]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_engine_cs.c
Merge tag 'clang-format-6.8' of https://github.com/ojeda/linux
[linux.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
44
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
49
50 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
51
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54         u8 class;
55         u8 instance;
56         /* mmio bases table *must* be sorted in reverse graphics_ver order */
57         struct engine_mmio_base {
58                 u32 graphics_ver : 8;
59                 u32 base : 24;
60         } mmio_bases[MAX_MMIO_BASES];
61 };
62
63 static const struct engine_info intel_engines[] = {
64         [RCS0] = {
65                 .class = RENDER_CLASS,
66                 .instance = 0,
67                 .mmio_bases = {
68                         { .graphics_ver = 1, .base = RENDER_RING_BASE }
69                 },
70         },
71         [BCS0] = {
72                 .class = COPY_ENGINE_CLASS,
73                 .instance = 0,
74                 .mmio_bases = {
75                         { .graphics_ver = 6, .base = BLT_RING_BASE }
76                 },
77         },
78         [BCS1] = {
79                 .class = COPY_ENGINE_CLASS,
80                 .instance = 1,
81                 .mmio_bases = {
82                         { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83                 },
84         },
85         [BCS2] = {
86                 .class = COPY_ENGINE_CLASS,
87                 .instance = 2,
88                 .mmio_bases = {
89                         { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90                 },
91         },
92         [BCS3] = {
93                 .class = COPY_ENGINE_CLASS,
94                 .instance = 3,
95                 .mmio_bases = {
96                         { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97                 },
98         },
99         [BCS4] = {
100                 .class = COPY_ENGINE_CLASS,
101                 .instance = 4,
102                 .mmio_bases = {
103                         { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104                 },
105         },
106         [BCS5] = {
107                 .class = COPY_ENGINE_CLASS,
108                 .instance = 5,
109                 .mmio_bases = {
110                         { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111                 },
112         },
113         [BCS6] = {
114                 .class = COPY_ENGINE_CLASS,
115                 .instance = 6,
116                 .mmio_bases = {
117                         { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118                 },
119         },
120         [BCS7] = {
121                 .class = COPY_ENGINE_CLASS,
122                 .instance = 7,
123                 .mmio_bases = {
124                         { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125                 },
126         },
127         [BCS8] = {
128                 .class = COPY_ENGINE_CLASS,
129                 .instance = 8,
130                 .mmio_bases = {
131                         { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132                 },
133         },
134         [VCS0] = {
135                 .class = VIDEO_DECODE_CLASS,
136                 .instance = 0,
137                 .mmio_bases = {
138                         { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139                         { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140                         { .graphics_ver = 4, .base = BSD_RING_BASE }
141                 },
142         },
143         [VCS1] = {
144                 .class = VIDEO_DECODE_CLASS,
145                 .instance = 1,
146                 .mmio_bases = {
147                         { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148                         { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149                 },
150         },
151         [VCS2] = {
152                 .class = VIDEO_DECODE_CLASS,
153                 .instance = 2,
154                 .mmio_bases = {
155                         { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156                 },
157         },
158         [VCS3] = {
159                 .class = VIDEO_DECODE_CLASS,
160                 .instance = 3,
161                 .mmio_bases = {
162                         { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163                 },
164         },
165         [VCS4] = {
166                 .class = VIDEO_DECODE_CLASS,
167                 .instance = 4,
168                 .mmio_bases = {
169                         { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170                 },
171         },
172         [VCS5] = {
173                 .class = VIDEO_DECODE_CLASS,
174                 .instance = 5,
175                 .mmio_bases = {
176                         { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177                 },
178         },
179         [VCS6] = {
180                 .class = VIDEO_DECODE_CLASS,
181                 .instance = 6,
182                 .mmio_bases = {
183                         { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184                 },
185         },
186         [VCS7] = {
187                 .class = VIDEO_DECODE_CLASS,
188                 .instance = 7,
189                 .mmio_bases = {
190                         { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191                 },
192         },
193         [VECS0] = {
194                 .class = VIDEO_ENHANCEMENT_CLASS,
195                 .instance = 0,
196                 .mmio_bases = {
197                         { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198                         { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199                 },
200         },
201         [VECS1] = {
202                 .class = VIDEO_ENHANCEMENT_CLASS,
203                 .instance = 1,
204                 .mmio_bases = {
205                         { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206                 },
207         },
208         [VECS2] = {
209                 .class = VIDEO_ENHANCEMENT_CLASS,
210                 .instance = 2,
211                 .mmio_bases = {
212                         { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213                 },
214         },
215         [VECS3] = {
216                 .class = VIDEO_ENHANCEMENT_CLASS,
217                 .instance = 3,
218                 .mmio_bases = {
219                         { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220                 },
221         },
222         [CCS0] = {
223                 .class = COMPUTE_CLASS,
224                 .instance = 0,
225                 .mmio_bases = {
226                         { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227                 }
228         },
229         [CCS1] = {
230                 .class = COMPUTE_CLASS,
231                 .instance = 1,
232                 .mmio_bases = {
233                         { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234                 }
235         },
236         [CCS2] = {
237                 .class = COMPUTE_CLASS,
238                 .instance = 2,
239                 .mmio_bases = {
240                         { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241                 }
242         },
243         [CCS3] = {
244                 .class = COMPUTE_CLASS,
245                 .instance = 3,
246                 .mmio_bases = {
247                         { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248                 }
249         },
250         [GSC0] = {
251                 .class = OTHER_CLASS,
252                 .instance = OTHER_GSC_INSTANCE,
253                 .mmio_bases = {
254                         { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255                 }
256         },
257 };
258
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275         struct intel_uncore *uncore = gt->uncore;
276         u32 cxt_size;
277
278         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280         switch (class) {
281         case COMPUTE_CLASS:
282                 fallthrough;
283         case RENDER_CLASS:
284                 switch (GRAPHICS_VER(gt->i915)) {
285                 default:
286                         MISSING_CASE(GRAPHICS_VER(gt->i915));
287                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288                 case 12:
289                 case 11:
290                         return GEN11_LR_CONTEXT_RENDER_SIZE;
291                 case 9:
292                         return GEN9_LR_CONTEXT_RENDER_SIZE;
293                 case 8:
294                         return GEN8_LR_CONTEXT_RENDER_SIZE;
295                 case 7:
296                         if (IS_HASWELL(gt->i915))
297                                 return HSW_CXT_TOTAL_SIZE;
298
299                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301                                         PAGE_SIZE);
302                 case 6:
303                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305                                         PAGE_SIZE);
306                 case 5:
307                 case 4:
308                         /*
309                          * There is a discrepancy here between the size reported
310                          * by the register and the size of the context layout
311                          * in the docs. Both are described as authorative!
312                          *
313                          * The discrepancy is on the order of a few cachelines,
314                          * but the total is under one page (4k), which is our
315                          * minimum allocation anyway so it should all come
316                          * out in the wash.
317                          */
318                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319                         gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320                                GRAPHICS_VER(gt->i915), cxt_size * 64,
321                                cxt_size - 1);
322                         return round_up(cxt_size * 64, PAGE_SIZE);
323                 case 3:
324                 case 2:
325                 /* For the special day when i810 gets merged. */
326                 case 1:
327                         return 0;
328                 }
329                 break;
330         default:
331                 MISSING_CASE(class);
332                 fallthrough;
333         case VIDEO_DECODE_CLASS:
334         case VIDEO_ENHANCEMENT_CLASS:
335         case COPY_ENGINE_CLASS:
336         case OTHER_CLASS:
337                 if (GRAPHICS_VER(gt->i915) < 8)
338                         return 0;
339                 return GEN8_LR_CONTEXT_OTHER_SIZE;
340         }
341 }
342
343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344                               const struct engine_mmio_base *bases)
345 {
346         int i;
347
348         for (i = 0; i < MAX_MMIO_BASES; i++)
349                 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350                         break;
351
352         GEM_BUG_ON(i == MAX_MMIO_BASES);
353         GEM_BUG_ON(!bases[i].base);
354
355         return bases[i].base;
356 }
357
358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360         /*
361          * Before we know what the uABI name for this engine will be,
362          * we still would like to keep track of this engine in the debug logs.
363          * We throw in a ' here as a reminder that this isn't its final name.
364          */
365         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366                              intel_engine_class_repr(engine->class),
367                              engine->instance) >= sizeof(engine->name));
368 }
369
370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372         /*
373          * Though they added more rings on g4x/ilk, they did not add
374          * per-engine HWSTAM until gen6.
