3 * Written by Mark Hemment, 1996/97.
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
166 typedef unsigned short freelist_idx_t;
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172 * true if a page was allocated from pfmemalloc reserves for network-based
175 static bool pfmemalloc_active __read_mostly;
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
185 * The limit is stored in the per-cpu structure to reduce the data cache
192 unsigned int batchcount;
193 unsigned int touched;
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
207 struct array_cache ac;
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp)
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
216 static inline void set_obj_pfmemalloc(void **objp)
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
222 static inline void clear_obj_pfmemalloc(void **objp)
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
238 * Need this for bootstrapping a per node allocator.
240 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define CACHE_CACHE 0
243 #define SIZE_AC MAX_NUMNODES
244 #define SIZE_NODE (2 * MAX_NUMNODES)
246 static int drain_freelist(struct kmem_cache *cache,
247 struct kmem_cache_node *n, int tofree);
248 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
249 int node, struct list_head *list);
250 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
251 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
252 static void cache_reap(struct work_struct *unused);
254 static int slab_early_init = 1;
256 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
257 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
259 static void kmem_cache_node_init(struct kmem_cache_node *parent)
261 INIT_LIST_HEAD(&parent->slabs_full);
262 INIT_LIST_HEAD(&parent->slabs_partial);
263 INIT_LIST_HEAD(&parent->slabs_free);
264 parent->shared = NULL;
265 parent->alien = NULL;
266 parent->colour_next = 0;
267 spin_lock_init(&parent->list_lock);
268 parent->free_objects = 0;
269 parent->free_touched = 0;
272 #define MAKE_LIST(cachep, listp, slab, nodeid) \
274 INIT_LIST_HEAD(listp); \
275 list_splice(&get_node(cachep, nodeid)->slab, listp); \
278 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
280 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
281 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
282 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
285 #define CFLGS_OFF_SLAB (0x80000000UL)
286 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
288 #define BATCHREFILL_LIMIT 16
290 * Optimization question: fewer reaps means less probability for unnessary
291 * cpucache drain/refill cycles.
293 * OTOH the cpuarrays can contain lots of objects,
294 * which could lock up otherwise freeable slabs.
296 #define REAPTIMEOUT_AC (2*HZ)
297 #define REAPTIMEOUT_NODE (4*HZ)
300 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
301 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
302 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
303 #define STATS_INC_GROWN(x) ((x)->grown++)
304 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
305 #define STATS_SET_HIGH(x) \
307 if ((x)->num_active > (x)->high_mark) \
308 (x)->high_mark = (x)->num_active; \
310 #define STATS_INC_ERR(x) ((x)->errors++)
311 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
312 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
313 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
314 #define STATS_SET_FREEABLE(x, i) \
316 if ((x)->max_freeable < i) \
317 (x)->max_freeable = i; \
319 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
320 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
321 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
322 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
324 #define STATS_INC_ACTIVE(x) do { } while (0)
325 #define STATS_DEC_ACTIVE(x) do { } while (0)
326 #define STATS_INC_ALLOCED(x) do { } while (0)
327 #define STATS_INC_GROWN(x) do { } while (0)
328 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
329 #define STATS_SET_HIGH(x) do { } while (0)
330 #define STATS_INC_ERR(x) do { } while (0)
331 #define STATS_INC_NODEALLOCS(x) do { } while (0)
332 #define STATS_INC_NODEFREES(x) do { } while (0)
333 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
334 #define STATS_SET_FREEABLE(x, i) do { } while (0)
335 #define STATS_INC_ALLOCHIT(x) do { } while (0)
336 #define STATS_INC_ALLOCMISS(x) do { } while (0)
337 #define STATS_INC_FREEHIT(x) do { } while (0)
338 #define STATS_INC_FREEMISS(x) do { } while (0)
344 * memory layout of objects:
346 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
347 * the end of an object is aligned with the end of the real
348 * allocation. Catches writes behind the end of the allocation.
349 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
351 * cachep->obj_offset: The real object.
352 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
353 * cachep->size - 1* BYTES_PER_WORD: last caller address
354 * [BYTES_PER_WORD long]
356 static int obj_offset(struct kmem_cache *cachep)
358 return cachep->obj_offset;
361 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
363 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
364 return (unsigned long long*) (objp + obj_offset(cachep) -
365 sizeof(unsigned long long));
368 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
370 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
371 if (cachep->flags & SLAB_STORE_USER)
372 return (unsigned long long *)(objp + cachep->size -
373 sizeof(unsigned long long) -
375 return (unsigned long long *) (objp + cachep->size -
376 sizeof(unsigned long long));
379 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
381 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
382 return (void **)(objp + cachep->size - BYTES_PER_WORD);
387 #define obj_offset(x) 0
388 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
389 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
390 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
394 #define OBJECT_FREE (0)
395 #define OBJECT_ACTIVE (1)
397 #ifdef CONFIG_DEBUG_SLAB_LEAK
399 static void set_obj_status(struct page *page, int idx, int val)
403 struct kmem_cache *cachep = page->slab_cache;
405 freelist_size = cachep->num * sizeof(freelist_idx_t);
406 status = (char *)page->freelist + freelist_size;
410 static inline unsigned int get_obj_status(struct page *page, int idx)
414 struct kmem_cache *cachep = page->slab_cache;
416 freelist_size = cachep->num * sizeof(freelist_idx_t);
417 status = (char *)page->freelist + freelist_size;
423 static inline void set_obj_status(struct page *page, int idx, int val) {}
428 * Do not go above this order unless 0 objects fit into the slab or
429 * overridden on the command line.
431 #define SLAB_MAX_ORDER_HI 1
432 #define SLAB_MAX_ORDER_LO 0
433 static int slab_max_order = SLAB_MAX_ORDER_LO;
434 static bool slab_max_order_set __initdata;
436 static inline struct kmem_cache *virt_to_cache(const void *obj)
438 struct page *page = virt_to_head_page(obj);
439 return page->slab_cache;
442 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
445 return page->s_mem + cache->size * idx;
449 * We want to avoid an expensive divide : (offset / cache->size)
450 * Using the fact that size is a constant for a particular cache,
451 * we can replace (offset / cache->size) by
452 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
454 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
455 const struct page *page, void *obj)
457 u32 offset = (obj - page->s_mem);
458 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
461 static struct arraycache_init initarray_generic =
462 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
464 /* internal cache of cache description objs */
465 static struct kmem_cache kmem_cache_boot = {
467 .limit = BOOT_CPUCACHE_ENTRIES,
469 .size = sizeof(struct kmem_cache),
470 .name = "kmem_cache",
473 #define BAD_ALIEN_MAGIC 0x01020304ul
475 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
477 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
479 return cachep->array[smp_processor_id()];
482 static size_t calculate_freelist_size(int nr_objs, size_t align)
484 size_t freelist_size;
486 freelist_size = nr_objs * sizeof(freelist_idx_t);
487 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
488 freelist_size += nr_objs * sizeof(char);
491 freelist_size = ALIGN(freelist_size, align);
493 return freelist_size;
496 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
497 size_t idx_size, size_t align)
500 size_t remained_size;
501 size_t freelist_size;
504 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
505 extra_space = sizeof(char);
507 * Ignore padding for the initial guess. The padding
508 * is at most @align-1 bytes, and @buffer_size is at
509 * least @align. In the worst case, this result will
510 * be one greater than the number of objects that fit
511 * into the memory allocation when taking the padding
514 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
517 * This calculated number will be either the right
518 * amount, or one greater than what we want.
520 remained_size = slab_size - nr_objs * buffer_size;
521 freelist_size = calculate_freelist_size(nr_objs, align);
522 if (remained_size < freelist_size)
529 * Calculate the number of objects and left-over bytes for a given buffer size.
531 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
532 size_t align, int flags, size_t *left_over,
537 size_t slab_size = PAGE_SIZE << gfporder;
540 * The slab management structure can be either off the slab or
541 * on it. For the latter case, the memory allocated for a
544 * - One unsigned int for each object
545 * - Padding to respect alignment of @align
546 * - @buffer_size bytes for each object
548 * If the slab management structure is off the slab, then the
549 * alignment will already be calculated into the size. Because
550 * the slabs are all pages aligned, the objects will be at the
551 * correct alignment when allocated.
553 if (flags & CFLGS_OFF_SLAB) {
555 nr_objs = slab_size / buffer_size;
558 nr_objs = calculate_nr_objs(slab_size, buffer_size,
559 sizeof(freelist_idx_t), align);
560 mgmt_size = calculate_freelist_size(nr_objs, align);
563 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
567 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
569 static void __slab_error(const char *function, struct kmem_cache *cachep,
572 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
573 function, cachep->name, msg);
575 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
580 * By default on NUMA we use alien caches to stage the freeing of
581 * objects allocated from other nodes. This causes massive memory
582 * inefficiencies when using fake NUMA setup to split memory into a
583 * large number of small nodes, so it can be disabled on the command
587 static int use_alien_caches __read_mostly = 1;
588 static int __init noaliencache_setup(char *s)
590 use_alien_caches = 0;
593 __setup("noaliencache", noaliencache_setup);
595 static int __init slab_max_order_setup(char *str)
597 get_option(&str, &slab_max_order);
598 slab_max_order = slab_max_order < 0 ? 0 :
599 min(slab_max_order, MAX_ORDER - 1);
600 slab_max_order_set = true;
604 __setup("slab_max_order=", slab_max_order_setup);
608 * Special reaping functions for NUMA systems called from cache_reap().
609 * These take care of doing round robin flushing of alien caches (containing
610 * objects freed on different nodes from which they were allocated) and the
611 * flushing of remote pcps by calling drain_node_pages.
613 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
615 static void init_reap_node(int cpu)
619 node = next_node(cpu_to_mem(cpu), node_online_map);
620 if (node == MAX_NUMNODES)
621 node = first_node(node_online_map);
623 per_cpu(slab_reap_node, cpu) = node;
626 static void next_reap_node(void)
628 int node = __this_cpu_read(slab_reap_node);
630 node = next_node(node, node_online_map);
631 if (unlikely(node >= MAX_NUMNODES))
632 node = first_node(node_online_map);
633 __this_cpu_write(slab_reap_node, node);
637 #define init_reap_node(cpu) do { } while (0)
638 #define next_reap_node(void) do { } while (0)
642 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
643 * via the workqueue/eventd.
644 * Add the CPU number into the expiration time to minimize the possibility of
645 * the CPUs getting into lockstep and contending for the global cache chain
648 static void start_cpu_timer(int cpu)
650 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
653 * When this gets called from do_initcalls via cpucache_init(),
654 * init_workqueues() has already run, so keventd will be setup
657 if (keventd_up() && reap_work->work.func == NULL) {
659 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
660 schedule_delayed_work_on(cpu, reap_work,
661 __round_jiffies_relative(HZ, cpu));
665 static void init_arraycache(struct array_cache *ac, int limit, int batch)
668 * The array_cache structures contain pointers to free object.
669 * However, when such objects are allocated or transferred to another
670 * cache the pointers are not cleared and they could be counted as
671 * valid references during a kmemleak scan. Therefore, kmemleak must
672 * not scan such objects.
