2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
17 #include <soc/tegra/pmc.h>
23 #include <drm/drm_atomic.h>
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_plane_helper.h>
28 struct drm_plane base;
32 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
34 return container_of(plane, struct tegra_plane, base);
37 struct tegra_dc_state {
38 struct drm_crtc_state base;
47 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
50 return container_of(state, struct tegra_dc_state, base);
55 struct tegra_plane_state {
56 struct drm_plane_state base;
58 struct tegra_bo_tiling tiling;
63 static inline struct tegra_plane_state *
64 to_tegra_plane_state(struct drm_plane_state *state)
67 return container_of(state, struct tegra_plane_state, base);
72 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
81 * Reads the active copy of a register. This takes the dc->lock spinlock to
82 * prevent races with the VBLANK processing which also needs access to the
83 * active copy of some registers.
85 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
90 spin_lock_irqsave(&dc->lock, flags);
92 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
93 value = tegra_dc_readl(dc, offset);
94 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
96 spin_unlock_irqrestore(&dc->lock, flags);
101 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
102 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
103 * Latching happens mmediately if the display controller is in STOP mode or
104 * on the next frame boundary otherwise.
106 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
107 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
108 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
109 * into the ACTIVE copy, either immediately if the display controller is in
110 * STOP mode, or at the next frame boundary otherwise.
112 void tegra_dc_commit(struct tegra_dc *dc)
114 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
115 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
120 /* assume no swapping of fetched data */
122 *swap = BYTE_SWAP_NOSWAP;
125 case DRM_FORMAT_XBGR8888:
126 *format = WIN_COLOR_DEPTH_R8G8B8A8;
129 case DRM_FORMAT_XRGB8888:
130 *format = WIN_COLOR_DEPTH_B8G8R8A8;
133 case DRM_FORMAT_RGB565:
134 *format = WIN_COLOR_DEPTH_B5G6R5;
137 case DRM_FORMAT_UYVY:
138 *format = WIN_COLOR_DEPTH_YCbCr422;
141 case DRM_FORMAT_YUYV:
143 *swap = BYTE_SWAP_SWAP2;
145 *format = WIN_COLOR_DEPTH_YCbCr422;
148 case DRM_FORMAT_YUV420:
149 *format = WIN_COLOR_DEPTH_YCbCr420P;
152 case DRM_FORMAT_YUV422:
153 *format = WIN_COLOR_DEPTH_YCbCr422P;
163 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
166 case WIN_COLOR_DEPTH_YCbCr422:
167 case WIN_COLOR_DEPTH_YUV422:
173 case WIN_COLOR_DEPTH_YCbCr420P:
174 case WIN_COLOR_DEPTH_YUV420P:
175 case WIN_COLOR_DEPTH_YCbCr422P:
176 case WIN_COLOR_DEPTH_YUV422P:
177 case WIN_COLOR_DEPTH_YCbCr422R:
178 case WIN_COLOR_DEPTH_YUV422R:
179 case WIN_COLOR_DEPTH_YCbCr422RA:
180 case WIN_COLOR_DEPTH_YUV422RA:
193 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
196 fixed20_12 outf = dfixed_init(out);
197 fixed20_12 inf = dfixed_init(in);
218 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
219 inf.full -= dfixed_const(1);
221 dda_inc = dfixed_div(inf, outf);
222 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
227 static inline u32 compute_initial_dda(unsigned int in)
229 fixed20_12 inf = dfixed_init(in);
230 return dfixed_frac(inf);
233 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
234 const struct tegra_dc_window *window)
236 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
237 unsigned long value, flags;
241 * For YUV planar modes, the number of bytes per pixel takes into
242 * account only the luma component and therefore is 1.
244 yuv = tegra_dc_format_is_yuv(window->format, &planar);
246 bpp = window->bits_per_pixel / 8;
248 bpp = planar ? 1 : 2;
250 spin_lock_irqsave(&dc->lock, flags);
252 value = WINDOW_A_SELECT << index;
253 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
255 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
256 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
258 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
259 tegra_dc_writel(dc, value, DC_WIN_POSITION);
261 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
262 tegra_dc_writel(dc, value, DC_WIN_SIZE);
264 h_offset = window->src.x * bpp;
265 v_offset = window->src.y;
266 h_size = window->src.w * bpp;
267 v_size = window->src.h;
269 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
270 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
273 * For DDA computations the number of bytes per pixel for YUV planar
274 * modes needs to take into account all Y, U and V components.
279 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
280 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
282 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
283 tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
285 h_dda = compute_initial_dda(window->src.x);
286 v_dda = compute_initial_dda(window->src.y);
288 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
289 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
291 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
292 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
294 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
297 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
298 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
299 value = window->stride[1] << 16 | window->stride[0];
300 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
302 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
305 if (window->bottom_up)
306 v_offset += window->src.h - 1;
308 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
309 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
311 if (dc->soc->supports_block_linear) {
312 unsigned long height = window->tiling.value;
314 switch (window->tiling.mode) {
315 case TEGRA_BO_TILING_MODE_PITCH:
316 value = DC_WINBUF_SURFACE_KIND_PITCH;
319 case TEGRA_BO_TILING_MODE_TILED:
320 value = DC_WINBUF_SURFACE_KIND_TILED;
323 case TEGRA_BO_TILING_MODE_BLOCK:
324 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
325 DC_WINBUF_SURFACE_KIND_BLOCK;
329 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
331 switch (window->tiling.mode) {
332 case TEGRA_BO_TILING_MODE_PITCH:
333 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
334 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
337 case TEGRA_BO_TILING_MODE_TILED:
338 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
339 DC_WIN_BUFFER_ADDR_MODE_TILE;
342 case TEGRA_BO_TILING_MODE_BLOCK:
344 * No need to handle this here because ->atomic_check
345 * will already have filtered it out.
