]> Git Repo - linux.git/blob - drivers/crypto/stm32/stm32-cryp.c
Merge patch series "RISC-V kasan rework"
[linux.git] / drivers / crypto / stm32 / stm32-cryp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <[email protected]>
5  * Ux500 support taken from snippets in the old Ux500 cryp driver
6  */
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/reset.h>
17
18 #include <crypto/aes.h>
19 #include <crypto/internal/des.h>
20 #include <crypto/engine.h>
21 #include <crypto/scatterwalk.h>
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/skcipher.h>
24
25 #define DRIVER_NAME             "stm32-cryp"
26
27 /* Bit [0] encrypt / decrypt */
28 #define FLG_ENCRYPT             BIT(0)
29 /* Bit [8..1] algo & operation mode */
30 #define FLG_AES                 BIT(1)
31 #define FLG_DES                 BIT(2)
32 #define FLG_TDES                BIT(3)
33 #define FLG_ECB                 BIT(4)
34 #define FLG_CBC                 BIT(5)
35 #define FLG_CTR                 BIT(6)
36 #define FLG_GCM                 BIT(7)
37 #define FLG_CCM                 BIT(8)
38 /* Mode mask = bits [15..0] */
39 #define FLG_MODE_MASK           GENMASK(15, 0)
40 /* Bit [31..16] status  */
41
42 /* Registers */
43 #define CRYP_CR                 0x00000000
44 #define CRYP_SR                 0x00000004
45 #define CRYP_DIN                0x00000008
46 #define CRYP_DOUT               0x0000000C
47 #define CRYP_DMACR              0x00000010
48 #define CRYP_IMSCR              0x00000014
49 #define CRYP_RISR               0x00000018
50 #define CRYP_MISR               0x0000001C
51 #define CRYP_K0LR               0x00000020
52 #define CRYP_K0RR               0x00000024
53 #define CRYP_K1LR               0x00000028
54 #define CRYP_K1RR               0x0000002C
55 #define CRYP_K2LR               0x00000030
56 #define CRYP_K2RR               0x00000034
57 #define CRYP_K3LR               0x00000038
58 #define CRYP_K3RR               0x0000003C
59 #define CRYP_IV0LR              0x00000040
60 #define CRYP_IV0RR              0x00000044
61 #define CRYP_IV1LR              0x00000048
62 #define CRYP_IV1RR              0x0000004C
63 #define CRYP_CSGCMCCM0R         0x00000050
64 #define CRYP_CSGCM0R            0x00000070
65
66 #define UX500_CRYP_CR           0x00000000
67 #define UX500_CRYP_SR           0x00000004
68 #define UX500_CRYP_DIN          0x00000008
69 #define UX500_CRYP_DINSIZE      0x0000000C
70 #define UX500_CRYP_DOUT         0x00000010
71 #define UX500_CRYP_DOUSIZE      0x00000014
72 #define UX500_CRYP_DMACR        0x00000018
73 #define UX500_CRYP_IMSC         0x0000001C
74 #define UX500_CRYP_RIS          0x00000020
75 #define UX500_CRYP_MIS          0x00000024
76 #define UX500_CRYP_K1L          0x00000028
77 #define UX500_CRYP_K1R          0x0000002C
78 #define UX500_CRYP_K2L          0x00000030
79 #define UX500_CRYP_K2R          0x00000034
80 #define UX500_CRYP_K3L          0x00000038
81 #define UX500_CRYP_K3R          0x0000003C
82 #define UX500_CRYP_K4L          0x00000040
83 #define UX500_CRYP_K4R          0x00000044
84 #define UX500_CRYP_IV0L         0x00000048
85 #define UX500_CRYP_IV0R         0x0000004C
86 #define UX500_CRYP_IV1L         0x00000050
87 #define UX500_CRYP_IV1R         0x00000054
88
89 /* Registers values */
90 #define CR_DEC_NOT_ENC          0x00000004
91 #define CR_TDES_ECB             0x00000000
92 #define CR_TDES_CBC             0x00000008
93 #define CR_DES_ECB              0x00000010
94 #define CR_DES_CBC              0x00000018
95 #define CR_AES_ECB              0x00000020
96 #define CR_AES_CBC              0x00000028
97 #define CR_AES_CTR              0x00000030
98 #define CR_AES_KP               0x00000038 /* Not on Ux500 */
99 #define CR_AES_XTS              0x00000038 /* Only on Ux500 */
100 #define CR_AES_GCM              0x00080000
101 #define CR_AES_CCM              0x00080008
102 #define CR_AES_UNKNOWN          0xFFFFFFFF
103 #define CR_ALGO_MASK            0x00080038
104 #define CR_DATA32               0x00000000
105 #define CR_DATA16               0x00000040
106 #define CR_DATA8                0x00000080
107 #define CR_DATA1                0x000000C0
108 #define CR_KEY128               0x00000000
109 #define CR_KEY192               0x00000100
110 #define CR_KEY256               0x00000200
111 #define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
112 #define CR_KSE                  0x00000800 /* Only on Ux500 */
113 #define CR_FFLUSH               0x00004000
114 #define CR_CRYPEN               0x00008000
115 #define CR_PH_INIT              0x00000000
116 #define CR_PH_HEADER            0x00010000
117 #define CR_PH_PAYLOAD           0x00020000
118 #define CR_PH_FINAL             0x00030000
119 #define CR_PH_MASK              0x00030000
120 #define CR_NBPBL_SHIFT          20
121
122 #define SR_BUSY                 0x00000010
123 #define SR_OFNE                 0x00000004
124
125 #define IMSCR_IN                BIT(0)
126 #define IMSCR_OUT               BIT(1)
127
128 #define MISR_IN                 BIT(0)
129 #define MISR_OUT                BIT(1)
130
131 /* Misc */
132 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
133 #define GCM_CTR_INIT            2
134 #define CRYP_AUTOSUSPEND_DELAY  50
135
136 struct stm32_cryp_caps {
137         bool                    aeads_support;
138         bool                    linear_aes_key;
139         bool                    kp_mode;
140         bool                    iv_protection;
141         bool                    swap_final;
142         bool                    padding_wa;
143         u32                     cr;
144         u32                     sr;
145         u32                     din;
146         u32                     dout;
147         u32                     imsc;
148         u32                     mis;
149         u32                     k1l;
150         u32                     k1r;
151         u32                     k3r;
152         u32                     iv0l;
153         u32                     iv0r;
154         u32                     iv1l;
155         u32                     iv1r;
156 };
157
158 struct stm32_cryp_ctx {
159         struct crypto_engine_ctx enginectx;
160         struct stm32_cryp       *cryp;
161         int                     keylen;
162         __be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
163         unsigned long           flags;
164 };
165
166 struct stm32_cryp_reqctx {
167         unsigned long mode;
168 };
169
170 struct stm32_cryp {
171         struct list_head        list;
172         struct device           *dev;
173         void __iomem            *regs;
174         struct clk              *clk;
175         unsigned long           flags;
176         u32                     irq_status;
177         const struct stm32_cryp_caps *caps;
178         struct stm32_cryp_ctx   *ctx;
179
180         struct crypto_engine    *engine;
181
182         struct skcipher_request *req;
183         struct aead_request     *areq;
184
185         size_t                  authsize;
186         size_t                  hw_blocksize;
187
188         size_t                  payload_in;
189         size_t                  header_in;
190         size_t                  payload_out;
191
192         struct scatterlist      *out_sg;
193
194         struct scatter_walk     in_walk;
195         struct scatter_walk     out_walk;
196
197         __be32                  last_ctr[4];
198         u32                     gcm_ctr;
199 };
200
201 struct stm32_cryp_list {
202         struct list_head        dev_list;
203         spinlock_t              lock; /* protect dev_list */
204 };
205
206 static struct stm32_cryp_list cryp_list = {
207         .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
208         .lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
209 };
210
211 static inline bool is_aes(struct stm32_cryp *cryp)
212 {
213         return cryp->flags & FLG_AES;
214 }
215
216 static inline bool is_des(struct stm32_cryp *cryp)
217 {
218         return cryp->flags & FLG_DES;
219 }
220
221 static inline bool is_tdes(struct stm32_cryp *cryp)
222 {
