to go through
3707 * alloc_single_from_partial() so just store the
3708 * tracking info and return the object.
3710 if (s->flags & SLAB_STORE_USER)
3711 set_track(s, freelist, TRACK_ALLOC, addr);
3716 freelist = freeze_slab(s, slab);
3717 goto retry_load_slab;
3720 slub_put_cpu_ptr(s->cpu_slab);
3721 slab = new_slab(s, pc.flags, node);
3722 c = slub_get_cpu_ptr(s->cpu_slab);
3724 if (unlikely(!slab)) {
3725 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3727 try_thisnode = false;
3730 slab_out_of_memory(s, gfpflags, node);
3734 stat(s, ALLOC_SLAB);
3736 if (kmem_cache_debug(s)) {
3737 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3739 if (unlikely(!freelist))
3742 if (s->flags & SLAB_STORE_USER)
3743 set_track(s, freelist, TRACK_ALLOC, addr);
3749 * No other reference to the slab yet so we can
3750 * muck around with it freely without cmpxchg
3752 freelist = slab->freelist;
3753 slab->freelist = NULL;
3754 slab->inuse = slab->objects;
3757 inc_slabs_node(s, slab_nid(slab), slab->objects);
3759 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3761 * For !pfmemalloc_match() case we don't load freelist so that
3762 * we don't make further mismatched allocations easier.
3764 deactivate_slab(s, slab, get_freepointer(s, freelist));
3770 local_lock_irqsave(&s->cpu_slab->lock, flags);
3771 if (unlikely(c->slab)) {
3772 void *flush_freelist = c->freelist;
3773 struct slab *flush_slab = c->slab;
3777 c->tid = next_tid(c->tid);
3779 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3781 deactivate_slab(s, flush_slab, flush_freelist);
3783 stat(s, CPUSLAB_FLUSH);
3785 goto retry_load_slab;
3793 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3794 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3797 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3798 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3802 #ifdef CONFIG_PREEMPT_COUNT
3804 * We may have been preempted and rescheduled on a different
3805 * cpu before disabling preemption. Need to reload cpu area
3808 c = slub_get_cpu_ptr(s->cpu_slab);
3811 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3812 #ifdef CONFIG_PREEMPT_COUNT
3813 slub_put_cpu_ptr(s->cpu_slab);
3818 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3819 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3821 struct kmem_cache_cpu *c;
3828 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3829 * enabled. We may switch back and forth between cpus while
3830 * reading from one cpu area. That does not matter as long
3831 * as we end up on the original cpu again when doing the cmpxchg.
3833 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3834 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3835 * the tid. If we are preempted and switched to another cpu between the
3836 * two reads, it's OK as the two are still associated with the same cpu
3837 * and cmpxchg later will validate the cpu.
3839 c = raw_cpu_ptr(s->cpu_slab);
3840 tid = READ_ONCE(c->tid);
3843 * Irqless object alloc/free algorithm used here depends on sequence
3844 * of fetching cpu_slab's data. tid should be fetched before anything
3845 * on c to guarantee that object and slab associated with previous tid
3846 * won't be used with current tid. If we fetch tid first, object and
3847 * slab could be one associated with next tid and our alloc/free
3848 * request will be failed. In this case, we will retry. So, no problem.
3853 * The transaction ids are globally unique per cpu and per operation on
3854 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3855 * occurs on the right processor and that there was no operation on the
3856 * linked list in between.
3859 object = c->freelist;
3862 if (!USE_LOCKLESS_FAST_PATH() ||
3863 unlikely(!object || !slab || !node_match(slab, node))) {
3864 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3866 void *next_object = get_freepointer_safe(s, object);
3869 * The cmpxchg will only match if there was no additional
3870 * operation and if we are on the right processor.
3872 * The cmpxchg does the following atomically (without lock
3874 * 1. Relocate first pointer to the current per cpu area.
3875 * 2. Verify that tid and freelist have not been changed
3876 * 3. If they were not changed replace tid and freelist
3878 * Since this is without lock semantics the protection is only
3879 * against code executing on this cpu *not* from access by
3882 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3883 note_cmpxchg_failure("slab_alloc", s, tid);
3886 prefetch_freepointer(s, next_object);
3887 stat(s, ALLOC_FASTPATH);
3892 #else /* CONFIG_SLUB_TINY */
3893 static void *__slab_alloc_node(struct kmem_cache *s,
3894 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3896 struct partial_context pc;
3900 pc.flags = gfpflags;
3901 pc.orig_size = orig_size;
3902 slab = get_partial(s, node, &pc);
3907 slab = new_slab(s, gfpflags, node);
3908 if (unlikely(!slab)) {
3909 slab_out_of_memory(s, gfpflags, node);
3913 object = alloc_single_from_new_slab(s, slab, orig_size);
3917 #endif /* CONFIG_SLUB_TINY */
3920 * If the object has been wiped upon free, make sure it's fully initialized by
3921 * zeroing out freelist pointer.
3923 * Note that we also wipe custom freelist pointers specified via
3924 * s->rcu_freeptr_offset.
3926 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3929 if (unlikely(slab_want_init_on_free(s)) && obj &&
3930 !freeptr_outside_object(s))
3931 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3935 static __fastpath_inline
3936 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
3938 flags &= gfp_allowed_mask;
3942 if (unlikely(should_failslab(s, flags)))
3948 static __fastpath_inline
3949 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3950 gfp_t flags, size_t size, void **p, bool init,
3951 unsigned int orig_size)
3953 unsigned int zero_size = s->object_size;
3954 bool kasan_init = init;
3956 gfp_t init_flags = flags & gfp_allowed_mask;
3959 * For kmalloc object, the allocated memory size(object_size) is likely
3960 * larger than the requested size(orig_size). If redzone check is
3961 * enabled for the extra space, don't zero it, as it will be redzoned
3962 * soon. The redzone operation for this extra space could be seen as a
3963 * replacement of current poisoning under certain debug option, and
3964 * won't break other sanity checks.
3966 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3967 (s->flags & SLAB_KMALLOC))
3968 zero_size = orig_size;
3971 * When slab_debug is enabled, avoid memory initialization integrated
3972 * into KASAN and instead zero out the memory via the memset below with
3973 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3974 * cause false-positive reports. This does not lead to a performance
3975 * penalty on production builds, as slab_debug is not intended to be
3978 if (__slub_debug_enabled())
3982 * As memory initialization might be integrated into KASAN,
3983 * kasan_slab_alloc and initialization memset must be
3984 * kept together to avoid discrepancies in behavior.
3986 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3988 for (i = 0; i < size; i++) {
3989 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3990 if (p[i] && init && (!kasan_init ||
3991 !kasan_has_integrated_init()))
3992 memset(p[i], 0, zero_size);
3993 kmemleak_alloc_recursive(p[i], s->object_size, 1,
3994 s->flags, init_flags);
3995 kmsan_slab_alloc(s, p[i], init_flags);
3996 alloc_tagging_slab_alloc_hook(s, p[i], flags);
3999 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4003 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4004 * have the fastpath folded into their functions. So no function call
4005 * overhead for requests that can be satisfied on the fastpath.
4007 * The fastpath works by first checking if the lockless freelist can be used.
4008 * If not then __slab_alloc is called for slow processing.
4010 * Otherwise we can simply pick the next object from the lockless free list.
4012 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4013 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4018 s = slab_pre_alloc_hook(s, gfpflags);
4022 object = kfence_alloc(s, orig_size, gfpflags);
4023 if (unlikely(object))
4026 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4028 maybe_wipe_obj_freeptr(s, object);
4029 init = slab_want_init_on_alloc(gfpflags, s);
4033 * When init equals 'true', like for kzalloc() family, only
4034 * @orig_size bytes might be zeroed instead of s->object_size
4035 * In case this fails due to memcg_slab_post_alloc_hook(),
4036 * object is set to NULL
4038 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4043 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4045 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4048 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4052 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4054 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4057 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4060 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4064 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4067 * kmem_cache_alloc_node - Allocate an object on the specified node
4068 * @s: The cache to allocate from.
4069 * @gfpflags: See kmalloc().
4070 * @node: node number of the target node.
4072 * Identical to kmem_cache_alloc but it will allocate memory on the given
4073 * node, which can improve the performance for cpu bound structures.
4075 * Fallback to other node is possible if __GFP_THISNODE is not set.
4077 * Return: pointer to the new object or %NULL in case of error
4079 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4081 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4083 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4087 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4090 * To avoid unnecessary overhead, we pass through large allocation requests
4091 * directly to the page allocator. We use __GFP_COMP, because we will need to
4092 * know the allocation order to free the pages properly in kfree.