350 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
356 /* setup default colorspace conversion coefficients */
357 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
358 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
359 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
360 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
361 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
362 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
363 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
364 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
367 } else if (window->bits_per_pixel < 24) {
368 value |= COLOR_EXPAND;
371 if (window->bottom_up)
372 value |= V_DIRECTION;
374 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
377 * Disable blending and assume Window A is the bottom-most window,
378 * Window C is the top-most window and Window B is in the middle.
380 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
381 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
385 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
386 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
387 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
391 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
392 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
393 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
397 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
398 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
399 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
403 spin_unlock_irqrestore(&dc->lock, flags);
406 static void tegra_plane_destroy(struct drm_plane *plane)
408 struct tegra_plane *p = to_tegra_plane(plane);
410 drm_plane_cleanup(plane);
414 static const u32 tegra_primary_plane_formats[] = {
420 static void tegra_primary_plane_destroy(struct drm_plane *plane)
422 tegra_plane_destroy(plane);
425 static void tegra_plane_reset(struct drm_plane *plane)
427 struct tegra_plane_state *state;
430 __drm_atomic_helper_plane_destroy_state(plane->state);
435 state = kzalloc(sizeof(*state), GFP_KERNEL);
437 plane->state = &state->base;
438 plane->state->plane = plane;
442 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
444 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
445 struct tegra_plane_state *copy;
447 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
451 __drm_atomic_helper_plane_duplicate_state(plane, ©->base);
452 copy->tiling = state->tiling;
453 copy->format = state->format;
454 copy->swap = state->swap;
459 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
460 struct drm_plane_state *state)
462 __drm_atomic_helper_plane_destroy_state(state);
466 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
467 .update_plane = drm_atomic_helper_update_plane,
468 .disable_plane = drm_atomic_helper_disable_plane,
469 .destroy = tegra_primary_plane_destroy,
470 .reset = tegra_plane_reset,
471 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
472 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
475 static int tegra_plane_state_add(struct tegra_plane *plane,
476 struct drm_plane_state *state)
478 struct drm_crtc_state *crtc_state;
479 struct tegra_dc_state *tegra;
480 struct drm_rect clip;
483 /* Propagate errors from allocation or locking failures. */
484 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
485 if (IS_ERR(crtc_state))
486 return PTR_ERR(crtc_state);
490 clip.x2 = crtc_state->mode.hdisplay;
491 clip.y2 = crtc_state->mode.vdisplay;
493 /* Check plane state for visibility and calculate clipping bounds */
494 err = drm_plane_helper_check_state(state, &clip, 0, INT_MAX,
499 tegra = to_dc_state(crtc_state);
501 tegra->planes |= WIN_A_ACT_REQ << plane->index;
506 static int tegra_plane_atomic_check(struct drm_plane *plane,
507 struct drm_plane_state *state)
509 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
510 struct tegra_bo_tiling *tiling = &plane_state->tiling;
511 struct tegra_plane *tegra = to_tegra_plane(plane);
512 struct tegra_dc *dc = to_tegra_dc(state->crtc);
515 /* no need for further checks if the plane is being disabled */
519 err = tegra_dc_format(state->fb->format->format, &plane_state->format,
524 err = tegra_fb_get_tiling(state->fb, tiling);
528 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
529 !dc->soc->supports_block_linear) {
530 DRM_ERROR("hardware doesn't support block linear mode\n");
535 * Tegra doesn't support different strides for U and V planes so we
536 * error out if the user tries to display a framebuffer with such a
539 if (state->fb->format->num_planes > 2) {
540 if (state->fb->pitches[2] != state->fb->pitches[1]) {
541 DRM_ERROR("unsupported UV-plane configuration\n");
546 err = tegra_plane_state_add(tegra, state);
553 static void tegra_plane_atomic_disable(struct drm_plane *plane,
554 struct drm_plane_state *old_state)
556 struct tegra_dc *dc = to_tegra_dc(old_state->crtc);
557 struct tegra_plane *p = to_tegra_plane(plane);
561 /* rien ne va plus */
562 if (!old_state || !old_state->crtc)
565 spin_lock_irqsave(&dc->lock, flags);
567 value = WINDOW_A_SELECT << p->index;
568 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
570 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
571 value &= ~WIN_ENABLE;
572 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
574 spin_unlock_irqrestore(&dc->lock, flags);
577 static void tegra_plane_atomic_update(struct drm_plane *plane,
578 struct drm_plane_state *old_state)
580 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
581 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
582 struct drm_framebuffer *fb = plane->state->fb;
583 struct tegra_plane *p = to_tegra_plane(plane);
584 struct tegra_dc_window window;
587 /* rien ne va plus */
588 if (!plane->state->crtc || !plane->state->fb)
591 if (!plane->state->visible)
592 return tegra_plane_atomic_disable(plane, old_state);
594 memset(&window, 0, sizeof(window));
595 window.src.x = plane->state->src.x1 >> 16;
596 window.src.y = plane->state->src.y1 >> 16;
597 window.src.w = drm_rect_width(&plane->state->src) >> 16;
598 window.src.h = drm_rect_height(&plane->state->src) >> 16;
599 window.dst.x = plane->state->dst.x1;
600 window.dst.y = plane->state->dst.y1;
601 window.dst.w = drm_rect_width(&plane->state->dst);
602 window.dst.h = drm_rect_height(&plane->state->dst);
603 window.bits_per_pixel = fb->format->cpp[0] * 8;
604 window.bottom_up = tegra_fb_is_bottom_up(fb);
606 /* copy from state */
607 window.tiling = state->tiling;
608 window.format = state->format;
609 window.swap = state->swap;
611 for (i = 0; i < fb->format->num_planes; i++) {
612 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
614 window.base[i] = bo->paddr + fb->offsets[i];
617 * Tegra uses a shared stride for UV planes. Framebuffers are
618 * already checked for this in the tegra_plane_atomic_check()
619 * function, so it's safe to ignore the V-plane pitch here.