223         return cryp->flags & FLG_TDES;
224 }
225
226 static inline bool is_ecb(struct stm32_cryp *cryp)
227 {
228         return cryp->flags & FLG_ECB;
229 }
230
231 static inline bool is_cbc(struct stm32_cryp *cryp)
232 {
233         return cryp->flags & FLG_CBC;
234 }
235
236 static inline bool is_ctr(struct stm32_cryp *cryp)
237 {
238         return cryp->flags & FLG_CTR;
239 }
240
241 static inline bool is_gcm(struct stm32_cryp *cryp)
242 {
243         return cryp->flags & FLG_GCM;
244 }
245
246 static inline bool is_ccm(struct stm32_cryp *cryp)
247 {
248         return cryp->flags & FLG_CCM;
249 }
250
251 static inline bool is_encrypt(struct stm32_cryp *cryp)
252 {
253         return cryp->flags & FLG_ENCRYPT;
254 }
255
256 static inline bool is_decrypt(struct stm32_cryp *cryp)
257 {
258         return !is_encrypt(cryp);
259 }
260
261 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
262 {
263         return readl_relaxed(cryp->regs + ofst);
264 }
265
266 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
267 {
268         writel_relaxed(val, cryp->regs + ofst);
269 }
270
271 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
272 {
273         u32 status;
274
275         return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
276                         !(status & SR_BUSY), 10, 100000);
277 }
278
279 static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
280 {
281         writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
282                        cryp->regs + cryp->caps->cr);
283 }
284
285 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
286 {
287         u32 status;
288
289         return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
290                         !(status & CR_CRYPEN), 10, 100000);
291 }
292
293 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
294 {
295         u32 status;
296
297         return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
298                         status & SR_OFNE, 10, 100000);
299 }
300
301 static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
302 {
303         writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
304                        cryp->regs + cryp->caps->cr);
305 }
306
307 static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
308 {
309         writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
310                        cryp->regs + cryp->caps->cr);
311 }
312
313 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
314 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
315
316 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
317 {
318         struct stm32_cryp *tmp, *cryp = NULL;
319
320         spin_lock_bh(&cryp_list.lock);
321         if (!ctx->cryp) {
322                 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
323                         cryp = tmp;
324                         break;
325                 }
326                 ctx->cryp = cryp;
327         } else {
328                 cryp = ctx->cryp;
329         }
330
331         spin_unlock_bh(&cryp_list.lock);
332
333         return cryp;
334 }
335
336 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
337 {
338         if (!iv)
339                 return;
340
341         stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
342         stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
343
344         if (is_aes(cryp)) {
345                 stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
346                 stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
347         }
348 }
349
350 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
351 {
352         struct skcipher_request *req = cryp->req;
353         __be32 *tmp = (void *)req->iv;
354
355         if (!tmp)
356                 return;
357
358         if (cryp->caps->iv_protection)
359                 stm32_cryp_key_read_enable(cryp);
360
361         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
362         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
363
364         if (is_aes(cryp)) {
365                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
366                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
367         }
368
369         if (cryp->caps->iv_protection)
370                 stm32_cryp_key_read_disable(cryp);
371 }
372
373 /**
374  * ux500_swap_bits_in_byte() - mirror the bits in a byte
375  * @b: the byte to be mirrored
376  *
377  * The bits are swapped the following way:
378  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
379  *  nibble 2 (n2) bits 4-7.
380  *
381  *  Nibble 1 (n1):
382  *  (The "old" (moved) bit is replaced with a zero)
383  *  1. Move bit 6 and 7, 4 positions to the left.
384  *  2. Move bit 3 and 5, 2 positions to the left.
385  *  3. Move bit 1-4, 1 position to the left.
386  *
387  *  Nibble 2 (n2):
388  *  1. Move bit 0 and 1, 4 positions to the right.
389  *  2. Move bit 2 and 4, 2 positions to the right.
390  *  3. Move bit 3-6, 1 position to the right.
391  *
392  *  Combine the two nibbles to a complete and swapped byte.
393  */
394 static inline u8 ux500_swap_bits_in_byte(u8 b)
395 {
396 #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
397 #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
398                                   right shift 2 */
399 #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
400                                   right shift 1 */
401 #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
402 #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
403                                   left shift 2 */
404 #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
405                                   left shift 1 */
406
407         u8 n1;
408         u8 n2;
409
410         /* Swap most significant nibble */
411         /* Right shift 4, bits 6 and 7 */
412         n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
413         /* Right shift 2, bits 3 and 5 */
414         n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
415         /* Right shift 1, bits 1-4 */
416         n1 = (n1  & R_SHIFT_1_MASK) >> 1;
417
418         /* Swap least significant nibble */
419         /* Left shift 4, bits 0 and 1 */
420         n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
421         /* Left shift 2, bits 2 and 4 */
422         n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
423         /* Left shift 1, bits 3-6 */
424         n2 = (n2  & L_SHIFT_1_MASK) << 1;
425
426         return n1 | n2;
427 }
428
429 /**
430  * ux500_swizzle_key() - Shuffle around words and bits in the AES key
431  * @in: key to swizzle
432  * @out: swizzled key
433  * @len: length of key, in bytes
434  *
435  * This "key swizzling procedure" is described in the examples in the
436  * DB8500 design specification. There is no real description of why
437  * the bits have been arranged like this in the hardware.
438  */
439 static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
440 {
441         int i = 0;
442         int bpw = sizeof(u32);
443         int j;
444         int index = 0;
445
446         j = len - bpw;
447         while (j >= 0) {
448                 for (i = 0; i < bpw; i++) {
449                         index = len - j - bpw + i;
450                         out[j + i] =
451                                 ux500_swap_bits_in_byte(in[index]);
452                 }
453                 j -= bpw;
454         }
455 }
456
457 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
458 {
459         unsigned int i;
460         int r_id;
461
462         if (is_des(c)) {
463                 stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
464                 stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
465                 return;
466         }
467
468         /*
469          * On the Ux500 the AES key is considered as a single bit sequence
470          * of 128, 192 or 256 bits length. It is written linearly into the
471          * registers from K1L and down, and need to be processed to become
472          * a proper big-endian bit sequence.
