2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #define pr_fmt(fmt) "UDP: " fmt
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
125 atomic_long_t udp_memory_allocated;
126 EXPORT_SYMBOL(udp_memory_allocated);
128 #define MAX_UDP_PORTS 65536
129 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131 /* IPCB reference means this can not be used from early demux */
132 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
134 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
135 if (!net->ipv4.sysctl_udp_l3mdev_accept &&
136 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
142 static int udp_lib_lport_inuse(struct net *net, __u16 num,
143 const struct udp_hslot *hslot,
144 unsigned long *bitmap,
145 struct sock *sk, unsigned int log)
148 kuid_t uid = sock_i_uid(sk);
150 sk_for_each(sk2, &hslot->head) {
151 if (net_eq(sock_net(sk2), net) &&
153 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
154 (!sk2->sk_reuse || !sk->sk_reuse) &&
155 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
156 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
157 inet_rcv_saddr_equal(sk, sk2, true)) {
158 if (sk2->sk_reuseport && sk->sk_reuseport &&
159 !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 uid_eq(uid, sock_i_uid(sk2))) {
166 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
175 * Note: we still hold spinlock of primary hash chain, so no other writer
176 * can insert/delete a socket with local_port == num
178 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
179 struct udp_hslot *hslot2,
183 kuid_t uid = sock_i_uid(sk);
186 spin_lock(&hslot2->lock);
187 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
188 if (net_eq(sock_net(sk2), net) &&
190 (udp_sk(sk2)->udp_port_hash == num) &&
191 (!sk2->sk_reuse || !sk->sk_reuse) &&
192 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
193 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
194 inet_rcv_saddr_equal(sk, sk2, true)) {
195 if (sk2->sk_reuseport && sk->sk_reuseport &&
196 !rcu_access_pointer(sk->sk_reuseport_cb) &&
197 uid_eq(uid, sock_i_uid(sk2))) {
205 spin_unlock(&hslot2->lock);
209 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
211 struct net *net = sock_net(sk);
212 kuid_t uid = sock_i_uid(sk);
215 sk_for_each(sk2, &hslot->head) {
216 if (net_eq(sock_net(sk2), net) &&
218 sk2->sk_family == sk->sk_family &&
219 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
220 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
221 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
222 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
223 inet_rcv_saddr_equal(sk, sk2, false)) {
224 return reuseport_add_sock(sk, sk2);
228 return reuseport_alloc(sk);
232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
234 * @sk: socket struct in question
235 * @snum: port number to look up
236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 unsigned int hash2_nulladdr)
242 struct udp_hslot *hslot, *hslot2;
243 struct udp_table *udptable = sk->sk_prot->h.udp_table;
245 struct net *net = sock_net(sk);
248 int low, high, remaining;
250 unsigned short first, last;
251 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
253 inet_get_local_port_range(net, &low, &high);
254 remaining = (high - low) + 1;
256 rand = prandom_u32();
257 first = reciprocal_scale(rand, remaining) + low;
259 * force rand to be an odd multiple of UDP_HTABLE_SIZE
261 rand = (rand | 1) * (udptable->mask + 1);
262 last = first + udptable->mask + 1;
264 hslot = udp_hashslot(udptable, net, first);
265 bitmap_zero(bitmap, PORTS_PER_CHAIN);
266 spin_lock_bh(&hslot->lock);
267 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
272 * Iterate on all possible values of snum for this hash.
273 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 * give us randomization and full range coverage.
277 if (low <= snum && snum <= high &&
278 !test_bit(snum >> udptable->log, bitmap) &&
279 !inet_is_local_reserved_port(net, snum))
282 } while (snum != first);
283 spin_unlock_bh(&hslot->lock);
285 } while (++first != last);
288 hslot = udp_hashslot(udptable, net, snum);
289 spin_lock_bh(&hslot->lock);
290 if (hslot->count > 10) {
292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
294 slot2 &= udptable->mask;
295 hash2_nulladdr &= udptable->mask;
297 hslot2 = udp_hashslot2(udptable, slot2);
298 if (hslot->count < hslot2->count)
299 goto scan_primary_hash;
301 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302 if (!exist && (hash2_nulladdr != slot2)) {
303 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304 exist = udp_lib_lport_inuse2(net, snum, hslot2,
313 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
317 inet_sk(sk)->inet_num = snum;
318 udp_sk(sk)->udp_port_hash = snum;
319 udp_sk(sk)->udp_portaddr_hash ^= snum;
320 if (sk_unhashed(sk)) {
321 if (sk->sk_reuseport &&
322 udp_reuseport_add_sock(sk, hslot)) {
323 inet_sk(sk)->inet_num = 0;
324 udp_sk(sk)->udp_port_hash = 0;
325 udp_sk(sk)->udp_portaddr_hash ^= snum;
329 sk_add_node_rcu(sk, &hslot->head);
331 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
333 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334 spin_lock(&hslot2->lock);
335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 sk->sk_family == AF_INET6)
337 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 spin_unlock(&hslot2->lock);
345 sock_set_flag(sk, SOCK_RCU_FREE);
348 spin_unlock_bh(&hslot->lock);
352 EXPORT_SYMBOL(udp_lib_get_port);
354 int udp_v4_get_port(struct sock *sk, unsigned short snum)
356 unsigned int hash2_nulladdr =
357 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358 unsigned int hash2_partial =
359 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
361 /* precompute partial secondary hash */
362 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 return udp_lib_get_port(sk, snum, hash2_nulladdr);
366 static int compute_score(struct sock *sk, struct net *net,
367 __be32 saddr, __be16 sport,
368 __be32 daddr, unsigned short hnum,
369 int dif, int sdif, bool exact_dif)
372 struct inet_sock *inet;
374 if (!net_eq(sock_net(sk), net) ||
375 udp_sk(sk)->udp_port_hash != hnum ||
379 score = (sk->sk_family == PF_INET) ? 2 : 1;
382 if (inet->inet_rcv_saddr) {
383 if (inet->inet_rcv_saddr != daddr)
388 if (inet->inet_daddr) {
389 if (inet->inet_daddr != saddr)
394 if (inet->inet_dport) {
395 if (inet->inet_dport != sport)
400 if (sk->sk_bound_dev_if || exact_dif) {
401 bool dev_match = (sk->sk_bound_dev_if == dif ||
402 sk->sk_bound_dev_if == sdif);
404 if (exact_dif && !dev_match)
406 if (sk->sk_bound_dev_if && dev_match)
410 if (sk->sk_incoming_cpu == raw_smp_processor_id())
415 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
416 const __u16 lport, const __be32 faddr,
419 static u32 udp_ehash_secret __read_mostly;
421 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
423 return __inet_ehashfn(laddr, lport, faddr, fport,
424 udp_ehash_secret + net_hash_mix(net));
427 /* called with rcu_read_lock() */
428 static struct sock *udp4_lib_lookup2(struct net *net,
429 __be32 saddr, __be16 sport,
430 __be32 daddr, unsigned int hnum,
431 int dif, int sdif, bool exact_dif,
432 struct udp_hslot *hslot2,
435 struct sock *sk, *result;
441 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
442 score = compute_score(sk, net, saddr, sport,
443 daddr, hnum, dif, sdif, exact_dif);
444 if (score > badness) {
445 if (sk->sk_reuseport) {
446 hash = udp_ehashfn(net, daddr, hnum,
448 result = reuseport_select_sock(sk, hash, skb,
449 sizeof(struct udphdr));
460 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
461 * harder than this. -DaveM
463 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
464 __be16 sport, __be32 daddr, __be16 dport, int dif,
465 int sdif, struct udp_table *udptable, struct sk_buff *skb)
467 struct sock *sk, *result;
468 unsigned short hnum = ntohs(dport);
469 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
470 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
471 bool exact_dif = udp_lib_exact_dif_match(net, skb);
475 if (hslot->count > 10) {
476 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
477 slot2 = hash2 & udptable->mask;
478 hslot2 = &udptable->hash2[slot2];
479 if (hslot->count < hslot2->count)
482 result = udp4_lib_lookup2(net, saddr, sport,
483 daddr, hnum, dif, sdif,
484 exact_dif, hslot2, skb);
486 unsigned int old_slot2 = slot2;
487 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
488 slot2 = hash2 & udptable->mask;
489 /* avoid searching the same slot again. */
490 if (unlikely(slot2 == old_slot2))
493 hslot2 = &udptable->hash2[slot2];
494 if (hslot->count < hslot2->count)
497 result = udp4_lib_lookup2(net, saddr, sport,
498 daddr, hnum, dif, sdif,
499 exact_dif, hslot2, skb);
506 sk_for_each_rcu(sk, &hslot->head) {
507 score = compute_score(sk, net, saddr, sport,
508 daddr, hnum, dif, sdif, exact_dif);
509 if (score > badness) {
510 if (sk->sk_reuseport) {
511 hash = udp_ehashfn(net, daddr, hnum,
513 result = reuseport_select_sock(sk, hash, skb,
514 sizeof(struct udphdr));
524 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
526 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
527 __be16 sport, __be16 dport,
528 struct udp_table *udptable)
530 const struct iphdr *iph = ip_hdr(skb);
532 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
533 iph->daddr, dport, inet_iif(skb),
534 inet_sdif(skb), udptable, skb);
537 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
538 __be16 sport, __be16 dport)
540 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
542 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
544 /* Must be called under rcu_read_lock().