622 window.stride[i] = fb->pitches[i];
625 tegra_dc_setup_window(dc, p->index, &window);
628 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
629 .atomic_check = tegra_plane_atomic_check,
630 .atomic_disable = tegra_plane_atomic_disable,
631 .atomic_update = tegra_plane_atomic_update,
634 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
638 * Ideally this would use drm_crtc_mask(), but that would require the
639 * CRTC to already be in the mode_config's list of CRTCs. However, it
640 * will only be added to that list in the drm_crtc_init_with_planes()
641 * (in tegra_dc_init()), which in turn requires registration of these
642 * planes. So we have ourselves a nice little chicken and egg problem
645 * We work around this by manually creating the mask from the number
646 * of CRTCs that have been registered, and should therefore always be
647 * the same as drm_crtc_index() after registration.
649 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
650 struct tegra_plane *plane;
651 unsigned int num_formats;
655 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
657 return ERR_PTR(-ENOMEM);
659 num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
660 formats = tegra_primary_plane_formats;
662 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
663 &tegra_primary_plane_funcs, formats,
665 DRM_PLANE_TYPE_PRIMARY, NULL);
671 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
676 static const u32 tegra_cursor_plane_formats[] = {
680 static int tegra_cursor_atomic_check(struct drm_plane *plane,
681 struct drm_plane_state *state)
683 struct tegra_plane *tegra = to_tegra_plane(plane);
686 /* no need for further checks if the plane is being disabled */
690 /* scaling not supported for cursor */
691 if ((state->src_w >> 16 != state->crtc_w) ||
692 (state->src_h >> 16 != state->crtc_h))
695 /* only square cursors supported */
696 if (state->src_w != state->src_h)
699 if (state->crtc_w != 32 && state->crtc_w != 64 &&
700 state->crtc_w != 128 && state->crtc_w != 256)
703 err = tegra_plane_state_add(tegra, state);
710 static void tegra_cursor_atomic_update(struct drm_plane *plane,
711 struct drm_plane_state *old_state)
713 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
714 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
715 struct drm_plane_state *state = plane->state;
716 u32 value = CURSOR_CLIP_DISPLAY;
718 /* rien ne va plus */
719 if (!plane->state->crtc || !plane->state->fb)
722 switch (state->crtc_w) {
724 value |= CURSOR_SIZE_32x32;
728 value |= CURSOR_SIZE_64x64;
732 value |= CURSOR_SIZE_128x128;
736 value |= CURSOR_SIZE_256x256;
740 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
745 value |= (bo->paddr >> 10) & 0x3fffff;
746 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
748 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
749 value = (bo->paddr >> 32) & 0x3;
750 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
753 /* enable cursor and set blend mode */
754 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
755 value |= CURSOR_ENABLE;
756 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
758 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
759 value &= ~CURSOR_DST_BLEND_MASK;
760 value &= ~CURSOR_SRC_BLEND_MASK;
761 value |= CURSOR_MODE_NORMAL;
762 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
763 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
764 value |= CURSOR_ALPHA;
765 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
767 /* position the cursor */
768 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
769 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
772 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
773 struct drm_plane_state *old_state)
778 /* rien ne va plus */
779 if (!old_state || !old_state->crtc)
782 dc = to_tegra_dc(old_state->crtc);
784 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
785 value &= ~CURSOR_ENABLE;
786 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
789 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
790 .update_plane = drm_atomic_helper_update_plane,
791 .disable_plane = drm_atomic_helper_disable_plane,
792 .destroy = tegra_plane_destroy,
793 .reset = tegra_plane_reset,
794 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
795 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
798 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
799 .atomic_check = tegra_cursor_atomic_check,
800 .atomic_update = tegra_cursor_atomic_update,
801 .atomic_disable = tegra_cursor_atomic_disable,
804 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
807 struct tegra_plane *plane;
808 unsigned int num_formats;
812 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
814 return ERR_PTR(-ENOMEM);
817 * This index is kind of fake. The cursor isn't a regular plane, but
818 * its update and activation request bits in DC_CMD_STATE_CONTROL do
819 * use the same programming. Setting this fake index here allows the
820 * code in tegra_add_plane_state() to do the right thing without the
821 * need to special-casing the cursor plane.