674 kmemleak_no_scan(ac);
678 ac->batchcount = batch;
683 static struct array_cache *alloc_arraycache(int node, int entries,
684 int batchcount, gfp_t gfp)
686 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
687 struct array_cache *ac = NULL;
689 ac = kmalloc_node(memsize, gfp, node);
690 init_arraycache(ac, entries, batchcount);
694 static inline bool is_slab_pfmemalloc(struct page *page)
696 return PageSlabPfmemalloc(page);
699 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
700 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
701 struct array_cache *ac)
703 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
707 if (!pfmemalloc_active)
710 spin_lock_irqsave(&n->list_lock, flags);
711 list_for_each_entry(page, &n->slabs_full, lru)
712 if (is_slab_pfmemalloc(page))
715 list_for_each_entry(page, &n->slabs_partial, lru)
716 if (is_slab_pfmemalloc(page))
719 list_for_each_entry(page, &n->slabs_free, lru)
720 if (is_slab_pfmemalloc(page))
723 pfmemalloc_active = false;
725 spin_unlock_irqrestore(&n->list_lock, flags);
728 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
729 gfp_t flags, bool force_refill)
732 void *objp = ac->entry[--ac->avail];
734 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
735 if (unlikely(is_obj_pfmemalloc(objp))) {
736 struct kmem_cache_node *n;
738 if (gfp_pfmemalloc_allowed(flags)) {
739 clear_obj_pfmemalloc(&objp);
743 /* The caller cannot use PFMEMALLOC objects, find another one */
744 for (i = 0; i < ac->avail; i++) {
745 /* If a !PFMEMALLOC object is found, swap them */
746 if (!is_obj_pfmemalloc(ac->entry[i])) {
748 ac->entry[i] = ac->entry[ac->avail];
749 ac->entry[ac->avail] = objp;
755 * If there are empty slabs on the slabs_free list and we are
756 * being forced to refill the cache, mark this one !pfmemalloc.
758 n = get_node(cachep, numa_mem_id());
759 if (!list_empty(&n->slabs_free) && force_refill) {
760 struct page *page = virt_to_head_page(objp);
761 ClearPageSlabPfmemalloc(page);
762 clear_obj_pfmemalloc(&objp);
763 recheck_pfmemalloc_active(cachep, ac);
767 /* No !PFMEMALLOC objects available */
775 static inline void *ac_get_obj(struct kmem_cache *cachep,
776 struct array_cache *ac, gfp_t flags, bool force_refill)
780 if (unlikely(sk_memalloc_socks()))
781 objp = __ac_get_obj(cachep, ac, flags, force_refill);
783 objp = ac->entry[--ac->avail];
788 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
791 if (unlikely(pfmemalloc_active)) {
792 /* Some pfmemalloc slabs exist, check if this is one */
793 struct page *page = virt_to_head_page(objp);
794 if (PageSlabPfmemalloc(page))
795 set_obj_pfmemalloc(&objp);
801 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
804 if (unlikely(sk_memalloc_socks()))
805 objp = __ac_put_obj(cachep, ac, objp);
807 ac->entry[ac->avail++] = objp;
811 * Transfer objects in one arraycache to another.
812 * Locking must be handled by the caller.
814 * Return the number of entries transferred.
816 static int transfer_objects(struct array_cache *to,
817 struct array_cache *from, unsigned int max)
819 /* Figure out how many entries to transfer */
820 int nr = min3(from->avail, max, to->limit - to->avail);
825 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
835 #define drain_alien_cache(cachep, alien) do { } while (0)
836 #define reap_alien(cachep, n) do { } while (0)
838 static inline struct alien_cache **alloc_alien_cache(int node,
839 int limit, gfp_t gfp)
841 return (struct alien_cache **)BAD_ALIEN_MAGIC;
844 static inline void free_alien_cache(struct alien_cache **ac_ptr)
848 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
853 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
859 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
860 gfp_t flags, int nodeid)
865 #else /* CONFIG_NUMA */
867 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
868 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
870 static struct alien_cache *__alloc_alien_cache(int node, int entries,
871 int batch, gfp_t gfp)
873 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
874 struct alien_cache *alc = NULL;
876 alc = kmalloc_node(memsize, gfp, node);
877 init_arraycache(&alc->ac, entries, batch);
878 spin_lock_init(&alc->lock);
882 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
884 struct alien_cache **alc_ptr;
885 size_t memsize = sizeof(void *) * nr_node_ids;
890 alc_ptr = kzalloc_node(memsize, gfp, node);
895 if (i == node || !node_online(i))
897 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
899 for (i--; i >= 0; i--)
908 static void free_alien_cache(struct alien_cache **alc_ptr)
919 static void __drain_alien_cache(struct kmem_cache *cachep,
920 struct array_cache *ac, int node,
921 struct list_head *list)
923 struct kmem_cache_node *n = get_node(cachep, node);
926 spin_lock(&n->list_lock);
928 * Stuff objects into the remote nodes shared array first.
929 * That way we could avoid the overhead of putting the objects
930 * into the free lists and getting them back later.
933 transfer_objects(n->shared, ac, ac->limit);
935 free_block(cachep, ac->entry, ac->avail, node, list);
937 spin_unlock(&n->list_lock);
942 * Called from cache_reap() to regularly drain alien caches round robin.
944 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
946 int node = __this_cpu_read(slab_reap_node);
949 struct alien_cache *alc = n->alien[node];
950 struct array_cache *ac;
954 if (ac->avail && spin_trylock_irq(&alc->lock)) {
957 __drain_alien_cache(cachep, ac, node, &list);
958 spin_unlock_irq(&alc->lock);
959 slabs_destroy(cachep, &list);
965 static void drain_alien_cache(struct kmem_cache *cachep,
966 struct alien_cache **alien)
969 struct alien_cache *alc;
970 struct array_cache *ac;
973 for_each_online_node(i) {
979 spin_lock_irqsave(&alc->lock, flags);
980 __drain_alien_cache(cachep, ac, i, &list);
981 spin_unlock_irqrestore(&alc->lock, flags);
982 slabs_destroy(cachep, &list);
987 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
989 int nodeid = page_to_nid(virt_to_page(objp));
990 struct kmem_cache_node *n;
991 struct alien_cache *alien = NULL;
992 struct array_cache *ac;
996 node = numa_mem_id();
999 * Make sure we are not freeing a object from another node to the array
1000 * cache on this cpu.
1002 if (likely(nodeid == node))
1005 n = get_node(cachep, node);
1006 STATS_INC_NODEFREES(cachep);
1007 if (n->alien && n->alien[nodeid]) {
1008 alien = n->alien[nodeid];
1010 spin_lock(&alien->lock);
1011 if (unlikely(ac->avail == ac->limit)) {
1012 STATS_INC_ACOVERFLOW(cachep);
1013 __drain_alien_cache(cachep, ac, nodeid, &list);
1015 ac_put_obj(cachep, ac, objp);
1016 spin_unlock(&alien->lock);
1017 slabs_destroy(cachep, &list);
1019 n = get_node(cachep, nodeid);
1020 spin_lock(&n->list_lock);
1021 free_block(cachep, &objp, 1, nodeid, &list);
1022 spin_unlock(&n->list_lock);
1023 slabs_destroy(cachep, &list);
1030 * Allocates and initializes node for a node on each slab cache, used for
1031 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1032 * will be allocated off-node since memory is not yet online for the new node.
1033 * When hotplugging memory or a cpu, existing node are not replaced if
1036 * Must hold slab_mutex.
1038 static int init_cache_node_node(int node)
1040 struct kmem_cache *cachep;
1041 struct kmem_cache_node *n;
1042 const size_t memsize = sizeof(struct kmem_cache_node);
1044 list_for_each_entry(cachep, &slab_caches, list) {
1046 * Set up the kmem_cache_node for cpu before we can
1047 * begin anything. Make sure some other cpu on this
1048 * node has not already allocated this
1050 n = get_node(cachep, node);
1052 n = kmalloc_node(memsize, GFP_KERNEL, node);
1055 kmem_cache_node_init(n);
1056 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1057 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1060 * The kmem_cache_nodes don't come and go as CPUs
1061 * come and go. slab_mutex is sufficient
1064 cachep->node[node] = n;
1067 spin_lock_irq(&n->list_lock);
1069 (1 + nr_cpus_node(node)) *
1070 cachep->batchcount + cachep->num;
1071 spin_unlock_irq(&n->list_lock);
1076 static inline int slabs_tofree(struct kmem_cache *cachep,
1077 struct kmem_cache_node *n)
1079 return (n->free_objects + cachep->num - 1) / cachep->num;
1082 static void cpuup_canceled(long cpu)
1084 struct kmem_cache *cachep;
1085 struct kmem_cache_node *n = NULL;
1086 int node = cpu_to_mem(cpu);
1087 const struct cpumask *mask = cpumask_of_node(node);
1089 list_for_each_entry(cachep, &slab_caches, list) {
1090 struct array_cache *nc;
1091 struct array_cache *shared;
1092 struct alien_cache **alien;
1095 /* cpu is dead; no one can alloc from it. */
1096 nc = cachep->array[cpu];
1097 cachep->array[cpu] = NULL;
1098 n = get_node(cachep, node);
1101 goto free_array_cache;
1103 spin_lock_irq(&n->list_lock);
1105 /* Free limit for this kmem_cache_node */
1106 n->free_limit -= cachep->batchcount;
1108 free_block(cachep, nc->entry, nc->avail, node, &list);
1110 if (!cpumask_empty(mask)) {
1111 spin_unlock_irq(&n->list_lock);
1112 goto free_array_cache;
1117 free_block(cachep, shared->entry,
1118 shared->avail, node, &list);
1125 spin_unlock_irq(&n->list_lock);
1129 drain_alien_cache(cachep, alien);
1130 free_alien_cache(alien);
1133 slabs_destroy(cachep, &list);
1137 * In the previous loop, all the objects were freed to
1138 * the respective cache's slabs, now we can go ahead and
1139 * shrink each nodelist to its limit.
1141 list_for_each_entry(cachep, &slab_caches, list) {
1142 n = get_node(cachep, node);
1145 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1149 static int cpuup_prepare(long cpu)
1151 struct kmem_cache *cachep;
1152 struct kmem_cache_node *n = NULL;
1153 int node = cpu_to_mem(cpu);
1157 * We need to do this right in the beginning since
1158 * alloc_arraycache's are going to use this list.
1159 * kmalloc_node allows us to add the slab to the right
1160 * kmem_cache_node and not this cpu's kmem_cache_node
1162 err = init_cache_node_node(node);
1167 * Now we can go ahead with allocating the shared arrays and
1170 list_for_each_entry(cachep, &slab_caches, list) {
1171 struct array_cache *nc;
1172 struct array_cache *shared = NULL;
1173 struct alien_cache **alien = NULL;
1175 nc = alloc_arraycache(node, cachep->limit,
1176 cachep->batchcount, GFP_KERNEL);
1179 if (cachep->shared) {
1180 shared = alloc_arraycache(node,
1181 cachep->shared * cachep->batchcount,
1182 0xbaadf00d, GFP_KERNEL);
1188 if (use_alien_caches) {
1189 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1196 cachep->array[cpu] = nc;
1197 n = get_node(cachep, node);
1200 spin_lock_irq(&n->list_lock);
1203 * We are serialised from CPU_DEAD or
1204 * CPU_UP_CANCELLED by the cpucontrol lock
1215 spin_unlock_irq(&n->list_lock);
1217 free_alien_cache(alien);
1222 cpuup_canceled(cpu);
1226 static int cpuup_callback(struct notifier_block *nfb,
1227 unsigned long action, void *hcpu)
1229 long cpu = (long)hcpu;
1233 case CPU_UP_PREPARE:
1234 case CPU_UP_PREPARE_FROZEN:
1235 mutex_lock(&slab_mutex);
1236 err = cpuup_prepare(cpu);
1237 mutex_unlock(&slab_mutex);
1240 case CPU_ONLINE_FROZEN:
1241 start_cpu_timer(cpu);
1243 #ifdef CONFIG_HOTPLUG_CPU
1244 case CPU_DOWN_PREPARE:
1245 case CPU_DOWN_PREPARE_FROZEN:
1247 * Shutdown cache reaper. Note that the slab_mutex is
1248 * held so that if cache_reap() is invoked it cannot do
1249 * anything expensive but will only modify reap_work
1250 * and reschedule the timer.