545 * Does increment socket refcount.
547 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
548 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
549 IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
550 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
551 __be32 daddr, __be16 dport, int dif)
555 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
556 dif, 0, &udp_table, NULL);
557 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
561 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
564 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
565 __be16 loc_port, __be32 loc_addr,
566 __be16 rmt_port, __be32 rmt_addr,
567 int dif, int sdif, unsigned short hnum)
569 struct inet_sock *inet = inet_sk(sk);
571 if (!net_eq(sock_net(sk), net) ||
572 udp_sk(sk)->udp_port_hash != hnum ||
573 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
574 (inet->inet_dport != rmt_port && inet->inet_dport) ||
575 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
576 ipv6_only_sock(sk) ||
577 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
578 sk->sk_bound_dev_if != sdif))
580 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
586 * This routine is called by the ICMP module when it gets some
587 * sort of error condition. If err < 0 then the socket should
588 * be closed and the error returned to the user. If err > 0
589 * it's just the icmp type << 8 | icmp code.
590 * Header points to the ip header of the error packet. We move
591 * on past this. Then (as it used to claim before adjustment)
592 * header points to the first 8 bytes of the udp header. We need
593 * to find the appropriate port.
596 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
598 struct inet_sock *inet;
599 const struct iphdr *iph = (const struct iphdr *)skb->data;
600 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
601 const int type = icmp_hdr(skb)->type;
602 const int code = icmp_hdr(skb)->code;
606 struct net *net = dev_net(skb->dev);
608 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
609 iph->saddr, uh->source, skb->dev->ifindex, 0,
612 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
613 return; /* No socket for error */
622 case ICMP_TIME_EXCEEDED:
625 case ICMP_SOURCE_QUENCH:
627 case ICMP_PARAMETERPROB:
631 case ICMP_DEST_UNREACH:
632 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
633 ipv4_sk_update_pmtu(skb, sk, info);
634 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
642 if (code <= NR_ICMP_UNREACH) {
643 harderr = icmp_err_convert[code].fatal;
644 err = icmp_err_convert[code].errno;
648 ipv4_sk_redirect(skb, sk);
653 * RFC1122: OK. Passes ICMP errors back to application, as per
656 if (!inet->recverr) {
657 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
660 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
663 sk->sk_error_report(sk);
668 void udp_err(struct sk_buff *skb, u32 info)
670 __udp4_lib_err(skb, info, &udp_table);
674 * Throw away all pending data and cancel the corking. Socket is locked.
676 void udp_flush_pending_frames(struct sock *sk)
678 struct udp_sock *up = udp_sk(sk);
683 ip_flush_pending_frames(sk);
686 EXPORT_SYMBOL(udp_flush_pending_frames);
689 * udp4_hwcsum - handle outgoing HW checksumming
690 * @skb: sk_buff containing the filled-in UDP header
691 * (checksum field must be zeroed out)
692 * @src: source IP address
693 * @dst: destination IP address
695 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
697 struct udphdr *uh = udp_hdr(skb);
698 int offset = skb_transport_offset(skb);
699 int len = skb->len - offset;
703 if (!skb_has_frag_list(skb)) {
705 * Only one fragment on the socket.
707 skb->csum_start = skb_transport_header(skb) - skb->head;
708 skb->csum_offset = offsetof(struct udphdr, check);
709 uh->check = ~csum_tcpudp_magic(src, dst, len,
712 struct sk_buff *frags;
715 * HW-checksum won't work as there are two or more
716 * fragments on the socket so that all csums of sk_buffs
719 skb_walk_frags(skb, frags) {
720 csum = csum_add(csum, frags->csum);
724 csum = skb_checksum(skb, offset, hlen, csum);
725 skb->ip_summed = CHECKSUM_NONE;
727 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
729 uh->check = CSUM_MANGLED_0;
732 EXPORT_SYMBOL_GPL(udp4_hwcsum);
734 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
735 * for the simple case like when setting the checksum for a UDP tunnel.
737 void udp_set_csum(bool nocheck, struct sk_buff *skb,
738 __be32 saddr, __be32 daddr, int len)
740 struct udphdr *uh = udp_hdr(skb);
744 } else if (skb_is_gso(skb)) {
745 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
746 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
748 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
750 uh->check = CSUM_MANGLED_0;
752 skb->ip_summed = CHECKSUM_PARTIAL;
753 skb->csum_start = skb_transport_header(skb) - skb->head;
754 skb->csum_offset = offsetof(struct udphdr, check);
755 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
758 EXPORT_SYMBOL(udp_set_csum);
760 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
762 struct sock *sk = skb->sk;
763 struct inet_sock *inet = inet_sk(sk);
766 int is_udplite = IS_UDPLITE(sk);
767 int offset = skb_transport_offset(skb);
768 int len = skb->len - offset;
772 * Create a UDP header
775 uh->source = inet->inet_sport;
776 uh->dest = fl4->fl4_dport;
777 uh->len = htons(len);
780 if (is_udplite) /* UDP-Lite */
781 csum = udplite_csum(skb);
783 else if (sk->sk_no_check_tx) { /* UDP csum off */
785 skb->ip_summed = CHECKSUM_NONE;
788 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
790 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
794 csum = udp_csum(skb);
796 /* add protocol-dependent pseudo-header */
797 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
798 sk->sk_protocol, csum);
800 uh->check = CSUM_MANGLED_0;
803 err = ip_send_skb(sock_net(sk), skb);
805 if (err == -ENOBUFS && !inet->recverr) {
806 UDP_INC_STATS(sock_net(sk),
807 UDP_MIB_SNDBUFERRORS, is_udplite);
811 UDP_INC_STATS(sock_net(sk),
812 UDP_MIB_OUTDATAGRAMS, is_udplite);
817 * Push out all pending data as one UDP datagram. Socket is locked.
