1 // SPDX-License-Identifier: MIT
3 * Copyright © 2016 Intel Corporation
6 #include <linux/string_helpers.h>
8 #include <drm/drm_print.h>
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
15 #include "i915_cmd_parser.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37 * valid. Now, docs explain in dwords what is in the context object. The full
38 * size is 70720 bytes, however, the power context and execlist context will
39 * never be saved (power context is stored elsewhere, and execlists don't work
40 * on HSW) - so the final size, including the extra state required for the
41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
50 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
52 #define MAX_MMIO_BASES 3
56 /* mmio bases table *must* be sorted in reverse graphics_ver order */
57 struct engine_mmio_base {
60 } mmio_bases[MAX_MMIO_BASES];
63 static const struct engine_info intel_engines[] = {
65 .class = RENDER_CLASS,
68 { .graphics_ver = 1, .base = RENDER_RING_BASE }
72 .class = COPY_ENGINE_CLASS,
75 { .graphics_ver = 6, .base = BLT_RING_BASE }
79 .class = COPY_ENGINE_CLASS,
82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
86 .class = COPY_ENGINE_CLASS,
89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
93 .class = COPY_ENGINE_CLASS,
96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
100 .class = COPY_ENGINE_CLASS,
103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
107 .class = COPY_ENGINE_CLASS,
110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
114 .class = COPY_ENGINE_CLASS,
117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
121 .class = COPY_ENGINE_CLASS,
124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
128 .class = COPY_ENGINE_CLASS,
131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
135 .class = VIDEO_DECODE_CLASS,
138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 { .graphics_ver = 4, .base = BSD_RING_BASE }
144 .class = VIDEO_DECODE_CLASS,
147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
152 .class = VIDEO_DECODE_CLASS,
155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
159 .class = VIDEO_DECODE_CLASS,
162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
166 .class = VIDEO_DECODE_CLASS,
169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
173 .class = VIDEO_DECODE_CLASS,
176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
180 .class = VIDEO_DECODE_CLASS,
183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
187 .class = VIDEO_DECODE_CLASS,
190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
194 .class = VIDEO_ENHANCEMENT_CLASS,
197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
202 .class = VIDEO_ENHANCEMENT_CLASS,
205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
209 .class = VIDEO_ENHANCEMENT_CLASS,
212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
216 .class = VIDEO_ENHANCEMENT_CLASS,
219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
223 .class = COMPUTE_CLASS,
226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
230 .class = COMPUTE_CLASS,
233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
237 .class = COMPUTE_CLASS,
240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
244 .class = COMPUTE_CLASS,
247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
251 .class = OTHER_CLASS,
252 .instance = OTHER_GSC_INSTANCE,
254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
260 * intel_engine_context_size() - return the size of the context for an engine
262 * @class: engine class
264 * Each engine class may require a different amount of space for a context
267 * Return: size (in bytes) of an engine class specific context image
269 * Note: this size includes the HWSP, which is part of the context image
270 * in LRC mode, but does not include the "shared data page" used with
271 * GuC submission. The caller should account for this if using the GuC.
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
275 struct intel_uncore *uncore = gt->uncore;
278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
284 switch (GRAPHICS_VER(gt->i915)) {
286 MISSING_CASE(GRAPHICS_VER(gt->i915));
287 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
290 return GEN11_LR_CONTEXT_RENDER_SIZE;
292 return GEN9_LR_CONTEXT_RENDER_SIZE;
294 return GEN8_LR_CONTEXT_RENDER_SIZE;
296 if (IS_HASWELL(gt->i915))
297 return HSW_CXT_TOTAL_SIZE;
299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
303 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
309 * There is a discrepancy here between the size reported
310 * by the register and the size of the context layout
311 * in the docs. Both are described as authorative!
