1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "amd64_edac.h"
3 #include <asm/amd_nb.h>
5 static struct edac_pci_ctl_info *pci_ctl;
8 * Set by command line parameter. If BIOS has enabled the ECC, this override is
9 * cleared to prevent re-enabling the hardware by this driver.
11 static int ecc_enable_override;
12 module_param(ecc_enable_override, int, 0644);
14 static struct msr __percpu *msrs;
16 static struct amd64_family_type *fam_type;
18 static inline u32 get_umc_reg(u32 reg)
20 if (!fam_type->flags.zn_regs_v2)
24 case UMCCH_ADDR_CFG: return UMCCH_ADDR_CFG_DDR5;
25 case UMCCH_ADDR_MASK_SEC: return UMCCH_ADDR_MASK_SEC_DDR5;
26 case UMCCH_DIMM_CFG: return UMCCH_DIMM_CFG_DDR5;
29 WARN_ONCE(1, "%s: unknown register 0x%x", __func__, reg);
34 static struct ecc_settings **ecc_stngs;
36 /* Device for the PCI component */
37 static struct device *pci_ctl_dev;
40 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
41 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
44 *FIXME: Produce a better mapping/linearisation.
46 static const struct scrubrate {
47 u32 scrubval; /* bit pattern for scrub rate */
48 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
50 { 0x01, 1600000000UL},
72 { 0x00, 0UL}, /* scrubbing off */
75 int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
76 u32 *val, const char *func)
80 err = pci_read_config_dword(pdev, offset, val);
82 amd64_warn("%s: error reading F%dx%03x.\n",
83 func, PCI_FUNC(pdev->devfn), offset);
88 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
89 u32 val, const char *func)
93 err = pci_write_config_dword(pdev, offset, val);
95 amd64_warn("%s: error writing to F%dx%03x.\n",
96 func, PCI_FUNC(pdev->devfn), offset);
102 * Select DCT to which PCI cfg accesses are routed
104 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
108 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®);
109 reg &= (pvt->model == 0x30) ? ~3 : ~1;
111 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
116 * Depending on the family, F2 DCT reads need special handling:
118 * K8: has a single DCT only and no address offsets >= 0x100
120 * F10h: each DCT has its own set of regs
124 * F16h: has only 1 DCT
126 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
128 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
129 int offset, u32 *val)
133 if (dct || offset >= 0x100)
140 * Note: If ganging is enabled, barring the regs
141 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
142 * return 0. (cf. Section 2.8.1 F10h BKDG)
144 if (dct_ganging_enabled(pvt))
153 * F15h: F2x1xx addresses do not map explicitly to DCT1.
154 * We should select which DCT we access using F1x10C[DctCfgSel]
156 dct = (dct && pvt->model == 0x30) ? 3 : dct;
157 f15h_select_dct(pvt, dct);
168 return amd64_read_pci_cfg(pvt->F2, offset, val);
172 * Memory scrubber control interface. For K8, memory scrubbing is handled by
173 * hardware and can involve L2 cache, dcache as well as the main memory. With
174 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
177 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
178 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
179 * bytes/sec for the setting.
181 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
182 * other archs, we might not have access to the caches directly.
186 * Scan the scrub rate mapping table for a close or matching bandwidth value to
187 * issue. If requested is too big, then use last maximum value found.
189 static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
195 * map the configured rate (new_bw) to a value specific to the AMD64
196 * memory controller and apply to register. Search for the first
197 * bandwidth entry that is greater or equal than the setting requested
198 * and program that. If at last entry, turn off DRAM scrubbing.
200 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
201 * by falling back to the last element in scrubrates[].
203 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
205 * skip scrub rates which aren't recommended
206 * (see F10 BKDG, F3x58)
208 if (scrubrates[i].scrubval < min_rate)
211 if (scrubrates[i].bandwidth <= new_bw)
215 scrubval = scrubrates[i].scrubval;
217 if (pvt->fam == 0x15 && pvt->model == 0x60) {
218 f15h_select_dct(pvt, 0);
219 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
220 f15h_select_dct(pvt, 1);
221 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
223 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
227 return scrubrates[i].bandwidth;
232 static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
234 struct amd64_pvt *pvt = mci->pvt_info;
235 u32 min_scrubrate = 0x5;
240 if (pvt->fam == 0x15) {
242 if (pvt->model < 0x10)
243 f15h_select_dct(pvt, 0);
245 if (pvt->model == 0x60)
248 return __set_scrub_rate(pvt, bw, min_scrubrate);
251 static int get_scrub_rate(struct mem_ctl_info *mci)
253 struct amd64_pvt *pvt = mci->pvt_info;
254 int i, retval = -EINVAL;
257 if (pvt->fam == 0x15) {
259 if (pvt->model < 0x10)
260 f15h_select_dct(pvt, 0);
262 if (pvt->model == 0x60)
263 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
265 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
267 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
270 scrubval = scrubval & 0x001F;
272 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
273 if (scrubrates[i].scrubval == scrubval) {
274 retval = scrubrates[i].bandwidth;
282 * returns true if the SysAddr given by sys_addr matches the
283 * DRAM base/limit associated with node_id
285 static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
289 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
290 * all ones if the most significant implemented address bit is 1.
291 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
292 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
293 * Application Programming.
295 addr = sys_addr & 0x000000ffffffffffull;
297 return ((addr >= get_dram_base(pvt, nid)) &&
298 (addr <= get_dram_limit(pvt, nid)));
302 * Attempt to map a SysAddr to a node. On success, return a pointer to the
303 * mem_ctl_info structure for the node that the SysAddr maps to.
305 * On failure, return NULL.
307 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
310 struct amd64_pvt *pvt;
315 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
316 * 3.4.4.2) registers to map the SysAddr to a node ID.
321 * The value of this field should be the same for all DRAM Base
322 * registers. Therefore we arbitrarily choose to read it from the
323 * register for node 0.
325 intlv_en = dram_intlv_en(pvt, 0);
328 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
329 if (base_limit_match(pvt, sys_addr, node_id))
335 if (unlikely((intlv_en != 0x01) &&
336 (intlv_en != 0x03) &&
337 (intlv_en != 0x07))) {
338 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
342 bits = (((u32) sys_addr) >> 12) & intlv_en;
344 for (node_id = 0; ; ) {
345 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
346 break; /* intlv_sel field matches */
348 if (++node_id >= DRAM_RANGES)
352 /* sanity test for sys_addr */
353 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
354 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
355 "range for node %d with node interleaving enabled.\n",
356 __func__, sys_addr, node_id);
361 return edac_mc_find((int)node_id);
364 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
365 (unsigned long)sys_addr);
371 * compute the CS base address of the @csrow on the DRAM controller @dct.
372 * For details see F2x[5C:40] in the processor's BKDG
374 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
375 u64 *base, u64 *mask)
377 u64 csbase, csmask, base_bits, mask_bits;
380 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
381 csbase = pvt->csels[dct].csbases[csrow];
382 csmask = pvt->csels[dct].csmasks[csrow];
383 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
384 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
388 * F16h and F15h, models 30h and later need two addr_shift values:
389 * 8 for high and 6 for low (cf. F16h BKDG).
391 } else if (pvt->fam == 0x16 ||
392 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
393 csbase = pvt->csels[dct].csbases[csrow];
394 csmask = pvt->csels[dct].csmasks[csrow >> 1];
396 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
397 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
400 /* poke holes for the csmask */
401 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
402 (GENMASK_ULL(30, 19) << 8));
404 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
405 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
409 csbase = pvt->csels[dct].csbases[csrow];
410 csmask = pvt->csels[dct].csmasks[csrow >> 1];
413 if (pvt->fam == 0x15)
414 base_bits = mask_bits =
415 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
417 base_bits = mask_bits =
418 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
421 *base = (csbase & base_bits) << addr_shift;
424 /* poke holes for the csmask */
425 *mask &= ~(mask_bits << addr_shift);
427 *mask |= (csmask & mask_bits) << addr_shift;
430 #define for_each_chip_select(i, dct, pvt) \
431 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
433 #define chip_select_base(i, dct, pvt) \
434 pvt->csels[dct].csbases[i]
436 #define for_each_chip_select_mask(i, dct, pvt) \
437 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
439 #define for_each_umc(i) \
440 for (i = 0; i < fam_type->max_mcs; i++)
443 * @input_addr is an InputAddr associated with the node given by mci. Return the
444 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
446 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
448 struct amd64_pvt *pvt;
454 for_each_chip_select(csrow, 0, pvt) {
455 if (!csrow_enabled(csrow, 0, pvt))
458 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
462 if ((input_addr & mask) == (base & mask)) {
463 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
464 (unsigned long)input_addr, csrow,
470 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
471 (unsigned long)input_addr, pvt->mc_node_id);
477 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
478 * for the node represented by mci. Info is passed back in *hole_base,
479 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
480 * info is invalid. Info may be invalid for either of the following reasons:
482 * - The revision of the node is not E or greater. In this case, the DRAM Hole
483 * Address Register does not exist.
485 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
486 * indicating that its contents are not valid.
488 * The values passed back in *hole_base, *hole_offset, and *hole_size are
489 * complete 32-bit values despite the fact that the bitfields in the DHAR
490 * only represent bits 31-24 of the base and offset values.
492 static int get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
493 u64 *hole_offset, u64 *hole_size)
495 struct amd64_pvt *pvt = mci->pvt_info;
497 /* only revE and later have the DRAM Hole Address Register */
498 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
499 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
500 pvt->ext_model, pvt->mc_node_id);
504 /* valid for Fam10h and above */
505 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
506 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
510 if (!dhar_valid(pvt)) {
511 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
516 /* This node has Memory Hoisting */
518 /* +------------------+--------------------+--------------------+-----
519 * | memory | DRAM hole | relocated |
520 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
522 * | | | [0x100000000, |
523 * | | | (0x100000000+ |
524 * | | | (0xffffffff-x))] |
525 * +------------------+--------------------+--------------------+-----
527 * Above is a diagram of physical memory showing the DRAM hole and the
528 * relocated addresses from the DRAM hole. As shown, the DRAM hole
529 * starts at address x (the base address) and extends through address
530 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
531 * addresses in the hole so that they start at 0x100000000.