375          */
376         if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377                 return;
378
379         if (GRAPHICS_VER(engine->i915) >= 3)
380                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
381         else
382                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384
385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387         /* Mask off all writes into the unknown HWSP */
388         intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390
391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393         GEM_DEBUG_WARN_ON(iir);
394 }
395
396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398         u32 reset_domain;
399
400         if (ver >= 11) {
401                 static const u32 engine_reset_domains[] = {
402                         [RCS0]  = GEN11_GRDOM_RENDER,
403                         [BCS0]  = GEN11_GRDOM_BLT,
404                         [BCS1]  = XEHPC_GRDOM_BLT1,
405                         [BCS2]  = XEHPC_GRDOM_BLT2,
406                         [BCS3]  = XEHPC_GRDOM_BLT3,
407                         [BCS4]  = XEHPC_GRDOM_BLT4,
408                         [BCS5]  = XEHPC_GRDOM_BLT5,
409                         [BCS6]  = XEHPC_GRDOM_BLT6,
410                         [BCS7]  = XEHPC_GRDOM_BLT7,
411                         [BCS8]  = XEHPC_GRDOM_BLT8,
412                         [VCS0]  = GEN11_GRDOM_MEDIA,
413                         [VCS1]  = GEN11_GRDOM_MEDIA2,
414                         [VCS2]  = GEN11_GRDOM_MEDIA3,
415                         [VCS3]  = GEN11_GRDOM_MEDIA4,
416                         [VCS4]  = GEN11_GRDOM_MEDIA5,
417                         [VCS5]  = GEN11_GRDOM_MEDIA6,
418                         [VCS6]  = GEN11_GRDOM_MEDIA7,
419                         [VCS7]  = GEN11_GRDOM_MEDIA8,
420                         [VECS0] = GEN11_GRDOM_VECS,
421                         [VECS1] = GEN11_GRDOM_VECS2,
422                         [VECS2] = GEN11_GRDOM_VECS3,
423                         [VECS3] = GEN11_GRDOM_VECS4,
424                         [CCS0]  = GEN11_GRDOM_RENDER,
425                         [CCS1]  = GEN11_GRDOM_RENDER,
426                         [CCS2]  = GEN11_GRDOM_RENDER,
427                         [CCS3]  = GEN11_GRDOM_RENDER,
428                         [GSC0]  = GEN12_GRDOM_GSC,
429                 };
430                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431                            !engine_reset_domains[id]);
432                 reset_domain = engine_reset_domains[id];
433         } else {
434                 static const u32 engine_reset_domains[] = {
435                         [RCS0]  = GEN6_GRDOM_RENDER,
436                         [BCS0]  = GEN6_GRDOM_BLT,
437                         [VCS0]  = GEN6_GRDOM_MEDIA,
438                         [VCS1]  = GEN8_GRDOM_MEDIA2,
439                         [VECS0] = GEN6_GRDOM_VECS,
440                 };
441                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442                            !engine_reset_domains[id]);
443                 reset_domain = engine_reset_domains[id];
444         }
445
446         return reset_domain;
447 }
448
449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450                               u8 logical_instance)
451 {
452         const struct engine_info *info = &intel_engines[id];
453         struct drm_i915_private *i915 = gt->i915;
454         struct intel_engine_cs *engine;
455         u8 guc_class;
456
457         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459         BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460         BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461
462         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463                 return -EINVAL;
464
465         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466                 return -EINVAL;
467
468         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469                 return -EINVAL;
470
471         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472                 return -EINVAL;
473
474         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475         if (!engine)
476                 return -ENOMEM;
477
478         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479
480         INIT_LIST_HEAD(&engine->pinned_contexts_list);
481         engine->id = id;
482         engine->legacy_idx = INVALID_ENGINE;
483         engine->mask = BIT(id);
484         engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485                                                 id);
486         engine->i915 = i915;
487         engine->gt = gt;
488         engine->uncore = gt->uncore;
489         guc_class = engine_class_to_guc_class(info->class);
490         engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492
493         engine->irq_handler = nop_irq_handler;
494
495         engine->class = info->class;
496         engine->instance = info->instance;
497         engine->logical_mask = BIT(logical_instance);
498         __sprint_engine_name(engine);
499
500         if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
501              __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
502              engine->class == RENDER_CLASS)
503                 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
504
505         /* features common between engines sharing EUs */
506         if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
507                 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
508                 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
509         }
510
511         engine->props.heartbeat_interval_ms =
512                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
513         engine->props.max_busywait_duration_ns =
514                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
515         engine->props.preempt_timeout_ms =
516                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
517         engine->props.stop_timeout_ms =
518                 CONFIG_DRM_I915_STOP_TIMEOUT;
519         engine->props.timeslice_duration_ms =
520                 CONFIG_DRM_I915_TIMESLICE_DURATION;
521
522         /*
523          * Mid-thread pre-emption is not available in Gen12. Unfortunately,
524          * some compute workloads run quite long threads. That means they get
525          * reset due to not pre-empting in a timely manner. So, bump the
526          * pre-emption timeout value to be much higher for compute engines.
527          */
528         if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
529                 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
530
531         /* Cap properties according to any system limits */
532 #define CLAMP_PROP(field) \
533         do { \
534                 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
535                 if (clamp != engine->props.field) { \
536                         drm_notice(&engine->i915->drm, \
537                                    "Warning, clamping %s to %lld to prevent overflow\n", \
538                                    #field, clamp); \
539                         engine->props.field = clamp; \
540                 } \
541         } while (0)
542
543         CLAMP_PROP(heartbeat_interval_ms);
544         CLAMP_PROP(max_busywait_duration_ns);
545         CLAMP_PROP(preempt_timeout_ms);
546         CLAMP_PROP(stop_timeout_ms);
547         CLAMP_PROP(timeslice_duration_ms);
548
549 #undef CLAMP_PROP
550
551         engine->defaults = engine->props; /* never to change again */
552
553         engine->context_size = intel_engine_context_size(gt, engine->class);
554         if (WARN_ON(engine->context_size > BIT(20)))
555                 engine->context_size = 0;
556         if (engine->context_size)
557                 DRIVER_CAPS(i915)->has_logical_contexts = true;
558
559         ewma__engine_latency_init(&engine->latency);
560
561         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
562
563         /* Scrub mmio state on takeover */
564         intel_engine_sanitize_mmio(engine);
565
566         gt->engine_class[info->class][info->instance] = engine;
567         gt->engine[id] = engine;
568
569         return 0;
570 }
571
572 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
573 {
574         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
575
576         return value;
577 }
578
579 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
580 {
581         value = min(value, jiffies_to_nsecs(2));
582
583         return value;
584 }
585
586 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
587 {
588         /*
589          * NB: The GuC API only supports 32bit values. However, the limit is further
590          * reduced due to internal calculations which would otherwise overflow.
591          */
592         if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
593                 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
594
595         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
596
597         return value;
598 }
599
600 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
601 {
602         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
603
604         return value;
605 }
606
607 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
608 {
609         /*
610          * NB: The GuC API only supports 32bit values. However, the limit is further
611          * reduced due to internal calculations which would otherwise overflow.
612          */
613         if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
614                 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
615
616         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
617
618         return value;
619 }
620
621 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
622 {
623         struct drm_i915_private *i915 = engine->i915;
624
625         if (engine->class == VIDEO_DECODE_CLASS) {
626                 /*
627                  * HEVC support is present on first engine instance
628                  * before Gen11 and on all instances afterwards.
629                  */
630                 if (GRAPHICS_VER(i915) >= 11 ||
631                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
632                         engine->uabi_capabilities |=
633                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
634
635                 /*
636                  * SFC block is present only on even logical engine
637                  * instances.
638                  */
639                 if ((GRAPHICS_VER(i915) >= 11 &&
640                      (engine->gt->info.vdbox_sfc_access &
641                       BIT(engine->instance))) ||
642                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
643                         engine->uabi_capabilities |=
644                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
645         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
646                 if (GRAPHICS_VER(i915) >= 9 &&
647                     engine->gt->info.sfc_mask & BIT(engine->instance))
648                         engine->uabi_capabilities |=
649                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
650         }
651 }
652
653 static void intel_setup_engine_capabilities(struct intel_gt *gt)
654 {
655         struct intel_engine_cs *engine;
656         enum intel_engine_id id;
657
658         for_each_engine(engine, gt, id)
659                 __setup_engine_capabilities(engine);
660 }
661
662 /**
663  * intel_engines_release() - free the resources allocated for Command Streamers
664  * @gt: pointer to struct intel_gt
665  */
666 void intel_engines_release(struct intel_gt *gt)
667 {
668         struct intel_engine_cs *engine;
669         enum intel_engine_id id;
670
671         /*
672          * Before we release the resources held by engine, we must be certain
673          * that the HW is no longer accessing them -- having the GPU scribble
674          * to or read from a page being used for something else causes no end
675          * of fun.
676          *
677          * The GPU should be reset by this point, but assume the worst just
678          * in case we aborted before completely initialising the engines.
679          */
680         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
681         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
682                 __intel_gt_reset(gt, ALL_ENGINES);
683
684         /* Decouple the backend; but keep the layout for late GPU resets */
685         for_each_engine(engine, gt, id) {
686                 if (!engine->release)
687                         continue;
688
689                 intel_wakeref_wait_for_idle(&engine->wakeref);
690                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
691
692                 engine->release(engine);
693                 engine->release = NULL;
694
695                 memset(&engine->reset, 0, sizeof(engine->reset));
696         }
697 }
698
699 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
700 {
701         if (!engine->request_pool)
702                 return;
703
704         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
705 }
706
707 void intel_engines_free(struct intel_gt *gt)
708 {
709         struct intel_engine_cs *engine;
710         enum intel_engine_id id;
711
712         /* Free the requests! dma-resv keeps fences around for an eternity */
713         rcu_barrier();
714
715         for_each_engine(engine, gt, id) {
716                 intel_engine_free_request_pool(engine);
717                 kfree(engine);
718                 gt->engine[id] = NULL;
719         }
720 }
721
722 static
723 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
724                          unsigned int physical_vdbox,
725                          unsigned int logical_vdbox, u16 vdbox_mask)
726 {
727         struct drm_i915_private *i915 = gt->i915;
728
729         /*
730          * In Gen11, only even numbered logical VDBOXes are hooked
731          * up to an SFC (Scaler & Format Converter) unit.
732          * In Gen12, Even numbered physical instance always are connected
733          * to an SFC. Odd numbered physical instances have SFC only if
734          * previous even instance is fused off.