313 * The discrepancy is on the order of a few cachelines,
314 * but the total is under one page (4k), which is our
315 * minimum allocation anyway so it should all come
318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320 GRAPHICS_VER(gt->i915), cxt_size * 64,
322 return round_up(cxt_size * 64, PAGE_SIZE);
325 /* For the special day when i810 gets merged. */
333 case VIDEO_DECODE_CLASS:
334 case VIDEO_ENHANCEMENT_CLASS:
335 case COPY_ENGINE_CLASS:
337 if (GRAPHICS_VER(gt->i915) < 8)
339 return GEN8_LR_CONTEXT_OTHER_SIZE;
343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344 const struct engine_mmio_base *bases)
348 for (i = 0; i < MAX_MMIO_BASES; i++)
349 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
352 GEM_BUG_ON(i == MAX_MMIO_BASES);
353 GEM_BUG_ON(!bases[i].base);
355 return bases[i].base;
358 static void __sprint_engine_name(struct intel_engine_cs *engine)
361 * Before we know what the uABI name for this engine will be,
362 * we still would like to keep track of this engine in the debug logs.
363 * We throw in a ' here as a reminder that this isn't its final name.
365 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366 intel_engine_class_repr(engine->class),
367 engine->instance) >= sizeof(engine->name));
370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
373 * Though they added more rings on g4x/ilk, they did not add
374 * per-engine HWSTAM until gen6.
376 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
379 if (GRAPHICS_VER(engine->i915) >= 3)
380 ENGINE_WRITE(engine, RING_HWSTAM, mask);
382 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
387 /* Mask off all writes into the unknown HWSP */
388 intel_engine_set_hwsp_writemask(engine, ~0u);
391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
393 GEM_DEBUG_WARN_ON(iir);
396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
401 static const u32 engine_reset_domains[] = {
402 [RCS0] = GEN11_GRDOM_RENDER,
403 [BCS0] = GEN11_GRDOM_BLT,
404 [BCS1] = XEHPC_GRDOM_BLT1,
405 [BCS2] = XEHPC_GRDOM_BLT2,
406 [BCS3] = XEHPC_GRDOM_BLT3,
407 [BCS4] = XEHPC_GRDOM_BLT4,
408 [BCS5] = XEHPC_GRDOM_BLT5,
409 [BCS6] = XEHPC_GRDOM_BLT6,
410 [BCS7] = XEHPC_GRDOM_BLT7,
411 [BCS8] = XEHPC_GRDOM_BLT8,
412 [VCS0] = GEN11_GRDOM_MEDIA,
413 [VCS1] = GEN11_GRDOM_MEDIA2,
414 [VCS2] = GEN11_GRDOM_MEDIA3,
415 [VCS3] = GEN11_GRDOM_MEDIA4,
416 [VCS4] = GEN11_GRDOM_MEDIA5,
417 [VCS5] = GEN11_GRDOM_MEDIA6,
418 [VCS6] = GEN11_GRDOM_MEDIA7,
419 [VCS7] = GEN11_GRDOM_MEDIA8,
420 [VECS0] = GEN11_GRDOM_VECS,
421 [VECS1] = GEN11_GRDOM_VECS2,
422 [VECS2] = GEN11_GRDOM_VECS3,
423 [VECS3] = GEN11_GRDOM_VECS4,
424 [CCS0] = GEN11_GRDOM_RENDER,
425 [CCS1] = GEN11_GRDOM_RENDER,
426 [CCS2] = GEN11_GRDOM_RENDER,
427 [CCS3] = GEN11_GRDOM_RENDER,
428 [GSC0] = GEN12_GRDOM_GSC,
430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 !engine_reset_domains[id]);
432 reset_domain = engine_reset_domains[id];
434 static const u32 engine_reset_domains[] = {
435 [RCS0] = GEN6_GRDOM_RENDER,
436 [BCS0] = GEN6_GRDOM_BLT,
437 [VCS0] = GEN6_GRDOM_MEDIA,
438 [VCS1] = GEN8_GRDOM_MEDIA2,
439 [VECS0] = GEN6_GRDOM_VECS,
441 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442 !engine_reset_domains[id]);
443 reset_domain = engine_reset_domains[id];
449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
452 const struct engine_info *info = &intel_engines[id];
453 struct drm_i915_private *i915 = gt->i915;
454 struct intel_engine_cs *engine;
457 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
462 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
465 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
468 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
471 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
474 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
478 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
480 INIT_LIST_HEAD(&engine->pinned_contexts_list);
482 engine->legacy_idx = INVALID_ENGINE;
483 engine->mask = BIT(id);
484 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
488 engine->uncore = gt->uncore;
