1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines, Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel implementation
11 * These functions handle all input from the IP layer into SCTP.
13 * This SCTP implementation is free software;
14 * you can redistribute it and/or modify it under the terms of
15 * the GNU General Public License as published by
16 * the Free Software Foundation; either version 2, or (at your option)
19 * This SCTP implementation is distributed in the hope that it
20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21 * ************************
22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23 * See the GNU General Public License for more details.
25 * You should have received a copy of the GNU General Public License
26 * along with GNU CC; see the file COPYING. If not, see
27 * <http://www.gnu.org/licenses/>.
29 * Please send any bug reports or fixes you make to the
33 * Written or modified by:
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
64 const union sctp_addr *paddr,
65 const union sctp_addr *laddr,
66 struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
71 const union sctp_addr *local,
72 const union sctp_addr *peer,
73 struct sctp_transport **pt);
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
78 /* Calculate the SCTP checksum of an SCTP packet. */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
81 struct sctphdr *sh = sctp_hdr(skb);
82 __le32 cmp = sh->checksum;
83 __le32 val = sctp_compute_cksum(skb, 0);
86 /* CRC failure, dump it. */
87 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
94 * This is the routine which IP calls when receiving an SCTP packet.
96 int sctp_rcv(struct sk_buff *skb)
99 struct sctp_association *asoc;
100 struct sctp_endpoint *ep = NULL;
101 struct sctp_ep_common *rcvr;
102 struct sctp_transport *transport = NULL;
103 struct sctp_chunk *chunk;
105 union sctp_addr dest;
108 struct net *net = dev_net(skb->dev);
110 if (skb->pkt_type != PACKET_HOST)
113 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
115 /* If packet is too small to contain a single chunk, let's not
116 * waste time on it anymore.
118 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
119 skb_transport_offset(skb))
122 /* If the packet is fragmented and we need to do crc checking,
123 * it's better to just linearize it otherwise crc computing
126 if ((!(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
127 skb_linearize(skb)) ||
128 !pskb_may_pull(skb, sizeof(struct sctphdr)))
131 /* Pull up the IP header. */
132 __skb_pull(skb, skb_transport_offset(skb));
134 skb->csum_valid = 0; /* Previous value not applicable */
135 if (skb_csum_unnecessary(skb))
136 __skb_decr_checksum_unnecessary(skb);
137 else if (!sctp_checksum_disable &&
138 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
139 sctp_rcv_checksum(net, skb) < 0)
143 __skb_pull(skb, sizeof(struct sctphdr));
145 family = ipver2af(ip_hdr(skb)->version);
146 af = sctp_get_af_specific(family);
149 SCTP_INPUT_CB(skb)->af = af;
151 /* Initialize local addresses for lookups. */
152 af->from_skb(&src, skb, 1);
153 af->from_skb(&dest, skb, 0);
155 /* If the packet is to or from a non-unicast address,
156 * silently discard the packet.
158 * This is not clearly defined in the RFC except in section
159 * 8.4 - OOTB handling. However, based on the book "Stream Control
160 * Transmission Protocol" 2.1, "It is important to note that the
161 * IP address of an SCTP transport address must be a routable
162 * unicast address. In other words, IP multicast addresses and
163 * IP broadcast addresses cannot be used in an SCTP transport
166 if (!af->addr_valid(&src, NULL, skb) ||
167 !af->addr_valid(&dest, NULL, skb))
170 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
173 ep = __sctp_rcv_lookup_endpoint(net, &dest);
175 /* Retrieve the common input handling substructure. */
176 rcvr = asoc ? &asoc->base : &ep->base;
180 * If a frame arrives on an interface and the receiving socket is
181 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
183 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
185 sctp_transport_put(transport);
189 sctp_endpoint_put(ep);
192 sk = net->sctp.ctl_sock;
193 ep = sctp_sk(sk)->ep;
194 sctp_endpoint_hold(ep);
199 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
200 * An SCTP packet is called an "out of the blue" (OOTB)
201 * packet if it is correctly formed, i.e., passed the
202 * receiver's checksum check, but the receiver is not
203 * able to identify the association to which this
207 if (sctp_rcv_ootb(skb)) {
208 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
209 goto discard_release;
213 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
214 goto discard_release;
217 if (sk_filter(sk, skb))
218 goto discard_release;
220 /* Create an SCTP packet structure. */
221 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
223 goto discard_release;
224 SCTP_INPUT_CB(skb)->chunk = chunk;
226 /* Remember what endpoint is to handle this packet. */
229 /* Remember the SCTP header. */
230 chunk->sctp_hdr = sctp_hdr(skb);
232 /* Set the source and destination addresses of the incoming chunk. */
233 sctp_init_addrs(chunk, &src, &dest);
235 /* Remember where we came from. */
236 chunk->transport = transport;
238 /* Acquire access to the sock lock. Note: We are safe from other
239 * bottom halves on this lock, but a user may be in the lock too,
240 * so check if it is busy.