735          *
736          * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
737          * in the fuse register that tells us whether a specific SFC is present.
738          */
739         if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
740                 return false;
741         else if (MEDIA_VER(i915) >= 12)
742                 return (physical_vdbox % 2 == 0) ||
743                         !(BIT(physical_vdbox - 1) & vdbox_mask);
744         else if (MEDIA_VER(i915) == 11)
745                 return logical_vdbox % 2 == 0;
746
747         return false;
748 }
749
750 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
751 {
752         struct drm_i915_private *i915 = gt->i915;
753         unsigned int logical_vdbox = 0;
754         unsigned int i;
755         u32 media_fuse, fuse1;
756         u16 vdbox_mask;
757         u16 vebox_mask;
758
759         if (MEDIA_VER(gt->i915) < 11)
760                 return;
761
762         /*
763          * On newer platforms the fusing register is called 'enable' and has
764          * enable semantics, while on older platforms it is called 'disable'
765          * and bits have disable semantices.
766          */
767         media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
768         if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
769                 media_fuse = ~media_fuse;
770
771         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
772         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
773                       GEN11_GT_VEBOX_DISABLE_SHIFT;
774
775         if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
776                 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
777                 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
778         } else {
779                 gt->info.sfc_mask = ~0;
780         }
781
782         for (i = 0; i < I915_MAX_VCS; i++) {
783                 if (!HAS_ENGINE(gt, _VCS(i))) {
784                         vdbox_mask &= ~BIT(i);
785                         continue;
786                 }
787
788                 if (!(BIT(i) & vdbox_mask)) {
789                         gt->info.engine_mask &= ~BIT(_VCS(i));
790                         gt_dbg(gt, "vcs%u fused off\n", i);
791                         continue;
792                 }
793
794                 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
795                         gt->info.vdbox_sfc_access |= BIT(i);
796                 logical_vdbox++;
797         }
798         gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
799         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
800
801         for (i = 0; i < I915_MAX_VECS; i++) {
802                 if (!HAS_ENGINE(gt, _VECS(i))) {
803                         vebox_mask &= ~BIT(i);
804                         continue;
805                 }
806
807                 if (!(BIT(i) & vebox_mask)) {
808                         gt->info.engine_mask &= ~BIT(_VECS(i));
809                         gt_dbg(gt, "vecs%u fused off\n", i);
810                 }
811         }
812         gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
813         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
814 }
815
816 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
817 {
818         struct drm_i915_private *i915 = gt->i915;
819         struct intel_gt_info *info = &gt->info;
820         int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
821         unsigned long ccs_mask;
822         unsigned int i;
823
824         if (GRAPHICS_VER(i915) < 11)
825                 return;
826
827         if (hweight32(CCS_MASK(gt)) <= 1)
828                 return;
829
830         ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
831                                                      ss_per_ccs);
832         /*
833          * If all DSS in a quadrant are fused off, the corresponding CCS
834          * engine is not available for use.
835          */
836         for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
837                 info->engine_mask &= ~BIT(_CCS(i));
838                 gt_dbg(gt, "ccs%u fused off\n", i);
839         }
840 }
841
842 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
843 {
844         struct drm_i915_private *i915 = gt->i915;
845         struct intel_gt_info *info = &gt->info;
846         unsigned long meml3_mask;
847         unsigned long quad;
848
849         if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
850               GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
851                 return;
852
853         meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
854         meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
855
856         /*
857          * Link Copy engines may be fused off according to meml3_mask. Each
858          * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
859          */
860         for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
861                 unsigned int instance = quad * 2 + 1;
862                 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
863                                                    _BCS(instance));
864
865                 if (mask & info->engine_mask) {
866                         gt_dbg(gt, "bcs%u fused off\n", instance);
867                         gt_dbg(gt, "bcs%u fused off\n", instance + 1);
868
869                         info->engine_mask &= ~mask;
870                 }
871         }
872 }
873
874 /*
875  * Determine which engines are fused off in our particular hardware.
876  * Note that we have a catch-22 situation where we need to be able to access
877  * the blitter forcewake domain to read the engine fuses, but at the same time
878  * we need to know which engines are available on the system to know which
879  * forcewake domains are present. We solve this by intializing the forcewake
880  * domains based on the full engine mask in the platform capabilities before
881  * calling this function and pruning the domains for fused-off engines
882  * afterwards.
883  */
884 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
885 {
886         struct intel_gt_info *info = &gt->info;
887
888         GEM_BUG_ON(!info->engine_mask);
889
890         engine_mask_apply_media_fuses(gt);
891         engine_mask_apply_compute_fuses(gt);
892         engine_mask_apply_copy_fuses(gt);
893
894         /*
895          * The only use of the GSC CS is to load and communicate with the GSC
896          * FW, so we have no use for it if we don't have the FW.
897          *
898          * IMPORTANT: in cases where we don't have the GSC FW, we have a
899          * catch-22 situation that breaks media C6 due to 2 requirements:
900          * 1) once turned on, the GSC power well will not go to sleep unless the
901          *    GSC FW is loaded.
902          * 2) to enable idling (which is required for media C6) we need to
903          *    initialize the IDLE_MSG register for the GSC CS and do at least 1
904          *    submission, which will wake up the GSC power well.
905          */
906         if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
907                 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
908                 info->engine_mask &= ~BIT(GSC0);
909         }
910
911         return info->engine_mask;
912 }
913
914 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
915                                  u8 class, const u8 *map, u8 num_instances)
916 {
917         int i, j;
918         u8 current_logical_id = 0;
919
920         for (j = 0; j < num_instances; ++j) {
921                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
922                         if (!HAS_ENGINE(gt, i) ||
923                             intel_engines[i].class != class)
924                                 continue;
925
926                         if (intel_engines[i].instance == map[j]) {
927                                 logical_ids[intel_engines[i].instance] =
928                                         current_logical_id++;
929                                 break;
930                         }
931                 }
932         }
933 }
934
935 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
936 {
937         /*
938          * Logical to physical mapping is needed for proper support
939          * to split-frame feature.
940          */
941         if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
942                 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
943
944                 populate_logical_ids(gt, logical_ids, class,
945                                      map, ARRAY_SIZE(map));
946         } else {
947                 int i;
948                 u8 map[MAX_ENGINE_INSTANCE + 1];
949
950                 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
951                         map[i] = i;
952                 populate_logical_ids(gt, logical_ids, class,
953                                      map, ARRAY_SIZE(map));
954         }
955 }
956
957 /**
958  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
959  * @gt: pointer to struct intel_gt
960  *
961  * Return: non-zero if the initialization failed.
962  */
963 int intel_engines_init_mmio(struct intel_gt *gt)
964 {
965         struct drm_i915_private *i915 = gt->i915;
966         const unsigned int engine_mask = init_engine_mask(gt);
967         unsigned int mask = 0;
968         unsigned int i, class;
969         u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
970         int err;
971
972         drm_WARN_ON(&i915->drm, engine_mask == 0);
973         drm_WARN_ON(&i915->drm, engine_mask &
974                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
975
976         if (i915_inject_probe_failure(i915))
977                 return -ENODEV;
978
979         for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
980                 setup_logical_ids(gt, logical_ids, class);
981
982                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
983                         u8 instance = intel_engines[i].instance;
984
985                         if (intel_engines[i].class != class ||
986                             !HAS_ENGINE(gt, i))
987                                 continue;
988
989                         err = intel_engine_setup(gt, i,
990                                                  logical_ids[instance]);
991                         if (err)
992                                 goto cleanup;
993
994                         mask |= BIT(i);
995                 }
996         }
997
998         /*
999          * Catch failures to update intel_engines table when the new engines
1000          * are added to the driver by a warning and disabling the forgotten
1001          * engines.
1002          */
1003         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1004                 gt->info.engine_mask = mask;
1005
1006         gt->info.num_engines = hweight32(mask);
1007
1008         intel_gt_check_and_clear_faults(gt);
1009
1010         intel_setup_engine_capabilities(gt);
1011
1012         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1013
1014         return 0;
1015
1016 cleanup:
1017         intel_engines_free(gt);
1018         return err;
1019 }
1020
1021 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1022 {
1023         struct intel_engine_execlists * const execlists = &engine->execlists;
1024
1025         execlists->port_mask = 1;
1026         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1027         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1028
1029         memset(execlists->pending, 0, sizeof(execlists->pending));
1030         execlists->active =
1031                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1032 }
1033
1034 static void cleanup_status_page(struct intel_engine_cs *engine)
1035 {
1036         struct i915_vma *vma;
1037
1038         /* Prevent writes into HWSP after returning the page to the system */
1039         intel_engine_set_hwsp_writemask(engine, ~0u);
1040
1041         vma = fetch_and_zero(&engine->status_page.vma);
1042         if (!vma)
1043                 return;
1044
1045         if (!HWS_NEEDS_PHYSICAL(engine->i915))
1046                 i915_vma_unpin(vma);
1047
1048         i915_gem_object_unpin_map(vma->obj);
1049         i915_gem_object_put(vma->obj);
1050 }
1051
1052 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1053                                 struct i915_gem_ww_ctx *ww,
1054                                 struct i915_vma *vma)
1055 {
1056         unsigned int flags;
1057
1058         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1059                 /*
1060                  * On g33, we cannot place HWS above 256MiB, so
1061                  * restrict its pinning to the low mappable arena.