4094 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4096 struct folio *folio;
4098 unsigned int order = get_order(size);
4100 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4101 flags = kmalloc_fix_flags(flags);
4103 flags |= __GFP_COMP;
4104 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4106 ptr = folio_address(folio);
4107 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4108 PAGE_SIZE << order);
4111 ptr = kasan_kmalloc_large(ptr, size, flags);
4112 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4113 kmemleak_alloc(ptr, size, 1, flags);
4114 kmsan_kmalloc_large(ptr, size, flags);
4119 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4121 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4123 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4124 flags, NUMA_NO_NODE);
4127 EXPORT_SYMBOL(__kmalloc_large_noprof);
4129 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4131 void *ret = ___kmalloc_large_node(size, flags, node);
4133 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4137 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4139 static __always_inline
4140 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4141 unsigned long caller)
4143 struct kmem_cache *s;
4146 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4147 ret = __kmalloc_large_node_noprof(size, flags, node);
4148 trace_kmalloc(caller, ret, size,
4149 PAGE_SIZE << get_order(size), flags, node);
4153 if (unlikely(!size))
4154 return ZERO_SIZE_PTR;
4156 s = kmalloc_slab(size, b, flags, caller);
4158 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4159 ret = kasan_kmalloc(s, ret, size, flags);
4160 trace_kmalloc(caller, ret, size, s->size, flags, node);
4163 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4165 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4167 EXPORT_SYMBOL(__kmalloc_node_noprof);
4169 void *__kmalloc_noprof(size_t size, gfp_t flags)
4171 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4173 EXPORT_SYMBOL(__kmalloc_noprof);
4175 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4176 int node, unsigned long caller)
4178 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4181 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4183 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4185 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4188 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4190 ret = kasan_kmalloc(s, ret, size, gfpflags);
4193 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4195 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4196 int node, size_t size)
4198 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4200 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4202 ret = kasan_kmalloc(s, ret, size, gfpflags);
4205 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4207 static noinline void free_to_partial_list(
4208 struct kmem_cache *s, struct slab *slab,
4209 void *head, void *tail, int bulk_cnt,
4212 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4213 struct slab *slab_free = NULL;
4215 unsigned long flags;
4216 depot_stack_handle_t handle = 0;
4218 if (s->flags & SLAB_STORE_USER)
4219 handle = set_track_prepare();
4221 spin_lock_irqsave(&n->list_lock, flags);
4223 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4224 void *prior = slab->freelist;
4226 /* Perform the actual freeing while we still hold the locks */
4228 set_freepointer(s, tail, prior);
4229 slab->freelist = head;
4232 * If the slab is empty, and node's partial list is full,
4233 * it should be discarded anyway no matter it's on full or
4236 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4240 /* was on full list */
4241 remove_full(s, n, slab);
4243 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4244 stat(s, FREE_ADD_PARTIAL);
4246 } else if (slab_free) {
4247 remove_partial(n, slab);
4248 stat(s, FREE_REMOVE_PARTIAL);
4254 * Update the counters while still holding n->list_lock to
4255 * prevent spurious validation warnings
4257 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4260 spin_unlock_irqrestore(&n->list_lock, flags);
4264 free_slab(s, slab_free);
4269 * Slow path handling. This may still be called frequently since objects
4270 * have a longer lifetime than the cpu slabs in most processing loads.
4272 * So we still attempt to reduce cache line usage. Just take the slab
4273 * lock and free the item. If there is no additional partial slab
4274 * handling required then we can return immediately.
4276 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4277 void *head, void *tail, int cnt,
4284 unsigned long counters;
4285 struct kmem_cache_node *n = NULL;
4286 unsigned long flags;
4287 bool on_node_partial;
4289 stat(s, FREE_SLOWPATH);
4291 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4292 free_to_partial_list(s, slab, head, tail, cnt, addr);
4298 spin_unlock_irqrestore(&n->list_lock, flags);
4301 prior = slab->freelist;
4302 counters = slab->counters;
4303 set_freepointer(s, tail, prior);
4304 new.counters = counters;
4305 was_frozen = new.frozen;
4307 if ((!new.inuse || !prior) && !was_frozen) {
4308 /* Needs to be taken off a list */
4309 if (!kmem_cache_has_cpu_partial(s) || prior) {
4311 n = get_node(s, slab_nid(slab));
4313 * Speculatively acquire the list_lock.
4314 * If the cmpxchg does not succeed then we may
4315 * drop the list_lock without any processing.
4317 * Otherwise the list_lock will synchronize with
4318 * other processors updating the list of slabs.
4320 spin_lock_irqsave(&n->list_lock, flags);
4322 on_node_partial = slab_test_node_partial(slab);
4326 } while (!slab_update_freelist(s, slab,
4333 if (likely(was_frozen)) {
4335 * The list lock was not taken therefore no list
4336 * activity can be necessary.
4338 stat(s, FREE_FROZEN);
4339 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4341 * If we started with a full slab then put it onto the
4342 * per cpu partial list.
4344 put_cpu_partial(s, slab, 1);
4345 stat(s, CPU_PARTIAL_FREE);
4352 * This slab was partially empty but not on the per-node partial list,
4353 * in which case we shouldn't manipulate its list, just return.
4355 if (prior && !on_node_partial) {
4356 spin_unlock_irqrestore(&n->list_lock, flags);
4360 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4364 * Objects left in the slab. If it was not on the partial list before
4367 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4368 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4369 stat(s, FREE_ADD_PARTIAL);
4371 spin_unlock_irqrestore(&n->list_lock, flags);
4377 * Slab on the partial list.
4379 remove_partial(n, slab);
4380 stat(s, FREE_REMOVE_PARTIAL);
4383 spin_unlock_irqrestore(&n->list_lock, flags);
4385 discard_slab(s, slab);
4388 #ifndef CONFIG_SLUB_TINY
4390 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4391 * can perform fastpath freeing without additional function calls.
4393 * The fastpath is only possible if we are freeing to the current cpu slab
4394 * of this processor. This typically the case if we have just allocated
4397 * If fastpath is not possible then fall back to __slab_free where we deal
4398 * with all sorts of special processing.
4400 * Bulk free of a freelist with several objects (all pointing to the
4401 * same slab) possible by specifying head and tail ptr, plus objects
4402 * count (cnt). Bulk free indicated by tail pointer being set.
4404 static __always_inline void do_slab_free(struct kmem_cache *s,
4405 struct slab *slab, void *head, void *tail,
4406 int cnt, unsigned long addr)
4408 struct kmem_cache_cpu *c;
4414 * Determine the currently cpus per cpu slab.
4415 * The cpu may change afterward. However that does not matter since
4416 * data is retrieved via this pointer. If we are on the same cpu
4417 * during the cmpxchg then the free will succeed.
4419 c = raw_cpu_ptr(s->cpu_slab);
4420 tid = READ_ONCE(c->tid);
4422 /* Same with comment on barrier() in __slab_alloc_node() */
4425 if (unlikely(slab != c->slab)) {
4426 __slab_free(s, slab, head, tail, cnt, addr);
4430 if (USE_LOCKLESS_FAST_PATH()) {
4431 freelist = READ_ONCE(c->freelist);
4433 set_freepointer(s, tail, freelist);
4435 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4436 note_cmpxchg_failure("slab_free", s, tid);
4440 /* Update the free list under the local lock */
4441 local_lock(&s->cpu_slab->lock);
4442 c = this_cpu_ptr(s->cpu_slab);
4443 if (unlikely(slab != c->slab)) {
4444 local_unlock(&s->cpu_slab->lock);
4448 freelist = c->freelist;
4450 set_freepointer(s, tail, freelist);
4452 c->tid = next_tid(tid);
4454 local_unlock(&s->cpu_slab->lock);
4456 stat_add(s, FREE_FASTPATH, cnt);
4458 #else /* CONFIG_SLUB_TINY */
4459 static void do_slab_free(struct kmem_cache *s,
4460 struct slab *slab, void *head, void *tail,
4461 int cnt, unsigned long addr)
4463 __slab_free(s, slab, head, tail, cnt, addr);
4465 #endif /* CONFIG_SLUB_TINY */
4467 static __fastpath_inline
4468 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4471 memcg_slab_free_hook(s, slab, &object, 1);
4472 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4474 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4475 do_slab_free(s, slab, object, object, 1, addr);
4479 /* Do not inline the rare memcg charging failed path into the allocation path */
4481 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4483 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4484 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4488 static __fastpath_inline
4489 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4490 void *tail, void **p, int cnt, unsigned long addr)
4492 memcg_slab_free_hook(s, slab, p, cnt);
4493 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4495 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4496 * to remove objects, whose reuse must be delayed.
4498 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4499 do_slab_free(s, slab, head, tail, cnt, addr);
4502 #ifdef CONFIG_KASAN_GENERIC
4503 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4505 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4509 static inline struct kmem_cache *virt_to_cache(const void *obj)
4513 slab = virt_to_slab(obj);
4514 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4516 return slab->slab_cache;
4519 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4521 struct kmem_cache *cachep;
4523 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4524 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4527 cachep = virt_to_cache(x);
4528 if (WARN(cachep && cachep != s,
4529 "%s: Wrong slab cache. %s but object is from %s\n",
4530 __func__, s->name, cachep->name))
4531 print_tracking(cachep, x);
4536 * kmem_cache_free - Deallocate an object
4537 * @s: The cache the allocation was from.
4538 * @x: The previously allocated object.
4540 * Free an object which was previously allocated from this
4543 void kmem_cache_free(struct kmem_cache *s, void *x)
4545 s = cache_from_obj(s, x);
4548 trace_kmem_cache_free(_RET_IP_, x, s);
4549 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4551 EXPORT_SYMBOL(kmem_cache_free);
4553 static void free_large_kmalloc(struct folio *folio, void *object)
4555 unsigned int order = folio_order(folio);
4557 if (WARN_ON_ONCE(order == 0))
4558 pr_warn_once("object pointer: 0x%p\n", object);
4560 kmemleak_free(object);
4561 kasan_kfree_large(object);
4562 kmsan_kfree_large(object);
4564 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4565 -(PAGE_SIZE << order));
4570 * kfree - free previously allocated memory
4571 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4573 * If @object is NULL, no operation is performed.