244 if (sk != rcvr->sk) {
245 /* Our cached sk is different from the rcvr->sk. This is
246 * because migrate()/accept() may have moved the association
247 * to a new socket and released all the sockets. So now we
248 * are holding a lock on the old socket while the user may
249 * be doing something with the new socket. Switch our veiw
257 if (sock_owned_by_user(sk)) {
258 if (sctp_add_backlog(sk, skb)) {
260 sctp_chunk_free(chunk);
261 skb = NULL; /* sctp_chunk_free already freed the skb */
262 goto discard_release;
264 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
266 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
267 sctp_inq_push(&chunk->rcvr->inqueue, chunk);
272 /* Release the asoc/ep ref we took in the lookup calls. */
274 sctp_transport_put(transport);
276 sctp_endpoint_put(ep);
281 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
286 /* Release the asoc/ep ref we took in the lookup calls. */
288 sctp_transport_put(transport);
290 sctp_endpoint_put(ep);
295 /* Process the backlog queue of the socket. Every skb on
296 * the backlog holds a ref on an association or endpoint.
297 * We hold this ref throughout the state machine to make
298 * sure that the structure we need is still around.
300 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
302 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
303 struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
304 struct sctp_transport *t = chunk->transport;
305 struct sctp_ep_common *rcvr = NULL;
310 /* If the rcvr is dead then the association or endpoint
311 * has been deleted and we can safely drop the chunk
312 * and refs that we are holding.
315 sctp_chunk_free(chunk);
319 if (unlikely(rcvr->sk != sk)) {
320 /* In this case, the association moved from one socket to
321 * another. We are currently sitting on the backlog of the
322 * old socket, so we need to move.
323 * However, since we are here in the process context we
324 * need to take make sure that the user doesn't own
325 * the new socket when we process the packet.
326 * If the new socket is user-owned, queue the chunk to the
327 * backlog of the new socket without dropping any refs.
328 * Otherwise, we can safely push the chunk on the inqueue.
335 if (sock_owned_by_user(sk)) {
336 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
337 sctp_chunk_free(chunk);
341 sctp_inq_push(inqueue, chunk);
346 /* If the chunk was backloged again, don't drop refs */
350 sctp_inq_push(inqueue, chunk);
354 /* Release the refs we took in sctp_add_backlog */
355 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
356 sctp_transport_put(t);
357 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
358 sctp_endpoint_put(sctp_ep(rcvr));
365 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
367 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
368 struct sctp_transport *t = chunk->transport;
369 struct sctp_ep_common *rcvr = chunk->rcvr;
372 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
374 /* Hold the assoc/ep while hanging on the backlog queue.
375 * This way, we know structures we need will not disappear
378 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
379 sctp_transport_hold(t);
380 else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
381 sctp_endpoint_hold(sctp_ep(rcvr));
389 /* Handle icmp frag needed error. */
390 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
391 struct sctp_transport *t, __u32 pmtu)
393 if (!t || (t->pathmtu <= pmtu))
396 if (sock_owned_by_user(sk)) {
397 asoc->pmtu_pending = 1;
402 if (t->param_flags & SPP_PMTUD_ENABLE) {
403 /* Update transports view of the MTU */
404 sctp_transport_update_pmtu(sk, t, pmtu);
406 /* Update association pmtu. */
407 sctp_assoc_sync_pmtu(sk, asoc);
410 /* Retransmit with the new pmtu setting.