1062                  * Though this restriction is not documented for
1063                  * gen4, gen5, or byt, they also behave similarly
1064                  * and hang if the HWS is placed at the top of the
1065                  * GTT. To generalise, it appears that all !llc
1066                  * platforms have issues with us placing the HWS
1067                  * above the mappable region (even though we never
1068                  * actually map it).
1069                  */
1070                 flags = PIN_MAPPABLE;
1071         else
1072                 flags = PIN_HIGH;
1073
1074         return i915_ggtt_pin(vma, ww, 0, flags);
1075 }
1076
1077 static int init_status_page(struct intel_engine_cs *engine)
1078 {
1079         struct drm_i915_gem_object *obj;
1080         struct i915_gem_ww_ctx ww;
1081         struct i915_vma *vma;
1082         void *vaddr;
1083         int ret;
1084
1085         INIT_LIST_HEAD(&engine->status_page.timelines);
1086
1087         /*
1088          * Though the HWS register does support 36bit addresses, historically
1089          * we have had hangs and corruption reported due to wild writes if
1090          * the HWS is placed above 4G. We only allow objects to be allocated
1091          * in GFP_DMA32 for i965, and no earlier physical address users had
1092          * access to more than 4G.
1093          */
1094         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1095         if (IS_ERR(obj)) {
1096                 gt_err(engine->gt, "Failed to allocate status page\n");
1097                 return PTR_ERR(obj);
1098         }
1099
1100         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1101
1102         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1103         if (IS_ERR(vma)) {
1104                 ret = PTR_ERR(vma);
1105                 goto err_put;
1106         }
1107
1108         i915_gem_ww_ctx_init(&ww, true);
1109 retry:
1110         ret = i915_gem_object_lock(obj, &ww);
1111         if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1112                 ret = pin_ggtt_status_page(engine, &ww, vma);
1113         if (ret)
1114                 goto err;
1115
1116         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1117         if (IS_ERR(vaddr)) {
1118                 ret = PTR_ERR(vaddr);
1119                 goto err_unpin;
1120         }
1121
1122         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1123         engine->status_page.vma = vma;
1124
1125 err_unpin:
1126         if (ret)
1127                 i915_vma_unpin(vma);
1128 err:
1129         if (ret == -EDEADLK) {
1130                 ret = i915_gem_ww_ctx_backoff(&ww);
1131                 if (!ret)
1132                         goto retry;
1133         }
1134         i915_gem_ww_ctx_fini(&ww);
1135 err_put:
1136         if (ret)
1137                 i915_gem_object_put(obj);
1138         return ret;
1139 }
1140
1141 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1142 {
1143         static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1144                 [RENDER_CLASS].reg              = GEN8_RTCR,
1145                 [VIDEO_DECODE_CLASS].reg        = GEN8_M1TCR, /* , GEN8_M2TCR */
1146                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN8_VTCR,
1147                 [COPY_ENGINE_CLASS].reg         = GEN8_BTCR,
1148         };
1149         static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1150                 [RENDER_CLASS].reg              = GEN12_GFX_TLB_INV_CR,
1151                 [VIDEO_DECODE_CLASS].reg        = GEN12_VD_TLB_INV_CR,
1152                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN12_VE_TLB_INV_CR,
1153                 [COPY_ENGINE_CLASS].reg         = GEN12_BLT_TLB_INV_CR,
1154                 [COMPUTE_CLASS].reg             = GEN12_COMPCTX_TLB_INV_CR,
1155         };
1156         static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1157                 [RENDER_CLASS].mcr_reg            = XEHP_GFX_TLB_INV_CR,
1158                 [VIDEO_DECODE_CLASS].mcr_reg      = XEHP_VD_TLB_INV_CR,
1159                 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1160                 [COPY_ENGINE_CLASS].mcr_reg       = XEHP_BLT_TLB_INV_CR,
1161                 [COMPUTE_CLASS].mcr_reg           = XEHP_COMPCTX_TLB_INV_CR,
1162         };
1163         static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1164                 [VIDEO_DECODE_CLASS].reg          = GEN12_VD_TLB_INV_CR,
1165                 [VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1166                 [OTHER_CLASS].reg                 = XELPMP_GSC_TLB_INV_CR,
1167         };
1168         struct drm_i915_private *i915 = engine->i915;
1169         const unsigned int instance = engine->instance;
1170         const unsigned int class = engine->class;
1171         const union intel_engine_tlb_inv_reg *regs;
1172         union intel_engine_tlb_inv_reg reg;
1173         unsigned int num = 0;
1174         u32 val;
1175
1176         /*
1177          * New platforms should not be added with catch-all-newer (>=)
1178          * condition so that any later platform added triggers the below warning
1179          * and in turn mandates a human cross-check of whether the invalidation
1180          * flows have compatible semantics.
1181          *
1182          * For instance with the 11.00 -> 12.00 transition three out of five
1183          * respective engine registers were moved to masked type. Then after the
1184          * 12.00 -> 12.50 transition multi cast handling is required too.
1185          */
1186
1187         if (engine->gt->type == GT_MEDIA) {
1188                 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1189                         regs = xelpmp_regs;
1190                         num = ARRAY_SIZE(xelpmp_regs);
1191                 }
1192         } else {
1193                 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1194                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1195                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1196                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1197                         regs = xehp_regs;
1198                         num = ARRAY_SIZE(xehp_regs);
1199                 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1200                            GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1201                         regs = gen12_regs;
1202                         num = ARRAY_SIZE(gen12_regs);
1203                 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1204                         regs = gen8_regs;
1205                         num = ARRAY_SIZE(gen8_regs);
1206                 } else if (GRAPHICS_VER(i915) < 8) {
1207                         return 0;
1208                 }
1209         }
1210
1211         if (gt_WARN_ONCE(engine->gt, !num,
1212                          "Platform does not implement TLB invalidation!"))
1213                 return -ENODEV;
1214
1215         if (gt_WARN_ON_ONCE(engine->gt,
1216                             class >= num ||
1217                             (!regs[class].reg.reg &&
1218                              !regs[class].mcr_reg.reg)))
1219                 return -ERANGE;
1220
1221         reg = regs[class];
1222
1223         if (regs == xelpmp_regs && class == OTHER_CLASS) {
1224                 /*
1225                  * There's only a single GSC instance, but it uses register bit
1226                  * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1227                  */
1228                 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1229                 val = 1;
1230         } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1231                 reg.reg = GEN8_M2TCR;
1232                 val = 0;
1233         } else {
1234                 val = instance;
1235         }
1236
1237         val = BIT(val);
1238
1239         engine->tlb_inv.mcr = regs == xehp_regs;
1240         engine->tlb_inv.reg = reg;
1241         engine->tlb_inv.done = val;
1242
1243         if (GRAPHICS_VER(i915) >= 12 &&
1244             (engine->class == VIDEO_DECODE_CLASS ||
1245              engine->class == VIDEO_ENHANCEMENT_CLASS ||
1246              engine->class == COMPUTE_CLASS ||
1247              engine->class == OTHER_CLASS))
1248                 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1249         else
1250                 engine->tlb_inv.request = val;
1251
1252         return 0;
1253 }
1254
1255 static int engine_setup_common(struct intel_engine_cs *engine)
1256 {
1257         int err;
1258
1259         init_llist_head(&engine->barrier_tasks);
1260
1261         err = intel_engine_init_tlb_invalidation(engine);
1262         if (err)
1263                 return err;
1264
1265         err = init_status_page(engine);
1266         if (err)
1267                 return err;
1268
1269         engine->breadcrumbs = intel_breadcrumbs_create(engine);
1270         if (!engine->breadcrumbs) {
1271                 err = -ENOMEM;
1272                 goto err_status;
1273         }
1274
1275         engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1276         if (!engine->sched_engine) {
1277                 err = -ENOMEM;
1278                 goto err_sched_engine;
1279         }
1280         engine->sched_engine->private_data = engine;
1281
1282         err = intel_engine_init_cmd_parser(engine);
1283         if (err)
1284                 goto err_cmd_parser;
1285
1286         intel_engine_init_execlists(engine);
1287         intel_engine_init__pm(engine);
1288         intel_engine_init_retire(engine);
1289
1290         /* Use the whole device by default */
1291         engine->sseu =
1292                 intel_sseu_from_device_info(&engine->gt->info.sseu);
1293
1294         intel_engine_init_workarounds(engine);
1295         intel_engine_init_whitelist(engine);
1296         intel_engine_init_ctx_wa(engine);
1297
1298         if (GRAPHICS_VER(engine->i915) >= 12)
1299                 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1300
1301         return 0;
1302
1303 err_cmd_parser:
1304         i915_sched_engine_put(engine->sched_engine);
1305 err_sched_engine:
1306         intel_breadcrumbs_put(engine->breadcrumbs);
1307 err_status:
1308         cleanup_status_page(engine);
1309         return err;
1310 }
1311
1312 struct measure_breadcrumb {
1313         struct i915_request rq;
1314         struct intel_ring ring;
1315         u32 cs[2048];
1316 };
1317
1318 static int measure_breadcrumb_dw(struct intel_context *ce)
1319 {
1320         struct intel_engine_cs *engine = ce->engine;
1321         struct measure_breadcrumb *frame;
1322         int dw;
1323
1324         GEM_BUG_ON(!engine->gt->scratch);
1325
1326         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1327         if (!frame)
1328                 return -ENOMEM;
1329
1330         frame->rq.i915 = engine->i915;
1331         frame->rq.engine = engine;
1332         frame->rq.context = ce;
1333         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1334         frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1335
1336         frame->ring.vaddr = frame->cs;
1337         frame->ring.size = sizeof(frame->cs);
1338         frame->ring.wrap =
1339                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1340         frame->ring.effective_size = frame->ring.size;
1341         intel_ring_update_space(&frame->ring);
1342         frame->rq.ring = &frame->ring;
1343
1344         mutex_lock(&ce->timeline->mutex);
1345         spin_lock_irq(&engine->sched_engine->lock);
1346
1347         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1348
1349         spin_unlock_irq(&engine->sched_engine->lock);
1350         mutex_unlock(&ce->timeline->mutex);
1351
1352         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1353
1354         kfree(frame);
1355         return dw;
1356 }
1357
1358 struct intel_context *
1359 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1360                                    struct i915_address_space *vm,
1361                                    unsigned int ring_size,
1362                                    unsigned int hwsp,
1363                                    struct lock_class_key *key,
1364                                    const char *name)
1365 {
1366         struct intel_context *ce;
1367         int err;
1368
1369         ce = intel_context_create(engine);
1370         if (IS_ERR(ce))
1371                 return ce;
1372
1373         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1374         ce->timeline = page_pack_bits(NULL, hwsp);
1375         ce->ring = NULL;
1376         ce->ring_size = ring_size;
1377
1378         i915_vm_put(ce->vm);
1379         ce->vm = i915_vm_get(vm);
1380
1381         err = intel_context_pin(ce); /* perma-pin so it is always available */
1382         if (err) {
1383                 intel_context_put(ce);
1384                 return ERR_PTR(err);
1385         }
1386
1387         list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1388
1389         /*
1390          * Give our perma-pinned kernel timelines a separate lockdep class,
1391          * so that we can use them from within the normal user timelines
1392          * should we need to inject GPU operations during their request
1393          * construction.