473          */
474         if (is_aes(c) && c->caps->linear_aes_key) {
475                 u32 tmpkey[8];
476
477                 ux500_swizzle_key((u8 *)c->ctx->key,
478                                   (u8 *)tmpkey, c->ctx->keylen);
479
480                 r_id = c->caps->k1l;
481                 for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
482                         stm32_cryp_write(c, r_id, tmpkey[i]);
483
484                 return;
485         }
486
487         r_id = c->caps->k3r;
488         for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
489                 stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
490 }
491
492 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
493 {
494         if (is_aes(cryp) && is_ecb(cryp))
495                 return CR_AES_ECB;
496
497         if (is_aes(cryp) && is_cbc(cryp))
498                 return CR_AES_CBC;
499
500         if (is_aes(cryp) && is_ctr(cryp))
501                 return CR_AES_CTR;
502
503         if (is_aes(cryp) && is_gcm(cryp))
504                 return CR_AES_GCM;
505
506         if (is_aes(cryp) && is_ccm(cryp))
507                 return CR_AES_CCM;
508
509         if (is_des(cryp) && is_ecb(cryp))
510                 return CR_DES_ECB;
511
512         if (is_des(cryp) && is_cbc(cryp))
513                 return CR_DES_CBC;
514
515         if (is_tdes(cryp) && is_ecb(cryp))
516                 return CR_TDES_ECB;
517
518         if (is_tdes(cryp) && is_cbc(cryp))
519                 return CR_TDES_CBC;
520
521         dev_err(cryp->dev, "Unknown mode\n");
522         return CR_AES_UNKNOWN;
523 }
524
525 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
526 {
527         return is_encrypt(cryp) ? cryp->areq->cryptlen :
528                                   cryp->areq->cryptlen - cryp->authsize;
529 }
530
531 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
532 {
533         int ret;
534         __be32 iv[4];
535
536         /* Phase 1 : init */
537         memcpy(iv, cryp->areq->iv, 12);
538         iv[3] = cpu_to_be32(GCM_CTR_INIT);
539         cryp->gcm_ctr = GCM_CTR_INIT;
540         stm32_cryp_hw_write_iv(cryp, iv);
541
542         stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
543
544         /* Wait for end of processing */
545         ret = stm32_cryp_wait_enable(cryp);
546         if (ret) {
547                 dev_err(cryp->dev, "Timeout (gcm init)\n");
548                 return ret;
549         }
550
551         /* Prepare next phase */
552         if (cryp->areq->assoclen) {
553                 cfg |= CR_PH_HEADER;
554                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
555         } else if (stm32_cryp_get_input_text_len(cryp)) {
556                 cfg |= CR_PH_PAYLOAD;
557                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
558         }
559
560         return 0;
561 }
562
563 static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
564 {
565         u32 cfg;
566         int err;
567
568         /* Check if whole header written */
569         if (!cryp->header_in) {
570                 /* Wait for completion */
571                 err = stm32_cryp_wait_busy(cryp);
572                 if (err) {
573                         dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
574                         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
575                         stm32_cryp_finish_req(cryp, err);
576                         return;
577                 }
578
579                 if (stm32_cryp_get_input_text_len(cryp)) {
580                         /* Phase 3 : payload */
581                         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
582                         cfg &= ~CR_CRYPEN;
583                         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
584
585                         cfg &= ~CR_PH_MASK;
586                         cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
587                         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
588                 } else {
589                         /*
590                          * Phase 4 : tag.
591                          * Nothing to read, nothing to write, caller have to
592                          * end request
593                          */
594                 }
595         }
596 }
597
598 static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
599 {
600         size_t written;
601         size_t len;
602         u32 alen = cryp->areq->assoclen;
603         u32 block[AES_BLOCK_32] = {0};
604         u8 *b8 = (u8 *)block;
605
606         if (alen <= 65280) {
607                 /* Write first u32 of B1 */
608                 b8[0] = (alen >> 8) & 0xFF;
609                 b8[1] = alen & 0xFF;
610                 len = 2;
611         } else {
612                 /* Build the two first u32 of B1 */
613                 b8[0] = 0xFF;
614                 b8[1] = 0xFE;
615                 b8[2] = (alen & 0xFF000000) >> 24;
616                 b8[3] = (alen & 0x00FF0000) >> 16;
617                 b8[4] = (alen & 0x0000FF00) >> 8;
618                 b8[5] = alen & 0x000000FF;
619                 len = 6;
620         }
621
622         written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
623
624         scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
625
626         writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
627
628         cryp->header_in -= written;
629
630         stm32_crypt_gcmccm_end_header(cryp);
631 }
632
633 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
634 {
635         int ret;
636         u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
637         u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
638         __be32 *bd;
639         u32 *d;
640         unsigned int i, textlen;
641
642         /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
643         memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
644         memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
645         iv[AES_BLOCK_SIZE - 1] = 1;
646         stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
647
648         /* Build B0 */
649         memcpy(b0, iv, AES_BLOCK_SIZE);
650
651         b0[0] |= (8 * ((cryp->authsize - 2) / 2));
652
653         if (cryp->areq->assoclen)
654                 b0[0] |= 0x40;
655
656         textlen = stm32_cryp_get_input_text_len(cryp);
657
658         b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
659         b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
660
661         /* Enable HW */
662         stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
663
664         /* Write B0 */
665         d = (u32 *)b0;
666         bd = (__be32 *)b0;
667
668         for (i = 0; i < AES_BLOCK_32; i++) {
669                 u32 xd = d[i];
670
671                 if (!cryp->caps->padding_wa)
672                         xd = be32_to_cpu(bd[i]);
673                 stm32_cryp_write(cryp, cryp->caps->din, xd);
674         }
675
676         /* Wait for end of processing */
677         ret = stm32_cryp_wait_enable(cryp);
678         if (ret) {
679                 dev_err(cryp->dev, "Timeout (ccm init)\n");
680                 return ret;
681         }
682
683         /* Prepare next phase */
684         if (cryp->areq->assoclen) {
685                 cfg |= CR_PH_HEADER | CR_CRYPEN;
686                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
687
688                 /* Write first (special) block (may move to next phase [payload]) */
689                 stm32_cryp_write_ccm_first_header(cryp);
690         } else if (stm32_cryp_get_input_text_len(cryp)) {
691                 cfg |= CR_PH_PAYLOAD;
692                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
693         }
694
695         return 0;
696 }
697
698 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
699 {
700         int ret;
701         u32 cfg, hw_mode;
702
703         pm_runtime_get_sync(cryp->dev);
704
705         /* Disable interrupt */
706         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
707
708         /* Set configuration */
709         cfg = CR_DATA8 | CR_FFLUSH;
710
711         switch (cryp->ctx->keylen) {
712         case AES_KEYSIZE_128:
713                 cfg |= CR_KEY128;
714                 break;
715
716         case AES_KEYSIZE_192:
717                 cfg |= CR_KEY192;
718                 break;
719
720         default:
721         case AES_KEYSIZE_256:
722                 cfg |= CR_KEY256;
723                 break;
724         }
725
726         hw_mode = stm32_cryp_get_hw_mode(cryp);
727         if (hw_mode == CR_AES_UNKNOWN)
728                 return -EINVAL;
729
730         /* AES ECB/CBC decrypt: run key preparation first */
731         if (is_decrypt(cryp) &&
732             ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
733                 /* Configure in key preparation mode */
734                 if (cryp->caps->kp_mode)
735                         stm32_cryp_write(cryp, cryp->caps->cr,
736                                 cfg | CR_AES_KP);
737                 else
738                         stm32_cryp_write(cryp,
739                                 cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
740
741                 /* Set key only after full configuration done */
742                 stm32_cryp_hw_write_key(cryp);
743
744                 /* Start prepare key */
745                 stm32_cryp_enable(cryp);
746                 /* Wait for end of processing */
747                 ret = stm32_cryp_wait_busy(cryp);
748                 if (ret) {
749                         dev_err(cryp->dev, "Timeout (key preparation)\n");
750                         return ret;
751                 }
752
753                 cfg |= hw_mode | CR_DEC_NOT_ENC;
754
755                 /* Apply updated config (Decrypt + algo) and flush */
756                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
757         } else {
758                 cfg |= hw_mode;
759                 if (is_decrypt(cryp))
760                         cfg |= CR_DEC_NOT_ENC;
761
762                 /* Apply config and flush */
763                 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
764
765                 /* Set key only after configuration done */