4575 void kfree(const void *object)
4577 struct folio *folio;
4579 struct kmem_cache *s;
4580 void *x = (void *)object;
4582 trace_kfree(_RET_IP_, object);
4584 if (unlikely(ZERO_OR_NULL_PTR(object)))
4587 folio = virt_to_folio(object);
4588 if (unlikely(!folio_test_slab(folio))) {
4589 free_large_kmalloc(folio, (void *)object);
4593 slab = folio_slab(folio);
4594 s = slab->slab_cache;
4595 slab_free(s, slab, x, _RET_IP_);
4597 EXPORT_SYMBOL(kfree);
4599 struct detached_freelist {
4604 struct kmem_cache *s;
4608 * This function progressively scans the array with free objects (with
4609 * a limited look ahead) and extract objects belonging to the same
4610 * slab. It builds a detached freelist directly within the given
4611 * slab/objects. This can happen without any need for
4612 * synchronization, because the objects are owned by running process.
4613 * The freelist is build up as a single linked list in the objects.
4614 * The idea is, that this detached freelist can then be bulk
4615 * transferred to the real freelist(s), but only requiring a single
4616 * synchronization primitive. Look ahead in the array is limited due
4617 * to performance reasons.
4620 int build_detached_freelist(struct kmem_cache *s, size_t size,
4621 void **p, struct detached_freelist *df)
4625 struct folio *folio;
4629 folio = virt_to_folio(object);
4631 /* Handle kalloc'ed objects */
4632 if (unlikely(!folio_test_slab(folio))) {
4633 free_large_kmalloc(folio, object);
4637 /* Derive kmem_cache from object */
4638 df->slab = folio_slab(folio);
4639 df->s = df->slab->slab_cache;
4641 df->slab = folio_slab(folio);
4642 df->s = cache_from_obj(s, object); /* Support for memcg */
4645 /* Start new detached freelist */
4647 df->freelist = object;
4650 if (is_kfence_address(object))
4653 set_freepointer(df->s, object, NULL);
4658 /* df->slab is always set at this point */
4659 if (df->slab == virt_to_slab(object)) {
4660 /* Opportunity build freelist */
4661 set_freepointer(df->s, object, df->freelist);
4662 df->freelist = object;
4666 swap(p[size], p[same]);
4670 /* Limit look ahead search */
4679 * Internal bulk free of objects that were not initialised by the post alloc
4680 * hooks and thus should not be processed by the free hooks
4682 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4688 struct detached_freelist df;
4690 size = build_detached_freelist(s, size, p, &df);
4694 if (kfence_free(df.freelist))
4697 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4699 } while (likely(size));
4702 /* Note that interrupts must be enabled when calling this function. */
4703 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4709 struct detached_freelist df;
4711 size = build_detached_freelist(s, size, p, &df);
4715 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4717 } while (likely(size));
4719 EXPORT_SYMBOL(kmem_cache_free_bulk);
4721 #ifndef CONFIG_SLUB_TINY
4723 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4726 struct kmem_cache_cpu *c;
4727 unsigned long irqflags;
4731 * Drain objects in the per cpu slab, while disabling local
4732 * IRQs, which protects against PREEMPT and interrupts
4733 * handlers invoking normal fastpath.
4735 c = slub_get_cpu_ptr(s->cpu_slab);
4736 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4738 for (i = 0; i < size; i++) {
4739 void *object = kfence_alloc(s, s->object_size, flags);
4741 if (unlikely(object)) {
4746 object = c->freelist;
4747 if (unlikely(!object)) {
4749 * We may have removed an object from c->freelist using
4750 * the fastpath in the previous iteration; in that case,
4751 * c->tid has not been bumped yet.
4752 * Since ___slab_alloc() may reenable interrupts while
4753 * allocating memory, we should bump c->tid now.
4755 c->tid = next_tid(c->tid);
4757 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4760 * Invoking slow path likely have side-effect
4761 * of re-populating per CPU c->freelist
4763 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4764 _RET_IP_, c, s->object_size);
4765 if (unlikely(!p[i]))
4768 c = this_cpu_ptr(s->cpu_slab);
4769 maybe_wipe_obj_freeptr(s, p[i]);
4771 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4773 continue; /* goto for-loop */
4775 c->freelist = get_freepointer(s, object);
4777 maybe_wipe_obj_freeptr(s, p[i]);
4778 stat(s, ALLOC_FASTPATH);
4780 c->tid = next_tid(c->tid);
4781 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4782 slub_put_cpu_ptr(s->cpu_slab);
4787 slub_put_cpu_ptr(s->cpu_slab);
4788 __kmem_cache_free_bulk(s, i, p);
4792 #else /* CONFIG_SLUB_TINY */
4793 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4794 size_t size, void **p)
4798 for (i = 0; i < size; i++) {
4799 void *object = kfence_alloc(s, s->object_size, flags);
4801 if (unlikely(object)) {
4806 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4807 _RET_IP_, s->object_size);
4808 if (unlikely(!p[i]))
4811 maybe_wipe_obj_freeptr(s, p[i]);
4817 __kmem_cache_free_bulk(s, i, p);
4820 #endif /* CONFIG_SLUB_TINY */
4822 /* Note that interrupts must be enabled when calling this function. */
4823 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4831 s = slab_pre_alloc_hook(s, flags);
4835 i = __kmem_cache_alloc_bulk(s, flags, size, p);
4836 if (unlikely(i == 0))
4840 * memcg and kmem_cache debug support and memory initialization.
4841 * Done outside of the IRQ disabled fastpath loop.
4843 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4844 slab_want_init_on_alloc(flags, s), s->object_size))) {
4849 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4853 * Object placement in a slab is made very easy because we always start at
4854 * offset 0. If we tune the size of the object to the alignment then we can
4855 * get the required alignment by putting one properly sized object after
4858 * Notice that the allocation order determines the sizes of the per cpu
4859 * caches. Each processor has always one slab available for allocations.
4860 * Increasing the allocation order reduces the number of times that slabs
4861 * must be moved on and off the partial lists and is therefore a factor in
4866 * Minimum / Maximum order of slab pages. This influences locking overhead
4867 * and slab fragmentation. A higher order reduces the number of partial slabs
4868 * and increases the number of allocations possible without having to
4869 * take the list_lock.
4871 static unsigned int slub_min_order;
4872 static unsigned int slub_max_order =
4873 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4874 static unsigned int slub_min_objects;
4877 * Calculate the order of allocation given an slab object size.
4879 * The order of allocation has significant impact on performance and other
4880 * system components. Generally order 0 allocations should be preferred since
4881 * order 0 does not cause fragmentation in the page allocator. Larger objects
4882 * be problematic to put into order 0 slabs because there may be too much
4883 * unused space left. We go to a higher order if more than 1/16th of the slab
4886 * In order to reach satisfactory performance we must ensure that a minimum
4887 * number of objects is in one slab. Otherwise we may generate too much
4888 * activity on the partial lists which requires taking the list_lock. This is
4889 * less a concern for large slabs though which are rarely used.
4891 * slab_max_order specifies the order where we begin to stop considering the
4892 * number of objects in a slab as critical. If we reach slab_max_order then
4893 * we try to keep the page order as low as possible. So we accept more waste
4894 * of space in favor of a small page order.
4896 * Higher order allocations also allow the placement of more objects in a
4897 * slab and thereby reduce object handling overhead. If the user has
4898 * requested a higher minimum order then we start with that one instead of
4899 * the smallest order which will fit the object.
4901 static inline unsigned int calc_slab_order(unsigned int size,
4902 unsigned int min_order, unsigned int max_order,
4903 unsigned int fract_leftover)
4907 for (order = min_order; order <= max_order; order++) {
4909 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4912 rem = slab_size % size;
4914 if (rem <= slab_size / fract_leftover)
4921 static inline int calculate_order(unsigned int size)
4924 unsigned int min_objects;
4925 unsigned int max_objects;
4926 unsigned int min_order;
4928 min_objects = slub_min_objects;
4931 * Some architectures will only update present cpus when
4932 * onlining them, so don't trust the number if it's just 1. But
4933 * we also don't want to use nr_cpu_ids always, as on some other
4934 * architectures, there can be many possible cpus, but never
4935 * onlined. Here we compromise between trying to avoid too high
4936 * order on systems that appear larger than they are, and too
4937 * low order on systems that appear smaller than they are.
4939 unsigned int nr_cpus = num_present_cpus();
4941 nr_cpus = nr_cpu_ids;
4942 min_objects = 4 * (fls(nr_cpus) + 1);
4944 /* min_objects can't be 0 because get_order(0) is undefined */
4945 max_objects = max(order_objects(slub_max_order, size), 1U);
4946 min_objects = min(min_objects, max_objects);
4948 min_order = max_t(unsigned int, slub_min_order,
4949 get_order(min_objects * size));
4950 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4951 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4954 * Attempt to find best configuration for a slab. This works by first
4955 * attempting to generate a layout with the best possible configuration
4956 * and backing off gradually.
4958 * We start with accepting at most 1/16 waste and try to find the
4959 * smallest order from min_objects-derived/slab_min_order up to
4960 * slab_max_order that will satisfy the constraint. Note that increasing
4961 * the order can only result in same or less fractional waste, not more.
4963 * If that fails, we increase the acceptable fraction of waste and try
4964 * again. The last iteration with fraction of 1/2 would effectively
4965 * accept any waste and give us the order determined by min_objects, as
4966 * long as at least single object fits within slab_max_order.
4968 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4969 order = calc_slab_order(size, min_order, slub_max_order,
4971 if (order <= slub_max_order)
4976 * Doh this slab cannot be placed using slab_max_order.
4978 order = get_order(size);
4979 if (order <= MAX_PAGE_ORDER)
4985 init_kmem_cache_node(struct kmem_cache_node *n)
4988 spin_lock_init(&n->list_lock);
4989 INIT_LIST_HEAD(&n->partial);
4990 #ifdef CONFIG_SLUB_DEBUG
4991 atomic_long_set(&n->nr_slabs, 0);
4992 atomic_long_set(&n->total_objects, 0);
4993 INIT_LIST_HEAD(&n->full);
4997 #ifndef CONFIG_SLUB_TINY
4998 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5000 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5001 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5002 sizeof(struct kmem_cache_cpu));
5005 * Must align to double word boundary for the double cmpxchg
5006 * instructions to work; see __pcpu_double_call_return_bool().