1252 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1253 /* Now the cache_reaper is guaranteed to be not running. */
1254 per_cpu(slab_reap_work, cpu).work.func = NULL;
1256 case CPU_DOWN_FAILED:
1257 case CPU_DOWN_FAILED_FROZEN:
1258 start_cpu_timer(cpu);
1261 case CPU_DEAD_FROZEN:
1263 * Even if all the cpus of a node are down, we don't free the
1264 * kmem_cache_node of any cache. This to avoid a race between
1265 * cpu_down, and a kmalloc allocation from another cpu for
1266 * memory from the node of the cpu going down. The node
1267 * structure is usually allocated from kmem_cache_create() and
1268 * gets destroyed at kmem_cache_destroy().
1272 case CPU_UP_CANCELED:
1273 case CPU_UP_CANCELED_FROZEN:
1274 mutex_lock(&slab_mutex);
1275 cpuup_canceled(cpu);
1276 mutex_unlock(&slab_mutex);
1279 return notifier_from_errno(err);
1282 static struct notifier_block cpucache_notifier = {
1283 &cpuup_callback, NULL, 0
1286 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1288 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1289 * Returns -EBUSY if all objects cannot be drained so that the node is not
1292 * Must hold slab_mutex.
1294 static int __meminit drain_cache_node_node(int node)
1296 struct kmem_cache *cachep;
1299 list_for_each_entry(cachep, &slab_caches, list) {
1300 struct kmem_cache_node *n;
1302 n = get_node(cachep, node);
1306 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1308 if (!list_empty(&n->slabs_full) ||
1309 !list_empty(&n->slabs_partial)) {
1317 static int __meminit slab_memory_callback(struct notifier_block *self,
1318 unsigned long action, void *arg)
1320 struct memory_notify *mnb = arg;
1324 nid = mnb->status_change_nid;
1329 case MEM_GOING_ONLINE:
1330 mutex_lock(&slab_mutex);
1331 ret = init_cache_node_node(nid);
1332 mutex_unlock(&slab_mutex);
1334 case MEM_GOING_OFFLINE:
1335 mutex_lock(&slab_mutex);
1336 ret = drain_cache_node_node(nid);
1337 mutex_unlock(&slab_mutex);
1341 case MEM_CANCEL_ONLINE:
1342 case MEM_CANCEL_OFFLINE:
1346 return notifier_from_errno(ret);
1348 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1351 * swap the static kmem_cache_node with kmalloced memory
1353 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1356 struct kmem_cache_node *ptr;
1358 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1361 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1363 * Do not assume that spinlocks can be initialized via memcpy:
1365 spin_lock_init(&ptr->list_lock);
1367 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1368 cachep->node[nodeid] = ptr;
1372 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1373 * size of kmem_cache_node.
1375 static void __init set_up_node(struct kmem_cache *cachep, int index)
1379 for_each_online_node(node) {
1380 cachep->node[node] = &init_kmem_cache_node[index + node];
1381 cachep->node[node]->next_reap = jiffies +
1383 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1388 * The memory after the last cpu cache pointer is used for the
1391 static void setup_node_pointer(struct kmem_cache *cachep)
1393 cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1397 * Initialisation. Called after the page allocator have been initialised and
1398 * before smp_init().
1400 void __init kmem_cache_init(void)
1404 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1405 sizeof(struct rcu_head));
1406 kmem_cache = &kmem_cache_boot;
1407 setup_node_pointer(kmem_cache);
1409 if (num_possible_nodes() == 1)
1410 use_alien_caches = 0;
1412 for (i = 0; i < NUM_INIT_LISTS; i++)
1413 kmem_cache_node_init(&init_kmem_cache_node[i]);
1415 set_up_node(kmem_cache, CACHE_CACHE);
1418 * Fragmentation resistance on low memory - only use bigger
1419 * page orders on machines with more than 32MB of memory if
1420 * not overridden on the command line.
1422 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1423 slab_max_order = SLAB_MAX_ORDER_HI;
1425 /* Bootstrap is tricky, because several objects are allocated
1426 * from caches that do not exist yet:
1427 * 1) initialize the kmem_cache cache: it contains the struct
1428 * kmem_cache structures of all caches, except kmem_cache itself:
1429 * kmem_cache is statically allocated.
1430 * Initially an __init data area is used for the head array and the
1431 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1432 * array at the end of the bootstrap.
1433 * 2) Create the first kmalloc cache.
1434 * The struct kmem_cache for the new cache is allocated normally.
1435 * An __init data area is used for the head array.
1436 * 3) Create the remaining kmalloc caches, with minimally sized
1438 * 4) Replace the __init data head arrays for kmem_cache and the first
1439 * kmalloc cache with kmalloc allocated arrays.
1440 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1441 * the other cache's with kmalloc allocated memory.
1442 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1445 /* 1) create the kmem_cache */
1448 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1450 create_boot_cache(kmem_cache, "kmem_cache",
1451 offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1452 nr_node_ids * sizeof(struct kmem_cache_node *),
1453 SLAB_HWCACHE_ALIGN);
1454 list_add(&kmem_cache->list, &slab_caches);
1456 /* 2+3) create the kmalloc caches */
1459 * Initialize the caches that provide memory for the array cache and the
1460 * kmem_cache_node structures first. Without this, further allocations will
1464 kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1465 kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1467 if (INDEX_AC != INDEX_NODE)
1468 kmalloc_caches[INDEX_NODE] =
1469 create_kmalloc_cache("kmalloc-node",
1470 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1472 slab_early_init = 0;
1474 /* 4) Replace the bootstrap head arrays */
1476 struct array_cache *ptr;
1478 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1480 memcpy(ptr, cpu_cache_get(kmem_cache),
1481 sizeof(struct arraycache_init));
1483 kmem_cache->array[smp_processor_id()] = ptr;
1485 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1487 BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1488 != &initarray_generic.cache);
1489 memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1490 sizeof(struct arraycache_init));
1492 kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1494 /* 5) Replace the bootstrap kmem_cache_node */
1498 for_each_online_node(nid) {
1499 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1501 init_list(kmalloc_caches[INDEX_AC],
1502 &init_kmem_cache_node[SIZE_AC + nid], nid);
1504 if (INDEX_AC != INDEX_NODE) {
1505 init_list(kmalloc_caches[INDEX_NODE],
1506 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1511 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1514 void __init kmem_cache_init_late(void)
1516 struct kmem_cache *cachep;
1520 /* 6) resize the head arrays to their final sizes */
1521 mutex_lock(&slab_mutex);
1522 list_for_each_entry(cachep, &slab_caches, list)
1523 if (enable_cpucache(cachep, GFP_NOWAIT))
1525 mutex_unlock(&slab_mutex);
1531 * Register a cpu startup notifier callback that initializes
1532 * cpu_cache_get for all new cpus
1534 register_cpu_notifier(&cpucache_notifier);
1538 * Register a memory hotplug callback that initializes and frees
1541 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1545 * The reap timers are started later, with a module init call: That part
1546 * of the kernel is not yet operational.
1550 static int __init cpucache_init(void)
1555 * Register the timers that return unneeded pages to the page allocator
1557 for_each_online_cpu(cpu)
1558 start_cpu_timer(cpu);
1564 __initcall(cpucache_init);
1566 static noinline void
1567 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1570 struct kmem_cache_node *n;
1572 unsigned long flags;
1574 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1575 DEFAULT_RATELIMIT_BURST);
1577 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1581 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1583 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1584 cachep->name, cachep->size, cachep->gfporder);
1586 for_each_kmem_cache_node(cachep, node, n) {
1587 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1588 unsigned long active_slabs = 0, num_slabs = 0;
1590 spin_lock_irqsave(&n->list_lock, flags);
1591 list_for_each_entry(page, &n->slabs_full, lru) {
1592 active_objs += cachep->num;
1595 list_for_each_entry(page, &n->slabs_partial, lru) {
1596 active_objs += page->active;
1599 list_for_each_entry(page, &n->slabs_free, lru)
1602 free_objects += n->free_objects;
1603 spin_unlock_irqrestore(&n->list_lock, flags);
1605 num_slabs += active_slabs;
1606 num_objs = num_slabs * cachep->num;
1608 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1609 node, active_slabs, num_slabs, active_objs, num_objs,
1616 * Interface to system's page allocator. No need to hold the
1617 * kmem_cache_node ->list_lock.
1619 * If we requested dmaable memory, we will get it. Even if we
1620 * did not request dmaable memory, we might get it, but that
1621 * would be relatively rare and ignorable.
1623 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1629 flags |= cachep->allocflags;
1630 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1631 flags |= __GFP_RECLAIMABLE;
1633 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1636 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1638 memcg_uncharge_slab(cachep, cachep->gfporder);
1639 slab_out_of_memory(cachep, flags, nodeid);
1643 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1644 if (unlikely(page->pfmemalloc))
1645 pfmemalloc_active = true;
1647 nr_pages = (1 << cachep->gfporder);
1648 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1649 add_zone_page_state(page_zone(page),
1650 NR_SLAB_RECLAIMABLE, nr_pages);
1652 add_zone_page_state(page_zone(page),
1653 NR_SLAB_UNRECLAIMABLE, nr_pages);
1654 __SetPageSlab(page);
1655 if (page->pfmemalloc)
1656 SetPageSlabPfmemalloc(page);
1658 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1659 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1662 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1664 kmemcheck_mark_unallocated_pages(page, nr_pages);
1671 * Interface to system's page release.