766                 stm32_cryp_hw_write_key(cryp);
767         }
768
769         switch (hw_mode) {
770         case CR_AES_GCM:
771         case CR_AES_CCM:
772                 /* Phase 1 : init */
773                 if (hw_mode == CR_AES_CCM)
774                         ret = stm32_cryp_ccm_init(cryp, cfg);
775                 else
776                         ret = stm32_cryp_gcm_init(cryp, cfg);
777
778                 if (ret)
779                         return ret;
780
781                 break;
782
783         case CR_DES_CBC:
784         case CR_TDES_CBC:
785         case CR_AES_CBC:
786         case CR_AES_CTR:
787                 stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
788                 break;
789
790         default:
791                 break;
792         }
793
794         /* Enable now */
795         stm32_cryp_enable(cryp);
796
797         return 0;
798 }
799
800 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
801 {
802         if (!err && (is_gcm(cryp) || is_ccm(cryp)))
803                 /* Phase 4 : output tag */
804                 err = stm32_cryp_read_auth_tag(cryp);
805
806         if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
807                 stm32_cryp_get_iv(cryp);
808
809         pm_runtime_mark_last_busy(cryp->dev);
810         pm_runtime_put_autosuspend(cryp->dev);
811
812         if (is_gcm(cryp) || is_ccm(cryp))
813                 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
814         else
815                 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
816                                                    err);
817 }
818
819 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
820 {
821         /* Enable interrupt and let the IRQ handler do everything */
822         stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
823
824         return 0;
825 }
826
827 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
828 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
829                                          void *areq);
830
831 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
832 {
833         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
834
835         crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
836
837         ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
838         ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
839         ctx->enginectx.op.unprepare_request = NULL;
840         return 0;
841 }
842
843 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
844 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
845                                        void *areq);
846
847 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
848 {
849         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
850
851         tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
852
853         ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
854         ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
855         ctx->enginectx.op.unprepare_request = NULL;
856
857         return 0;
858 }
859
860 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
861 {
862         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
863                         crypto_skcipher_reqtfm(req));
864         struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
865         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
866
867         if (!cryp)
868                 return -ENODEV;
869
870         rctx->mode = mode;
871
872         return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
873 }
874
875 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
876 {
877         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
878         struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
879         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
880
881         if (!cryp)
882                 return -ENODEV;
883
884         rctx->mode = mode;
885
886         return crypto_transfer_aead_request_to_engine(cryp->engine, req);
887 }
888
889 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
890                              unsigned int keylen)
891 {
892         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
893
894         memcpy(ctx->key, key, keylen);
895         ctx->keylen = keylen;
896
897         return 0;
898 }
899
900 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
901                                  unsigned int keylen)
902 {
903         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
904             keylen != AES_KEYSIZE_256)
905                 return -EINVAL;
906         else
907                 return stm32_cryp_setkey(tfm, key, keylen);
908 }
909
910 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
911                                  unsigned int keylen)
912 {
913         return verify_skcipher_des_key(tfm, key) ?:
914                stm32_cryp_setkey(tfm, key, keylen);
915 }
916
917 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
918                                   unsigned int keylen)
919 {
920         return verify_skcipher_des3_key(tfm, key) ?:
921                stm32_cryp_setkey(tfm, key, keylen);
922 }
923
924 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
925                                       unsigned int keylen)
926 {
927         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
928
929         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
930             keylen != AES_KEYSIZE_256)
931                 return -EINVAL;
932
933         memcpy(ctx->key, key, keylen);
934         ctx->keylen = keylen;
935
936         return 0;
937 }
938
939 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
940                                           unsigned int authsize)
941 {
942         switch (authsize) {
943         case 4:
944         case 8:
945         case 12:
946         case 13:
947         case 14:
948         case 15:
949         case 16:
950                 break;
951         default:
952                 return -EINVAL;
953         }
954
955         return 0;
956 }
957
958 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
959                                           unsigned int authsize)
960 {
961         switch (authsize) {
962         case 4:
963         case 6:
964         case 8:
965         case 10:
966         case 12:
967         case 14:
968         case 16:
969                 break;
970         default:
971                 return -EINVAL;
972         }
973
974         return 0;
975 }
976
977 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
978 {
979         if (req->cryptlen % AES_BLOCK_SIZE)
980                 return -EINVAL;
981
982         if (req->cryptlen == 0)
983                 return 0;
984
985         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
986 }
987
988 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
989 {
990         if (req->cryptlen % AES_BLOCK_SIZE)
991                 return -EINVAL;
992
993         if (req->cryptlen == 0)
994                 return 0;
995
996         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
997 }
998
999 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
1000 {
1001         if (req->cryptlen % AES_BLOCK_SIZE)
1002                 return -EINVAL;
1003
1004         if (req->cryptlen == 0)
1005                 return 0;
1006
1007         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1008 }
1009
1010 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1011 {
1012         if (req->cryptlen % AES_BLOCK_SIZE)
1013                 return -EINVAL;
1014
1015         if (req->cryptlen == 0)
1016                 return 0;
1017
1018         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1019 }
1020
1021 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1022 {
1023         if (req->cryptlen == 0)
1024                 return 0;
1025
1026         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1027 }
1028
1029 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1030 {
1031         if (req->cryptlen == 0)
1032                 return 0;
1033
1034         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1035 }
1036
1037 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1038 {
1039         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1040 }
1041
1042 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1043 {
1044         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1045 }
1046
1047 static inline int crypto_ccm_check_iv(const u8 *iv)
1048 {
1049         /* 2 <= L <= 8, so 1 <= L' <= 7. */
1050         if (iv[0] < 1 || iv[0] > 7)
1051                 return -EINVAL;
1052
1053         return 0;
1054 }
1055
1056 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1057 {
1058         int err;
1059
1060         err = crypto_ccm_check_iv(req->iv);
1061         if (err)
1062                 return err;
1063
1064         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1065 }
1066
1067 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1068 {
1069         int err;
1070
1071         err = crypto_ccm_check_iv(req->iv);
1072         if (err)
1073                 return err;
1074
1075         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1076 }
1077
1078 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1079 {
1080         if (req->cryptlen % DES_BLOCK_SIZE)
1081                 return -EINVAL;
1082
1083         if (req->cryptlen == 0)
1084                 return 0;
1085
1086         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1087 }
1088
1089 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1090 {
1091         if (req->cryptlen % DES_BLOCK_SIZE)
1092                 return -EINVAL;
1093
1094         if (req->cryptlen == 0)
1095                 return 0;
1096
1097         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1098 }
1099
1100 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1101 {
1102         if (req->cryptlen % DES_BLOCK_SIZE)
1103                 return -EINVAL;
1104
1105         if (req->cryptlen == 0)
1106                 return 0;
1107
1108         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1109 }
1110
1111 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1112 {
1113         if (req->cryptlen % DES_BLOCK_SIZE)
1114                 return -EINVAL;