5008 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5009 2 * sizeof(void *));
5014 init_kmem_cache_cpus(s);
5019 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5023 #endif /* CONFIG_SLUB_TINY */
5025 static struct kmem_cache *kmem_cache_node;
5028 * No kmalloc_node yet so do it by hand. We know that this is the first
5029 * slab on the node for this slabcache. There are no concurrent accesses
5032 * Note that this function only works on the kmem_cache_node
5033 * when allocating for the kmem_cache_node. This is used for bootstrapping
5034 * memory on a fresh node that has no slab structures yet.
5036 static void early_kmem_cache_node_alloc(int node)
5039 struct kmem_cache_node *n;
5041 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5043 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5046 if (slab_nid(slab) != node) {
5047 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5048 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5053 #ifdef CONFIG_SLUB_DEBUG
5054 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5056 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5057 slab->freelist = get_freepointer(kmem_cache_node, n);
5059 kmem_cache_node->node[node] = n;
5060 init_kmem_cache_node(n);
5061 inc_slabs_node(kmem_cache_node, node, slab->objects);
5064 * No locks need to be taken here as it has just been
5065 * initialized and there is no concurrent access.
5067 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5070 static void free_kmem_cache_nodes(struct kmem_cache *s)
5073 struct kmem_cache_node *n;
5075 for_each_kmem_cache_node(s, node, n) {
5076 s->node[node] = NULL;
5077 kmem_cache_free(kmem_cache_node, n);
5081 void __kmem_cache_release(struct kmem_cache *s)
5083 cache_random_seq_destroy(s);
5084 #ifndef CONFIG_SLUB_TINY
5085 free_percpu(s->cpu_slab);
5087 free_kmem_cache_nodes(s);
5090 static int init_kmem_cache_nodes(struct kmem_cache *s)
5094 for_each_node_mask(node, slab_nodes) {
5095 struct kmem_cache_node *n;
5097 if (slab_state == DOWN) {
5098 early_kmem_cache_node_alloc(node);
5101 n = kmem_cache_alloc_node(kmem_cache_node,
5105 free_kmem_cache_nodes(s);
5109 init_kmem_cache_node(n);
5115 static void set_cpu_partial(struct kmem_cache *s)
5117 #ifdef CONFIG_SLUB_CPU_PARTIAL
5118 unsigned int nr_objects;
5121 * cpu_partial determined the maximum number of objects kept in the
5122 * per cpu partial lists of a processor.
5124 * Per cpu partial lists mainly contain slabs that just have one
5125 * object freed. If they are used for allocation then they can be
5126 * filled up again with minimal effort. The slab will never hit the
5127 * per node partial lists and therefore no locking will be required.
5129 * For backwards compatibility reasons, this is determined as number
5130 * of objects, even though we now limit maximum number of pages, see
5131 * slub_set_cpu_partial()
5133 if (!kmem_cache_has_cpu_partial(s))
5135 else if (s->size >= PAGE_SIZE)
5137 else if (s->size >= 1024)
5139 else if (s->size >= 256)
5144 slub_set_cpu_partial(s, nr_objects);
5148 /* Was a valid freeptr offset requested? */
5149 static inline bool has_freeptr_offset(const struct kmem_cache *s)
5151 return s->rcu_freeptr_offset != UINT_MAX;
5155 * calculate_sizes() determines the order and the distribution of data within
5158 static int calculate_sizes(struct kmem_cache *s)
5160 slab_flags_t flags = s->flags;
5161 unsigned int size = s->object_size;
5165 * Round up object size to the next word boundary. We can only
5166 * place the free pointer at word boundaries and this determines
5167 * the possible location of the free pointer.
5169 size = ALIGN(size, sizeof(void *));
5171 #ifdef CONFIG_SLUB_DEBUG
5173 * Determine if we can poison the object itself. If the user of
5174 * the slab may touch the object after free or before allocation
5175 * then we should never poison the object itself.
5177 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5179 s->flags |= __OBJECT_POISON;
5181 s->flags &= ~__OBJECT_POISON;
5185 * If we are Redzoning then check if there is some space between the
5186 * end of the object and the free pointer. If not then add an
5187 * additional word to have some bytes to store Redzone information.
5189 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5190 size += sizeof(void *);
5194 * With that we have determined the number of bytes in actual use
5195 * by the object and redzoning.
5199 if (((flags & SLAB_TYPESAFE_BY_RCU) && !has_freeptr_offset(s)) ||
5200 (flags & SLAB_POISON) || s->ctor ||
5201 ((flags & SLAB_RED_ZONE) &&
5202 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5204 * Relocate free pointer after the object if it is not
5205 * permitted to overwrite the first word of the object on
5208 * This is the case if we do RCU, have a constructor or
5209 * destructor, are poisoning the objects, or are
5210 * redzoning an object smaller than sizeof(void *) or are
5211 * redzoning an object with slub_debug_orig_size() enabled,
5212 * in which case the right redzone may be extended.
5214 * The assumption that s->offset >= s->inuse means free
5215 * pointer is outside of the object is used in the
5216 * freeptr_outside_object() function. If that is no
5217 * longer true, the function needs to be modified.
5220 size += sizeof(void *);
5221 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && has_freeptr_offset(s)) {
5222 s->offset = s->rcu_freeptr_offset;
5225 * Store freelist pointer near middle of object to keep
5226 * it away from the edges of the object to avoid small
5227 * sized over/underflows from neighboring allocations.
5229 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5232 #ifdef CONFIG_SLUB_DEBUG
5233 if (flags & SLAB_STORE_USER) {
5235 * Need to store information about allocs and frees after
5238 size += 2 * sizeof(struct track);
5240 /* Save the original kmalloc request size */
5241 if (flags & SLAB_KMALLOC)
5242 size += sizeof(unsigned int);
5246 kasan_cache_create(s, &size, &s->flags);
5247 #ifdef CONFIG_SLUB_DEBUG
5248 if (flags & SLAB_RED_ZONE) {
5250 * Add some empty padding so that we can catch
5251 * overwrites from earlier objects rather than let
5252 * tracking information or the free pointer be
5253 * corrupted if a user writes before the start
5256 size += sizeof(void *);
5258 s->red_left_pad = sizeof(void *);
5259 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5260 size += s->red_left_pad;
5265 * SLUB stores one object immediately after another beginning from
5266 * offset 0. In order to align the objects we have to simply size
5267 * each object to conform to the alignment.
5269 size = ALIGN(size, s->align);
5271 s->reciprocal_size = reciprocal_value(size);
5272 order = calculate_order(size);
5277 s->allocflags = __GFP_COMP;
5279 if (s->flags & SLAB_CACHE_DMA)
5280 s->allocflags |= GFP_DMA;
5282 if (s->flags & SLAB_CACHE_DMA32)
5283 s->allocflags |= GFP_DMA32;
5285 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5286 s->allocflags |= __GFP_RECLAIMABLE;
5289 * Determine the number of objects per slab
5291 s->oo = oo_make(order, size);
5292 s->min = oo_make(get_order(size), size);
5294 return !!oo_objects(s->oo);
5297 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5299 s->flags = kmem_cache_flags(flags, s->name);
5300 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5301 s->random = get_random_long();
5304 if (!calculate_sizes(s))
5306 if (disable_higher_order_debug) {
5308 * Disable debugging flags that store metadata if the min slab
5311 if (get_order(s->size) > get_order(s->object_size)) {
5312 s->flags &= ~DEBUG_METADATA_FLAGS;
5314 if (!calculate_sizes(s))
5319 #ifdef system_has_freelist_aba
5320 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5321 /* Enable fast mode */
5322 s->flags |= __CMPXCHG_DOUBLE;
5327 * The larger the object size is, the more slabs we want on the partial
5328 * list to avoid pounding the page allocator excessively.
5330 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5331 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5336 s->remote_node_defrag_ratio = 1000;
5339 /* Initialize the pre-computed randomized freelist if slab is up */
5340 if (slab_state >= UP) {
5341 if (init_cache_random_seq(s))
5345 if (!init_kmem_cache_nodes(s))
5348 if (alloc_kmem_cache_cpus(s))
5352 __kmem_cache_release(s);
5356 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5359 #ifdef CONFIG_SLUB_DEBUG
5360 void *addr = slab_address(slab);
5363 slab_err(s, slab, text, s->name);
5365 spin_lock(&object_map_lock);
5366 __fill_map(object_map, s, slab);
5368 for_each_object(p, s, addr, slab->objects) {
5370 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5371 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5372 print_tracking(s, p);
5375 spin_unlock(&object_map_lock);
5380 * Attempt to free all partial slabs on a node.
5381 * This is called from __kmem_cache_shutdown(). We must take list_lock
5382 * because sysfs file might still access partial list after the shutdowning.
5384 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5387 struct slab *slab, *h;
5389 BUG_ON(irqs_disabled());
5390 spin_lock_irq(&n->list_lock);
5391 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5393 remove_partial(n, slab);
5394 list_add(&slab->slab_list, &discard);
5396 list_slab_objects(s, slab,
5397 "Objects remaining in %s on __kmem_cache_shutdown()");
5400 spin_unlock_irq(&n->list_lock);
5402 list_for_each_entry_safe(slab, h, &discard, slab_list)
5403 discard_slab(s, slab);
5406 bool __kmem_cache_empty(struct kmem_cache *s)
5409 struct kmem_cache_node *n;
5411 for_each_kmem_cache_node(s, node, n)
5412 if (n->nr_partial || node_nr_slabs(n))
5418 * Release all resources used by a slab cache.