489 guc_class = engine_class_to_guc_class(info->class);
490 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
493 engine->irq_handler = nop_irq_handler;
495 engine->class = info->class;
496 engine->instance = info->instance;
497 engine->logical_mask = BIT(logical_instance);
498 __sprint_engine_name(engine);
500 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
501 __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
502 engine->class == RENDER_CLASS)
503 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
505 /* features common between engines sharing EUs */
506 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
507 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
508 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
511 engine->props.heartbeat_interval_ms =
512 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
513 engine->props.max_busywait_duration_ns =
514 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
515 engine->props.preempt_timeout_ms =
516 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
517 engine->props.stop_timeout_ms =
518 CONFIG_DRM_I915_STOP_TIMEOUT;
519 engine->props.timeslice_duration_ms =
520 CONFIG_DRM_I915_TIMESLICE_DURATION;
523 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
524 * some compute workloads run quite long threads. That means they get
525 * reset due to not pre-empting in a timely manner. So, bump the
526 * pre-emption timeout value to be much higher for compute engines.
528 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
529 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
531 /* Cap properties according to any system limits */
532 #define CLAMP_PROP(field) \
534 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
535 if (clamp != engine->props.field) { \
536 drm_notice(&engine->i915->drm, \
537 "Warning, clamping %s to %lld to prevent overflow\n", \
539 engine->props.field = clamp; \
543 CLAMP_PROP(heartbeat_interval_ms);
544 CLAMP_PROP(max_busywait_duration_ns);
545 CLAMP_PROP(preempt_timeout_ms);
546 CLAMP_PROP(stop_timeout_ms);
547 CLAMP_PROP(timeslice_duration_ms);
551 engine->defaults = engine->props; /* never to change again */
553 engine->context_size = intel_engine_context_size(gt, engine->class);
554 if (WARN_ON(engine->context_size > BIT(20)))
555 engine->context_size = 0;
556 if (engine->context_size)
557 DRIVER_CAPS(i915)->has_logical_contexts = true;
559 ewma__engine_latency_init(&engine->latency);
561 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
563 /* Scrub mmio state on takeover */
564 intel_engine_sanitize_mmio(engine);
566 gt->engine_class[info->class][info->instance] = engine;
567 gt->engine[id] = engine;
572 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
574 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
579 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
581 value = min(value, jiffies_to_nsecs(2));
586 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
589 * NB: The GuC API only supports 32bit values. However, the limit is further
590 * reduced due to internal calculations which would otherwise overflow.
592 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
593 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
595 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
600 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
602 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
607 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
610 * NB: The GuC API only supports 32bit values. However, the limit is further
611 * reduced due to internal calculations which would otherwise overflow.
613 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
614 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
616 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
621 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
623 struct drm_i915_private *i915 = engine->i915;
625 if (engine->class == VIDEO_DECODE_CLASS) {
627 * HEVC support is present on first engine instance
628 * before Gen11 and on all instances afterwards.