1115
1116         if (req->cryptlen == 0)
1117                 return 0;
1118
1119         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1120 }
1121
1122 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1123 {
1124         if (req->cryptlen % DES_BLOCK_SIZE)
1125                 return -EINVAL;
1126
1127         if (req->cryptlen == 0)
1128                 return 0;
1129
1130         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1131 }
1132
1133 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1134 {
1135         if (req->cryptlen % DES_BLOCK_SIZE)
1136                 return -EINVAL;
1137
1138         if (req->cryptlen == 0)
1139                 return 0;
1140
1141         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1142 }
1143
1144 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1145 {
1146         if (req->cryptlen % DES_BLOCK_SIZE)
1147                 return -EINVAL;
1148
1149         if (req->cryptlen == 0)
1150                 return 0;
1151
1152         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1153 }
1154
1155 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1156 {
1157         if (req->cryptlen % DES_BLOCK_SIZE)
1158                 return -EINVAL;
1159
1160         if (req->cryptlen == 0)
1161                 return 0;
1162
1163         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1164 }
1165
1166 static int stm32_cryp_prepare_req(struct skcipher_request *req,
1167                                   struct aead_request *areq)
1168 {
1169         struct stm32_cryp_ctx *ctx;
1170         struct stm32_cryp *cryp;
1171         struct stm32_cryp_reqctx *rctx;
1172         struct scatterlist *in_sg;
1173         int ret;
1174
1175         if (!req && !areq)
1176                 return -EINVAL;
1177
1178         ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1179                     crypto_aead_ctx(crypto_aead_reqtfm(areq));
1180
1181         cryp = ctx->cryp;
1182
1183         if (!cryp)
1184                 return -ENODEV;
1185
1186         rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1187         rctx->mode &= FLG_MODE_MASK;
1188
1189         ctx->cryp = cryp;
1190
1191         cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1192         cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1193         cryp->ctx = ctx;
1194
1195         if (req) {
1196                 cryp->req = req;
1197                 cryp->areq = NULL;
1198                 cryp->header_in = 0;
1199                 cryp->payload_in = req->cryptlen;
1200                 cryp->payload_out = req->cryptlen;
1201                 cryp->authsize = 0;
1202         } else {
1203                 /*
1204                  * Length of input and output data:
1205                  * Encryption case:
1206                  *  INPUT  = AssocData   ||     PlainText
1207                  *          <- assoclen ->  <- cryptlen ->
1208                  *
1209                  *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1210                  *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1211                  *
1212                  * Decryption case:
1213                  *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1214                  *          <- assoclen --->  <---------- cryptlen ---------->
1215                  *
1216                  *  OUTPUT = AssocData    ||               PlainText
1217                  *          <- assoclen ->  <- cryptlen - authsize ->
1218                  */
1219                 cryp->areq = areq;
1220                 cryp->req = NULL;
1221                 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1222                 if (is_encrypt(cryp)) {
1223                         cryp->payload_in = areq->cryptlen;
1224                         cryp->header_in = areq->assoclen;
1225                         cryp->payload_out = areq->cryptlen;
1226                 } else {
1227                         cryp->payload_in = areq->cryptlen - cryp->authsize;
1228                         cryp->header_in = areq->assoclen;
1229                         cryp->payload_out = cryp->payload_in;
1230                 }
1231         }
1232
1233         in_sg = req ? req->src : areq->src;
1234         scatterwalk_start(&cryp->in_walk, in_sg);
1235
1236         cryp->out_sg = req ? req->dst : areq->dst;
1237         scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1238
1239         if (is_gcm(cryp) || is_ccm(cryp)) {
1240                 /* In output, jump after assoc data */
1241                 scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1242         }
1243
1244         if (is_ctr(cryp))
1245                 memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1246
1247         ret = stm32_cryp_hw_init(cryp);
1248         return ret;
1249 }
1250
1251 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1252                                          void *areq)
1253 {
1254         struct skcipher_request *req = container_of(areq,
1255                                                       struct skcipher_request,
1256                                                       base);
1257
1258         return stm32_cryp_prepare_req(req, NULL);
1259 }
1260
1261 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1262 {
1263         struct skcipher_request *req = container_of(areq,
1264                                                       struct skcipher_request,
1265                                                       base);
1266         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1267                         crypto_skcipher_reqtfm(req));
1268         struct stm32_cryp *cryp = ctx->cryp;
1269
1270         if (!cryp)
1271                 return -ENODEV;
1272
1273         return stm32_cryp_cpu_start(cryp);
1274 }
1275
1276 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1277 {
1278         struct aead_request *req = container_of(areq, struct aead_request,
1279                                                 base);
1280
1281         return stm32_cryp_prepare_req(NULL, req);
1282 }
1283
1284 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1285 {
1286         struct aead_request *req = container_of(areq, struct aead_request,
1287                                                 base);
1288         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1289         struct stm32_cryp *cryp = ctx->cryp;
1290
1291         if (!cryp)
1292                 return -ENODEV;
1293
1294         if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1295                 /* No input data to process: get tag and finish */
1296                 stm32_cryp_finish_req(cryp, 0);
1297                 return 0;
1298         }
1299
1300         return stm32_cryp_cpu_start(cryp);
1301 }
1302
1303 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1304 {
1305         u32 cfg, size_bit;
1306         unsigned int i;
1307         int ret = 0;
1308
1309         /* Update Config */
1310         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1311
1312         cfg &= ~CR_PH_MASK;
1313         cfg |= CR_PH_FINAL;
1314         cfg &= ~CR_DEC_NOT_ENC;
1315         cfg |= CR_CRYPEN;
1316
1317         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1318
1319         if (is_gcm(cryp)) {
1320                 /* GCM: write aad and payload size (in bits) */
1321                 size_bit = cryp->areq->assoclen * 8;
1322                 if (cryp->caps->swap_final)
1323                         size_bit = (__force u32)cpu_to_be32(size_bit);
1324
1325                 stm32_cryp_write(cryp, cryp->caps->din, 0);
1326                 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1327
1328                 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1329                                 cryp->areq->cryptlen - cryp->authsize;
1330                 size_bit *= 8;
1331                 if (cryp->caps->swap_final)
1332                         size_bit = (__force u32)cpu_to_be32(size_bit);
1333
1334                 stm32_cryp_write(cryp, cryp->caps->din, 0);
1335                 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1336         } else {
1337                 /* CCM: write CTR0 */
1338                 u32 iv32[AES_BLOCK_32];
1339                 u8 *iv = (u8 *)iv32;
1340                 __be32 *biv = (__be32 *)iv32;
1341
1342                 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1343                 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1344
1345                 for (i = 0; i < AES_BLOCK_32; i++) {
1346                         u32 xiv = iv32[i];
1347
1348                         if (!cryp->caps->padding_wa)
1349                                 xiv = be32_to_cpu(biv[i]);
1350                         stm32_cryp_write(cryp, cryp->caps->din, xiv);
1351                 }
1352         }
1353
1354         /* Wait for output data */
1355         ret = stm32_cryp_wait_output(cryp);
1356         if (ret) {
1357                 dev_err(cryp->dev, "Timeout (read tag)\n");
1358                 return ret;
1359         }
1360
1361         if (is_encrypt(cryp)) {
1362                 u32 out_tag[AES_BLOCK_32];
1363
1364                 /* Get and write tag */
1365                 readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1366                 scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1367         } else {
1368                 /* Get and check tag */
1369                 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1370
1371                 scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1372                 readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1373
1374                 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1375                         ret = -EBADMSG;
1376         }
1377
1378         /* Disable cryp */
1379         cfg &= ~CR_CRYPEN;
1380         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1381
1382         return ret;
1383 }
1384
1385 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1386 {
1387         u32 cr;
1388
1389         if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1390                 /*
1391                  * In this case, we need to increment manually the ctr counter,
1392                  * as HW doesn't handle the U32 carry.