825 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
826 formats = tegra_cursor_plane_formats;
828 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
829 &tegra_cursor_plane_funcs, formats,
831 DRM_PLANE_TYPE_CURSOR, NULL);
837 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
842 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
844 tegra_plane_destroy(plane);
847 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
848 .update_plane = drm_atomic_helper_update_plane,
849 .disable_plane = drm_atomic_helper_disable_plane,
850 .destroy = tegra_overlay_plane_destroy,
851 .reset = tegra_plane_reset,
852 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
853 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
856 static const uint32_t tegra_overlay_plane_formats[] = {
866 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
870 struct tegra_plane *plane;
871 unsigned int num_formats;
875 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
877 return ERR_PTR(-ENOMEM);
879 plane->index = index;
881 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
882 formats = tegra_overlay_plane_formats;
884 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
885 &tegra_overlay_plane_funcs, formats,
887 DRM_PLANE_TYPE_OVERLAY, NULL);
893 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
898 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
900 struct drm_plane *plane;
903 for (i = 0; i < 2; i++) {
904 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
906 return PTR_ERR(plane);
912 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
914 struct tegra_dc *dc = to_tegra_dc(crtc);
917 return host1x_syncpt_read(dc->syncpt);
919 /* fallback to software emulated VBLANK counter */
920 return drm_crtc_vblank_count(&dc->base);
923 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
925 struct tegra_dc *dc = to_tegra_dc(crtc);
926 unsigned long value, flags;
928 spin_lock_irqsave(&dc->lock, flags);
930 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
932 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
934 spin_unlock_irqrestore(&dc->lock, flags);
939 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
941 struct tegra_dc *dc = to_tegra_dc(crtc);
942 unsigned long value, flags;
944 spin_lock_irqsave(&dc->lock, flags);
946 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
947 value &= ~VBLANK_INT;
948 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
950 spin_unlock_irqrestore(&dc->lock, flags);
953 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
955 struct drm_device *drm = dc->base.dev;
956 struct drm_crtc *crtc = &dc->base;
957 unsigned long flags, base;
960 spin_lock_irqsave(&drm->event_lock, flags);
963 spin_unlock_irqrestore(&drm->event_lock, flags);
967 bo = tegra_fb_get_plane(crtc->primary->fb, 0);
969 spin_lock(&dc->lock);
971 /* check if new start address has been latched */
972 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
973 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
974 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
975 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
977 spin_unlock(&dc->lock);
979 if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
980 drm_crtc_send_vblank_event(crtc, dc->event);
981 drm_crtc_vblank_put(crtc);
985 spin_unlock_irqrestore(&drm->event_lock, flags);
988 static void tegra_dc_destroy(struct drm_crtc *crtc)
990 drm_crtc_cleanup(crtc);
993 static void tegra_crtc_reset(struct drm_crtc *crtc)
995 struct tegra_dc_state *state;
998 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1003 state = kzalloc(sizeof(*state), GFP_KERNEL);
1005 crtc->state = &state->base;
1006 crtc->state->crtc = crtc;
1009 drm_crtc_vblank_reset(crtc);
1012 static struct drm_crtc_state *
1013 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1015 struct tegra_dc_state *state = to_dc_state(crtc->state);
1016 struct tegra_dc_state *copy;
1018 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1022 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1023 copy->clk = state->clk;
1024 copy->pclk = state->pclk;
1025 copy->div = state->div;
1026 copy->planes = state->planes;
1031 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1032 struct drm_crtc_state *state)
1034 __drm_atomic_helper_crtc_destroy_state(state);
1038 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1039 .page_flip = drm_atomic_helper_page_flip,
1040 .set_config = drm_atomic_helper_set_config,
1041 .destroy = tegra_dc_destroy,
1042 .reset = tegra_crtc_reset,
1043 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1044 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1045 .get_vblank_counter = tegra_dc_get_vblank_counter,
1046 .enable_vblank = tegra_dc_enable_vblank,
1047 .disable_vblank = tegra_dc_disable_vblank,
1050 static int tegra_dc_set_timings(struct tegra_dc *dc,
1051 struct drm_display_mode *mode)
1053 unsigned int h_ref_to_sync = 1;
1054 unsigned int v_ref_to_sync = 1;
1055 unsigned long value;
1057 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1059 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1060 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1062 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1063 ((mode->hsync_end - mode->hsync_start) << 0);
1064 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1066 value = ((mode->vtotal - mode->vsync_end) << 16) |
1067 ((mode->htotal - mode->hsync_end) << 0);
1068 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1070 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1071 ((mode->hsync_start - mode->hdisplay) << 0);
1072 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1074 value = (mode->vdisplay << 16) | mode->hdisplay;
1075 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1081 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1083 * @dc: display controller
1084 * @crtc_state: CRTC atomic state
1085 * @clk: parent clock for display controller
1086 * @pclk: pixel clock
1087 * @div: shift clock divider
1090 * 0 on success or a negative error-code on failure.
1092 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1093 struct drm_crtc_state *crtc_state,
1094 struct clk *clk, unsigned long pclk,
1097 struct tegra_dc_state *state = to_dc_state(crtc_state);
1099 if (!clk_has_parent(dc->clk, clk))
1109 static void tegra_dc_commit_state(struct tegra_dc *dc,
1110 struct tegra_dc_state *state)
1115 err = clk_set_parent(dc->clk, state->clk);
1117 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1120 * Outputs may not want to change the parent clock rate. This is only
1121 * relevant to Tegra20 where only a single display PLL is available.
1122 * Since that PLL would typically be used for HDMI, an internal LVDS
1123 * panel would need to be driven by some other clock such as PLL_P
1124 * which is shared with other peripherals. Changing the clock rate
1125 * should therefore be avoided.
