1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Definitions for the AF_INET socket handler.
9 * Version: @(#)sock.h 1.0.4 05/13/93
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
79 /* This is the per-socket lock. The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
88 * We express the mutex-alike socket_lock semantics
89 * to the lock validator by explicitly managing
90 * the slock as a lock variant (in addition to
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 struct lockdep_map dep_map;
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_daddr: Foreign IPv4 addr
108 * @skc_rcv_saddr: Bound local IPv4 addr
109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_dport: placeholder for inet_dport/tw_dport
113 * @skc_num: placeholder for inet_num/tw_num
114 * @skc_portpair: __u32 union of @skc_dport & @skc_num
115 * @skc_family: network address family
116 * @skc_state: Connection state
117 * @skc_reuse: %SO_REUSEADDR setting
118 * @skc_reuseport: %SO_REUSEPORT setting
119 * @skc_ipv6only: socket is IPV6 only
120 * @skc_net_refcnt: socket is using net ref counting
121 * @skc_bound_dev_if: bound device index if != 0
122 * @skc_bind_node: bind hash linkage for various protocol lookup tables
123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124 * @skc_prot: protocol handlers inside a network family
125 * @skc_net: reference to the network namespace of this socket
126 * @skc_v6_daddr: IPV6 destination address
127 * @skc_v6_rcv_saddr: IPV6 source address
128 * @skc_cookie: socket's cookie value
129 * @skc_node: main hash linkage for various protocol lookup tables
130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131 * @skc_tx_queue_mapping: tx queue number for this connection
132 * @skc_rx_queue_mapping: rx queue number for this connection
133 * @skc_flags: place holder for sk_flags
134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136 * @skc_listener: connection request listener socket (aka rsk_listener)
137 * [union with @skc_flags]
138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139 * [union with @skc_flags]
140 * @skc_incoming_cpu: record/match cpu processing incoming packets
141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142 * [union with @skc_incoming_cpu]
143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144 * [union with @skc_incoming_cpu]
145 * @skc_refcnt: reference count
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
152 __addrpair skc_addrpair;
155 __be32 skc_rcv_saddr;
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
162 /* skc_dport && skc_num must be grouped as well */
164 __portpair skc_portpair;
171 unsigned short skc_family;
172 volatile unsigned char skc_state;
173 unsigned char skc_reuse:4;
174 unsigned char skc_reuseport:1;
175 unsigned char skc_ipv6only:1;
176 unsigned char skc_net_refcnt:1;
177 int skc_bound_dev_if;
179 struct hlist_node skc_bind_node;
180 struct hlist_node skc_portaddr_node;
182 struct proto *skc_prot;
183 possible_net_t skc_net;
185 #if IS_ENABLED(CONFIG_IPV6)
186 struct in6_addr skc_v6_daddr;
187 struct in6_addr skc_v6_rcv_saddr;
190 atomic64_t skc_cookie;
192 /* following fields are padding to force
193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 * assuming IPV6 is enabled. We use this padding differently
195 * for different kind of 'sockets'
198 unsigned long skc_flags;
199 struct sock *skc_listener; /* request_sock */
200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
207 int skc_dontcopy_begin[0];
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
213 unsigned short skc_tx_queue_mapping;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 unsigned short skc_rx_queue_mapping;
218 int skc_incoming_cpu;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
223 refcount_t skc_refcnt;
225 int skc_dontcopy_end[0];
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
234 struct bpf_local_storage;
238 * struct sock - network layer representation of sockets
239 * @__sk_common: shared layout with inet_timewait_sock
240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242 * @sk_lock: synchronizer
243 * @sk_kern_sock: True if sock is using kernel lock classes
244 * @sk_rcvbuf: size of receive buffer in bytes
245 * @sk_wq: sock wait queue and async head
246 * @sk_rx_dst: receive input route used by early demux
247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
260 * @sk_napi_id: id of the last napi context to receive data for sk
261 * @sk_ll_usec: usecs to busypoll when there is no data
262 * @sk_allocation: allocation mode
263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266 * @sk_sndbuf: size of send buffer in bytes
267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268 * @sk_no_check_rx: allow zero checksum in RX packets
269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272 * @sk_gso_max_size: Maximum GSO segment size to build
273 * @sk_gso_max_segs: Maximum number of GSO segments
274 * @sk_pacing_shift: scaling factor for TCP Small Queues
275 * @sk_lingertime: %SO_LINGER l_linger setting
276 * @sk_backlog: always used with the per-socket spinlock held
277 * @sk_callback_lock: used with the callbacks in the end of this struct
278 * @sk_error_queue: rarely used
279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280 * IPV6_ADDRFORM for instance)
281 * @sk_err: last error
282 * @sk_err_soft: errors that don't cause failure but are the cause of a
283 * persistent failure not just 'timed out'
284 * @sk_drops: raw/udp drops counter
285 * @sk_ack_backlog: current listen backlog
286 * @sk_max_ack_backlog: listen backlog set in listen()
287 * @sk_uid: user id of owner
288 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
289 * @sk_busy_poll_budget: napi processing budget when busypolling
290 * @sk_priority: %SO_PRIORITY setting
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_txrehash: enable TX hash rethink
301 * @sk_filter: socket filtering instructions
302 * @sk_timer: sock cleanup timer
303 * @sk_stamp: time stamp of last packet received
304 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305 * @sk_tsflags: SO_TIMESTAMPING flags
306 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307 * Sockets that can be used under memory reclaim should
309 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
311 * @sk_tskey: counter to disambiguate concurrent tstamp requests
312 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
313 * @sk_socket: Identd and reporting IO signals
314 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315 * @sk_frag: cached page frag
316 * @sk_peek_off: current peek_offset value
317 * @sk_send_head: front of stuff to transmit
318 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319 * @sk_security: used by security modules
320 * @sk_mark: generic packet mark
321 * @sk_cgrp_data: cgroup data for this cgroup
322 * @sk_memcg: this socket's memory cgroup association
323 * @sk_write_pending: a write to stream socket waits to start
324 * @sk_disconnects: number of disconnect operations performed on this sock
325 * @sk_state_change: callback to indicate change in the state of the sock
326 * @sk_data_ready: callback to indicate there is data to be processed
327 * @sk_write_space: callback to indicate there is bf sending space available
328 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329 * @sk_backlog_rcv: callback to process the backlog
330 * @sk_validate_xmit_skb: ptr to an optional validate function
331 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332 * @sk_reuseport_cb: reuseport group container
333 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334 * @sk_rcu: used during RCU grace period
335 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
338 * @sk_txtime_unused: unused txtime flags
339 * @ns_tracker: tracker for netns reference
343 * Now struct inet_timewait_sock also uses sock_common, so please just
344 * don't add nothing before this first member (__sk_common) --acme
346 struct sock_common __sk_common;
347 #define sk_node __sk_common.skc_node
348 #define sk_nulls_node __sk_common.skc_nulls_node
349 #define sk_refcnt __sk_common.skc_refcnt
350 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
351 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
352 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
355 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
356 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
357 #define sk_hash __sk_common.skc_hash
358 #define sk_portpair __sk_common.skc_portpair
359 #define sk_num __sk_common.skc_num
360 #define sk_dport __sk_common.skc_dport
361 #define sk_addrpair __sk_common.skc_addrpair
362 #define sk_daddr __sk_common.skc_daddr
363 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
364 #define sk_family __sk_common.skc_family
365 #define sk_state __sk_common.skc_state
366 #define sk_reuse __sk_common.skc_reuse
367 #define sk_reuseport __sk_common.skc_reuseport
368 #define sk_ipv6only __sk_common.skc_ipv6only
369 #define sk_net_refcnt __sk_common.skc_net_refcnt
370 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
371 #define sk_bind_node __sk_common.skc_bind_node
372 #define sk_prot __sk_common.skc_prot
373 #define sk_net __sk_common.skc_net
374 #define sk_v6_daddr __sk_common.skc_v6_daddr
375 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
376 #define sk_cookie __sk_common.skc_cookie
377 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
378 #define sk_flags __sk_common.skc_flags
379 #define sk_rxhash __sk_common.skc_rxhash
381 __cacheline_group_begin(sock_write_rx);
385 struct sk_buff_head sk_error_queue;
386 struct sk_buff_head sk_receive_queue;
388 * The backlog queue is special, it is always used with
389 * the per-socket spinlock held and requires low latency
390 * access. Therefore we special case it's implementation.