411 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
412 * Needed will never be sent, but if a message was sent before
413 * PMTU discovery was disabled that was larger than the PMTU, it
414 * would not be fragmented, so it must be re-transmitted fragmented.
416 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
419 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
422 struct dst_entry *dst;
426 dst = sctp_transport_dst_check(t);
428 dst->ops->redirect(dst, sk, skb);
432 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
434 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
435 * or a "Protocol Unreachable" treat this message as an abort
436 * with the T bit set.
438 * This function sends an event to the state machine, which will abort the
442 void sctp_icmp_proto_unreachable(struct sock *sk,
443 struct sctp_association *asoc,
444 struct sctp_transport *t)
446 if (sock_owned_by_user(sk)) {
447 if (timer_pending(&t->proto_unreach_timer))
450 if (!mod_timer(&t->proto_unreach_timer,
452 sctp_association_hold(asoc);
455 struct net *net = sock_net(sk);
457 pr_debug("%s: unrecognized next header type "
458 "encountered!\n", __func__);
460 if (del_timer(&t->proto_unreach_timer))
461 sctp_association_put(asoc);
463 sctp_do_sm(net, SCTP_EVENT_T_OTHER,
464 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
465 asoc->state, asoc->ep, asoc, t,
470 /* Common lookup code for icmp/icmpv6 error handler. */
471 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
472 struct sctphdr *sctphdr,
473 struct sctp_association **app,
474 struct sctp_transport **tpp)
476 union sctp_addr saddr;
477 union sctp_addr daddr;
479 struct sock *sk = NULL;
480 struct sctp_association *asoc;
481 struct sctp_transport *transport = NULL;
482 struct sctp_init_chunk *chunkhdr;
483 __u32 vtag = ntohl(sctphdr->vtag);
484 int len = skb->len - ((void *)sctphdr - (void *)skb->data);
486 *app = NULL; *tpp = NULL;
488 af = sctp_get_af_specific(family);
493 /* Initialize local addresses for lookups. */
494 af->from_skb(&saddr, skb, 1);
495 af->from_skb(&daddr, skb, 0);
497 /* Look for an association that matches the incoming ICMP error
500 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
506 /* RFC 4960, Appendix C. ICMP Handling
508 * ICMP6) An implementation MUST validate that the Verification Tag
509 * contained in the ICMP message matches the Verification Tag of
510 * the peer. If the Verification Tag is not 0 and does NOT
511 * match, discard the ICMP message. If it is 0 and the ICMP
512 * message contains enough bytes to verify that the chunk type is
513 * an INIT chunk and that the Initiate Tag matches the tag of the
514 * peer, continue with ICMP7. If the ICMP message is too short
515 * or the chunk type or the Initiate Tag does not match, silently
516 * discard the packet.
519 chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
520 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
522 chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
523 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
526 } else if (vtag != asoc->c.peer_vtag) {
532 /* If too many ICMPs get dropped on busy
533 * servers this needs to be solved differently.
535 if (sock_owned_by_user(sk))
536 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
543 sctp_transport_put(transport);
547 /* Common cleanup code for icmp/icmpv6 error handler. */
548 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
551 sctp_transport_put(t);
555 * This routine is called by the ICMP module when it gets some
556 * sort of error condition. If err < 0 then the socket should
557 * be closed and the error returned to the user. If err > 0
558 * it's just the icmp type << 8 | icmp code. After adjustment
559 * header points to the first 8 bytes of the sctp header. We need
560 * to find the appropriate port.
562 * The locking strategy used here is very "optimistic". When
563 * someone else accesses the socket the ICMP is just dropped
564 * and for some paths there is no check at all.