5420 int __kmem_cache_shutdown(struct kmem_cache *s)
5423 struct kmem_cache_node *n;
5425 flush_all_cpus_locked(s);
5426 /* Attempt to free all objects */
5427 for_each_kmem_cache_node(s, node, n) {
5429 if (n->nr_partial || node_nr_slabs(n))
5435 #ifdef CONFIG_PRINTK
5436 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5439 int __maybe_unused i;
5443 struct kmem_cache *s = slab->slab_cache;
5444 struct track __maybe_unused *trackp;
5446 kpp->kp_ptr = object;
5447 kpp->kp_slab = slab;
5448 kpp->kp_slab_cache = s;
5449 base = slab_address(slab);
5450 objp0 = kasan_reset_tag(object);
5451 #ifdef CONFIG_SLUB_DEBUG
5452 objp = restore_red_left(s, objp0);
5456 objnr = obj_to_index(s, slab, objp);
5457 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5458 objp = base + s->size * objnr;
5459 kpp->kp_objp = objp;
5460 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5461 || (objp - base) % s->size) ||
5462 !(s->flags & SLAB_STORE_USER))
5464 #ifdef CONFIG_SLUB_DEBUG
5465 objp = fixup_red_left(s, objp);
5466 trackp = get_track(s, objp, TRACK_ALLOC);
5467 kpp->kp_ret = (void *)trackp->addr;
5468 #ifdef CONFIG_STACKDEPOT
5470 depot_stack_handle_t handle;
5471 unsigned long *entries;
5472 unsigned int nr_entries;
5474 handle = READ_ONCE(trackp->handle);
5476 nr_entries = stack_depot_fetch(handle, &entries);
5477 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5478 kpp->kp_stack[i] = (void *)entries[i];
5481 trackp = get_track(s, objp, TRACK_FREE);
5482 handle = READ_ONCE(trackp->handle);
5484 nr_entries = stack_depot_fetch(handle, &entries);
5485 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5486 kpp->kp_free_stack[i] = (void *)entries[i];
5494 /********************************************************************
5496 *******************************************************************/
5498 static int __init setup_slub_min_order(char *str)
5500 get_option(&str, (int *)&slub_min_order);
5502 if (slub_min_order > slub_max_order)
5503 slub_max_order = slub_min_order;
5508 __setup("slab_min_order=", setup_slub_min_order);
5509 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5512 static int __init setup_slub_max_order(char *str)
5514 get_option(&str, (int *)&slub_max_order);
5515 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5517 if (slub_min_order > slub_max_order)
5518 slub_min_order = slub_max_order;
5523 __setup("slab_max_order=", setup_slub_max_order);
5524 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5526 static int __init setup_slub_min_objects(char *str)
5528 get_option(&str, (int *)&slub_min_objects);
5533 __setup("slab_min_objects=", setup_slub_min_objects);
5534 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5536 #ifdef CONFIG_HARDENED_USERCOPY
5538 * Rejects incorrectly sized objects and objects that are to be copied
5539 * to/from userspace but do not fall entirely within the containing slab
5540 * cache's usercopy region.
5542 * Returns NULL if check passes, otherwise const char * to name of cache
5543 * to indicate an error.
5545 void __check_heap_object(const void *ptr, unsigned long n,
5546 const struct slab *slab, bool to_user)
5548 struct kmem_cache *s;
5549 unsigned int offset;
5550 bool is_kfence = is_kfence_address(ptr);
5552 ptr = kasan_reset_tag(ptr);
5554 /* Find object and usable object size. */
5555 s = slab->slab_cache;
5557 /* Reject impossible pointers. */
5558 if (ptr < slab_address(slab))
5559 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5562 /* Find offset within object. */
5564 offset = ptr - kfence_object_start(ptr);
5566 offset = (ptr - slab_address(slab)) % s->size;
5568 /* Adjust for redzone and reject if within the redzone. */
5569 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5570 if (offset < s->red_left_pad)
5571 usercopy_abort("SLUB object in left red zone",
5572 s->name, to_user, offset, n);
5573 offset -= s->red_left_pad;
5576 /* Allow address range falling entirely within usercopy region. */
5577 if (offset >= s->useroffset &&
5578 offset - s->useroffset <= s->usersize &&
5579 n <= s->useroffset - offset + s->usersize)
5582 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5584 #endif /* CONFIG_HARDENED_USERCOPY */
5586 #define SHRINK_PROMOTE_MAX 32
5589 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5590 * up most to the head of the partial lists. New allocations will then
5591 * fill those up and thus they can be removed from the partial lists.
5593 * The slabs with the least items are placed last. This results in them
5594 * being allocated from last increasing the chance that the last objects
5595 * are freed in them.
5597 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5601 struct kmem_cache_node *n;
5604 struct list_head discard;
5605 struct list_head promote[SHRINK_PROMOTE_MAX];
5606 unsigned long flags;
5609 for_each_kmem_cache_node(s, node, n) {
5610 INIT_LIST_HEAD(&discard);
5611 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5612 INIT_LIST_HEAD(promote + i);
5614 spin_lock_irqsave(&n->list_lock, flags);
5617 * Build lists of slabs to discard or promote.
5619 * Note that concurrent frees may occur while we hold the
5620 * list_lock. slab->inuse here is the upper limit.
5622 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5623 int free = slab->objects - slab->inuse;
5625 /* Do not reread slab->inuse */
5628 /* We do not keep full slabs on the list */
5631 if (free == slab->objects) {
5632 list_move(&slab->slab_list, &discard);
5633 slab_clear_node_partial(slab);
5635 dec_slabs_node(s, node, slab->objects);
5636 } else if (free <= SHRINK_PROMOTE_MAX)
5637 list_move(&slab->slab_list, promote + free - 1);
5641 * Promote the slabs filled up most to the head of the
5644 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5645 list_splice(promote + i, &n->partial);
5647 spin_unlock_irqrestore(&n->list_lock, flags);
5649 /* Release empty slabs */
5650 list_for_each_entry_safe(slab, t, &discard, slab_list)
5653 if (node_nr_slabs(n))
5660 int __kmem_cache_shrink(struct kmem_cache *s)
5663 return __kmem_cache_do_shrink(s);
5666 static int slab_mem_going_offline_callback(void *arg)
5668 struct kmem_cache *s;
5670 mutex_lock(&slab_mutex);
5671 list_for_each_entry(s, &slab_caches, list) {
5672 flush_all_cpus_locked(s);
5673 __kmem_cache_do_shrink(s);
5675 mutex_unlock(&slab_mutex);
5680 static void slab_mem_offline_callback(void *arg)
5682 struct memory_notify *marg = arg;
5685 offline_node = marg->status_change_nid_normal;
5688 * If the node still has available memory. we need kmem_cache_node
5691 if (offline_node < 0)
5694 mutex_lock(&slab_mutex);
5695 node_clear(offline_node, slab_nodes);
5697 * We no longer free kmem_cache_node structures here, as it would be
5698 * racy with all get_node() users, and infeasible to protect them with
5701 mutex_unlock(&slab_mutex);
5704 static int slab_mem_going_online_callback(void *arg)
5706 struct kmem_cache_node *n;
5707 struct kmem_cache *s;
5708 struct memory_notify *marg = arg;
5709 int nid = marg->status_change_nid_normal;
5713 * If the node's memory is already available, then kmem_cache_node is
5714 * already created. Nothing to do.
5720 * We are bringing a node online. No memory is available yet. We must
5721 * allocate a kmem_cache_node structure in order to bring the node
5724 mutex_lock(&slab_mutex);
5725 list_for_each_entry(s, &slab_caches, list) {
5727 * The structure may already exist if the node was previously
5728 * onlined and offlined.
5730 if (get_node(s, nid))
5733 * XXX: kmem_cache_alloc_node will fallback to other nodes
5734 * since memory is not yet available from the node that
5737 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5742 init_kmem_cache_node(n);
5746 * Any cache created after this point will also have kmem_cache_node
5747 * initialized for the new node.
5749 node_set(nid, slab_nodes);
5751 mutex_unlock(&slab_mutex);
5755 static int slab_memory_callback(struct notifier_block *self,
5756 unsigned long action, void *arg)
5761 case MEM_GOING_ONLINE:
5762 ret = slab_mem_going_online_callback(arg);
5764 case MEM_GOING_OFFLINE:
5765 ret = slab_mem_going_offline_callback(arg);
5768 case MEM_CANCEL_ONLINE:
5769 slab_mem_offline_callback(arg);
5772 case MEM_CANCEL_OFFLINE:
5776 ret = notifier_from_errno(ret);
5782 /********************************************************************
5783 * Basic setup of slabs
5784 *******************************************************************/
5787 * Used for early kmem_cache structures that were allocated using
5788 * the page allocator. Allocate them properly then fix up the pointers
5789 * that may be pointing to the wrong kmem_cache structure.
5792 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5795 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5796 struct kmem_cache_node *n;
5798 memcpy(s, static_cache, kmem_cache->object_size);
5801 * This runs very early, and only the boot processor is supposed to be
5802 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5805 __flush_cpu_slab(s, smp_processor_id());
5806 for_each_kmem_cache_node(s, node, n) {
5809 list_for_each_entry(p, &n->partial, slab_list)
5812 #ifdef CONFIG_SLUB_DEBUG
5813 list_for_each_entry(p, &n->full, slab_list)
5817 list_add(&s->list, &slab_caches);
5821 void __init kmem_cache_init(void)
5823 static __initdata struct kmem_cache boot_kmem_cache,
5824 boot_kmem_cache_node;
5827 if (debug_guardpage_minorder())
5830 /* Print slub debugging pointers without hashing */
5831 if (__slub_debug_enabled())
5832 no_hash_pointers_enable(NULL);
5834 kmem_cache_node = &boot_kmem_cache_node;
5835 kmem_cache = &boot_kmem_cache;
5838 * Initialize the nodemask for which we will allocate per node
5839 * structures. Here we don't need taking slab_mutex yet.