391 * Note : rmem_alloc is in this structure to fill a hole
392 * on 64bit arches, not because its logically part of
398 struct sk_buff *head;
399 struct sk_buff *tail;
401 #define sk_rmem_alloc sk_backlog.rmem_alloc
403 __cacheline_group_end(sock_write_rx);
405 __cacheline_group_begin(sock_read_rx);
406 /* early demux fields */
407 struct dst_entry __rcu *sk_rx_dst;
408 int sk_rx_dst_ifindex;
409 u32 sk_rx_dst_cookie;
411 #ifdef CONFIG_NET_RX_BUSY_POLL
412 unsigned int sk_ll_usec;
413 unsigned int sk_napi_id;
414 u16 sk_busy_poll_budget;
415 u8 sk_prefer_busy_poll;
420 struct sk_filter __rcu *sk_filter;
422 struct socket_wq __rcu *sk_wq;
424 struct socket_wq *sk_wq_raw;
428 void (*sk_data_ready)(struct sock *sk);
431 __cacheline_group_end(sock_read_rx);
433 __cacheline_group_begin(sock_read_rxtx);
435 struct socket *sk_socket;
436 struct mem_cgroup *sk_memcg;
438 struct xfrm_policy __rcu *sk_policy[2];
440 __cacheline_group_end(sock_read_rxtx);
442 __cacheline_group_begin(sock_write_rxtx);
443 socket_lock_t sk_lock;
445 int sk_forward_alloc;
447 __cacheline_group_end(sock_write_rxtx);
449 __cacheline_group_begin(sock_write_tx);
450 int sk_write_pending;
451 atomic_t sk_omem_alloc;
455 refcount_t sk_wmem_alloc;
456 unsigned long sk_tsq_flags;
458 struct sk_buff *sk_send_head;
459 struct rb_root tcp_rtx_queue;
461 struct sk_buff_head sk_write_queue;
462 u32 sk_dst_pending_confirm;
463 u32 sk_pacing_status; /* see enum sk_pacing */
464 struct page_frag sk_frag;
465 struct timer_list sk_timer;
467 unsigned long sk_pacing_rate; /* bytes per second */
470 __cacheline_group_end(sock_write_tx);
472 __cacheline_group_begin(sock_read_tx);
473 unsigned long sk_max_pacing_rate;
477 struct dst_entry __rcu *sk_dst_cache;
478 netdev_features_t sk_route_caps;
479 #ifdef CONFIG_SOCK_VALIDATE_XMIT
480 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
481 struct net_device *dev,
482 struct sk_buff *skb);
486 unsigned int sk_gso_max_size;
490 bool sk_use_task_frag;
491 __cacheline_group_end(sock_read_tx);
494 * Because of non atomicity rules, all
495 * changes are protected by socket lock.
497 u8 sk_gso_disabled : 1,
504 unsigned long sk_lingertime;
505 struct proto *sk_prot_creator;
506 rwlock_t sk_callback_lock;
509 u32 sk_max_ack_backlog;
511 spinlock_t sk_peer_lock;
513 struct pid *sk_peer_pid;
514 const struct cred *sk_peer_cred;
517 #if BITS_PER_LONG==32
518 seqlock_t sk_stamp_seq;
524 u8 sk_txtime_deadline_mode : 1,
525 sk_txtime_report_errors : 1,
526 sk_txtime_unused : 6;
529 #ifdef CONFIG_SECURITY
532 struct sock_cgroup_data sk_cgrp_data;
533 void (*sk_state_change)(struct sock *sk);
534 void (*sk_write_space)(struct sock *sk);
535 void (*sk_error_report)(struct sock *sk);
536 int (*sk_backlog_rcv)(struct sock *sk,
537 struct sk_buff *skb);
538 void (*sk_destruct)(struct sock *sk);
539 struct sock_reuseport __rcu *sk_reuseport_cb;
540 #ifdef CONFIG_BPF_SYSCALL
541 struct bpf_local_storage __rcu *sk_bpf_storage;
543 struct rcu_head sk_rcu;
544 netns_tracker ns_tracker;
549 SK_PACING_NEEDED = 1,
553 /* flag bits in sk_user_data
555 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
556 * not be suitable for copying when cloning the socket. For instance,
557 * it can point to a reference counted object. sk_user_data bottom
558 * bit is set if pointer must not be copied.
560 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
561 * managed/owned by a BPF reuseport array. This bit should be set
562 * when sk_user_data's sk is added to the bpf's reuseport_array.
564 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
565 * sk_user_data points to psock type. This bit should be set
566 * when sk_user_data is assigned to a psock object.
568 #define SK_USER_DATA_NOCOPY 1UL
569 #define SK_USER_DATA_BPF 2UL
570 #define SK_USER_DATA_PSOCK 4UL
571 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
575 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
578 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
580 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
583 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
586 * __locked_read_sk_user_data_with_flags - return the pointer
587 * only if argument flags all has been set in sk_user_data. Otherwise
593 * The caller must be holding sk->sk_callback_lock.
596 __locked_read_sk_user_data_with_flags(const struct sock *sk,
599 uintptr_t sk_user_data =
600 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
601 lockdep_is_held(&sk->sk_callback_lock));
603 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
605 if ((sk_user_data & flags) == flags)
606 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
611 * __rcu_dereference_sk_user_data_with_flags - return the pointer
612 * only if argument flags all has been set in sk_user_data. Otherwise
619 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
622 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
624 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
626 if ((sk_user_data & flags) == flags)
627 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
631 #define rcu_dereference_sk_user_data(sk) \
632 __rcu_dereference_sk_user_data_with_flags(sk, 0)
633 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
635 uintptr_t __tmp1 = (uintptr_t)(ptr), \
636 __tmp2 = (uintptr_t)(flags); \
637 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
638 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
639 rcu_assign_pointer(__sk_user_data((sk)), \
642 #define rcu_assign_sk_user_data(sk, ptr) \
643 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
646 struct net *sock_net(const struct sock *sk)
648 return read_pnet(&sk->sk_net);
652 void sock_net_set(struct sock *sk, struct net *net)
654 write_pnet(&sk->sk_net, net);
658 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
659 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
660 * on a socket means that the socket will reuse everybody else's port
661 * without looking at the other's sk_reuse value.