1393                  */
1394                 crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1395
1396                 cr = stm32_cryp_read(cryp, cryp->caps->cr);
1397                 stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1398
1399                 stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1400
1401                 stm32_cryp_write(cryp, cryp->caps->cr, cr);
1402         }
1403
1404         /* The IV registers are BE  */
1405         cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1406         cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1407         cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1408         cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1409 }
1410
1411 static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1412 {
1413         u32 block[AES_BLOCK_32];
1414
1415         readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1416         scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1417                                                              cryp->payload_out), 1);
1418         cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1419                                    cryp->payload_out);
1420 }
1421
1422 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1423 {
1424         u32 block[AES_BLOCK_32] = {0};
1425
1426         scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1427                                                             cryp->payload_in), 0);
1428         writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
1429         cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1430 }
1431
1432 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1433 {
1434         int err;
1435         u32 cfg, block[AES_BLOCK_32] = {0};
1436         unsigned int i;
1437
1438         /* 'Special workaround' procedure described in the datasheet */
1439
1440         /* a) disable ip */
1441         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1442         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1443         cfg &= ~CR_CRYPEN;
1444         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1445
1446         /* b) Update IV1R */
1447         stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1448
1449         /* c) change mode to CTR */
1450         cfg &= ~CR_ALGO_MASK;
1451         cfg |= CR_AES_CTR;
1452         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1453
1454         /* a) enable IP */
1455         cfg |= CR_CRYPEN;
1456         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1457
1458         /* b) pad and write the last block */
1459         stm32_cryp_irq_write_block(cryp);
1460         /* wait end of process */
1461         err = stm32_cryp_wait_output(cryp);
1462         if (err) {
1463                 dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1464                 return stm32_cryp_finish_req(cryp, err);
1465         }
1466
1467         /* c) get and store encrypted data */
1468         /*
1469          * Same code as stm32_cryp_irq_read_data(), but we want to store
1470          * block value
1471          */
1472         readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1473
1474         scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1475                                                              cryp->payload_out), 1);
1476         cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1477                                    cryp->payload_out);
1478
1479         /* d) change mode back to AES GCM */
1480         cfg &= ~CR_ALGO_MASK;
1481         cfg |= CR_AES_GCM;
1482         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1483
1484         /* e) change phase to Final */
1485         cfg &= ~CR_PH_MASK;
1486         cfg |= CR_PH_FINAL;
1487         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1488
1489         /* f) write padded data */
1490         writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1491
1492         /* g) Empty fifo out */
1493         err = stm32_cryp_wait_output(cryp);
1494         if (err) {
1495                 dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1496                 return stm32_cryp_finish_req(cryp, err);
1497         }
1498
1499         for (i = 0; i < AES_BLOCK_32; i++)
1500                 stm32_cryp_read(cryp, cryp->caps->dout);
1501
1502         /* h) run the he normal Final phase */
1503         stm32_cryp_finish_req(cryp, 0);
1504 }
1505
1506 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1507 {
1508         u32 cfg;
1509
1510         /* disable ip, set NPBLB and reneable ip */
1511         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1512         cfg &= ~CR_CRYPEN;
1513         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1514
1515         cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1516         cfg |= CR_CRYPEN;
1517         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1518 }
1519
1520 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1521 {
1522         int err = 0;
1523         u32 cfg, iv1tmp;
1524         u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1525         u32 block[AES_BLOCK_32] = {0};
1526         unsigned int i;
1527
1528         /* 'Special workaround' procedure described in the datasheet */
1529
1530         /* a) disable ip */
1531         stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1532
1533         cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1534         cfg &= ~CR_CRYPEN;
1535         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1536
1537         /* b) get IV1 from CRYP_CSGCMCCM7 */
1538         iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1539
1540         /* c) Load CRYP_CSGCMCCMxR */
1541         for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1542                 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1543
1544         /* d) Write IV1R */
1545         stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1546
1547         /* e) change mode to CTR */
1548         cfg &= ~CR_ALGO_MASK;
1549         cfg |= CR_AES_CTR;
1550         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1551
1552         /* a) enable IP */
1553         cfg |= CR_CRYPEN;
1554         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1555
1556         /* b) pad and write the last block */
1557         stm32_cryp_irq_write_block(cryp);
1558         /* wait end of process */
1559         err = stm32_cryp_wait_output(cryp);
1560         if (err) {
1561                 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1562                 return stm32_cryp_finish_req(cryp, err);
1563         }
1564
1565         /* c) get and store decrypted data */
1566         /*
1567          * Same code as stm32_cryp_irq_read_data(), but we want to store
1568          * block value
1569          */
1570         readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1571
1572         scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1573                                                              cryp->payload_out), 1);
1574         cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1575
1576         /* d) Load again CRYP_CSGCMCCMxR */
1577         for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1578                 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1579
1580         /* e) change mode back to AES CCM */
1581         cfg &= ~CR_ALGO_MASK;
1582         cfg |= CR_AES_CCM;
1583         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1584
1585         /* f) change phase to header */
1586         cfg &= ~CR_PH_MASK;
1587         cfg |= CR_PH_HEADER;
1588         stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1589
1590         /* g) XOR and write padded data */
1591         for (i = 0; i < ARRAY_SIZE(block); i++) {
1592                 block[i] ^= cstmp1[i];
1593                 block[i] ^= cstmp2[i];
1594                 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1595         }
1596
1597         /* h) wait for completion */
1598         err = stm32_cryp_wait_busy(cryp);
1599         if (err)
1600                 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1601
1602         /* i) run the he normal Final phase */
1603         stm32_cryp_finish_req(cryp, err);
1604 }
1605
1606 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1607 {
1608         if (unlikely(!cryp->payload_in)) {
1609                 dev_warn(cryp->dev, "No more data to process\n");
1610                 return;
1611         }
1612
1613         if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1614                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1615                      is_encrypt(cryp))) {
1616                 /* Padding for AES GCM encryption */
1617                 if (cryp->caps->padding_wa) {
1618                         /* Special case 1 */
1619                         stm32_cryp_irq_write_gcm_padded_data(cryp);
1620                         return;
1621                 }
1622
1623                 /* Setting padding bytes (NBBLB) */
1624                 stm32_cryp_irq_set_npblb(cryp);
1625         }
1626
1627         if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1628                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1629                      is_decrypt(cryp))) {
1630                 /* Padding for AES CCM decryption */
1631                 if (cryp->caps->padding_wa) {
1632                         /* Special case 2 */
1633                         stm32_cryp_irq_write_ccm_padded_data(cryp);
1634                         return;
1635                 }
1636
1637                 /* Setting padding bytes (NBBLB) */