1127 if (state->pclk > 0) {
1128 err = clk_set_rate(state->clk, state->pclk);
1131 "failed to set clock rate to %lu Hz\n",
1135 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1137 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1139 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1140 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1142 err = clk_set_rate(dc->clk, state->pclk);
1144 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1145 dc->clk, state->pclk, err);
1148 static void tegra_dc_stop(struct tegra_dc *dc)
1152 /* stop the display controller */
1153 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1154 value &= ~DISP_CTRL_MODE_MASK;
1155 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1157 tegra_dc_commit(dc);
1160 static bool tegra_dc_idle(struct tegra_dc *dc)
1164 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1166 return (value & DISP_CTRL_MODE_MASK) == 0;
1169 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1171 timeout = jiffies + msecs_to_jiffies(timeout);
1173 while (time_before(jiffies, timeout)) {
1174 if (tegra_dc_idle(dc))
1177 usleep_range(1000, 2000);
1180 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1184 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1185 struct drm_crtc_state *old_state)
1187 struct tegra_dc *dc = to_tegra_dc(crtc);
1190 if (!tegra_dc_idle(dc)) {
1194 * Ignore the return value, there isn't anything useful to do
1195 * in case this fails.
1197 tegra_dc_wait_idle(dc, 100);
1201 * This should really be part of the RGB encoder driver, but clearing
1202 * these bits has the side-effect of stopping the display controller.
1203 * When that happens no VBLANK interrupts will be raised. At the same
1204 * time the encoder is disabled before the display controller, so the
1205 * above code is always going to timeout waiting for the controller
1208 * Given the close coupling between the RGB encoder and the display
1209 * controller doing it here is still kind of okay. None of the other
1210 * encoder drivers require these bits to be cleared.
1212 * XXX: Perhaps given that the display controller is switched off at
1213 * this point anyway maybe clearing these bits isn't even useful for
1217 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1218 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1219 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1220 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1223 tegra_dc_stats_reset(&dc->stats);
1224 drm_crtc_vblank_off(crtc);
1226 pm_runtime_put_sync(dc->dev);
1229 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1230 struct drm_crtc_state *old_state)
1232 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1233 struct tegra_dc_state *state = to_dc_state(crtc->state);
1234 struct tegra_dc *dc = to_tegra_dc(crtc);
1237 pm_runtime_get_sync(dc->dev);
1239 /* initialize display controller */
1241 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1243 value = SYNCPT_CNTRL_NO_STALL;
1244 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1246 value = SYNCPT_VSYNC_ENABLE | syncpt;
1247 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1250 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1251 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1252 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1254 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1255 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1256 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1258 /* initialize timer */
1259 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1260 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1261 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1263 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1264 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1265 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1267 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1268 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1269 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1271 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1272 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1273 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1275 if (dc->soc->supports_border_color)
1276 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1278 /* apply PLL and pixel clock changes */
1279 tegra_dc_commit_state(dc, state);
1281 /* program display mode */
1282 tegra_dc_set_timings(dc, mode);
1284 /* interlacing isn't supported yet, so disable it */
1285 if (dc->soc->supports_interlacing) {
1286 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1287 value &= ~INTERLACE_ENABLE;
1288 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1291 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1292 value &= ~DISP_CTRL_MODE_MASK;
1293 value |= DISP_CTRL_MODE_C_DISPLAY;
1294 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1296 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1297 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1298 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1299 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1301 tegra_dc_commit(dc);
1303 drm_crtc_vblank_on(crtc);
1306 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1307 struct drm_crtc_state *state)
1312 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1313 struct drm_crtc_state *old_crtc_state)
1315 struct tegra_dc *dc = to_tegra_dc(crtc);
1317 if (crtc->state->event) {
1318 crtc->state->event->pipe = drm_crtc_index(crtc);
1320 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1322 dc->event = crtc->state->event;
1323 crtc->state->event = NULL;
1327 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1328 struct drm_crtc_state *old_crtc_state)
1330 struct tegra_dc_state *state = to_dc_state(crtc->state);
1331 struct tegra_dc *dc = to_tegra_dc(crtc);
1333 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1334 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1337 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1338 .atomic_check = tegra_crtc_atomic_check,
1339 .atomic_begin = tegra_crtc_atomic_begin,
1340 .atomic_flush = tegra_crtc_atomic_flush,
1341 .atomic_enable = tegra_crtc_atomic_enable,
1342 .atomic_disable = tegra_crtc_atomic_disable,
1345 static irqreturn_t tegra_dc_irq(int irq, void *data)
1347 struct tegra_dc *dc = data;
1348 unsigned long status;
1350 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1351 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1353 if (status & FRAME_END_INT) {
1355 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1360 if (status & VBLANK_INT) {
1362 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1364 drm_crtc_handle_vblank(&dc->base);
1365 tegra_dc_finish_page_flip(dc);
1369 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1371 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1373 dc->stats.underflow++;
1376 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1378 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1380 dc->stats.overflow++;
1386 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1388 struct drm_info_node *node = s->private;
1389 struct tegra_dc *dc = node->info_ent->data;
1392 drm_modeset_lock(&dc->base.mutex, NULL);
1394 if (!dc->base.state->active) {
1399 #define DUMP_REG(name) \
1400 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
1401 tegra_dc_readl(dc, name))
1403 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1404 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1405 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1406 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1407 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1408 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1409 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1410 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1411 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1412 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1413 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1414 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1415 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1416 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1417 DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1418 DUMP_REG(DC_CMD_SIGNAL_RAISE);
1419 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1420 DUMP_REG(DC_CMD_INT_STATUS);
1421 DUMP_REG(DC_CMD_INT_MASK);
