]> Git Repo - linux.git/blob - drivers/base/cacheinfo.c
Merge patch series "RISC-V kasan rework"
[linux.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <[email protected]>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of_device.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx)         \
29                                 (per_cpu_cacheinfo(cpu) + (idx))
30
31 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
32 {
33         return ci_cacheinfo(cpu);
34 }
35
36 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
37                                            struct cacheinfo *sib_leaf)
38 {
39         /*
40          * For non DT/ACPI systems, assume unique level 1 caches,
41          * system-wide shared caches for all other levels. This will be used
42          * only if arch specific code has not populated shared_cpu_map
43          */
44         if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)))
45                 return !(this_leaf->level == 1);
46
47         if ((sib_leaf->attributes & CACHE_ID) &&
48             (this_leaf->attributes & CACHE_ID))
49                 return sib_leaf->id == this_leaf->id;
50
51         return sib_leaf->fw_token == this_leaf->fw_token;
52 }
53
54 bool last_level_cache_is_valid(unsigned int cpu)
55 {
56         struct cacheinfo *llc;
57
58         if (!cache_leaves(cpu))
59                 return false;
60
61         llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
62
63         return (llc->attributes & CACHE_ID) || !!llc->fw_token;
64
65 }
66
67 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
68 {
69         struct cacheinfo *llc_x, *llc_y;
70
71         if (!last_level_cache_is_valid(cpu_x) ||
72             !last_level_cache_is_valid(cpu_y))
73                 return false;
74
75         llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
76         llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
77
78         return cache_leaves_are_shared(llc_x, llc_y);
79 }
80
81 #ifdef CONFIG_OF
82 /* OF properties to query for a given cache type */
83 struct cache_type_info {
84         const char *size_prop;
85         const char *line_size_props[2];
86         const char *nr_sets_prop;
87 };
88
89 static const struct cache_type_info cache_type_info[] = {
90         {
91                 .size_prop       = "cache-size",
92                 .line_size_props = { "cache-line-size",
93                                      "cache-block-size", },
94                 .nr_sets_prop    = "cache-sets",
95         }, {
96                 .size_prop       = "i-cache-size",
97                 .line_size_props = { "i-cache-line-size",
98                                      "i-cache-block-size", },
99                 .nr_sets_prop    = "i-cache-sets",
100         }, {
101                 .size_prop       = "d-cache-size",
102                 .line_size_props = { "d-cache-line-size",
103                                      "d-cache-block-size", },
104                 .nr_sets_prop    = "d-cache-sets",
105         },
106 };
107
108 static inline int get_cacheinfo_idx(enum cache_type type)
109 {
110         if (type == CACHE_TYPE_UNIFIED)
111                 return 0;
112         return type;
113 }
114
115 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
116 {
117         const char *propname;
118         int ct_idx;
119
120         ct_idx = get_cacheinfo_idx(this_leaf->type);
121         propname = cache_type_info[ct_idx].size_prop;
122
123         of_property_read_u32(np, propname, &this_leaf->size);
124 }
125
126 /* not cache_line_size() because that's a macro in include/linux/cache.h */
127 static void cache_get_line_size(struct cacheinfo *this_leaf,
128                                 struct device_node *np)
129 {
130         int i, lim, ct_idx;
131
132         ct_idx = get_cacheinfo_idx(this_leaf->type);
133         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
134
135         for (i = 0; i < lim; i++) {
136                 int ret;
137                 u32 line_size;
138                 const char *propname;
139
140                 propname = cache_type_info[ct_idx].line_size_props[i];
141                 ret = of_property_read_u32(np, propname, &line_size);
142                 if (!ret) {
143                         this_leaf->coherency_line_size = line_size;
144                         break;
145                 }
146         }
147 }
148
149 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
150 {
151         const char *propname;
152         int ct_idx;
153
154         ct_idx = get_cacheinfo_idx(this_leaf->type);
155         propname = cache_type_info[ct_idx].nr_sets_prop;
156
157         of_property_read_u32(np, propname, &this_leaf->number_of_sets);
158 }
159
160 static void cache_associativity(struct cacheinfo *this_leaf)
161 {
162         unsigned int line_size = this_leaf->coherency_line_size;
163         unsigned int nr_sets = this_leaf->number_of_sets;
164         unsigned int size = this_leaf->size;
165
166         /*
167          * If the cache is fully associative, there is no need to
168          * check the other properties.