5841 for_each_node_state(node, N_NORMAL_MEMORY)
5842 node_set(node, slab_nodes);
5844 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5845 sizeof(struct kmem_cache_node),
5846 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5848 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5850 /* Able to allocate the per node structures */
5851 slab_state = PARTIAL;
5853 create_boot_cache(kmem_cache, "kmem_cache",
5854 offsetof(struct kmem_cache, node) +
5855 nr_node_ids * sizeof(struct kmem_cache_node *),
5856 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5858 kmem_cache = bootstrap(&boot_kmem_cache);
5859 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5861 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5862 setup_kmalloc_cache_index_table();
5863 create_kmalloc_caches();
5865 /* Setup random freelists for each cache */
5866 init_freelist_randomization();
5868 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5871 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5873 slub_min_order, slub_max_order, slub_min_objects,
5874 nr_cpu_ids, nr_node_ids);
5877 void __init kmem_cache_init_late(void)
5879 #ifndef CONFIG_SLUB_TINY
5880 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5886 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5887 slab_flags_t flags, void (*ctor)(void *))
5889 struct kmem_cache *s;
5891 s = find_mergeable(size, align, flags, name, ctor);
5893 if (sysfs_slab_alias(s, name))
5899 * Adjust the object sizes so that we clear
5900 * the complete object on kzalloc.
5902 s->object_size = max(s->object_size, size);
5903 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5909 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5913 err = kmem_cache_open(s, flags);
5917 /* Mutex is not taken during early boot */
5918 if (slab_state <= UP)
5921 err = sysfs_slab_add(s);
5923 __kmem_cache_release(s);
5927 if (s->flags & SLAB_STORE_USER)
5928 debugfs_slab_add(s);
5933 #ifdef SLAB_SUPPORTS_SYSFS
5934 static int count_inuse(struct slab *slab)
5939 static int count_total(struct slab *slab)
5941 return slab->objects;
5945 #ifdef CONFIG_SLUB_DEBUG
5946 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5947 unsigned long *obj_map)
5950 void *addr = slab_address(slab);
5952 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5955 /* Now we know that a valid freelist exists */
5956 __fill_map(obj_map, s, slab);
5957 for_each_object(p, s, addr, slab->objects) {
5958 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5959 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5961 if (!check_object(s, slab, p, val))
5966 static int validate_slab_node(struct kmem_cache *s,
5967 struct kmem_cache_node *n, unsigned long *obj_map)
5969 unsigned long count = 0;
5971 unsigned long flags;
5973 spin_lock_irqsave(&n->list_lock, flags);
5975 list_for_each_entry(slab, &n->partial, slab_list) {
5976 validate_slab(s, slab, obj_map);
5979 if (count != n->nr_partial) {
5980 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5981 s->name, count, n->nr_partial);
5982 slab_add_kunit_errors();
5985 if (!(s->flags & SLAB_STORE_USER))
5988 list_for_each_entry(slab, &n->full, slab_list) {
5989 validate_slab(s, slab, obj_map);
5992 if (count != node_nr_slabs(n)) {
5993 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5994 s->name, count, node_nr_slabs(n));
5995 slab_add_kunit_errors();
5999 spin_unlock_irqrestore(&n->list_lock, flags);
6003 long validate_slab_cache(struct kmem_cache *s)
6006 unsigned long count = 0;
6007 struct kmem_cache_node *n;
6008 unsigned long *obj_map;
6010 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6015 for_each_kmem_cache_node(s, node, n)
6016 count += validate_slab_node(s, n, obj_map);
6018 bitmap_free(obj_map);
6022 EXPORT_SYMBOL(validate_slab_cache);
6024 #ifdef CONFIG_DEBUG_FS
6026 * Generate lists of code addresses where slabcache objects are allocated
6031 depot_stack_handle_t handle;
6032 unsigned long count;
6034 unsigned long waste;
6040 DECLARE_BITMAP(cpus, NR_CPUS);
6046 unsigned long count;
6047 struct location *loc;
6051 static struct dentry *slab_debugfs_root;
6053 static void free_loc_track(struct loc_track *t)
6056 free_pages((unsigned long)t->loc,
6057 get_order(sizeof(struct location) * t->max));
6060 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6065 order = get_order(sizeof(struct location) * max);
6067 l = (void *)__get_free_pages(flags, order);
6072 memcpy(l, t->loc, sizeof(struct location) * t->count);
6080 static int add_location(struct loc_track *t, struct kmem_cache *s,
6081 const struct track *track,
6082 unsigned int orig_size)
6084 long start, end, pos;
6086 unsigned long caddr, chandle, cwaste;
6087 unsigned long age = jiffies - track->when;
6088 depot_stack_handle_t handle = 0;
6089 unsigned int waste = s->object_size - orig_size;
6091 #ifdef CONFIG_STACKDEPOT
6092 handle = READ_ONCE(track->handle);
6098 pos = start + (end - start + 1) / 2;
6101 * There is nothing at "end". If we end up there
6102 * we need to add something to before end.
6109 chandle = l->handle;
6111 if ((track->addr == caddr) && (handle == chandle) &&
6112 (waste == cwaste)) {
6117 if (age < l->min_time)
6119 if (age > l->max_time)
6122 if (track->pid < l->min_pid)
6123 l->min_pid = track->pid;
6124 if (track->pid > l->max_pid)
6125 l->max_pid = track->pid;
6127 cpumask_set_cpu(track->cpu,
6128 to_cpumask(l->cpus));
6130 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6134 if (track->addr < caddr)
6136 else if (track->addr == caddr && handle < chandle)
6138 else if (track->addr == caddr && handle == chandle &&
6146 * Not found. Insert new tracking element.
6148 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6154 (t->count - pos) * sizeof(struct location));
6157 l->addr = track->addr;
6161 l->min_pid = track->pid;
6162 l->max_pid = track->pid;
6165 cpumask_clear(to_cpumask(l->cpus));
6166 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6167 nodes_clear(l->nodes);
6168 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6172 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6173 struct slab *slab, enum track_item alloc,
6174 unsigned long *obj_map)
6176 void *addr = slab_address(slab);
6177 bool is_alloc = (alloc == TRACK_ALLOC);
6180 __fill_map(obj_map, s, slab);
6182 for_each_object(p, s, addr, slab->objects)
6183 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6184 add_location(t, s, get_track(s, p, alloc),
6185 is_alloc ? get_orig_size(s, p) :
6188 #endif /* CONFIG_DEBUG_FS */
6189 #endif /* CONFIG_SLUB_DEBUG */
6191 #ifdef SLAB_SUPPORTS_SYSFS
6192 enum slab_stat_type {
6193 SL_ALL, /* All slabs */
6194 SL_PARTIAL, /* Only partially allocated slabs */
6195 SL_CPU, /* Only slabs used for cpu caches */
6196 SL_OBJECTS, /* Determine allocated objects not slabs */
6197 SL_TOTAL /* Determine object capacity not slabs */
6200 #define SO_ALL (1 << SL_ALL)
6201 #define SO_PARTIAL (1 << SL_PARTIAL)
6202 #define SO_CPU (1 << SL_CPU)
6203 #define SO_OBJECTS (1 << SL_OBJECTS)
6204 #define SO_TOTAL (1 << SL_TOTAL)
6206 static ssize_t show_slab_objects(struct kmem_cache *s,
6207 char *buf, unsigned long flags)
6209 unsigned long total = 0;
6212 unsigned long *nodes;
6215 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6219 if (flags & SO_CPU) {
6222 for_each_possible_cpu(cpu) {
6223 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6228 slab = READ_ONCE(c->slab);
6232 node = slab_nid(slab);
6233 if (flags & SO_TOTAL)
6235 else if (flags & SO_OBJECTS)
6243 #ifdef CONFIG_SLUB_CPU_PARTIAL
6244 slab = slub_percpu_partial_read_once(c);
6246 node = slab_nid(slab);
6247 if (flags & SO_TOTAL)
6249 else if (flags & SO_OBJECTS)
6252 x = data_race(slab->slabs);
6261 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6262 * already held which will conflict with an existing lock order:
6264 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6266 * We don't really need mem_hotplug_lock (to hold off
6267 * slab_mem_going_offline_callback) here because slab's memory hot
6268 * unplug code doesn't destroy the kmem_cache->node[] data.