819 int udp_push_pending_frames(struct sock *sk)
821 struct udp_sock *up = udp_sk(sk);
822 struct inet_sock *inet = inet_sk(sk);
823 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
827 skb = ip_finish_skb(sk, fl4);
831 err = udp_send_skb(skb, fl4);
838 EXPORT_SYMBOL(udp_push_pending_frames);
840 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
842 struct inet_sock *inet = inet_sk(sk);
843 struct udp_sock *up = udp_sk(sk);
844 struct flowi4 fl4_stack;
847 struct ipcm_cookie ipc;
848 struct rtable *rt = NULL;
851 __be32 daddr, faddr, saddr;
854 int err, is_udplite = IS_UDPLITE(sk);
855 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
856 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
858 struct ip_options_data opt_copy;
867 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
875 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
877 fl4 = &inet->cork.fl.u.ip4;
880 * There are pending frames.
881 * The socket lock must be held while it's corked.
884 if (likely(up->pending)) {
885 if (unlikely(up->pending != AF_INET)) {
893 ulen += sizeof(struct udphdr);
896 * Get and verify the address.
899 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
900 if (msg->msg_namelen < sizeof(*usin))
902 if (usin->sin_family != AF_INET) {
903 if (usin->sin_family != AF_UNSPEC)
904 return -EAFNOSUPPORT;
907 daddr = usin->sin_addr.s_addr;
908 dport = usin->sin_port;
912 if (sk->sk_state != TCP_ESTABLISHED)
913 return -EDESTADDRREQ;
914 daddr = inet->inet_daddr;
915 dport = inet->inet_dport;
916 /* Open fast path for connected socket.
917 Route will not be used, if at least one option is set.
922 ipc.sockc.tsflags = sk->sk_tsflags;
923 ipc.addr = inet->inet_saddr;
924 ipc.oif = sk->sk_bound_dev_if;
926 if (msg->msg_controllen) {
927 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
937 struct ip_options_rcu *inet_opt;
940 inet_opt = rcu_dereference(inet->inet_opt);
942 memcpy(&opt_copy, inet_opt,
943 sizeof(*inet_opt) + inet_opt->opt.optlen);
944 ipc.opt = &opt_copy.opt;
950 ipc.addr = faddr = daddr;
952 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
954 if (ipc.opt && ipc.opt->opt.srr) {
957 faddr = ipc.opt->opt.faddr;
960 tos = get_rttos(&ipc, inet);
961 if (sock_flag(sk, SOCK_LOCALROUTE) ||
962 (msg->msg_flags & MSG_DONTROUTE) ||
963 (ipc.opt && ipc.opt->opt.is_strictroute)) {
968 if (ipv4_is_multicast(daddr)) {
970 ipc.oif = inet->mc_index;
972 saddr = inet->mc_addr;
974 } else if (!ipc.oif) {
975 ipc.oif = inet->uc_index;
976 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
977 /* oif is set, packet is to local broadcast and
978 * and uc_index is set. oif is most likely set
979 * by sk_bound_dev_if. If uc_index != oif check if the
980 * oif is an L3 master and uc_index is an L3 slave.
981 * If so, we want to allow the send using the uc_index.
983 if (ipc.oif != inet->uc_index &&
984 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
986 ipc.oif = inet->uc_index;
991 rt = (struct rtable *)sk_dst_check(sk, 0);
994 struct net *net = sock_net(sk);
995 __u8 flow_flags = inet_sk_flowi_flags(sk);
999 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1000 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1002 faddr, saddr, dport, inet->inet_sport,
1005 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1006 rt = ip_route_output_flow(net, fl4, sk);
1010 if (err == -ENETUNREACH)
1011 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1016 if ((rt->rt_flags & RTCF_BROADCAST) &&
1017 !sock_flag(sk, SOCK_BROADCAST))
1020 sk_dst_set(sk, dst_clone(&rt->dst));
1023 if (msg->msg_flags&MSG_CONFIRM)
1029 daddr = ipc.addr = fl4->daddr;
1031 /* Lockless fast path for the non-corking case. */
1033 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1034 sizeof(struct udphdr), &ipc, &rt,
1037 if (!IS_ERR_OR_NULL(skb))
1038 err = udp_send_skb(skb, fl4);
1043 if (unlikely(up->pending)) {
1044 /* The socket is already corked while preparing it. */
1045 /* ... which is an evident application bug. --ANK */
1048 net_dbg_ratelimited("socket already corked\n");
1053 * Now cork the socket to pend data.
1055 fl4 = &inet->cork.fl.u.ip4;
1058 fl4->fl4_dport = dport;
1059 fl4->fl4_sport = inet->inet_sport;
1060 up->pending = AF_INET;
1064 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1065 sizeof(struct udphdr), &ipc, &rt,
1066 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1068 udp_flush_pending_frames(sk);
1070 err = udp_push_pending_frames(sk);
1071 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1082 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1083 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1084 * we don't have a good statistic (IpOutDiscards but it can be too many
1085 * things). We could add another new stat but at least for now that
1086 * seems like overkill.
1088 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1089 UDP_INC_STATS(sock_net(sk),
1090 UDP_MIB_SNDBUFERRORS, is_udplite);
1095 if (msg->msg_flags & MSG_PROBE)
1096 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1097 if (!(msg->msg_flags&MSG_PROBE) || len)
1098 goto back_from_confirm;
1102 EXPORT_SYMBOL(udp_sendmsg);
1104 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1105 size_t size, int flags)
1107 struct inet_sock *inet = inet_sk(sk);
1108 struct udp_sock *up = udp_sk(sk);
1111 if (flags & MSG_SENDPAGE_NOTLAST)
1115 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1117 /* Call udp_sendmsg to specify destination address which
1118 * sendpage interface can't pass.
1119 * This will succeed only when the socket is connected.
1121 ret = udp_sendmsg(sk, &msg, 0);
1128 if (unlikely(!up->pending)) {
1131 net_dbg_ratelimited("cork failed\n");
1135 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1136 page, offset, size, flags);
1137 if (ret == -EOPNOTSUPP) {
1139 return sock_no_sendpage(sk->sk_socket, page, offset,
1143 udp_flush_pending_frames(sk);
1148 if (!(up->corkflag || (flags&MSG_MORE)))
1149 ret = udp_push_pending_frames(sk);
1157 #define UDP_SKB_IS_STATELESS 0x80000000
1159 static void udp_set_dev_scratch(struct sk_buff *skb)
1161 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1163 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1164 scratch->_tsize_state = skb->truesize;
1165 #if BITS_PER_LONG == 64
1166 scratch->len = skb->len;
1167 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1168 scratch->is_linear = !skb_is_nonlinear(skb);
1170 /* all head states execept sp (dst, sk, nf) are always cleared by
1171 * udp_rcv() and we need to preserve secpath, if present, to eventually
1172 * process IP_CMSG_PASSSEC at recvmsg() time
1174 if (likely(!skb_sec_path(skb)))
1175 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1178 static int udp_skb_truesize(struct sk_buff *skb)
1180 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1183 static bool udp_skb_has_head_state(struct sk_buff *skb)
1185 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1188 /* fully reclaim rmem/fwd memory allocated for skb */
1189 static void udp_rmem_release(struct sock *sk, int size, int partial,
1190 bool rx_queue_lock_held)
1192 struct udp_sock *up = udp_sk(sk);
1193 struct sk_buff_head *sk_queue;
1196 if (likely(partial)) {
1197 up->forward_deficit += size;
1198 size = up->forward_deficit;
1199 if (size < (sk->sk_rcvbuf >> 2))
1202 size += up->forward_deficit;
1204 up->forward_deficit = 0;
1206 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1207 * if the called don't held it already
1209 sk_queue = &sk->sk_receive_queue;
1210 if (!rx_queue_lock_held)
1211 spin_lock(&sk_queue->lock);
1214 sk->sk_forward_alloc += size;
1215 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1216 sk->sk_forward_alloc -= amt;
1219 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1221 atomic_sub(size, &sk->sk_rmem_alloc);
1223 /* this can save us from acquiring the rx queue lock on next receive */
1224 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1226 if (!rx_queue_lock_held)
1227 spin_unlock(&sk_queue->lock);
1230 /* Note: called with reader_queue.lock held.
