1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
56 * Alan Cox : Tidied tcp_data to avoid a potential
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
209 * Description of States:
211 * TCP_SYN_SENT sent a connection request, waiting for ack
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
216 * TCP_ESTABLISHED connection established
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
241 * TCP_CLOSE socket is finished
244 #define pr_fmt(fmt) "TCP: " fmt
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
287 /* Track pending CMSGs. */
293 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
294 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
296 DEFINE_PER_CPU(u32, tcp_tw_isn);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
299 long sysctl_tcp_mem[3] __read_mostly;
300 EXPORT_SYMBOL(sysctl_tcp_mem);
302 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
303 EXPORT_SYMBOL(tcp_memory_allocated);
304 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
305 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
307 #if IS_ENABLED(CONFIG_SMC)
308 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
309 EXPORT_SYMBOL(tcp_have_smc);
313 * Current number of TCP sockets.
315 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
316 EXPORT_SYMBOL(tcp_sockets_allocated);
321 struct tcp_splice_state {
322 struct pipe_inode_info *pipe;
328 * Pressure flag: try to collapse.
329 * Technical note: it is used by multiple contexts non atomically.
330 * All the __sk_mem_schedule() is of this nature: accounting
331 * is strict, actions are advisory and have some latency.
333 unsigned long tcp_memory_pressure __read_mostly;
334 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
336 void tcp_enter_memory_pressure(struct sock *sk)
340 if (READ_ONCE(tcp_memory_pressure))
346 if (!cmpxchg(&tcp_memory_pressure, 0, val))
347 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
349 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
351 void tcp_leave_memory_pressure(struct sock *sk)
355 if (!READ_ONCE(tcp_memory_pressure))
357 val = xchg(&tcp_memory_pressure, 0);
359 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
360 jiffies_to_msecs(jiffies - val));
362 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
364 /* Convert seconds to retransmits based on initial and max timeout */
365 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
370 int period = timeout;
373 while (seconds > period && res < 255) {
376 if (timeout > rto_max)
384 /* Convert retransmits to seconds based on initial and max timeout */
385 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
393 if (timeout > rto_max)
401 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
403 u32 rate = READ_ONCE(tp->rate_delivered);
404 u32 intv = READ_ONCE(tp->rate_interval_us);
408 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
409 do_div(rate64, intv);
414 /* Address-family independent initialization for a tcp_sock.
416 * NOTE: A lot of things set to zero explicitly by call to
417 * sk_alloc() so need not be done here.
419 void tcp_init_sock(struct sock *sk)
421 struct inet_connection_sock *icsk = inet_csk(sk);
422 struct tcp_sock *tp = tcp_sk(sk);
424 tp->out_of_order_queue = RB_ROOT;
425 sk->tcp_rtx_queue = RB_ROOT;
426 tcp_init_xmit_timers(sk);
427 INIT_LIST_HEAD(&tp->tsq_node);
428 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
430 icsk->icsk_rto = TCP_TIMEOUT_INIT;
431 icsk->icsk_rto_min = TCP_RTO_MIN;
432 icsk->icsk_delack_max = TCP_DELACK_MAX;
433 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
434 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
436 /* So many TCP implementations out there (incorrectly) count the
437 * initial SYN frame in their delayed-ACK and congestion control
438 * algorithms that we must have the following bandaid to talk
439 * efficiently to them. -DaveM
441 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
443 /* There's a bubble in the pipe until at least the first ACK. */
444 tp->app_limited = ~0U;
445 tp->rate_app_limited = 1;
447 /* See draft-stevens-tcpca-spec-01 for discussion of the
448 * initialization of these values.
450 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
451 tp->snd_cwnd_clamp = ~0;
452 tp->mss_cache = TCP_MSS_DEFAULT;
454 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
455 tcp_assign_congestion_control(sk);
458 tp->rack.reo_wnd_steps = 1;
460 sk->sk_write_space = sk_stream_write_space;
461 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
463 icsk->icsk_sync_mss = tcp_sync_mss;
465 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
466 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
467 tcp_scaling_ratio_init(sk);
469 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
470 sk_sockets_allocated_inc(sk);
472 EXPORT_SYMBOL(tcp_init_sock);
474 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
476 struct sk_buff *skb = tcp_write_queue_tail(sk);
478 if (tsflags && skb) {
479 struct skb_shared_info *shinfo = skb_shinfo(skb);
480 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
482 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
483 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
484 tcb->txstamp_ack = 1;
485 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
486 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
490 static bool tcp_stream_is_readable(struct sock *sk, int target)
492 if (tcp_epollin_ready(sk, target))
494 return sk_is_readable(sk);
498 * Wait for a TCP event.
500 * Note that we don't need to lock the socket, as the upper poll layers
501 * take care of normal races (between the test and the event) and we don't
502 * go look at any of the socket buffers directly.
504 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
507 struct sock *sk = sock->sk;
508 const struct tcp_sock *tp = tcp_sk(sk);
512 sock_poll_wait(file, sock, wait);
514 state = inet_sk_state_load(sk);
515 if (state == TCP_LISTEN)
516 return inet_csk_listen_poll(sk);
518 /* Socket is not locked. We are protected from async events
519 * by poll logic and correct handling of state changes
520 * made by other threads is impossible in any case.
526 * EPOLLHUP is certainly not done right. But poll() doesn't
527 * have a notion of HUP in just one direction, and for a
528 * socket the read side is more interesting.
530 * Some poll() documentation says that EPOLLHUP is incompatible
531 * with the EPOLLOUT/POLLWR flags, so somebody should check this
532 * all. But careful, it tends to be safer to return too many
533 * bits than too few, and you can easily break real applications
534 * if you don't tell them that something has hung up!
538 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
539 * our fs/select.c). It means that after we received EOF,
540 * poll always returns immediately, making impossible poll() on write()
541 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
542 * if and only if shutdown has been made in both directions.
543 * Actually, it is interesting to look how Solaris and DUX
544 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
545 * then we could set it on SND_SHUTDOWN. BTW examples given
546 * in Stevens' books assume exactly this behaviour, it explains
547 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
549 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
550 * blocking on fresh not-connected or disconnected socket. --ANK
552 shutdown = READ_ONCE(sk->sk_shutdown);
553 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
555 if (shutdown & RCV_SHUTDOWN)
556 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
558 /* Connected or passive Fast Open socket? */
559 if (state != TCP_SYN_SENT &&
560 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
561 int target = sock_rcvlowat(sk, 0, INT_MAX);
562 u16 urg_data = READ_ONCE(tp->urg_data);
564 if (unlikely(urg_data) &&
565 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
566 !sock_flag(sk, SOCK_URGINLINE))
569 if (tcp_stream_is_readable(sk, target))
570 mask |= EPOLLIN | EPOLLRDNORM;
572 if (!(shutdown & SEND_SHUTDOWN)) {
573 if (__sk_stream_is_writeable(sk, 1)) {
574 mask |= EPOLLOUT | EPOLLWRNORM;
575 } else { /* send SIGIO later */
576 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
577 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
579 /* Race breaker. If space is freed after
580 * wspace test but before the flags are set,
581 * IO signal will be lost. Memory barrier
582 * pairs with the input side.
584 smp_mb__after_atomic();
585 if (__sk_stream_is_writeable(sk, 1))
586 mask |= EPOLLOUT | EPOLLWRNORM;
589 mask |= EPOLLOUT | EPOLLWRNORM;
591 if (urg_data & TCP_URG_VALID)
593 } else if (state == TCP_SYN_SENT &&
594 inet_test_bit(DEFER_CONNECT, sk)) {
595 /* Active TCP fastopen socket with defer_connect
596 * Return EPOLLOUT so application can call write()
597 * in order for kernel to generate SYN+data
599 mask |= EPOLLOUT | EPOLLWRNORM;
601 /* This barrier is coupled with smp_wmb() in tcp_reset() */
603 if (READ_ONCE(sk->sk_err) ||
604 !skb_queue_empty_lockless(&sk->sk_error_queue))
609 EXPORT_SYMBOL(tcp_poll);
611 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
613 struct tcp_sock *tp = tcp_sk(sk);
619 if (sk->sk_state == TCP_LISTEN)
622 slow = lock_sock_fast(sk);
624 unlock_sock_fast(sk, slow);
627 answ = READ_ONCE(tp->urg_data) &&
628 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
631 if (sk->sk_state == TCP_LISTEN)
634 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
640 if (sk->sk_state == TCP_LISTEN)
643 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
646 answ = READ_ONCE(tp->write_seq) -
647 READ_ONCE(tp->snd_nxt);
656 EXPORT_SYMBOL(tcp_ioctl);
658 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
660 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
661 tp->pushed_seq = tp->write_seq;
664 static inline bool forced_push(const struct tcp_sock *tp)
666 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
669 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
671 struct tcp_sock *tp = tcp_sk(sk);
672 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
674 tcb->seq = tcb->end_seq = tp->write_seq;
675 tcb->tcp_flags = TCPHDR_ACK;
676 __skb_header_release(skb);
677 tcp_add_write_queue_tail(sk, skb);
678 sk_wmem_queued_add(sk, skb->truesize);
679 sk_mem_charge(sk, skb->truesize);
680 if (tp->nonagle & TCP_NAGLE_PUSH)
681 tp->nonagle &= ~TCP_NAGLE_PUSH;
683 tcp_slow_start_after_idle_check(sk);
686 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
689 tp->snd_up = tp->write_seq;
692 /* If a not yet filled skb is pushed, do not send it if
693 * we have data packets in Qdisc or NIC queues :
694 * Because TX completion will happen shortly, it gives a chance
695 * to coalesce future sendmsg() payload into this skb, without
696 * need for a timer, and with no latency trade off.
697 * As packets containing data payload have a bigger truesize
698 * than pure acks (dataless) packets, the last checks prevent
699 * autocorking if we only have an ACK in Qdisc/NIC queues,
700 * or if TX completion was delayed after we processed ACK packet.
702 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
705 return skb->len < size_goal &&
706 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
707 !tcp_rtx_queue_empty(sk) &&
708 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
709 tcp_skb_can_collapse_to(skb);
712 void tcp_push(struct sock *sk, int flags, int mss_now,
713 int nonagle, int size_goal)
715 struct tcp_sock *tp = tcp_sk(sk);
718 skb = tcp_write_queue_tail(sk);
721 if (!(flags & MSG_MORE) || forced_push(tp))
722 tcp_mark_push(tp, skb);
724 tcp_mark_urg(tp, flags);
726 if (tcp_should_autocork(sk, skb, size_goal)) {
728 /* avoid atomic op if TSQ_THROTTLED bit is already set */
729 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
731 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
732 smp_mb__after_atomic();
734 /* It is possible TX completion already happened
735 * before we set TSQ_THROTTLED.
737 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
741 if (flags & MSG_MORE)
742 nonagle = TCP_NAGLE_CORK;
744 __tcp_push_pending_frames(sk, mss_now, nonagle);
747 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
748 unsigned int offset, size_t len)
750 struct tcp_splice_state *tss = rd_desc->arg.data;
753 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
754 min(rd_desc->count, len), tss->flags);
756 rd_desc->count -= ret;
760 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
762 /* Store TCP splice context information in read_descriptor_t. */
763 read_descriptor_t rd_desc = {
768 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
772 * tcp_splice_read - splice data from TCP socket to a pipe
773 * @sock: socket to splice from
774 * @ppos: position (not valid)
775 * @pipe: pipe to splice to
776 * @len: number of bytes to splice
777 * @flags: splice modifier flags
780 * Will read pages from given socket and fill them into a pipe.
783 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
784 struct pipe_inode_info *pipe, size_t len,
787 struct sock *sk = sock->sk;
788 struct tcp_splice_state tss = {
797 sock_rps_record_flow(sk);
799 * We can't seek on a socket input
808 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
810 ret = __tcp_splice_read(sk, &tss);
816 if (sock_flag(sk, SOCK_DONE))
819 ret = sock_error(sk);
822 if (sk->sk_shutdown & RCV_SHUTDOWN)
824 if (sk->sk_state == TCP_CLOSE) {
826 * This occurs when user tries to read
827 * from never connected socket.