6271 #ifdef CONFIG_SLUB_DEBUG
6272 if (flags & SO_ALL) {
6273 struct kmem_cache_node *n;
6275 for_each_kmem_cache_node(s, node, n) {
6277 if (flags & SO_TOTAL)
6278 x = node_nr_objs(n);
6279 else if (flags & SO_OBJECTS)
6280 x = node_nr_objs(n) - count_partial(n, count_free);
6282 x = node_nr_slabs(n);
6289 if (flags & SO_PARTIAL) {
6290 struct kmem_cache_node *n;
6292 for_each_kmem_cache_node(s, node, n) {
6293 if (flags & SO_TOTAL)
6294 x = count_partial(n, count_total);
6295 else if (flags & SO_OBJECTS)
6296 x = count_partial(n, count_inuse);
6304 len += sysfs_emit_at(buf, len, "%lu", total);
6306 for (node = 0; node < nr_node_ids; node++) {
6308 len += sysfs_emit_at(buf, len, " N%d=%lu",
6312 len += sysfs_emit_at(buf, len, "\n");
6318 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6319 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6321 struct slab_attribute {
6322 struct attribute attr;
6323 ssize_t (*show)(struct kmem_cache *s, char *buf);
6324 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6327 #define SLAB_ATTR_RO(_name) \
6328 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6330 #define SLAB_ATTR(_name) \
6331 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6333 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6335 return sysfs_emit(buf, "%u\n", s->size);
6337 SLAB_ATTR_RO(slab_size);
6339 static ssize_t align_show(struct kmem_cache *s, char *buf)
6341 return sysfs_emit(buf, "%u\n", s->align);
6343 SLAB_ATTR_RO(align);
6345 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6347 return sysfs_emit(buf, "%u\n", s->object_size);
6349 SLAB_ATTR_RO(object_size);
6351 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6353 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6355 SLAB_ATTR_RO(objs_per_slab);
6357 static ssize_t order_show(struct kmem_cache *s, char *buf)
6359 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6361 SLAB_ATTR_RO(order);
6363 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6365 return sysfs_emit(buf, "%lu\n", s->min_partial);
6368 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6374 err = kstrtoul(buf, 10, &min);
6378 s->min_partial = min;
6381 SLAB_ATTR(min_partial);
6383 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6385 unsigned int nr_partial = 0;
6386 #ifdef CONFIG_SLUB_CPU_PARTIAL
6387 nr_partial = s->cpu_partial;
6390 return sysfs_emit(buf, "%u\n", nr_partial);
6393 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6396 unsigned int objects;
6399 err = kstrtouint(buf, 10, &objects);
6402 if (objects && !kmem_cache_has_cpu_partial(s))
6405 slub_set_cpu_partial(s, objects);
6409 SLAB_ATTR(cpu_partial);
6411 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6415 return sysfs_emit(buf, "%pS\n", s->ctor);
6419 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6421 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6423 SLAB_ATTR_RO(aliases);
6425 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6427 return show_slab_objects(s, buf, SO_PARTIAL);
6429 SLAB_ATTR_RO(partial);
6431 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6433 return show_slab_objects(s, buf, SO_CPU);
6435 SLAB_ATTR_RO(cpu_slabs);
6437 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6439 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6441 SLAB_ATTR_RO(objects_partial);
6443 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6447 int cpu __maybe_unused;
6450 #ifdef CONFIG_SLUB_CPU_PARTIAL
6451 for_each_online_cpu(cpu) {
6454 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6457 slabs += data_race(slab->slabs);
6461 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6462 objects = (slabs * oo_objects(s->oo)) / 2;
6463 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6465 #ifdef CONFIG_SLUB_CPU_PARTIAL
6466 for_each_online_cpu(cpu) {
6469 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6471 slabs = data_race(slab->slabs);
6472 objects = (slabs * oo_objects(s->oo)) / 2;
6473 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6474 cpu, objects, slabs);
6478 len += sysfs_emit_at(buf, len, "\n");
6482 SLAB_ATTR_RO(slabs_cpu_partial);
6484 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6486 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6488 SLAB_ATTR_RO(reclaim_account);
6490 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6492 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6494 SLAB_ATTR_RO(hwcache_align);
6496 #ifdef CONFIG_ZONE_DMA
6497 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6499 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6501 SLAB_ATTR_RO(cache_dma);
6504 #ifdef CONFIG_HARDENED_USERCOPY
6505 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6507 return sysfs_emit(buf, "%u\n", s->usersize);
6509 SLAB_ATTR_RO(usersize);
6512 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6514 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6516 SLAB_ATTR_RO(destroy_by_rcu);
6518 #ifdef CONFIG_SLUB_DEBUG
6519 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6521 return show_slab_objects(s, buf, SO_ALL);
6523 SLAB_ATTR_RO(slabs);
6525 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6527 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6529 SLAB_ATTR_RO(total_objects);
6531 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6533 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6535 SLAB_ATTR_RO(objects);
6537 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6539 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6541 SLAB_ATTR_RO(sanity_checks);
6543 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6545 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6547 SLAB_ATTR_RO(trace);
6549 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6551 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6554 SLAB_ATTR_RO(red_zone);
6556 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6558 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6561 SLAB_ATTR_RO(poison);
6563 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6565 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6568 SLAB_ATTR_RO(store_user);
6570 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6575 static ssize_t validate_store(struct kmem_cache *s,
6576 const char *buf, size_t length)
6580 if (buf[0] == '1' && kmem_cache_debug(s)) {
6581 ret = validate_slab_cache(s);
6587 SLAB_ATTR(validate);
6589 #endif /* CONFIG_SLUB_DEBUG */
6591 #ifdef CONFIG_FAILSLAB
6592 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6594 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6597 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6600 if (s->refcount > 1)
6604 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6606 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6610 SLAB_ATTR(failslab);
6613 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6618 static ssize_t shrink_store(struct kmem_cache *s,
6619 const char *buf, size_t length)
6622 kmem_cache_shrink(s);
6630 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6632 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6635 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6636 const char *buf, size_t length)
6641 err = kstrtouint(buf, 10, &ratio);
6647 s->remote_node_defrag_ratio = ratio * 10;
6651 SLAB_ATTR(remote_node_defrag_ratio);
6654 #ifdef CONFIG_SLUB_STATS
6655 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6657 unsigned long sum = 0;
6660 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6665 for_each_online_cpu(cpu) {
6666 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6672 len += sysfs_emit_at(buf, len, "%lu", sum);
6675 for_each_online_cpu(cpu) {
6677 len += sysfs_emit_at(buf, len, " C%d=%u",
6682 len += sysfs_emit_at(buf, len, "\n");
6687 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6691 for_each_online_cpu(cpu)
6692 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6695 #define STAT_ATTR(si, text) \
6696 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6698 return show_stat(s, buf, si); \
6700 static ssize_t text##_store(struct kmem_cache *s, \
6701 const char *buf, size_t length) \
6703 if (buf[0] != '0') \
6705 clear_stat(s, si); \
6710 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6711 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6712 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6713 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6714 STAT_ATTR(FREE_FROZEN, free_frozen);
6715 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6716 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6717 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6718 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6719 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6720 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6721 STAT_ATTR(FREE_SLAB, free_slab);
6722 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6723 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6724 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6725 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6726 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6727 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6728 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6729 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6730 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6731 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6732 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6733 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6734 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6735 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6736 #endif /* CONFIG_SLUB_STATS */
6738 #ifdef CONFIG_KFENCE
6739 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6741 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6744 static ssize_t skip_kfence_store(struct kmem_cache *s,
6745 const char *buf, size_t length)
6750 s->flags &= ~SLAB_SKIP_KFENCE;
6751 else if (buf[0] == '1')
6752 s->flags |= SLAB_SKIP_KFENCE;
6758 SLAB_ATTR(skip_kfence);
6761 static struct attribute *slab_attrs[] = {
6762 &slab_size_attr.attr,
6763 &object_size_attr.attr,
6764 &objs_per_slab_attr.attr,
6766 &min_partial_attr.attr,
6767 &cpu_partial_attr.attr,
6768 &objects_partial_attr.attr,
6770 &cpu_slabs_attr.attr,
6774 &hwcache_align_attr.attr,
6775 &reclaim_account_attr.attr,
6776 &destroy_by_rcu_attr.attr,
6778 &slabs_cpu_partial_attr.attr,
6779 #ifdef CONFIG_SLUB_DEBUG
6780 &total_objects_attr.attr,
6783 &sanity_checks_attr.attr,
6785 &red_zone_attr.attr,
6787 &store_user_attr.attr,
6788 &validate_attr.attr,
6790 #ifdef CONFIG_ZONE_DMA
6791 &cache_dma_attr.attr,
6794 &remote_node_defrag_ratio_attr.attr,
6796 #ifdef CONFIG_SLUB_STATS
6797 &alloc_fastpath_attr.attr,
6798 &alloc_slowpath_attr.attr,
6799 &free_fastpath_attr.attr,
6800 &free_slowpath_attr.attr,
6801 &free_frozen_attr.attr,
6802 &free_add_partial_attr.attr,
6803 &free_remove_partial_attr.attr,
6804 &alloc_from_partial_attr.attr,
6805 &alloc_slab_attr.attr,
6806 &alloc_refill_attr.attr,
6807 &alloc_node_mismatch_attr.attr,
6808 &free_slab_attr.attr,
6809 &cpuslab_flush_attr.attr,
6810 &deactivate_full_attr.attr,
6811 &deactivate_empty_attr.attr,
6812 &deactivate_to_head_attr.attr,
6813 &deactivate_to_tail_attr.attr,
6814 &deactivate_remote_frees_attr.attr,
6815 &deactivate_bypass_attr.attr,
6816 &order_fallback_attr.attr,
6817 &cmpxchg_double_fail_attr.attr,
6818 &cmpxchg_double_cpu_fail_attr.attr,
6819 &cpu_partial_alloc_attr.attr,
6820 &cpu_partial_free_attr.attr,
6821 &cpu_partial_node_attr.attr,
6822 &cpu_partial_drain_attr.attr,
6824 #ifdef CONFIG_FAILSLAB
6825 &failslab_attr.attr,
6827 #ifdef CONFIG_HARDENED_USERCOPY
6828 &usersize_attr.attr,
6830 #ifdef CONFIG_KFENCE
6831 &skip_kfence_attr.attr,
6837 static const struct attribute_group slab_attr_group = {
6838 .attrs = slab_attrs,
6841 static ssize_t slab_attr_show(struct kobject *kobj,
6842 struct attribute *attr,
6845 struct slab_attribute *attribute;
6846 struct kmem_cache *s;
6848 attribute = to_slab_attr(attr);
6851 if (!attribute->show)
6854 return attribute->show(s, buf);
6857 static ssize_t slab_attr_store(struct kobject *kobj,
6858 struct attribute *attr,
6859 const char *buf, size_t len)
6861 struct slab_attribute *attribute;
6862 struct kmem_cache *s;
6864 attribute = to_slab_attr(attr);
6867 if (!attribute->store)
6870 return attribute->store(s, buf, len);
6873 static void kmem_cache_release(struct kobject *k)
6875 slab_kmem_cache_release(to_slab(k));
6878 static const struct sysfs_ops slab_sysfs_ops = {
6879 .show = slab_attr_show,
6880 .store = slab_attr_store,
6883 static const struct kobj_type slab_ktype = {
6884 .sysfs_ops = &slab_sysfs_ops,
6885 .release = kmem_cache_release,
6888 static struct kset *slab_kset;
6890 static inline struct kset *cache_kset(struct kmem_cache *s)
6895 #define ID_STR_LENGTH 32
6897 /* Create a unique string id for a slab cache:
6899 * Format :[flags-]size
6901 static char *create_unique_id(struct kmem_cache *s)
6903 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6907 return ERR_PTR(-ENOMEM);
6911 * First flags affecting slabcache operations. We will only
6912 * get here for aliasable slabs so we do not need to support
6913 * too many flags. The flags here must cover all flags that
6914 * are matched during merging to guarantee that the id is
6917 if (s->flags & SLAB_CACHE_DMA)
6919 if (s->flags & SLAB_CACHE_DMA32)
6921 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6923 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6925 if (s->flags & SLAB_ACCOUNT)
6929 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6931 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6933 return ERR_PTR(-EINVAL);
6935 kmsan_unpoison_memory(name, p - name);
6939 static int sysfs_slab_add(struct kmem_cache *s)
6943 struct kset *kset = cache_kset(s);
6944 int unmergeable = slab_unmergeable(s);
6946 if (!unmergeable && disable_higher_order_debug &&
6947 (slub_debug & DEBUG_METADATA_FLAGS))
6952 * Slabcache can never be merged so we can use the name proper.