1673 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1675 const unsigned long nr_freed = (1 << cachep->gfporder);
1677 kmemcheck_free_shadow(page, cachep->gfporder);
1679 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1680 sub_zone_page_state(page_zone(page),
1681 NR_SLAB_RECLAIMABLE, nr_freed);
1683 sub_zone_page_state(page_zone(page),
1684 NR_SLAB_UNRECLAIMABLE, nr_freed);
1686 BUG_ON(!PageSlab(page));
1687 __ClearPageSlabPfmemalloc(page);
1688 __ClearPageSlab(page);
1689 page_mapcount_reset(page);
1690 page->mapping = NULL;
1692 if (current->reclaim_state)
1693 current->reclaim_state->reclaimed_slab += nr_freed;
1694 __free_pages(page, cachep->gfporder);
1695 memcg_uncharge_slab(cachep, cachep->gfporder);
1698 static void kmem_rcu_free(struct rcu_head *head)
1700 struct kmem_cache *cachep;
1703 page = container_of(head, struct page, rcu_head);
1704 cachep = page->slab_cache;
1706 kmem_freepages(cachep, page);
1711 #ifdef CONFIG_DEBUG_PAGEALLOC
1712 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1713 unsigned long caller)
1715 int size = cachep->object_size;
1717 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1719 if (size < 5 * sizeof(unsigned long))
1722 *addr++ = 0x12345678;
1724 *addr++ = smp_processor_id();
1725 size -= 3 * sizeof(unsigned long);
1727 unsigned long *sptr = &caller;
1728 unsigned long svalue;
1730 while (!kstack_end(sptr)) {
1732 if (kernel_text_address(svalue)) {
1734 size -= sizeof(unsigned long);
1735 if (size <= sizeof(unsigned long))
1741 *addr++ = 0x87654321;
1745 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1747 int size = cachep->object_size;
1748 addr = &((char *)addr)[obj_offset(cachep)];
1750 memset(addr, val, size);
1751 *(unsigned char *)(addr + size - 1) = POISON_END;
1754 static void dump_line(char *data, int offset, int limit)
1757 unsigned char error = 0;
1760 printk(KERN_ERR "%03x: ", offset);
1761 for (i = 0; i < limit; i++) {
1762 if (data[offset + i] != POISON_FREE) {
1763 error = data[offset + i];
1767 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1768 &data[offset], limit, 1);
1770 if (bad_count == 1) {
1771 error ^= POISON_FREE;
1772 if (!(error & (error - 1))) {
1773 printk(KERN_ERR "Single bit error detected. Probably "
1776 printk(KERN_ERR "Run memtest86+ or a similar memory "
1779 printk(KERN_ERR "Run a memory test tool.\n");
1788 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1793 if (cachep->flags & SLAB_RED_ZONE) {
1794 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1795 *dbg_redzone1(cachep, objp),
1796 *dbg_redzone2(cachep, objp));
1799 if (cachep->flags & SLAB_STORE_USER) {
1800 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1801 *dbg_userword(cachep, objp),
1802 *dbg_userword(cachep, objp));
1804 realobj = (char *)objp + obj_offset(cachep);
1805 size = cachep->object_size;
1806 for (i = 0; i < size && lines; i += 16, lines--) {
1809 if (i + limit > size)
1811 dump_line(realobj, i, limit);
1815 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1821 realobj = (char *)objp + obj_offset(cachep);
1822 size = cachep->object_size;
1824 for (i = 0; i < size; i++) {
1825 char exp = POISON_FREE;
1828 if (realobj[i] != exp) {
1834 "Slab corruption (%s): %s start=%p, len=%d\n",
1835 print_tainted(), cachep->name, realobj, size);
1836 print_objinfo(cachep, objp, 0);
1838 /* Hexdump the affected line */
1841 if (i + limit > size)
1843 dump_line(realobj, i, limit);
1846 /* Limit to 5 lines */
1852 /* Print some data about the neighboring objects, if they
1855 struct page *page = virt_to_head_page(objp);
1858 objnr = obj_to_index(cachep, page, objp);
1860 objp = index_to_obj(cachep, page, objnr - 1);
1861 realobj = (char *)objp + obj_offset(cachep);
1862 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1864 print_objinfo(cachep, objp, 2);
1866 if (objnr + 1 < cachep->num) {
1867 objp = index_to_obj(cachep, page, objnr + 1);
1868 realobj = (char *)objp + obj_offset(cachep);
1869 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1871 print_objinfo(cachep, objp, 2);
1878 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1882 for (i = 0; i < cachep->num; i++) {
1883 void *objp = index_to_obj(cachep, page, i);
1885 if (cachep->flags & SLAB_POISON) {
1886 #ifdef CONFIG_DEBUG_PAGEALLOC
1887 if (cachep->size % PAGE_SIZE == 0 &&
1889 kernel_map_pages(virt_to_page(objp),
1890 cachep->size / PAGE_SIZE, 1);
1892 check_poison_obj(cachep, objp);
1894 check_poison_obj(cachep, objp);
1897 if (cachep->flags & SLAB_RED_ZONE) {
1898 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1899 slab_error(cachep, "start of a freed object "
1901 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1902 slab_error(cachep, "end of a freed object "
1908 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1915 * slab_destroy - destroy and release all objects in a slab
1916 * @cachep: cache pointer being destroyed
1917 * @page: page pointer being destroyed
1919 * Destroy all the objs in a slab page, and release the mem back to the system.
1920 * Before calling the slab page must have been unlinked from the cache. The
1921 * kmem_cache_node ->list_lock is not held/needed.
1923 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1927 freelist = page->freelist;
1928 slab_destroy_debugcheck(cachep, page);
1929 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1930 struct rcu_head *head;
1933 * RCU free overloads the RCU head over the LRU.
1934 * slab_page has been overloeaded over the LRU,
1935 * however it is not used from now on so that
1936 * we can use it safely.
1938 head = (void *)&page->rcu_head;
1939 call_rcu(head, kmem_rcu_free);
1942 kmem_freepages(cachep, page);
1946 * From now on, we don't use freelist
1947 * although actual page can be freed in rcu context
1949 if (OFF_SLAB(cachep))
1950 kmem_cache_free(cachep->freelist_cache, freelist);
1953 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1955 struct page *page, *n;
1957 list_for_each_entry_safe(page, n, list, lru) {
1958 list_del(&page->lru);
1959 slab_destroy(cachep, page);
1964 * calculate_slab_order - calculate size (page order) of slabs
1965 * @cachep: pointer to the cache that is being created
1966 * @size: size of objects to be created in this cache.
1967 * @align: required alignment for the objects.
1968 * @flags: slab allocation flags
1970 * Also calculates the number of objects per slab.
1972 * This could be made much more intelligent. For now, try to avoid using
1973 * high order pages for slabs. When the gfp() functions are more friendly
1974 * towards high-order requests, this should be changed.
1976 static size_t calculate_slab_order(struct kmem_cache *cachep,
1977 size_t size, size_t align, unsigned long flags)
1979 unsigned long offslab_limit;
1980 size_t left_over = 0;
1983 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1987 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1991 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1992 if (num > SLAB_OBJ_MAX_NUM)
1995 if (flags & CFLGS_OFF_SLAB) {
1996 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1998 * Max number of objs-per-slab for caches which
1999 * use off-slab slabs. Needed to avoid a possible
2000 * looping condition in cache_grow().
2002 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
2003 freelist_size_per_obj += sizeof(char);
2004 offslab_limit = size;
2005 offslab_limit /= freelist_size_per_obj;
2007 if (num > offslab_limit)
2011 /* Found something acceptable - save it away */
2013 cachep->gfporder = gfporder;
2014 left_over = remainder;
2017 * A VFS-reclaimable slab tends to have most allocations
2018 * as GFP_NOFS and we really don't want to have to be allocating
2019 * higher-order pages when we are unable to shrink dcache.
2021 if (flags & SLAB_RECLAIM_ACCOUNT)
2025 * Large number of objects is good, but very large slabs are
2026 * currently bad for the gfp()s.
2028 if (gfporder >= slab_max_order)
2032 * Acceptable internal fragmentation?
2034 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2040 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2042 if (slab_state >= FULL)
2043 return enable_cpucache(cachep, gfp);
2045 if (slab_state == DOWN) {
2047 * Note: Creation of first cache (kmem_cache).
2048 * The setup_node is taken care
2049 * of by the caller of __kmem_cache_create
2051 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2052 slab_state = PARTIAL;
2053 } else if (slab_state == PARTIAL) {
2055 * Note: the second kmem_cache_create must create the cache
2056 * that's used by kmalloc(24), otherwise the creation of
2057 * further caches will BUG().
2059 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2062 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2063 * the second cache, then we need to set up all its node/,
2064 * otherwise the creation of further caches will BUG().
2066 set_up_node(cachep, SIZE_AC);
2067 if (INDEX_AC == INDEX_NODE)
2068 slab_state = PARTIAL_NODE;
2070 slab_state = PARTIAL_ARRAYCACHE;
2072 /* Remaining boot caches */
2073 cachep->array[smp_processor_id()] =
2074 kmalloc(sizeof(struct arraycache_init), gfp);
2076 if (slab_state == PARTIAL_ARRAYCACHE) {
2077 set_up_node(cachep, SIZE_NODE);
2078 slab_state = PARTIAL_NODE;
2081 for_each_online_node(node) {
2082 cachep->node[node] =
2083 kmalloc_node(sizeof(struct kmem_cache_node),
2085 BUG_ON(!cachep->node[node]);
2086 kmem_cache_node_init(cachep->node[node]);
2090 cachep->node[numa_mem_id()]->next_reap =
2091 jiffies + REAPTIMEOUT_NODE +
2092 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2094 cpu_cache_get(cachep)->avail = 0;
2095 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2096 cpu_cache_get(cachep)->batchcount = 1;
2097 cpu_cache_get(cachep)->touched = 0;
2098 cachep->batchcount = 1;
2099 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2104 * __kmem_cache_create - Create a cache.
2105 * @cachep: cache management descriptor
2106 * @flags: SLAB flags
2108 * Returns a ptr to the cache on success, NULL on failure.
2109 * Cannot be called within a int, but can be interrupted.
2110 * The @ctor is run when new pages are allocated by the cache.
2114 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2115 * to catch references to uninitialised memory.
2117 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2118 * for buffer overruns.
2120 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2121 * cacheline. This can be beneficial if you're counting cycles as closely
2125 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2127 size_t left_over, freelist_size;
2128 size_t ralign = BYTES_PER_WORD;
2131 size_t size = cachep->size;
2136 * Enable redzoning and last user accounting, except for caches with
2137 * large objects, if the increased size would increase the object size
2138 * above the next power of two: caches with object sizes just above a
2139 * power of two have a significant amount of internal fragmentation.
2141 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2142 2 * sizeof(unsigned long long)))
2143 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2144 if (!(flags & SLAB_DESTROY_BY_RCU))
2145 flags |= SLAB_POISON;
2147 if (flags & SLAB_DESTROY_BY_RCU)
2148 BUG_ON(flags & SLAB_POISON);
2152 * Check that size is in terms of words. This is needed to avoid
2153 * unaligned accesses for some archs when redzoning is used, and makes
2154 * sure any on-slab bufctl's are also correctly aligned.
2156 if (size & (BYTES_PER_WORD - 1)) {
2157 size += (BYTES_PER_WORD - 1);
2158 size &= ~(BYTES_PER_WORD - 1);
2161 if (flags & SLAB_RED_ZONE) {
2162 ralign = REDZONE_ALIGN;
2163 /* If redzoning, ensure that the second redzone is suitably
2164 * aligned, by adjusting the object size accordingly. */
2165 size += REDZONE_ALIGN - 1;
2166 size &= ~(REDZONE_ALIGN - 1);
2169 /* 3) caller mandated alignment */
2170 if (ralign < cachep->align) {
2171 ralign = cachep->align;
2173 /* disable debug if necessary */
2174 if (ralign > __alignof__(unsigned long long))
2175 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2179 cachep->align = ralign;
2181 if (slab_is_available())
2186 setup_node_pointer(cachep);
2190 * Both debugging options require word-alignment which is calculated
2193 if (flags & SLAB_RED_ZONE) {
2194 /* add space for red zone words */
2195 cachep->obj_offset += sizeof(unsigned long long);
2196 size += 2 * sizeof(unsigned long long);
2198 if (flags & SLAB_STORE_USER) {
2199 /* user store requires one word storage behind the end of
2200 * the real object. But if the second red zone needs to be
2201 * aligned to 64 bits, we must allow that much space.