534 *hole_base = dhar_base(pvt);
535 *hole_size = (1ULL << 32) - *hole_base;
537 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
538 : k8_dhar_offset(pvt);
540 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
541 pvt->mc_node_id, (unsigned long)*hole_base,
542 (unsigned long)*hole_offset, (unsigned long)*hole_size);
547 #ifdef CONFIG_EDAC_DEBUG
548 #define EDAC_DCT_ATTR_SHOW(reg) \
549 static ssize_t reg##_show(struct device *dev, \
550 struct device_attribute *mattr, char *data) \
552 struct mem_ctl_info *mci = to_mci(dev); \
553 struct amd64_pvt *pvt = mci->pvt_info; \
555 return sprintf(data, "0x%016llx\n", (u64)pvt->reg); \
558 EDAC_DCT_ATTR_SHOW(dhar);
559 EDAC_DCT_ATTR_SHOW(dbam0);
560 EDAC_DCT_ATTR_SHOW(top_mem);
561 EDAC_DCT_ATTR_SHOW(top_mem2);
563 static ssize_t dram_hole_show(struct device *dev, struct device_attribute *mattr,
566 struct mem_ctl_info *mci = to_mci(dev);
572 get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
574 return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset,
579 * update NUM_DBG_ATTRS in case you add new members
581 static DEVICE_ATTR(dhar, S_IRUGO, dhar_show, NULL);
582 static DEVICE_ATTR(dbam, S_IRUGO, dbam0_show, NULL);
583 static DEVICE_ATTR(topmem, S_IRUGO, top_mem_show, NULL);
584 static DEVICE_ATTR(topmem2, S_IRUGO, top_mem2_show, NULL);
585 static DEVICE_ATTR_RO(dram_hole);
587 static struct attribute *dbg_attrs[] = {
590 &dev_attr_topmem.attr,
591 &dev_attr_topmem2.attr,
592 &dev_attr_dram_hole.attr,
596 static const struct attribute_group dbg_group = {
600 static ssize_t inject_section_show(struct device *dev,
601 struct device_attribute *mattr, char *buf)
603 struct mem_ctl_info *mci = to_mci(dev);
604 struct amd64_pvt *pvt = mci->pvt_info;
605 return sprintf(buf, "0x%x\n", pvt->injection.section);
609 * store error injection section value which refers to one of 4 16-byte sections
610 * within a 64-byte cacheline
614 static ssize_t inject_section_store(struct device *dev,
615 struct device_attribute *mattr,
616 const char *data, size_t count)
618 struct mem_ctl_info *mci = to_mci(dev);
619 struct amd64_pvt *pvt = mci->pvt_info;
623 ret = kstrtoul(data, 10, &value);
628 amd64_warn("%s: invalid section 0x%lx\n", __func__, value);
632 pvt->injection.section = (u32) value;
636 static ssize_t inject_word_show(struct device *dev,
637 struct device_attribute *mattr, char *buf)
639 struct mem_ctl_info *mci = to_mci(dev);
640 struct amd64_pvt *pvt = mci->pvt_info;
641 return sprintf(buf, "0x%x\n", pvt->injection.word);
645 * store error injection word value which refers to one of 9 16-bit word of the
646 * 16-byte (128-bit + ECC bits) section
650 static ssize_t inject_word_store(struct device *dev,
651 struct device_attribute *mattr,
652 const char *data, size_t count)
654 struct mem_ctl_info *mci = to_mci(dev);
655 struct amd64_pvt *pvt = mci->pvt_info;
659 ret = kstrtoul(data, 10, &value);
664 amd64_warn("%s: invalid word 0x%lx\n", __func__, value);
668 pvt->injection.word = (u32) value;
672 static ssize_t inject_ecc_vector_show(struct device *dev,
673 struct device_attribute *mattr,
676 struct mem_ctl_info *mci = to_mci(dev);
677 struct amd64_pvt *pvt = mci->pvt_info;
678 return sprintf(buf, "0x%x\n", pvt->injection.bit_map);
682 * store 16 bit error injection vector which enables injecting errors to the
683 * corresponding bit within the error injection word above. When used during a
684 * DRAM ECC read, it holds the contents of the of the DRAM ECC bits.
686 static ssize_t inject_ecc_vector_store(struct device *dev,
687 struct device_attribute *mattr,
688 const char *data, size_t count)
690 struct mem_ctl_info *mci = to_mci(dev);
691 struct amd64_pvt *pvt = mci->pvt_info;
695 ret = kstrtoul(data, 16, &value);
699 if (value & 0xFFFF0000) {
700 amd64_warn("%s: invalid EccVector: 0x%lx\n", __func__, value);
704 pvt->injection.bit_map = (u32) value;
709 * Do a DRAM ECC read. Assemble staged values in the pvt area, format into
710 * fields needed by the injection registers and read the NB Array Data Port.
712 static ssize_t inject_read_store(struct device *dev,
713 struct device_attribute *mattr,
714 const char *data, size_t count)
716 struct mem_ctl_info *mci = to_mci(dev);
717 struct amd64_pvt *pvt = mci->pvt_info;
719 u32 section, word_bits;
722 ret = kstrtoul(data, 10, &value);
726 /* Form value to choose 16-byte section of cacheline */
727 section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);
729 amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);
731 word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection);
733 /* Issue 'word' and 'bit' along with the READ request */
734 amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);
736 edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);
742 * Do a DRAM ECC write. Assemble staged values in the pvt area and format into
743 * fields needed by the injection registers.
745 static ssize_t inject_write_store(struct device *dev,
746 struct device_attribute *mattr,
747 const char *data, size_t count)
749 struct mem_ctl_info *mci = to_mci(dev);
750 struct amd64_pvt *pvt = mci->pvt_info;
751 u32 section, word_bits, tmp;
755 ret = kstrtoul(data, 10, &value);
759 /* Form value to choose 16-byte section of cacheline */
760 section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);
762 amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);
764 word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection);
766 pr_notice_once("Don't forget to decrease MCE polling interval in\n"
767 "/sys/bus/machinecheck/devices/machinecheck<CPUNUM>/check_interval\n"
768 "so that you can get the error report faster.\n");
770 on_each_cpu(disable_caches, NULL, 1);
772 /* Issue 'word' and 'bit' along with the READ request */
773 amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);
776 /* wait until injection happens */
777 amd64_read_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, &tmp);
778 if (tmp & F10_NB_ARR_ECC_WR_REQ) {
783 on_each_cpu(enable_caches, NULL, 1);
785 edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);
791 * update NUM_INJ_ATTRS in case you add new members
794 static DEVICE_ATTR_RW(inject_section);
795 static DEVICE_ATTR_RW(inject_word);
796 static DEVICE_ATTR_RW(inject_ecc_vector);
797 static DEVICE_ATTR_WO(inject_write);
798 static DEVICE_ATTR_WO(inject_read);
800 static struct attribute *inj_attrs[] = {
801 &dev_attr_inject_section.attr,
802 &dev_attr_inject_word.attr,
803 &dev_attr_inject_ecc_vector.attr,
804 &dev_attr_inject_write.attr,
805 &dev_attr_inject_read.attr,
809 static umode_t inj_is_visible(struct kobject *kobj, struct attribute *attr, int idx)
811 struct device *dev = kobj_to_dev(kobj);
812 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
813 struct amd64_pvt *pvt = mci->pvt_info;
815 /* Families which have that injection hw */
816 if (pvt->fam >= 0x10 && pvt->fam <= 0x16)
822 static const struct attribute_group inj_group = {
824 .is_visible = inj_is_visible,
826 #endif /* CONFIG_EDAC_DEBUG */
829 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
830 * assumed that sys_addr maps to the node given by mci.
832 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
833 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
834 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
835 * then it is also involved in translating a SysAddr to a DramAddr. Sections
836 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
837 * These parts of the documentation are unclear. I interpret them as follows:
839 * When node n receives a SysAddr, it processes the SysAddr as follows:
841 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
842 * Limit registers for node n. If the SysAddr is not within the range
843 * specified by the base and limit values, then node n ignores the Sysaddr
844 * (since it does not map to node n). Otherwise continue to step 2 below.
846 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
847 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
848 * the range of relocated addresses (starting at 0x100000000) from the DRAM
849 * hole. If not, skip to step 3 below. Else get the value of the
850 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
851 * offset defined by this value from the SysAddr.
853 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
854 * Base register for node n. To obtain the DramAddr, subtract the base
855 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
857 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
859 struct amd64_pvt *pvt = mci->pvt_info;
860 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
863 dram_base = get_dram_base(pvt, pvt->mc_node_id);
865 ret = get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
867 if ((sys_addr >= (1ULL << 32)) &&
868 (sys_addr < ((1ULL << 32) + hole_size))) {
869 /* use DHAR to translate SysAddr to DramAddr */
870 dram_addr = sys_addr - hole_offset;
872 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
873 (unsigned long)sys_addr,
874 (unsigned long)dram_addr);
881 * Translate the SysAddr to a DramAddr as shown near the start of
882 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
883 * only deals with 40-bit values. Therefore we discard bits 63-40 of
884 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
885 * discard are all 1s. Otherwise the bits we discard are all 0s. See
886 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
887 * Programmer's Manual Volume 1 Application Programming.
889 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
891 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
892 (unsigned long)sys_addr, (unsigned long)dram_addr);
897 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
898 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
899 * for node interleaving.
901 static int num_node_interleave_bits(unsigned intlv_en)
903 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
906 BUG_ON(intlv_en > 7);
907 n = intlv_shift_table[intlv_en];
911 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
912 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
914 struct amd64_pvt *pvt;
921 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
922 * concerning translating a DramAddr to an InputAddr.
924 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
925 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
928 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
929 intlv_shift, (unsigned long)dram_addr,
930 (unsigned long)input_addr);
936 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
937 * assumed that @sys_addr maps to the node given by mci.
939 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
944 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
946 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
947 (unsigned long)sys_addr, (unsigned long)input_addr);
952 /* Map the Error address to a PAGE and PAGE OFFSET. */
953 static inline void error_address_to_page_and_offset(u64 error_address,
954 struct err_info *err)
956 err->page = (u32) (error_address >> PAGE_SHIFT);
957 err->offset = ((u32) error_address) & ~PAGE_MASK;
961 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
962 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
963 * of a node that detected an ECC memory error. mci represents the node that
964 * the error address maps to (possibly different from the node that detected
965 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
968 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
972 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
975 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
976 "address 0x%lx\n", (unsigned long)sys_addr);
980 /* Protect the PCI config register pairs used for DF indirect access. */
981 static DEFINE_MUTEX(df_indirect_mutex);
984 * Data Fabric Indirect Access uses FICAA/FICAD.
986 * Fabric Indirect Configuration Access Address (FICAA): Constructed based
987 * on the device's Instance Id and the PCI function and register offset of
988 * the desired register.
990 * Fabric Indirect Configuration Access Data (FICAD): There are FICAD LO
991 * and FICAD HI registers but so far we only need the LO register.
993 * Use Instance Id 0xFF to indicate a broadcast read.