630 if (GRAPHICS_VER(i915) >= 11 ||
631 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
632 engine->uabi_capabilities |=
633 I915_VIDEO_CLASS_CAPABILITY_HEVC;
636 * SFC block is present only on even logical engine
639 if ((GRAPHICS_VER(i915) >= 11 &&
640 (engine->gt->info.vdbox_sfc_access &
641 BIT(engine->instance))) ||
642 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
643 engine->uabi_capabilities |=
644 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
645 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
646 if (GRAPHICS_VER(i915) >= 9 &&
647 engine->gt->info.sfc_mask & BIT(engine->instance))
648 engine->uabi_capabilities |=
649 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
653 static void intel_setup_engine_capabilities(struct intel_gt *gt)
655 struct intel_engine_cs *engine;
656 enum intel_engine_id id;
658 for_each_engine(engine, gt, id)
659 __setup_engine_capabilities(engine);
663 * intel_engines_release() - free the resources allocated for Command Streamers
664 * @gt: pointer to struct intel_gt
666 void intel_engines_release(struct intel_gt *gt)
668 struct intel_engine_cs *engine;
669 enum intel_engine_id id;
672 * Before we release the resources held by engine, we must be certain
673 * that the HW is no longer accessing them -- having the GPU scribble
674 * to or read from a page being used for something else causes no end
677 * The GPU should be reset by this point, but assume the worst just
678 * in case we aborted before completely initialising the engines.
680 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
681 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
682 __intel_gt_reset(gt, ALL_ENGINES);
684 /* Decouple the backend; but keep the layout for late GPU resets */
685 for_each_engine(engine, gt, id) {
686 if (!engine->release)
689 intel_wakeref_wait_for_idle(&engine->wakeref);
690 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
692 engine->release(engine);
693 engine->release = NULL;
695 memset(&engine->reset, 0, sizeof(engine->reset));
699 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
701 if (!engine->request_pool)
704 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
707 void intel_engines_free(struct intel_gt *gt)
709 struct intel_engine_cs *engine;
710 enum intel_engine_id id;
712 /* Free the requests! dma-resv keeps fences around for an eternity */
715 for_each_engine(engine, gt, id) {
716 intel_engine_free_request_pool(engine);
718 gt->engine[id] = NULL;
723 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
724 unsigned int physical_vdbox,
725 unsigned int logical_vdbox, u16 vdbox_mask)
727 struct drm_i915_private *i915 = gt->i915;
730 * In Gen11, only even numbered logical VDBOXes are hooked
731 * up to an SFC (Scaler & Format Converter) unit.
732 * In Gen12, Even numbered physical instance always are connected
733 * to an SFC. Odd numbered physical instances have SFC only if
734 * previous even instance is fused off.
736 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
737 * in the fuse register that tells us whether a specific SFC is present.
739 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
741 else if (MEDIA_VER(i915) >= 12)
742 return (physical_vdbox % 2 == 0) ||
743 !(BIT(physical_vdbox - 1) & vdbox_mask);
744 else if (MEDIA_VER(i915) == 11)
745 return logical_vdbox % 2 == 0;
750 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
752 struct drm_i915_private *i915 = gt->i915;
753 unsigned int logical_vdbox = 0;
755 u32 media_fuse, fuse1;
759 if (MEDIA_VER(gt->i915) < 11)
763 * On newer platforms the fusing register is called 'enable' and has
764 * enable semantics, while on older platforms it is called 'disable'
765 * and bits have disable semantices.
767 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
768 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
769 media_fuse = ~media_fuse;
771 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
772 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
773 GEN11_GT_VEBOX_DISABLE_SHIFT;
775 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
776 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
777 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
779 gt->info.sfc_mask = ~0;
782 for (i = 0; i < I915_MAX_VCS; i++) {
783 if (!HAS_ENGINE(gt, _VCS(i))) {
784 vdbox_mask &= ~BIT(i);
788 if (!(BIT(i) & vdbox_mask)) {
789 gt->info.engine_mask &= ~BIT(_VCS(i));
790 gt_dbg(gt, "vcs%u fused off\n", i);
794 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
795 gt->info.vdbox_sfc_access |= BIT(i);
798 gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
799 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
801 for (i = 0; i < I915_MAX_VECS; i++) {
802 if (!HAS_ENGINE(gt, _VECS(i))) {
803 vebox_mask &= ~BIT(i);
807 if (!(BIT(i) & vebox_mask)) {
808 gt->info.engine_mask &= ~BIT(_VECS(i));
809 gt_dbg(gt, "vecs%u fused off\n", i);
812 gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
813 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
816 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
818 struct drm_i915_private *i915 = gt->i915;
819 struct intel_gt_info *info = >->info;
820 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
821 unsigned long ccs_mask;
824 if (GRAPHICS_VER(i915) < 11)
827 if (hweight32(CCS_MASK(gt)) <= 1)
830 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
833 * If all DSS in a quadrant are fused off, the corresponding CCS
834 * engine is not available for use.