836 /* if __tcp_splice_read() got nothing while we have
837 * an skb in receive queue, we do not want to loop.
838 * This might happen with URG data.
840 if (!skb_queue_empty(&sk->sk_receive_queue))
842 ret = sk_wait_data(sk, &timeo, NULL);
845 if (signal_pending(current)) {
846 ret = sock_intr_errno(timeo);
854 if (!tss.len || !timeo)
859 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
860 (sk->sk_shutdown & RCV_SHUTDOWN) ||
861 signal_pending(current))
872 EXPORT_SYMBOL(tcp_splice_read);
874 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
879 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
883 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
884 if (force_schedule) {
885 mem_scheduled = true;
886 sk_forced_mem_schedule(sk, skb->truesize);
888 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
890 if (likely(mem_scheduled)) {
891 skb_reserve(skb, MAX_TCP_HEADER);
892 skb->ip_summed = CHECKSUM_PARTIAL;
893 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
898 sk->sk_prot->enter_memory_pressure(sk);
899 sk_stream_moderate_sndbuf(sk);
904 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
907 struct tcp_sock *tp = tcp_sk(sk);
908 u32 new_size_goal, size_goal;
913 /* Note : tcp_tso_autosize() will eventually split this later */
914 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
916 /* We try hard to avoid divides here */
917 size_goal = tp->gso_segs * mss_now;
918 if (unlikely(new_size_goal < size_goal ||
919 new_size_goal >= size_goal + mss_now)) {
920 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
921 sk->sk_gso_max_segs);
922 size_goal = tp->gso_segs * mss_now;
925 return max(size_goal, mss_now);
928 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
932 mss_now = tcp_current_mss(sk);
933 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
938 /* In some cases, sendmsg() could have added an skb to the write queue,
939 * but failed adding payload on it. We need to remove it to consume less
940 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
941 * epoll() users. Another reason is that tcp_write_xmit() does not like
942 * finding an empty skb in the write queue.
944 void tcp_remove_empty_skb(struct sock *sk)
946 struct sk_buff *skb = tcp_write_queue_tail(sk);
948 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
949 tcp_unlink_write_queue(skb, sk);
950 if (tcp_write_queue_empty(sk))
951 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
952 tcp_wmem_free_skb(sk, skb);
956 /* skb changing from pure zc to mixed, must charge zc */
957 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
959 if (unlikely(skb_zcopy_pure(skb))) {
960 u32 extra = skb->truesize -
961 SKB_TRUESIZE(skb_end_offset(skb));
963 if (!sk_wmem_schedule(sk, extra))
966 sk_mem_charge(sk, extra);
967 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
973 int tcp_wmem_schedule(struct sock *sk, int copy)
977 if (likely(sk_wmem_schedule(sk, copy)))
980 /* We could be in trouble if we have nothing queued.
981 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
982 * to guarantee some progress.
984 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
986 sk_forced_mem_schedule(sk, min(left, copy));
987 return min(copy, sk->sk_forward_alloc);
990 void tcp_free_fastopen_req(struct tcp_sock *tp)
992 if (tp->fastopen_req) {
993 kfree(tp->fastopen_req);
994 tp->fastopen_req = NULL;
998 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
999 size_t size, struct ubuf_info *uarg)
1001 struct tcp_sock *tp = tcp_sk(sk);
1002 struct inet_sock *inet = inet_sk(sk);
1003 struct sockaddr *uaddr = msg->msg_name;
1006 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1007 TFO_CLIENT_ENABLE) ||
1008 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1009 uaddr->sa_family == AF_UNSPEC))
1011 if (tp->fastopen_req)
1012 return -EALREADY; /* Another Fast Open is in progress */
1014 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1016 if (unlikely(!tp->fastopen_req))
1018 tp->fastopen_req->data = msg;
1019 tp->fastopen_req->size = size;
1020 tp->fastopen_req->uarg = uarg;
1022 if (inet_test_bit(DEFER_CONNECT, sk)) {
1023 err = tcp_connect(sk);
1024 /* Same failure procedure as in tcp_v4/6_connect */
1026 tcp_set_state(sk, TCP_CLOSE);
1027 inet->inet_dport = 0;
1028 sk->sk_route_caps = 0;
1031 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1032 err = __inet_stream_connect(sk->sk_socket, uaddr,
1033 msg->msg_namelen, flags, 1);
1034 /* fastopen_req could already be freed in __inet_stream_connect
1035 * if the connection times out or gets rst
1037 if (tp->fastopen_req) {
1038 *copied = tp->fastopen_req->copied;
1039 tcp_free_fastopen_req(tp);
1040 inet_clear_bit(DEFER_CONNECT, sk);
1045 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1047 struct tcp_sock *tp = tcp_sk(sk);
1048 struct ubuf_info *uarg = NULL;
1049 struct sk_buff *skb;
1050 struct sockcm_cookie sockc;
1051 int flags, err, copied = 0;
1052 int mss_now = 0, size_goal, copied_syn = 0;
1053 int process_backlog = 0;
1057 flags = msg->msg_flags;
1059 if ((flags & MSG_ZEROCOPY) && size) {
1060 if (msg->msg_ubuf) {
1061 uarg = msg->msg_ubuf;
1062 if (sk->sk_route_caps & NETIF_F_SG)
1064 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1065 skb = tcp_write_queue_tail(sk);
1066 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1071 if (sk->sk_route_caps & NETIF_F_SG)
1074 uarg_to_msgzc(uarg)->zerocopy = 0;
1076 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1077 if (sk->sk_route_caps & NETIF_F_SG)
1078 zc = MSG_SPLICE_PAGES;
1081 if (unlikely(flags & MSG_FASTOPEN ||
1082 inet_test_bit(DEFER_CONNECT, sk)) &&
1084 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1085 if (err == -EINPROGRESS && copied_syn > 0)
1091 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1093 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1095 /* Wait for a connection to finish. One exception is TCP Fast Open
1096 * (passive side) where data is allowed to be sent before a connection
1097 * is fully established.
1099 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1100 !tcp_passive_fastopen(sk)) {
1101 err = sk_stream_wait_connect(sk, &timeo);
1106 if (unlikely(tp->repair)) {
1107 if (tp->repair_queue == TCP_RECV_QUEUE) {
1108 copied = tcp_send_rcvq(sk, msg, size);
1113 if (tp->repair_queue == TCP_NO_QUEUE)
1116 /* 'common' sending to sendq */
1119 sockcm_init(&sockc, sk);
1120 if (msg->msg_controllen) {
1121 err = sock_cmsg_send(sk, msg, &sockc);
1122 if (unlikely(err)) {
1128 /* This should be in poll */
1129 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1131 /* Ok commence sending. */
1135 mss_now = tcp_send_mss(sk, &size_goal, flags);
1138 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1141 while (msg_data_left(msg)) {
1144 skb = tcp_write_queue_tail(sk);
1146 copy = size_goal - skb->len;
1148 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1152 if (!sk_stream_memory_free(sk))
1153 goto wait_for_space;
1155 if (unlikely(process_backlog >= 16)) {
1156 process_backlog = 0;
1157 if (sk_flush_backlog(sk))
1160 first_skb = tcp_rtx_and_write_queues_empty(sk);
1161 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1164 goto wait_for_space;
1168 #ifdef CONFIG_SKB_DECRYPTED
1169 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1171 tcp_skb_entail(sk, skb);
1174 /* All packets are restored as if they have
1175 * already been sent. skb_mstamp_ns isn't set to
1176 * avoid wrong rtt estimation.
1179 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1182 /* Try to append data to the end of skb. */
1183 if (copy > msg_data_left(msg))
1184 copy = msg_data_left(msg);
1188 int i = skb_shinfo(skb)->nr_frags;
1189 struct page_frag *pfrag = sk_page_frag(sk);
1191 if (!sk_page_frag_refill(sk, pfrag))
1192 goto wait_for_space;
1194 if (!skb_can_coalesce(skb, i, pfrag->page,
1196 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1197 tcp_mark_push(tp, skb);
1203 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1205 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1206 if (tcp_downgrade_zcopy_pure(sk, skb))
1207 goto wait_for_space;
1208 skb_zcopy_downgrade_managed(skb);
1211 copy = tcp_wmem_schedule(sk, copy);
1213 goto wait_for_space;
1215 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1222 /* Update the skb. */
1224 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1226 skb_fill_page_desc(skb, i, pfrag->page,
1227 pfrag->offset, copy);
1228 page_ref_inc(pfrag->page);
1230 pfrag->offset += copy;
1231 } else if (zc == MSG_ZEROCOPY) {
1232 /* First append to a fragless skb builds initial
1236 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1238 if (!skb_zcopy_pure(skb)) {
1239 copy = tcp_wmem_schedule(sk, copy);
1241 goto wait_for_space;
1244 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1245 if (err == -EMSGSIZE || err == -EEXIST) {
1246 tcp_mark_push(tp, skb);
1252 } else if (zc == MSG_SPLICE_PAGES) {
1253 /* Splice in data if we can; copy if we can't. */
1254 if (tcp_downgrade_zcopy_pure(sk, skb))
1255 goto wait_for_space;
1256 copy = tcp_wmem_schedule(sk, copy);
1258 goto wait_for_space;
1260 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1263 if (err == -EMSGSIZE) {
1264 tcp_mark_push(tp, skb);
1271 if (!(flags & MSG_NO_SHARED_FRAGS))
1272 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1274 sk_wmem_queued_add(sk, copy);
1275 sk_mem_charge(sk, copy);
1279 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1281 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1282 TCP_SKB_CB(skb)->end_seq += copy;
1283 tcp_skb_pcount_set(skb, 0);
1286 if (!msg_data_left(msg)) {
1287 if (unlikely(flags & MSG_EOR))
1288 TCP_SKB_CB(skb)->eor = 1;
1292 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1295 if (forced_push(tp)) {
1296 tcp_mark_push(tp, skb);
1297 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1298 } else if (skb == tcp_send_head(sk))
1299 tcp_push_one(sk, mss_now);
1303 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1304 tcp_remove_empty_skb(sk);
1306 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1307 TCP_NAGLE_PUSH, size_goal);
1309 err = sk_stream_wait_memory(sk, &timeo);
1313 mss_now = tcp_send_mss(sk, &size_goal, flags);
1318 tcp_tx_timestamp(sk, sockc.tsflags);
1319 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1322 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1323 if (uarg && !msg->msg_ubuf)
1324 net_zcopy_put(uarg);
1325 return copied + copied_syn;
1328 tcp_remove_empty_skb(sk);
1330 if (copied + copied_syn)
1333 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1334 if (uarg && !msg->msg_ubuf)
1335 net_zcopy_put_abort(uarg, true);
1336 err = sk_stream_error(sk, flags, err);
1337 /* make sure we wake any epoll edge trigger waiter */
1338 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1339 sk->sk_write_space(sk);
1340 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1344 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1346 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1351 ret = tcp_sendmsg_locked(sk, msg, size);
1356 EXPORT_SYMBOL(tcp_sendmsg);
1358 void tcp_splice_eof(struct socket *sock)
1360 struct sock *sk = sock->sk;
1361 struct tcp_sock *tp = tcp_sk(sk);
1362 int mss_now, size_goal;
1364 if (!tcp_write_queue_tail(sk))
1368 mss_now = tcp_send_mss(sk, &size_goal, 0);
1369 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1372 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1375 * Handle reading urgent data. BSD has very simple semantics for
1376 * this, no blocking and very strange errors 8)
1379 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1381 struct tcp_sock *tp = tcp_sk(sk);
1383 /* No URG data to read. */
1384 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1385 tp->urg_data == TCP_URG_READ)
1386 return -EINVAL; /* Yes this is right ! */
1388 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1391 if (tp->urg_data & TCP_URG_VALID) {
1393 char c = tp->urg_data;
1395 if (!(flags & MSG_PEEK))
1396 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1398 /* Read urgent data. */
1399 msg->msg_flags |= MSG_OOB;
1402 if (!(flags & MSG_TRUNC))
1403 err = memcpy_to_msg(msg, &c, 1);
1406 msg->msg_flags |= MSG_TRUNC;
1408 return err ? -EFAULT : len;
1411 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1414 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1415 * the available implementations agree in this case:
1416 * this call should never block, independent of the
1417 * blocking state of the socket.