664 #define SK_NO_REUSE 0
665 #define SK_CAN_REUSE 1
666 #define SK_FORCE_REUSE 2
668 int sk_set_peek_off(struct sock *sk, int val);
670 static inline int sk_peek_offset(const struct sock *sk, int flags)
672 if (unlikely(flags & MSG_PEEK)) {
673 return READ_ONCE(sk->sk_peek_off);
679 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
681 s32 off = READ_ONCE(sk->sk_peek_off);
683 if (unlikely(off >= 0)) {
684 off = max_t(s32, off - val, 0);
685 WRITE_ONCE(sk->sk_peek_off, off);
689 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
691 sk_peek_offset_bwd(sk, -val);
695 * Hashed lists helper routines
697 static inline struct sock *sk_entry(const struct hlist_node *node)
699 return hlist_entry(node, struct sock, sk_node);
702 static inline struct sock *__sk_head(const struct hlist_head *head)
704 return hlist_entry(head->first, struct sock, sk_node);
707 static inline struct sock *sk_head(const struct hlist_head *head)
709 return hlist_empty(head) ? NULL : __sk_head(head);
712 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
714 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
717 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
719 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
722 static inline struct sock *sk_next(const struct sock *sk)
724 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
727 static inline struct sock *sk_nulls_next(const struct sock *sk)
729 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
730 hlist_nulls_entry(sk->sk_nulls_node.next,
731 struct sock, sk_nulls_node) :
735 static inline bool sk_unhashed(const struct sock *sk)
737 return hlist_unhashed(&sk->sk_node);
740 static inline bool sk_hashed(const struct sock *sk)
742 return !sk_unhashed(sk);
745 static inline void sk_node_init(struct hlist_node *node)
750 static inline void __sk_del_node(struct sock *sk)
752 __hlist_del(&sk->sk_node);
755 /* NB: equivalent to hlist_del_init_rcu */
756 static inline bool __sk_del_node_init(struct sock *sk)
760 sk_node_init(&sk->sk_node);
766 /* Grab socket reference count. This operation is valid only
767 when sk is ALREADY grabbed f.e. it is found in hash table
768 or a list and the lookup is made under lock preventing hash table
772 static __always_inline void sock_hold(struct sock *sk)
774 refcount_inc(&sk->sk_refcnt);
777 /* Ungrab socket in the context, which assumes that socket refcnt
778 cannot hit zero, f.e. it is true in context of any socketcall.
780 static __always_inline void __sock_put(struct sock *sk)
782 refcount_dec(&sk->sk_refcnt);
785 static inline bool sk_del_node_init(struct sock *sk)
787 bool rc = __sk_del_node_init(sk);
790 /* paranoid for a while -acme */
791 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
796 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
798 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
801 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
807 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
809 bool rc = __sk_nulls_del_node_init_rcu(sk);
812 /* paranoid for a while -acme */
813 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
819 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
821 hlist_add_head(&sk->sk_node, list);
824 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
827 __sk_add_node(sk, list);
830 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
833 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
834 sk->sk_family == AF_INET6)
835 hlist_add_tail_rcu(&sk->sk_node, list);
837 hlist_add_head_rcu(&sk->sk_node, list);
840 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
843 hlist_add_tail_rcu(&sk->sk_node, list);
846 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
848 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
851 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
853 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
856 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
859 __sk_nulls_add_node_rcu(sk, list);
862 static inline void __sk_del_bind_node(struct sock *sk)
864 __hlist_del(&sk->sk_bind_node);
867 static inline void sk_add_bind_node(struct sock *sk,
868 struct hlist_head *list)
870 hlist_add_head(&sk->sk_bind_node, list);
873 #define sk_for_each(__sk, list) \
874 hlist_for_each_entry(__sk, list, sk_node)
875 #define sk_for_each_rcu(__sk, list) \
876 hlist_for_each_entry_rcu(__sk, list, sk_node)
877 #define sk_nulls_for_each(__sk, node, list) \
878 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
879 #define sk_nulls_for_each_rcu(__sk, node, list) \
880 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
881 #define sk_for_each_from(__sk) \
882 hlist_for_each_entry_from(__sk, sk_node)
883 #define sk_nulls_for_each_from(__sk, node) \
884 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
885 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
886 #define sk_for_each_safe(__sk, tmp, list) \
887 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
888 #define sk_for_each_bound(__sk, list) \
889 hlist_for_each_entry(__sk, list, sk_bind_node)
892 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
893 * @tpos: the type * to use as a loop cursor.
894 * @pos: the &struct hlist_node to use as a loop cursor.
895 * @head: the head for your list.
896 * @offset: offset of hlist_node within the struct.
899 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
900 for (pos = rcu_dereference(hlist_first_rcu(head)); \
902 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
903 pos = rcu_dereference(hlist_next_rcu(pos)))
905 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
907 /* Careful only use this in a context where these parameters
908 * can not change and must all be valid, such as recvmsg from
911 return sk->sk_socket->file->f_cred->user_ns;
925 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
926 SOCK_DBG, /* %SO_DEBUG setting */
927 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
928 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
929 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
930 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
931 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
932 SOCK_FASYNC, /* fasync() active */
934 SOCK_ZEROCOPY, /* buffers from userspace */
935 SOCK_WIFI_STATUS, /* push wifi status to userspace */
936 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
937 * Will use last 4 bytes of packet sent from
938 * user-space instead.
940 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
941 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
942 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
944 SOCK_XDP, /* XDP is attached */
945 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
946 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
949 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
951 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
953 nsk->sk_flags = osk->sk_flags;
956 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
958 __set_bit(flag, &sk->sk_flags);
961 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
963 __clear_bit(flag, &sk->sk_flags);
966 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
970 sock_set_flag(sk, bit);
972 sock_reset_flag(sk, bit);
975 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
977 return test_bit(flag, &sk->sk_flags);
981 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
982 static inline int sk_memalloc_socks(void)
984 return static_branch_unlikely(&memalloc_socks_key);
987 void __receive_sock(struct file *file);
990 static inline int sk_memalloc_socks(void)
995 static inline void __receive_sock(struct file *file)
999 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1001 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1004 static inline void sk_acceptq_removed(struct sock *sk)
1006 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1009 static inline void sk_acceptq_added(struct sock *sk)
1011 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1014 /* Note: If you think the test should be:
1015 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1016 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1018 static inline bool sk_acceptq_is_full(const struct sock *sk)
1020 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1024 * Compute minimal free write space needed to queue new packets.
1026 static inline int sk_stream_min_wspace(const struct sock *sk)
1028 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1031 static inline int sk_stream_wspace(const struct sock *sk)
1033 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1036 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1038 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1041 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1043 /* Paired with lockless reads of sk->sk_forward_alloc */
1044 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1047 void sk_stream_write_space(struct sock *sk);
1049 /* OOB backlog add */
1050 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1052 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1055 if (!sk->sk_backlog.tail)
1056 WRITE_ONCE(sk->sk_backlog.head, skb);
1058 sk->sk_backlog.tail->next = skb;
1060 WRITE_ONCE(sk->sk_backlog.tail, skb);
1065 * Take into account size of receive queue and backlog queue
1066 * Do not take into account this skb truesize,
1067 * to allow even a single big packet to come.
1069 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1071 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1073 return qsize > limit;
1076 /* The per-socket spinlock must be held here. */
1077 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1080 if (sk_rcvqueues_full(sk, limit))
1084 * If the skb was allocated from pfmemalloc reserves, only
1085 * allow SOCK_MEMALLOC sockets to use it as this socket is
1086 * helping free memory
1088 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1091 __sk_add_backlog(sk, skb);
1092 sk->sk_backlog.len += skb->truesize;
1096 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1098 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1099 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1101 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1103 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1104 return __sk_backlog_rcv(sk, skb);
1106 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1112 static inline void sk_incoming_cpu_update(struct sock *sk)
1114 int cpu = raw_smp_processor_id();
1116 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1117 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1121 static inline void sock_rps_save_rxhash(struct sock *sk,
1122 const struct sk_buff *skb)
1125 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1126 * here, and another one in sock_rps_record_flow().