1231 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1232 * This avoids a cache line miss while receive_queue lock is held.
1233 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1235 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1237 prefetch(&skb->data);
1238 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1240 EXPORT_SYMBOL(udp_skb_destructor);
1242 /* as above, but the caller held the rx queue lock, too */
1243 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1245 prefetch(&skb->data);
1246 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1249 /* Idea of busylocks is to let producers grab an extra spinlock
1250 * to relieve pressure on the receive_queue spinlock shared by consumer.
1251 * Under flood, this means that only one producer can be in line
1252 * trying to acquire the receive_queue spinlock.
1253 * These busylock can be allocated on a per cpu manner, instead of a
1254 * per socket one (that would consume a cache line per socket)
1256 static int udp_busylocks_log __read_mostly;
1257 static spinlock_t *udp_busylocks __read_mostly;
1259 static spinlock_t *busylock_acquire(void *ptr)
1263 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1268 static void busylock_release(spinlock_t *busy)
1274 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1276 struct sk_buff_head *list = &sk->sk_receive_queue;
1277 int rmem, delta, amt, err = -ENOMEM;
1278 spinlock_t *busy = NULL;
1281 /* try to avoid the costly atomic add/sub pair when the receive
1282 * queue is full; always allow at least a packet
1284 rmem = atomic_read(&sk->sk_rmem_alloc);
1285 if (rmem > sk->sk_rcvbuf)
1288 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1289 * having linear skbs :
1290 * - Reduce memory overhead and thus increase receive queue capacity
1291 * - Less cache line misses at copyout() time
1292 * - Less work at consume_skb() (less alien page frag freeing)
1294 if (rmem > (sk->sk_rcvbuf >> 1)) {
1297 busy = busylock_acquire(sk);
1299 size = skb->truesize;
1300 udp_set_dev_scratch(skb);
1302 /* we drop only if the receive buf is full and the receive
1303 * queue contains some other skb
1305 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1306 if (rmem > (size + sk->sk_rcvbuf))
1309 spin_lock(&list->lock);
1310 if (size >= sk->sk_forward_alloc) {
1311 amt = sk_mem_pages(size);
1312 delta = amt << SK_MEM_QUANTUM_SHIFT;
1313 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1315 spin_unlock(&list->lock);
1319 sk->sk_forward_alloc += delta;
1322 sk->sk_forward_alloc -= size;
1324 /* no need to setup a destructor, we will explicitly release the
1325 * forward allocated memory on dequeue
1327 sock_skb_set_dropcount(sk, skb);
1329 __skb_queue_tail(list, skb);
1330 spin_unlock(&list->lock);
1332 if (!sock_flag(sk, SOCK_DEAD))
1333 sk->sk_data_ready(sk);
1335 busylock_release(busy);
1339 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1342 atomic_inc(&sk->sk_drops);
1343 busylock_release(busy);
1346 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1348 void udp_destruct_sock(struct sock *sk)
1350 /* reclaim completely the forward allocated memory */
1351 struct udp_sock *up = udp_sk(sk);
1352 unsigned int total = 0;
1353 struct sk_buff *skb;
1355 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1356 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1357 total += skb->truesize;
1360 udp_rmem_release(sk, total, 0, true);
1362 inet_sock_destruct(sk);
1364 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1366 int udp_init_sock(struct sock *sk)
1368 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1369 sk->sk_destruct = udp_destruct_sock;
1372 EXPORT_SYMBOL_GPL(udp_init_sock);
1374 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1376 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1377 bool slow = lock_sock_fast(sk);
1379 sk_peek_offset_bwd(sk, len);
1380 unlock_sock_fast(sk, slow);
1383 if (!skb_unref(skb))
1386 /* In the more common cases we cleared the head states previously,
1387 * see __udp_queue_rcv_skb().
1389 if (unlikely(udp_skb_has_head_state(skb)))
1390 skb_release_head_state(skb);
1391 __consume_stateless_skb(skb);
1393 EXPORT_SYMBOL_GPL(skb_consume_udp);
1395 static struct sk_buff *__first_packet_length(struct sock *sk,
1396 struct sk_buff_head *rcvq,
1399 struct sk_buff *skb;
1401 while ((skb = skb_peek(rcvq)) != NULL) {
1402 if (udp_lib_checksum_complete(skb)) {
1403 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1405 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1407 atomic_inc(&sk->sk_drops);
1408 __skb_unlink(skb, rcvq);
1409 *total += skb->truesize;
1412 /* the csum related bits could be changed, refresh
1415 udp_set_dev_scratch(skb);
1423 * first_packet_length - return length of first packet in receive queue
1426 * Drops all bad checksum frames, until a valid one is found.
1427 * Returns the length of found skb, or -1 if none is found.
1429 static int first_packet_length(struct sock *sk)
1431 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1432 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1433 struct sk_buff *skb;
1437 spin_lock_bh(&rcvq->lock);
1438 skb = __first_packet_length(sk, rcvq, &total);
1439 if (!skb && !skb_queue_empty(sk_queue)) {
1440 spin_lock(&sk_queue->lock);
1441 skb_queue_splice_tail_init(sk_queue, rcvq);
1442 spin_unlock(&sk_queue->lock);
1444 skb = __first_packet_length(sk, rcvq, &total);
1446 res = skb ? skb->len : -1;
1448 udp_rmem_release(sk, total, 1, false);
1449 spin_unlock_bh(&rcvq->lock);
1454 * IOCTL requests applicable to the UDP protocol
1457 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1462 int amount = sk_wmem_alloc_get(sk);
1464 return put_user(amount, (int __user *)arg);
1469 int amount = max_t(int, 0, first_packet_length(sk));
1471 return put_user(amount, (int __user *)arg);
1475 return -ENOIOCTLCMD;
1480 EXPORT_SYMBOL(udp_ioctl);
1482 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1483 int noblock, int *peeked, int *off, int *err)
1485 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1486 struct sk_buff_head *queue;
1487 struct sk_buff *last;
1491 queue = &udp_sk(sk)->reader_queue;
1492 flags |= noblock ? MSG_DONTWAIT : 0;
1493 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1495 struct sk_buff *skb;
1497 error = sock_error(sk);
1504 spin_lock_bh(&queue->lock);
1505 skb = __skb_try_recv_from_queue(sk, queue, flags,
1510 spin_unlock_bh(&queue->lock);
1514 if (skb_queue_empty(sk_queue)) {
1515 spin_unlock_bh(&queue->lock);
1519 /* refill the reader queue and walk it again
1520 * keep both queues locked to avoid re-acquiring
1521 * the sk_receive_queue lock if fwd memory scheduling
1524 spin_lock(&sk_queue->lock);
1525 skb_queue_splice_tail_init(sk_queue, queue);
1527 skb = __skb_try_recv_from_queue(sk, queue, flags,
1528 udp_skb_dtor_locked,
1531 spin_unlock(&sk_queue->lock);
1532 spin_unlock_bh(&queue->lock);
1537 if (!sk_can_busy_loop(sk))
1540 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1541 } while (!skb_queue_empty(sk_queue));
1543 /* sk_queue is empty, reader_queue may contain peeked packets */
1545 !__skb_wait_for_more_packets(sk, &error, &timeo,
1546 (struct sk_buff *)sk_queue));
1551 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1554 * This should be easy, if there is something there we
1555 * return it, otherwise we block.