169          */
170         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
171                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
172 }
173
174 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
175                                   struct device_node *np)
176 {
177         return of_property_read_bool(np, "cache-unified");
178 }
179
180 static void cache_of_set_props(struct cacheinfo *this_leaf,
181                                struct device_node *np)
182 {
183         /*
184          * init_cache_level must setup the cache level correctly
185          * overriding the architecturally specified levels, so
186          * if type is NONE at this stage, it should be unified
187          */
188         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
189             cache_node_is_unified(this_leaf, np))
190                 this_leaf->type = CACHE_TYPE_UNIFIED;
191         cache_size(this_leaf, np);
192         cache_get_line_size(this_leaf, np);
193         cache_nr_sets(this_leaf, np);
194         cache_associativity(this_leaf);
195 }
196
197 static int cache_setup_of_node(unsigned int cpu)
198 {
199         struct device_node *np, *prev;
200         struct cacheinfo *this_leaf;
201         unsigned int index = 0;
202
203         np = of_cpu_device_node_get(cpu);
204         if (!np) {
205                 pr_err("Failed to find cpu%d device node\n", cpu);
206                 return -ENOENT;
207         }
208
209         prev = np;
210
211         while (index < cache_leaves(cpu)) {
212                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
213                 if (this_leaf->level != 1) {
214                         np = of_find_next_cache_node(np);
215                         of_node_put(prev);
216                         prev = np;
217                         if (!np)
218                                 break;
219                 }
220                 cache_of_set_props(this_leaf, np);
221                 this_leaf->fw_token = np;
222                 index++;
223         }
224
225         of_node_put(np);
226
227         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
228                 return -ENOENT;
229
230         return 0;
231 }
232
233 static int of_count_cache_leaves(struct device_node *np)
234 {
235         unsigned int leaves = 0;
236
237         if (of_property_read_bool(np, "cache-size"))
238                 ++leaves;
239         if (of_property_read_bool(np, "i-cache-size"))
240                 ++leaves;
241         if (of_property_read_bool(np, "d-cache-size"))
242                 ++leaves;
243
244         if (!leaves) {
245                 /* The '[i-|d-|]cache-size' property is required, but
246                  * if absent, fallback on the 'cache-unified' property.
247                  */
248                 if (of_property_read_bool(np, "cache-unified"))
249                         return 1;
250                 else
251                         return 2;
252         }
253
254         return leaves;
255 }
256
257 int init_of_cache_level(unsigned int cpu)
258 {
259         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
260         struct device_node *np = of_cpu_device_node_get(cpu);
261         struct device_node *prev = NULL;
262         unsigned int levels = 0, leaves, level;
263
264         leaves = of_count_cache_leaves(np);
265         if (leaves > 0)
266                 levels = 1;
267
268         prev = np;
269         while ((np = of_find_next_cache_node(np))) {
270                 of_node_put(prev);
271                 prev = np;
272                 if (!of_device_is_compatible(np, "cache"))
273                         goto err_out;
274                 if (of_property_read_u32(np, "cache-level", &level))
275                         goto err_out;
276                 if (level <= levels)
277                         goto err_out;
278
279                 leaves += of_count_cache_leaves(np);
280                 levels = level;
281         }
282
283         of_node_put(np);
284         this_cpu_ci->num_levels = levels;
285         this_cpu_ci->num_leaves = leaves;
286
287         return 0;
288
289 err_out:
290         of_node_put(np);
291         return -EINVAL;
292 }
293
294 #else
295 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
296 int init_of_cache_level(unsigned int cpu) { return 0; }
297 #endif
298
299 int __weak cache_setup_acpi(unsigned int cpu)
300 {
301         return -ENOTSUPP;
302 }
303
304 unsigned int coherency_max_size;
305
306 static int cache_setup_properties(unsigned int cpu)
307 {
308         int ret = 0;
309
310         if (of_have_populated_dt())
311                 ret = cache_setup_of_node(cpu);
312         else if (!acpi_disabled)
313                 ret = cache_setup_acpi(cpu);
314
315         return ret;
316 }
317
318 static int cache_shared_cpu_map_setup(unsigned int cpu)
319 {
320         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
321         struct cacheinfo *this_leaf, *sib_leaf;
322         unsigned int index, sib_index;
323         int ret = 0;
324
325         if (this_cpu_ci->cpu_map_populated)
326                 return 0;
327
328         /*
329          * skip setting up cache properties if LLC is valid, just need
330          * to update the shared cpu_map if the cache attributes were