995 #define DF_BROADCAST 0xFF
996 static int __df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
1002 if (node >= amd_nb_num())
1005 F4 = node_to_amd_nb(node)->link;
1009 ficaa = (instance_id == DF_BROADCAST) ? 0 : 1;
1010 ficaa |= reg & 0x3FC;
1011 ficaa |= (func & 0x7) << 11;
1012 ficaa |= instance_id << 16;
1014 mutex_lock(&df_indirect_mutex);
1016 err = pci_write_config_dword(F4, 0x5C, ficaa);
1018 pr_warn("Error writing DF Indirect FICAA, FICAA=0x%x\n", ficaa);
1022 err = pci_read_config_dword(F4, 0x98, lo);
1024 pr_warn("Error reading DF Indirect FICAD LO, FICAA=0x%x.\n", ficaa);
1027 mutex_unlock(&df_indirect_mutex);
1033 static int df_indirect_read_instance(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
1035 return __df_indirect_read(node, func, reg, instance_id, lo);
1038 static int df_indirect_read_broadcast(u16 node, u8 func, u16 reg, u32 *lo)
1040 return __df_indirect_read(node, func, reg, DF_BROADCAST, lo);
1050 static int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
1052 u64 dram_base_addr, dram_limit_addr, dram_hole_base;
1054 u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
1055 u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
1056 u8 intlv_addr_sel, intlv_addr_bit;
1057 u8 num_intlv_bits, hashed_bit;
1058 u8 lgcy_mmio_hole_en, base = 0;
1059 u8 cs_mask, cs_id = 0;
1060 bool hash_enabled = false;
1062 struct addr_ctx ctx;
1064 memset(&ctx, 0, sizeof(ctx));
1066 /* Start from the normalized address */
1067 ctx.ret_addr = norm_addr;
1072 /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
1073 if (df_indirect_read_instance(nid, 0, 0x1B4, umc, &ctx.tmp))
1076 /* Remove HiAddrOffset from normalized address, if enabled: */
1077 if (ctx.tmp & BIT(0)) {
1078 u64 hi_addr_offset = (ctx.tmp & GENMASK_ULL(31, 20)) << 8;
1080 if (norm_addr >= hi_addr_offset) {
1081 ctx.ret_addr -= hi_addr_offset;
1086 /* Read D18F0x110 (DramBaseAddress). */
1087 if (df_indirect_read_instance(nid, 0, 0x110 + (8 * base), umc, &ctx.tmp))
1090 /* Check if address range is valid. */
1091 if (!(ctx.tmp & BIT(0))) {
1092 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
1097 lgcy_mmio_hole_en = ctx.tmp & BIT(1);
1098 intlv_num_chan = (ctx.tmp >> 4) & 0xF;
1099 intlv_addr_sel = (ctx.tmp >> 8) & 0x7;
1100 dram_base_addr = (ctx.tmp & GENMASK_ULL(31, 12)) << 16;
1102 /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
1103 if (intlv_addr_sel > 3) {
1104 pr_err("%s: Invalid interleave address select %d.\n",
1105 __func__, intlv_addr_sel);
1109 /* Read D18F0x114 (DramLimitAddress). */
1110 if (df_indirect_read_instance(nid, 0, 0x114 + (8 * base), umc, &ctx.tmp))
1113 intlv_num_sockets = (ctx.tmp >> 8) & 0x1;
1114 intlv_num_dies = (ctx.tmp >> 10) & 0x3;
1115 dram_limit_addr = ((ctx.tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
1117 intlv_addr_bit = intlv_addr_sel + 8;
1119 /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
1120 switch (intlv_num_chan) {
1121 case 0: intlv_num_chan = 0; break;
1122 case 1: intlv_num_chan = 1; break;
1123 case 3: intlv_num_chan = 2; break;
1124 case 5: intlv_num_chan = 3; break;
1125 case 7: intlv_num_chan = 4; break;
1127 case 8: intlv_num_chan = 1;
1128 hash_enabled = true;
1131 pr_err("%s: Invalid number of interleaved channels %d.\n",
1132 __func__, intlv_num_chan);
1136 num_intlv_bits = intlv_num_chan;
1138 if (intlv_num_dies > 2) {
1139 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
1140 __func__, intlv_num_dies);
1144 num_intlv_bits += intlv_num_dies;
1146 /* Add a bit if sockets are interleaved. */
1147 num_intlv_bits += intlv_num_sockets;
1149 /* Assert num_intlv_bits <= 4 */
1150 if (num_intlv_bits > 4) {
1151 pr_err("%s: Invalid interleave bits %d.\n",
1152 __func__, num_intlv_bits);
1156 if (num_intlv_bits > 0) {
1157 u64 temp_addr_x, temp_addr_i, temp_addr_y;
1158 u8 die_id_bit, sock_id_bit, cs_fabric_id;
1161 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
1162 * This is the fabric id for this coherent slave. Use
1163 * umc/channel# as instance id of the coherent slave
1166 if (df_indirect_read_instance(nid, 0, 0x50, umc, &ctx.tmp))
1169 cs_fabric_id = (ctx.tmp >> 8) & 0xFF;
1172 /* If interleaved over more than 1 channel: */
1173 if (intlv_num_chan) {
1174 die_id_bit = intlv_num_chan;
1175 cs_mask = (1 << die_id_bit) - 1;
1176 cs_id = cs_fabric_id & cs_mask;
1179 sock_id_bit = die_id_bit;
1181 /* Read D18F1x208 (SystemFabricIdMask). */
1182 if (intlv_num_dies || intlv_num_sockets)
1183 if (df_indirect_read_broadcast(nid, 1, 0x208, &ctx.tmp))
1186 /* If interleaved over more than 1 die. */
1187 if (intlv_num_dies) {
1188 sock_id_bit = die_id_bit + intlv_num_dies;
1189 die_id_shift = (ctx.tmp >> 24) & 0xF;
1190 die_id_mask = (ctx.tmp >> 8) & 0xFF;
1192 cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
1195 /* If interleaved over more than 1 socket. */
1196 if (intlv_num_sockets) {
1197 socket_id_shift = (ctx.tmp >> 28) & 0xF;
1198 socket_id_mask = (ctx.tmp >> 16) & 0xFF;
1200 cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
1204 * The pre-interleaved address consists of XXXXXXIIIYYYYY
1205 * where III is the ID for this CS, and XXXXXXYYYYY are the
1206 * address bits from the post-interleaved address.
1207 * "num_intlv_bits" has been calculated to tell us how many "I"
1208 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
1209 * there are (where "I" starts).
1211 temp_addr_y = ctx.ret_addr & GENMASK_ULL(intlv_addr_bit - 1, 0);
1212 temp_addr_i = (cs_id << intlv_addr_bit);
1213 temp_addr_x = (ctx.ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
1214 ctx.ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
1217 /* Add dram base address */
1218 ctx.ret_addr += dram_base_addr;
1220 /* If legacy MMIO hole enabled */
1221 if (lgcy_mmio_hole_en) {
1222 if (df_indirect_read_broadcast(nid, 0, 0x104, &ctx.tmp))
1225 dram_hole_base = ctx.tmp & GENMASK(31, 24);
1226 if (ctx.ret_addr >= dram_hole_base)
1227 ctx.ret_addr += (BIT_ULL(32) - dram_hole_base);
1231 /* Save some parentheses and grab ls-bit at the end. */
1232 hashed_bit = (ctx.ret_addr >> 12) ^
1233 (ctx.ret_addr >> 18) ^
1234 (ctx.ret_addr >> 21) ^
1235 (ctx.ret_addr >> 30) ^
1238 hashed_bit &= BIT(0);
1240 if (hashed_bit != ((ctx.ret_addr >> intlv_addr_bit) & BIT(0)))
1241 ctx.ret_addr ^= BIT(intlv_addr_bit);
1244 /* Is calculated system address is above DRAM limit address? */
1245 if (ctx.ret_addr > dram_limit_addr)
1248 *sys_addr = ctx.ret_addr;
1255 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
1258 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
1261 static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
1263 unsigned long edac_cap = EDAC_FLAG_NONE;
1267 u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
1270 if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
1273 umc_en_mask |= BIT(i);
1275 /* UMC Configuration bit 12 (DimmEccEn) */
1276 if (pvt->umc[i].umc_cfg & BIT(12))
1277 dimm_ecc_en_mask |= BIT(i);
1280 if (umc_en_mask == dimm_ecc_en_mask)
1281 edac_cap = EDAC_FLAG_SECDED;
1283 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
1287 if (pvt->dclr0 & BIT(bit))
1288 edac_cap = EDAC_FLAG_SECDED;
1294 static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
1296 static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
1298 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
1300 if (pvt->dram_type == MEM_LRDDR3) {
1301 u32 dcsm = pvt->csels[chan].csmasks[0];
1303 * It's assumed all LRDIMMs in a DCT are going to be of
1304 * same 'type' until proven otherwise. So, use a cs
1305 * value of '0' here to get dcsm value.
1307 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
1310 edac_dbg(1, "All DIMMs support ECC:%s\n",
1311 (dclr & BIT(19)) ? "yes" : "no");
1314 edac_dbg(1, " PAR/ERR parity: %s\n",
1315 (dclr & BIT(8)) ? "enabled" : "disabled");
1317 if (pvt->fam == 0x10)
1318 edac_dbg(1, " DCT 128bit mode width: %s\n",
1319 (dclr & BIT(11)) ? "128b" : "64b");
1321 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
1322 (dclr & BIT(12)) ? "yes" : "no",
1323 (dclr & BIT(13)) ? "yes" : "no",
1324 (dclr & BIT(14)) ? "yes" : "no",
1325 (dclr & BIT(15)) ? "yes" : "no");
1328 #define CS_EVEN_PRIMARY BIT(0)
1329 #define CS_ODD_PRIMARY BIT(1)
1330 #define CS_EVEN_SECONDARY BIT(2)
1331 #define CS_ODD_SECONDARY BIT(3)
1332 #define CS_3R_INTERLEAVE BIT(4)
1334 #define CS_EVEN (CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
1335 #define CS_ODD (CS_ODD_PRIMARY | CS_ODD_SECONDARY)
1337 static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
1342 if (csrow_enabled(2 * dimm, ctrl, pvt))
1343 cs_mode |= CS_EVEN_PRIMARY;
1345 if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
1346 cs_mode |= CS_ODD_PRIMARY;
1348 /* Asymmetric dual-rank DIMM support. */
1349 if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
1350 cs_mode |= CS_ODD_SECONDARY;
1353 * 3 Rank inteleaving support.