1128 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1129 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1133 static inline void sock_rps_reset_rxhash(struct sock *sk)
1136 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1137 WRITE_ONCE(sk->sk_rxhash, 0);
1141 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1142 ({ int __rc, __dis = __sk->sk_disconnects; \
1143 release_sock(__sk); \
1144 __rc = __condition; \
1146 *(__timeo) = wait_woken(__wait, \
1147 TASK_INTERRUPTIBLE, \
1150 sched_annotate_sleep(); \
1152 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1156 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1157 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1158 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1159 int sk_stream_error(struct sock *sk, int flags, int err);
1160 void sk_stream_kill_queues(struct sock *sk);
1161 void sk_set_memalloc(struct sock *sk);
1162 void sk_clear_memalloc(struct sock *sk);
1164 void __sk_flush_backlog(struct sock *sk);
1166 static inline bool sk_flush_backlog(struct sock *sk)
1168 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1169 __sk_flush_backlog(sk);
1175 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1177 struct request_sock_ops;
1178 struct timewait_sock_ops;
1179 struct inet_hashinfo;
1180 struct raw_hashinfo;
1181 struct smc_hashinfo;
1186 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1187 * un-modified. Special care is taken when initializing object to zero.
1189 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1191 if (offsetof(struct sock, sk_node.next) != 0)
1192 memset(sk, 0, offsetof(struct sock, sk_node.next));
1193 memset(&sk->sk_node.pprev, 0,
1194 size - offsetof(struct sock, sk_node.pprev));
1197 struct proto_accept_arg {
1204 /* Networking protocol blocks we attach to sockets.
1205 * socket layer -> transport layer interface
1208 void (*close)(struct sock *sk,
1210 int (*pre_connect)(struct sock *sk,
1211 struct sockaddr *uaddr,
1213 int (*connect)(struct sock *sk,
1214 struct sockaddr *uaddr,
1216 int (*disconnect)(struct sock *sk, int flags);
1218 struct sock * (*accept)(struct sock *sk,
1219 struct proto_accept_arg *arg);
1221 int (*ioctl)(struct sock *sk, int cmd,
1223 int (*init)(struct sock *sk);
1224 void (*destroy)(struct sock *sk);
1225 void (*shutdown)(struct sock *sk, int how);
1226 int (*setsockopt)(struct sock *sk, int level,
1227 int optname, sockptr_t optval,
1228 unsigned int optlen);
1229 int (*getsockopt)(struct sock *sk, int level,
1230 int optname, char __user *optval,
1231 int __user *option);
1232 void (*keepalive)(struct sock *sk, int valbool);
1233 #ifdef CONFIG_COMPAT
1234 int (*compat_ioctl)(struct sock *sk,
1235 unsigned int cmd, unsigned long arg);
1237 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1239 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1240 size_t len, int flags, int *addr_len);
1241 void (*splice_eof)(struct socket *sock);
1242 int (*bind)(struct sock *sk,
1243 struct sockaddr *addr, int addr_len);
1244 int (*bind_add)(struct sock *sk,
1245 struct sockaddr *addr, int addr_len);
1247 int (*backlog_rcv) (struct sock *sk,
1248 struct sk_buff *skb);
1249 bool (*bpf_bypass_getsockopt)(int level,
1252 void (*release_cb)(struct sock *sk);
1254 /* Keeping track of sk's, looking them up, and port selection methods. */
1255 int (*hash)(struct sock *sk);
1256 void (*unhash)(struct sock *sk);
1257 void (*rehash)(struct sock *sk);
1258 int (*get_port)(struct sock *sk, unsigned short snum);
1259 void (*put_port)(struct sock *sk);
1260 #ifdef CONFIG_BPF_SYSCALL
1261 int (*psock_update_sk_prot)(struct sock *sk,
1262 struct sk_psock *psock,
1266 /* Keeping track of sockets in use */
1267 #ifdef CONFIG_PROC_FS
1268 unsigned int inuse_idx;
1271 #if IS_ENABLED(CONFIG_MPTCP)
1272 int (*forward_alloc_get)(const struct sock *sk);
1275 bool (*stream_memory_free)(const struct sock *sk, int wake);
1276 bool (*sock_is_readable)(struct sock *sk);
1277 /* Memory pressure */
1278 void (*enter_memory_pressure)(struct sock *sk);
1279 void (*leave_memory_pressure)(struct sock *sk);
1280 atomic_long_t *memory_allocated; /* Current allocated memory. */
1281 int __percpu *per_cpu_fw_alloc;
1282 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1285 * Pressure flag: try to collapse.
1286 * Technical note: it is used by multiple contexts non atomically.
1287 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1288 * All the __sk_mem_schedule() is of this nature: accounting
1289 * is strict, actions are advisory and have some latency.
1291 unsigned long *memory_pressure;
1296 u32 sysctl_wmem_offset;
1297 u32 sysctl_rmem_offset;
1302 struct kmem_cache *slab;
1303 unsigned int obj_size;
1304 unsigned int ipv6_pinfo_offset;
1305 slab_flags_t slab_flags;
1306 unsigned int useroffset; /* Usercopy region offset */
1307 unsigned int usersize; /* Usercopy region size */
1309 unsigned int __percpu *orphan_count;
1311 struct request_sock_ops *rsk_prot;
1312 struct timewait_sock_ops *twsk_prot;
1315 struct inet_hashinfo *hashinfo;
1316 struct udp_table *udp_table;
1317 struct raw_hashinfo *raw_hash;
1318 struct smc_hashinfo *smc_hash;
1321 struct module *owner;
1325 struct list_head node;
1326 int (*diag_destroy)(struct sock *sk, int err);
1327 } __randomize_layout;
1329 int proto_register(struct proto *prot, int alloc_slab);
1330 void proto_unregister(struct proto *prot);
1331 int sock_load_diag_module(int family, int protocol);
1333 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1335 static inline int sk_forward_alloc_get(const struct sock *sk)
1337 #if IS_ENABLED(CONFIG_MPTCP)
1338 if (sk->sk_prot->forward_alloc_get)
1339 return sk->sk_prot->forward_alloc_get(sk);
1341 return READ_ONCE(sk->sk_forward_alloc);
1344 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1346 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1349 return sk->sk_prot->stream_memory_free ?
1350 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1351 tcp_stream_memory_free, sk, wake) : true;
1354 static inline bool sk_stream_memory_free(const struct sock *sk)
1356 return __sk_stream_memory_free(sk, 0);
1359 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1361 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1362 __sk_stream_memory_free(sk, wake);
1365 static inline bool sk_stream_is_writeable(const struct sock *sk)
1367 return __sk_stream_is_writeable(sk, 0);
1370 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1371 struct cgroup *ancestor)
1373 #ifdef CONFIG_SOCK_CGROUP_DATA
1374 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1381 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1383 static inline void sk_sockets_allocated_dec(struct sock *sk)
1385 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1386 SK_ALLOC_PERCPU_COUNTER_BATCH);
1389 static inline void sk_sockets_allocated_inc(struct sock *sk)
1391 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1392 SK_ALLOC_PERCPU_COUNTER_BATCH);
1396 sk_sockets_allocated_read_positive(struct sock *sk)
1398 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1402 proto_sockets_allocated_sum_positive(struct proto *prot)
1404 return percpu_counter_sum_positive(prot->sockets_allocated);
1407 #ifdef CONFIG_PROC_FS
1408 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1411 int val[PROTO_INUSE_NR];
1414 static inline void sock_prot_inuse_add(const struct net *net,
1415 const struct proto *prot, int val)
1417 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1420 static inline void sock_inuse_add(const struct net *net, int val)
1422 this_cpu_add(net->core.prot_inuse->all, val);
1425 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1426 int sock_inuse_get(struct net *net);
1428 static inline void sock_prot_inuse_add(const struct net *net,
1429 const struct proto *prot, int val)
1433 static inline void sock_inuse_add(const struct net *net, int val)
1439 /* With per-bucket locks this operation is not-atomic, so that
1440 * this version is not worse.