6953 * This is typically the case for debug situations. In that
6954 * case we can catch duplicate names easily.
6956 sysfs_remove_link(&slab_kset->kobj, s->name);
6960 * Create a unique name for the slab as a target
6963 name = create_unique_id(s);
6965 return PTR_ERR(name);
6968 s->kobj.kset = kset;
6969 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6973 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6978 /* Setup first alias */
6979 sysfs_slab_alias(s, s->name);
6986 kobject_del(&s->kobj);
6990 void sysfs_slab_unlink(struct kmem_cache *s)
6992 kobject_del(&s->kobj);
6995 void sysfs_slab_release(struct kmem_cache *s)
6997 kobject_put(&s->kobj);
7001 * Need to buffer aliases during bootup until sysfs becomes
7002 * available lest we lose that information.
7004 struct saved_alias {
7005 struct kmem_cache *s;
7007 struct saved_alias *next;
7010 static struct saved_alias *alias_list;
7012 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7014 struct saved_alias *al;
7016 if (slab_state == FULL) {
7018 * If we have a leftover link then remove it.
7020 sysfs_remove_link(&slab_kset->kobj, name);
7021 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7024 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7030 al->next = alias_list;
7032 kmsan_unpoison_memory(al, sizeof(*al));
7036 static int __init slab_sysfs_init(void)
7038 struct kmem_cache *s;
7041 mutex_lock(&slab_mutex);
7043 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7045 mutex_unlock(&slab_mutex);
7046 pr_err("Cannot register slab subsystem.\n");
7052 list_for_each_entry(s, &slab_caches, list) {
7053 err = sysfs_slab_add(s);
7055 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7059 while (alias_list) {
7060 struct saved_alias *al = alias_list;
7062 alias_list = alias_list->next;
7063 err = sysfs_slab_alias(al->s, al->name);
7065 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7070 mutex_unlock(&slab_mutex);
7073 late_initcall(slab_sysfs_init);
7074 #endif /* SLAB_SUPPORTS_SYSFS */
7076 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7077 static int slab_debugfs_show(struct seq_file *seq, void *v)
7079 struct loc_track *t = seq->private;
7083 idx = (unsigned long) t->idx;
7084 if (idx < t->count) {
7087 seq_printf(seq, "%7ld ", l->count);
7090 seq_printf(seq, "%pS", (void *)l->addr);
7092 seq_puts(seq, "<not-available>");
7095 seq_printf(seq, " waste=%lu/%lu",
7096 l->count * l->waste, l->waste);
7098 if (l->sum_time != l->min_time) {
7099 seq_printf(seq, " age=%ld/%llu/%ld",
7100 l->min_time, div_u64(l->sum_time, l->count),
7103 seq_printf(seq, " age=%ld", l->min_time);
7105 if (l->min_pid != l->max_pid)
7106 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7108 seq_printf(seq, " pid=%ld",
7111 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7112 seq_printf(seq, " cpus=%*pbl",
7113 cpumask_pr_args(to_cpumask(l->cpus)));
7115 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7116 seq_printf(seq, " nodes=%*pbl",
7117 nodemask_pr_args(&l->nodes));
7119 #ifdef CONFIG_STACKDEPOT
7121 depot_stack_handle_t handle;
7122 unsigned long *entries;
7123 unsigned int nr_entries, j;
7125 handle = READ_ONCE(l->handle);
7127 nr_entries = stack_depot_fetch(handle, &entries);
7128 seq_puts(seq, "\n");
7129 for (j = 0; j < nr_entries; j++)
7130 seq_printf(seq, " %pS\n", (void *)entries[j]);
7134 seq_puts(seq, "\n");
7137 if (!idx && !t->count)
7138 seq_puts(seq, "No data\n");
7143 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7147 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7149 struct loc_track *t = seq->private;
7152 if (*ppos <= t->count)
7158 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7160 struct location *loc1 = (struct location *)a;
7161 struct location *loc2 = (struct location *)b;
7163 if (loc1->count > loc2->count)
7169 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7171 struct loc_track *t = seq->private;
7177 static const struct seq_operations slab_debugfs_sops = {
7178 .start = slab_debugfs_start,
7179 .next = slab_debugfs_next,
7180 .stop = slab_debugfs_stop,
7181 .show = slab_debugfs_show,
7184 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7187 struct kmem_cache_node *n;
7188 enum track_item alloc;
7190 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7191 sizeof(struct loc_track));
7192 struct kmem_cache *s = file_inode(filep)->i_private;
7193 unsigned long *obj_map;
7198 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7200 seq_release_private(inode, filep);
7204 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7205 alloc = TRACK_ALLOC;
7209 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7210 bitmap_free(obj_map);
7211 seq_release_private(inode, filep);
7215 for_each_kmem_cache_node(s, node, n) {
7216 unsigned long flags;
7219 if (!node_nr_slabs(n))
7222 spin_lock_irqsave(&n->list_lock, flags);
7223 list_for_each_entry(slab, &n->partial, slab_list)
7224 process_slab(t, s, slab, alloc, obj_map);
7225 list_for_each_entry(slab, &n->full, slab_list)
7226 process_slab(t, s, slab, alloc, obj_map);
7227 spin_unlock_irqrestore(&n->list_lock, flags);
7230 /* Sort locations by count */
7231 sort_r(t->loc, t->count, sizeof(struct location),
7232 cmp_loc_by_count, NULL, NULL);
7234 bitmap_free(obj_map);
7238 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7240 struct seq_file *seq = file->private_data;
7241 struct loc_track *t = seq->private;
7244 return seq_release_private(inode, file);
7247 static const struct file_operations slab_debugfs_fops = {
7248 .open = slab_debug_trace_open,
7250 .llseek = seq_lseek,
7251 .release = slab_debug_trace_release,
7254 static void debugfs_slab_add(struct kmem_cache *s)
7256 struct dentry *slab_cache_dir;
7258 if (unlikely(!slab_debugfs_root))
7261 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7263 debugfs_create_file("alloc_traces", 0400,
7264 slab_cache_dir, s, &slab_debugfs_fops);
7266 debugfs_create_file("free_traces", 0400,
7267 slab_cache_dir, s, &slab_debugfs_fops);
7270 void debugfs_slab_release(struct kmem_cache *s)
7272 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7275 static int __init slab_debugfs_init(void)
7277 struct kmem_cache *s;
7279 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7281 list_for_each_entry(s, &slab_caches, list)
7282 if (s->flags & SLAB_STORE_USER)
7283 debugfs_slab_add(s);
7288 __initcall(slab_debugfs_init);
7291 * The /proc/slabinfo ABI
7293 #ifdef CONFIG_SLUB_DEBUG
7294 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7296 unsigned long nr_slabs = 0;
7297 unsigned long nr_objs = 0;
7298 unsigned long nr_free = 0;
7300 struct kmem_cache_node *n;
7302 for_each_kmem_cache_node(s, node, n) {
7303 nr_slabs += node_nr_slabs(n);
7304 nr_objs += node_nr_objs(n);
7305 nr_free += count_partial_free_approx(n);
7308 sinfo->active_objs = nr_objs - nr_free;
7309 sinfo->num_objs = nr_objs;
7310 sinfo->active_slabs = nr_slabs;
7311 sinfo->num_slabs = nr_slabs;
7312 sinfo->objects_per_slab = oo_objects(s->oo);
7313 sinfo->cache_order = oo_order(s->oo);
7315 #endif /* CONFIG_SLUB_DEBUG */