1354 * There should be only three bases enabled and their two masks should
1357 for_each_chip_select(base, ctrl, pvt)
1358 count += csrow_enabled(base, ctrl, pvt);
1361 pvt->csels[ctrl].csmasks[0] == pvt->csels[ctrl].csmasks[1]) {
1362 edac_dbg(1, "3R interleaving in use.\n");
1363 cs_mode |= CS_3R_INTERLEAVE;
1369 static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
1371 int dimm, size0, size1, cs0, cs1, cs_mode;
1373 edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);
1375 for (dimm = 0; dimm < 2; dimm++) {
1379 cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);
1381 size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
1382 size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
1384 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1390 static void __dump_misc_regs_df(struct amd64_pvt *pvt)
1392 struct amd64_umc *umc;
1393 u32 i, tmp, umc_base;
1396 umc_base = get_umc_base(i);
1399 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
1400 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
1401 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
1402 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);
1404 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
1405 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);
1407 amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
1408 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
1409 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);
1411 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
1412 i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
1413 (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
1414 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
1415 i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
1416 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
1417 i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
1418 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
1419 i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");
1421 if (umc->dram_type == MEM_LRDDR4 || umc->dram_type == MEM_LRDDR5) {
1422 amd_smn_read(pvt->mc_node_id,
1423 umc_base + get_umc_reg(UMCCH_ADDR_CFG),
1425 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
1426 i, 1 << ((tmp >> 4) & 0x3));
1429 debug_display_dimm_sizes_df(pvt, i);
1433 /* Display and decode various NB registers for debug purposes. */
1434 static void __dump_misc_regs(struct amd64_pvt *pvt)
1436 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
1438 edac_dbg(1, " NB two channel DRAM capable: %s\n",
1439 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
1441 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
1442 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
1443 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
1445 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
1447 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
1449 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
1450 pvt->dhar, dhar_base(pvt),
1451 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
1452 : f10_dhar_offset(pvt));
1454 debug_display_dimm_sizes(pvt, 0);
1456 /* everything below this point is Fam10h and above */
1457 if (pvt->fam == 0xf)
1460 debug_display_dimm_sizes(pvt, 1);
1462 /* Only if NOT ganged does dclr1 have valid info */
1463 if (!dct_ganging_enabled(pvt))
1464 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
1466 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
1469 /* Display and decode various NB registers for debug purposes. */
1470 static void dump_misc_regs(struct amd64_pvt *pvt)
1473 __dump_misc_regs_df(pvt);
1475 __dump_misc_regs(pvt);
1477 amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
1481 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
1483 static void prep_chip_selects(struct amd64_pvt *pvt)
1485 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
1486 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
1487 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
1488 } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
1489 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
1490 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
1491 } else if (pvt->fam >= 0x17) {
1495 pvt->csels[umc].b_cnt = 4;
1496 pvt->csels[umc].m_cnt = fam_type->flags.zn_regs_v2 ? 4 : 2;
1500 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
1501 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
1505 static void read_umc_base_mask(struct amd64_pvt *pvt)
1507 u32 umc_base_reg, umc_base_reg_sec;
1508 u32 umc_mask_reg, umc_mask_reg_sec;
1509 u32 base_reg, base_reg_sec;
1510 u32 mask_reg, mask_reg_sec;
1511 u32 *base, *base_sec;
1512 u32 *mask, *mask_sec;
1516 umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
1517 umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
1519 for_each_chip_select(cs, umc, pvt) {
1520 base = &pvt->csels[umc].csbases[cs];
1521 base_sec = &pvt->csels[umc].csbases_sec[cs];
1523 base_reg = umc_base_reg + (cs * 4);
1524 base_reg_sec = umc_base_reg_sec + (cs * 4);
1526 if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
1527 edac_dbg(0, " DCSB%d[%d]=0x%08x reg: 0x%x\n",
1528 umc, cs, *base, base_reg);
1530 if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
1531 edac_dbg(0, " DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
1532 umc, cs, *base_sec, base_reg_sec);
1535 umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
1536 umc_mask_reg_sec = get_umc_base(umc) + get_umc_reg(UMCCH_ADDR_MASK_SEC);
1538 for_each_chip_select_mask(cs, umc, pvt) {
1539 mask = &pvt->csels[umc].csmasks[cs];
1540 mask_sec = &pvt->csels[umc].csmasks_sec[cs];
1542 mask_reg = umc_mask_reg + (cs * 4);
1543 mask_reg_sec = umc_mask_reg_sec + (cs * 4);
1545 if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
1546 edac_dbg(0, " DCSM%d[%d]=0x%08x reg: 0x%x\n",
1547 umc, cs, *mask, mask_reg);
1549 if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
1550 edac_dbg(0, " DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
1551 umc, cs, *mask_sec, mask_reg_sec);
1557 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
1559 static void read_dct_base_mask(struct amd64_pvt *pvt)
1563 prep_chip_selects(pvt);
1566 return read_umc_base_mask(pvt);
1568 for_each_chip_select(cs, 0, pvt) {
1569 int reg0 = DCSB0 + (cs * 4);
1570 int reg1 = DCSB1 + (cs * 4);
1571 u32 *base0 = &pvt->csels[0].csbases[cs];
1572 u32 *base1 = &pvt->csels[1].csbases[cs];
1574 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
1575 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
1578 if (pvt->fam == 0xf)
1581 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
1582 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
1583 cs, *base1, (pvt->fam == 0x10) ? reg1
1587 for_each_chip_select_mask(cs, 0, pvt) {
1588 int reg0 = DCSM0 + (cs * 4);
1589 int reg1 = DCSM1 + (cs * 4);
1590 u32 *mask0 = &pvt->csels[0].csmasks[cs];
1591 u32 *mask1 = &pvt->csels[1].csmasks[cs];
1593 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
1594 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
1597 if (pvt->fam == 0xf)
1600 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
1601 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
1602 cs, *mask1, (pvt->fam == 0x10) ? reg1
1607 static void determine_memory_type_df(struct amd64_pvt *pvt)
1609 struct amd64_umc *umc;
1615 if (!(umc->sdp_ctrl & UMC_SDP_INIT)) {
1616 umc->dram_type = MEM_EMPTY;
1621 * Check if the system supports the "DDR Type" field in UMC Config
1622 * and has DDR5 DIMMs in use.
1624 if (fam_type->flags.zn_regs_v2 && ((umc->umc_cfg & GENMASK(2, 0)) == 0x1)) {
1625 if (umc->dimm_cfg & BIT(5))
1626 umc->dram_type = MEM_LRDDR5;
1627 else if (umc->dimm_cfg & BIT(4))
1628 umc->dram_type = MEM_RDDR5;
1630 umc->dram_type = MEM_DDR5;
1632 if (umc->dimm_cfg & BIT(5))
1633 umc->dram_type = MEM_LRDDR4;
1634 else if (umc->dimm_cfg & BIT(4))
1635 umc->dram_type = MEM_RDDR4;
1637 umc->dram_type = MEM_DDR4;
1640 edac_dbg(1, " UMC%d DIMM type: %s\n", i, edac_mem_types[umc->dram_type]);
1644 static void determine_memory_type(struct amd64_pvt *pvt)
1646 u32 dram_ctrl, dcsm;
1649 return determine_memory_type_df(pvt);
1653 if (pvt->ext_model >= K8_REV_F)
1656 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1660 if (pvt->dchr0 & DDR3_MODE)
1663 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1667 if (pvt->model < 0x60)
1671 * Model 0x60h needs special handling:
1673 * We use a Chip Select value of '0' to obtain dcsm.
1674 * Theoretically, it is possible to populate LRDIMMs of different
1675 * 'Rank' value on a DCT. But this is not the common case. So,
1676 * it's reasonable to assume all DIMMs are going to be of same
1677 * 'type' until proven otherwise.
1679 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
1680 dcsm = pvt->csels[0].csmasks[0];
1682 if (((dram_ctrl >> 8) & 0x7) == 0x2)
1683 pvt->dram_type = MEM_DDR4;
1684 else if (pvt->dclr0 & BIT(16))
1685 pvt->dram_type = MEM_DDR3;
1686 else if (dcsm & 0x3)
1687 pvt->dram_type = MEM_LRDDR3;
1689 pvt->dram_type = MEM_RDDR3;
1697 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
1698 pvt->dram_type = MEM_EMPTY;
1703 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1706 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1707 static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1709 u16 mce_nid = topology_die_id(m->extcpu);
1710 struct mem_ctl_info *mci;
1715 mci = edac_mc_find(mce_nid);
1719 pvt = mci->pvt_info;
1721 if (pvt->fam == 0xf) {
1726 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1729 * Erratum 637 workaround
1731 if (pvt->fam == 0x15) {
1732 u64 cc6_base, tmp_addr;
1736 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1740 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
1741 intlv_en = tmp >> 21 & 0x7;
1743 /* add [47:27] + 3 trailing bits */
1744 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
1746 /* reverse and add DramIntlvEn */
1747 cc6_base |= intlv_en ^ 0x7;
1749 /* pin at [47:24] */
1753 return cc6_base | (addr & GENMASK_ULL(23, 0));
1755 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
1758 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1760 /* OR DramIntlvSel into bits [14:12] */
1761 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1763 /* add remaining [11:0] bits from original MC4_ADDR */
1764 tmp_addr |= addr & GENMASK_ULL(11, 0);
1766 return cc6_base | tmp_addr;
1772 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1773 unsigned int device,
1774 struct pci_dev *related)
1776 struct pci_dev *dev = NULL;
1778 while ((dev = pci_get_device(vendor, device, dev))) {
1779 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
1780 (dev->bus->number == related->bus->number) &&
1781 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1788 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1790 struct amd_northbridge *nb;
1791 struct pci_dev *f1 = NULL;
1792 unsigned int pci_func;
1793 int off = range << 3;
1796 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1797 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1799 if (pvt->fam == 0xf)
1802 if (!dram_rw(pvt, range))
1805 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1806 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1808 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1809 if (pvt->fam != 0x15)
1812 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1816 if (pvt->model == 0x60)
1817 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1818 else if (pvt->model == 0x30)
1819 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1821 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1823 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1827 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1829 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1831 /* {[39:27],111b} */
1832 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1834 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1837 pvt->ranges[range].lim.hi |= llim >> 13;
1842 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1843 struct err_info *err)
1845 struct amd64_pvt *pvt = mci->pvt_info;
1847 error_address_to_page_and_offset(sys_addr, err);
1850 * Find out which node the error address belongs to. This may be
1851 * different from the node that detected the error.
1853 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1854 if (!err->src_mci) {
1855 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1856 (unsigned long)sys_addr);
1857 err->err_code = ERR_NODE;
1861 /* Now map the sys_addr to a CSROW */
1862 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1863 if (err->csrow < 0) {
1864 err->err_code = ERR_CSROW;
1868 /* CHIPKILL enabled */
1869 if (pvt->nbcfg & NBCFG_CHIPKILL) {
1870 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1871 if (err->channel < 0) {
1873 * Syndrome didn't map, so we don't know which of the
1874 * 2 DIMMs is in error. So we need to ID 'both' of them
1877 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1878 "possible error reporting race\n",
1880 err->err_code = ERR_CHANNEL;
1885 * non-chipkill ecc mode
1887 * The k8 documentation is unclear about how to determine the
1888 * channel number when using non-chipkill memory. This method
1889 * was obtained from email communication with someone at AMD.
1890 * (Wish the email was placed in this comment - norsk)
1892 err->channel = ((sys_addr & BIT(3)) != 0);
1896 static int ddr2_cs_size(unsigned i, bool dct_width)
1902 else if (!(i & 0x1))
1905 shift = (i + 1) >> 1;
1907 return 128 << (shift + !!dct_width);
1910 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1911 unsigned cs_mode, int cs_mask_nr)
1913 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1915 if (pvt->ext_model >= K8_REV_F) {
1916 WARN_ON(cs_mode > 11);
1917 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1919 else if (pvt->ext_model >= K8_REV_D) {
1921 WARN_ON(cs_mode > 10);
1924 * the below calculation, besides trying to win an obfuscated C
1925 * contest, maps cs_mode values to DIMM chip select sizes. The
1928 * cs_mode CS size (mb)
1929 * ======= ============
1942 * Basically, it calculates a value with which to shift the
1943 * smallest CS size of 32MB.
1945 * ddr[23]_cs_size have a similar purpose.
1947 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1949 return 32 << (cs_mode - diff);
1952 WARN_ON(cs_mode > 6);
1953 return 32 << cs_mode;
1957 static int ddr3_cs_size(unsigned i, bool dct_width)
1962 if (i == 0 || i == 3 || i == 4)
1968 else if (!(i & 0x1))
1971 shift = (i + 1) >> 1;
1974 cs_size = (128 * (1 << !!dct_width)) << shift;
1979 static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1984 if (i < 4 || i == 6)
1988 else if (!(i & 0x1))
1991 shift = (i + 1) >> 1;
1994 cs_size = rank_multiply * (128 << shift);
1999 static int ddr4_cs_size(unsigned i)
2008 /* Min cs_size = 1G */
2009 cs_size = 1024 * (1 << (i >> 1));
2014 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
2015 unsigned cs_mode, int cs_mask_nr)
2017 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
2019 WARN_ON(cs_mode > 11);
2021 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
2022 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
2024 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
2028 * F15h supports only 64bit DCT interfaces
2030 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
2031 unsigned cs_mode, int cs_mask_nr)
2033 WARN_ON(cs_mode > 12);
2035 return ddr3_cs_size(cs_mode, false);
2038 /* F15h M60h supports DDR4 mapping as well.. */
2039 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
2040 unsigned cs_mode, int cs_mask_nr)
2043 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
2045 WARN_ON(cs_mode > 12);
2047 if (pvt->dram_type == MEM_DDR4) {
2051 cs_size = ddr4_cs_size(cs_mode);
2052 } else if (pvt->dram_type == MEM_LRDDR3) {
2053 unsigned rank_multiply = dcsm & 0xf;
2055 if (rank_multiply == 3)
2057 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
2059 /* Minimum cs size is 512mb for F15hM60h*/
2063 cs_size = ddr3_cs_size(cs_mode, false);
2070 * F16h and F15h model 30h have only limited cs_modes.