1423 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1425 struct sk_buff *skb;
1426 int copied = 0, err = 0;
1428 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1429 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1435 skb_queue_walk(&sk->sk_write_queue, skb) {
1436 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1443 return err ?: copied;
1446 /* Clean up the receive buffer for full frames taken by the user,
1447 * then send an ACK if necessary. COPIED is the number of bytes
1448 * tcp_recvmsg has given to the user so far, it speeds up the
1449 * calculation of whether or not we must ACK for the sake of
1452 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1454 struct tcp_sock *tp = tcp_sk(sk);
1455 bool time_to_ack = false;
1457 if (inet_csk_ack_scheduled(sk)) {
1458 const struct inet_connection_sock *icsk = inet_csk(sk);
1460 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1461 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1463 * If this read emptied read buffer, we send ACK, if
1464 * connection is not bidirectional, user drained
1465 * receive buffer and there was a small segment
1469 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1470 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1471 !inet_csk_in_pingpong_mode(sk))) &&
1472 !atomic_read(&sk->sk_rmem_alloc)))
1476 /* We send an ACK if we can now advertise a non-zero window
1477 * which has been raised "significantly".
1479 * Even if window raised up to infinity, do not send window open ACK
1480 * in states, where we will not receive more. It is useless.
1482 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1483 __u32 rcv_window_now = tcp_receive_window(tp);
1485 /* Optimize, __tcp_select_window() is not cheap. */
1486 if (2*rcv_window_now <= tp->window_clamp) {
1487 __u32 new_window = __tcp_select_window(sk);
1489 /* Send ACK now, if this read freed lots of space
1490 * in our buffer. Certainly, new_window is new window.
1491 * We can advertise it now, if it is not less than current one.
1492 * "Lots" means "at least twice" here.
1494 if (new_window && new_window >= 2 * rcv_window_now)
1502 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1504 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1505 struct tcp_sock *tp = tcp_sk(sk);
1507 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1508 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1509 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1510 __tcp_cleanup_rbuf(sk, copied);
1513 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1515 __skb_unlink(skb, &sk->sk_receive_queue);
1516 if (likely(skb->destructor == sock_rfree)) {
1518 skb->destructor = NULL;
1520 return skb_attempt_defer_free(skb);
1525 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1527 struct sk_buff *skb;
1530 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1531 offset = seq - TCP_SKB_CB(skb)->seq;
1532 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1533 pr_err_once("%s: found a SYN, please report !\n", __func__);
1536 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1540 /* This looks weird, but this can happen if TCP collapsing
1541 * splitted a fat GRO packet, while we released socket lock
1542 * in skb_splice_bits()
1544 tcp_eat_recv_skb(sk, skb);
1548 EXPORT_SYMBOL(tcp_recv_skb);
1551 * This routine provides an alternative to tcp_recvmsg() for routines
1552 * that would like to handle copying from skbuffs directly in 'sendfile'
1555 * - It is assumed that the socket was locked by the caller.
1556 * - The routine does not block.
1557 * - At present, there is no support for reading OOB data
1558 * or for 'peeking' the socket using this routine
1559 * (although both would be easy to implement).
1561 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1562 sk_read_actor_t recv_actor)
1564 struct sk_buff *skb;
1565 struct tcp_sock *tp = tcp_sk(sk);
1566 u32 seq = tp->copied_seq;
1570 if (sk->sk_state == TCP_LISTEN)
1572 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1573 if (offset < skb->len) {
1577 len = skb->len - offset;
1578 /* Stop reading if we hit a patch of urgent data */
1579 if (unlikely(tp->urg_data)) {
1580 u32 urg_offset = tp->urg_seq - seq;
1581 if (urg_offset < len)
1586 used = recv_actor(desc, skb, offset, len);
1592 if (WARN_ON_ONCE(used > len))
1598 /* If recv_actor drops the lock (e.g. TCP splice
1599 * receive) the skb pointer might be invalid when
1600 * getting here: tcp_collapse might have deleted it
1601 * while aggregating skbs from the socket queue.
1603 skb = tcp_recv_skb(sk, seq - 1, &offset);
1606 /* TCP coalescing might have appended data to the skb.
1607 * Try to splice more frags
1609 if (offset + 1 != skb->len)
1612 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1613 tcp_eat_recv_skb(sk, skb);
1617 tcp_eat_recv_skb(sk, skb);
1620 WRITE_ONCE(tp->copied_seq, seq);
1622 WRITE_ONCE(tp->copied_seq, seq);
1624 tcp_rcv_space_adjust(sk);
1626 /* Clean up data we have read: This will do ACK frames. */
1628 tcp_recv_skb(sk, seq, &offset);
1629 tcp_cleanup_rbuf(sk, copied);
1633 EXPORT_SYMBOL(tcp_read_sock);
1635 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1637 struct sk_buff *skb;
1640 if (sk->sk_state == TCP_LISTEN)
1643 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1647 __skb_unlink(skb, &sk->sk_receive_queue);
1648 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1649 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1650 used = recv_actor(sk, skb);
1658 if (tcp_flags & TCPHDR_FIN)
1663 EXPORT_SYMBOL(tcp_read_skb);
1665 void tcp_read_done(struct sock *sk, size_t len)
1667 struct tcp_sock *tp = tcp_sk(sk);
1668 u32 seq = tp->copied_seq;
1669 struct sk_buff *skb;
1673 if (sk->sk_state == TCP_LISTEN)
1677 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1680 used = min_t(size_t, skb->len - offset, left);
1684 if (skb->len > offset + used)
1687 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1688 tcp_eat_recv_skb(sk, skb);
1692 tcp_eat_recv_skb(sk, skb);
1694 WRITE_ONCE(tp->copied_seq, seq);
1696 tcp_rcv_space_adjust(sk);
1698 /* Clean up data we have read: This will do ACK frames. */
1700 tcp_cleanup_rbuf(sk, len - left);
1702 EXPORT_SYMBOL(tcp_read_done);
1704 int tcp_peek_len(struct socket *sock)
1706 return tcp_inq(sock->sk);
1708 EXPORT_SYMBOL(tcp_peek_len);
1710 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1711 int tcp_set_rcvlowat(struct sock *sk, int val)
1715 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1716 cap = sk->sk_rcvbuf >> 1;
1718 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1719 val = min(val, cap);
1720 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1722 /* Check if we need to signal EPOLLIN right now */
1725 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1728 space = tcp_space_from_win(sk, val);
1729 if (space > sk->sk_rcvbuf) {
1730 WRITE_ONCE(sk->sk_rcvbuf, space);
1731 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1735 EXPORT_SYMBOL(tcp_set_rcvlowat);
1737 void tcp_update_recv_tstamps(struct sk_buff *skb,
1738 struct scm_timestamping_internal *tss)
1741 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1743 tss->ts[0] = (struct timespec64) {0};
1745 if (skb_hwtstamps(skb)->hwtstamp)
1746 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1748 tss->ts[2] = (struct timespec64) {0};
1752 static const struct vm_operations_struct tcp_vm_ops = {
1755 int tcp_mmap(struct file *file, struct socket *sock,
1756 struct vm_area_struct *vma)
1758 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1760 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1762 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1763 vm_flags_set(vma, VM_MIXEDMAP);
1765 vma->vm_ops = &tcp_vm_ops;
1768 EXPORT_SYMBOL(tcp_mmap);
1770 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1775 if (unlikely(offset_skb >= skb->len))
1778 offset_skb -= skb_headlen(skb);
1779 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1782 frag = skb_shinfo(skb)->frags;
1783 while (offset_skb) {
1784 if (skb_frag_size(frag) > offset_skb) {
1785 *offset_frag = offset_skb;
1788 offset_skb -= skb_frag_size(frag);
1795 static bool can_map_frag(const skb_frag_t *frag)
1799 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1802 page = skb_frag_page(frag);
1804 if (PageCompound(page) || page->mapping)
1810 static int find_next_mappable_frag(const skb_frag_t *frag,
1811 int remaining_in_skb)
1815 if (likely(can_map_frag(frag)))
1818 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1819 offset += skb_frag_size(frag);
1825 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1826 struct tcp_zerocopy_receive *zc,
1827 struct sk_buff *skb, u32 offset)
1829 u32 frag_offset, partial_frag_remainder = 0;
1830 int mappable_offset;
1833 /* worst case: skip to next skb. try to improve on this case below */
1834 zc->recv_skip_hint = skb->len - offset;
1836 /* Find the frag containing this offset (and how far into that frag) */
1837 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1842 struct skb_shared_info *info = skb_shinfo(skb);
1844 /* We read part of the last frag, must recvmsg() rest of skb. */
1845 if (frag == &info->frags[info->nr_frags - 1])
1848 /* Else, we must at least read the remainder in this frag. */
1849 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1850 zc->recv_skip_hint -= partial_frag_remainder;
1854 /* partial_frag_remainder: If part way through a frag, must read rest.
1855 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1856 * in partial_frag_remainder.
1858 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1859 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1862 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1863 int flags, struct scm_timestamping_internal *tss,
1865 static int receive_fallback_to_copy(struct sock *sk,
1866 struct tcp_zerocopy_receive *zc, int inq,
1867 struct scm_timestamping_internal *tss)
1869 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1870 struct msghdr msg = {};
1874 zc->recv_skip_hint = 0;
1876 if (copy_address != zc->copybuf_address)
1879 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1884 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1885 tss, &zc->msg_flags);
1889 zc->copybuf_len = err;
1890 if (likely(zc->copybuf_len)) {
1891 struct sk_buff *skb;
1894 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1896 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1901 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1902 struct sk_buff *skb, u32 copylen,
1903 u32 *offset, u32 *seq)
1905 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1906 struct msghdr msg = {};
1909 if (copy_address != zc->copybuf_address)
1912 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1916 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1919 zc->recv_skip_hint -= copylen;
1922 return (__s32)copylen;
1925 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1927 struct sk_buff *skb,
1930 struct scm_timestamping_internal *tss)
1932 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1936 /* skb is null if inq < PAGE_SIZE. */
1938 offset = *seq - TCP_SKB_CB(skb)->seq;
1940 skb = tcp_recv_skb(sk, *seq, &offset);
1941 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1942 tcp_update_recv_tstamps(skb, tss);
1943 zc->msg_flags |= TCP_CMSG_TS;
1947 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1949 return zc->copybuf_len < 0 ? 0 : copylen;
1952 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1953 struct page **pending_pages,
1954 unsigned long pages_remaining,
1955 unsigned long *address,
1958 struct tcp_zerocopy_receive *zc,
1959 u32 total_bytes_to_map,
1962 /* At least one page did not map. Try zapping if we skipped earlier. */
1963 if (err == -EBUSY &&
1964 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1967 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1968 *length + /* Mapped or pending */
1969 (pages_remaining * PAGE_SIZE); /* Failed map. */
1970 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1975 unsigned long leftover_pages = pages_remaining;
1978 /* We called zap_page_range_single, try to reinsert. */
1979 err = vm_insert_pages(vma, *address,
1982 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1983 *seq += bytes_mapped;
1984 *address += bytes_mapped;
1987 /* Either we were unable to zap, OR we zapped, retried an
1988 * insert, and still had an issue. Either ways, pages_remaining
1989 * is the number of pages we were unable to map, and we unroll
1990 * some state we speculatively touched before.
1992 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1994 *length -= bytes_not_mapped;
1995 zc->recv_skip_hint += bytes_not_mapped;
2000 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2001 struct page **pages,
2002 unsigned int pages_to_map,
2003 unsigned long *address,
2006 struct tcp_zerocopy_receive *zc,
2007 u32 total_bytes_to_map)
2009 unsigned long pages_remaining = pages_to_map;
2010 unsigned int pages_mapped;
2011 unsigned int bytes_mapped;
2014 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2015 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2016 bytes_mapped = PAGE_SIZE * pages_mapped;
2017 /* Even if vm_insert_pages fails, it may have partially succeeded in
2018 * mapping (some but not all of the pages).