2203 if (flags & SLAB_RED_ZONE)
2204 size += REDZONE_ALIGN;
2206 size += BYTES_PER_WORD;
2208 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2209 if (size >= kmalloc_size(INDEX_NODE + 1)
2210 && cachep->object_size > cache_line_size()
2211 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2212 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2219 * Determine if the slab management is 'on' or 'off' slab.
2220 * (bootstrapping cannot cope with offslab caches so don't do
2221 * it too early on. Always use on-slab management when
2222 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2224 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2225 !(flags & SLAB_NOLEAKTRACE))
2227 * Size is large, assume best to place the slab management obj
2228 * off-slab (should allow better packing of objs).
2230 flags |= CFLGS_OFF_SLAB;
2232 size = ALIGN(size, cachep->align);
2234 * We should restrict the number of objects in a slab to implement
2235 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2237 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2238 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2240 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2245 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2248 * If the slab has been placed off-slab, and we have enough space then
2249 * move it on-slab. This is at the expense of any extra colouring.
2251 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2252 flags &= ~CFLGS_OFF_SLAB;
2253 left_over -= freelist_size;
2256 if (flags & CFLGS_OFF_SLAB) {
2257 /* really off slab. No need for manual alignment */
2258 freelist_size = calculate_freelist_size(cachep->num, 0);
2260 #ifdef CONFIG_PAGE_POISONING
2261 /* If we're going to use the generic kernel_map_pages()
2262 * poisoning, then it's going to smash the contents of
2263 * the redzone and userword anyhow, so switch them off.
2265 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2266 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2270 cachep->colour_off = cache_line_size();
2271 /* Offset must be a multiple of the alignment. */
2272 if (cachep->colour_off < cachep->align)
2273 cachep->colour_off = cachep->align;
2274 cachep->colour = left_over / cachep->colour_off;
2275 cachep->freelist_size = freelist_size;
2276 cachep->flags = flags;
2277 cachep->allocflags = __GFP_COMP;
2278 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2279 cachep->allocflags |= GFP_DMA;
2280 cachep->size = size;
2281 cachep->reciprocal_buffer_size = reciprocal_value(size);
2283 if (flags & CFLGS_OFF_SLAB) {
2284 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2286 * This is a possibility for one of the kmalloc_{dma,}_caches.
2287 * But since we go off slab only for object size greater than
2288 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2289 * in ascending order,this should not happen at all.
2290 * But leave a BUG_ON for some lucky dude.
2292 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2295 err = setup_cpu_cache(cachep, gfp);
2297 __kmem_cache_shutdown(cachep);
2305 static void check_irq_off(void)
2307 BUG_ON(!irqs_disabled());
2310 static void check_irq_on(void)
2312 BUG_ON(irqs_disabled());
2315 static void check_spinlock_acquired(struct kmem_cache *cachep)
2319 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2323 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2327 assert_spin_locked(&get_node(cachep, node)->list_lock);
2332 #define check_irq_off() do { } while(0)
2333 #define check_irq_on() do { } while(0)
2334 #define check_spinlock_acquired(x) do { } while(0)
2335 #define check_spinlock_acquired_node(x, y) do { } while(0)
2338 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2339 struct array_cache *ac,
2340 int force, int node);
2342 static void do_drain(void *arg)
2344 struct kmem_cache *cachep = arg;
2345 struct array_cache *ac;
2346 int node = numa_mem_id();
2347 struct kmem_cache_node *n;
2351 ac = cpu_cache_get(cachep);
2352 n = get_node(cachep, node);
2353 spin_lock(&n->list_lock);
2354 free_block(cachep, ac->entry, ac->avail, node, &list);
2355 spin_unlock(&n->list_lock);
2356 slabs_destroy(cachep, &list);
2360 static void drain_cpu_caches(struct kmem_cache *cachep)
2362 struct kmem_cache_node *n;
2365 on_each_cpu(do_drain, cachep, 1);
2367 for_each_kmem_cache_node(cachep, node, n)
2369 drain_alien_cache(cachep, n->alien);
2371 for_each_kmem_cache_node(cachep, node, n)
2372 drain_array(cachep, n, n->shared, 1, node);
2376 * Remove slabs from the list of free slabs.
2377 * Specify the number of slabs to drain in tofree.
2379 * Returns the actual number of slabs released.
2381 static int drain_freelist(struct kmem_cache *cache,
2382 struct kmem_cache_node *n, int tofree)
2384 struct list_head *p;
2389 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2391 spin_lock_irq(&n->list_lock);
2392 p = n->slabs_free.prev;
2393 if (p == &n->slabs_free) {
2394 spin_unlock_irq(&n->list_lock);
2398 page = list_entry(p, struct page, lru);
2400 BUG_ON(page->active);
2402 list_del(&page->lru);
2404 * Safe to drop the lock. The slab is no longer linked
2407 n->free_objects -= cache->num;
2408 spin_unlock_irq(&n->list_lock);
2409 slab_destroy(cache, page);
2416 int __kmem_cache_shrink(struct kmem_cache *cachep)
2420 struct kmem_cache_node *n;
2422 drain_cpu_caches(cachep);
2425 for_each_kmem_cache_node(cachep, node, n) {
2426 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2428 ret += !list_empty(&n->slabs_full) ||
2429 !list_empty(&n->slabs_partial);
2431 return (ret ? 1 : 0);
2434 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2437 struct kmem_cache_node *n;
2438 int rc = __kmem_cache_shrink(cachep);
2443 for_each_online_cpu(i)
2444 kfree(cachep->array[i]);
2446 /* NUMA: free the node structures */
2447 for_each_kmem_cache_node(cachep, i, n) {
2449 free_alien_cache(n->alien);
2451 cachep->node[i] = NULL;
2457 * Get the memory for a slab management obj.
2459 * For a slab cache when the slab descriptor is off-slab, the
2460 * slab descriptor can't come from the same cache which is being created,
2461 * Because if it is the case, that means we defer the creation of
2462 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2463 * And we eventually call down to __kmem_cache_create(), which
2464 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2465 * This is a "chicken-and-egg" problem.
2467 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2468 * which are all initialized during kmem_cache_init().
2470 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2471 struct page *page, int colour_off,
2472 gfp_t local_flags, int nodeid)
2475 void *addr = page_address(page);
2477 if (OFF_SLAB(cachep)) {
2478 /* Slab management obj is off-slab. */
2479 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2480 local_flags, nodeid);
2484 freelist = addr + colour_off;
2485 colour_off += cachep->freelist_size;
2488 page->s_mem = addr + colour_off;
2492 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2494 return ((freelist_idx_t *)page->freelist)[idx];
2497 static inline void set_free_obj(struct page *page,
2498 unsigned int idx, freelist_idx_t val)
2500 ((freelist_idx_t *)(page->freelist))[idx] = val;
2503 static void cache_init_objs(struct kmem_cache *cachep,
2508 for (i = 0; i < cachep->num; i++) {
2509 void *objp = index_to_obj(cachep, page, i);
2511 /* need to poison the objs? */
2512 if (cachep->flags & SLAB_POISON)
2513 poison_obj(cachep, objp, POISON_FREE);
2514 if (cachep->flags & SLAB_STORE_USER)
2515 *dbg_userword(cachep, objp) = NULL;
2517 if (cachep->flags & SLAB_RED_ZONE) {
2518 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2519 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2522 * Constructors are not allowed to allocate memory from the same
2523 * cache which they are a constructor for. Otherwise, deadlock.
2524 * They must also be threaded.
2526 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2527 cachep->ctor(objp + obj_offset(cachep));
2529 if (cachep->flags & SLAB_RED_ZONE) {
2530 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2531 slab_error(cachep, "constructor overwrote the"
2532 " end of an object");
2533 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2534 slab_error(cachep, "constructor overwrote the"
2535 " start of an object");
2537 if ((cachep->size % PAGE_SIZE) == 0 &&
2538 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2539 kernel_map_pages(virt_to_page(objp),
2540 cachep->size / PAGE_SIZE, 0);
2545 set_obj_status(page, i, OBJECT_FREE);
2546 set_free_obj(page, i, i);
2550 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2552 if (CONFIG_ZONE_DMA_FLAG) {
2553 if (flags & GFP_DMA)
2554 BUG_ON(!(cachep->allocflags & GFP_DMA));
2556 BUG_ON(cachep->allocflags & GFP_DMA);
2560 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2565 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2568 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2574 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2575 void *objp, int nodeid)
2577 unsigned int objnr = obj_to_index(cachep, page, objp);
2581 /* Verify that the slab belongs to the intended node */
2582 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2584 /* Verify double free bug */
2585 for (i = page->active; i < cachep->num; i++) {
2586 if (get_free_obj(page, i) == objnr) {
2587 printk(KERN_ERR "slab: double free detected in cache "
2588 "'%s', objp %p\n", cachep->name, objp);
2594 set_free_obj(page, page->active, objnr);
2598 * Map pages beginning at addr to the given cache and slab. This is required
2599 * for the slab allocator to be able to lookup the cache and slab of a
2600 * virtual address for kfree, ksize, and slab debugging.
2602 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2605 page->slab_cache = cache;
2606 page->freelist = freelist;
2610 * Grow (by 1) the number of slabs within a cache. This is called by
2611 * kmem_cache_alloc() when there are no active objs left in a cache.
2613 static int cache_grow(struct kmem_cache *cachep,
2614 gfp_t flags, int nodeid, struct page *page)
2619 struct kmem_cache_node *n;
2622 * Be lazy and only check for valid flags here, keeping it out of the
2623 * critical path in kmem_cache_alloc().
2625 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2626 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2628 /* Take the node list lock to change the colour_next on this node */
2630 n = get_node(cachep, nodeid);
2631 spin_lock(&n->list_lock);
2633 /* Get colour for the slab, and cal the next value. */
2634 offset = n->colour_next;
2636 if (n->colour_next >= cachep->colour)
2638 spin_unlock(&n->list_lock);
2640 offset *= cachep->colour_off;
2642 if (local_flags & __GFP_WAIT)
2646 * The test for missing atomic flag is performed here, rather than
2647 * the more obvious place, simply to reduce the critical path length
2648 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2649 * will eventually be caught here (where it matters).
2651 kmem_flagcheck(cachep, flags);
2654 * Get mem for the objs. Attempt to allocate a physical page from
2658 page = kmem_getpages(cachep, local_flags, nodeid);
2662 /* Get slab management. */
2663 freelist = alloc_slabmgmt(cachep, page, offset,
2664 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2668 slab_map_pages(cachep, page, freelist);
2670 cache_init_objs(cachep, page);
2672 if (local_flags & __GFP_WAIT)
2673 local_irq_disable();
2675 spin_lock(&n->list_lock);
2677 /* Make slab active. */
2678 list_add_tail(&page->lru, &(n->slabs_free));
2679 STATS_INC_GROWN(cachep);
2680 n->free_objects += cachep->num;
2681 spin_unlock(&n->list_lock);
2684 kmem_freepages(cachep, page);
2686 if (local_flags & __GFP_WAIT)
2687 local_irq_disable();
2694 * Perform extra freeing checks:
2695 * - detect bad pointers.