1422 DUMP_REG(DC_CMD_INT_ENABLE);
1423 DUMP_REG(DC_CMD_INT_TYPE);
1424 DUMP_REG(DC_CMD_INT_POLARITY);
1425 DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1426 DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1427 DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1428 DUMP_REG(DC_CMD_STATE_ACCESS);
1429 DUMP_REG(DC_CMD_STATE_CONTROL);
1430 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1431 DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1432 DUMP_REG(DC_COM_CRC_CONTROL);
1433 DUMP_REG(DC_COM_CRC_CHECKSUM);
1434 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1435 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1436 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1437 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1438 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1439 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1440 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1441 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1442 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1443 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1444 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1445 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1446 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1447 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1448 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1449 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1450 DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1451 DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1452 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1453 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1454 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1455 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1456 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1457 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1458 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1459 DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1460 DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1461 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1462 DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1463 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1464 DUMP_REG(DC_COM_SPI_CONTROL);
1465 DUMP_REG(DC_COM_SPI_START_BYTE);
1466 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1467 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1468 DUMP_REG(DC_COM_HSPI_CS_DC);
1469 DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1470 DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1471 DUMP_REG(DC_COM_GPIO_CTRL);
1472 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1473 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1474 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1475 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1476 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1477 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1478 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1479 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1480 DUMP_REG(DC_DISP_REF_TO_SYNC);
1481 DUMP_REG(DC_DISP_SYNC_WIDTH);
1482 DUMP_REG(DC_DISP_BACK_PORCH);
1483 DUMP_REG(DC_DISP_ACTIVE);
1484 DUMP_REG(DC_DISP_FRONT_PORCH);
1485 DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1486 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1487 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1488 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1489 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1490 DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1491 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1492 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1493 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1494 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1495 DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1496 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1497 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1498 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1499 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1500 DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1501 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1502 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1503 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1504 DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1505 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1506 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1507 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1508 DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1509 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1510 DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1511 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1512 DUMP_REG(DC_DISP_M0_CONTROL);
1513 DUMP_REG(DC_DISP_M1_CONTROL);
1514 DUMP_REG(DC_DISP_DI_CONTROL);
1515 DUMP_REG(DC_DISP_PP_CONTROL);
1516 DUMP_REG(DC_DISP_PP_SELECT_A);
1517 DUMP_REG(DC_DISP_PP_SELECT_B);
1518 DUMP_REG(DC_DISP_PP_SELECT_C);
1519 DUMP_REG(DC_DISP_PP_SELECT_D);
1520 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1521 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1522 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1523 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1524 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1525 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1526 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1527 DUMP_REG(DC_DISP_BORDER_COLOR);
1528 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1529 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1530 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1531 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1532 DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1533 DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1534 DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1535 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1536 DUMP_REG(DC_DISP_CURSOR_POSITION);
1537 DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1538 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1539 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1540 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1541 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1542 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1543 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1544 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1545 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1546 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1547 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1548 DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1549 DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1550 DUMP_REG(DC_DISP_SD_CONTROL);
1551 DUMP_REG(DC_DISP_SD_CSC_COEFF);
1552 DUMP_REG(DC_DISP_SD_LUT(0));
1553 DUMP_REG(DC_DISP_SD_LUT(1));
1554 DUMP_REG(DC_DISP_SD_LUT(2));
1555 DUMP_REG(DC_DISP_SD_LUT(3));
1556 DUMP_REG(DC_DISP_SD_LUT(4));
1557 DUMP_REG(DC_DISP_SD_LUT(5));
1558 DUMP_REG(DC_DISP_SD_LUT(6));
1559 DUMP_REG(DC_DISP_SD_LUT(7));
1560 DUMP_REG(DC_DISP_SD_LUT(8));
1561 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1562 DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1563 DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1564 DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1565 DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1566 DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1567 DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1568 DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1569 DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1570 DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1571 DUMP_REG(DC_DISP_SD_BL_TF(0));
1572 DUMP_REG(DC_DISP_SD_BL_TF(1));
1573 DUMP_REG(DC_DISP_SD_BL_TF(2));
1574 DUMP_REG(DC_DISP_SD_BL_TF(3));
1575 DUMP_REG(DC_DISP_SD_BL_CONTROL);
1576 DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1577 DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1578 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1579 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1580 DUMP_REG(DC_WIN_WIN_OPTIONS);
1581 DUMP_REG(DC_WIN_BYTE_SWAP);
1582 DUMP_REG(DC_WIN_BUFFER_CONTROL);
1583 DUMP_REG(DC_WIN_COLOR_DEPTH);
1584 DUMP_REG(DC_WIN_POSITION);