565 * A more general error queue to queue errors for later handling
566 * is probably better.
569 void sctp_v4_err(struct sk_buff *skb, __u32 info)
571 const struct iphdr *iph = (const struct iphdr *)skb->data;
572 const int ihlen = iph->ihl * 4;
573 const int type = icmp_hdr(skb)->type;
574 const int code = icmp_hdr(skb)->code;
576 struct sctp_association *asoc = NULL;
577 struct sctp_transport *transport;
578 struct inet_sock *inet;
579 __u16 saveip, savesctp;
581 struct net *net = dev_net(skb->dev);
583 /* Fix up skb to look at the embedded net header. */
584 saveip = skb->network_header;
585 savesctp = skb->transport_header;
586 skb_reset_network_header(skb);
587 skb_set_transport_header(skb, ihlen);
588 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
589 /* Put back, the original values. */
590 skb->network_header = saveip;
591 skb->transport_header = savesctp;
593 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
596 /* Warning: The sock lock is held. Remember to call
601 case ICMP_PARAMETERPROB:
604 case ICMP_DEST_UNREACH:
605 if (code > NR_ICMP_UNREACH)
608 /* PMTU discovery (RFC1191) */
609 if (ICMP_FRAG_NEEDED == code) {
610 sctp_icmp_frag_needed(sk, asoc, transport,
614 if (ICMP_PROT_UNREACH == code) {
615 sctp_icmp_proto_unreachable(sk, asoc,
620 err = icmp_err_convert[code].errno;
622 case ICMP_TIME_EXCEEDED:
623 /* Ignore any time exceeded errors due to fragment reassembly
626 if (ICMP_EXC_FRAGTIME == code)
632 sctp_icmp_redirect(sk, transport, skb);
633 /* Fall through to out_unlock. */
639 if (!sock_owned_by_user(sk) && inet->recverr) {
641 sk->sk_error_report(sk);
642 } else { /* Only an error on timeout */
643 sk->sk_err_soft = err;
647 sctp_err_finish(sk, transport);
651 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
653 * This function scans all the chunks in the OOTB packet to determine if
654 * the packet should be discarded right away. If a response might be needed
655 * for this packet, or, if further processing is possible, the packet will
656 * be queued to a proper inqueue for the next phase of handling.
659 * Return 0 - If further processing is needed.
660 * Return 1 - If the packet can be discarded right away.
662 static int sctp_rcv_ootb(struct sk_buff *skb)
664 sctp_chunkhdr_t *ch, _ch;
665 int ch_end, offset = 0;
667 /* Scan through all the chunks in the packet. */
669 /* Make sure we have at least the header there */
670 if (offset + sizeof(sctp_chunkhdr_t) > skb->len)
673 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
675 /* Break out if chunk length is less then minimal. */
676 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
679 ch_end = offset + SCTP_PAD4(ntohs(ch->length));
680 if (ch_end > skb->len)
683 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
684 * receiver MUST silently discard the OOTB packet and take no
687 if (SCTP_CID_ABORT == ch->type)
690 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
691 * chunk, the receiver should silently discard the packet
692 * and take no further action.
694 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
698 * This will discard packets with INIT chunk bundled as
699 * subsequent chunks in the packet. When INIT is first,
700 * the normal INIT processing will discard the chunk.