2696 * - POISON/RED_ZONE checking
2698 static void kfree_debugcheck(const void *objp)
2700 if (!virt_addr_valid(objp)) {
2701 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2702 (unsigned long)objp);
2707 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2709 unsigned long long redzone1, redzone2;
2711 redzone1 = *dbg_redzone1(cache, obj);
2712 redzone2 = *dbg_redzone2(cache, obj);
2717 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2720 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2721 slab_error(cache, "double free detected");
2723 slab_error(cache, "memory outside object was overwritten");
2725 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2726 obj, redzone1, redzone2);
2729 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2730 unsigned long caller)
2735 BUG_ON(virt_to_cache(objp) != cachep);
2737 objp -= obj_offset(cachep);
2738 kfree_debugcheck(objp);
2739 page = virt_to_head_page(objp);
2741 if (cachep->flags & SLAB_RED_ZONE) {
2742 verify_redzone_free(cachep, objp);
2743 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2744 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2746 if (cachep->flags & SLAB_STORE_USER)
2747 *dbg_userword(cachep, objp) = (void *)caller;
2749 objnr = obj_to_index(cachep, page, objp);
2751 BUG_ON(objnr >= cachep->num);
2752 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2754 set_obj_status(page, objnr, OBJECT_FREE);
2755 if (cachep->flags & SLAB_POISON) {
2756 #ifdef CONFIG_DEBUG_PAGEALLOC
2757 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2758 store_stackinfo(cachep, objp, caller);
2759 kernel_map_pages(virt_to_page(objp),
2760 cachep->size / PAGE_SIZE, 0);
2762 poison_obj(cachep, objp, POISON_FREE);
2765 poison_obj(cachep, objp, POISON_FREE);
2772 #define kfree_debugcheck(x) do { } while(0)
2773 #define cache_free_debugcheck(x,objp,z) (objp)
2776 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2780 struct kmem_cache_node *n;
2781 struct array_cache *ac;
2785 node = numa_mem_id();
2786 if (unlikely(force_refill))
2789 ac = cpu_cache_get(cachep);
2790 batchcount = ac->batchcount;
2791 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2793 * If there was little recent activity on this cache, then
2794 * perform only a partial refill. Otherwise we could generate
2797 batchcount = BATCHREFILL_LIMIT;
2799 n = get_node(cachep, node);
2801 BUG_ON(ac->avail > 0 || !n);
2802 spin_lock(&n->list_lock);
2804 /* See if we can refill from the shared array */
2805 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2806 n->shared->touched = 1;
2810 while (batchcount > 0) {
2811 struct list_head *entry;
2813 /* Get slab alloc is to come from. */
2814 entry = n->slabs_partial.next;
2815 if (entry == &n->slabs_partial) {
2816 n->free_touched = 1;
2817 entry = n->slabs_free.next;
2818 if (entry == &n->slabs_free)
2822 page = list_entry(entry, struct page, lru);
2823 check_spinlock_acquired(cachep);
2826 * The slab was either on partial or free list so
2827 * there must be at least one object available for
2830 BUG_ON(page->active >= cachep->num);
2832 while (page->active < cachep->num && batchcount--) {
2833 STATS_INC_ALLOCED(cachep);
2834 STATS_INC_ACTIVE(cachep);
2835 STATS_SET_HIGH(cachep);
2837 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2841 /* move slabp to correct slabp list: */
2842 list_del(&page->lru);
2843 if (page->active == cachep->num)
2844 list_add(&page->lru, &n->slabs_full);
2846 list_add(&page->lru, &n->slabs_partial);
2850 n->free_objects -= ac->avail;
2852 spin_unlock(&n->list_lock);
2854 if (unlikely(!ac->avail)) {
2857 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2859 /* cache_grow can reenable interrupts, then ac could change. */
2860 ac = cpu_cache_get(cachep);
2861 node = numa_mem_id();
2863 /* no objects in sight? abort */
2864 if (!x && (ac->avail == 0 || force_refill))
2867 if (!ac->avail) /* objects refilled by interrupt? */
2872 return ac_get_obj(cachep, ac, flags, force_refill);
2875 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2878 might_sleep_if(flags & __GFP_WAIT);
2880 kmem_flagcheck(cachep, flags);
2885 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2886 gfp_t flags, void *objp, unsigned long caller)
2892 if (cachep->flags & SLAB_POISON) {
2893 #ifdef CONFIG_DEBUG_PAGEALLOC
2894 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2895 kernel_map_pages(virt_to_page(objp),
2896 cachep->size / PAGE_SIZE, 1);
2898 check_poison_obj(cachep, objp);
2900 check_poison_obj(cachep, objp);
2902 poison_obj(cachep, objp, POISON_INUSE);
2904 if (cachep->flags & SLAB_STORE_USER)
2905 *dbg_userword(cachep, objp) = (void *)caller;
2907 if (cachep->flags & SLAB_RED_ZONE) {
2908 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2909 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2910 slab_error(cachep, "double free, or memory outside"
2911 " object was overwritten");
2913 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2914 objp, *dbg_redzone1(cachep, objp),
2915 *dbg_redzone2(cachep, objp));
2917 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2918 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2921 page = virt_to_head_page(objp);
2922 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2923 objp += obj_offset(cachep);
2924 if (cachep->ctor && cachep->flags & SLAB_POISON)
2926 if (ARCH_SLAB_MINALIGN &&
2927 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2928 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2929 objp, (int)ARCH_SLAB_MINALIGN);
2934 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2937 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2939 if (unlikely(cachep == kmem_cache))
2942 return should_failslab(cachep->object_size, flags, cachep->flags);
2945 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2948 struct array_cache *ac;
2949 bool force_refill = false;
2953 ac = cpu_cache_get(cachep);
2954 if (likely(ac->avail)) {
2956 objp = ac_get_obj(cachep, ac, flags, false);
2959 * Allow for the possibility all avail objects are not allowed
2960 * by the current flags
2963 STATS_INC_ALLOCHIT(cachep);
2966 force_refill = true;
2969 STATS_INC_ALLOCMISS(cachep);
2970 objp = cache_alloc_refill(cachep, flags, force_refill);
2972 * the 'ac' may be updated by cache_alloc_refill(),
2973 * and kmemleak_erase() requires its correct value.
2975 ac = cpu_cache_get(cachep);
2979 * To avoid a false negative, if an object that is in one of the
2980 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2981 * treat the array pointers as a reference to the object.
2984 kmemleak_erase(&ac->entry[ac->avail]);
2990 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2992 * If we are in_interrupt, then process context, including cpusets and
2993 * mempolicy, may not apply and should not be used for allocation policy.
2995 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2997 int nid_alloc, nid_here;
2999 if (in_interrupt() || (flags & __GFP_THISNODE))
3001 nid_alloc = nid_here = numa_mem_id();
3002 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3003 nid_alloc = cpuset_slab_spread_node();
3004 else if (current->mempolicy)
3005 nid_alloc = mempolicy_slab_node();
3006 if (nid_alloc != nid_here)
3007 return ____cache_alloc_node(cachep, flags, nid_alloc);
3012 * Fallback function if there was no memory available and no objects on a
3013 * certain node and fall back is permitted. First we scan all the
3014 * available node for available objects. If that fails then we
3015 * perform an allocation without specifying a node. This allows the page
3016 * allocator to do its reclaim / fallback magic. We then insert the
3017 * slab into the proper nodelist and then allocate from it.
3019 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3021 struct zonelist *zonelist;
3025 enum zone_type high_zoneidx = gfp_zone(flags);
3028 unsigned int cpuset_mems_cookie;
3030 if (flags & __GFP_THISNODE)
3033 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3036 cpuset_mems_cookie = read_mems_allowed_begin();
3037 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3041 * Look through allowed nodes for objects available
3042 * from existing per node queues.
3044 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3045 nid = zone_to_nid(zone);
3047 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3048 get_node(cache, nid) &&
3049 get_node(cache, nid)->free_objects) {
3050 obj = ____cache_alloc_node(cache,
3051 flags | GFP_THISNODE, nid);
3059 * This allocation will be performed within the constraints
3060 * of the current cpuset / memory policy requirements.
3061 * We may trigger various forms of reclaim on the allowed
3062 * set and go into memory reserves if necessary.
3066 if (local_flags & __GFP_WAIT)
3068 kmem_flagcheck(cache, flags);
3069 page = kmem_getpages(cache, local_flags, numa_mem_id());
3070 if (local_flags & __GFP_WAIT)
3071 local_irq_disable();
3074 * Insert into the appropriate per node queues
3076 nid = page_to_nid(page);
3077 if (cache_grow(cache, flags, nid, page)) {
3078 obj = ____cache_alloc_node(cache,
3079 flags | GFP_THISNODE, nid);
3082 * Another processor may allocate the
3083 * objects in the slab since we are
3084 * not holding any locks.
3088 /* cache_grow already freed obj */
3094 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3100 * A interface to enable slab creation on nodeid
3102 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3105 struct list_head *entry;
3107 struct kmem_cache_node *n;
3111 VM_BUG_ON(nodeid > num_online_nodes());
3112 n = get_node(cachep, nodeid);
3117 spin_lock(&n->list_lock);
3118 entry = n->slabs_partial.next;
3119 if (entry == &n->slabs_partial) {
3120 n->free_touched = 1;
3121 entry = n->slabs_free.next;
3122 if (entry == &n->slabs_free)
3126 page = list_entry(entry, struct page, lru);
3127 check_spinlock_acquired_node(cachep, nodeid);
3129 STATS_INC_NODEALLOCS(cachep);
3130 STATS_INC_ACTIVE(cachep);
3131 STATS_SET_HIGH(cachep);
3133 BUG_ON(page->active == cachep->num);
3135 obj = slab_get_obj(cachep, page, nodeid);
3137 /* move slabp to correct slabp list: */
3138 list_del(&page->lru);
3140 if (page->active == cachep->num)
3141 list_add(&page->lru, &n->slabs_full);
3143 list_add(&page->lru, &n->slabs_partial);
3145 spin_unlock(&n->list_lock);
3149 spin_unlock(&n->list_lock);
3150 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3154 return fallback_alloc(cachep, flags);
3160 static __always_inline void *
3161 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3162 unsigned long caller)
3164 unsigned long save_flags;
3166 int slab_node = numa_mem_id();
3168 flags &= gfp_allowed_mask;
3170 lockdep_trace_alloc(flags);
3172 if (slab_should_failslab(cachep, flags))
3175 cachep = memcg_kmem_get_cache(cachep, flags);
3177 cache_alloc_debugcheck_before(cachep, flags);
3178 local_irq_save(save_flags);
3180 if (nodeid == NUMA_NO_NODE)
3183 if (unlikely(!get_node(cachep, nodeid))) {
3184 /* Node not bootstrapped yet */
3185 ptr = fallback_alloc(cachep, flags);
3189 if (nodeid == slab_node) {
3191 * Use the locally cached objects if possible.
3192 * However ____cache_alloc does not allow fallback
3193 * to other nodes. It may fail while we still have
3194 * objects on other nodes available.
3196 ptr = ____cache_alloc(cachep, flags);
3200 /* ___cache_alloc_node can fall back to other nodes */
3201 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3203 local_irq_restore(save_flags);
3204 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3205 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3209 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3210 if (unlikely(flags & __GFP_ZERO))
3211 memset(ptr, 0, cachep->object_size);
3217 static __always_inline void *
3218 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3222 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3223 objp = alternate_node_alloc(cache, flags);
3227 objp = ____cache_alloc(cache, flags);
3230 * We may just have run out of memory on the local node.