2072 static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
2073 unsigned cs_mode, int cs_mask_nr)
2075 WARN_ON(cs_mode > 12);
2077 if (cs_mode == 6 || cs_mode == 8 ||
2078 cs_mode == 9 || cs_mode == 12)
2081 return ddr3_cs_size(cs_mode, false);
2084 static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
2085 unsigned int cs_mode, int csrow_nr)
2087 u32 addr_mask_orig, addr_mask_deinterleaved;
2088 u32 msb, weight, num_zero_bits;
2089 int cs_mask_nr = csrow_nr;
2092 /* No Chip Selects are enabled. */
2096 /* Requested size of an even CS but none are enabled. */
2097 if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
2100 /* Requested size of an odd CS but none are enabled. */
2101 if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
2105 * Family 17h introduced systems with one mask per DIMM,
2106 * and two Chip Selects per DIMM.
2108 * CS0 and CS1 -> MASK0 / DIMM0
2109 * CS2 and CS3 -> MASK1 / DIMM1
2111 * Family 19h Model 10h introduced systems with one mask per Chip Select,
2112 * and two Chip Selects per DIMM.
2114 * CS0 -> MASK0 -> DIMM0
2115 * CS1 -> MASK1 -> DIMM0
2116 * CS2 -> MASK2 -> DIMM1
2117 * CS3 -> MASK3 -> DIMM1
2119 * Keep the mask number equal to the Chip Select number for newer systems,
2120 * and shift the mask number for older systems.
2122 dimm = csrow_nr >> 1;
2124 if (!fam_type->flags.zn_regs_v2)
2127 /* Asymmetric dual-rank DIMM support. */
2128 if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
2129 addr_mask_orig = pvt->csels[umc].csmasks_sec[cs_mask_nr];
2131 addr_mask_orig = pvt->csels[umc].csmasks[cs_mask_nr];
2134 * The number of zero bits in the mask is equal to the number of bits
2135 * in a full mask minus the number of bits in the current mask.
2137 * The MSB is the number of bits in the full mask because BIT[0] is
2140 * In the special 3 Rank interleaving case, a single bit is flipped
2141 * without swapping with the most significant bit. This can be handled
2142 * by keeping the MSB where it is and ignoring the single zero bit.
2144 msb = fls(addr_mask_orig) - 1;
2145 weight = hweight_long(addr_mask_orig);
2146 num_zero_bits = msb - weight - !!(cs_mode & CS_3R_INTERLEAVE);
2148 /* Take the number of zero bits off from the top of the mask. */
2149 addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);
2151 edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
2152 edac_dbg(1, " Original AddrMask: 0x%x\n", addr_mask_orig);
2153 edac_dbg(1, " Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);
2155 /* Register [31:1] = Address [39:9]. Size is in kBs here. */
2156 size = (addr_mask_deinterleaved >> 2) + 1;
2158 /* Return size in MBs. */
2162 static void read_dram_ctl_register(struct amd64_pvt *pvt)
2165 if (pvt->fam == 0xf)
2168 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
2169 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
2170 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
2172 edac_dbg(0, " DCTs operate in %s mode\n",
2173 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
2175 if (!dct_ganging_enabled(pvt))
2176 edac_dbg(0, " Address range split per DCT: %s\n",
2177 (dct_high_range_enabled(pvt) ? "yes" : "no"));
2179 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
2180 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
2181 (dct_memory_cleared(pvt) ? "yes" : "no"));
2183 edac_dbg(0, " channel interleave: %s, "
2184 "interleave bits selector: 0x%x\n",
2185 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
2186 dct_sel_interleave_addr(pvt));
2189 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
2193 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
2194 * 2.10.12 Memory Interleaving Modes).
2196 static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
2197 u8 intlv_en, int num_dcts_intlv,
2204 return (u8)(dct_sel);
2206 if (num_dcts_intlv == 2) {
2207 select = (sys_addr >> 8) & 0x3;
2208 channel = select ? 0x3 : 0;
2209 } else if (num_dcts_intlv == 4) {
2210 u8 intlv_addr = dct_sel_interleave_addr(pvt);
2211 switch (intlv_addr) {
2213 channel = (sys_addr >> 8) & 0x3;
2216 channel = (sys_addr >> 9) & 0x3;
2224 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
2225 * Interleaving Modes.
2227 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
2228 bool hi_range_sel, u8 intlv_en)
2230 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
2232 if (dct_ganging_enabled(pvt))
2236 return dct_sel_high;
2239 * see F2x110[DctSelIntLvAddr] - channel interleave mode
2241 if (dct_interleave_enabled(pvt)) {
2242 u8 intlv_addr = dct_sel_interleave_addr(pvt);
2244 /* return DCT select function: 0=DCT0, 1=DCT1 */
2246 return sys_addr >> 6 & 1;
2248 if (intlv_addr & 0x2) {
2249 u8 shift = intlv_addr & 0x1 ? 9 : 6;
2250 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
2252 return ((sys_addr >> shift) & 1) ^ temp;
2255 if (intlv_addr & 0x4) {
2256 u8 shift = intlv_addr & 0x1 ? 9 : 8;
2258 return (sys_addr >> shift) & 1;
2261 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
2264 if (dct_high_range_enabled(pvt))
2265 return ~dct_sel_high & 1;
2270 /* Convert the sys_addr to the normalized DCT address */
2271 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
2272 u64 sys_addr, bool hi_rng,
2273 u32 dct_sel_base_addr)
2276 u64 dram_base = get_dram_base(pvt, range);
2277 u64 hole_off = f10_dhar_offset(pvt);
2278 u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
2283 * base address of high range is below 4Gb
2284 * (bits [47:27] at [31:11])
2285 * DRAM address space on this DCT is hoisted above 4Gb &&
2288 * remove hole offset from sys_addr
2290 * remove high range offset from sys_addr
2292 if ((!(dct_sel_base_addr >> 16) ||
2293 dct_sel_base_addr < dhar_base(pvt)) &&
2295 (sys_addr >= BIT_64(32)))
2296 chan_off = hole_off;
2298 chan_off = dct_sel_base_off;
2302 * we have a valid hole &&
2307 * remove dram base to normalize to DCT address
2309 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
2310 chan_off = hole_off;
2312 chan_off = dram_base;
2315 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
2319 * checks if the csrow passed in is marked as SPARED, if so returns the new
2322 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
2326 if (online_spare_swap_done(pvt, dct) &&
2327 csrow == online_spare_bad_dramcs(pvt, dct)) {
2329 for_each_chip_select(tmp_cs, dct, pvt) {
2330 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
2340 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
2341 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
2344 * -EINVAL: NOT FOUND
2345 * 0..csrow = Chip-Select Row
2347 static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
2349 struct mem_ctl_info *mci;
2350 struct amd64_pvt *pvt;
2351 u64 cs_base, cs_mask;
2352 int cs_found = -EINVAL;
2355 mci = edac_mc_find(nid);
2359 pvt = mci->pvt_info;
2361 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
2363 for_each_chip_select(csrow, dct, pvt) {
2364 if (!csrow_enabled(csrow, dct, pvt))
2367 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
2369 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
2370 csrow, cs_base, cs_mask);
2374 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
2375 (in_addr & cs_mask), (cs_base & cs_mask));
2377 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
2378 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
2382 cs_found = f10_process_possible_spare(pvt, dct, csrow);
2384 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
2392 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
2393 * swapped with a region located at the bottom of memory so that the GPU can use
2394 * the interleaved region and thus two channels.
2396 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
2398 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
2400 if (pvt->fam == 0x10) {
2401 /* only revC3 and revE have that feature */
2402 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
2406 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
2408 if (!(swap_reg & 0x1))
2411 swap_base = (swap_reg >> 3) & 0x7f;
2412 swap_limit = (swap_reg >> 11) & 0x7f;
2413 rgn_size = (swap_reg >> 20) & 0x7f;
2414 tmp_addr = sys_addr >> 27;
2416 if (!(sys_addr >> 34) &&
2417 (((tmp_addr >= swap_base) &&
2418 (tmp_addr <= swap_limit)) ||
2419 (tmp_addr < rgn_size)))
2420 return sys_addr ^ (u64)swap_base << 27;
2425 /* For a given @dram_range, check if @sys_addr falls within it. */
2426 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
2427 u64 sys_addr, int *chan_sel)
2429 int cs_found = -EINVAL;
2433 bool high_range = false;
2435 u8 node_id = dram_dst_node(pvt, range);
2436 u8 intlv_en = dram_intlv_en(pvt, range);
2437 u32 intlv_sel = dram_intlv_sel(pvt, range);
2439 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
2440 range, sys_addr, get_dram_limit(pvt, range));
2442 if (dhar_valid(pvt) &&
2443 dhar_base(pvt) <= sys_addr &&
2444 sys_addr < BIT_64(32)) {
2445 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
2450 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
2453 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
2455 dct_sel_base = dct_sel_baseaddr(pvt);
2458 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
2459 * select between DCT0 and DCT1.
2461 if (dct_high_range_enabled(pvt) &&
2462 !dct_ganging_enabled(pvt) &&
2463 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
2466 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
2468 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
2469 high_range, dct_sel_base);
2471 /* Remove node interleaving, see F1x120 */
2473 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
2474 (chan_addr & 0xfff);
2476 /* remove channel interleave */
2477 if (dct_interleave_enabled(pvt) &&
2478 !dct_high_range_enabled(pvt) &&
2479 !dct_ganging_enabled(pvt)) {
2481 if (dct_sel_interleave_addr(pvt) != 1) {
2482 if (dct_sel_interleave_addr(pvt) == 0x3)
2484 chan_addr = ((chan_addr >> 10) << 9) |
2485 (chan_addr & 0x1ff);
2487 /* A[6] or hash 6 */
2488 chan_addr = ((chan_addr >> 7) << 6) |
2492 chan_addr = ((chan_addr >> 13) << 12) |
2493 (chan_addr & 0xfff);
2496 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
2498 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
2501 *chan_sel = channel;
2506 static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
2507 u64 sys_addr, int *chan_sel)
2509 int cs_found = -EINVAL;
2510 int num_dcts_intlv = 0;
2511 u64 chan_addr, chan_offset;
2512 u64 dct_base, dct_limit;
2513 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
2514 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
2516 u64 dhar_offset = f10_dhar_offset(pvt);
2517 u8 intlv_addr = dct_sel_interleave_addr(pvt);
2518 u8 node_id = dram_dst_node(pvt, range);
2519 u8 intlv_en = dram_intlv_en(pvt, range);
2521 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
2522 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
2524 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
2525 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
2527 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
2528 range, sys_addr, get_dram_limit(pvt, range));
2530 if (!(get_dram_base(pvt, range) <= sys_addr) &&
2531 !(get_dram_limit(pvt, range) >= sys_addr))
2534 if (dhar_valid(pvt) &&
2535 dhar_base(pvt) <= sys_addr &&
2536 sys_addr < BIT_64(32)) {
2537 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
2542 /* Verify sys_addr is within DCT Range. */
2543 dct_base = (u64) dct_sel_baseaddr(pvt);
2544 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
2546 if (!(dct_cont_base_reg & BIT(0)) &&
2547 !(dct_base <= (sys_addr >> 27) &&
2548 dct_limit >= (sys_addr >> 27)))
2551 /* Verify number of dct's that participate in channel interleaving. */
2552 num_dcts_intlv = (int) hweight8(intlv_en);
2554 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
2557 if (pvt->model >= 0x60)
2558 channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
2560 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
2561 num_dcts_intlv, dct_sel);
2563 /* Verify we stay within the MAX number of channels allowed */
2567 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
2569 /* Get normalized DCT addr */
2570 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
2571 chan_offset = dhar_offset;
2573 chan_offset = dct_base << 27;
2575 chan_addr = sys_addr - chan_offset;
2577 /* remove channel interleave */
2578 if (num_dcts_intlv == 2) {
2579 if (intlv_addr == 0x4)
2580 chan_addr = ((chan_addr >> 9) << 8) |
2582 else if (intlv_addr == 0x5)
2583 chan_addr = ((chan_addr >> 10) << 9) |
2584 (chan_addr & 0x1ff);
2588 } else if (num_dcts_intlv == 4) {
2589 if (intlv_addr == 0x4)
2590 chan_addr = ((chan_addr >> 10) << 8) |
2592 else if (intlv_addr == 0x5)
2593 chan_addr = ((chan_addr >> 11) << 9) |
2594 (chan_addr & 0x1ff);
2599 if (dct_offset_en) {
2600 amd64_read_pci_cfg(pvt->F1,
2601 DRAM_CONT_HIGH_OFF + (int) channel * 4,
2603 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
2606 f15h_select_dct(pvt, channel);
2608 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
2612 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
2613 * there is support for 4 DCT's, but only 2 are currently functional.