1638                 stm32_cryp_irq_set_npblb(cryp);
1639         }
1640
1641         if (is_aes(cryp) && is_ctr(cryp))
1642                 stm32_cryp_check_ctr_counter(cryp);
1643
1644         stm32_cryp_irq_write_block(cryp);
1645 }
1646
1647 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1648 {
1649         u32 block[AES_BLOCK_32] = {0};
1650         size_t written;
1651
1652         written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1653
1654         scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1655
1656         writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1657
1658         cryp->header_in -= written;
1659
1660         stm32_crypt_gcmccm_end_header(cryp);
1661 }
1662
1663 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1664 {
1665         struct stm32_cryp *cryp = arg;
1666         u32 ph;
1667         u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1668
1669         if (cryp->irq_status & MISR_OUT)
1670                 /* Output FIFO IRQ: read data */
1671                 stm32_cryp_irq_read_data(cryp);
1672
1673         if (cryp->irq_status & MISR_IN) {
1674                 if (is_gcm(cryp) || is_ccm(cryp)) {
1675                         ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1676                         if (unlikely(ph == CR_PH_HEADER))
1677                                 /* Write Header */
1678                                 stm32_cryp_irq_write_gcmccm_header(cryp);
1679                         else
1680                                 /* Input FIFO IRQ: write data */
1681                                 stm32_cryp_irq_write_data(cryp);
1682                         if (is_gcm(cryp))
1683                                 cryp->gcm_ctr++;
1684                 } else {
1685                         /* Input FIFO IRQ: write data */
1686                         stm32_cryp_irq_write_data(cryp);
1687                 }
1688         }
1689
1690         /* Mask useless interrupts */
1691         if (!cryp->payload_in && !cryp->header_in)
1692                 it_mask &= ~IMSCR_IN;
1693         if (!cryp->payload_out)
1694                 it_mask &= ~IMSCR_OUT;
1695         stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1696
1697         if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1698                 stm32_cryp_finish_req(cryp, 0);
1699
1700         return IRQ_HANDLED;
1701 }
1702
1703 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1704 {
1705         struct stm32_cryp *cryp = arg;
1706
1707         cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1708
1709         return IRQ_WAKE_THREAD;
1710 }
1711
1712 static struct skcipher_alg crypto_algs[] = {
1713 {
1714         .base.cra_name          = "ecb(aes)",
1715         .base.cra_driver_name   = "stm32-ecb-aes",
1716         .base.cra_priority      = 200,
1717         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1718         .base.cra_blocksize     = AES_BLOCK_SIZE,
1719         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1720         .base.cra_alignmask     = 0,
1721         .base.cra_module        = THIS_MODULE,
1722
1723         .init                   = stm32_cryp_init_tfm,
1724         .min_keysize            = AES_MIN_KEY_SIZE,
1725         .max_keysize            = AES_MAX_KEY_SIZE,
1726         .setkey                 = stm32_cryp_aes_setkey,
1727         .encrypt                = stm32_cryp_aes_ecb_encrypt,
1728         .decrypt                = stm32_cryp_aes_ecb_decrypt,
1729 },
1730 {
1731         .base.cra_name          = "cbc(aes)",
1732         .base.cra_driver_name   = "stm32-cbc-aes",
1733         .base.cra_priority      = 200,
1734         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1735         .base.cra_blocksize     = AES_BLOCK_SIZE,
1736         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1737         .base.cra_alignmask     = 0,
1738         .base.cra_module        = THIS_MODULE,
1739
1740         .init                   = stm32_cryp_init_tfm,
1741         .min_keysize            = AES_MIN_KEY_SIZE,
1742         .max_keysize            = AES_MAX_KEY_SIZE,
1743         .ivsize                 = AES_BLOCK_SIZE,
1744         .setkey                 = stm32_cryp_aes_setkey,
1745         .encrypt                = stm32_cryp_aes_cbc_encrypt,
1746         .decrypt                = stm32_cryp_aes_cbc_decrypt,
1747 },
1748 {
1749         .base.cra_name          = "ctr(aes)",
1750         .base.cra_driver_name   = "stm32-ctr-aes",
1751         .base.cra_priority      = 200,
1752         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1753         .base.cra_blocksize     = 1,
1754         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1755         .base.cra_alignmask     = 0,
1756         .base.cra_module        = THIS_MODULE,
1757
1758         .init                   = stm32_cryp_init_tfm,
1759         .min_keysize            = AES_MIN_KEY_SIZE,
1760         .max_keysize            = AES_MAX_KEY_SIZE,
1761         .ivsize                 = AES_BLOCK_SIZE,
1762         .setkey                 = stm32_cryp_aes_setkey,
1763         .encrypt                = stm32_cryp_aes_ctr_encrypt,
1764         .decrypt                = stm32_cryp_aes_ctr_decrypt,
1765 },
1766 {
1767         .base.cra_name          = "ecb(des)",
1768         .base.cra_driver_name   = "stm32-ecb-des",
1769         .base.cra_priority      = 200,
1770         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1771         .base.cra_blocksize     = DES_BLOCK_SIZE,
1772         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1773         .base.cra_alignmask     = 0,
1774         .base.cra_module        = THIS_MODULE,
1775
1776         .init                   = stm32_cryp_init_tfm,
1777         .min_keysize            = DES_BLOCK_SIZE,
1778         .max_keysize            = DES_BLOCK_SIZE,
1779         .setkey                 = stm32_cryp_des_setkey,
1780         .encrypt                = stm32_cryp_des_ecb_encrypt,
1781         .decrypt                = stm32_cryp_des_ecb_decrypt,
1782 },
1783 {
1784         .base.cra_name          = "cbc(des)",
1785         .base.cra_driver_name   = "stm32-cbc-des",
1786         .base.cra_priority      = 200,
1787         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1788         .base.cra_blocksize     = DES_BLOCK_SIZE,
1789         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1790         .base.cra_alignmask     = 0,
1791         .base.cra_module        = THIS_MODULE,
1792
1793         .init                   = stm32_cryp_init_tfm,
1794         .min_keysize            = DES_BLOCK_SIZE,
1795         .max_keysize            = DES_BLOCK_SIZE,
1796         .ivsize                 = DES_BLOCK_SIZE,
1797         .setkey                 = stm32_cryp_des_setkey,
1798         .encrypt                = stm32_cryp_des_cbc_encrypt,
1799         .decrypt                = stm32_cryp_des_cbc_decrypt,
1800 },
1801 {
1802         .base.cra_name          = "ecb(des3_ede)",
1803         .base.cra_driver_name   = "stm32-ecb-des3",
1804         .base.cra_priority      = 200,
1805         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1806         .base.cra_blocksize     = DES_BLOCK_SIZE,
1807         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1808         .base.cra_alignmask     = 0,
1809         .base.cra_module        = THIS_MODULE,
1810
1811         .init                   = stm32_cryp_init_tfm,
1812         .min_keysize            = 3 * DES_BLOCK_SIZE,
1813         .max_keysize            = 3 * DES_BLOCK_SIZE,
1814         .setkey                 = stm32_cryp_tdes_setkey,
1815         .encrypt                = stm32_cryp_tdes_ecb_encrypt,
1816         .decrypt                = stm32_cryp_tdes_ecb_decrypt,
1817 },
1818 {
1819         .base.cra_name          = "cbc(des3_ede)",
1820         .base.cra_driver_name   = "stm32-cbc-des3",
1821         .base.cra_priority      = 200,
1822         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1823         .base.cra_blocksize     = DES_BLOCK_SIZE,
1824         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1825         .base.cra_alignmask     = 0,
1826         .base.cra_module        = THIS_MODULE,
1827
1828         .init                   = stm32_cryp_init_tfm,
1829         .min_keysize            = 3 * DES_BLOCK_SIZE,
1830         .max_keysize            = 3 * DES_BLOCK_SIZE,
1831         .ivsize                 = DES_BLOCK_SIZE,
1832         .setkey                 = stm32_cryp_tdes_setkey,
1833         .encrypt                = stm32_cryp_tdes_cbc_encrypt,
1834         .decrypt                = stm32_cryp_tdes_cbc_decrypt,
1835 },
1836 };
1837
1838 static struct aead_alg aead_algs[] = {
1839 {
1840         .setkey         = stm32_cryp_aes_aead_setkey,
1841         .setauthsize    = stm32_cryp_aes_gcm_setauthsize,
1842         .encrypt        = stm32_cryp_aes_gcm_encrypt,
1843         .decrypt        = stm32_cryp_aes_gcm_decrypt,
1844         .init           = stm32_cryp_aes_aead_init,
1845         .ivsize         = 12,
1846         .maxauthsize    = AES_BLOCK_SIZE,
1847
1848         .base = {
1849                 .cra_name               = "gcm(aes)",
1850                 .cra_driver_name        = "stm32-gcm-aes",
1851                 .cra_priority           = 200,
1852                 .cra_flags              = CRYPTO_ALG_ASYNC,
1853                 .cra_blocksize          = 1,
1854                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1855                 .cra_alignmask          = 0,
1856                 .cra_module             = THIS_MODULE,
1857         },
1858 },
1859 {
1860         .setkey         = stm32_cryp_aes_aead_setkey,
1861         .setauthsize    = stm32_cryp_aes_ccm_setauthsize,