1394          */
1395         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1396
1397         return ce;
1398 }
1399
1400 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1401 {
1402         struct intel_engine_cs *engine = ce->engine;
1403         struct i915_vma *hwsp = engine->status_page.vma;
1404
1405         GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1406
1407         mutex_lock(&hwsp->vm->mutex);
1408         list_del(&ce->timeline->engine_link);
1409         mutex_unlock(&hwsp->vm->mutex);
1410
1411         list_del(&ce->pinned_contexts_link);
1412         intel_context_unpin(ce);
1413         intel_context_put(ce);
1414 }
1415
1416 static struct intel_context *
1417 create_ggtt_bind_context(struct intel_engine_cs *engine)
1418 {
1419         static struct lock_class_key kernel;
1420
1421         /*
1422          * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1423          * bind requets at a time so get a bigger ring.
1424          */
1425         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1426                                                   I915_GEM_HWS_GGTT_BIND_ADDR,
1427                                                   &kernel, "ggtt_bind_context");
1428 }
1429
1430 static struct intel_context *
1431 create_kernel_context(struct intel_engine_cs *engine)
1432 {
1433         static struct lock_class_key kernel;
1434
1435         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1436                                                   I915_GEM_HWS_SEQNO_ADDR,
1437                                                   &kernel, "kernel_context");
1438 }
1439
1440 /*
1441  * engine_init_common - initialize engine state which might require hw access
1442  * @engine: Engine to initialize.
1443  *
1444  * Initializes @engine@ structure members shared between legacy and execlists
1445  * submission modes which do require hardware access.
1446  *
1447  * Typcally done at later stages of submission mode specific engine setup.
1448  *
1449  * Returns zero on success or an error code on failure.
1450  */
1451 static int engine_init_common(struct intel_engine_cs *engine)
1452 {
1453         struct intel_context *ce, *bce = NULL;
1454         int ret;
1455
1456         engine->set_default_submission(engine);
1457
1458         /*
1459          * We may need to do things with the shrinker which
1460          * require us to immediately switch back to the default
1461          * context. This can cause a problem as pinning the
1462          * default context also requires GTT space which may not
1463          * be available. To avoid this we always pin the default
1464          * context.
1465          */
1466         ce = create_kernel_context(engine);
1467         if (IS_ERR(ce))
1468                 return PTR_ERR(ce);
1469         /*
1470          * Create a separate pinned context for GGTT update with blitter engine
1471          * if a platform require such service. MI_UPDATE_GTT works on other
1472          * engines as well but BCS should be less busy engine so pick that for
1473          * GGTT updates.
1474          */
1475         if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1476                 bce = create_ggtt_bind_context(engine);
1477                 if (IS_ERR(bce)) {
1478                         ret = PTR_ERR(bce);
1479                         goto err_ce_context;
1480                 }
1481         }
1482
1483         ret = measure_breadcrumb_dw(ce);
1484         if (ret < 0)
1485                 goto err_bce_context;
1486
1487         engine->emit_fini_breadcrumb_dw = ret;
1488         engine->kernel_context = ce;
1489         engine->bind_context = bce;
1490
1491         return 0;
1492
1493 err_bce_context:
1494         if (bce)
1495                 intel_engine_destroy_pinned_context(bce);
1496 err_ce_context:
1497         intel_engine_destroy_pinned_context(ce);
1498         return ret;
1499 }
1500
1501 int intel_engines_init(struct intel_gt *gt)
1502 {
1503         int (*setup)(struct intel_engine_cs *engine);
1504         struct intel_engine_cs *engine;
1505         enum intel_engine_id id;
1506         int err;
1507
1508         if (intel_uc_uses_guc_submission(&gt->uc)) {
1509                 gt->submission_method = INTEL_SUBMISSION_GUC;
1510                 setup = intel_guc_submission_setup;
1511         } else if (HAS_EXECLISTS(gt->i915)) {
1512                 gt->submission_method = INTEL_SUBMISSION_ELSP;
1513                 setup = intel_execlists_submission_setup;
1514         } else {
1515                 gt->submission_method = INTEL_SUBMISSION_RING;
1516                 setup = intel_ring_submission_setup;
1517         }
1518
1519         for_each_engine(engine, gt, id) {
1520                 err = engine_setup_common(engine);
1521                 if (err)
1522                         return err;
1523
1524                 err = setup(engine);
1525                 if (err) {
1526                         intel_engine_cleanup_common(engine);
1527                         return err;
1528                 }
1529
1530                 /* The backend should now be responsible for cleanup */
1531                 GEM_BUG_ON(engine->release == NULL);
1532
1533                 err = engine_init_common(engine);
1534                 if (err)
1535                         return err;
1536
1537                 intel_engine_add_user(engine);
1538         }
1539
1540         return 0;
1541 }
1542
1543 /**
1544  * intel_engine_cleanup_common - cleans up the engine state created by
1545  *                                the common initiailizers.
1546  * @engine: Engine to cleanup.
1547  *
1548  * This cleans up everything created by the common helpers.
1549  */
1550 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1551 {
1552         GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1553
1554         i915_sched_engine_put(engine->sched_engine);
1555         intel_breadcrumbs_put(engine->breadcrumbs);
1556
1557         intel_engine_fini_retire(engine);
1558         intel_engine_cleanup_cmd_parser(engine);
1559
1560         if (engine->default_state)
1561                 fput(engine->default_state);
1562
1563         if (engine->kernel_context)
1564                 intel_engine_destroy_pinned_context(engine->kernel_context);
1565
1566         if (engine->bind_context)
1567                 intel_engine_destroy_pinned_context(engine->bind_context);
1568
1569
1570         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1571         cleanup_status_page(engine);
1572
1573         intel_wa_list_free(&engine->ctx_wa_list);
1574         intel_wa_list_free(&engine->wa_list);
1575         intel_wa_list_free(&engine->whitelist);
1576 }
1577
1578 /**
1579  * intel_engine_resume - re-initializes the HW state of the engine
1580  * @engine: Engine to resume.
1581  *
1582  * Returns zero on success or an error code on failure.
1583  */
1584 int intel_engine_resume(struct intel_engine_cs *engine)
1585 {
1586         intel_engine_apply_workarounds(engine);
1587         intel_engine_apply_whitelist(engine);
1588
1589         return engine->resume(engine);
1590 }
1591
1592 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1593 {
1594         struct drm_i915_private *i915 = engine->i915;
1595
1596         u64 acthd;
1597
1598         if (GRAPHICS_VER(i915) >= 8)
1599                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1600         else if (GRAPHICS_VER(i915) >= 4)
1601                 acthd = ENGINE_READ(engine, RING_ACTHD);
1602         else
1603                 acthd = ENGINE_READ(engine, ACTHD);
1604
1605         return acthd;
1606 }
1607
1608 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1609 {
1610         u64 bbaddr;
1611
1612         if (GRAPHICS_VER(engine->i915) >= 8)
1613                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1614         else
1615                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1616
1617         return bbaddr;
1618 }
1619
1620 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1621 {
1622         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1623                 return 0;
1624
1625         /*
1626          * If we are doing a normal GPU reset, we can take our time and allow
1627          * the engine to quiesce. We've stopped submission to the engine, and
1628          * if we wait long enough an innocent context should complete and
1629          * leave the engine idle. So they should not be caught unaware by
1630          * the forthcoming GPU reset (which usually follows the stop_cs)!