2614 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
2615 * pvt->csels[1]. So we need to use '1' here to get correct info.
2616 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
2618 alias_channel = (channel == 3) ? 1 : channel;
2620 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
2623 *chan_sel = alias_channel;
2628 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
2632 int cs_found = -EINVAL;
2635 for (range = 0; range < DRAM_RANGES; range++) {
2636 if (!dram_rw(pvt, range))
2639 if (pvt->fam == 0x15 && pvt->model >= 0x30)
2640 cs_found = f15_m30h_match_to_this_node(pvt, range,
2644 else if ((get_dram_base(pvt, range) <= sys_addr) &&
2645 (get_dram_limit(pvt, range) >= sys_addr)) {
2646 cs_found = f1x_match_to_this_node(pvt, range,
2647 sys_addr, chan_sel);
2656 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2657 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2659 * The @sys_addr is usually an error address received from the hardware
2662 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2663 struct err_info *err)
2665 struct amd64_pvt *pvt = mci->pvt_info;
2667 error_address_to_page_and_offset(sys_addr, err);
2669 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
2670 if (err->csrow < 0) {
2671 err->err_code = ERR_CSROW;
2676 * We need the syndromes for channel detection only when we're
2677 * ganged. Otherwise @chan should already contain the channel at
2680 if (dct_ganging_enabled(pvt))
2681 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2685 * debug routine to display the memory sizes of all logical DIMMs and its
2688 static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2690 int dimm, size0, size1;
2691 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
2692 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
2694 if (pvt->fam == 0xf) {
2695 /* K8 families < revF not supported yet */
2696 if (pvt->ext_model < K8_REV_F)
2702 if (pvt->fam == 0x10) {
2703 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
2705 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
2706 pvt->csels[1].csbases :
2707 pvt->csels[0].csbases;
2710 dcsb = pvt->csels[1].csbases;
2712 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2715 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
2717 /* Dump memory sizes for DIMM and its CSROWs */
2718 for (dimm = 0; dimm < 4; dimm++) {
2721 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2723 * For F15m60h, we need multiplier for LRDIMM cs_size
2724 * calculation. We pass dimm value to the dbam_to_cs
2725 * mapper so we can find the multiplier from the
2726 * corresponding DCSM.
2728 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2729 DBAM_DIMM(dimm, dbam),
2733 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2734 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2735 DBAM_DIMM(dimm, dbam),
2738 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2740 dimm * 2 + 1, size1);
2744 static struct amd64_family_type family_types[] = {
2747 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2748 .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2751 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
2752 .dbam_to_cs = k8_dbam_to_chip_select,
2757 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2758 .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2761 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2762 .dbam_to_cs = f10_dbam_to_chip_select,
2767 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2768 .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2771 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2772 .dbam_to_cs = f15_dbam_to_chip_select,
2776 .ctl_name = "F15h_M30h",
2777 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2778 .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2781 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2782 .dbam_to_cs = f16_dbam_to_chip_select,
2786 .ctl_name = "F15h_M60h",
2787 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2788 .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2791 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2792 .dbam_to_cs = f15_m60h_dbam_to_chip_select,
2797 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2798 .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2801 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2802 .dbam_to_cs = f16_dbam_to_chip_select,
2806 .ctl_name = "F16h_M30h",
2807 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2808 .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2811 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
2812 .dbam_to_cs = f16_dbam_to_chip_select,
2819 .dbam_to_cs = f17_addr_mask_to_cs_size,
2823 .ctl_name = "F17h_M10h",
2826 .dbam_to_cs = f17_addr_mask_to_cs_size,
2830 .ctl_name = "F17h_M30h",
2833 .dbam_to_cs = f17_addr_mask_to_cs_size,
2837 .ctl_name = "F17h_M60h",
2840 .dbam_to_cs = f17_addr_mask_to_cs_size,
2844 .ctl_name = "F17h_M70h",
2847 .dbam_to_cs = f17_addr_mask_to_cs_size,
2854 .dbam_to_cs = f17_addr_mask_to_cs_size,
2858 .ctl_name = "F19h_M10h",
2860 .flags.zn_regs_v2 = 1,
2862 .dbam_to_cs = f17_addr_mask_to_cs_size,
2866 .ctl_name = "F19h_M50h",
2869 .dbam_to_cs = f17_addr_mask_to_cs_size,
2875 * These are tables of eigenvectors (one per line) which can be used for the
2876 * construction of the syndrome tables. The modified syndrome search algorithm
2877 * uses those to find the symbol in error and thus the DIMM.
2879 * Algorithm courtesy of Ross LaFetra from AMD.
2881 static const u16 x4_vectors[] = {
2882 0x2f57, 0x1afe, 0x66cc, 0xdd88,
2883 0x11eb, 0x3396, 0x7f4c, 0xeac8,
2884 0x0001, 0x0002, 0x0004, 0x0008,
2885 0x1013, 0x3032, 0x4044, 0x8088,
2886 0x106b, 0x30d6, 0x70fc, 0xe0a8,
2887 0x4857, 0xc4fe, 0x13cc, 0x3288,
2888 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2889 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2890 0x15c1, 0x2a42, 0x89ac, 0x4758,
2891 0x2b03, 0x1602, 0x4f0c, 0xca08,
2892 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2893 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2894 0x2b87, 0x164e, 0x642c, 0xdc18,
2895 0x40b9, 0x80de, 0x1094, 0x20e8,
2896 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2897 0x11c1, 0x2242, 0x84ac, 0x4c58,
2898 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2899 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2900 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2901 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2902 0x16b3, 0x3d62, 0x4f34, 0x8518,
2903 0x1e2f, 0x391a, 0x5cac, 0xf858,
2904 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2905 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2906 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2907 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2908 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2909 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2910 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2911 0x185d, 0x2ca6, 0x7914, 0x9e28,
2912 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2913 0x4199, 0x82ee, 0x19f4, 0x2e58,
2914 0x4807, 0xc40e, 0x130c, 0x3208,
2915 0x1905, 0x2e0a, 0x5804, 0xac08,
2916 0x213f, 0x132a, 0xadfc, 0x5ba8,
2917 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2920 static const u16 x8_vectors[] = {
2921 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2922 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2923 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2924 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2925 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2926 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2927 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2928 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2929 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2930 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2931 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2932 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2933 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2934 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2935 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2936 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2937 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2938 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2939 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2942 static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2945 unsigned int i, err_sym;
2947 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2949 unsigned v_idx = err_sym * v_dim;
2950 unsigned v_end = (err_sym + 1) * v_dim;
2952 /* walk over all 16 bits of the syndrome */
2953 for (i = 1; i < (1U << 16); i <<= 1) {
2955 /* if bit is set in that eigenvector... */
2956 if (v_idx < v_end && vectors[v_idx] & i) {
2957 u16 ev_comp = vectors[v_idx++];
2959 /* ... and bit set in the modified syndrome, */
2969 /* can't get to zero, move to next symbol */
2974 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2978 static int map_err_sym_to_channel(int err_sym, int sym_size)
2989 return err_sym >> 4;
2994 /* imaginary bits not in a DIMM */
2996 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
3004 return err_sym >> 3;
3009 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
3011 struct amd64_pvt *pvt = mci->pvt_info;
3014 if (pvt->ecc_sym_sz == 8)
3015 err_sym = decode_syndrome(syndrome, x8_vectors,
3016 ARRAY_SIZE(x8_vectors),
3018 else if (pvt->ecc_sym_sz == 4)
3019 err_sym = decode_syndrome(syndrome, x4_vectors,
3020 ARRAY_SIZE(x4_vectors),
3023 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
3027 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
3030 static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
3033 enum hw_event_mc_err_type err_type;
3037 err_type = HW_EVENT_ERR_CORRECTED;
3038 else if (ecc_type == 1)
3039 err_type = HW_EVENT_ERR_UNCORRECTED;
3040 else if (ecc_type == 3)
3041 err_type = HW_EVENT_ERR_DEFERRED;
3043 WARN(1, "Something is rotten in the state of Denmark.\n");
3047 switch (err->err_code) {
3052 string = "Failed to map error addr to a node";
3055 string = "Failed to map error addr to a csrow";
3058 string = "Unknown syndrome - possible error reporting race";
3061 string = "MCA_SYND not valid - unknown syndrome and csrow";
3064 string = "Cannot decode normalized address";
3067 string = "WTF error";
3071 edac_mc_handle_error(err_type, mci, 1,
3072 err->page, err->offset, err->syndrome,
3073 err->csrow, err->channel, -1,
3077 static inline void decode_bus_error(int node_id, struct mce *m)
3079 struct mem_ctl_info *mci;
3080 struct amd64_pvt *pvt;
3081 u8 ecc_type = (m->status >> 45) & 0x3;
3082 u8 xec = XEC(m->status, 0x1f);
3083 u16 ec = EC(m->status);
3085 struct err_info err;
3087 mci = edac_mc_find(node_id);
3091 pvt = mci->pvt_info;
3093 /* Bail out early if this was an 'observed' error */
3094 if (PP(ec) == NBSL_PP_OBS)
3097 /* Do only ECC errors */
3098 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
3101 memset(&err, 0, sizeof(err));
3103 sys_addr = get_error_address(pvt, m);
3106 err.syndrome = extract_syndrome(m->status);
3108 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
3110 __log_ecc_error(mci, &err, ecc_type);
3114 * To find the UMC channel represented by this bank we need to match on its
3115 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
3118 * Currently, we can derive the channel number by looking at the 6th nibble in
3119 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
3122 static int find_umc_channel(struct mce *m)
3124 return (m->ipid & GENMASK(31, 0)) >> 20;
3127 static void decode_umc_error(int node_id, struct mce *m)
3129 u8 ecc_type = (m->status >> 45) & 0x3;
3130 struct mem_ctl_info *mci;
3131 struct amd64_pvt *pvt;
3132 struct err_info err;
3135 mci = edac_mc_find(node_id);
3139 pvt = mci->pvt_info;
3141 memset(&err, 0, sizeof(err));
3143 if (m->status & MCI_STATUS_DEFERRED)
3146 err.channel = find_umc_channel(m);
3148 if (!(m->status & MCI_STATUS_SYNDV)) {
3149 err.err_code = ERR_SYND;
3153 if (ecc_type == 2) {
3154 u8 length = (m->synd >> 18) & 0x3f;
3157 err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
3159 err.err_code = ERR_CHANNEL;
3162 err.csrow = m->synd & 0x7;
3164 if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
3165 err.err_code = ERR_NORM_ADDR;
3169 error_address_to_page_and_offset(sys_addr, &err);
3172 __log_ecc_error(mci, &err, ecc_type);
3176 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
3177 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
3180 reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
3185 /* Reserve the ADDRESS MAP Device */
3186 pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
3188 edac_dbg(1, "F1 not found: device 0x%x\n", pci_id1);
3192 /* Reserve the DCT Device */
3193 pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
3195 pci_dev_put(pvt->F1);
3198 edac_dbg(1, "F2 not found: device 0x%x\n", pci_id2);
3203 pci_ctl_dev = &pvt->F2->dev;
3205 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
3206 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
3207 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
3212 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
3217 pci_dev_put(pvt->F1);
3218 pci_dev_put(pvt->F2);
3222 static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
3224 pvt->ecc_sym_sz = 4;
3230 /* Check enabled channels only: */
3231 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
3232 if (pvt->umc[i].ecc_ctrl & BIT(9)) {
3233 pvt->ecc_sym_sz = 16;
3235 } else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
3236 pvt->ecc_sym_sz = 8;
3241 } else if (pvt->fam >= 0x10) {
3244 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
3245 /* F16h has only DCT0, so no need to read dbam1. */
3246 if (pvt->fam != 0x16)
3247 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
3249 /* F10h, revD and later can do x8 ECC too. */
3250 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
3251 pvt->ecc_sym_sz = 8;
3256 * Retrieve the hardware registers of the memory controller.