1558 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1559 int flags, int *addr_len)
1561 struct inet_sock *inet = inet_sk(sk);
1562 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1563 struct sk_buff *skb;
1564 unsigned int ulen, copied;
1565 int peeked, peeking, off;
1567 int is_udplite = IS_UDPLITE(sk);
1568 bool checksum_valid = false;
1570 if (flags & MSG_ERRQUEUE)
1571 return ip_recv_error(sk, msg, len, addr_len);
1574 peeking = flags & MSG_PEEK;
1575 off = sk_peek_offset(sk, flags);
1576 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1580 ulen = udp_skb_len(skb);
1582 if (copied > ulen - off)
1583 copied = ulen - off;
1584 else if (copied < ulen)
1585 msg->msg_flags |= MSG_TRUNC;
1588 * If checksum is needed at all, try to do it while copying the
1589 * data. If the data is truncated, or if we only want a partial
1590 * coverage checksum (UDP-Lite), do it before the copy.
1593 if (copied < ulen || peeking ||
1594 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1595 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1596 !__udp_lib_checksum_complete(skb);
1597 if (!checksum_valid)
1601 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1602 if (udp_skb_is_linear(skb))
1603 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1605 err = skb_copy_datagram_msg(skb, off, msg, copied);
1607 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1613 if (unlikely(err)) {
1615 atomic_inc(&sk->sk_drops);
1616 UDP_INC_STATS(sock_net(sk),
1617 UDP_MIB_INERRORS, is_udplite);
1624 UDP_INC_STATS(sock_net(sk),
1625 UDP_MIB_INDATAGRAMS, is_udplite);
1627 sock_recv_ts_and_drops(msg, sk, skb);
1629 /* Copy the address. */
1631 sin->sin_family = AF_INET;
1632 sin->sin_port = udp_hdr(skb)->source;
1633 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1634 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1635 *addr_len = sizeof(*sin);
1637 if (inet->cmsg_flags)
1638 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1641 if (flags & MSG_TRUNC)
1644 skb_consume_udp(sk, skb, peeking ? -err : err);
1648 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1649 udp_skb_destructor)) {
1650 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1651 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1655 /* starting over for a new packet, but check if we need to yield */
1657 msg->msg_flags &= ~MSG_TRUNC;
1661 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1663 /* This check is replicated from __ip4_datagram_connect() and
1664 * intended to prevent BPF program called below from accessing bytes
1665 * that are out of the bound specified by user in addr_len.
1667 if (addr_len < sizeof(struct sockaddr_in))
1670 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1672 EXPORT_SYMBOL(udp_pre_connect);
1674 int __udp_disconnect(struct sock *sk, int flags)
1676 struct inet_sock *inet = inet_sk(sk);
1678 * 1003.1g - break association.
1681 sk->sk_state = TCP_CLOSE;
1682 inet->inet_daddr = 0;
1683 inet->inet_dport = 0;
1684 sock_rps_reset_rxhash(sk);
1685 sk->sk_bound_dev_if = 0;
1686 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1687 inet_reset_saddr(sk);
1689 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1690 sk->sk_prot->unhash(sk);
1691 inet->inet_sport = 0;
1696 EXPORT_SYMBOL(__udp_disconnect);
1698 int udp_disconnect(struct sock *sk, int flags)
1701 __udp_disconnect(sk, flags);
1705 EXPORT_SYMBOL(udp_disconnect);
1707 void udp_lib_unhash(struct sock *sk)
1709 if (sk_hashed(sk)) {
1710 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1711 struct udp_hslot *hslot, *hslot2;
1713 hslot = udp_hashslot(udptable, sock_net(sk),
1714 udp_sk(sk)->udp_port_hash);
1715 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1717 spin_lock_bh(&hslot->lock);
1718 if (rcu_access_pointer(sk->sk_reuseport_cb))
1719 reuseport_detach_sock(sk);
1720 if (sk_del_node_init_rcu(sk)) {
1722 inet_sk(sk)->inet_num = 0;
1723 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1725 spin_lock(&hslot2->lock);
1726 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1728 spin_unlock(&hslot2->lock);
1730 spin_unlock_bh(&hslot->lock);
1733 EXPORT_SYMBOL(udp_lib_unhash);
1736 * inet_rcv_saddr was changed, we must rehash secondary hash
1738 void udp_lib_rehash(struct sock *sk, u16 newhash)
1740 if (sk_hashed(sk)) {
1741 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1742 struct udp_hslot *hslot, *hslot2, *nhslot2;
1744 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1745 nhslot2 = udp_hashslot2(udptable, newhash);
1746 udp_sk(sk)->udp_portaddr_hash = newhash;
1748 if (hslot2 != nhslot2 ||
1749 rcu_access_pointer(sk->sk_reuseport_cb)) {
1750 hslot = udp_hashslot(udptable, sock_net(sk),
1751 udp_sk(sk)->udp_port_hash);
1752 /* we must lock primary chain too */
1753 spin_lock_bh(&hslot->lock);
1754 if (rcu_access_pointer(sk->sk_reuseport_cb))
1755 reuseport_detach_sock(sk);
1757 if (hslot2 != nhslot2) {
1758 spin_lock(&hslot2->lock);
1759 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1761 spin_unlock(&hslot2->lock);
1763 spin_lock(&nhslot2->lock);
1764 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1767 spin_unlock(&nhslot2->lock);
1770 spin_unlock_bh(&hslot->lock);
1774 EXPORT_SYMBOL(udp_lib_rehash);
1776 static void udp_v4_rehash(struct sock *sk)
1778 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1779 inet_sk(sk)->inet_rcv_saddr,
1780 inet_sk(sk)->inet_num);
1781 udp_lib_rehash(sk, new_hash);
1784 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1788 if (inet_sk(sk)->inet_daddr) {
1789 sock_rps_save_rxhash(sk, skb);
1790 sk_mark_napi_id(sk, skb);
1791 sk_incoming_cpu_update(sk);
1793 sk_mark_napi_id_once(sk, skb);
1796 rc = __udp_enqueue_schedule_skb(sk, skb);
1798 int is_udplite = IS_UDPLITE(sk);
1800 /* Note that an ENOMEM error is charged twice */
1802 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1804 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1806 trace_udp_fail_queue_rcv_skb(rc, sk);
1813 static struct static_key udp_encap_needed __read_mostly;
1814 void udp_encap_enable(void)
1816 static_key_enable(&udp_encap_needed);
1818 EXPORT_SYMBOL(udp_encap_enable);
1823 * >0: "udp encap" protocol resubmission
1825 * Note that in the success and error cases, the skb is assumed to
1826 * have either been requeued or freed.
1828 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1830 struct udp_sock *up = udp_sk(sk);
1831 int is_udplite = IS_UDPLITE(sk);
1834 * Charge it to the socket, dropping if the queue is full.
1836 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1840 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1841 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1844 * This is an encapsulation socket so pass the skb to
1845 * the socket's udp_encap_rcv() hook. Otherwise, just
1846 * fall through and pass this up the UDP socket.
1847 * up->encap_rcv() returns the following value:
1848 * =0 if skb was successfully passed to the encap
1849 * handler or was discarded by it.
1850 * >0 if skb should be passed on to UDP.