331          * populated early before all the cpus are brought online
332          */
333         if (!last_level_cache_is_valid(cpu)) {
334                 ret = cache_setup_properties(cpu);
335                 if (ret)
336                         return ret;
337         }
338
339         for (index = 0; index < cache_leaves(cpu); index++) {
340                 unsigned int i;
341
342                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
343
344                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
345                 for_each_online_cpu(i) {
346                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
347
348                         if (i == cpu || !sib_cpu_ci->info_list)
349                                 continue;/* skip if itself or no cacheinfo */
350                         for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
351                                 sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
352                                 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
353                                         cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
354                                         cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
355                                         break;
356                                 }
357                         }
358                 }
359                 /* record the maximum cache line size */
360                 if (this_leaf->coherency_line_size > coherency_max_size)
361                         coherency_max_size = this_leaf->coherency_line_size;
362         }
363
364         return 0;
365 }
366
367 static void cache_shared_cpu_map_remove(unsigned int cpu)
368 {
369         struct cacheinfo *this_leaf, *sib_leaf;
370         unsigned int sibling, index, sib_index;
371
372         for (index = 0; index < cache_leaves(cpu); index++) {
373                 this_leaf = per_cpu_cacheinfo_idx(cpu, index);
374                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
375                         struct cpu_cacheinfo *sib_cpu_ci =
376                                                 get_cpu_cacheinfo(sibling);
377
378                         if (sibling == cpu || !sib_cpu_ci->info_list)
379                                 continue;/* skip if itself or no cacheinfo */
380
381                         for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
382                                 sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
383                                 if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
384                                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
385                                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
386                                         break;
387                                 }
388                         }
389                 }
390         }
391 }
392
393 static void free_cache_attributes(unsigned int cpu)
394 {
395         if (!per_cpu_cacheinfo(cpu))
396                 return;
397
398         cache_shared_cpu_map_remove(cpu);
399 }
400
401 int __weak init_cache_level(unsigned int cpu)
402 {
403         return -ENOENT;
404 }
405
406 int __weak populate_cache_leaves(unsigned int cpu)
407 {
408         return -ENOENT;
409 }
410
411 static inline
412 int allocate_cache_info(int cpu)
413 {
414         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
415                                          sizeof(struct cacheinfo), GFP_ATOMIC);
416         if (!per_cpu_cacheinfo(cpu)) {
417                 cache_leaves(cpu) = 0;
418                 return -ENOMEM;
419         }
420
421         return 0;
422 }
423
424 int fetch_cache_info(unsigned int cpu)
425 {
426         struct cpu_cacheinfo *this_cpu_ci;
427         unsigned int levels = 0, split_levels = 0;
428         int ret;
429
430         if (acpi_disabled) {
431                 ret = init_of_cache_level(cpu);
432                 if (ret < 0)
433                         return ret;
434         } else {
435                 ret = acpi_get_cache_info(cpu, &levels, &split_levels);
436                 if (ret < 0)
437                         return ret;
438
439                 this_cpu_ci = get_cpu_cacheinfo(cpu);
440                 this_cpu_ci->num_levels = levels;
441                 /*
442                  * This assumes that:
443                  * - there cannot be any split caches (data/instruction)
444                  *   above a unified cache
445                  * - data/instruction caches come by pair
446                  */
447                 this_cpu_ci->num_leaves = levels + split_levels;
448         }
449         if (!cache_leaves(cpu))
450                 return -ENOENT;
451
452         return allocate_cache_info(cpu);
453 }
454
455 int detect_cache_attributes(unsigned int cpu)
456 {
457         int ret;
458
459         /* Since early initialization/allocation of the cacheinfo is allowed
460          * via fetch_cache_info() and this also gets called as CPU hotplug
461          * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
462          * as it will happen only once (the cacheinfo memory is never freed).