3258 static void __read_mc_regs_df(struct amd64_pvt *pvt)
3260 u8 nid = pvt->mc_node_id;
3261 struct amd64_umc *umc;
3264 /* Read registers from each UMC */
3267 umc_base = get_umc_base(i);
3270 amd_smn_read(nid, umc_base + get_umc_reg(UMCCH_DIMM_CFG), &umc->dimm_cfg);
3271 amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
3272 amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
3273 amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
3274 amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
3279 * Retrieve the hardware registers of the memory controller (this includes the
3280 * 'Address Map' and 'Misc' device regs)
3282 static void read_mc_regs(struct amd64_pvt *pvt)
3288 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
3289 * those are Read-As-Zero.
3291 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
3292 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
3294 /* Check first whether TOP_MEM2 is enabled: */
3295 rdmsrl(MSR_AMD64_SYSCFG, msr_val);
3296 if (msr_val & BIT(21)) {
3297 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
3298 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
3300 edac_dbg(0, " TOP_MEM2 disabled\n");
3304 __read_mc_regs_df(pvt);
3309 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
3311 read_dram_ctl_register(pvt);
3313 for (range = 0; range < DRAM_RANGES; range++) {
3316 /* read settings for this DRAM range */
3317 read_dram_base_limit_regs(pvt, range);
3319 rw = dram_rw(pvt, range);
3323 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
3325 get_dram_base(pvt, range),
3326 get_dram_limit(pvt, range));
3328 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
3329 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
3330 (rw & 0x1) ? "R" : "-",
3331 (rw & 0x2) ? "W" : "-",
3332 dram_intlv_sel(pvt, range),
3333 dram_dst_node(pvt, range));
3336 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
3337 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
3339 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
3341 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
3342 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
3344 if (!dct_ganging_enabled(pvt)) {
3345 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
3346 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
3350 read_dct_base_mask(pvt);
3352 determine_memory_type(pvt);
3355 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
3357 determine_ecc_sym_sz(pvt);
3361 * NOTE: CPU Revision Dependent code
3364 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
3365 * k8 private pointer to -->
3366 * DRAM Bank Address mapping register
3368 * DCL register where dual_channel_active is
3370 * The DBAM register consists of 4 sets of 4 bits each definitions:
3373 * 0-3 CSROWs 0 and 1
3374 * 4-7 CSROWs 2 and 3
3375 * 8-11 CSROWs 4 and 5
3376 * 12-15 CSROWs 6 and 7
3378 * Values range from: 0 to 15
3379 * The meaning of the values depends on CPU revision and dual-channel state,
3380 * see relevant BKDG more info.
3382 * The memory controller provides for total of only 8 CSROWs in its current
3383 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
3384 * single channel or two (2) DIMMs in dual channel mode.
3386 * The following code logic collapses the various tables for CSROW based on CPU
3390 * The number of PAGE_SIZE pages on the specified CSROW number it
3394 static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
3396 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
3397 int csrow_nr = csrow_nr_orig;
3398 u32 cs_mode, nr_pages;
3402 cs_mode = DBAM_DIMM(csrow_nr, dbam);
3404 cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
3407 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
3408 nr_pages <<= 20 - PAGE_SHIFT;
3410 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
3411 csrow_nr_orig, dct, cs_mode);
3412 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
3417 static int init_csrows_df(struct mem_ctl_info *mci)
3419 struct amd64_pvt *pvt = mci->pvt_info;
3420 enum edac_type edac_mode = EDAC_NONE;
3421 enum dev_type dev_type = DEV_UNKNOWN;
3422 struct dimm_info *dimm;
3426 if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
3427 edac_mode = EDAC_S16ECD16ED;
3429 } else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
3430 edac_mode = EDAC_S8ECD8ED;
3432 } else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
3433 edac_mode = EDAC_S4ECD4ED;
3435 } else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
3436 edac_mode = EDAC_SECDED;
3440 for_each_chip_select(cs, umc, pvt) {
3441 if (!csrow_enabled(cs, umc, pvt))
3445 dimm = mci->csrows[cs]->channels[umc]->dimm;
3447 edac_dbg(1, "MC node: %d, csrow: %d\n",
3448 pvt->mc_node_id, cs);
3450 dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
3451 dimm->mtype = pvt->umc[umc].dram_type;
3452 dimm->edac_mode = edac_mode;
3453 dimm->dtype = dev_type;
3462 * Initialize the array of csrow attribute instances, based on the values
3463 * from pci config hardware registers.
3465 static int init_csrows(struct mem_ctl_info *mci)
3467 struct amd64_pvt *pvt = mci->pvt_info;
3468 enum edac_type edac_mode = EDAC_NONE;
3469 struct csrow_info *csrow;
3470 struct dimm_info *dimm;
3471 int i, j, empty = 1;
3476 return init_csrows_df(mci);
3478 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
3482 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
3483 pvt->mc_node_id, val,
3484 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
3487 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
3489 for_each_chip_select(i, 0, pvt) {
3490 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
3491 bool row_dct1 = false;
3493 if (pvt->fam != 0xf)
3494 row_dct1 = !!csrow_enabled(i, 1, pvt);
3496 if (!row_dct0 && !row_dct1)
3499 csrow = mci->csrows[i];
3502 edac_dbg(1, "MC node: %d, csrow: %d\n",
3503 pvt->mc_node_id, i);
3506 nr_pages = get_csrow_nr_pages(pvt, 0, i);
3507 csrow->channels[0]->dimm->nr_pages = nr_pages;
3510 /* K8 has only one DCT */
3511 if (pvt->fam != 0xf && row_dct1) {
3512 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
3514 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
3515 nr_pages += row_dct1_pages;
3518 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
3520 /* Determine DIMM ECC mode: */
3521 if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
3522 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
3527 for (j = 0; j < fam_type->max_mcs; j++) {
3528 dimm = csrow->channels[j]->dimm;
3529 dimm->mtype = pvt->dram_type;
3530 dimm->edac_mode = edac_mode;
3538 /* get all cores on this DCT */
3539 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
3543 for_each_online_cpu(cpu)
3544 if (topology_die_id(cpu) == nid)
3545 cpumask_set_cpu(cpu, mask);
3548 /* check MCG_CTL on all the cpus on this node */
3549 static bool nb_mce_bank_enabled_on_node(u16 nid)
3555 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3556 amd64_warn("%s: Error allocating mask\n", __func__);
3560 get_cpus_on_this_dct_cpumask(mask, nid);
3562 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
3564 for_each_cpu(cpu, mask) {
3565 struct msr *reg = per_cpu_ptr(msrs, cpu);
3566 nbe = reg->l & MSR_MCGCTL_NBE;
3568 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
3570 (nbe ? "enabled" : "disabled"));
3578 free_cpumask_var(mask);
3582 static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3584 cpumask_var_t cmask;
3587 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3588 amd64_warn("%s: error allocating mask\n", __func__);
3592 get_cpus_on_this_dct_cpumask(cmask, nid);
3594 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
3596 for_each_cpu(cpu, cmask) {
3598 struct msr *reg = per_cpu_ptr(msrs, cpu);
3601 if (reg->l & MSR_MCGCTL_NBE)
3602 s->flags.nb_mce_enable = 1;
3604 reg->l |= MSR_MCGCTL_NBE;
3607 * Turn off NB MCE reporting only when it was off before
3609 if (!s->flags.nb_mce_enable)
3610 reg->l &= ~MSR_MCGCTL_NBE;
3613 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
3615 free_cpumask_var(cmask);
3620 static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3624 u32 value, mask = 0x3; /* UECC/CECC enable */
3626 if (toggle_ecc_err_reporting(s, nid, ON)) {
3627 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
3631 amd64_read_pci_cfg(F3, NBCTL, &value);
3633 s->old_nbctl = value & mask;
3634 s->nbctl_valid = true;
3637 amd64_write_pci_cfg(F3, NBCTL, value);
3639 amd64_read_pci_cfg(F3, NBCFG, &value);
3641 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3642 nid, value, !!(value & NBCFG_ECC_ENABLE));
3644 if (!(value & NBCFG_ECC_ENABLE)) {
3645 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3647 s->flags.nb_ecc_prev = 0;
3649 /* Attempt to turn on DRAM ECC Enable */
3650 value |= NBCFG_ECC_ENABLE;
3651 amd64_write_pci_cfg(F3, NBCFG, value);
3653 amd64_read_pci_cfg(F3, NBCFG, &value);
3655 if (!(value & NBCFG_ECC_ENABLE)) {
3656 amd64_warn("Hardware rejected DRAM ECC enable,"
3657 "check memory DIMM configuration.\n");
3660 amd64_info("Hardware accepted DRAM ECC Enable\n");
3663 s->flags.nb_ecc_prev = 1;
3666 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3667 nid, value, !!(value & NBCFG_ECC_ENABLE));
3672 static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3675 u32 value, mask = 0x3; /* UECC/CECC enable */
3677 if (!s->nbctl_valid)
3680 amd64_read_pci_cfg(F3, NBCTL, &value);
3682 value |= s->old_nbctl;
3684 amd64_write_pci_cfg(F3, NBCTL, value);
3686 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3687 if (!s->flags.nb_ecc_prev) {
3688 amd64_read_pci_cfg(F3, NBCFG, &value);
3689 value &= ~NBCFG_ECC_ENABLE;
3690 amd64_write_pci_cfg(F3, NBCFG, value);
3693 /* restore the NB Enable MCGCTL bit */
3694 if (toggle_ecc_err_reporting(s, nid, OFF))
3695 amd64_warn("Error restoring NB MCGCTL settings!\n");
3698 static bool ecc_enabled(struct amd64_pvt *pvt)
3700 u16 nid = pvt->mc_node_id;
3701 bool nb_mce_en = false;
3705 if (boot_cpu_data.x86 >= 0x17) {
3706 u8 umc_en_mask = 0, ecc_en_mask = 0;
3707 struct amd64_umc *umc;
3712 /* Only check enabled UMCs. */
3713 if (!(umc->sdp_ctrl & UMC_SDP_INIT))
3716 umc_en_mask |= BIT(i);
3718 if (umc->umc_cap_hi & UMC_ECC_ENABLED)
3719 ecc_en_mask |= BIT(i);
3722 /* Check whether at least one UMC is enabled: */
3724 ecc_en = umc_en_mask == ecc_en_mask;
3726 edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3728 /* Assume UMC MCA banks are enabled. */
3731 amd64_read_pci_cfg(pvt->F3, NBCFG, &value);
3733 ecc_en = !!(value & NBCFG_ECC_ENABLE);
3735 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
3737 edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3738 MSR_IA32_MCG_CTL, nid);
3741 edac_dbg(3, "Node %d: DRAM ECC %s.\n", nid, (ecc_en ? "enabled" : "disabled"));
3743 if (!ecc_en || !nb_mce_en)
3750 f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
3752 u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3755 if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
3756 ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
3757 cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3759 dev_x4 &= !!(pvt->umc[i].dimm_cfg & BIT(6));
3760 dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3764 /* Set chipkill only if ECC is enabled: */
3766 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3772 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3774 mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
3776 mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3780 static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
3782 struct amd64_pvt *pvt = mci->pvt_info;
3784 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
3785 mci->edac_ctl_cap = EDAC_FLAG_NONE;
3788 f17h_determine_edac_ctl_cap(mci, pvt);
3790 if (pvt->nbcap & NBCAP_SECDED)
3791 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3793 if (pvt->nbcap & NBCAP_CHIPKILL)
3794 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3797 mci->edac_cap = determine_edac_cap(pvt);
3798 mci->mod_name = EDAC_MOD_STR;
3799 mci->ctl_name = fam_type->ctl_name;
3800 mci->dev_name = pci_name(pvt->F3);
3801 mci->ctl_page_to_phys = NULL;
3803 if (pvt->fam >= 0x17)
3806 /* memory scrubber interface */
3807 mci->set_sdram_scrub_rate = set_scrub_rate;
3808 mci->get_sdram_scrub_rate = get_scrub_rate;
3812 * returns a pointer to the family descriptor on success, NULL otherwise.