2020 *seq += bytes_mapped;
2021 *address += bytes_mapped;
2026 /* Error: maybe zap and retry + rollback state for failed inserts. */
2027 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2028 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2032 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
2033 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2034 struct tcp_zerocopy_receive *zc,
2035 struct scm_timestamping_internal *tss)
2037 unsigned long msg_control_addr;
2038 struct msghdr cmsg_dummy;
2040 msg_control_addr = (unsigned long)zc->msg_control;
2041 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2042 cmsg_dummy.msg_controllen =
2043 (__kernel_size_t)zc->msg_controllen;
2044 cmsg_dummy.msg_flags = in_compat_syscall()
2045 ? MSG_CMSG_COMPAT : 0;
2046 cmsg_dummy.msg_control_is_user = true;
2048 if (zc->msg_control == msg_control_addr &&
2049 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2050 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2051 zc->msg_control = (__u64)
2052 ((uintptr_t)cmsg_dummy.msg_control_user);
2053 zc->msg_controllen =
2054 (__u64)cmsg_dummy.msg_controllen;
2055 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2059 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2060 unsigned long address,
2063 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2066 if (vma->vm_ops != &tcp_vm_ops) {
2070 *mmap_locked = false;
2075 vma = vma_lookup(mm, address);
2076 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2077 mmap_read_unlock(mm);
2080 *mmap_locked = true;
2084 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2085 static int tcp_zerocopy_receive(struct sock *sk,
2086 struct tcp_zerocopy_receive *zc,
2087 struct scm_timestamping_internal *tss)
2089 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2090 unsigned long address = (unsigned long)zc->address;
2091 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2092 s32 copybuf_len = zc->copybuf_len;
2093 struct tcp_sock *tp = tcp_sk(sk);
2094 const skb_frag_t *frags = NULL;
2095 unsigned int pages_to_map = 0;
2096 struct vm_area_struct *vma;
2097 struct sk_buff *skb = NULL;
2098 u32 seq = tp->copied_seq;
2099 u32 total_bytes_to_map;
2100 int inq = tcp_inq(sk);
2104 zc->copybuf_len = 0;
2107 if (address & (PAGE_SIZE - 1) || address != zc->address)
2110 if (sk->sk_state == TCP_LISTEN)
2113 sock_rps_record_flow(sk);
2115 if (inq && inq <= copybuf_len)
2116 return receive_fallback_to_copy(sk, zc, inq, tss);
2118 if (inq < PAGE_SIZE) {
2120 zc->recv_skip_hint = inq;
2121 if (!inq && sock_flag(sk, SOCK_DONE))
2126 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2130 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2131 avail_len = min_t(u32, vma_len, inq);
2132 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2133 if (total_bytes_to_map) {
2134 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2135 zap_page_range_single(vma, address, total_bytes_to_map,
2137 zc->length = total_bytes_to_map;
2138 zc->recv_skip_hint = 0;
2140 zc->length = avail_len;
2141 zc->recv_skip_hint = avail_len;
2144 while (length + PAGE_SIZE <= zc->length) {
2145 int mappable_offset;
2148 if (zc->recv_skip_hint < PAGE_SIZE) {
2152 if (zc->recv_skip_hint > 0)
2155 offset = seq - TCP_SKB_CB(skb)->seq;
2157 skb = tcp_recv_skb(sk, seq, &offset);
2160 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2161 tcp_update_recv_tstamps(skb, tss);
2162 zc->msg_flags |= TCP_CMSG_TS;
2164 zc->recv_skip_hint = skb->len - offset;
2165 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2166 if (!frags || offset_frag)
2170 mappable_offset = find_next_mappable_frag(frags,
2171 zc->recv_skip_hint);
2172 if (mappable_offset) {
2173 zc->recv_skip_hint = mappable_offset;
2176 page = skb_frag_page(frags);
2178 pages[pages_to_map++] = page;
2179 length += PAGE_SIZE;
2180 zc->recv_skip_hint -= PAGE_SIZE;
2182 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2183 zc->recv_skip_hint < PAGE_SIZE) {
2184 /* Either full batch, or we're about to go to next skb
2185 * (and we cannot unroll failed ops across skbs).
2187 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2191 total_bytes_to_map);
2198 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2199 &address, &length, &seq,
2200 zc, total_bytes_to_map);
2204 mmap_read_unlock(current->mm);
2207 /* Try to copy straggler data. */
2209 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2211 if (length + copylen) {
2212 WRITE_ONCE(tp->copied_seq, seq);
2213 tcp_rcv_space_adjust(sk);
2215 /* Clean up data we have read: This will do ACK frames. */
2216 tcp_recv_skb(sk, seq, &offset);
2217 tcp_cleanup_rbuf(sk, length + copylen);
2219 if (length == zc->length)
2220 zc->recv_skip_hint = 0;
2222 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2225 zc->length = length;
2230 /* Similar to __sock_recv_timestamp, but does not require an skb */
2231 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2232 struct scm_timestamping_internal *tss)
2234 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2235 bool has_timestamping = false;
2237 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2238 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2239 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2241 struct __kernel_timespec kts = {
2242 .tv_sec = tss->ts[0].tv_sec,
2243 .tv_nsec = tss->ts[0].tv_nsec,
2245 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2248 struct __kernel_old_timespec ts_old = {
2249 .tv_sec = tss->ts[0].tv_sec,
2250 .tv_nsec = tss->ts[0].tv_nsec,
2252 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2253 sizeof(ts_old), &ts_old);
2257 struct __kernel_sock_timeval stv = {
2258 .tv_sec = tss->ts[0].tv_sec,
2259 .tv_usec = tss->ts[0].tv_nsec / 1000,
2261 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2264 struct __kernel_old_timeval tv = {
2265 .tv_sec = tss->ts[0].tv_sec,
2266 .tv_usec = tss->ts[0].tv_nsec / 1000,
2268 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2274 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2275 has_timestamping = true;
2277 tss->ts[0] = (struct timespec64) {0};
2280 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2281 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2282 has_timestamping = true;
2284 tss->ts[2] = (struct timespec64) {0};
2287 if (has_timestamping) {
2288 tss->ts[1] = (struct timespec64) {0};
2289 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2290 put_cmsg_scm_timestamping64(msg, tss);
2292 put_cmsg_scm_timestamping(msg, tss);
2296 static int tcp_inq_hint(struct sock *sk)
2298 const struct tcp_sock *tp = tcp_sk(sk);
2299 u32 copied_seq = READ_ONCE(tp->copied_seq);
2300 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2303 inq = rcv_nxt - copied_seq;
2304 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2306 inq = tp->rcv_nxt - tp->copied_seq;
2309 /* After receiving a FIN, tell the user-space to continue reading
2310 * by returning a non-zero inq.
2312 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2318 * This routine copies from a sock struct into the user buffer.
2320 * Technical note: in 2.3 we work on _locked_ socket, so that
2321 * tricks with *seq access order and skb->users are not required.
2322 * Probably, code can be easily improved even more.
2325 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2326 int flags, struct scm_timestamping_internal *tss,
2329 struct tcp_sock *tp = tcp_sk(sk);
2335 int target; /* Read at least this many bytes */
2337 struct sk_buff *skb, *last;
2338 u32 peek_offset = 0;
2342 if (sk->sk_state == TCP_LISTEN)
2345 if (tp->recvmsg_inq) {
2346 *cmsg_flags = TCP_CMSG_INQ;
2347 msg->msg_get_inq = 1;
2349 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2351 /* Urgent data needs to be handled specially. */
2352 if (flags & MSG_OOB)
2355 if (unlikely(tp->repair)) {
2357 if (!(flags & MSG_PEEK))
2360 if (tp->repair_queue == TCP_SEND_QUEUE)
2364 if (tp->repair_queue == TCP_NO_QUEUE)
2367 /* 'common' recv queue MSG_PEEK-ing */
2370 seq = &tp->copied_seq;
2371 if (flags & MSG_PEEK) {
2372 peek_offset = max(sk_peek_offset(sk, flags), 0);
2373 peek_seq = tp->copied_seq + peek_offset;
2377 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2382 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2383 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2386 if (signal_pending(current)) {
2387 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2392 /* Next get a buffer. */
2394 last = skb_peek_tail(&sk->sk_receive_queue);
2395 skb_queue_walk(&sk->sk_receive_queue, skb) {
2397 /* Now that we have two receive queues this
2400 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2401 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2402 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2406 offset = *seq - TCP_SKB_CB(skb)->seq;
2407 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2408 pr_err_once("%s: found a SYN, please report !\n", __func__);
2411 if (offset < skb->len)
2413 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2415 WARN(!(flags & MSG_PEEK),
2416 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2417 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2420 /* Well, if we have backlog, try to process it now yet. */
2422 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2428 sk->sk_state == TCP_CLOSE ||
2429 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2430 signal_pending(current))
2433 if (sock_flag(sk, SOCK_DONE))
2437 copied = sock_error(sk);
2441 if (sk->sk_shutdown & RCV_SHUTDOWN)
2444 if (sk->sk_state == TCP_CLOSE) {
2445 /* This occurs when user tries to read
2446 * from never connected socket.
2457 if (signal_pending(current)) {
2458 copied = sock_intr_errno(timeo);
2463 if (copied >= target) {
2464 /* Do not sleep, just process backlog. */
2465 __sk_flush_backlog(sk);
2467 tcp_cleanup_rbuf(sk, copied);
2468 err = sk_wait_data(sk, &timeo, last);
2470 err = copied ? : err;
2475 if ((flags & MSG_PEEK) &&
2476 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2477 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2479 task_pid_nr(current));
2480 peek_seq = tp->copied_seq + peek_offset;
2485 /* Ok so how much can we use? */
2486 used = skb->len - offset;
2490 /* Do we have urgent data here? */
2491 if (unlikely(tp->urg_data)) {
2492 u32 urg_offset = tp->urg_seq - *seq;
2493 if (urg_offset < used) {
2495 if (!sock_flag(sk, SOCK_URGINLINE)) {
2496 WRITE_ONCE(*seq, *seq + 1);
2508 if (!(flags & MSG_TRUNC)) {
2509 err = skb_copy_datagram_msg(skb, offset, msg, used);
2511 /* Exception. Bailout! */
2518 WRITE_ONCE(*seq, *seq + used);
2521 if (flags & MSG_PEEK)
2522 sk_peek_offset_fwd(sk, used);
2524 sk_peek_offset_bwd(sk, used);
2525 tcp_rcv_space_adjust(sk);
2528 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2529 WRITE_ONCE(tp->urg_data, 0);
2530 tcp_fast_path_check(sk);
2533 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2534 tcp_update_recv_tstamps(skb, tss);
2535 *cmsg_flags |= TCP_CMSG_TS;
2538 if (used + offset < skb->len)
2541 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2543 if (!(flags & MSG_PEEK))
2544 tcp_eat_recv_skb(sk, skb);
2548 /* Process the FIN. */
2549 WRITE_ONCE(*seq, *seq + 1);
2550 if (!(flags & MSG_PEEK))
2551 tcp_eat_recv_skb(sk, skb);
2555 /* According to UNIX98, msg_name/msg_namelen are ignored
2556 * on connected socket. I was just happy when found this 8) --ANK
2559 /* Clean up data we have read: This will do ACK frames. */
2560 tcp_cleanup_rbuf(sk, copied);
2567 err = tcp_recv_urg(sk, msg, len, flags);
2571 err = tcp_peek_sndq(sk, msg, len);
2575 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2578 int cmsg_flags = 0, ret;
2579 struct scm_timestamping_internal tss;
2581 if (unlikely(flags & MSG_ERRQUEUE))
2582 return inet_recv_error(sk, msg, len, addr_len);
2584 if (sk_can_busy_loop(sk) &&
2585 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2586 sk->sk_state == TCP_ESTABLISHED)
2587 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2590 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2593 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2594 if (cmsg_flags & TCP_CMSG_TS)
2595 tcp_recv_timestamp(msg, sk, &tss);
2596 if (msg->msg_get_inq) {
2597 msg->msg_inq = tcp_inq_hint(sk);
2598 if (cmsg_flags & TCP_CMSG_INQ)
2599 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2600 sizeof(msg->msg_inq), &msg->msg_inq);
2605 EXPORT_SYMBOL(tcp_recvmsg);
2607 void tcp_set_state(struct sock *sk, int state)
2609 int oldstate = sk->sk_state;
2611 /* We defined a new enum for TCP states that are exported in BPF
2612 * so as not force the internal TCP states to be frozen. The
2613 * following checks will detect if an internal state value ever
2614 * differs from the BPF value. If this ever happens, then we will
2615 * need to remap the internal value to the BPF value before calling
2616 * tcp_call_bpf_2arg.