1442 static inline int __sk_prot_rehash(struct sock *sk)
1444 sk->sk_prot->unhash(sk);
1445 return sk->sk_prot->hash(sk);
1448 /* About 10 seconds */
1449 #define SOCK_DESTROY_TIME (10*HZ)
1451 /* Sockets 0-1023 can't be bound to unless you are superuser */
1452 #define PROT_SOCK 1024
1454 #define SHUTDOWN_MASK 3
1455 #define RCV_SHUTDOWN 1
1456 #define SEND_SHUTDOWN 2
1458 #define SOCK_BINDADDR_LOCK 4
1459 #define SOCK_BINDPORT_LOCK 8
1461 struct socket_alloc {
1462 struct socket socket;
1463 struct inode vfs_inode;
1466 static inline struct socket *SOCKET_I(struct inode *inode)
1468 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1471 static inline struct inode *SOCK_INODE(struct socket *socket)
1473 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1477 * Functions for memory accounting
1479 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1480 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1481 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1482 void __sk_mem_reclaim(struct sock *sk, int amount);
1484 #define SK_MEM_SEND 0
1485 #define SK_MEM_RECV 1
1487 /* sysctl_mem values are in pages */
1488 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1490 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1493 static inline int sk_mem_pages(int amt)
1495 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1498 static inline bool sk_has_account(struct sock *sk)
1500 /* return true if protocol supports memory accounting */
1501 return !!sk->sk_prot->memory_allocated;
1504 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1508 if (!sk_has_account(sk))
1510 delta = size - sk->sk_forward_alloc;
1511 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1515 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1519 if (!sk_has_account(sk))
1521 delta = size - sk->sk_forward_alloc;
1522 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1523 skb_pfmemalloc(skb);
1526 static inline int sk_unused_reserved_mem(const struct sock *sk)
1530 if (likely(!sk->sk_reserved_mem))
1533 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1534 atomic_read(&sk->sk_rmem_alloc);
1536 return unused_mem > 0 ? unused_mem : 0;
1539 static inline void sk_mem_reclaim(struct sock *sk)
1543 if (!sk_has_account(sk))
1546 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1548 if (reclaimable >= (int)PAGE_SIZE)
1549 __sk_mem_reclaim(sk, reclaimable);
1552 static inline void sk_mem_reclaim_final(struct sock *sk)
1554 sk->sk_reserved_mem = 0;
1558 static inline void sk_mem_charge(struct sock *sk, int size)
1560 if (!sk_has_account(sk))
1562 sk_forward_alloc_add(sk, -size);
1565 static inline void sk_mem_uncharge(struct sock *sk, int size)
1567 if (!sk_has_account(sk))
1569 sk_forward_alloc_add(sk, size);
1574 * Macro so as to not evaluate some arguments when
1575 * lockdep is not enabled.
1577 * Mark both the sk_lock and the sk_lock.slock as a
1578 * per-address-family lock class.
1580 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1582 sk->sk_lock.owned = 0; \
1583 init_waitqueue_head(&sk->sk_lock.wq); \
1584 spin_lock_init(&(sk)->sk_lock.slock); \
1585 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1586 sizeof((sk)->sk_lock)); \
1587 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1589 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1592 static inline bool lockdep_sock_is_held(const struct sock *sk)
1594 return lockdep_is_held(&sk->sk_lock) ||
1595 lockdep_is_held(&sk->sk_lock.slock);
1598 void lock_sock_nested(struct sock *sk, int subclass);
1600 static inline void lock_sock(struct sock *sk)
1602 lock_sock_nested(sk, 0);
1605 void __lock_sock(struct sock *sk);
1606 void __release_sock(struct sock *sk);
1607 void release_sock(struct sock *sk);
1609 /* BH context may only use the following locking interface. */
1610 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1611 #define bh_lock_sock_nested(__sk) \
1612 spin_lock_nested(&((__sk)->sk_lock.slock), \
1613 SINGLE_DEPTH_NESTING)
1614 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1616 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1619 * lock_sock_fast - fast version of lock_sock
1622 * This version should be used for very small section, where process wont block
1623 * return false if fast path is taken:
1625 * sk_lock.slock locked, owned = 0, BH disabled
1627 * return true if slow path is taken:
1629 * sk_lock.slock unlocked, owned = 1, BH enabled
1631 static inline bool lock_sock_fast(struct sock *sk)
1633 /* The sk_lock has mutex_lock() semantics here. */
1634 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1636 return __lock_sock_fast(sk);
1639 /* fast socket lock variant for caller already holding a [different] socket lock */
1640 static inline bool lock_sock_fast_nested(struct sock *sk)
1642 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1644 return __lock_sock_fast(sk);
1648 * unlock_sock_fast - complement of lock_sock_fast
1652 * fast unlock socket for user context.
1653 * If slow mode is on, we call regular release_sock()
1655 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1656 __releases(&sk->sk_lock.slock)
1660 __release(&sk->sk_lock.slock);
1662 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1663 spin_unlock_bh(&sk->sk_lock.slock);
1667 void sockopt_lock_sock(struct sock *sk);
1668 void sockopt_release_sock(struct sock *sk);
1669 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1670 bool sockopt_capable(int cap);
1672 /* Used by processes to "lock" a socket state, so that
1673 * interrupts and bottom half handlers won't change it
1674 * from under us. It essentially blocks any incoming
1675 * packets, so that we won't get any new data or any
1676 * packets that change the state of the socket.
1678 * While locked, BH processing will add new packets to
1679 * the backlog queue. This queue is processed by the
1680 * owner of the socket lock right before it is released.
1682 * Since ~2.3.5 it is also exclusive sleep lock serializing
1683 * accesses from user process context.