463          * Just populate the cacheinfo.
464          */
465         if (per_cpu_cacheinfo(cpu))
466                 goto populate_leaves;
467
468         if (init_cache_level(cpu) || !cache_leaves(cpu))
469                 return -ENOENT;
470
471         ret = allocate_cache_info(cpu);
472         if (ret)
473                 return ret;
474
475 populate_leaves:
476         /*
477          * populate_cache_leaves() may completely setup the cache leaves and
478          * shared_cpu_map or it may leave it partially setup.
479          */
480         ret = populate_cache_leaves(cpu);
481         if (ret)
482                 goto free_ci;
483
484         /*
485          * For systems using DT for cache hierarchy, fw_token
486          * and shared_cpu_map will be set up here only if they are
487          * not populated already
488          */
489         ret = cache_shared_cpu_map_setup(cpu);
490         if (ret) {
491                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
492                 goto free_ci;
493         }
494
495         return 0;
496
497 free_ci:
498         free_cache_attributes(cpu);
499         return ret;
500 }
501
502 /* pointer to cpuX/cache device */
503 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
504 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
505
506 static cpumask_t cache_dev_map;
507
508 /* pointer to array of devices for cpuX/cache/indexY */
509 static DEFINE_PER_CPU(struct device **, ci_index_dev);
510 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
511 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
512
513 #define show_one(file_name, object)                             \
514 static ssize_t file_name##_show(struct device *dev,             \
515                 struct device_attribute *attr, char *buf)       \
516 {                                                               \
517         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
518         return sysfs_emit(buf, "%u\n", this_leaf->object);      \
519 }
520
521 show_one(id, id);
522 show_one(level, level);
523 show_one(coherency_line_size, coherency_line_size);
524 show_one(number_of_sets, number_of_sets);
525 show_one(physical_line_partition, physical_line_partition);
526 show_one(ways_of_associativity, ways_of_associativity);
527
528 static ssize_t size_show(struct device *dev,
529                          struct device_attribute *attr, char *buf)
530 {
531         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
532
533         return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
534 }
535
536 static ssize_t shared_cpu_map_show(struct device *dev,
537                                    struct device_attribute *attr, char *buf)
538 {
539         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
540         const struct cpumask *mask = &this_leaf->shared_cpu_map;
541
542         return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
543 }
544
545 static ssize_t shared_cpu_list_show(struct device *dev,
546                                     struct device_attribute *attr, char *buf)
547 {
548         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
549         const struct cpumask *mask = &this_leaf->shared_cpu_map;
550
551         return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
552 }
553
554 static ssize_t type_show(struct device *dev,
555                          struct device_attribute *attr, char *buf)
556 {
557         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
558         const char *output;
559
560         switch (this_leaf->type) {
561         case CACHE_TYPE_DATA:
562                 output = "Data";
563                 break;
564         case CACHE_TYPE_INST:
565                 output = "Instruction";
566                 break;
567         case CACHE_TYPE_UNIFIED:
568                 output = "Unified";
569                 break;
570         default:
571                 return -EINVAL;
572         }
573
574         return sysfs_emit(buf, "%s\n", output);
575 }
576
577 static ssize_t allocation_policy_show(struct device *dev,
578                                       struct device_attribute *attr, char *buf)
579 {
580         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
581         unsigned int ci_attr = this_leaf->attributes;
582         const char *output;
583
584         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