2618 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2619 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2620 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2621 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2622 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2623 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2624 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2625 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2626 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2627 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2628 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2629 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2630 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2631 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2633 /* bpf uapi header bpf.h defines an anonymous enum with values
2634 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2635 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2636 * But clang built vmlinux does not have this enum in DWARF
2637 * since clang removes the above code before generating IR/debuginfo.
2638 * Let us explicitly emit the type debuginfo to ensure the
2639 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2640 * regardless of which compiler is used.
2642 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2644 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2645 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2648 case TCP_ESTABLISHED:
2649 if (oldstate != TCP_ESTABLISHED)
2650 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2652 case TCP_CLOSE_WAIT:
2653 if (oldstate == TCP_SYN_RECV)
2654 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2658 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2659 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2661 sk->sk_prot->unhash(sk);
2662 if (inet_csk(sk)->icsk_bind_hash &&
2663 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2667 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2668 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2671 /* Change state AFTER socket is unhashed to avoid closed
2672 * socket sitting in hash tables.
2674 inet_sk_state_store(sk, state);
2676 EXPORT_SYMBOL_GPL(tcp_set_state);
2679 * State processing on a close. This implements the state shift for
2680 * sending our FIN frame. Note that we only send a FIN for some
2681 * states. A shutdown() may have already sent the FIN, or we may be
2685 static const unsigned char new_state[16] = {
2686 /* current state: new state: action: */
2687 [0 /* (Invalid) */] = TCP_CLOSE,
2688 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2689 [TCP_SYN_SENT] = TCP_CLOSE,
2690 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2691 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2692 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2693 [TCP_TIME_WAIT] = TCP_CLOSE,
2694 [TCP_CLOSE] = TCP_CLOSE,
2695 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2696 [TCP_LAST_ACK] = TCP_LAST_ACK,
2697 [TCP_LISTEN] = TCP_CLOSE,
2698 [TCP_CLOSING] = TCP_CLOSING,
2699 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2702 static int tcp_close_state(struct sock *sk)
2704 int next = (int)new_state[sk->sk_state];
2705 int ns = next & TCP_STATE_MASK;
2707 tcp_set_state(sk, ns);
2709 return next & TCP_ACTION_FIN;
2713 * Shutdown the sending side of a connection. Much like close except
2714 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2717 void tcp_shutdown(struct sock *sk, int how)
2719 /* We need to grab some memory, and put together a FIN,
2720 * and then put it into the queue to be sent.
2723 if (!(how & SEND_SHUTDOWN))
2726 /* If we've already sent a FIN, or it's a closed state, skip this. */
2727 if ((1 << sk->sk_state) &
2728 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2730 /* Clear out any half completed packets. FIN if needed. */
2731 if (tcp_close_state(sk))
2735 EXPORT_SYMBOL(tcp_shutdown);
2737 int tcp_orphan_count_sum(void)
2741 for_each_possible_cpu(i)
2742 total += per_cpu(tcp_orphan_count, i);
2744 return max(total, 0);
2747 static int tcp_orphan_cache;
2748 static struct timer_list tcp_orphan_timer;
2749 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2751 static void tcp_orphan_update(struct timer_list *unused)
2753 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2754 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2757 static bool tcp_too_many_orphans(int shift)
2759 return READ_ONCE(tcp_orphan_cache) << shift >
2760 READ_ONCE(sysctl_tcp_max_orphans);
2763 static bool tcp_out_of_memory(const struct sock *sk)
2765 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
2766 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
2771 bool tcp_check_oom(const struct sock *sk, int shift)
2773 bool too_many_orphans, out_of_socket_memory;
2775 too_many_orphans = tcp_too_many_orphans(shift);
2776 out_of_socket_memory = tcp_out_of_memory(sk);
2778 if (too_many_orphans)
2779 net_info_ratelimited("too many orphaned sockets\n");
2780 if (out_of_socket_memory)
2781 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2782 return too_many_orphans || out_of_socket_memory;
2785 void __tcp_close(struct sock *sk, long timeout)
2787 struct sk_buff *skb;
2788 int data_was_unread = 0;
2791 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2793 if (sk->sk_state == TCP_LISTEN) {
2794 tcp_set_state(sk, TCP_CLOSE);
2797 inet_csk_listen_stop(sk);
2799 goto adjudge_to_death;
2802 /* We need to flush the recv. buffs. We do this only on the
2803 * descriptor close, not protocol-sourced closes, because the
2804 * reader process may not have drained the data yet!
2806 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2807 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2809 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2811 data_was_unread += len;
2815 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2816 if (sk->sk_state == TCP_CLOSE)
2817 goto adjudge_to_death;
2819 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2820 * data was lost. To witness the awful effects of the old behavior of
2821 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2822 * GET in an FTP client, suspend the process, wait for the client to
2823 * advertise a zero window, then kill -9 the FTP client, wheee...
2824 * Note: timeout is always zero in such a case.
2826 if (unlikely(tcp_sk(sk)->repair)) {
2827 sk->sk_prot->disconnect(sk, 0);
2828 } else if (data_was_unread) {
2829 /* Unread data was tossed, zap the connection. */
2830 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2831 tcp_set_state(sk, TCP_CLOSE);
2832 tcp_send_active_reset(sk, sk->sk_allocation,
2833 SK_RST_REASON_NOT_SPECIFIED);
2834 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2835 /* Check zero linger _after_ checking for unread data. */
2836 sk->sk_prot->disconnect(sk, 0);
2837 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2838 } else if (tcp_close_state(sk)) {
2839 /* We FIN if the application ate all the data before
2840 * zapping the connection.
2843 /* RED-PEN. Formally speaking, we have broken TCP state
2844 * machine. State transitions:
2846 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2847 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
2848 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2850 * are legal only when FIN has been sent (i.e. in window),
2851 * rather than queued out of window. Purists blame.
2853 * F.e. "RFC state" is ESTABLISHED,
2854 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2856 * The visible declinations are that sometimes
2857 * we enter time-wait state, when it is not required really
2858 * (harmless), do not send active resets, when they are
2859 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2860 * they look as CLOSING or LAST_ACK for Linux)
2861 * Probably, I missed some more holelets.
2863 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2864 * in a single packet! (May consider it later but will
2865 * probably need API support or TCP_CORK SYN-ACK until
2866 * data is written and socket is closed.)
2871 sk_stream_wait_close(sk, timeout);
2874 state = sk->sk_state;
2880 /* remove backlog if any, without releasing ownership. */
2883 this_cpu_inc(tcp_orphan_count);
2885 /* Have we already been destroyed by a softirq or backlog? */
2886 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2889 /* This is a (useful) BSD violating of the RFC. There is a
2890 * problem with TCP as specified in that the other end could
2891 * keep a socket open forever with no application left this end.
2892 * We use a 1 minute timeout (about the same as BSD) then kill
2893 * our end. If they send after that then tough - BUT: long enough
2894 * that we won't make the old 4*rto = almost no time - whoops
2897 * Nope, it was not mistake. It is really desired behaviour
2898 * f.e. on http servers, when such sockets are useless, but
2899 * consume significant resources. Let's do it with special
2900 * linger2 option. --ANK
2903 if (sk->sk_state == TCP_FIN_WAIT2) {
2904 struct tcp_sock *tp = tcp_sk(sk);
2905 if (READ_ONCE(tp->linger2) < 0) {
2906 tcp_set_state(sk, TCP_CLOSE);
2907 tcp_send_active_reset(sk, GFP_ATOMIC,
2908 SK_RST_REASON_NOT_SPECIFIED);
2909 __NET_INC_STATS(sock_net(sk),
2910 LINUX_MIB_TCPABORTONLINGER);
2912 const int tmo = tcp_fin_time(sk);
2914 if (tmo > TCP_TIMEWAIT_LEN) {
2915 inet_csk_reset_keepalive_timer(sk,
2916 tmo - TCP_TIMEWAIT_LEN);
2918 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2923 if (sk->sk_state != TCP_CLOSE) {
2924 if (tcp_check_oom(sk, 0)) {
2925 tcp_set_state(sk, TCP_CLOSE);
2926 tcp_send_active_reset(sk, GFP_ATOMIC,
2927 SK_RST_REASON_NOT_SPECIFIED);
2928 __NET_INC_STATS(sock_net(sk),
2929 LINUX_MIB_TCPABORTONMEMORY);
2930 } else if (!check_net(sock_net(sk))) {
2931 /* Not possible to send reset; just close */
2932 tcp_set_state(sk, TCP_CLOSE);
2936 if (sk->sk_state == TCP_CLOSE) {
2937 struct request_sock *req;
2939 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2940 lockdep_sock_is_held(sk));
2941 /* We could get here with a non-NULL req if the socket is
2942 * aborted (e.g., closed with unread data) before 3WHS
2946 reqsk_fastopen_remove(sk, req, false);
2947 inet_csk_destroy_sock(sk);
2949 /* Otherwise, socket is reprieved until protocol close. */
2956 void tcp_close(struct sock *sk, long timeout)
2959 __tcp_close(sk, timeout);
2961 if (!sk->sk_net_refcnt)
2962 inet_csk_clear_xmit_timers_sync(sk);
2965 EXPORT_SYMBOL(tcp_close);
2967 /* These states need RST on ABORT according to RFC793 */
2969 static inline bool tcp_need_reset(int state)
2971 return (1 << state) &
2972 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2973 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2976 static void tcp_rtx_queue_purge(struct sock *sk)
2978 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2980 tcp_sk(sk)->highest_sack = NULL;
2982 struct sk_buff *skb = rb_to_skb(p);
2985 /* Since we are deleting whole queue, no need to
2986 * list_del(&skb->tcp_tsorted_anchor)
2988 tcp_rtx_queue_unlink(skb, sk);
2989 tcp_wmem_free_skb(sk, skb);
2993 void tcp_write_queue_purge(struct sock *sk)
2995 struct sk_buff *skb;
2997 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2998 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2999 tcp_skb_tsorted_anchor_cleanup(skb);
3000 tcp_wmem_free_skb(sk, skb);