1631          */
1632         return READ_ONCE(engine->props.stop_timeout_ms);
1633 }
1634
1635 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1636                                   int fast_timeout_us,
1637                                   int slow_timeout_ms)
1638 {
1639         struct intel_uncore *uncore = engine->uncore;
1640         const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1641         int err;
1642
1643         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1644
1645         /*
1646          * Wa_22011802037: Prior to doing a reset, ensure CS is
1647          * stopped, set ring stop bit and prefetch disable bit to halt CS
1648          */
1649         if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1650                 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1651                                       _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1652
1653         err = __intel_wait_for_register_fw(engine->uncore, mode,
1654                                            MODE_IDLE, MODE_IDLE,
1655                                            fast_timeout_us,
1656                                            slow_timeout_ms,
1657                                            NULL);
1658
1659         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1660         intel_uncore_posting_read_fw(uncore, mode);
1661         return err;
1662 }
1663
1664 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1665 {
1666         int err = 0;
1667
1668         if (GRAPHICS_VER(engine->i915) < 3)
1669                 return -ENODEV;
1670
1671         ENGINE_TRACE(engine, "\n");
1672         /*
1673          * TODO: Find out why occasionally stopping the CS times out. Seen
1674          * especially with gem_eio tests.
1675          *
1676          * Occasionally trying to stop the cs times out, but does not adversely
1677          * affect functionality. The timeout is set as a config parameter that
1678          * defaults to 100ms. In most cases the follow up operation is to wait
1679          * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1680          * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1681          * caused, the caller must check and handle the return from this
1682          * function.
1683          */
1684         if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1685                 ENGINE_TRACE(engine,
1686                              "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1687                              ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1688                              ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1689
1690                 /*
1691                  * Sometimes we observe that the idle flag is not
1692                  * set even though the ring is empty. So double
1693                  * check before giving up.
1694                  */
1695                 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1696                     (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1697                         err = -ETIMEDOUT;
1698         }
1699
1700         return err;
1701 }
1702
1703 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1704 {
1705         ENGINE_TRACE(engine, "\n");
1706
1707         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1708 }
1709
1710 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1711 {
1712         static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1713                 [RCS0] = MSG_IDLE_CS,
1714                 [BCS0] = MSG_IDLE_BCS,
1715                 [VCS0] = MSG_IDLE_VCS0,
1716                 [VCS1] = MSG_IDLE_VCS1,
1717                 [VCS2] = MSG_IDLE_VCS2,
1718                 [VCS3] = MSG_IDLE_VCS3,
1719                 [VCS4] = MSG_IDLE_VCS4,
1720                 [VCS5] = MSG_IDLE_VCS5,
1721                 [VCS6] = MSG_IDLE_VCS6,
1722                 [VCS7] = MSG_IDLE_VCS7,
1723                 [VECS0] = MSG_IDLE_VECS0,
1724                 [VECS1] = MSG_IDLE_VECS1,
1725                 [VECS2] = MSG_IDLE_VECS2,
1726                 [VECS3] = MSG_IDLE_VECS3,
1727                 [CCS0] = MSG_IDLE_CS,
1728                 [CCS1] = MSG_IDLE_CS,
1729                 [CCS2] = MSG_IDLE_CS,
1730                 [CCS3] = MSG_IDLE_CS,
1731         };
1732         u32 val;
1733
1734         if (!_reg[engine->id].reg)
1735                 return 0;
1736
1737         val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1738
1739         /* bits[29:25] & bits[13:9] >> shift */
1740         return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1741 }
1742
1743 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1744 {
1745         int ret;
1746
1747         /* Ensure GPM receives fw up/down after CS is stopped */
1748         udelay(1);
1749
1750         /* Wait for forcewake request to complete in GPM */
1751         ret =  __intel_wait_for_register_fw(gt->uncore,
1752                                             GEN9_PWRGT_DOMAIN_STATUS,
1753                                             fw_mask, fw_mask, 5000, 0, NULL);
1754
1755         /* Ensure CS receives fw ack from GPM */
1756         udelay(1);
1757
1758         if (ret)
1759                 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1760 }
1761
1762 /*
1763  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1764  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1765  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1766  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1767  * are concerned only with the gt reset here, we use a logical OR of pending
1768  * forcewakeups from all reset domains and then wait for them to complete by
1769  * querying PWRGT_DOMAIN_STATUS.
1770  */
1771 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1772 {
1773         u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1774
1775         if (fw_pending)
1776                 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1777 }
1778
1779 /* NB: please notice the memset */
1780 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1781                                struct intel_instdone *instdone)
1782 {
1783         struct drm_i915_private *i915 = engine->i915;
1784         struct intel_uncore *uncore = engine->uncore;
1785         u32 mmio_base = engine->mmio_base;
1786         int slice;
1787         int subslice;
1788         int iter;
1789
1790         memset(instdone, 0, sizeof(*instdone));
1791
1792         if (GRAPHICS_VER(i915) >= 8) {
1793                 instdone->instdone =
1794                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1795
1796                 if (engine->id != RCS0)
1797                         return;
1798
1799                 instdone->slice_common =
1800                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1801                 if (GRAPHICS_VER(i915) >= 12) {
1802                         instdone->slice_common_extra[0] =
1803                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1804                         instdone->slice_common_extra[1] =
1805                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1806                 }
1807
1808                 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1809                         instdone->sampler[slice][subslice] =
1810                                 intel_gt_mcr_read(engine->gt,
1811                                                   GEN8_SAMPLER_INSTDONE,
1812                                                   slice, subslice);
1813                         instdone->row[slice][subslice] =
1814                                 intel_gt_mcr_read(engine->gt,
1815                                                   GEN8_ROW_INSTDONE,
1816                                                   slice, subslice);
1817                 }
1818
1819                 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1820                         for_each_ss_steering(iter, engine->gt, slice, subslice)
1821                                 instdone->geom_svg[slice][subslice] =
1822                                         intel_gt_mcr_read(engine->gt,
1823                                                           XEHPG_INSTDONE_GEOM_SVG,
1824                                                           slice, subslice);
1825                 }
1826         } else if (GRAPHICS_VER(i915) >= 7) {
1827                 instdone->instdone =
1828                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1829
1830                 if (engine->id != RCS0)
1831                         return;
1832
1833                 instdone->slice_common =
1834                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1835                 instdone->sampler[0][0] =
1836                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1837                 instdone->row[0][0] =
1838                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1839         } else if (GRAPHICS_VER(i915) >= 4) {
1840                 instdone->instdone =
1841                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1842                 if (engine->id == RCS0)
1843                         /* HACK: Using the wrong struct member */
1844                         instdone->slice_common =
1845                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1846         } else {
1847                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1848         }
1849 }
1850
1851 static bool ring_is_idle(struct intel_engine_cs *engine)
1852 {
1853         bool idle = true;
1854
1855         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1856                 return true;
1857
1858         if (!intel_engine_pm_get_if_awake(engine))
1859                 return true;
1860
1861         /* First check that no commands are left in the ring */
1862         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1863             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1864                 idle = false;
1865
1866         /* No bit for gen2, so assume the CS parser is idle */
1867         if (GRAPHICS_VER(engine->i915) > 2 &&
1868             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1869                 idle = false;
1870
1871         intel_engine_pm_put(engine);
1872
1873         return idle;
1874 }
1875
1876 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1877 {
1878         struct tasklet_struct *t = &engine->sched_engine->tasklet;
1879
1880         if (!t->callback)
1881                 return;
1882
1883         local_bh_disable();
1884         if (tasklet_trylock(t)) {
1885                 /* Must wait for any GPU reset in progress. */
1886                 if (__tasklet_is_enabled(t))
1887                         t->callback(t);
1888                 tasklet_unlock(t);
1889         }
1890         local_bh_enable();
1891
1892         /* Synchronise and wait for the tasklet on another CPU */
1893         if (sync)
1894                 tasklet_unlock_wait(t);
1895 }
1896
1897 /**
1898  * intel_engine_is_idle() - Report if the engine has finished process all work
1899  * @engine: the intel_engine_cs
1900  *
1901  * Return true if there are no requests pending, nothing left to be submitted
1902  * to hardware, and that the engine is idle.
1903  */
1904 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1905 {
1906         /* More white lies, if wedged, hw state is inconsistent */
1907         if (intel_gt_is_wedged(engine->gt))
1908                 return true;
1909
1910         if (!intel_engine_pm_is_awake(engine))
1911                 return true;
1912
1913         /* Waiting to drain ELSP? */
1914         intel_synchronize_hardirq(engine->i915);
1915         intel_engine_flush_submission(engine);
1916
1917         /* ELSP is empty, but there are ready requests? E.g. after reset */
1918         if (!i915_sched_engine_is_empty(engine->sched_engine))
1919                 return false;
1920
1921         /* Ring stopped? */
1922         return ring_is_idle(engine);
1923 }
1924
1925 bool intel_engines_are_idle(struct intel_gt *gt)
1926 {
1927         struct intel_engine_cs *engine;
1928         enum intel_engine_id id;
1929
1930         /*
1931          * If the driver is wedged, HW state may be very inconsistent and
1932          * report that it is still busy, even though we have stopped using it.