585                 output = "ReadWriteAllocate";
586         else if (ci_attr & CACHE_READ_ALLOCATE)
587                 output = "ReadAllocate";
588         else if (ci_attr & CACHE_WRITE_ALLOCATE)
589                 output = "WriteAllocate";
590         else
591                 return 0;
592
593         return sysfs_emit(buf, "%s\n", output);
594 }
595
596 static ssize_t write_policy_show(struct device *dev,
597                                  struct device_attribute *attr, char *buf)
598 {
599         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
600         unsigned int ci_attr = this_leaf->attributes;
601         int n = 0;
602
603         if (ci_attr & CACHE_WRITE_THROUGH)
604                 n = sysfs_emit(buf, "WriteThrough\n");
605         else if (ci_attr & CACHE_WRITE_BACK)
606                 n = sysfs_emit(buf, "WriteBack\n");
607         return n;
608 }
609
610 static DEVICE_ATTR_RO(id);
611 static DEVICE_ATTR_RO(level);
612 static DEVICE_ATTR_RO(type);
613 static DEVICE_ATTR_RO(coherency_line_size);
614 static DEVICE_ATTR_RO(ways_of_associativity);
615 static DEVICE_ATTR_RO(number_of_sets);
616 static DEVICE_ATTR_RO(size);
617 static DEVICE_ATTR_RO(allocation_policy);
618 static DEVICE_ATTR_RO(write_policy);
619 static DEVICE_ATTR_RO(shared_cpu_map);
620 static DEVICE_ATTR_RO(shared_cpu_list);
621 static DEVICE_ATTR_RO(physical_line_partition);
622
623 static struct attribute *cache_default_attrs[] = {
624         &dev_attr_id.attr,
625         &dev_attr_type.attr,
626         &dev_attr_level.attr,
627         &dev_attr_shared_cpu_map.attr,
628         &dev_attr_shared_cpu_list.attr,
629         &dev_attr_coherency_line_size.attr,
630         &dev_attr_ways_of_associativity.attr,
631         &dev_attr_number_of_sets.attr,
632         &dev_attr_size.attr,
633         &dev_attr_allocation_policy.attr,
634         &dev_attr_write_policy.attr,
635         &dev_attr_physical_line_partition.attr,
636         NULL
637 };
638
639 static umode_t
640 cache_default_attrs_is_visible(struct kobject *kobj,
641                                struct attribute *attr, int unused)
642 {
643         struct device *dev = kobj_to_dev(kobj);
644         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
645         const struct cpumask *mask = &this_leaf->shared_cpu_map;
646         umode_t mode = attr->mode;
647
648         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
649                 return mode;
650         if ((attr == &dev_attr_type.attr) && this_leaf->type)
651                 return mode;
652         if ((attr == &dev_attr_level.attr) && this_leaf->level)
653                 return mode;
654         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
655                 return mode;
656         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
657                 return mode;
658         if ((attr == &dev_attr_coherency_line_size.attr) &&
659             this_leaf->coherency_line_size)
660                 return mode;
661         if ((attr == &dev_attr_ways_of_associativity.attr) &&
662             this_leaf->size) /* allow 0 = full associativity */
663                 return mode;
664         if ((attr == &dev_attr_number_of_sets.attr) &&
665             this_leaf->number_of_sets)
666                 return mode;
667         if ((attr == &dev_attr_size.attr) && this_leaf->size)
668                 return mode;
669         if ((attr == &dev_attr_write_policy.attr) &&
670             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
671                 return mode;
672         if ((attr == &dev_attr_allocation_policy.attr) &&
673             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
674                 return mode;
675         if ((attr == &dev_attr_physical_line_partition.attr) &&
676             this_leaf->physical_line_partition)
677                 return mode;
678
679         return 0;
680 }
681
682 static const struct attribute_group cache_default_group = {
683         .attrs = cache_default_attrs,
684         .is_visible = cache_default_attrs_is_visible,
685 };
686
687 static const struct attribute_group *cache_default_groups[] = {
688         &cache_default_group,
689         NULL,
690 };
691
692 static const struct attribute_group *cache_private_groups[] = {
693         &cache_default_group,
694         NULL, /* Place holder for private group */