1862         .encrypt        = stm32_cryp_aes_ccm_encrypt,
1863         .decrypt        = stm32_cryp_aes_ccm_decrypt,
1864         .init           = stm32_cryp_aes_aead_init,
1865         .ivsize         = AES_BLOCK_SIZE,
1866         .maxauthsize    = AES_BLOCK_SIZE,
1867
1868         .base = {
1869                 .cra_name               = "ccm(aes)",
1870                 .cra_driver_name        = "stm32-ccm-aes",
1871                 .cra_priority           = 200,
1872                 .cra_flags              = CRYPTO_ALG_ASYNC,
1873                 .cra_blocksize          = 1,
1874                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1875                 .cra_alignmask          = 0,
1876                 .cra_module             = THIS_MODULE,
1877         },
1878 },
1879 };
1880
1881 static const struct stm32_cryp_caps ux500_data = {
1882         .aeads_support = false,
1883         .linear_aes_key = true,
1884         .kp_mode = false,
1885         .iv_protection = true,
1886         .swap_final = true,
1887         .padding_wa = true,
1888         .cr = UX500_CRYP_CR,
1889         .sr = UX500_CRYP_SR,
1890         .din = UX500_CRYP_DIN,
1891         .dout = UX500_CRYP_DOUT,
1892         .imsc = UX500_CRYP_IMSC,
1893         .mis = UX500_CRYP_MIS,
1894         .k1l = UX500_CRYP_K1L,
1895         .k1r = UX500_CRYP_K1R,
1896         .k3r = UX500_CRYP_K3R,
1897         .iv0l = UX500_CRYP_IV0L,
1898         .iv0r = UX500_CRYP_IV0R,
1899         .iv1l = UX500_CRYP_IV1L,
1900         .iv1r = UX500_CRYP_IV1R,
1901 };
1902
1903 static const struct stm32_cryp_caps f7_data = {
1904         .aeads_support = true,
1905         .linear_aes_key = false,
1906         .kp_mode = true,
1907         .iv_protection = false,
1908         .swap_final = true,
1909         .padding_wa = true,
1910         .cr = CRYP_CR,
1911         .sr = CRYP_SR,
1912         .din = CRYP_DIN,
1913         .dout = CRYP_DOUT,
1914         .imsc = CRYP_IMSCR,
1915         .mis = CRYP_MISR,
1916         .k1l = CRYP_K1LR,
1917         .k1r = CRYP_K1RR,
1918         .k3r = CRYP_K3RR,
1919         .iv0l = CRYP_IV0LR,
1920         .iv0r = CRYP_IV0RR,
1921         .iv1l = CRYP_IV1LR,
1922         .iv1r = CRYP_IV1RR,
1923 };
1924
1925 static const struct stm32_cryp_caps mp1_data = {
1926         .aeads_support = true,
1927         .linear_aes_key = false,
1928         .kp_mode = true,
1929         .iv_protection = false,
1930         .swap_final = false,
1931         .padding_wa = false,
1932         .cr = CRYP_CR,
1933         .sr = CRYP_SR,
1934         .din = CRYP_DIN,
1935         .dout = CRYP_DOUT,
1936         .imsc = CRYP_IMSCR,
1937         .mis = CRYP_MISR,
1938         .k1l = CRYP_K1LR,
1939         .k1r = CRYP_K1RR,
1940         .k3r = CRYP_K3RR,
1941         .iv0l = CRYP_IV0LR,
1942         .iv0r = CRYP_IV0RR,
1943         .iv1l = CRYP_IV1LR,
1944         .iv1r = CRYP_IV1RR,
1945 };
1946
1947 static const struct of_device_id stm32_dt_ids[] = {
1948         { .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1949         { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1950         { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1951         {},
1952 };
1953 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1954
1955 static int stm32_cryp_probe(struct platform_device *pdev)
1956 {
1957         struct device *dev = &pdev->dev;
1958         struct stm32_cryp *cryp;
1959         struct reset_control *rst;
1960         int irq, ret;
1961
1962         cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1963         if (!cryp)
1964                 return -ENOMEM;
1965
1966         cryp->caps = of_device_get_match_data(dev);
1967         if (!cryp->caps)
1968                 return -ENODEV;
1969
1970         cryp->dev = dev;
1971
1972         cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1973         if (IS_ERR(cryp->regs))
1974                 return PTR_ERR(cryp->regs);
1975
1976         irq = platform_get_irq(pdev, 0);
1977         if (irq < 0)
1978                 return irq;
1979
1980         ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1981                                         stm32_cryp_irq_thread, IRQF_ONESHOT,
1982                                         dev_name(dev), cryp);
1983         if (ret) {
1984                 dev_err(dev, "Cannot grab IRQ\n");
1985                 return ret;
1986         }
1987
1988         cryp->clk = devm_clk_get(dev, NULL);
1989         if (IS_ERR(cryp->clk)) {
1990                 dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
1991
1992                 return PTR_ERR(cryp->clk);
1993         }
1994
1995         ret = clk_prepare_enable(cryp->clk);
1996         if (ret) {
1997                 dev_err(cryp->dev, "Failed to enable clock\n");
1998                 return ret;
1999         }
2000
2001         pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2002         pm_runtime_use_autosuspend(dev);
2003
2004         pm_runtime_get_noresume(dev);
2005         pm_runtime_set_active(dev);
2006         pm_runtime_enable(dev);
2007
2008         rst = devm_reset_control_get(dev, NULL);
2009         if (IS_ERR(rst)) {
2010                 ret = PTR_ERR(rst);
2011                 if (ret == -EPROBE_DEFER)
2012                         goto err_rst;
2013         } else {
2014                 reset_control_assert(rst);
2015                 udelay(2);
2016                 reset_control_deassert(rst);
2017         }
2018
2019         platform_set_drvdata(pdev, cryp);
2020
2021         spin_lock(&cryp_list.lock);
2022         list_add(&cryp->list, &cryp_list.dev_list);
2023         spin_unlock(&cryp_list.lock);
2024
2025         /* Initialize crypto engine */
2026         cryp->engine = crypto_engine_alloc_init(dev, 1);
2027         if (!cryp->engine) {
2028                 dev_err(dev, "Could not init crypto engine\n");
2029                 ret = -ENOMEM;
2030                 goto err_engine1;
2031         }
2032
2033         ret = crypto_engine_start(cryp->engine);
2034         if (ret) {
2035                 dev_err(dev, "Could not start crypto engine\n");
2036                 goto err_engine2;
2037         }
2038
2039         ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2040         if (ret) {
2041                 dev_err(dev, "Could not register algs\n");
2042                 goto err_algs;
2043         }
2044
2045         if (cryp->caps->aeads_support) {
2046                 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2047                 if (ret)
2048                         goto err_aead_algs;
2049         }
2050
2051         dev_info(dev, "Initialized\n");
2052
2053         pm_runtime_put_sync(dev);
2054
2055         return 0;
2056
2057 err_aead_algs:
2058         crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2059 err_algs:
2060 err_engine2:
2061         crypto_engine_exit(cryp->engine);
2062 err_engine1:
2063         spin_lock(&cryp_list.lock);
2064         list_del(&cryp->list);
2065         spin_unlock(&cryp_list.lock);
2066 err_rst:
2067         pm_runtime_disable(dev);
2068         pm_runtime_put_noidle(dev);
2069
2070         clk_disable_unprepare(cryp->clk);
2071
2072         return ret;
2073 }
2074
2075 static int stm32_cryp_remove(struct platform_device *pdev)
2076 {
2077         struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2078         int ret;
2079
2080         if (!cryp)
2081                 return -ENODEV;
2082
2083         ret = pm_runtime_resume_and_get(cryp->dev);
2084         if (ret < 0)
2085                 return ret;
2086
2087         if (cryp->caps->aeads_support)
2088                 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2089         crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2090
2091         crypto_engine_exit(cryp->engine);
2092
2093         spin_lock(&cryp_list.lock);
2094         list_del(&cryp->list);
2095         spin_unlock(&cryp_list.lock);
2096
2097         pm_runtime_disable(cryp->dev);
2098         pm_runtime_put_noidle(cryp->dev);
2099
2100         clk_disable_unprepare(cryp->clk);
2101
2102         return 0;
2103 }
2104
2105 #ifdef CONFIG_PM
2106 static int stm32_cryp_runtime_suspend(struct device *dev)
2107 {
2108         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2109
2110         clk_disable_unprepare(cryp->clk);
2111
2112         return 0;
2113 }
2114
2115 static int stm32_cryp_runtime_resume(struct device *dev)
2116 {
2117         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2118         int ret;
2119
2120         ret = clk_prepare_enable(cryp->clk);
2121         if (ret) {
2122                 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2123                 return ret;
2124         }
2125
2126         return 0;
2127 }
2128 #endif
2129
2130 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2131         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2132                                 pm_runtime_force_resume)
2133         SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2134                            stm32_cryp_runtime_resume, NULL)
2135 };
2136
2137 static struct platform_driver stm32_cryp_driver = {
2138         .probe  = stm32_cryp_probe,
2139         .remove = stm32_cryp_remove,
2140         .driver = {
2141                 .name           = DRIVER_NAME,
2142                 .pm             = &stm32_cryp_pm_ops,
2143                 .of_match_table = stm32_dt_ids,
2144         },
2145 };
2146
2147 module_platform_driver(stm32_cryp_driver);
2148
2149 MODULE_AUTHOR("Fabien Dessenne <[email protected]>");
2150 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2151 MODULE_LICENSE("GPL");
This page took 0.157484 seconds and 4 git commands to generate.