702 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
706 } while (ch_end < skb->len);
714 /* Insert endpoint into the hash table. */
715 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
717 struct net *net = sock_net(ep->base.sk);
718 struct sctp_ep_common *epb;
719 struct sctp_hashbucket *head;
723 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
724 head = &sctp_ep_hashtable[epb->hashent];
726 write_lock(&head->lock);
727 hlist_add_head(&epb->node, &head->chain);
728 write_unlock(&head->lock);
731 /* Add an endpoint to the hash. Local BH-safe. */
732 void sctp_hash_endpoint(struct sctp_endpoint *ep)
735 __sctp_hash_endpoint(ep);
739 /* Remove endpoint from the hash table. */
740 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
742 struct net *net = sock_net(ep->base.sk);
743 struct sctp_hashbucket *head;
744 struct sctp_ep_common *epb;
748 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
750 head = &sctp_ep_hashtable[epb->hashent];
752 write_lock(&head->lock);
753 hlist_del_init(&epb->node);
754 write_unlock(&head->lock);
757 /* Remove endpoint from the hash. Local BH-safe. */
758 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
761 __sctp_unhash_endpoint(ep);
765 /* Look up an endpoint. */
766 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
767 const union sctp_addr *laddr)
769 struct sctp_hashbucket *head;
770 struct sctp_ep_common *epb;
771 struct sctp_endpoint *ep;
774 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
775 head = &sctp_ep_hashtable[hash];
776 read_lock(&head->lock);
777 sctp_for_each_hentry(epb, &head->chain) {
779 if (sctp_endpoint_is_match(ep, net, laddr))
783 ep = sctp_sk(net->sctp.ctl_sock)->ep;
786 sctp_endpoint_hold(ep);
787 read_unlock(&head->lock);
791 /* rhashtable for transport */
792 struct sctp_hash_cmp_arg {
793 const union sctp_addr *paddr;
794 const struct net *net;
798 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
801 struct sctp_transport *t = (struct sctp_transport *)ptr;
802 const struct sctp_hash_cmp_arg *x = arg->key;
805 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
807 if (!sctp_transport_hold(t))
810 if (!net_eq(sock_net(t->asoc->base.sk), x->net))
812 if (x->lport != htons(t->asoc->base.bind_addr.port))
817 sctp_transport_put(t);
821 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
823 const struct sctp_transport *t = data;
824 const union sctp_addr *paddr = &t->ipaddr;
825 const struct net *net = sock_net(t->asoc->base.sk);
826 u16 lport = htons(t->asoc->base.bind_addr.port);
829 if (paddr->sa.sa_family == AF_INET6)
830 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
832 addr = paddr->v4.sin_addr.s_addr;
834 return jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
835 (__force __u32)lport, net_hash_mix(net), seed);
838 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed)
840 const struct sctp_hash_cmp_arg *x = data;
841 const union sctp_addr *paddr = x->paddr;
842 const struct net *net = x->net;
843 u16 lport = x->lport;
846 if (paddr->sa.sa_family == AF_INET6)
847 addr = jhash(&paddr->v6.sin6_addr, 16, seed);
849 addr = paddr->v4.sin_addr.s_addr;
851 return jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
852 (__force __u32)lport, net_hash_mix(net), seed);
855 static const struct rhashtable_params sctp_hash_params = {
856 .head_offset = offsetof(struct sctp_transport, node),
857 .hashfn = sctp_hash_key,
858 .obj_hashfn = sctp_hash_obj,
859 .obj_cmpfn = sctp_hash_cmp,
860 .automatic_shrinking = true,
863 int sctp_transport_hashtable_init(void)
865 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
868 void sctp_transport_hashtable_destroy(void)
870 rhltable_destroy(&sctp_transport_hashtable);
873 int sctp_hash_transport(struct sctp_transport *t)
875 struct sctp_hash_cmp_arg arg;
881 arg.net = sock_net(t->asoc->base.sk);
882 arg.paddr = &t->ipaddr;
883 arg.lport = htons(t->asoc->base.bind_addr.port);
885 err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
886 &t->node, sctp_hash_params);
888 pr_err_once("insert transport fail, errno %d\n", err);
893 void sctp_unhash_transport(struct sctp_transport *t)
898 rhltable_remove(&sctp_transport_hashtable, &t->node,
902 /* return a transport with holding it */
903 struct sctp_transport *sctp_addrs_lookup_transport(
905 const union sctp_addr *laddr,
906 const union sctp_addr *paddr)
908 struct rhlist_head *tmp, *list;