695         NULL,
696 };
697
698 const struct attribute_group *
699 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
700 {
701         return NULL;
702 }
703
704 static const struct attribute_group **
705 cache_get_attribute_groups(struct cacheinfo *this_leaf)
706 {
707         const struct attribute_group *priv_group =
708                         cache_get_priv_group(this_leaf);
709
710         if (!priv_group)
711                 return cache_default_groups;
712
713         if (!cache_private_groups[1])
714                 cache_private_groups[1] = priv_group;
715
716         return cache_private_groups;
717 }
718
719 /* Add/Remove cache interface for CPU device */
720 static void cpu_cache_sysfs_exit(unsigned int cpu)
721 {
722         int i;
723         struct device *ci_dev;
724
725         if (per_cpu_index_dev(cpu)) {
726                 for (i = 0; i < cache_leaves(cpu); i++) {
727                         ci_dev = per_cache_index_dev(cpu, i);
728                         if (!ci_dev)
729                                 continue;
730                         device_unregister(ci_dev);
731                 }
732                 kfree(per_cpu_index_dev(cpu));
733                 per_cpu_index_dev(cpu) = NULL;
734         }
735         device_unregister(per_cpu_cache_dev(cpu));
736         per_cpu_cache_dev(cpu) = NULL;
737 }
738
739 static int cpu_cache_sysfs_init(unsigned int cpu)
740 {
741         struct device *dev = get_cpu_device(cpu);
742
743         if (per_cpu_cacheinfo(cpu) == NULL)
744                 return -ENOENT;
745
746         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
747         if (IS_ERR(per_cpu_cache_dev(cpu)))
748                 return PTR_ERR(per_cpu_cache_dev(cpu));
749
750         /* Allocate all required memory */
751         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
752                                          sizeof(struct device *), GFP_KERNEL);
753         if (unlikely(per_cpu_index_dev(cpu) == NULL))
754                 goto err_out;
755
756         return 0;
757
758 err_out:
759         cpu_cache_sysfs_exit(cpu);
760         return -ENOMEM;
761 }
762
763 static int cache_add_dev(unsigned int cpu)
764 {
765         unsigned int i;
766         int rc;
767         struct device *ci_dev, *parent;
768         struct cacheinfo *this_leaf;
769         const struct attribute_group **cache_groups;
770
771         rc = cpu_cache_sysfs_init(cpu);
772         if (unlikely(rc < 0))
773                 return rc;
774
775         parent = per_cpu_cache_dev(cpu);
776         for (i = 0; i < cache_leaves(cpu); i++) {
777                 this_leaf = per_cpu_cacheinfo_idx(cpu, i);
778                 if (this_leaf->disable_sysfs)
779                         continue;
780                 if (this_leaf->type == CACHE_TYPE_NOCACHE)
781                         break;
782                 cache_groups = cache_get_attribute_groups(this_leaf);
783                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
784                                            "index%1u", i);
785                 if (IS_ERR(ci_dev)) {
786                         rc = PTR_ERR(ci_dev);
787                         goto err;
788                 }
789                 per_cache_index_dev(cpu, i) = ci_dev;
790         }
791         cpumask_set_cpu(cpu, &cache_dev_map);
792
793         return 0;
794 err:
795         cpu_cache_sysfs_exit(cpu);
796         return rc;
797 }
798
799 static int cacheinfo_cpu_online(unsigned int cpu)
800 {
801         int rc = detect_cache_attributes(cpu);
802
803         if (rc)
804                 return rc;
805         rc = cache_add_dev(cpu);
806         if (rc)
807                 free_cache_attributes(cpu);
808         return rc;
809 }
810
811 static int cacheinfo_cpu_pre_down(unsigned int cpu)
812 {
813         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
814                 cpu_cache_sysfs_exit(cpu);
815
816         free_cache_attributes(cpu);
817         return 0;
818 }
819
820 static int __init cacheinfo_sysfs_init(void)
821 {
822         return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
823                                  "base/cacheinfo:online",
824                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
825 }
826 device_initcall(cacheinfo_sysfs_init);
This page took 0.079821 seconds and 4 git commands to generate.