1686 static inline void sock_owned_by_me(const struct sock *sk)
1688 #ifdef CONFIG_LOCKDEP
1689 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1693 static inline void sock_not_owned_by_me(const struct sock *sk)
1695 #ifdef CONFIG_LOCKDEP
1696 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1700 static inline bool sock_owned_by_user(const struct sock *sk)
1702 sock_owned_by_me(sk);
1703 return sk->sk_lock.owned;
1706 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1708 return sk->sk_lock.owned;
1711 static inline void sock_release_ownership(struct sock *sk)
1713 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1714 sk->sk_lock.owned = 0;
1716 /* The sk_lock has mutex_unlock() semantics: */
1717 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1720 /* no reclassification while locks are held */
1721 static inline bool sock_allow_reclassification(const struct sock *csk)
1723 struct sock *sk = (struct sock *)csk;
1725 return !sock_owned_by_user_nocheck(sk) &&
1726 !spin_is_locked(&sk->sk_lock.slock);
1729 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1730 struct proto *prot, int kern);
1731 void sk_free(struct sock *sk);
1732 void sk_destruct(struct sock *sk);
1733 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1734 void sk_free_unlock_clone(struct sock *sk);
1736 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1738 void __sock_wfree(struct sk_buff *skb);
1739 void sock_wfree(struct sk_buff *skb);
1740 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1742 void skb_orphan_partial(struct sk_buff *skb);
1743 void sock_rfree(struct sk_buff *skb);
1744 void sock_efree(struct sk_buff *skb);
1746 void sock_edemux(struct sk_buff *skb);
1747 void sock_pfree(struct sk_buff *skb);
1749 #define sock_edemux sock_efree
1752 int sk_setsockopt(struct sock *sk, int level, int optname,
1753 sockptr_t optval, unsigned int optlen);
1754 int sock_setsockopt(struct socket *sock, int level, int op,
1755 sockptr_t optval, unsigned int optlen);
1756 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1757 int optname, sockptr_t optval, int optlen);
1758 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1759 int optname, sockptr_t optval, sockptr_t optlen);
1761 int sk_getsockopt(struct sock *sk, int level, int optname,
1762 sockptr_t optval, sockptr_t optlen);
1763 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1764 bool timeval, bool time32);
1765 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1766 unsigned long data_len, int noblock,
1767 int *errcode, int max_page_order);
1769 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1771 int noblock, int *errcode)
1773 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1776 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1777 void sock_kfree_s(struct sock *sk, void *mem, int size);
1778 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1779 void sk_send_sigurg(struct sock *sk);
1781 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1784 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1785 WRITE_ONCE(sk->sk_prot, proto);
1788 struct sockcm_cookie {
1794 static inline void sockcm_init(struct sockcm_cookie *sockc,
1795 const struct sock *sk)
1797 *sockc = (struct sockcm_cookie) {
1798 .tsflags = READ_ONCE(sk->sk_tsflags)
1802 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1803 struct sockcm_cookie *sockc);
1804 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1805 struct sockcm_cookie *sockc);
1808 * Functions to fill in entries in struct proto_ops when a protocol
1809 * does not implement a particular function.
1811 int sock_no_bind(struct socket *, struct sockaddr *, int);
1812 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1813 int sock_no_socketpair(struct socket *, struct socket *);
1814 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1815 int sock_no_getname(struct socket *, struct sockaddr *, int);
1816 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1817 int sock_no_listen(struct socket *, int);
1818 int sock_no_shutdown(struct socket *, int);
1819 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1820 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1821 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1822 int sock_no_mmap(struct file *file, struct socket *sock,
1823 struct vm_area_struct *vma);
1826 * Functions to fill in entries in struct proto_ops when a protocol
1827 * uses the inet style.
1829 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1830 char __user *optval, int __user *optlen);
1831 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1833 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1834 sockptr_t optval, unsigned int optlen);
1836 void sk_common_release(struct sock *sk);
1839 * Default socket callbacks and setup code
1842 /* Initialise core socket variables using an explicit uid. */
1843 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1845 /* Initialise core socket variables.
1846 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1848 void sock_init_data(struct socket *sock, struct sock *sk);
1851 * Socket reference counting postulates.
1853 * * Each user of socket SHOULD hold a reference count.
1854 * * Each access point to socket (an hash table bucket, reference from a list,
1855 * running timer, skb in flight MUST hold a reference count.
1856 * * When reference count hits 0, it means it will never increase back.
1857 * * When reference count hits 0, it means that no references from
1858 * outside exist to this socket and current process on current CPU
1859 * is last user and may/should destroy this socket.
1860 * * sk_free is called from any context: process, BH, IRQ. When
1861 * it is called, socket has no references from outside -> sk_free
1862 * may release descendant resources allocated by the socket, but
1863 * to the time when it is called, socket is NOT referenced by any
1864 * hash tables, lists etc.
1865 * * Packets, delivered from outside (from network or from another process)
1866 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1867 * when they sit in queue. Otherwise, packets will leak to hole, when
1868 * socket is looked up by one cpu and unhasing is made by another CPU.
1869 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1870 * (leak to backlog). Packet socket does all the processing inside
1871 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1872 * use separate SMP lock, so that they are prone too.
1875 /* Ungrab socket and destroy it, if it was the last reference. */
1876 static inline void sock_put(struct sock *sk)
1878 if (refcount_dec_and_test(&sk->sk_refcnt))
1881 /* Generic version of sock_put(), dealing with all sockets
1882 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1884 void sock_gen_put(struct sock *sk);
1886 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1887 unsigned int trim_cap, bool refcounted);
1888 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1891 return __sk_receive_skb(sk, skb, nested, 1, true);
1894 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1896 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1897 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1899 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1900 * other WRITE_ONCE() because socket lock might be not held.
1902 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1905 #define NO_QUEUE_MAPPING USHRT_MAX
1907 static inline void sk_tx_queue_clear(struct sock *sk)
1909 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1910 * other WRITE_ONCE() because socket lock might be not held.
1912 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1915 static inline int sk_tx_queue_get(const struct sock *sk)
1918 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1919 * and sk_tx_queue_set().
1921 int val = READ_ONCE(sk->sk_tx_queue_mapping);
1923 if (val != NO_QUEUE_MAPPING)
1929 static inline void __sk_rx_queue_set(struct sock *sk,
1930 const struct sk_buff *skb,
1933 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1934 if (skb_rx_queue_recorded(skb)) {
1935 u16 rx_queue = skb_get_rx_queue(skb);
1938 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
1939 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
1944 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1946 __sk_rx_queue_set(sk, skb, true);
1949 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
1951 __sk_rx_queue_set(sk, skb, false);
1954 static inline void sk_rx_queue_clear(struct sock *sk)
1956 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1957 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
1961 static inline int sk_rx_queue_get(const struct sock *sk)
1963 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1965 int res = READ_ONCE(sk->sk_rx_queue_mapping);
1967 if (res != NO_QUEUE_MAPPING)
1975 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1977 sk->sk_socket = sock;
1980 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1982 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1983 return &rcu_dereference_raw(sk->sk_wq)->wait;
1985 /* Detach socket from process context.
1986 * Announce socket dead, detach it from wait queue and inode.
1987 * Note that parent inode held reference count on this struct sock,
1988 * we do not release it in this function, because protocol
1989 * probably wants some additional cleanups or even continuing
1990 * to work with this socket (TCP).