836 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
837 info->engine_mask &= ~BIT(_CCS(i));
838 gt_dbg(gt, "ccs%u fused off\n", i);
842 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
844 struct drm_i915_private *i915 = gt->i915;
845 struct intel_gt_info *info = >->info;
846 unsigned long meml3_mask;
849 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
850 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
853 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
854 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
857 * Link Copy engines may be fused off according to meml3_mask. Each
858 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
860 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
861 unsigned int instance = quad * 2 + 1;
862 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
865 if (mask & info->engine_mask) {
866 gt_dbg(gt, "bcs%u fused off\n", instance);
867 gt_dbg(gt, "bcs%u fused off\n", instance + 1);
869 info->engine_mask &= ~mask;
875 * Determine which engines are fused off in our particular hardware.
876 * Note that we have a catch-22 situation where we need to be able to access
877 * the blitter forcewake domain to read the engine fuses, but at the same time
878 * we need to know which engines are available on the system to know which
879 * forcewake domains are present. We solve this by intializing the forcewake
880 * domains based on the full engine mask in the platform capabilities before
881 * calling this function and pruning the domains for fused-off engines
884 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
886 struct intel_gt_info *info = >->info;
888 GEM_BUG_ON(!info->engine_mask);
890 engine_mask_apply_media_fuses(gt);
891 engine_mask_apply_compute_fuses(gt);
892 engine_mask_apply_copy_fuses(gt);
895 * The only use of the GSC CS is to load and communicate with the GSC
896 * FW, so we have no use for it if we don't have the FW.
898 * IMPORTANT: in cases where we don't have the GSC FW, we have a
899 * catch-22 situation that breaks media C6 due to 2 requirements:
900 * 1) once turned on, the GSC power well will not go to sleep unless the
902 * 2) to enable idling (which is required for media C6) we need to
903 * initialize the IDLE_MSG register for the GSC CS and do at least 1
904 * submission, which will wake up the GSC power well.
906 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) {
907 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
908 info->engine_mask &= ~BIT(GSC0);
911 return info->engine_mask;
914 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
915 u8 class, const u8 *map, u8 num_instances)
918 u8 current_logical_id = 0;
920 for (j = 0; j < num_instances; ++j) {
921 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
922 if (!HAS_ENGINE(gt, i) ||
923 intel_engines[i].class != class)
926 if (intel_engines[i].instance == map[j]) {
927 logical_ids[intel_engines[i].instance] =
928 current_logical_id++;
935 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
938 * Logical to physical mapping is needed for proper support
939 * to split-frame feature.
941 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
942 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
944 populate_logical_ids(gt, logical_ids, class,
945 map, ARRAY_SIZE(map));
948 u8 map[MAX_ENGINE_INSTANCE + 1];
950 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
952 populate_logical_ids(gt, logical_ids, class,
953 map, ARRAY_SIZE(map));
958 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
959 * @gt: pointer to struct intel_gt
961 * Return: non-zero if the initialization failed.