1851 * <0 if skb should be resubmitted as proto -N
1854 /* if we're overly short, let UDP handle it */
1855 encap_rcv = READ_ONCE(up->encap_rcv);
1859 /* Verify checksum before giving to encap */
1860 if (udp_lib_checksum_complete(skb))
1863 ret = encap_rcv(sk, skb);
1865 __UDP_INC_STATS(sock_net(sk),
1866 UDP_MIB_INDATAGRAMS,
1872 /* FALLTHROUGH -- it's a UDP Packet */
1876 * UDP-Lite specific tests, ignored on UDP sockets
1878 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1881 * MIB statistics other than incrementing the error count are
1882 * disabled for the following two types of errors: these depend
1883 * on the application settings, not on the functioning of the
1884 * protocol stack as such.
1886 * RFC 3828 here recommends (sec 3.3): "There should also be a
1887 * way ... to ... at least let the receiving application block
1888 * delivery of packets with coverage values less than a value
1889 * provided by the application."
1891 if (up->pcrlen == 0) { /* full coverage was set */
1892 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1893 UDP_SKB_CB(skb)->cscov, skb->len);
1896 /* The next case involves violating the min. coverage requested
1897 * by the receiver. This is subtle: if receiver wants x and x is
1898 * greater than the buffersize/MTU then receiver will complain
1899 * that it wants x while sender emits packets of smaller size y.
1900 * Therefore the above ...()->partial_cov statement is essential.
1902 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1903 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1904 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1909 prefetch(&sk->sk_rmem_alloc);
1910 if (rcu_access_pointer(sk->sk_filter) &&
1911 udp_lib_checksum_complete(skb))
1914 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1917 udp_csum_pull_header(skb);
1919 ipv4_pktinfo_prepare(sk, skb);
1920 return __udp_queue_rcv_skb(sk, skb);
1923 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1925 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1926 atomic_inc(&sk->sk_drops);
1931 /* For TCP sockets, sk_rx_dst is protected by socket lock
1932 * For UDP, we use xchg() to guard against concurrent changes.
1934 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1936 struct dst_entry *old;
1938 if (dst_hold_safe(dst)) {
1939 old = xchg(&sk->sk_rx_dst, dst);
1945 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1948 * Multicasts and broadcasts go to each listener.
1950 * Note: called only from the BH handler context.
1952 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1954 __be32 saddr, __be32 daddr,
1955 struct udp_table *udptable,
1958 struct sock *sk, *first = NULL;
1959 unsigned short hnum = ntohs(uh->dest);
1960 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1961 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1962 unsigned int offset = offsetof(typeof(*sk), sk_node);
1963 int dif = skb->dev->ifindex;
1964 int sdif = inet_sdif(skb);
1965 struct hlist_node *node;
1966 struct sk_buff *nskb;
1969 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1971 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1973 hslot = &udptable->hash2[hash2];
1974 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1977 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1978 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1979 uh->source, saddr, dif, sdif, hnum))
1986 nskb = skb_clone(skb, GFP_ATOMIC);
1988 if (unlikely(!nskb)) {
1989 atomic_inc(&sk->sk_drops);
1990 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1992 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
1996 if (udp_queue_rcv_skb(sk, nskb) > 0)
2000 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2001 if (use_hash2 && hash2 != hash2_any) {
2007 if (udp_queue_rcv_skb(first, skb) > 0)
2011 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2012 proto == IPPROTO_UDPLITE);
2017 /* Initialize UDP checksum. If exited with zero value (success),
2018 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2019 * Otherwise, csum completion requires chacksumming packet body,
2020 * including udp header and folding it to skb->csum.
2022 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2027 UDP_SKB_CB(skb)->partial_cov = 0;
2028 UDP_SKB_CB(skb)->cscov = skb->len;
2030 if (proto == IPPROTO_UDPLITE) {
2031 err = udplite_checksum_init(skb, uh);
2035 if (UDP_SKB_CB(skb)->partial_cov) {
2036 skb->csum = inet_compute_pseudo(skb, proto);
2041 /* Note, we are only interested in != 0 or == 0, thus the
2044 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2045 inet_compute_pseudo);
2049 * All we need to do is get the socket, and then do a checksum.
2052 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2057 unsigned short ulen;
2058 struct rtable *rt = skb_rtable(skb);
2059 __be32 saddr, daddr;
2060 struct net *net = dev_net(skb->dev);
2063 * Validate the packet.
2065 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2066 goto drop; /* No space for header. */
2069 ulen = ntohs(uh->len);
2070 saddr = ip_hdr(skb)->saddr;
2071 daddr = ip_hdr(skb)->daddr;
2073 if (ulen > skb->len)
2076 if (proto == IPPROTO_UDP) {
2077 /* UDP validates ulen. */
2078 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2083 if (udp4_csum_init(skb, uh, proto))
2086 sk = skb_steal_sock(skb);
2088 struct dst_entry *dst = skb_dst(skb);
2091 if (unlikely(sk->sk_rx_dst != dst))
2092 udp_sk_rx_dst_set(sk, dst);
2094 ret = udp_queue_rcv_skb(sk, skb);
2096 /* a return value > 0 means to resubmit the input, but
2097 * it wants the return to be -protocol, or 0
2104 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2105 return __udp4_lib_mcast_deliver(net, skb, uh,
2106 saddr, daddr, udptable, proto);
2108 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2112 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2113 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2114 inet_compute_pseudo);
2116 ret = udp_queue_rcv_skb(sk, skb);
2118 /* a return value > 0 means to resubmit the input, but
2119 * it wants the return to be -protocol, or 0
2126 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2130 /* No socket. Drop packet silently, if checksum is wrong */
2131 if (udp_lib_checksum_complete(skb))
2134 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2135 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2138 * Hmm. We got an UDP packet to a port to which we
2139 * don't wanna listen. Ignore it.
2145 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2146 proto == IPPROTO_UDPLITE ? "Lite" : "",
2147 &saddr, ntohs(uh->source),
2149 &daddr, ntohs(uh->dest));
2154 * RFC1122: OK. Discards the bad packet silently (as far as
2155 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2157 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2158 proto == IPPROTO_UDPLITE ? "Lite" : "",
2159 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2161 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2163 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2168 /* We can only early demux multicast if there is a single matching socket.
2169 * If more than one socket found returns NULL
2171 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2172 __be16 loc_port, __be32 loc_addr,
2173 __be16 rmt_port, __be32 rmt_addr,
2176 struct sock *sk, *result;
2177 unsigned short hnum = ntohs(loc_port);
2178 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2179 struct udp_hslot *hslot = &udp_table.hash[slot];
2181 /* Do not bother scanning a too big list */
2182 if (hslot->count > 10)
2186 sk_for_each_rcu(sk, &hslot->head) {
2187 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2188 rmt_port, rmt_addr, dif, sdif, hnum)) {
2198 /* For unicast we should only early demux connected sockets or we can
2199 * break forwarding setups. The chains here can be long so only check
2200 * if the first socket is an exact match and if not move on.