1992 static inline void sock_orphan(struct sock *sk)
1994 write_lock_bh(&sk->sk_callback_lock);
1995 sock_set_flag(sk, SOCK_DEAD);
1996 sk_set_socket(sk, NULL);
1998 write_unlock_bh(&sk->sk_callback_lock);
2001 static inline void sock_graft(struct sock *sk, struct socket *parent)
2003 WARN_ON(parent->sk);
2004 write_lock_bh(&sk->sk_callback_lock);
2005 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2007 sk_set_socket(sk, parent);
2008 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2009 security_sock_graft(sk, parent);
2010 write_unlock_bh(&sk->sk_callback_lock);
2013 kuid_t sock_i_uid(struct sock *sk);
2014 unsigned long __sock_i_ino(struct sock *sk);
2015 unsigned long sock_i_ino(struct sock *sk);
2017 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2019 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2022 static inline u32 net_tx_rndhash(void)
2024 u32 v = get_random_u32();
2029 static inline void sk_set_txhash(struct sock *sk)
2031 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2032 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2035 static inline bool sk_rethink_txhash(struct sock *sk)
2037 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2044 static inline struct dst_entry *
2045 __sk_dst_get(const struct sock *sk)
2047 return rcu_dereference_check(sk->sk_dst_cache,
2048 lockdep_sock_is_held(sk));
2051 static inline struct dst_entry *
2052 sk_dst_get(const struct sock *sk)
2054 struct dst_entry *dst;
2057 dst = rcu_dereference(sk->sk_dst_cache);
2058 if (dst && !rcuref_get(&dst->__rcuref))
2064 static inline void __dst_negative_advice(struct sock *sk)
2066 struct dst_entry *dst = __sk_dst_get(sk);
2068 if (dst && dst->ops->negative_advice)
2069 dst->ops->negative_advice(sk, dst);
2072 static inline void dst_negative_advice(struct sock *sk)
2074 sk_rethink_txhash(sk);
2075 __dst_negative_advice(sk);
2079 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2081 struct dst_entry *old_dst;
2083 sk_tx_queue_clear(sk);
2084 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2085 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2086 lockdep_sock_is_held(sk));
2087 rcu_assign_pointer(sk->sk_dst_cache, dst);
2088 dst_release(old_dst);
2092 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2094 struct dst_entry *old_dst;
2096 sk_tx_queue_clear(sk);
2097 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2098 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2099 dst_release(old_dst);
2103 __sk_dst_reset(struct sock *sk)
2105 __sk_dst_set(sk, NULL);
2109 sk_dst_reset(struct sock *sk)
2111 sk_dst_set(sk, NULL);
2114 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2116 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2118 static inline void sk_dst_confirm(struct sock *sk)
2120 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2121 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2124 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2126 if (skb_get_dst_pending_confirm(skb)) {
2127 struct sock *sk = skb->sk;
2129 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2130 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2135 bool sk_mc_loop(const struct sock *sk);
2137 static inline bool sk_can_gso(const struct sock *sk)
2139 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2142 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2144 static inline void sk_gso_disable(struct sock *sk)
2146 sk->sk_gso_disabled = 1;
2147 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2150 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2151 struct iov_iter *from, char *to,
2152 int copy, int offset)
2154 if (skb->ip_summed == CHECKSUM_NONE) {
2156 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2158 skb->csum = csum_block_add(skb->csum, csum, offset);
2159 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2160 if (!copy_from_iter_full_nocache(to, copy, from))
2162 } else if (!copy_from_iter_full(to, copy, from))
2168 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2169 struct iov_iter *from, int copy)
2171 int err, offset = skb->len;
2173 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2176 __skb_trim(skb, offset);
2181 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2182 struct sk_buff *skb,
2188 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2193 skb_len_add(skb, copy);
2194 sk_wmem_queued_add(sk, copy);
2195 sk_mem_charge(sk, copy);
2200 * sk_wmem_alloc_get - returns write allocations
2203 * Return: sk_wmem_alloc minus initial offset of one
2205 static inline int sk_wmem_alloc_get(const struct sock *sk)
2207 return refcount_read(&sk->sk_wmem_alloc) - 1;
2211 * sk_rmem_alloc_get - returns read allocations
2214 * Return: sk_rmem_alloc
2216 static inline int sk_rmem_alloc_get(const struct sock *sk)
2218 return atomic_read(&sk->sk_rmem_alloc);
2222 * sk_has_allocations - check if allocations are outstanding
2225 * Return: true if socket has write or read allocations
2227 static inline bool sk_has_allocations(const struct sock *sk)
2229 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2233 * skwq_has_sleeper - check if there are any waiting processes
2234 * @wq: struct socket_wq
2236 * Return: true if socket_wq has waiting processes
2238 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2239 * barrier call. They were added due to the race found within the tcp code.
2241 * Consider following tcp code paths::
2244 * sys_select receive packet
2246 * __add_wait_queue update tp->rcv_nxt
2248 * tp->rcv_nxt check sock_def_readable
2250 * schedule rcu_read_lock();
2251 * wq = rcu_dereference(sk->sk_wq);
2252 * if (wq && waitqueue_active(&wq->wait))
2253 * wake_up_interruptible(&wq->wait)
2257 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2258 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2259 * could then endup calling schedule and sleep forever if there are no more
2260 * data on the socket.
2263 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2265 return wq && wq_has_sleeper(&wq->wait);
2269 * sock_poll_wait - place memory barrier behind the poll_wait call.
2271 * @sock: socket to wait on
2274 * See the comments in the wq_has_sleeper function.
2276 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2279 if (!poll_does_not_wait(p)) {
2280 poll_wait(filp, &sock->wq.wait, p);
2281 /* We need to be sure we are in sync with the
2282 * socket flags modification.
2284 * This memory barrier is paired in the wq_has_sleeper.
2290 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2292 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2293 u32 txhash = READ_ONCE(sk->sk_txhash);
2301 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2304 * Queue a received datagram if it will fit. Stream and sequenced
2305 * protocols can't normally use this as they need to fit buffers in
2306 * and play with them.
2308 * Inlined as it's very short and called for pretty much every
2309 * packet ever received.
2311 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2315 skb->destructor = sock_rfree;
2316 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2317 sk_mem_charge(sk, skb->truesize);
2320 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2322 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2324 skb->destructor = sock_efree;
2331 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2333 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2335 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2336 skb_set_owner_r(skb, sk);
2344 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2346 if (skb->destructor != sock_wfree) {
2353 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2354 unsigned long expires);
2356 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2358 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2360 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2361 struct sk_buff *skb, unsigned int flags,
2362 void (*destructor)(struct sock *sk,
2363 struct sk_buff *skb));
2364 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2366 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2367 enum skb_drop_reason *reason);
2369 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2371 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2374 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2375 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2378 * Recover an error report and clear atomically
2381 static inline int sock_error(struct sock *sk)
2385 /* Avoid an atomic operation for the common case.
2386 * This is racy since another cpu/thread can change sk_err under us.
2388 if (likely(data_race(!sk->sk_err)))
2391 err = xchg(&sk->sk_err, 0);
2395 void sk_error_report(struct sock *sk);
2397 static inline unsigned long sock_wspace(struct sock *sk)
2401 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2402 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2410 * We use sk->sk_wq_raw, from contexts knowing this
2411 * pointer is not NULL and cannot disappear/change.
2413 static inline void sk_set_bit(int nr, struct sock *sk)
2415 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2416 !sock_flag(sk, SOCK_FASYNC))
2419 set_bit(nr, &sk->sk_wq_raw->flags);
2422 static inline void sk_clear_bit(int nr, struct sock *sk)
2424 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2425 !sock_flag(sk, SOCK_FASYNC))
2428 clear_bit(nr, &sk->sk_wq_raw->flags);
2431 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2433 if (sock_flag(sk, SOCK_FASYNC)) {
2435 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2440 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2442 if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2443 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2446 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2447 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2448 * Note: for send buffers, TCP works better if we can build two skbs at
2451 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2453 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2454 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2456 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2460 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2463 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2464 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2466 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2470 * sk_page_frag - return an appropriate page_frag
2473 * Use the per task page_frag instead of the per socket one for
2474 * optimization when we know that we're in process context and own
2475 * everything that's associated with %current.
2477 * Both direct reclaim and page faults can nest inside other
2478 * socket operations and end up recursing into sk_page_frag()
2479 * while it's already in use: explicitly avoid task page_frag
2480 * when users disable sk_use_task_frag.
2482 * Return: a per task page_frag if context allows that,
2483 * otherwise a per socket one.
2485 static inline struct page_frag *sk_page_frag(struct sock *sk)
2487 if (sk->sk_use_task_frag)
2488 return ¤t->task_frag;
2490 return &sk->sk_frag;
2493 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2496 * Default write policy as shown to user space via poll/select/SIGIO
2498 static inline bool sock_writeable(const struct sock *sk)
2500 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2503 static inline gfp_t gfp_any(void)
2505 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2508 static inline gfp_t gfp_memcg_charge(void)
2510 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2513 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2515 return noblock ? 0 : sk->sk_rcvtimeo;
2518 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2520 return noblock ? 0 : sk->sk_sndtimeo;
2523 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2525 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2530 /* Alas, with timeout socket operations are not restartable.
2531 * Compare this to poll().