963 int intel_engines_init_mmio(struct intel_gt *gt)
965 struct drm_i915_private *i915 = gt->i915;
966 const unsigned int engine_mask = init_engine_mask(gt);
967 unsigned int mask = 0;
968 unsigned int i, class;
969 u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
972 drm_WARN_ON(&i915->drm, engine_mask == 0);
973 drm_WARN_ON(&i915->drm, engine_mask &
974 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
976 if (i915_inject_probe_failure(i915))
979 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
980 setup_logical_ids(gt, logical_ids, class);
982 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
983 u8 instance = intel_engines[i].instance;
985 if (intel_engines[i].class != class ||
989 err = intel_engine_setup(gt, i,
990 logical_ids[instance]);
999 * Catch failures to update intel_engines table when the new engines
1000 * are added to the driver by a warning and disabling the forgotten
1003 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1004 gt->info.engine_mask = mask;
1006 gt->info.num_engines = hweight32(mask);
1008 intel_gt_check_and_clear_faults(gt);
1010 intel_setup_engine_capabilities(gt);
1012 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1017 intel_engines_free(gt);
1021 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1023 struct intel_engine_execlists * const execlists = &engine->execlists;
1025 execlists->port_mask = 1;
1026 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1027 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1029 memset(execlists->pending, 0, sizeof(execlists->pending));
1031 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1034 static void cleanup_status_page(struct intel_engine_cs *engine)
1036 struct i915_vma *vma;
1038 /* Prevent writes into HWSP after returning the page to the system */
1039 intel_engine_set_hwsp_writemask(engine, ~0u);
1041 vma = fetch_and_zero(&engine->status_page.vma);
1045 if (!HWS_NEEDS_PHYSICAL(engine->i915))
1046 i915_vma_unpin(vma);
1048 i915_gem_object_unpin_map(vma->obj);
1049 i915_gem_object_put(vma->obj);
1052 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1053 struct i915_gem_ww_ctx *ww,
1054 struct i915_vma *vma)
1058 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1060 * On g33, we cannot place HWS above 256MiB, so
1061 * restrict its pinning to the low mappable arena.
1062 * Though this restriction is not documented for
1063 * gen4, gen5, or byt, they also behave similarly
1064 * and hang if the HWS is placed at the top of the
1065 * GTT. To generalise, it appears that all !llc
1066 * platforms have issues with us placing the HWS
1067 * above the mappable region (even though we never
1070 flags = PIN_MAPPABLE;
1074 return i915_ggtt_pin(vma, ww, 0, flags);
1077 static int init_status_page(struct intel_engine_cs *engine)
1079 struct drm_i915_gem_object *obj;
1080 struct i915_gem_ww_ctx ww;
1081 struct i915_vma *vma;
1085 INIT_LIST_HEAD(&engine->status_page.timelines);
1088 * Though the HWS register does support 36bit addresses, historically
1089 * we have had hangs and corruption reported due to wild writes if
1090 * the HWS is placed above 4G. We only allow objects to be allocated
1091 * in GFP_DMA32 for i965, and no earlier physical address users had
1092 * access to more than 4G.
1094 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1096 gt_err(engine->gt, "Failed to allocate status page\n");
1097 return PTR_ERR(obj);
1100 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1102 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1108 i915_gem_ww_ctx_init(&ww, true);
1110 ret = i915_gem_object_lock(obj, &ww);
1111 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1112 ret = pin_ggtt_status_page(engine, &ww, vma);
1116 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1117 if (IS_ERR(vaddr)) {
1118 ret = PTR_ERR(vaddr);
1122 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1123 engine->status_page.vma = vma;
1127 i915_vma_unpin(vma);
1129 if (ret == -EDEADLK) {
1130 ret = i915_gem_ww_ctx_backoff(&ww);
1134 i915_gem_ww_ctx_fini(&ww);
1137 i915_gem_object_put(obj);
1141 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1143 static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1144 [RENDER_CLASS].reg = GEN8_RTCR,
1145 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */
1146 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR,
1147 [COPY_ENGINE_CLASS].reg = GEN8_BTCR,
1149 static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1150 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR,
1151 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1152 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1153 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR,
1154 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR,
1156 static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1157 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR,
1158 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR,
1159 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1160 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR,
1161 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR,
1163 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1164 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1165 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1166 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR,
1168 struct drm_i915_private *i915 = engine->i915;
1169 const unsigned int instance = engine->instance;
1170 const unsigned int class = engine->class;
1171 const union intel_engine_tlb_inv_reg *regs;
1172 union intel_engine_tlb_inv_reg reg;
1173 unsigned int num = 0;
1177 * New platforms should not be added with catch-all-newer (>=)
1178 * condition so that any later platform added triggers the below warning
1179 * and in turn mandates a human cross-check of whether the invalidation
1180 * flows have compatible semantics.