3002 tcp_rtx_queue_purge(sk);
3003 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3004 tcp_clear_all_retrans_hints(tcp_sk(sk));
3005 tcp_sk(sk)->packets_out = 0;
3006 inet_csk(sk)->icsk_backoff = 0;
3009 int tcp_disconnect(struct sock *sk, int flags)
3011 struct inet_sock *inet = inet_sk(sk);
3012 struct inet_connection_sock *icsk = inet_csk(sk);
3013 struct tcp_sock *tp = tcp_sk(sk);
3014 int old_state = sk->sk_state;
3017 if (old_state != TCP_CLOSE)
3018 tcp_set_state(sk, TCP_CLOSE);
3020 /* ABORT function of RFC793 */
3021 if (old_state == TCP_LISTEN) {
3022 inet_csk_listen_stop(sk);
3023 } else if (unlikely(tp->repair)) {
3024 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3025 } else if (tcp_need_reset(old_state) ||
3026 (tp->snd_nxt != tp->write_seq &&
3027 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3028 /* The last check adjusts for discrepancy of Linux wrt. RFC
3031 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_NOT_SPECIFIED);
3032 WRITE_ONCE(sk->sk_err, ECONNRESET);
3033 } else if (old_state == TCP_SYN_SENT)
3034 WRITE_ONCE(sk->sk_err, ECONNRESET);
3036 tcp_clear_xmit_timers(sk);
3037 __skb_queue_purge(&sk->sk_receive_queue);
3038 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3039 WRITE_ONCE(tp->urg_data, 0);
3040 sk_set_peek_off(sk, -1);
3041 tcp_write_queue_purge(sk);
3042 tcp_fastopen_active_disable_ofo_check(sk);
3043 skb_rbtree_purge(&tp->out_of_order_queue);
3045 inet->inet_dport = 0;
3047 inet_bhash2_reset_saddr(sk);
3049 WRITE_ONCE(sk->sk_shutdown, 0);
3050 sock_reset_flag(sk, SOCK_DONE);
3052 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3053 tp->rcv_rtt_last_tsecr = 0;
3055 seq = tp->write_seq + tp->max_window + 2;
3058 WRITE_ONCE(tp->write_seq, seq);
3060 icsk->icsk_backoff = 0;
3061 icsk->icsk_probes_out = 0;
3062 icsk->icsk_probes_tstamp = 0;
3063 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3064 icsk->icsk_rto_min = TCP_RTO_MIN;
3065 icsk->icsk_delack_max = TCP_DELACK_MAX;
3066 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3067 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3068 tp->snd_cwnd_cnt = 0;
3069 tp->is_cwnd_limited = 0;
3070 tp->max_packets_out = 0;
3071 tp->window_clamp = 0;
3073 tp->delivered_ce = 0;
3074 if (icsk->icsk_ca_ops->release)
3075 icsk->icsk_ca_ops->release(sk);
3076 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3077 icsk->icsk_ca_initialized = 0;
3078 tcp_set_ca_state(sk, TCP_CA_Open);
3079 tp->is_sack_reneg = 0;
3080 tcp_clear_retrans(tp);
3081 tp->total_retrans = 0;
3082 inet_csk_delack_init(sk);
3083 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3084 * issue in __tcp_select_window()
3086 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3087 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3089 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3090 tcp_saved_syn_free(tp);
3091 tp->compressed_ack = 0;
3095 tp->bytes_acked = 0;
3096 tp->bytes_received = 0;
3097 tp->bytes_retrans = 0;
3098 tp->data_segs_in = 0;
3099 tp->data_segs_out = 0;
3100 tp->duplicate_sack[0].start_seq = 0;
3101 tp->duplicate_sack[0].end_seq = 0;
3104 tp->retrans_out = 0;
3106 tp->tlp_high_seq = 0;
3107 tp->last_oow_ack_time = 0;
3109 /* There's a bubble in the pipe until at least the first ACK. */
3110 tp->app_limited = ~0U;
3111 tp->rate_app_limited = 1;
3112 tp->rack.mstamp = 0;
3113 tp->rack.advanced = 0;
3114 tp->rack.reo_wnd_steps = 1;
3115 tp->rack.last_delivered = 0;
3116 tp->rack.reo_wnd_persist = 0;
3117 tp->rack.dsack_seen = 0;
3118 tp->syn_data_acked = 0;
3119 tp->rx_opt.saw_tstamp = 0;
3120 tp->rx_opt.dsack = 0;
3121 tp->rx_opt.num_sacks = 0;
3122 tp->rcv_ooopack = 0;
3125 /* Clean up fastopen related fields */
3126 tcp_free_fastopen_req(tp);
3127 inet_clear_bit(DEFER_CONNECT, sk);
3128 tp->fastopen_client_fail = 0;
3130 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3132 if (sk->sk_frag.page) {
3133 put_page(sk->sk_frag.page);
3134 sk->sk_frag.page = NULL;
3135 sk->sk_frag.offset = 0;
3137 sk_error_report(sk);
3140 EXPORT_SYMBOL(tcp_disconnect);
3142 static inline bool tcp_can_repair_sock(const struct sock *sk)
3144 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3145 (sk->sk_state != TCP_LISTEN);
3148 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3150 struct tcp_repair_window opt;
3155 if (len != sizeof(opt))
3158 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3161 if (opt.max_window < opt.snd_wnd)
3164 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3167 if (after(opt.rcv_wup, tp->rcv_nxt))
3170 tp->snd_wl1 = opt.snd_wl1;
3171 tp->snd_wnd = opt.snd_wnd;
3172 tp->max_window = opt.max_window;
3174 tp->rcv_wnd = opt.rcv_wnd;
3175 tp->rcv_wup = opt.rcv_wup;
3180 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3183 struct tcp_sock *tp = tcp_sk(sk);
3184 struct tcp_repair_opt opt;
3187 while (len >= sizeof(opt)) {
3188 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3191 offset += sizeof(opt);
3194 switch (opt.opt_code) {
3196 tp->rx_opt.mss_clamp = opt.opt_val;
3201 u16 snd_wscale = opt.opt_val & 0xFFFF;
3202 u16 rcv_wscale = opt.opt_val >> 16;
3204 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3207 tp->rx_opt.snd_wscale = snd_wscale;
3208 tp->rx_opt.rcv_wscale = rcv_wscale;
3209 tp->rx_opt.wscale_ok = 1;
3212 case TCPOPT_SACK_PERM:
3213 if (opt.opt_val != 0)
3216 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3218 case TCPOPT_TIMESTAMP:
3219 if (opt.opt_val != 0)
3222 tp->rx_opt.tstamp_ok = 1;
3230 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3231 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3233 static void tcp_enable_tx_delay(void)
3235 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3236 static int __tcp_tx_delay_enabled = 0;
3238 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3239 static_branch_enable(&tcp_tx_delay_enabled);
3240 pr_info("TCP_TX_DELAY enabled\n");
3245 /* When set indicates to always queue non-full frames. Later the user clears
3246 * this option and we transmit any pending partial frames in the queue. This is
3247 * meant to be used alongside sendfile() to get properly filled frames when the
3248 * user (for example) must write out headers with a write() call first and then
3249 * use sendfile to send out the data parts.
3251 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3254 void __tcp_sock_set_cork(struct sock *sk, bool on)
3256 struct tcp_sock *tp = tcp_sk(sk);
3259 tp->nonagle |= TCP_NAGLE_CORK;
3261 tp->nonagle &= ~TCP_NAGLE_CORK;
3262 if (tp->nonagle & TCP_NAGLE_OFF)
3263 tp->nonagle |= TCP_NAGLE_PUSH;
3264 tcp_push_pending_frames(sk);
3268 void tcp_sock_set_cork(struct sock *sk, bool on)
3271 __tcp_sock_set_cork(sk, on);
3274 EXPORT_SYMBOL(tcp_sock_set_cork);
3276 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3277 * remembered, but it is not activated until cork is cleared.
3279 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3280 * even TCP_CORK for currently queued segments.
3282 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3285 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3286 tcp_push_pending_frames(sk);
3288 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3292 void tcp_sock_set_nodelay(struct sock *sk)
3295 __tcp_sock_set_nodelay(sk, true);
3298 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3300 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3303 inet_csk_enter_pingpong_mode(sk);
3307 inet_csk_exit_pingpong_mode(sk);
3308 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3309 inet_csk_ack_scheduled(sk)) {
3310 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3311 tcp_cleanup_rbuf(sk, 1);
3313 inet_csk_enter_pingpong_mode(sk);
3317 void tcp_sock_set_quickack(struct sock *sk, int val)
3320 __tcp_sock_set_quickack(sk, val);
3323 EXPORT_SYMBOL(tcp_sock_set_quickack);
3325 int tcp_sock_set_syncnt(struct sock *sk, int val)
3327 if (val < 1 || val > MAX_TCP_SYNCNT)
3330 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3333 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3335 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3337 /* Cap the max time in ms TCP will retry or probe the window
3338 * before giving up and aborting (ETIMEDOUT) a connection.
3343 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3346 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3348 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3350 struct tcp_sock *tp = tcp_sk(sk);
3352 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3355 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3356 WRITE_ONCE(tp->keepalive_time, val * HZ);
3357 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3358 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3359 u32 elapsed = keepalive_time_elapsed(tp);
3361 if (tp->keepalive_time > elapsed)
3362 elapsed = tp->keepalive_time - elapsed;
3365 inet_csk_reset_keepalive_timer(sk, elapsed);
3371 int tcp_sock_set_keepidle(struct sock *sk, int val)
3376 err = tcp_sock_set_keepidle_locked(sk, val);
3380 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3382 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3384 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3387 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3390 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3392 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3394 if (val < 1 || val > MAX_TCP_KEEPCNT)
3397 /* Paired with READ_ONCE() in keepalive_probes() */
3398 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3401 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3403 int tcp_set_window_clamp(struct sock *sk, int val)
3405 struct tcp_sock *tp = tcp_sk(sk);
3408 if (sk->sk_state != TCP_CLOSE)
3410 WRITE_ONCE(tp->window_clamp, 0);
3412 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3413 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3414 SOCK_MIN_RCVBUF / 2 : val;
3416 if (new_window_clamp == old_window_clamp)
3419 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3420 if (new_window_clamp < old_window_clamp) {
3421 /* need to apply the reserved mem provisioning only
3422 * when shrinking the window clamp
3424 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3427 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3428 tp->rcv_ssthresh = max(new_rcv_ssthresh,
3436 * Socket option code for TCP.
3438 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3439 sockptr_t optval, unsigned int optlen)
3441 struct tcp_sock *tp = tcp_sk(sk);
3442 struct inet_connection_sock *icsk = inet_csk(sk);
3443 struct net *net = sock_net(sk);
3447 /* These are data/string values, all the others are ints */
3449 case TCP_CONGESTION: {
3450 char name[TCP_CA_NAME_MAX];
3455 val = strncpy_from_sockptr(name, optval,
3456 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3461 sockopt_lock_sock(sk);
3462 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3463 sockopt_ns_capable(sock_net(sk)->user_ns,
3465 sockopt_release_sock(sk);
3469 char name[TCP_ULP_NAME_MAX];
3474 val = strncpy_from_sockptr(name, optval,
3475 min_t(long, TCP_ULP_NAME_MAX - 1,
3481 sockopt_lock_sock(sk);
3482 err = tcp_set_ulp(sk, name);
3483 sockopt_release_sock(sk);
3486 case TCP_FASTOPEN_KEY: {
3487 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3488 __u8 *backup_key = NULL;
3490 /* Allow a backup key as well to facilitate key rotation
3491 * First key is the active one.