1933          */
1934         if (intel_gt_is_wedged(gt))
1935                 return true;
1936
1937         /* Already parked (and passed an idleness test); must still be idle */
1938         if (!READ_ONCE(gt->awake))
1939                 return true;
1940
1941         for_each_engine(engine, gt, id) {
1942                 if (!intel_engine_is_idle(engine))
1943                         return false;
1944         }
1945
1946         return true;
1947 }
1948
1949 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1950 {
1951         if (!engine->irq_enable)
1952                 return false;
1953
1954         /* Caller disables interrupts */
1955         spin_lock(engine->gt->irq_lock);
1956         engine->irq_enable(engine);
1957         spin_unlock(engine->gt->irq_lock);
1958
1959         return true;
1960 }
1961
1962 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1963 {
1964         if (!engine->irq_disable)
1965                 return;
1966
1967         /* Caller disables interrupts */
1968         spin_lock(engine->gt->irq_lock);
1969         engine->irq_disable(engine);
1970         spin_unlock(engine->gt->irq_lock);
1971 }
1972
1973 void intel_engines_reset_default_submission(struct intel_gt *gt)
1974 {
1975         struct intel_engine_cs *engine;
1976         enum intel_engine_id id;
1977
1978         for_each_engine(engine, gt, id) {
1979                 if (engine->sanitize)
1980                         engine->sanitize(engine);
1981
1982                 engine->set_default_submission(engine);
1983         }
1984 }
1985
1986 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1987 {
1988         switch (GRAPHICS_VER(engine->i915)) {
1989         case 2:
1990                 return false; /* uses physical not virtual addresses */
1991         case 3:
1992                 /* maybe only uses physical not virtual addresses */
1993                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1994         case 4:
1995                 return !IS_I965G(engine->i915); /* who knows! */
1996         case 6:
1997                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1998         default:
1999                 return true;
2000         }
2001 }
2002
2003 static struct intel_timeline *get_timeline(struct i915_request *rq)
2004 {
2005         struct intel_timeline *tl;
2006
2007         /*
2008          * Even though we are holding the engine->sched_engine->lock here, there
2009          * is no control over the submission queue per-se and we are
2010          * inspecting the active state at a random point in time, with an
2011          * unknown queue. Play safe and make sure the timeline remains valid.
2012          * (Only being used for pretty printing, one extra kref shouldn't
2013          * cause a camel stampede!)
2014          */
2015         rcu_read_lock();
2016         tl = rcu_dereference(rq->timeline);
2017         if (!kref_get_unless_zero(&tl->kref))
2018                 tl = NULL;
2019         rcu_read_unlock();
2020
2021         return tl;
2022 }
2023
2024 static int print_ring(char *buf, int sz, struct i915_request *rq)
2025 {
2026         int len = 0;
2027
2028         if (!i915_request_signaled(rq)) {
2029                 struct intel_timeline *tl = get_timeline(rq);
2030
2031                 len = scnprintf(buf, sz,
2032                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2033                                 i915_ggtt_offset(rq->ring->vma),
2034                                 tl ? tl->hwsp_offset : 0,
2035                                 hwsp_seqno(rq),
2036                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2037                                                       1000 * 1000));
2038
2039                 if (tl)
2040                         intel_timeline_put(tl);
2041         }
2042
2043         return len;
2044 }
2045
2046 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2047 {
2048         const size_t rowsize = 8 * sizeof(u32);
2049         const void *prev = NULL;
2050         bool skip = false;
2051         size_t pos;
2052
2053         for (pos = 0; pos < len; pos += rowsize) {
2054                 char line[128];
2055
2056                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2057                         if (!skip) {
2058                                 drm_printf(m, "*\n");
2059                                 skip = true;
2060                         }
2061                         continue;
2062                 }
2063
2064                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2065                                                 rowsize, sizeof(u32),
2066                                                 line, sizeof(line),
2067                                                 false) >= sizeof(line));
2068                 drm_printf(m, "[%04zx] %s\n", pos, line);
2069
2070                 prev = buf + pos;
2071                 skip = false;
2072         }
2073 }
2074
2075 static const char *repr_timer(const struct timer_list *t)
2076 {
2077         if (!READ_ONCE(t->expires))
2078                 return "inactive";
2079
2080         if (timer_pending(t))
2081                 return "active";
2082
2083         return "expired";
2084 }
2085
2086 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2087                                          struct drm_printer *m)
2088 {
2089         struct drm_i915_private *i915 = engine->i915;
2090         struct intel_engine_execlists * const execlists = &engine->execlists;
2091         u64 addr;
2092
2093         if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2094                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2095         if (HAS_EXECLISTS(i915)) {
2096                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2097                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2098                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2099                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2100         }
2101         drm_printf(m, "\tRING_START: 0x%08x\n",
2102                    ENGINE_READ(engine, RING_START));
2103         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2104                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2105         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2106                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2107         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2108                    ENGINE_READ(engine, RING_CTL),
2109                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2110         if (GRAPHICS_VER(engine->i915) > 2) {
2111                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2112                            ENGINE_READ(engine, RING_MI_MODE),
2113                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2114         }
2115
2116         if (GRAPHICS_VER(i915) >= 6) {
2117                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
2118                            ENGINE_READ(engine, RING_IMR));
2119                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
2120                            ENGINE_READ(engine, RING_ESR));
2121                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
2122                            ENGINE_READ(engine, RING_EMR));
2123                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
2124                            ENGINE_READ(engine, RING_EIR));
2125         }
2126
2127         addr = intel_engine_get_active_head(engine);
2128         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2129                    upper_32_bits(addr), lower_32_bits(addr));
2130         addr = intel_engine_get_last_batch_head(engine);
2131         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2132                    upper_32_bits(addr), lower_32_bits(addr));
2133         if (GRAPHICS_VER(i915) >= 8)
2134                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2135         else if (GRAPHICS_VER(i915) >= 4)
2136                 addr = ENGINE_READ(engine, RING_DMA_FADD);
2137         else
2138                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2139         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2140                    upper_32_bits(addr), lower_32_bits(addr));
2141         if (GRAPHICS_VER(i915) >= 4) {
2142                 drm_printf(m, "\tIPEIR: 0x%08x\n",
2143                            ENGINE_READ(engine, RING_IPEIR));
2144                 drm_printf(m, "\tIPEHR: 0x%08x\n",
2145                            ENGINE_READ(engine, RING_IPEHR));
2146         } else {
2147                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2148                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2149         }
2150
2151         if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2152                 struct i915_request * const *port, *rq;
2153                 const u32 *hws =
2154                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2155                 const u8 num_entries = execlists->csb_size;
2156                 unsigned int idx;
2157                 u8 read, write;
2158
2159                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2160                            str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2161                            str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2162                            repr_timer(&engine->execlists.preempt),
2163                            repr_timer(&engine->execlists.timer));
2164
2165                 read = execlists->csb_head;
2166                 write = READ_ONCE(*execlists->csb_write);
2167
2168                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2169                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2170                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2171                            read, write, num_entries);
2172
2173                 if (read >= num_entries)
2174                         read = 0;
2175                 if (write >= num_entries)
2176                         write = 0;
2177                 if (read > write)
2178                         write += num_entries;
2179                 while (read < write) {
2180                         idx = ++read % num_entries;
2181                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2182                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
2183                 }
2184
2185                 i915_sched_engine_active_lock_bh(engine->sched_engine);
2186                 rcu_read_lock();
2187                 for (port = execlists->active; (rq = *port); port++) {
2188                         char hdr[160];
2189                         int len;
2190
2191                         len = scnprintf(hdr, sizeof(hdr),
2192                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
2193                                         (int)(port - execlists->active),
2194                                         rq->context->lrc.ccid,
2195                                         intel_context_is_closed(rq->context) ? "!" : "",
2196                                         intel_context_is_banned(rq->context) ? "*" : "");
2197                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2198                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2199                         i915_request_show(m, rq, hdr, 0);
2200                 }
2201                 for (port = execlists->pending; (rq = *port); port++) {
2202                         char hdr[160];
2203                         int len;
2204
2205                         len = scnprintf(hdr, sizeof(hdr),
2206                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
2207                                         (int)(port - execlists->pending),
2208                                         rq->context->lrc.ccid,
2209                                         intel_context_is_closed(rq->context) ? "!" : "",
2210                                         intel_context_is_banned(rq->context) ? "*" : "");
2211                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2212                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2213                         i915_request_show(m, rq, hdr, 0);
2214                 }
2215                 rcu_read_unlock();
2216                 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2217         } else if (GRAPHICS_VER(i915) > 6) {
2218                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2219                            ENGINE_READ(engine, RING_PP_DIR_BASE));
2220                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2221                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2222                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2223                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
2224         }
2225 }
2226
2227 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2228 {
2229         struct i915_vma_resource *vma_res = rq->batch_res;
2230         void *ring;
2231         int size;
2232
2233         drm_printf(m,
2234                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2235                    rq->head, rq->postfix, rq->tail,
2236                    vma_res ? upper_32_bits(vma_res->start) : ~0u,
2237                    vma_res ? lower_32_bits(vma_res->start) : ~0u);
2238
2239         size = rq->tail - rq->head;
2240         if (rq->tail < rq->head)
2241                 size += rq->ring->size;
2242
2243         ring = kmalloc(size, GFP_ATOMIC);
2244         if (ring) {
2245                 const void *vaddr = rq->ring->vaddr;
2246                 unsigned int head = rq->head;
2247                 unsigned int len = 0;
2248
2249                 if (rq->tail < head) {
2250                         len = rq->ring->size - head;
2251                         memcpy(ring, vaddr + head, len);
2252                         head = 0;
2253                 }
2254                 memcpy(ring + len, vaddr + head, size - len);
2255
2256                 hexdump(m, ring, size);
2257                 kfree(ring);
2258         }
2259 }
2260
2261 static unsigned long read_ul(void *p, size_t x)
2262 {
2263         return *(unsigned long *)(p + x);
2264 }
2265
2266 static void print_properties(struct intel_engine_cs *engine,
2267                              struct drm_printer *m)
2268 {
2269         static const struct pmap {
2270                 size_t offset;
2271                 const char *name;
2272         } props[] = {
2273 #define P(x) { \
2274         .offset = offsetof(typeof(engine->props), x), \
2275         .name = #x \
2276 }
2277                 P(heartbeat_interval_ms),
2278                 P(max_busywait_duration_ns),
2279                 P(preempt_timeout_ms),
2280                 P(stop_timeout_ms),
2281                 P(timeslice_duration_ms),
2282
2283                 {},
2284 #undef P
2285         };
2286         const struct pmap *p;
2287
2288         drm_printf(m, "\tProperties:\n");
2289         for (p = props; p->name; p++)
2290                 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2291                            p->name,
2292                            read_ul(&engine->props, p->offset),
2293                            read_ul(&engine->defaults, p->offset));
2294 }
2295
2296 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2297 {
2298         struct intel_timeline *tl = get_timeline(rq);
2299
2300         i915_request_show(m, rq, msg, 0);
2301
2302         drm_printf(m, "\t\tring->start:  0x%08x\n",
2303                    i915_ggtt_offset(rq->ring->vma));
2304         drm_printf(m, "\t\tring->head:   0x%08x\n",
2305                    rq->ring->head);
2306         drm_printf(m, "\t\tring->tail:   0x%08x\n",
2307                    rq->ring->tail);
2308         drm_printf(m, "\t\tring->emit:   0x%08x\n",
2309                    rq->ring->emit);
2310         drm_printf(m, "\t\tring->space:  0x%08x\n",
2311                    rq->ring->space);
2312
2313         if (tl) {
2314                 drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2315                            tl->hwsp_offset);
2316                 intel_timeline_put(tl);
2317         }
2318
2319         print_request_ring(m, rq);
2320
2321         if (rq->context->lrc_reg_state) {
2322                 drm_printf(m, "Logical Ring Context:\n");
2323                 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2324         }
2325 }
2326
2327 void intel_engine_dump_active_requests(struct list_head *requests,
2328                                        struct i915_request *hung_rq,
2329                                        struct drm_printer *m)
2330 {
2331         struct i915_request *rq;
2332         const char *msg;
2333         enum i915_request_state state;
2334
2335         list_for_each_entry(rq, requests, sched.link) {
2336                 if (rq == hung_rq)
2337                         continue;
2338
2339                 state = i915_test_request_state(rq);
2340                 if (state < I915_REQUEST_QUEUED)
2341                         continue;
2342
2343                 if (state == I915_REQUEST_ACTIVE)
2344                         msg = "\t\tactive on engine";
2345                 else
2346                         msg = "\t\tactive in queue";
2347
2348                 engine_dump_request(rq, m, msg);
2349         }
2350 }
2351
2352 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2353                                         struct drm_printer *m)
2354 {
2355         struct intel_context *hung_ce = NULL;
2356         struct i915_request *hung_rq = NULL;
2357
2358         /*
2359          * No need for an engine->irq_seqno_barrier() before the seqno reads.