3814 static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3816 pvt->ext_model = boot_cpu_data.x86_model >> 4;
3817 pvt->stepping = boot_cpu_data.x86_stepping;
3818 pvt->model = boot_cpu_data.x86_model;
3819 pvt->fam = boot_cpu_data.x86;
3823 fam_type = &family_types[K8_CPUS];
3824 pvt->ops = &family_types[K8_CPUS].ops;
3828 fam_type = &family_types[F10_CPUS];
3829 pvt->ops = &family_types[F10_CPUS].ops;
3833 if (pvt->model == 0x30) {
3834 fam_type = &family_types[F15_M30H_CPUS];
3835 pvt->ops = &family_types[F15_M30H_CPUS].ops;
3837 } else if (pvt->model == 0x60) {
3838 fam_type = &family_types[F15_M60H_CPUS];
3839 pvt->ops = &family_types[F15_M60H_CPUS].ops;
3841 /* Richland is only client */
3842 } else if (pvt->model == 0x13) {
3845 fam_type = &family_types[F15_CPUS];
3846 pvt->ops = &family_types[F15_CPUS].ops;
3851 if (pvt->model == 0x30) {
3852 fam_type = &family_types[F16_M30H_CPUS];
3853 pvt->ops = &family_types[F16_M30H_CPUS].ops;
3856 fam_type = &family_types[F16_CPUS];
3857 pvt->ops = &family_types[F16_CPUS].ops;
3861 if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
3862 fam_type = &family_types[F17_M10H_CPUS];
3863 pvt->ops = &family_types[F17_M10H_CPUS].ops;
3865 } else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
3866 fam_type = &family_types[F17_M30H_CPUS];
3867 pvt->ops = &family_types[F17_M30H_CPUS].ops;
3869 } else if (pvt->model >= 0x60 && pvt->model <= 0x6f) {
3870 fam_type = &family_types[F17_M60H_CPUS];
3871 pvt->ops = &family_types[F17_M60H_CPUS].ops;
3873 } else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
3874 fam_type = &family_types[F17_M70H_CPUS];
3875 pvt->ops = &family_types[F17_M70H_CPUS].ops;
3880 fam_type = &family_types[F17_CPUS];
3881 pvt->ops = &family_types[F17_CPUS].ops;
3883 if (pvt->fam == 0x18)
3884 family_types[F17_CPUS].ctl_name = "F18h";
3888 if (pvt->model >= 0x10 && pvt->model <= 0x1f) {
3889 fam_type = &family_types[F19_M10H_CPUS];
3890 pvt->ops = &family_types[F19_M10H_CPUS].ops;
3892 } else if (pvt->model >= 0x20 && pvt->model <= 0x2f) {
3893 fam_type = &family_types[F17_M70H_CPUS];
3894 pvt->ops = &family_types[F17_M70H_CPUS].ops;
3895 fam_type->ctl_name = "F19h_M20h";
3897 } else if (pvt->model >= 0x50 && pvt->model <= 0x5f) {
3898 fam_type = &family_types[F19_M50H_CPUS];
3899 pvt->ops = &family_types[F19_M50H_CPUS].ops;
3900 fam_type->ctl_name = "F19h_M50h";
3902 } else if (pvt->model >= 0xa0 && pvt->model <= 0xaf) {
3903 fam_type = &family_types[F19_M10H_CPUS];
3904 pvt->ops = &family_types[F19_M10H_CPUS].ops;
3905 fam_type->ctl_name = "F19h_MA0h";
3908 fam_type = &family_types[F19_CPUS];
3909 pvt->ops = &family_types[F19_CPUS].ops;
3910 family_types[F19_CPUS].ctl_name = "F19h";
3914 amd64_err("Unsupported family!\n");
3921 static const struct attribute_group *amd64_edac_attr_groups[] = {
3922 #ifdef CONFIG_EDAC_DEBUG
3929 static int hw_info_get(struct amd64_pvt *pvt)
3931 u16 pci_id1 = 0, pci_id2 = 0;
3934 if (pvt->fam >= 0x17) {
3935 pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL);
3939 pci_id1 = fam_type->f1_id;
3940 pci_id2 = fam_type->f2_id;
3943 ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3952 static void hw_info_put(struct amd64_pvt *pvt)
3955 free_mc_sibling_devs(pvt);
3960 static int init_one_instance(struct amd64_pvt *pvt)
3962 struct mem_ctl_info *mci = NULL;
3963 struct edac_mc_layer layers[2];
3966 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
3967 layers[0].size = pvt->csels[0].b_cnt;
3968 layers[0].is_virt_csrow = true;
3969 layers[1].type = EDAC_MC_LAYER_CHANNEL;
3970 layers[1].size = fam_type->max_mcs;
3971 layers[1].is_virt_csrow = false;
3973 mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0);
3977 mci->pvt_info = pvt;
3978 mci->pdev = &pvt->F3->dev;
3980 setup_mci_misc_attrs(mci);
3982 if (init_csrows(mci))
3983 mci->edac_cap = EDAC_FLAG_NONE;
3986 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3987 edac_dbg(1, "failed edac_mc_add_mc()\n");
3995 static bool instance_has_memory(struct amd64_pvt *pvt)
3997 bool cs_enabled = false;
3998 int cs = 0, dct = 0;
4000 for (dct = 0; dct < fam_type->max_mcs; dct++) {
4001 for_each_chip_select(cs, dct, pvt)
4002 cs_enabled |= csrow_enabled(cs, dct, pvt);
4008 static int probe_one_instance(unsigned int nid)
4010 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
4011 struct amd64_pvt *pvt = NULL;
4012 struct ecc_settings *s;
4016 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
4022 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
4026 pvt->mc_node_id = nid;
4030 fam_type = per_family_init(pvt);
4034 ret = hw_info_get(pvt);
4039 if (!instance_has_memory(pvt)) {
4040 amd64_info("Node %d: No DIMMs detected.\n", nid);
4044 if (!ecc_enabled(pvt)) {
4047 if (!ecc_enable_override)
4050 if (boot_cpu_data.x86 >= 0x17) {
4051 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
4054 amd64_warn("Forcing ECC on!\n");
4056 if (!enable_ecc_error_reporting(s, nid, F3))
4060 ret = init_one_instance(pvt);
4062 amd64_err("Error probing instance: %d\n", nid);
4064 if (boot_cpu_data.x86 < 0x17)
4065 restore_ecc_error_reporting(s, nid, F3);
4070 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
4072 (pvt->ext_model >= K8_REV_F ? "revF or later "
4073 : "revE or earlier ")
4074 : ""), pvt->mc_node_id);
4076 dump_misc_regs(pvt);
4086 ecc_stngs[nid] = NULL;
4092 static void remove_one_instance(unsigned int nid)
4094 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
4095 struct ecc_settings *s = ecc_stngs[nid];
4096 struct mem_ctl_info *mci;
4097 struct amd64_pvt *pvt;
4099 /* Remove from EDAC CORE tracking list */
4100 mci = edac_mc_del_mc(&F3->dev);
4104 pvt = mci->pvt_info;
4106 restore_ecc_error_reporting(s, nid, F3);
4108 kfree(ecc_stngs[nid]);
4109 ecc_stngs[nid] = NULL;
4111 /* Free the EDAC CORE resources */
4112 mci->pvt_info = NULL;
4119 static void setup_pci_device(void)
4124 pci_ctl = edac_pci_create_generic_ctl(pci_ctl_dev, EDAC_MOD_STR);
4126 pr_warn("%s(): Unable to create PCI control\n", __func__);
4127 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
4131 static const struct x86_cpu_id amd64_cpuids[] = {
4132 X86_MATCH_VENDOR_FAM(AMD, 0x0F, NULL),
4133 X86_MATCH_VENDOR_FAM(AMD, 0x10, NULL),
4134 X86_MATCH_VENDOR_FAM(AMD, 0x15, NULL),
4135 X86_MATCH_VENDOR_FAM(AMD, 0x16, NULL),
4136 X86_MATCH_VENDOR_FAM(AMD, 0x17, NULL),
4137 X86_MATCH_VENDOR_FAM(HYGON, 0x18, NULL),
4138 X86_MATCH_VENDOR_FAM(AMD, 0x19, NULL),
4141 MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
4143 static int __init amd64_edac_init(void)
4149 if (ghes_get_devices())
4152 owner = edac_get_owner();
4153 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
4156 if (!x86_match_cpu(amd64_cpuids))
4165 ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
4169 msrs = msrs_alloc();
4173 for (i = 0; i < amd_nb_num(); i++) {
4174 err = probe_one_instance(i);
4176 /* unwind properly */
4178 remove_one_instance(i);
4184 if (!edac_has_mcs()) {
4189 /* register stuff with EDAC MCE */
4190 if (boot_cpu_data.x86 >= 0x17) {
4191 amd_register_ecc_decoder(decode_umc_error);
4193 amd_register_ecc_decoder(decode_bus_error);
4197 #ifdef CONFIG_X86_32
4198 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
4201 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
4218 static void __exit amd64_edac_exit(void)
4223 edac_pci_release_generic_ctl(pci_ctl);
4225 /* unregister from EDAC MCE */
4226 if (boot_cpu_data.x86 >= 0x17)
4227 amd_unregister_ecc_decoder(decode_umc_error);
4229 amd_unregister_ecc_decoder(decode_bus_error);
4231 for (i = 0; i < amd_nb_num(); i++)
4232 remove_one_instance(i);
4243 module_init(amd64_edac_init);
4244 module_exit(amd64_edac_exit);
4246 MODULE_LICENSE("GPL");
4247 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
4248 "Dave Peterson, Thayne Harbaugh");
4249 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
4250 EDAC_AMD64_VERSION);
4252 module_param(edac_op_state, int, 0444);
4253 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");