2202 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2203 __be16 loc_port, __be32 loc_addr,
2204 __be16 rmt_port, __be32 rmt_addr,
2207 unsigned short hnum = ntohs(loc_port);
2208 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2209 unsigned int slot2 = hash2 & udp_table.mask;
2210 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2211 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2212 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2215 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2216 if (INET_MATCH(sk, net, acookie, rmt_addr,
2217 loc_addr, ports, dif, sdif))
2219 /* Only check first socket in chain */
2225 int udp_v4_early_demux(struct sk_buff *skb)
2227 struct net *net = dev_net(skb->dev);
2228 struct in_device *in_dev = NULL;
2229 const struct iphdr *iph;
2230 const struct udphdr *uh;
2231 struct sock *sk = NULL;
2232 struct dst_entry *dst;
2233 int dif = skb->dev->ifindex;
2234 int sdif = inet_sdif(skb);
2237 /* validate the packet */
2238 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2244 if (skb->pkt_type == PACKET_MULTICAST) {
2245 in_dev = __in_dev_get_rcu(skb->dev);
2250 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2255 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2256 uh->source, iph->saddr,
2258 } else if (skb->pkt_type == PACKET_HOST) {
2259 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2260 uh->source, iph->saddr, dif, sdif);
2263 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2267 skb->destructor = sock_efree;
2268 dst = READ_ONCE(sk->sk_rx_dst);
2271 dst = dst_check(dst, 0);
2275 /* set noref for now.
2276 * any place which wants to hold dst has to call
2279 skb_dst_set_noref(skb, dst);
2281 /* for unconnected multicast sockets we need to validate
2282 * the source on each packet
2284 if (!inet_sk(sk)->inet_daddr && in_dev)
2285 return ip_mc_validate_source(skb, iph->daddr,
2286 iph->saddr, iph->tos,
2287 skb->dev, in_dev, &itag);
2292 int udp_rcv(struct sk_buff *skb)
2294 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2297 void udp_destroy_sock(struct sock *sk)
2299 struct udp_sock *up = udp_sk(sk);
2300 bool slow = lock_sock_fast(sk);
2301 udp_flush_pending_frames(sk);
2302 unlock_sock_fast(sk, slow);
2303 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2304 void (*encap_destroy)(struct sock *sk);
2305 encap_destroy = READ_ONCE(up->encap_destroy);
2312 * Socket option code for UDP
2314 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2315 char __user *optval, unsigned int optlen,
2316 int (*push_pending_frames)(struct sock *))
2318 struct udp_sock *up = udp_sk(sk);
2321 int is_udplite = IS_UDPLITE(sk);
2323 if (optlen < sizeof(int))
2326 if (get_user(val, (int __user *)optval))
2329 valbool = val ? 1 : 0;
2338 push_pending_frames(sk);
2346 case UDP_ENCAP_ESPINUDP:
2347 case UDP_ENCAP_ESPINUDP_NON_IKE:
2348 up->encap_rcv = xfrm4_udp_encap_rcv;
2350 case UDP_ENCAP_L2TPINUDP:
2351 up->encap_type = val;
2360 case UDP_NO_CHECK6_TX:
2361 up->no_check6_tx = valbool;
2364 case UDP_NO_CHECK6_RX:
2365 up->no_check6_rx = valbool;
2369 * UDP-Lite's partial checksum coverage (RFC 3828).
2371 /* The sender sets actual checksum coverage length via this option.
2372 * The case coverage > packet length is handled by send module. */
2373 case UDPLITE_SEND_CSCOV:
2374 if (!is_udplite) /* Disable the option on UDP sockets */
2375 return -ENOPROTOOPT;
2376 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2378 else if (val > USHRT_MAX)
2381 up->pcflag |= UDPLITE_SEND_CC;
2384 /* The receiver specifies a minimum checksum coverage value. To make
2385 * sense, this should be set to at least 8 (as done below). If zero is
2386 * used, this again means full checksum coverage. */
2387 case UDPLITE_RECV_CSCOV:
2388 if (!is_udplite) /* Disable the option on UDP sockets */
2389 return -ENOPROTOOPT;
2390 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2392 else if (val > USHRT_MAX)
2395 up->pcflag |= UDPLITE_RECV_CC;
2405 EXPORT_SYMBOL(udp_lib_setsockopt);
2407 int udp_setsockopt(struct sock *sk, int level, int optname,
2408 char __user *optval, unsigned int optlen)
2410 if (level == SOL_UDP || level == SOL_UDPLITE)
2411 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2412 udp_push_pending_frames);
2413 return ip_setsockopt(sk, level, optname, optval, optlen);
2416 #ifdef CONFIG_COMPAT
2417 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2418 char __user *optval, unsigned int optlen)
2420 if (level == SOL_UDP || level == SOL_UDPLITE)
2421 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2422 udp_push_pending_frames);
2423 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2427 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2428 char __user *optval, int __user *optlen)
2430 struct udp_sock *up = udp_sk(sk);
2433 if (get_user(len, optlen))
2436 len = min_t(unsigned int, len, sizeof(int));
2447 val = up->encap_type;
2450 case UDP_NO_CHECK6_TX:
2451 val = up->no_check6_tx;
2454 case UDP_NO_CHECK6_RX:
2455 val = up->no_check6_rx;
2458 /* The following two cannot be changed on UDP sockets, the return is
2459 * always 0 (which corresponds to the full checksum coverage of UDP). */
2460 case UDPLITE_SEND_CSCOV:
2464 case UDPLITE_RECV_CSCOV:
2469 return -ENOPROTOOPT;
2472 if (put_user(len, optlen))
2474 if (copy_to_user(optval, &val, len))
2478 EXPORT_SYMBOL(udp_lib_getsockopt);
2480 int udp_getsockopt(struct sock *sk, int level, int optname,
2481 char __user *optval, int __user *optlen)
2483 if (level == SOL_UDP || level == SOL_UDPLITE)
2484 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2485 return ip_getsockopt(sk, level, optname, optval, optlen);
2488 #ifdef CONFIG_COMPAT
2489 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2490 char __user *optval, int __user *optlen)
2492 if (level == SOL_UDP || level == SOL_UDPLITE)
2493 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2494 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2498 * udp_poll - wait for a UDP event.
2499 * @file - file struct
2501 * @wait - poll table
2503 * This is same as datagram poll, except for the special case of
2504 * blocking sockets. If application is using a blocking fd
2505 * and a packet with checksum error is in the queue;
2506 * then it could get return from select indicating data available
2507 * but then block when reading it. Add special case code
2508 * to work around these arguably broken applications.