2360          * The GPU is still running so requests are still executing and any
2361          * hardware reads will be out of date by the time they are reported.
2362          * But the intention here is just to report an instantaneous snapshot
2363          * so that's fine.
2364          */
2365         intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2366
2367         drm_printf(m, "\tRequests:\n");
2368
2369         if (hung_rq)
2370                 engine_dump_request(hung_rq, m, "\t\thung");
2371         else if (hung_ce)
2372                 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2373
2374         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2375                 intel_guc_dump_active_requests(engine, hung_rq, m);
2376         else
2377                 intel_execlists_dump_active_requests(engine, hung_rq, m);
2378
2379         if (hung_rq)
2380                 i915_request_put(hung_rq);
2381 }
2382
2383 void intel_engine_dump(struct intel_engine_cs *engine,
2384                        struct drm_printer *m,
2385                        const char *header, ...)
2386 {
2387         struct i915_gpu_error * const error = &engine->i915->gpu_error;
2388         struct i915_request *rq;
2389         intel_wakeref_t wakeref;
2390         ktime_t dummy;
2391
2392         if (header) {
2393                 va_list ap;
2394
2395                 va_start(ap, header);
2396                 drm_vprintf(m, header, &ap);
2397                 va_end(ap);
2398         }
2399
2400         if (intel_gt_is_wedged(engine->gt))
2401                 drm_printf(m, "*** WEDGED ***\n");
2402
2403         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2404         drm_printf(m, "\tBarriers?: %s\n",
2405                    str_yes_no(!llist_empty(&engine->barrier_tasks)));
2406         drm_printf(m, "\tLatency: %luus\n",
2407                    ewma__engine_latency_read(&engine->latency));
2408         if (intel_engine_supports_stats(engine))
2409                 drm_printf(m, "\tRuntime: %llums\n",
2410                            ktime_to_ms(intel_engine_get_busy_time(engine,
2411                                                                   &dummy)));
2412         drm_printf(m, "\tForcewake: %x domains, %d active\n",
2413                    engine->fw_domain, READ_ONCE(engine->fw_active));
2414
2415         rcu_read_lock();
2416         rq = READ_ONCE(engine->heartbeat.systole);
2417         if (rq)
2418                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2419                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2420         rcu_read_unlock();
2421         drm_printf(m, "\tReset count: %d (global %d)\n",
2422                    i915_reset_engine_count(error, engine),
2423                    i915_reset_count(error));
2424         print_properties(engine, m);
2425
2426         engine_dump_active_requests(engine, m);
2427
2428         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2429         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2430         if (wakeref) {
2431                 intel_engine_print_registers(engine, m);
2432                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2433         } else {
2434                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2435         }
2436
2437         intel_execlists_show_requests(engine, m, i915_request_show, 8);
2438
2439         drm_printf(m, "HWSP:\n");
2440         hexdump(m, engine->status_page.addr, PAGE_SIZE);
2441
2442         drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2443
2444         intel_engine_print_breadcrumbs(engine, m);
2445 }
2446
2447 /**
2448  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2449  * @engine: engine to report on
2450  * @now: monotonic timestamp of sampling
2451  *
2452  * Returns accumulated time @engine was busy since engine stats were enabled.
2453  */
2454 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2455 {
2456         return engine->busyness(engine, now);
2457 }
2458
2459 struct intel_context *
2460 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2461                             unsigned int count, unsigned long flags)
2462 {
2463         if (count == 0)
2464                 return ERR_PTR(-EINVAL);
2465
2466         if (count == 1 && !(flags & FORCE_VIRTUAL))
2467                 return intel_context_create(siblings[0]);
2468
2469         GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2470         return siblings[0]->cops->create_virtual(siblings, count, flags);
2471 }
2472
2473 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2474 {
2475         struct i915_request *request, *active = NULL;
2476
2477         /*
2478          * This search does not work in GuC submission mode. However, the GuC
2479          * will report the hanging context directly to the driver itself. So
2480          * the driver should never get here when in GuC mode.
2481          */
2482         GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2483
2484         /*
2485          * We are called by the error capture, reset and to dump engine
2486          * state at random points in time. In particular, note that neither is
2487          * crucially ordered with an interrupt. After a hang, the GPU is dead
2488          * and we assume that no more writes can happen (we waited long enough
2489          * for all writes that were in transaction to be flushed) - adding an
2490          * extra delay for a recent interrupt is pointless. Hence, we do
2491          * not need an engine->irq_seqno_barrier() before the seqno reads.
2492          * At all other times, we must assume the GPU is still running, but
2493          * we only care about the snapshot of this moment.
2494          */
2495         lockdep_assert_held(&engine->sched_engine->lock);
2496
2497         rcu_read_lock();
2498         request = execlists_active(&engine->execlists);
2499         if (request) {
2500                 struct intel_timeline *tl = request->context->timeline;
2501
2502                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2503                         if (__i915_request_is_complete(request))
2504                                 break;
2505
2506                         active = request;
2507                 }
2508         }
2509         rcu_read_unlock();
2510         if (active)
2511                 return active;
2512
2513         list_for_each_entry(request, &engine->sched_engine->requests,
2514                             sched.link) {
2515                 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2516                         continue;
2517
2518                 active = request;
2519                 break;
2520         }
2521
2522         return active;
2523 }
2524
2525 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2526                                   struct intel_context **ce, struct i915_request **rq)
2527 {
2528         unsigned long flags;
2529
2530         *ce = intel_engine_get_hung_context(engine);
2531         if (*ce) {
2532                 intel_engine_clear_hung_context(engine);
2533
2534                 *rq = intel_context_get_active_request(*ce);
2535                 return;
2536         }
2537
2538         /*
2539          * Getting here with GuC enabled means it is a forced error capture
2540          * with no actual hang. So, no need to attempt the execlist search.
2541          */
2542         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2543                 return;
2544
2545         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2546         *rq = engine_execlist_find_hung_request(engine);
2547         if (*rq)
2548                 *rq = i915_request_get_rcu(*rq);
2549         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2550 }
2551
2552 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2553 {
2554         /*
2555          * If there are any non-fused-off CCS engines, we need to enable CCS
2556          * support in the RCU_MODE register.  This only needs to be done once,
2557          * so for simplicity we'll take care of this in the RCS engine's
2558          * resume handler; since the RCS and all CCS engines belong to the
2559          * same reset domain and are reset together, this will also take care
2560          * of re-applying the setting after i915-triggered resets.
2561          */
2562         if (!CCS_MASK(engine->gt))
2563                 return;
2564
2565         intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2566                            _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2567 }
2568
2569 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2570 #include "mock_engine.c"
2571 #include "selftest_engine.c"
2572 #include "selftest_engine_cs.c"
2573 #endif
This page took 0.195256 seconds and 4 git commands to generate.