909 struct sctp_transport *t;
910 struct sctp_hash_cmp_arg arg = {
913 .lport = laddr->v4.sin_port,
916 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
919 rhl_for_each_entry_rcu(t, tmp, list, node) {
920 if (!sctp_transport_hold(t))
923 if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
924 laddr, sctp_sk(t->asoc->base.sk)))
926 sctp_transport_put(t);
932 /* return a transport without holding it, as it's only used under sock lock */
933 struct sctp_transport *sctp_epaddr_lookup_transport(
934 const struct sctp_endpoint *ep,
935 const union sctp_addr *paddr)
937 struct net *net = sock_net(ep->base.sk);
938 struct rhlist_head *tmp, *list;
939 struct sctp_transport *t;
940 struct sctp_hash_cmp_arg arg = {
943 .lport = htons(ep->base.bind_addr.port),
946 list = rhltable_lookup(&sctp_transport_hashtable, &arg,
949 rhl_for_each_entry_rcu(t, tmp, list, node)
950 if (ep == t->asoc->ep)
956 /* Look up an association. */
957 static struct sctp_association *__sctp_lookup_association(
959 const union sctp_addr *local,
960 const union sctp_addr *peer,
961 struct sctp_transport **pt)
963 struct sctp_transport *t;
964 struct sctp_association *asoc = NULL;
966 t = sctp_addrs_lookup_transport(net, local, peer);
977 /* Look up an association. protected by RCU read lock */
979 struct sctp_association *sctp_lookup_association(struct net *net,
980 const union sctp_addr *laddr,
981 const union sctp_addr *paddr,
982 struct sctp_transport **transportp)
984 struct sctp_association *asoc;
987 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
993 /* Is there an association matching the given local and peer addresses? */
994 int sctp_has_association(struct net *net,
995 const union sctp_addr *laddr,
996 const union sctp_addr *paddr)
998 struct sctp_association *asoc;
999 struct sctp_transport *transport;
1001 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
1002 sctp_transport_put(transport);
1010 * SCTP Implementors Guide, 2.18 Handling of address
1011 * parameters within the INIT or INIT-ACK.
1013 * D) When searching for a matching TCB upon reception of an INIT
1014 * or INIT-ACK chunk the receiver SHOULD use not only the
1015 * source address of the packet (containing the INIT or
1016 * INIT-ACK) but the receiver SHOULD also use all valid
1017 * address parameters contained within the chunk.
1019 * 2.18.3 Solution description
1021 * This new text clearly specifies to an implementor the need
1022 * to look within the INIT or INIT-ACK. Any implementation that
1023 * does not do this, may not be able to establish associations
1024 * in certain circumstances.
1027 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1028 struct sk_buff *skb,
1029 const union sctp_addr *laddr, struct sctp_transport **transportp)
1031 struct sctp_association *asoc;
1032 union sctp_addr addr;
1033 union sctp_addr *paddr = &addr;
1034 struct sctphdr *sh = sctp_hdr(skb);
1035 union sctp_params params;
1036 sctp_init_chunk_t *init;
1040 * This code will NOT touch anything inside the chunk--it is
1041 * strictly READ-ONLY.
1043 * RFC 2960 3 SCTP packet Format
1045 * Multiple chunks can be bundled into one SCTP packet up to
1046 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1047 * COMPLETE chunks. These chunks MUST NOT be bundled with any
1048 * other chunk in a packet. See Section 6.10 for more details
1049 * on chunk bundling.
1052 /* Find the start of the TLVs and the end of the chunk. This is
1053 * the region we search for address parameters.
1055 init = (sctp_init_chunk_t *)skb->data;
1057 /* Walk the parameters looking for embedded addresses. */
1058 sctp_walk_params(params, init, init_hdr.params) {
1060 /* Note: Ignoring hostname addresses. */
1061 af = sctp_get_af_specific(param_type2af(params.p->type));
1065 af->from_addr_param(paddr, params.addr, sh->source, 0);
1067 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1075 /* ADD-IP, Section 5.2
1076 * When an endpoint receives an ASCONF Chunk from the remote peer
1077 * special procedures may be needed to identify the association the
1078 * ASCONF Chunk is associated with. To properly find the association
1079 * the following procedures SHOULD be followed:
1081 * D2) If the association is not found, use the address found in the
1082 * Address Parameter TLV combined with the port number found in the
1083 * SCTP common header. If found proceed to rule D4.