3493 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3494 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3497 if (copy_from_sockptr(key, optval, optlen))
3500 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3501 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3503 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3510 if (optlen < sizeof(int))
3513 if (copy_from_sockptr(&val, optval, sizeof(val)))
3516 /* Handle options that can be set without locking the socket. */
3519 return tcp_sock_set_syncnt(sk, val);
3520 case TCP_USER_TIMEOUT:
3521 return tcp_sock_set_user_timeout(sk, val);
3523 return tcp_sock_set_keepintvl(sk, val);
3525 return tcp_sock_set_keepcnt(sk, val);
3528 WRITE_ONCE(tp->linger2, -1);
3529 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3530 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3532 WRITE_ONCE(tp->linger2, val * HZ);
3534 case TCP_DEFER_ACCEPT:
3535 /* Translate value in seconds to number of retransmits */
3536 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3537 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3542 sockopt_lock_sock(sk);
3546 /* Values greater than interface MTU won't take effect. However
3547 * at the point when this call is done we typically don't yet
3548 * know which interface is going to be used
3550 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3554 tp->rx_opt.user_mss = val;
3558 __tcp_sock_set_nodelay(sk, val);
3561 case TCP_THIN_LINEAR_TIMEOUTS:
3562 if (val < 0 || val > 1)
3568 case TCP_THIN_DUPACK:
3569 if (val < 0 || val > 1)
3574 if (!tcp_can_repair_sock(sk))
3576 else if (val == TCP_REPAIR_ON) {
3578 sk->sk_reuse = SK_FORCE_REUSE;
3579 tp->repair_queue = TCP_NO_QUEUE;
3580 } else if (val == TCP_REPAIR_OFF) {
3582 sk->sk_reuse = SK_NO_REUSE;
3583 tcp_send_window_probe(sk);
3584 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3586 sk->sk_reuse = SK_NO_REUSE;
3592 case TCP_REPAIR_QUEUE:
3595 else if ((unsigned int)val < TCP_QUEUES_NR)
3596 tp->repair_queue = val;
3602 if (sk->sk_state != TCP_CLOSE) {
3604 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3605 if (!tcp_rtx_queue_empty(sk))
3608 WRITE_ONCE(tp->write_seq, val);
3609 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3610 if (tp->rcv_nxt != tp->copied_seq) {
3613 WRITE_ONCE(tp->rcv_nxt, val);
3614 WRITE_ONCE(tp->copied_seq, val);
3621 case TCP_REPAIR_OPTIONS:
3624 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3625 err = tcp_repair_options_est(sk, optval, optlen);
3631 __tcp_sock_set_cork(sk, val);
3635 err = tcp_sock_set_keepidle_locked(sk, val);
3638 /* 0: disable, 1: enable, 2: start from ether_header */
3639 if (val < 0 || val > 2)
3645 case TCP_WINDOW_CLAMP:
3646 err = tcp_set_window_clamp(sk, val);
3650 __tcp_sock_set_quickack(sk, val);
3654 if (!tcp_can_repair_sock(sk)) {
3658 err = tcp_ao_set_repair(sk, optval, optlen);
3660 #ifdef CONFIG_TCP_AO
3661 case TCP_AO_ADD_KEY:
3662 case TCP_AO_DEL_KEY:
3664 /* If this is the first TCP-AO setsockopt() on the socket,
3665 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3668 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3670 if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3671 lockdep_sock_is_held(sk)))
3678 err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3682 #ifdef CONFIG_TCP_MD5SIG
3684 case TCP_MD5SIG_EXT:
3685 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3689 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3691 tcp_fastopen_init_key_once(net);
3693 fastopen_queue_tune(sk, val);
3698 case TCP_FASTOPEN_CONNECT:
3699 if (val > 1 || val < 0) {
3701 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3702 TFO_CLIENT_ENABLE) {
3703 if (sk->sk_state == TCP_CLOSE)
3704 tp->fastopen_connect = val;
3711 case TCP_FASTOPEN_NO_COOKIE:
3712 if (val > 1 || val < 0)
3714 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3717 tp->fastopen_no_cookie = val;
3724 /* val is an opaque field,
3725 * and low order bit contains usec_ts enable bit.
3726 * Its a best effort, and we do not care if user makes an error.
3728 tp->tcp_usec_ts = val & 1;
3729 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3731 case TCP_REPAIR_WINDOW:
3732 err = tcp_repair_set_window(tp, optval, optlen);
3734 case TCP_NOTSENT_LOWAT:
3735 WRITE_ONCE(tp->notsent_lowat, val);
3736 sk->sk_write_space(sk);
3739 if (val > 1 || val < 0)
3742 tp->recvmsg_inq = val;
3746 tcp_enable_tx_delay();
3747 WRITE_ONCE(tp->tcp_tx_delay, val);
3754 sockopt_release_sock(sk);
3758 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3759 unsigned int optlen)
3761 const struct inet_connection_sock *icsk = inet_csk(sk);
3763 if (level != SOL_TCP)
3764 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3765 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3767 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3769 EXPORT_SYMBOL(tcp_setsockopt);
3771 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3772 struct tcp_info *info)
3774 u64 stats[__TCP_CHRONO_MAX], total = 0;
3777 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3778 stats[i] = tp->chrono_stat[i - 1];
3779 if (i == tp->chrono_type)
3780 stats[i] += tcp_jiffies32 - tp->chrono_start;
3781 stats[i] *= USEC_PER_SEC / HZ;
3785 info->tcpi_busy_time = total;
3786 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3787 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3790 /* Return information about state of tcp endpoint in API format. */
3791 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3793 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3794 const struct inet_connection_sock *icsk = inet_csk(sk);
3800 memset(info, 0, sizeof(*info));
3801 if (sk->sk_type != SOCK_STREAM)
3804 info->tcpi_state = inet_sk_state_load(sk);
3806 /* Report meaningful fields for all TCP states, including listeners */
3807 rate = READ_ONCE(sk->sk_pacing_rate);
3808 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3809 info->tcpi_pacing_rate = rate64;
3811 rate = READ_ONCE(sk->sk_max_pacing_rate);
3812 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3813 info->tcpi_max_pacing_rate = rate64;
3815 info->tcpi_reordering = tp->reordering;
3816 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3818 if (info->tcpi_state == TCP_LISTEN) {
3819 /* listeners aliased fields :
3820 * tcpi_unacked -> Number of children ready for accept()
3821 * tcpi_sacked -> max backlog
3823 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3824 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3828 slow = lock_sock_fast(sk);
3830 info->tcpi_ca_state = icsk->icsk_ca_state;
3831 info->tcpi_retransmits = icsk->icsk_retransmits;
3832 info->tcpi_probes = icsk->icsk_probes_out;
3833 info->tcpi_backoff = icsk->icsk_backoff;
3835 if (tp->rx_opt.tstamp_ok)
3836 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3837 if (tcp_is_sack(tp))
3838 info->tcpi_options |= TCPI_OPT_SACK;
3839 if (tp->rx_opt.wscale_ok) {
3840 info->tcpi_options |= TCPI_OPT_WSCALE;
3841 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3842 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3845 if (tp->ecn_flags & TCP_ECN_OK)
3846 info->tcpi_options |= TCPI_OPT_ECN;
3847 if (tp->ecn_flags & TCP_ECN_SEEN)
3848 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3849 if (tp->syn_data_acked)
3850 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3851 if (tp->tcp_usec_ts)
3852 info->tcpi_options |= TCPI_OPT_USEC_TS;
3854 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3855 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3856 tcp_delack_max(sk)));
3857 info->tcpi_snd_mss = tp->mss_cache;
3858 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3860 info->tcpi_unacked = tp->packets_out;
3861 info->tcpi_sacked = tp->sacked_out;
3863 info->tcpi_lost = tp->lost_out;
3864 info->tcpi_retrans = tp->retrans_out;
3866 now = tcp_jiffies32;
3867 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3868 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3869 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3871 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3872 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3873 info->tcpi_rtt = tp->srtt_us >> 3;
3874 info->tcpi_rttvar = tp->mdev_us >> 2;
3875 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3876 info->tcpi_advmss = tp->advmss;
3878 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3879 info->tcpi_rcv_space = tp->rcvq_space.space;
3881 info->tcpi_total_retrans = tp->total_retrans;
3883 info->tcpi_bytes_acked = tp->bytes_acked;
3884 info->tcpi_bytes_received = tp->bytes_received;
3885 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3886 tcp_get_info_chrono_stats(tp, info);
3888 info->tcpi_segs_out = tp->segs_out;
3890 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3891 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3892 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3894 info->tcpi_min_rtt = tcp_min_rtt(tp);
3895 info->tcpi_data_segs_out = tp->data_segs_out;
3897 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3898 rate64 = tcp_compute_delivery_rate(tp);
3900 info->tcpi_delivery_rate = rate64;
3901 info->tcpi_delivered = tp->delivered;
3902 info->tcpi_delivered_ce = tp->delivered_ce;
3903 info->tcpi_bytes_sent = tp->bytes_sent;
3904 info->tcpi_bytes_retrans = tp->bytes_retrans;
3905 info->tcpi_dsack_dups = tp->dsack_dups;
3906 info->tcpi_reord_seen = tp->reord_seen;
3907 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3908 info->tcpi_snd_wnd = tp->snd_wnd;
3909 info->tcpi_rcv_wnd = tp->rcv_wnd;
3910 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3911 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3913 info->tcpi_total_rto = tp->total_rto;
3914 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3915 info->tcpi_total_rto_time = tp->total_rto_time;
3917 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3919 unlock_sock_fast(sk, slow);
3921 EXPORT_SYMBOL_GPL(tcp_get_info);
3923 static size_t tcp_opt_stats_get_size(void)
3926 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3927 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3928 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3929 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3930 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3931 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3932 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3933 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3934 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3935 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3936 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3937 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3938 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3939 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3940 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3941 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3942 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3943 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3944 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3945 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3946 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3947 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3948 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3949 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3950 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3951 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3952 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3956 /* Returns TTL or hop limit of an incoming packet from skb. */
3957 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3959 if (skb->protocol == htons(ETH_P_IP))
3960 return ip_hdr(skb)->ttl;
3961 else if (skb->protocol == htons(ETH_P_IPV6))
3962 return ipv6_hdr(skb)->hop_limit;
3967 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3968 const struct sk_buff *orig_skb,
3969 const struct sk_buff *ack_skb)
3971 const struct tcp_sock *tp = tcp_sk(sk);
3972 struct sk_buff *stats;
3973 struct tcp_info info;
3977 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3981 tcp_get_info_chrono_stats(tp, &info);
3982 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3983 info.tcpi_busy_time, TCP_NLA_PAD);
3984 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3985 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3986 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3987 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3988 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3989 tp->data_segs_out, TCP_NLA_PAD);
3990 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3991 tp->total_retrans, TCP_NLA_PAD);
3993 rate = READ_ONCE(sk->sk_pacing_rate);
3994 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3995 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3997 rate64 = tcp_compute_delivery_rate(tp);
3998 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4000 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4001 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4002 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4004 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4005 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4006 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4007 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4008 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4010 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4011 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4013 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4015 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4017 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4018 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4019 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4020 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4021 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4022 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4023 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4026 nla_put_u8(stats, TCP_NLA_TTL,
4027 tcp_skb_ttl_or_hop_limit(ack_skb));
4029 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4033 int do_tcp_getsockopt(struct sock *sk, int level,
4034 int optname, sockptr_t optval, sockptr_t optlen)
4036 struct inet_connection_sock *icsk = inet_csk(sk);
4037 struct tcp_sock *tp = tcp_sk(sk);
4038 struct net *net = sock_net(sk);
4041 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4047 len = min_t(unsigned int, len, sizeof(int));
4051 val = tp->mss_cache;
4052 if (tp->rx_opt.user_mss &&
4053 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4054 val = tp->rx_opt.user_mss;
4056 val = tp->rx_opt.mss_clamp;
4059 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4062 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4065 val = keepalive_time_when(tp) / HZ;
4068 val = keepalive_intvl_when(tp) / HZ;
4071 val = keepalive_probes(tp);
4074 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4075 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4078 val = READ_ONCE(tp->linger2);
4080 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4082 case TCP_DEFER_ACCEPT:
4083 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4084 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4087 case TCP_WINDOW_CLAMP:
4088 val = READ_ONCE(tp->window_clamp);
4091 struct tcp_info info;
4093 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4096 tcp_get_info(sk, &info);
4098 len = min_t(unsigned int, len, sizeof(info));
4099 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4101 if (copy_to_sockptr(optval, &info, len))
4106 const struct tcp_congestion_ops *ca_ops;
4107 union tcp_cc_info info;
4111 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4114 ca_ops = icsk->icsk_ca_ops;
4115 if (ca_ops && ca_ops->get_info)
4116 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4118 len = min_t(unsigned int, len, sz);
4119 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4121 if (copy_to_sockptr(optval, &info, len))
4126 val = !inet_csk_in_pingpong_mode(sk);
4129 case TCP_CONGESTION:
4130 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4132 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4133 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4135 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4140 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4142 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4143 if (!icsk->icsk_ulp_ops) {
4145 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4149 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4151 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4155 case TCP_FASTOPEN_KEY: {
4156 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4157 unsigned int key_len;
4159 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4162 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4163 TCP_FASTOPEN_KEY_LENGTH;
4164 len = min_t(unsigned int, len, key_len);
4165 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4167 if (copy_to_sockptr(optval, key, len))
4171 case TCP_THIN_LINEAR_TIMEOUTS:
4175 case TCP_THIN_DUPACK:
4183 case TCP_REPAIR_QUEUE:
4185 val = tp->repair_queue;
4190 case TCP_REPAIR_WINDOW: {
4191 struct tcp_repair_window opt;
4193 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4196 if (len != sizeof(opt))