1585 DUMP_REG(DC_WIN_SIZE);
1586 DUMP_REG(DC_WIN_PRESCALED_SIZE);
1587 DUMP_REG(DC_WIN_H_INITIAL_DDA);
1588 DUMP_REG(DC_WIN_V_INITIAL_DDA);
1589 DUMP_REG(DC_WIN_DDA_INC);
1590 DUMP_REG(DC_WIN_LINE_STRIDE);
1591 DUMP_REG(DC_WIN_BUF_STRIDE);
1592 DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1593 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1594 DUMP_REG(DC_WIN_DV_CONTROL);
1595 DUMP_REG(DC_WIN_BLEND_NOKEY);
1596 DUMP_REG(DC_WIN_BLEND_1WIN);
1597 DUMP_REG(DC_WIN_BLEND_2WIN_X);
1598 DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1599 DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1600 DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1601 DUMP_REG(DC_WINBUF_START_ADDR);
1602 DUMP_REG(DC_WINBUF_START_ADDR_NS);
1603 DUMP_REG(DC_WINBUF_START_ADDR_U);
1604 DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1605 DUMP_REG(DC_WINBUF_START_ADDR_V);
1606 DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1607 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1608 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1609 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1610 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1611 DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1612 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1613 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1614 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1619 drm_modeset_unlock(&dc->base.mutex);
1623 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1625 struct drm_info_node *node = s->private;
1626 struct tegra_dc *dc = node->info_ent->data;
1630 drm_modeset_lock(&dc->base.mutex, NULL);
1632 if (!dc->base.state->active) {
1637 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1638 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1639 tegra_dc_commit(dc);
1641 drm_crtc_wait_one_vblank(&dc->base);
1642 drm_crtc_wait_one_vblank(&dc->base);
1644 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1645 seq_printf(s, "%08x\n", value);
1647 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1650 drm_modeset_unlock(&dc->base.mutex);
1654 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1656 struct drm_info_node *node = s->private;
1657 struct tegra_dc *dc = node->info_ent->data;
1659 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1660 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1661 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1662 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1667 static struct drm_info_list debugfs_files[] = {
1668 { "regs", tegra_dc_show_regs, 0, NULL },
1669 { "crc", tegra_dc_show_crc, 0, NULL },
1670 { "stats", tegra_dc_show_stats, 0, NULL },
1673 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1679 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1680 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1686 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1688 if (!dc->debugfs_files) {
1693 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1694 dc->debugfs_files[i].data = dc;
1696 err = drm_debugfs_create_files(dc->debugfs_files,
1697 ARRAY_SIZE(debugfs_files),
1698 dc->debugfs, minor);
1707 kfree(dc->debugfs_files);
1708 dc->debugfs_files = NULL;
1710 debugfs_remove(dc->debugfs);
1716 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1718 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1722 kfree(dc->debugfs_files);
1723 dc->debugfs_files = NULL;
1725 debugfs_remove(dc->debugfs);
1731 static int tegra_dc_init(struct host1x_client *client)
1733 struct drm_device *drm = dev_get_drvdata(client->parent);
1734 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1735 struct tegra_dc *dc = host1x_client_to_dc(client);
1736 struct tegra_drm *tegra = drm->dev_private;
1737 struct drm_plane *primary = NULL;
1738 struct drm_plane *cursor = NULL;
1741 dc->syncpt = host1x_syncpt_request(client, flags);
1743 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1745 if (tegra->domain) {
1746 err = iommu_attach_device(tegra->domain, dc->dev);
1748 dev_err(dc->dev, "failed to attach to domain: %d\n",
1753 dc->domain = tegra->domain;
1756 primary = tegra_dc_primary_plane_create(drm, dc);
1757 if (IS_ERR(primary)) {
1758 err = PTR_ERR(primary);
1762 if (dc->soc->supports_cursor) {
1763 cursor = tegra_dc_cursor_plane_create(drm, dc);
1764 if (IS_ERR(cursor)) {
1765 err = PTR_ERR(cursor);
1770 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1771 &tegra_crtc_funcs, NULL);
1775 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1778 * Keep track of the minimum pitch alignment across all display
1781 if (dc->soc->pitch_align > tegra->pitch_align)
1782 tegra->pitch_align = dc->soc->pitch_align;
1784 err = tegra_dc_rgb_init(drm, dc);
1785 if (err < 0 && err != -ENODEV) {
1786 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1790 err = tegra_dc_add_planes(drm, dc);
1794 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1795 err = tegra_dc_debugfs_init(dc, drm->primary);
1797 dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1800 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1801 dev_name(dc->dev), dc);
1803 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1812 drm_plane_cleanup(cursor);
1815 drm_plane_cleanup(primary);
1817 if (tegra->domain) {
1818 iommu_detach_device(tegra->domain, dc->dev);
1825 static int tegra_dc_exit(struct host1x_client *client)
1827 struct tegra_dc *dc = host1x_client_to_dc(client);
1830 devm_free_irq(dc->dev, dc->irq, dc);
1832 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1833 err = tegra_dc_debugfs_exit(dc);
1835 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1838 err = tegra_dc_rgb_exit(dc);
1840 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1845 iommu_detach_device(dc->domain, dc->dev);
1849 host1x_syncpt_free(dc->syncpt);
1854 static const struct host1x_client_ops dc_client_ops = {
1855 .init = tegra_dc_init,
1856 .exit = tegra_dc_exit,
1859 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1860 .supports_border_color = true,
1861 .supports_interlacing = false,
1862 .supports_cursor = false,
1863 .supports_block_linear = false,
1865 .has_powergate = false,
1866 .broken_reset = true,
1869 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1870 .supports_border_color = true,
1871 .supports_interlacing = false,
1872 .supports_cursor = false,
1873 .supports_block_linear = false,
1875 .has_powergate = false,
1876 .broken_reset = false,
1879 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1880 .supports_border_color = true,
1881 .supports_interlacing = false,
1882 .supports_cursor = false,
1883 .supports_block_linear = false,
1885 .has_powergate = true,
1886 .broken_reset = false,
1889 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1890 .supports_border_color = false,
1891 .supports_interlacing = true,
1892 .supports_cursor = true,
1893 .supports_block_linear = true,
1895 .has_powergate = true,
1896 .broken_reset = false,
1899 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1900 .supports_border_color = false,
1901 .supports_interlacing = true,
1902 .supports_cursor = true,
1903 .supports_block_linear = true,
1905 .has_powergate = true,
1906 .broken_reset = false,
1909 static const struct of_device_id tegra_dc_of_match[] = {
1911 .compatible = "nvidia,tegra210-dc",
1912 .data = &tegra210_dc_soc_info,
1914 .compatible = "nvidia,tegra124-dc",
1915 .data = &tegra124_dc_soc_info,
1917 .compatible = "nvidia,tegra114-dc",
1918 .data = &tegra114_dc_soc_info,
1920 .compatible = "nvidia,tegra30-dc",
1921 .data = &tegra30_dc_soc_info,
1923 .compatible = "nvidia,tegra20-dc",
1924 .data = &tegra20_dc_soc_info,
1929 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1931 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1933 struct device_node *np;
1937 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1939 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1942 * If the nvidia,head property isn't present, try to find the
1943 * correct head number by looking up the position of this
1944 * display controller's node within the device tree. Assuming
1945 * that the nodes are ordered properly in the DTS file and
1946 * that the translation into a flattened device tree blob
1947 * preserves that ordering this will actually yield the right
1950 * If those assumptions don't hold, this will still work for
1951 * cases where only a single display controller is used.