3231 * ____cache_alloc_node() knows how to locate memory on other nodes
3234 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3241 static __always_inline void *
3242 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3244 return ____cache_alloc(cachep, flags);
3247 #endif /* CONFIG_NUMA */
3249 static __always_inline void *
3250 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3252 unsigned long save_flags;
3255 flags &= gfp_allowed_mask;
3257 lockdep_trace_alloc(flags);
3259 if (slab_should_failslab(cachep, flags))
3262 cachep = memcg_kmem_get_cache(cachep, flags);
3264 cache_alloc_debugcheck_before(cachep, flags);
3265 local_irq_save(save_flags);
3266 objp = __do_cache_alloc(cachep, flags);
3267 local_irq_restore(save_flags);
3268 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3269 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3274 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3275 if (unlikely(flags & __GFP_ZERO))
3276 memset(objp, 0, cachep->object_size);
3283 * Caller needs to acquire correct kmem_cache_node's list_lock
3284 * @list: List of detached free slabs should be freed by caller
3286 static void free_block(struct kmem_cache *cachep, void **objpp,
3287 int nr_objects, int node, struct list_head *list)
3290 struct kmem_cache_node *n = get_node(cachep, node);
3292 for (i = 0; i < nr_objects; i++) {
3296 clear_obj_pfmemalloc(&objpp[i]);
3299 page = virt_to_head_page(objp);
3300 list_del(&page->lru);
3301 check_spinlock_acquired_node(cachep, node);
3302 slab_put_obj(cachep, page, objp, node);
3303 STATS_DEC_ACTIVE(cachep);
3306 /* fixup slab chains */
3307 if (page->active == 0) {
3308 if (n->free_objects > n->free_limit) {
3309 n->free_objects -= cachep->num;
3310 list_add_tail(&page->lru, list);
3312 list_add(&page->lru, &n->slabs_free);
3315 /* Unconditionally move a slab to the end of the
3316 * partial list on free - maximum time for the
3317 * other objects to be freed, too.
3319 list_add_tail(&page->lru, &n->slabs_partial);
3324 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3327 struct kmem_cache_node *n;
3328 int node = numa_mem_id();
3331 batchcount = ac->batchcount;
3333 BUG_ON(!batchcount || batchcount > ac->avail);
3336 n = get_node(cachep, node);
3337 spin_lock(&n->list_lock);
3339 struct array_cache *shared_array = n->shared;
3340 int max = shared_array->limit - shared_array->avail;
3342 if (batchcount > max)
3344 memcpy(&(shared_array->entry[shared_array->avail]),
3345 ac->entry, sizeof(void *) * batchcount);
3346 shared_array->avail += batchcount;
3351 free_block(cachep, ac->entry, batchcount, node, &list);
3356 struct list_head *p;
3358 p = n->slabs_free.next;
3359 while (p != &(n->slabs_free)) {
3362 page = list_entry(p, struct page, lru);
3363 BUG_ON(page->active);
3368 STATS_SET_FREEABLE(cachep, i);
3371 spin_unlock(&n->list_lock);
3372 slabs_destroy(cachep, &list);
3373 ac->avail -= batchcount;
3374 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3378 * Release an obj back to its cache. If the obj has a constructed state, it must
3379 * be in this state _before_ it is released. Called with disabled ints.
3381 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3382 unsigned long caller)
3384 struct array_cache *ac = cpu_cache_get(cachep);
3387 kmemleak_free_recursive(objp, cachep->flags);
3388 objp = cache_free_debugcheck(cachep, objp, caller);
3390 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3393 * Skip calling cache_free_alien() when the platform is not numa.
3394 * This will avoid cache misses that happen while accessing slabp (which
3395 * is per page memory reference) to get nodeid. Instead use a global
3396 * variable to skip the call, which is mostly likely to be present in
3399 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3402 if (likely(ac->avail < ac->limit)) {
3403 STATS_INC_FREEHIT(cachep);
3405 STATS_INC_FREEMISS(cachep);
3406 cache_flusharray(cachep, ac);
3409 ac_put_obj(cachep, ac, objp);
3413 * kmem_cache_alloc - Allocate an object
3414 * @cachep: The cache to allocate from.
3415 * @flags: See kmalloc().
3417 * Allocate an object from this cache. The flags are only relevant
3418 * if the cache has no available objects.
3420 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3422 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3424 trace_kmem_cache_alloc(_RET_IP_, ret,
3425 cachep->object_size, cachep->size, flags);
3429 EXPORT_SYMBOL(kmem_cache_alloc);
3431 #ifdef CONFIG_TRACING
3433 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3437 ret = slab_alloc(cachep, flags, _RET_IP_);
3439 trace_kmalloc(_RET_IP_, ret,
3440 size, cachep->size, flags);
3443 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3448 * kmem_cache_alloc_node - Allocate an object on the specified node
3449 * @cachep: The cache to allocate from.
3450 * @flags: See kmalloc().
3451 * @nodeid: node number of the target node.
3453 * Identical to kmem_cache_alloc but it will allocate memory on the given
3454 * node, which can improve the performance for cpu bound structures.
3456 * Fallback to other node is possible if __GFP_THISNODE is not set.
3458 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3460 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3462 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3463 cachep->object_size, cachep->size,
3468 EXPORT_SYMBOL(kmem_cache_alloc_node);
3470 #ifdef CONFIG_TRACING
3471 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3478 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3480 trace_kmalloc_node(_RET_IP_, ret,
3485 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3488 static __always_inline void *
3489 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3491 struct kmem_cache *cachep;
3493 cachep = kmalloc_slab(size, flags);
3494 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3496 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3499 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3500 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3502 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3504 EXPORT_SYMBOL(__kmalloc_node);
3506 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3507 int node, unsigned long caller)
3509 return __do_kmalloc_node(size, flags, node, caller);
3511 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3513 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3515 return __do_kmalloc_node(size, flags, node, 0);
3517 EXPORT_SYMBOL(__kmalloc_node);
3518 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3519 #endif /* CONFIG_NUMA */
3522 * __do_kmalloc - allocate memory
3523 * @size: how many bytes of memory are required.
3524 * @flags: the type of memory to allocate (see kmalloc).
3525 * @caller: function caller for debug tracking of the caller
3527 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3528 unsigned long caller)
3530 struct kmem_cache *cachep;
3533 cachep = kmalloc_slab(size, flags);
3534 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3536 ret = slab_alloc(cachep, flags, caller);
3538 trace_kmalloc(caller, ret,
3539 size, cachep->size, flags);
3545 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3546 void *__kmalloc(size_t size, gfp_t flags)
3548 return __do_kmalloc(size, flags, _RET_IP_);
3550 EXPORT_SYMBOL(__kmalloc);
3552 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3554 return __do_kmalloc(size, flags, caller);
3556 EXPORT_SYMBOL(__kmalloc_track_caller);
3559 void *__kmalloc(size_t size, gfp_t flags)
3561 return __do_kmalloc(size, flags, 0);
3563 EXPORT_SYMBOL(__kmalloc);
3567 * kmem_cache_free - Deallocate an object
3568 * @cachep: The cache the allocation was from.
3569 * @objp: The previously allocated object.
3571 * Free an object which was previously allocated from this
3574 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3576 unsigned long flags;
3577 cachep = cache_from_obj(cachep, objp);
3581 local_irq_save(flags);
3582 debug_check_no_locks_freed(objp, cachep->object_size);
3583 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3584 debug_check_no_obj_freed(objp, cachep->object_size);
3585 __cache_free(cachep, objp, _RET_IP_);
3586 local_irq_restore(flags);
3588 trace_kmem_cache_free(_RET_IP_, objp);
3590 EXPORT_SYMBOL(kmem_cache_free);
3593 * kfree - free previously allocated memory
3594 * @objp: pointer returned by kmalloc.
3596 * If @objp is NULL, no operation is performed.
3598 * Don't free memory not originally allocated by kmalloc()
3599 * or you will run into trouble.
3601 void kfree(const void *objp)
3603 struct kmem_cache *c;
3604 unsigned long flags;
3606 trace_kfree(_RET_IP_, objp);
3608 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3610 local_irq_save(flags);
3611 kfree_debugcheck(objp);
3612 c = virt_to_cache(objp);
3613 debug_check_no_locks_freed(objp, c->object_size);
3615 debug_check_no_obj_freed(objp, c->object_size);
3616 __cache_free(c, (void *)objp, _RET_IP_);
3617 local_irq_restore(flags);
3619 EXPORT_SYMBOL(kfree);
3622 * This initializes kmem_cache_node or resizes various caches for all nodes.
3624 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3627 struct kmem_cache_node *n;
3628 struct array_cache *new_shared;
3629 struct alien_cache **new_alien = NULL;
3631 for_each_online_node(node) {
3633 if (use_alien_caches) {
3634 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3640 if (cachep->shared) {
3641 new_shared = alloc_arraycache(node,
3642 cachep->shared*cachep->batchcount,
3645 free_alien_cache(new_alien);
3650 n = get_node(cachep, node);
3652 struct array_cache *shared = n->shared;
3655 spin_lock_irq(&n->list_lock);
3658 free_block(cachep, shared->entry,
3659 shared->avail, node, &list);
3661 n->shared = new_shared;
3663 n->alien = new_alien;
3666 n->free_limit = (1 + nr_cpus_node(node)) *
3667 cachep->batchcount + cachep->num;
3668 spin_unlock_irq(&n->list_lock);
3669 slabs_destroy(cachep, &list);
3671 free_alien_cache(new_alien);
3674 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3676 free_alien_cache(new_alien);
3681 kmem_cache_node_init(n);
3682 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3683 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3684 n->shared = new_shared;
3685 n->alien = new_alien;
3686 n->free_limit = (1 + nr_cpus_node(node)) *
3687 cachep->batchcount + cachep->num;
3688 cachep->node[node] = n;
3693 if (!cachep->list.next) {
3694 /* Cache is not active yet. Roll back what we did */
3697 n = get_node(cachep, node);
3700 free_alien_cache(n->alien);
3702 cachep->node[node] = NULL;
3710 struct ccupdate_struct {
3711 struct kmem_cache *cachep;
3712 struct array_cache *new[0];
3715 static void do_ccupdate_local(void *info)
3717 struct ccupdate_struct *new = info;
3718 struct array_cache *old;
3721 old = cpu_cache_get(new->cachep);
3723 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3724 new->new[smp_processor_id()] = old;
3727 /* Always called with the slab_mutex held */
3728 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3729 int batchcount, int shared, gfp_t gfp)
3731 struct ccupdate_struct *new;
3734 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3739 for_each_online_cpu(i) {
3740 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3743 for (i--; i >= 0; i--)
3749 new->cachep = cachep;
3751 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3754 cachep->batchcount = batchcount;
3755 cachep->limit = limit;
3756 cachep->shared = shared;
3758 for_each_online_cpu(i) {
3760 struct array_cache *ccold = new->new[i];
3762 struct kmem_cache_node *n;
3767 node = cpu_to_mem(i);
3768 n = get_node(cachep, node);
3769 spin_lock_irq(&n->list_lock);
3770 free_block(cachep, ccold->entry, ccold->avail, node, &list);
3771 spin_unlock_irq(&n->list_lock);
3772 slabs_destroy(cachep, &list);
3776 return alloc_kmem_cache_node(cachep, gfp);
3779 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3780 int batchcount, int shared, gfp_t gfp)
3783 struct kmem_cache *c = NULL;
3786 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3788 if (slab_state < FULL)
3791 if ((ret < 0) || !is_root_cache(cachep))
3794 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3795 for_each_memcg_cache_index(i) {
3796 c = cache_from_memcg_idx(cachep, i);
3798 /* return value determined by the parent cache only */
3799 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3805 /* Called with slab_mutex held always */
3806 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3813 if (!is_root_cache(cachep)) {
3814 struct kmem_cache *root = memcg_root_cache(cachep);
3815 limit = root->limit;
3816 shared = root->shared;
3817 batchcount = root->batchcount;
3820 if (limit && shared && batchcount)
3823 * The head array serves three purposes:
3824 * - create a LIFO ordering, i.e. return objects that are cache-warm
3825 * - reduce the number of spinlock operations.