4202 opt.snd_wl1 = tp->snd_wl1;
4203 opt.snd_wnd = tp->snd_wnd;
4204 opt.max_window = tp->max_window;
4205 opt.rcv_wnd = tp->rcv_wnd;
4206 opt.rcv_wup = tp->rcv_wup;
4208 if (copy_to_sockptr(optval, &opt, len))
4213 if (tp->repair_queue == TCP_SEND_QUEUE)
4214 val = tp->write_seq;
4215 else if (tp->repair_queue == TCP_RECV_QUEUE)
4221 case TCP_USER_TIMEOUT:
4222 val = READ_ONCE(icsk->icsk_user_timeout);
4226 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4229 case TCP_FASTOPEN_CONNECT:
4230 val = tp->fastopen_connect;
4233 case TCP_FASTOPEN_NO_COOKIE:
4234 val = tp->fastopen_no_cookie;
4238 val = READ_ONCE(tp->tcp_tx_delay);
4242 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4243 if (tp->tcp_usec_ts)
4248 case TCP_NOTSENT_LOWAT:
4249 val = READ_ONCE(tp->notsent_lowat);
4252 val = tp->recvmsg_inq;
4257 case TCP_SAVED_SYN: {
4258 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4261 sockopt_lock_sock(sk);
4262 if (tp->saved_syn) {
4263 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4264 len = tcp_saved_syn_len(tp->saved_syn);
4265 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4266 sockopt_release_sock(sk);
4269 sockopt_release_sock(sk);
4272 len = tcp_saved_syn_len(tp->saved_syn);
4273 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4274 sockopt_release_sock(sk);
4277 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4278 sockopt_release_sock(sk);
4281 tcp_saved_syn_free(tp);
4282 sockopt_release_sock(sk);
4284 sockopt_release_sock(sk);
4286 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4292 case TCP_ZEROCOPY_RECEIVE: {
4293 struct scm_timestamping_internal tss;
4294 struct tcp_zerocopy_receive zc = {};
4297 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4300 len < offsetofend(struct tcp_zerocopy_receive, length))
4302 if (unlikely(len > sizeof(zc))) {
4303 err = check_zeroed_sockptr(optval, sizeof(zc),
4306 return err == 0 ? -EINVAL : err;
4308 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4311 if (copy_from_sockptr(&zc, optval, len))
4315 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4317 sockopt_lock_sock(sk);
4318 err = tcp_zerocopy_receive(sk, &zc, &tss);
4319 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4321 sockopt_release_sock(sk);
4322 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4323 goto zerocopy_rcv_cmsg;
4325 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4326 goto zerocopy_rcv_cmsg;
4327 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4328 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4329 case offsetofend(struct tcp_zerocopy_receive, flags):
4330 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4331 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4332 case offsetofend(struct tcp_zerocopy_receive, err):
4333 goto zerocopy_rcv_sk_err;
4334 case offsetofend(struct tcp_zerocopy_receive, inq):
4335 goto zerocopy_rcv_inq;
4336 case offsetofend(struct tcp_zerocopy_receive, length):
4338 goto zerocopy_rcv_out;
4341 if (zc.msg_flags & TCP_CMSG_TS)
4342 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4345 zerocopy_rcv_sk_err:
4347 zc.err = sock_error(sk);
4349 zc.inq = tcp_inq_hint(sk);
4351 if (!err && copy_to_sockptr(optval, &zc, len))
4357 if (!tcp_can_repair_sock(sk))
4359 return tcp_ao_get_repair(sk, optval, optlen);
4360 case TCP_AO_GET_KEYS:
4364 sockopt_lock_sock(sk);
4365 if (optname == TCP_AO_GET_KEYS)
4366 err = tcp_ao_get_mkts(sk, optval, optlen);
4368 err = tcp_ao_get_sock_info(sk, optval, optlen);
4369 sockopt_release_sock(sk);
4377 return -ENOPROTOOPT;
4380 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4382 if (copy_to_sockptr(optval, &val, len))
4387 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4389 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4390 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4392 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4397 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4399 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4402 struct inet_connection_sock *icsk = inet_csk(sk);
4404 if (level != SOL_TCP)
4405 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4406 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4408 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4409 USER_SOCKPTR(optlen));
4411 EXPORT_SYMBOL(tcp_getsockopt);
4413 #ifdef CONFIG_TCP_MD5SIG
4414 int tcp_md5_sigpool_id = -1;
4415 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4417 int tcp_md5_alloc_sigpool(void)
4419 size_t scratch_size;
4422 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4423 ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4425 /* As long as any md5 sigpool was allocated, the return
4426 * id would stay the same. Re-write the id only for the case
4427 * when previously all MD5 keys were deleted and this call
4428 * allocates the first MD5 key, which may return a different
4429 * sigpool id than was used previously.
4431 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4437 void tcp_md5_release_sigpool(void)
4439 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4442 void tcp_md5_add_sigpool(void)
4444 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4447 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4448 const struct tcp_md5sig_key *key)
4450 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4451 struct scatterlist sg;
4453 sg_init_one(&sg, key->key, keylen);
4454 ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4456 /* We use data_race() because tcp_md5_do_add() might change
4459 return data_race(crypto_ahash_update(hp->req));
4461 EXPORT_SYMBOL(tcp_md5_hash_key);
4463 /* Called with rcu_read_lock() */
4464 enum skb_drop_reason
4465 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4466 const void *saddr, const void *daddr,
4467 int family, int l3index, const __u8 *hash_location)
4469 /* This gets called for each TCP segment that has TCP-MD5 option.
4470 * We have 3 drop cases:
4471 * o No MD5 hash and one expected.
4472 * o MD5 hash and we're not expecting one.
4473 * o MD5 hash and its wrong.
4475 const struct tcp_sock *tp = tcp_sk(sk);
4476 struct tcp_md5sig_key *key;
4480 key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4482 if (!key && hash_location) {
4483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4484 tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4485 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4488 /* Check the signature.
4489 * To support dual stack listeners, we need to handle
4492 if (family == AF_INET)
4493 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4495 genhash = tp->af_specific->calc_md5_hash(newhash, key,
4497 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4498 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4499 if (family == AF_INET) {
4500 tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4501 genhash ? "tcp_v4_calc_md5_hash failed"
4505 tcp_hash_fail("MD5 Hash failed",
4506 AF_INET6, skb, "L3 index %d",
4509 tcp_hash_fail("MD5 Hash mismatch",
4510 AF_INET6, skb, "L3 index %d",
4514 return SKB_DROP_REASON_TCP_MD5FAILURE;
4516 return SKB_NOT_DROPPED_YET;
4518 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4522 void tcp_done(struct sock *sk)
4524 struct request_sock *req;
4526 /* We might be called with a new socket, after
4527 * inet_csk_prepare_forced_close() has been called
4528 * so we can not use lockdep_sock_is_held(sk)
4530 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4532 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4533 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4535 tcp_set_state(sk, TCP_CLOSE);
4536 tcp_clear_xmit_timers(sk);
4538 reqsk_fastopen_remove(sk, req, false);
4540 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4542 if (!sock_flag(sk, SOCK_DEAD))
4543 sk->sk_state_change(sk);
4545 inet_csk_destroy_sock(sk);
4547 EXPORT_SYMBOL_GPL(tcp_done);
4549 int tcp_abort(struct sock *sk, int err)
4551 int state = inet_sk_state_load(sk);
4553 if (state == TCP_NEW_SYN_RECV) {
4554 struct request_sock *req = inet_reqsk(sk);
4557 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4561 if (state == TCP_TIME_WAIT) {
4562 struct inet_timewait_sock *tw = inet_twsk(sk);
4564 refcount_inc(&tw->tw_refcnt);
4566 inet_twsk_deschedule_put(tw);
4571 /* BPF context ensures sock locking. */
4572 if (!has_current_bpf_ctx())
4573 /* Don't race with userspace socket closes such as tcp_close. */
4576 if (sk->sk_state == TCP_LISTEN) {
4577 tcp_set_state(sk, TCP_CLOSE);
4578 inet_csk_listen_stop(sk);
4581 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4585 if (!sock_flag(sk, SOCK_DEAD)) {
4586 WRITE_ONCE(sk->sk_err, err);
4587 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4589 sk_error_report(sk);
4590 if (tcp_need_reset(sk->sk_state))
4591 tcp_send_active_reset(sk, GFP_ATOMIC,
4592 SK_RST_REASON_NOT_SPECIFIED);
4598 tcp_write_queue_purge(sk);
4599 if (!has_current_bpf_ctx())
4603 EXPORT_SYMBOL_GPL(tcp_abort);
4605 extern struct tcp_congestion_ops tcp_reno;
4607 static __initdata unsigned long thash_entries;
4608 static int __init set_thash_entries(char *str)
4615 ret = kstrtoul(str, 0, &thash_entries);
4621 __setup("thash_entries=", set_thash_entries);
4623 static void __init tcp_init_mem(void)
4625 unsigned long limit = nr_free_buffer_pages() / 16;
4627 limit = max(limit, 128UL);
4628 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4629 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4630 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4633 static void __init tcp_struct_check(void)
4635 /* TX read-mostly hotpath cache lines */
4636 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4637 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4638 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4639 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4640 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4641 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4642 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4643 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4645 /* TXRX read-mostly hotpath cache lines */
4646 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4647 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4648 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4649 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4650 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4651 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4652 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4653 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4654 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4656 /* RX read-mostly hotpath cache lines */
4657 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4658 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4659 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4660 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4661 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4662 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4663 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4664 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4665 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4666 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4667 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4668 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4669 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4671 /* TX read-write hotpath cache lines */
4672 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4673 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4674 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4675 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4676 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4677 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4678 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4679 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4680 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4681 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4682 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4683 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4684 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4685 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4686 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4687 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
4689 /* TXRX read-write hotpath cache lines */
4690 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4691 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
4692 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
4693 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4694 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4695 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4696 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4697 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4698 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4699 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4700 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4701 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4702 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4703 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4704 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4706 /* 32bit arches with 8byte alignment on u64 fields might need padding
4707 * before tcp_clock_cache.
4709 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
4711 /* RX read-write hotpath cache lines */
4712 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4713 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4714 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4715 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4716 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4717 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4718 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4719 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4720 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4721 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4722 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4723 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4724 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4725 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4726 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4729 void __init tcp_init(void)
4731 int max_rshare, max_wshare, cnt;
4732 unsigned long limit;
4735 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4736 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4737 sizeof_field(struct sk_buff, cb));
4741 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4743 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4744 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4746 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4747 thash_entries, 21, /* one slot per 2 MB*/
4749 tcp_hashinfo.bind_bucket_cachep =
4750 kmem_cache_create("tcp_bind_bucket",
4751 sizeof(struct inet_bind_bucket), 0,
4752 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4755 tcp_hashinfo.bind2_bucket_cachep =
4756 kmem_cache_create("tcp_bind2_bucket",
4757 sizeof(struct inet_bind2_bucket), 0,
4758 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4762 /* Size and allocate the main established and bind bucket
4765 * The methodology is similar to that of the buffer cache.
4767 tcp_hashinfo.ehash =
4768 alloc_large_system_hash("TCP established",
4769 sizeof(struct inet_ehash_bucket),
4771 17, /* one slot per 128 KB of memory */
4774 &tcp_hashinfo.ehash_mask,
4776 thash_entries ? 0 : 512 * 1024);
4777 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4778 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4780 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4781 panic("TCP: failed to alloc ehash_locks");
4782 tcp_hashinfo.bhash =
4783 alloc_large_system_hash("TCP bind",
4784 2 * sizeof(struct inet_bind_hashbucket),
4785 tcp_hashinfo.ehash_mask + 1,
4786 17, /* one slot per 128 KB of memory */
4788 &tcp_hashinfo.bhash_size,
4792 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4793 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4794 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4795 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4796 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4797 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4798 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4801 tcp_hashinfo.pernet = false;
4803 cnt = tcp_hashinfo.ehash_mask + 1;
4804 sysctl_tcp_max_orphans = cnt / 2;
4807 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4808 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4809 max_wshare = min(4UL*1024*1024, limit);
4810 max_rshare = min(6UL*1024*1024, limit);
4812 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4813 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4814 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4816 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4817 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4818 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4820 pr_info("Hash tables configured (established %u bind %u)\n",
4821 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4825 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);