1953 for_each_matching_node(np, tegra_dc_of_match) {
1954 if (np == dc->dev->of_node) {
1968 static int tegra_dc_probe(struct platform_device *pdev)
1970 struct resource *regs;
1971 struct tegra_dc *dc;
1974 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1978 dc->soc = of_device_get_match_data(&pdev->dev);
1980 spin_lock_init(&dc->lock);
1981 INIT_LIST_HEAD(&dc->list);
1982 dc->dev = &pdev->dev;
1984 err = tegra_dc_parse_dt(dc);
1988 dc->clk = devm_clk_get(&pdev->dev, NULL);
1989 if (IS_ERR(dc->clk)) {
1990 dev_err(&pdev->dev, "failed to get clock\n");
1991 return PTR_ERR(dc->clk);
1994 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1995 if (IS_ERR(dc->rst)) {
1996 dev_err(&pdev->dev, "failed to get reset\n");
1997 return PTR_ERR(dc->rst);
2000 /* assert reset and disable clock */
2001 if (!dc->soc->broken_reset) {
2002 err = clk_prepare_enable(dc->clk);
2006 usleep_range(2000, 4000);
2008 err = reset_control_assert(dc->rst);
2012 usleep_range(2000, 4000);
2014 clk_disable_unprepare(dc->clk);
2017 if (dc->soc->has_powergate) {
2019 dc->powergate = TEGRA_POWERGATE_DIS;
2021 dc->powergate = TEGRA_POWERGATE_DISB;
2023 tegra_powergate_power_off(dc->powergate);
2026 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2027 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2028 if (IS_ERR(dc->regs))
2029 return PTR_ERR(dc->regs);
2031 dc->irq = platform_get_irq(pdev, 0);
2033 dev_err(&pdev->dev, "failed to get IRQ\n");
2037 err = tegra_dc_rgb_probe(dc);
2038 if (err < 0 && err != -ENODEV) {
2039 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2043 platform_set_drvdata(pdev, dc);
2044 pm_runtime_enable(&pdev->dev);
2046 INIT_LIST_HEAD(&dc->client.list);
2047 dc->client.ops = &dc_client_ops;
2048 dc->client.dev = &pdev->dev;
2050 err = host1x_client_register(&dc->client);
2052 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2060 static int tegra_dc_remove(struct platform_device *pdev)
2062 struct tegra_dc *dc = platform_get_drvdata(pdev);
2065 err = host1x_client_unregister(&dc->client);
2067 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2072 err = tegra_dc_rgb_remove(dc);
2074 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2078 pm_runtime_disable(&pdev->dev);
2084 static int tegra_dc_suspend(struct device *dev)
2086 struct tegra_dc *dc = dev_get_drvdata(dev);
2089 if (!dc->soc->broken_reset) {
2090 err = reset_control_assert(dc->rst);
2092 dev_err(dev, "failed to assert reset: %d\n", err);
2097 if (dc->soc->has_powergate)
2098 tegra_powergate_power_off(dc->powergate);
2100 clk_disable_unprepare(dc->clk);
2105 static int tegra_dc_resume(struct device *dev)
2107 struct tegra_dc *dc = dev_get_drvdata(dev);
2110 if (dc->soc->has_powergate) {
2111 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2114 dev_err(dev, "failed to power partition: %d\n", err);
2118 err = clk_prepare_enable(dc->clk);
2120 dev_err(dev, "failed to enable clock: %d\n", err);
2124 if (!dc->soc->broken_reset) {
2125 err = reset_control_deassert(dc->rst);
2128 "failed to deassert reset: %d\n", err);
2138 static const struct dev_pm_ops tegra_dc_pm_ops = {
2139 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2142 struct platform_driver tegra_dc_driver = {
2145 .of_match_table = tegra_dc_of_match,
2146 .pm = &tegra_dc_pm_ops,
2148 .probe = tegra_dc_probe,
2149 .remove = tegra_dc_remove,