3826 * - reduce the number of linked list operations on the slab and
3827 * bufctl chains: array operations are cheaper.
3828 * The numbers are guessed, we should auto-tune as described by
3831 if (cachep->size > 131072)
3833 else if (cachep->size > PAGE_SIZE)
3835 else if (cachep->size > 1024)
3837 else if (cachep->size > 256)
3843 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3844 * allocation behaviour: Most allocs on one cpu, most free operations
3845 * on another cpu. For these cases, an efficient object passing between
3846 * cpus is necessary. This is provided by a shared array. The array
3847 * replaces Bonwick's magazine layer.
3848 * On uniprocessor, it's functionally equivalent (but less efficient)
3849 * to a larger limit. Thus disabled by default.
3852 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3857 * With debugging enabled, large batchcount lead to excessively long
3858 * periods with disabled local interrupts. Limit the batchcount
3863 batchcount = (limit + 1) / 2;
3865 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3867 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3868 cachep->name, -err);
3873 * Drain an array if it contains any elements taking the node lock only if
3874 * necessary. Note that the node listlock also protects the array_cache
3875 * if drain_array() is used on the shared array.
3877 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3878 struct array_cache *ac, int force, int node)
3883 if (!ac || !ac->avail)
3885 if (ac->touched && !force) {
3888 spin_lock_irq(&n->list_lock);
3890 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3891 if (tofree > ac->avail)
3892 tofree = (ac->avail + 1) / 2;
3893 free_block(cachep, ac->entry, tofree, node, &list);
3894 ac->avail -= tofree;
3895 memmove(ac->entry, &(ac->entry[tofree]),
3896 sizeof(void *) * ac->avail);
3898 spin_unlock_irq(&n->list_lock);
3899 slabs_destroy(cachep, &list);
3904 * cache_reap - Reclaim memory from caches.
3905 * @w: work descriptor
3907 * Called from workqueue/eventd every few seconds.
3909 * - clear the per-cpu caches for this CPU.
3910 * - return freeable pages to the main free memory pool.
3912 * If we cannot acquire the cache chain mutex then just give up - we'll try
3913 * again on the next iteration.
3915 static void cache_reap(struct work_struct *w)
3917 struct kmem_cache *searchp;
3918 struct kmem_cache_node *n;
3919 int node = numa_mem_id();
3920 struct delayed_work *work = to_delayed_work(w);
3922 if (!mutex_trylock(&slab_mutex))
3923 /* Give up. Setup the next iteration. */
3926 list_for_each_entry(searchp, &slab_caches, list) {
3930 * We only take the node lock if absolutely necessary and we
3931 * have established with reasonable certainty that
3932 * we can do some work if the lock was obtained.
3934 n = get_node(searchp, node);
3936 reap_alien(searchp, n);
3938 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3941 * These are racy checks but it does not matter
3942 * if we skip one check or scan twice.
3944 if (time_after(n->next_reap, jiffies))
3947 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3949 drain_array(searchp, n, n->shared, 0, node);
3951 if (n->free_touched)
3952 n->free_touched = 0;
3956 freed = drain_freelist(searchp, n, (n->free_limit +
3957 5 * searchp->num - 1) / (5 * searchp->num));
3958 STATS_ADD_REAPED(searchp, freed);
3964 mutex_unlock(&slab_mutex);
3967 /* Set up the next iteration */
3968 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3971 #ifdef CONFIG_SLABINFO
3972 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3975 unsigned long active_objs;
3976 unsigned long num_objs;
3977 unsigned long active_slabs = 0;
3978 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3982 struct kmem_cache_node *n;
3986 for_each_kmem_cache_node(cachep, node, n) {
3989 spin_lock_irq(&n->list_lock);
3991 list_for_each_entry(page, &n->slabs_full, lru) {
3992 if (page->active != cachep->num && !error)
3993 error = "slabs_full accounting error";
3994 active_objs += cachep->num;
3997 list_for_each_entry(page, &n->slabs_partial, lru) {
3998 if (page->active == cachep->num && !error)
3999 error = "slabs_partial accounting error";
4000 if (!page->active && !error)
4001 error = "slabs_partial accounting error";
4002 active_objs += page->active;
4005 list_for_each_entry(page, &n->slabs_free, lru) {
4006 if (page->active && !error)
4007 error = "slabs_free accounting error";
4010 free_objects += n->free_objects;
4012 shared_avail += n->shared->avail;
4014 spin_unlock_irq(&n->list_lock);
4016 num_slabs += active_slabs;
4017 num_objs = num_slabs * cachep->num;
4018 if (num_objs - active_objs != free_objects && !error)
4019 error = "free_objects accounting error";
4021 name = cachep->name;
4023 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4025 sinfo->active_objs = active_objs;
4026 sinfo->num_objs = num_objs;
4027 sinfo->active_slabs = active_slabs;
4028 sinfo->num_slabs = num_slabs;
4029 sinfo->shared_avail = shared_avail;
4030 sinfo->limit = cachep->limit;
4031 sinfo->batchcount = cachep->batchcount;
4032 sinfo->shared = cachep->shared;
4033 sinfo->objects_per_slab = cachep->num;
4034 sinfo->cache_order = cachep->gfporder;
4037 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4041 unsigned long high = cachep->high_mark;
4042 unsigned long allocs = cachep->num_allocations;
4043 unsigned long grown = cachep->grown;
4044 unsigned long reaped = cachep->reaped;
4045 unsigned long errors = cachep->errors;
4046 unsigned long max_freeable = cachep->max_freeable;
4047 unsigned long node_allocs = cachep->node_allocs;
4048 unsigned long node_frees = cachep->node_frees;
4049 unsigned long overflows = cachep->node_overflow;
4051 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4052 "%4lu %4lu %4lu %4lu %4lu",
4053 allocs, high, grown,
4054 reaped, errors, max_freeable, node_allocs,
4055 node_frees, overflows);
4059 unsigned long allochit = atomic_read(&cachep->allochit);
4060 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4061 unsigned long freehit = atomic_read(&cachep->freehit);
4062 unsigned long freemiss = atomic_read(&cachep->freemiss);
4064 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4065 allochit, allocmiss, freehit, freemiss);
4070 #define MAX_SLABINFO_WRITE 128
4072 * slabinfo_write - Tuning for the slab allocator
4074 * @buffer: user buffer
4075 * @count: data length
4078 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4079 size_t count, loff_t *ppos)
4081 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4082 int limit, batchcount, shared, res;
4083 struct kmem_cache *cachep;
4085 if (count > MAX_SLABINFO_WRITE)
4087 if (copy_from_user(&kbuf, buffer, count))
4089 kbuf[MAX_SLABINFO_WRITE] = '\0';
4091 tmp = strchr(kbuf, ' ');
4096 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4099 /* Find the cache in the chain of caches. */
4100 mutex_lock(&slab_mutex);
4102 list_for_each_entry(cachep, &slab_caches, list) {
4103 if (!strcmp(cachep->name, kbuf)) {
4104 if (limit < 1 || batchcount < 1 ||
4105 batchcount > limit || shared < 0) {
4108 res = do_tune_cpucache(cachep, limit,
4115 mutex_unlock(&slab_mutex);
4121 #ifdef CONFIG_DEBUG_SLAB_LEAK
4123 static void *leaks_start(struct seq_file *m, loff_t *pos)
4125 mutex_lock(&slab_mutex);
4126 return seq_list_start(&slab_caches, *pos);
4129 static inline int add_caller(unsigned long *n, unsigned long v)
4139 unsigned long *q = p + 2 * i;
4153 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4159 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4167 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4168 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4171 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4176 static void show_symbol(struct seq_file *m, unsigned long address)
4178 #ifdef CONFIG_KALLSYMS
4179 unsigned long offset, size;
4180 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4182 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4183 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4185 seq_printf(m, " [%s]", modname);
4189 seq_printf(m, "%p", (void *)address);
4192 static int leaks_show(struct seq_file *m, void *p)
4194 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4196 struct kmem_cache_node *n;
4198 unsigned long *x = m->private;
4202 if (!(cachep->flags & SLAB_STORE_USER))
4204 if (!(cachep->flags & SLAB_RED_ZONE))
4207 /* OK, we can do it */
4211 for_each_kmem_cache_node(cachep, node, n) {
4214 spin_lock_irq(&n->list_lock);
4216 list_for_each_entry(page, &n->slabs_full, lru)
4217 handle_slab(x, cachep, page);
4218 list_for_each_entry(page, &n->slabs_partial, lru)
4219 handle_slab(x, cachep, page);
4220 spin_unlock_irq(&n->list_lock);
4222 name = cachep->name;
4224 /* Increase the buffer size */
4225 mutex_unlock(&slab_mutex);
4226 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4228 /* Too bad, we are really out */
4230 mutex_lock(&slab_mutex);
4233 *(unsigned long *)m->private = x[0] * 2;
4235 mutex_lock(&slab_mutex);
4236 /* Now make sure this entry will be retried */
4240 for (i = 0; i < x[1]; i++) {
4241 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4242 show_symbol(m, x[2*i+2]);
4249 static const struct seq_operations slabstats_op = {
4250 .start = leaks_start,
4256 static int slabstats_open(struct inode *inode, struct file *file)
4258 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4261 ret = seq_open(file, &slabstats_op);
4263 struct seq_file *m = file->private_data;
4264 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4273 static const struct file_operations proc_slabstats_operations = {
4274 .open = slabstats_open,
4276 .llseek = seq_lseek,
4277 .release = seq_release_private,
4281 static int __init slab_proc_init(void)
4283 #ifdef CONFIG_DEBUG_SLAB_LEAK
4284 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4288 module_init(slab_proc_init);
4292 * ksize - get the actual amount of memory allocated for a given object
4293 * @objp: Pointer to the object
4295 * kmalloc may internally round up allocations and return more memory
4296 * than requested. ksize() can be used to determine the actual amount of
4297 * memory allocated. The caller may use this additional memory, even though
4298 * a smaller amount of memory was initially specified with the kmalloc call.
4299 * The caller must guarantee that objp points to a valid object previously
4300 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4301 * must not be freed during the duration of the call.
4303 size_t ksize(const void *objp)
4306 if (unlikely(objp == ZERO_SIZE_PTR))
4309 return virt_to_cache(objp)->object_size;
4311 EXPORT_SYMBOL(ksize);