2533 static inline int sock_intr_errno(long timeo)
2535 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2538 struct sock_skb_cb {
2542 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2543 * using skb->cb[] would keep using it directly and utilize its
2544 * alignement guarantee.
2546 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2547 sizeof(struct sock_skb_cb)))
2549 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2550 SOCK_SKB_CB_OFFSET))
2552 #define sock_skb_cb_check_size(size) \
2553 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2556 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2558 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2559 atomic_read(&sk->sk_drops) : 0;
2562 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2564 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2566 atomic_add(segs, &sk->sk_drops);
2569 static inline ktime_t sock_read_timestamp(struct sock *sk)
2571 #if BITS_PER_LONG==32
2576 seq = read_seqbegin(&sk->sk_stamp_seq);
2578 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2582 return READ_ONCE(sk->sk_stamp);
2586 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2588 #if BITS_PER_LONG==32
2589 write_seqlock(&sk->sk_stamp_seq);
2591 write_sequnlock(&sk->sk_stamp_seq);
2593 WRITE_ONCE(sk->sk_stamp, kt);
2597 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2598 struct sk_buff *skb);
2599 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2600 struct sk_buff *skb);
2603 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2605 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2606 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2607 ktime_t kt = skb->tstamp;
2609 * generate control messages if
2610 * - receive time stamping in software requested
2611 * - software time stamp available and wanted
2612 * - hardware time stamps available and wanted
2614 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2615 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2616 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2617 (hwtstamps->hwtstamp &&
2618 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2619 __sock_recv_timestamp(msg, sk, skb);
2621 sock_write_timestamp(sk, kt);
2623 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2624 __sock_recv_wifi_status(msg, sk, skb);
2627 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2628 struct sk_buff *skb);
2630 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2631 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2632 struct sk_buff *skb)
2634 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2635 (1UL << SOCK_RCVTSTAMP) | \
2636 (1UL << SOCK_RCVMARK))
2637 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2638 SOF_TIMESTAMPING_RAW_HARDWARE)
2640 if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2641 READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2642 __sock_recv_cmsgs(msg, sk, skb);
2643 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2644 sock_write_timestamp(sk, skb->tstamp);
2645 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2646 sock_write_timestamp(sk, 0);
2649 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2652 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2653 * @sk: socket sending this packet
2654 * @tsflags: timestamping flags to use
2655 * @tx_flags: completed with instructions for time stamping
2656 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2658 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2660 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2661 __u8 *tx_flags, __u32 *tskey)
2663 if (unlikely(tsflags)) {
2664 __sock_tx_timestamp(tsflags, tx_flags);
2665 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2666 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2667 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2669 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2670 *tx_flags |= SKBTX_WIFI_STATUS;
2673 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2676 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2679 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2681 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2682 &skb_shinfo(skb)->tskey);
2685 static inline bool sk_is_inet(const struct sock *sk)
2687 int family = READ_ONCE(sk->sk_family);
2689 return family == AF_INET || family == AF_INET6;
2692 static inline bool sk_is_tcp(const struct sock *sk)
2694 return sk_is_inet(sk) &&
2695 sk->sk_type == SOCK_STREAM &&
2696 sk->sk_protocol == IPPROTO_TCP;
2699 static inline bool sk_is_udp(const struct sock *sk)
2701 return sk_is_inet(sk) &&
2702 sk->sk_type == SOCK_DGRAM &&
2703 sk->sk_protocol == IPPROTO_UDP;
2706 static inline bool sk_is_stream_unix(const struct sock *sk)
2708 return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2712 * sk_eat_skb - Release a skb if it is no longer needed
2713 * @sk: socket to eat this skb from
2714 * @skb: socket buffer to eat
2716 * This routine must be called with interrupts disabled or with the socket
2717 * locked so that the sk_buff queue operation is ok.
2719 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2721 __skb_unlink(skb, &sk->sk_receive_queue);
2726 skb_sk_is_prefetched(struct sk_buff *skb)
2729 return skb->destructor == sock_pfree;
2732 #endif /* CONFIG_INET */
2735 /* This helper checks if a socket is a full socket,
2736 * ie _not_ a timewait or request socket.
2738 static inline bool sk_fullsock(const struct sock *sk)
2740 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2744 sk_is_refcounted(struct sock *sk)
2746 /* Only full sockets have sk->sk_flags. */
2747 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2750 /* Checks if this SKB belongs to an HW offloaded socket
2751 * and whether any SW fallbacks are required based on dev.
2752 * Check decrypted mark in case skb_orphan() cleared socket.
2754 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2755 struct net_device *dev)
2757 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2758 struct sock *sk = skb->sk;
2760 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2761 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2762 } else if (unlikely(skb_is_decrypted(skb))) {
2763 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2772 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2773 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2775 static inline bool sk_listener(const struct sock *sk)
2777 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2780 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2781 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2784 bool sk_ns_capable(const struct sock *sk,
2785 struct user_namespace *user_ns, int cap);
2786 bool sk_capable(const struct sock *sk, int cap);
2787 bool sk_net_capable(const struct sock *sk, int cap);
2789 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2791 /* Take into consideration the size of the struct sk_buff overhead in the
2792 * determination of these values, since that is non-constant across
2793 * platforms. This makes socket queueing behavior and performance
2794 * not depend upon such differences.
2796 #define _SK_MEM_PACKETS 256
2797 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2798 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2799 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2801 extern __u32 sysctl_wmem_max;
2802 extern __u32 sysctl_rmem_max;
2804 extern int sysctl_tstamp_allow_data;
2806 extern __u32 sysctl_wmem_default;
2807 extern __u32 sysctl_rmem_default;
2809 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2810 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2812 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2814 /* Does this proto have per netns sysctl_wmem ? */
2815 if (proto->sysctl_wmem_offset)
2816 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2818 return READ_ONCE(*proto->sysctl_wmem);
2821 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2823 /* Does this proto have per netns sysctl_rmem ? */
2824 if (proto->sysctl_rmem_offset)
2825 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2827 return READ_ONCE(*proto->sysctl_rmem);
2830 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2831 * Some wifi drivers need to tweak it to get more chunks.
2832 * They can use this helper from their ndo_start_xmit()
2834 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2836 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2838 WRITE_ONCE(sk->sk_pacing_shift, val);
2841 /* if a socket is bound to a device, check that the given device
2842 * index is either the same or that the socket is bound to an L3
2843 * master device and the given device index is also enslaved to
2846 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2848 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2851 if (!bound_dev_if || bound_dev_if == dif)
2854 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2855 if (mdif && mdif == bound_dev_if)
2861 void sock_def_readable(struct sock *sk);
2863 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2864 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2865 int sock_set_timestamping(struct sock *sk, int optname,
2866 struct so_timestamping timestamping);
2868 void sock_enable_timestamps(struct sock *sk);
2869 void sock_no_linger(struct sock *sk);
2870 void sock_set_keepalive(struct sock *sk);
2871 void sock_set_priority(struct sock *sk, u32 priority);
2872 void sock_set_rcvbuf(struct sock *sk, int val);
2873 void sock_set_mark(struct sock *sk, u32 val);
2874 void sock_set_reuseaddr(struct sock *sk);
2875 void sock_set_reuseport(struct sock *sk);
2876 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2878 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2880 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2881 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2882 sockptr_t optval, int optlen, bool old_timeval);
2884 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2885 void __user *arg, void *karg, size_t size);
2886 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2887 static inline bool sk_is_readable(struct sock *sk)
2889 if (sk->sk_prot->sock_is_readable)
2890 return sk->sk_prot->sock_is_readable(sk);
2893 #endif /* _SOCK_H */