1085 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1086 * address found in the ASCONF Address Parameter TLV of each of the
1087 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1089 static struct sctp_association *__sctp_rcv_asconf_lookup(
1091 sctp_chunkhdr_t *ch,
1092 const union sctp_addr *laddr,
1094 struct sctp_transport **transportp)
1096 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1098 union sctp_addr_param *param;
1099 union sctp_addr paddr;
1101 /* Skip over the ADDIP header and find the Address parameter */
1102 param = (union sctp_addr_param *)(asconf + 1);
1104 af = sctp_get_af_specific(param_type2af(param->p.type));
1108 af->from_addr_param(&paddr, param, peer_port, 0);
1110 return __sctp_lookup_association(net, laddr, &paddr, transportp);
1114 /* SCTP-AUTH, Section 6.3:
1115 * If the receiver does not find a STCB for a packet containing an AUTH
1116 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1117 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1120 * This means that any chunks that can help us identify the association need
1121 * to be looked at to find this association.
1123 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1124 struct sk_buff *skb,
1125 const union sctp_addr *laddr,
1126 struct sctp_transport **transportp)
1128 struct sctp_association *asoc = NULL;
1129 sctp_chunkhdr_t *ch;
1131 unsigned int chunk_num = 1;
1134 /* Walk through the chunks looking for AUTH or ASCONF chunks
1135 * to help us find the association.
1137 ch = (sctp_chunkhdr_t *) skb->data;
1139 /* Break out if chunk length is less then minimal. */
1140 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1143 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1144 if (ch_end > skb_tail_pointer(skb))
1149 have_auth = chunk_num;
1152 case SCTP_CID_COOKIE_ECHO:
1153 /* If a packet arrives containing an AUTH chunk as
1154 * a first chunk, a COOKIE-ECHO chunk as the second
1155 * chunk, and possibly more chunks after them, and
1156 * the receiver does not have an STCB for that
1157 * packet, then authentication is based on
1158 * the contents of the COOKIE- ECHO chunk.
1160 if (have_auth == 1 && chunk_num == 2)
1164 case SCTP_CID_ASCONF:
1165 if (have_auth || net->sctp.addip_noauth)
1166 asoc = __sctp_rcv_asconf_lookup(
1168 sctp_hdr(skb)->source,
1177 ch = (sctp_chunkhdr_t *) ch_end;
1179 } while (ch_end < skb_tail_pointer(skb));
1185 * There are circumstances when we need to look inside the SCTP packet
1186 * for information to help us find the association. Examples
1187 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1190 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1191 struct sk_buff *skb,
1192 const union sctp_addr *laddr,
1193 struct sctp_transport **transportp)
1195 sctp_chunkhdr_t *ch;
1197 /* We do not allow GSO frames here as we need to linearize and
1198 * then cannot guarantee frame boundaries. This shouldn't be an
1199 * issue as packets hitting this are mostly INIT or INIT-ACK and
1200 * those cannot be on GSO-style anyway.
1202 if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP)
1205 ch = (sctp_chunkhdr_t *) skb->data;
1207 /* The code below will attempt to walk the chunk and extract
1208 * parameter information. Before we do that, we need to verify
1209 * that the chunk length doesn't cause overflow. Otherwise, we'll
1212 if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1215 /* If this is INIT/INIT-ACK look inside the chunk too. */
1216 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1217 return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1219 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1222 /* Lookup an association for an inbound skb. */
1223 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1224 struct sk_buff *skb,
1225 const union sctp_addr *paddr,
1226 const union sctp_addr *laddr,
1227 struct sctp_transport **transportp)
1229 struct sctp_association *asoc;
1231 asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1233 /* Further lookup for INIT/INIT-ACK packets.
1234 * SCTP Implementors Guide, 2.18 Handling of address
1235 * parameters within the INIT or INIT-ACK.
1238 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);