2510 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2512 __poll_t mask = datagram_poll(file, sock, wait);
2513 struct sock *sk = sock->sk;
2515 if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2516 mask |= EPOLLIN | EPOLLRDNORM;
2518 /* Check for false positives due to checksum errors */
2519 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2520 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2521 mask &= ~(EPOLLIN | EPOLLRDNORM);
2526 EXPORT_SYMBOL(udp_poll);
2528 int udp_abort(struct sock *sk, int err)
2533 sk->sk_error_report(sk);
2534 __udp_disconnect(sk, 0);
2540 EXPORT_SYMBOL_GPL(udp_abort);
2542 struct proto udp_prot = {
2544 .owner = THIS_MODULE,
2545 .close = udp_lib_close,
2546 .pre_connect = udp_pre_connect,
2547 .connect = ip4_datagram_connect,
2548 .disconnect = udp_disconnect,
2550 .init = udp_init_sock,
2551 .destroy = udp_destroy_sock,
2552 .setsockopt = udp_setsockopt,
2553 .getsockopt = udp_getsockopt,
2554 .sendmsg = udp_sendmsg,
2555 .recvmsg = udp_recvmsg,
2556 .sendpage = udp_sendpage,
2557 .release_cb = ip4_datagram_release_cb,
2558 .hash = udp_lib_hash,
2559 .unhash = udp_lib_unhash,
2560 .rehash = udp_v4_rehash,
2561 .get_port = udp_v4_get_port,
2562 .memory_allocated = &udp_memory_allocated,
2563 .sysctl_mem = sysctl_udp_mem,
2564 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2565 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2566 .obj_size = sizeof(struct udp_sock),
2567 .h.udp_table = &udp_table,
2568 #ifdef CONFIG_COMPAT
2569 .compat_setsockopt = compat_udp_setsockopt,
2570 .compat_getsockopt = compat_udp_getsockopt,
2572 .diag_destroy = udp_abort,
2574 EXPORT_SYMBOL(udp_prot);
2576 /* ------------------------------------------------------------------------ */
2577 #ifdef CONFIG_PROC_FS
2579 static struct sock *udp_get_first(struct seq_file *seq, int start)
2582 struct udp_iter_state *state = seq->private;
2583 struct net *net = seq_file_net(seq);
2585 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2587 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2589 if (hlist_empty(&hslot->head))
2592 spin_lock_bh(&hslot->lock);
2593 sk_for_each(sk, &hslot->head) {
2594 if (!net_eq(sock_net(sk), net))
2596 if (sk->sk_family == state->family)
2599 spin_unlock_bh(&hslot->lock);
2606 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2608 struct udp_iter_state *state = seq->private;
2609 struct net *net = seq_file_net(seq);
2613 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2616 if (state->bucket <= state->udp_table->mask)
2617 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2618 return udp_get_first(seq, state->bucket + 1);
2623 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2625 struct sock *sk = udp_get_first(seq, 0);
2628 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2630 return pos ? NULL : sk;
2633 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2635 struct udp_iter_state *state = seq->private;
2636 state->bucket = MAX_UDP_PORTS;
2638 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2641 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2645 if (v == SEQ_START_TOKEN)
2646 sk = udp_get_idx(seq, 0);
2648 sk = udp_get_next(seq, v);
2654 static void udp_seq_stop(struct seq_file *seq, void *v)
2656 struct udp_iter_state *state = seq->private;
2658 if (state->bucket <= state->udp_table->mask)
2659 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2662 int udp_seq_open(struct inode *inode, struct file *file)
2664 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2665 struct udp_iter_state *s;
2668 err = seq_open_net(inode, file, &afinfo->seq_ops,
2669 sizeof(struct udp_iter_state));
2673 s = ((struct seq_file *)file->private_data)->private;
2674 s->family = afinfo->family;
2675 s->udp_table = afinfo->udp_table;
2678 EXPORT_SYMBOL(udp_seq_open);
2680 /* ------------------------------------------------------------------------ */
2681 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2683 struct proc_dir_entry *p;
2686 afinfo->seq_ops.start = udp_seq_start;
2687 afinfo->seq_ops.next = udp_seq_next;
2688 afinfo->seq_ops.stop = udp_seq_stop;
2690 p = proc_create_data(afinfo->name, 0444, net->proc_net,
2691 afinfo->seq_fops, afinfo);
2696 EXPORT_SYMBOL(udp_proc_register);
2698 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2700 remove_proc_entry(afinfo->name, net->proc_net);
2702 EXPORT_SYMBOL(udp_proc_unregister);
2704 /* ------------------------------------------------------------------------ */
2705 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2708 struct inet_sock *inet = inet_sk(sp);
2709 __be32 dest = inet->inet_daddr;
2710 __be32 src = inet->inet_rcv_saddr;
2711 __u16 destp = ntohs(inet->inet_dport);
2712 __u16 srcp = ntohs(inet->inet_sport);
2714 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2715 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2716 bucket, src, srcp, dest, destp, sp->sk_state,
2717 sk_wmem_alloc_get(sp),
2718 sk_rmem_alloc_get(sp),
2720 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2722 refcount_read(&sp->sk_refcnt), sp,
2723 atomic_read(&sp->sk_drops));
2726 int udp4_seq_show(struct seq_file *seq, void *v)
2728 seq_setwidth(seq, 127);
2729 if (v == SEQ_START_TOKEN)
2730 seq_puts(seq, " sl local_address rem_address st tx_queue "
2731 "rx_queue tr tm->when retrnsmt uid timeout "
2732 "inode ref pointer drops");
2734 struct udp_iter_state *state = seq->private;
2736 udp4_format_sock(v, seq, state->bucket);
2742 static const struct file_operations udp_afinfo_seq_fops = {
2743 .open = udp_seq_open,
2745 .llseek = seq_lseek,
2746 .release = seq_release_net
2749 /* ------------------------------------------------------------------------ */
2750 static struct udp_seq_afinfo udp4_seq_afinfo = {
2753 .udp_table = &udp_table,
2754 .seq_fops = &udp_afinfo_seq_fops,
2756 .show = udp4_seq_show,
2760 static int __net_init udp4_proc_init_net(struct net *net)
2762 return udp_proc_register(net, &udp4_seq_afinfo);
2765 static void __net_exit udp4_proc_exit_net(struct net *net)
2767 udp_proc_unregister(net, &udp4_seq_afinfo);
2770 static struct pernet_operations udp4_net_ops = {
2771 .init = udp4_proc_init_net,
2772 .exit = udp4_proc_exit_net,
2775 int __init udp4_proc_init(void)
2777 return register_pernet_subsys(&udp4_net_ops);
2780 void udp4_proc_exit(void)
2782 unregister_pernet_subsys(&udp4_net_ops);
2784 #endif /* CONFIG_PROC_FS */
2786 static __initdata unsigned long uhash_entries;
2787 static int __init set_uhash_entries(char *str)
2794 ret = kstrtoul(str, 0, &uhash_entries);
2798 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2799 uhash_entries = UDP_HTABLE_SIZE_MIN;
2802 __setup("uhash_entries=", set_uhash_entries);
2804 void __init udp_table_init(struct udp_table *table, const char *name)
2808 table->hash = alloc_large_system_hash(name,
2809 2 * sizeof(struct udp_hslot),
2811 21, /* one slot per 2 MB */
2815 UDP_HTABLE_SIZE_MIN,
2818 table->hash2 = table->hash + (table->mask + 1);
2819 for (i = 0; i <= table->mask; i++) {
2820 INIT_HLIST_HEAD(&table->hash[i].head);
2821 table->hash[i].count = 0;
2822 spin_lock_init(&table->hash[i].lock);
2824 for (i = 0; i <= table->mask; i++) {
2825 INIT_HLIST_HEAD(&table->hash2[i].head);
2826 table->hash2[i].count = 0;
2827 spin_lock_init(&table->hash2[i].lock);
2831 u32 udp_flow_hashrnd(void)
2833 static u32 hashrnd __read_mostly;
2835 net_get_random_once(&hashrnd, sizeof(hashrnd));
2839 EXPORT_SYMBOL(udp_flow_hashrnd);
2841 static void __udp_sysctl_init(struct net *net)
2843 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2844 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2846 #ifdef CONFIG_NET_L3_MASTER_DEV
2847 net->ipv4.sysctl_udp_l3mdev_accept = 0;
2851 static int __net_init udp_sysctl_init(struct net *net)
2853 __udp_sysctl_init(net);
2857 static struct pernet_operations __net_initdata udp_sysctl_ops = {
2858 .init = udp_sysctl_init,
2861 void __init udp_init(void)
2863 unsigned long limit;
2866 udp_table_init(&udp_table, "UDP");
2867 limit = nr_free_buffer_pages() / 8;
2868 limit = max(limit, 128UL);
2869 sysctl_udp_mem[0] = limit / 4 * 3;
2870 sysctl_udp_mem[1] = limit;
2871 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2873 __udp_sysctl_init(&init_net);
2875 /* 16 spinlocks per cpu */
2876 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2877 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2880 panic("UDP: failed to alloc udp_busylocks\n");
2881 for (i = 0; i < (1U << udp_busylocks_log); i++)
2882 spin_lock_init(udp_busylocks + i);
2884 if (register_pernet_subsys(&udp_sysctl_ops))
2885 panic("UDP: failed to init sysctl parameters.\n");