1182 * For instance with the 11.00 -> 12.00 transition three out of five
1183 * respective engine registers were moved to masked type. Then after the
1184 * 12.00 -> 12.50 transition multi cast handling is required too.
1187 if (engine->gt->type == GT_MEDIA) {
1188 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1190 num = ARRAY_SIZE(xelpmp_regs);
1193 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1194 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1195 GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1196 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1198 num = ARRAY_SIZE(xehp_regs);
1199 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1200 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1202 num = ARRAY_SIZE(gen12_regs);
1203 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1205 num = ARRAY_SIZE(gen8_regs);
1206 } else if (GRAPHICS_VER(i915) < 8) {
1211 if (gt_WARN_ONCE(engine->gt, !num,
1212 "Platform does not implement TLB invalidation!"))
1215 if (gt_WARN_ON_ONCE(engine->gt,
1217 (!regs[class].reg.reg &&
1218 !regs[class].mcr_reg.reg)))
1223 if (regs == xelpmp_regs && class == OTHER_CLASS) {
1225 * There's only a single GSC instance, but it uses register bit
1226 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1228 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1230 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1231 reg.reg = GEN8_M2TCR;
1239 engine->tlb_inv.mcr = regs == xehp_regs;
1240 engine->tlb_inv.reg = reg;
1241 engine->tlb_inv.done = val;
1243 if (GRAPHICS_VER(i915) >= 12 &&
1244 (engine->class == VIDEO_DECODE_CLASS ||
1245 engine->class == VIDEO_ENHANCEMENT_CLASS ||
1246 engine->class == COMPUTE_CLASS ||
1247 engine->class == OTHER_CLASS))
1248 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1250 engine->tlb_inv.request = val;
1255 static int engine_setup_common(struct intel_engine_cs *engine)
1259 init_llist_head(&engine->barrier_tasks);
1261 err = intel_engine_init_tlb_invalidation(engine);
1265 err = init_status_page(engine);
1269 engine->breadcrumbs = intel_breadcrumbs_create(engine);
1270 if (!engine->breadcrumbs) {
1275 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1276 if (!engine->sched_engine) {
1278 goto err_sched_engine;
1280 engine->sched_engine->private_data = engine;
1282 err = intel_engine_init_cmd_parser(engine);
1284 goto err_cmd_parser;
1286 intel_engine_init_execlists(engine);
1287 intel_engine_init__pm(engine);
1288 intel_engine_init_retire(engine);
1290 /* Use the whole device by default */
1292 intel_sseu_from_device_info(&engine->gt->info.sseu);
1294 intel_engine_init_workarounds(engine);
1295 intel_engine_init_whitelist(engine);
1296 intel_engine_init_ctx_wa(engine);
1298 if (GRAPHICS_VER(engine->i915) >= 12)
1299 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1304 i915_sched_engine_put(engine->sched_engine);
1306 intel_breadcrumbs_put(engine->breadcrumbs);
1308 cleanup_status_page(engine);
1312 struct measure_breadcrumb {
1313 struct i915_request rq;
1314 struct intel_ring ring;
1318 static int measure_breadcrumb_dw(struct intel_context *ce)
1320 struct intel_engine_cs *engine = ce->engine;
1321 struct measure_breadcrumb *frame;
1324 GEM_BUG_ON(!engine->gt->scratch);
1326 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1330 frame->rq.i915 = engine->i915;
1331 frame->rq.engine = engine;
1332 frame->rq.context = ce;
1333 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1334 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1336 frame->ring.vaddr = frame->cs;
1337 frame->ring.size = sizeof(frame->cs);
1339 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1340 frame->ring.effective_size = frame->ring.size;
1341 intel_ring_update_space(&frame->ring);
1342 frame->rq.ring = &frame->ring;
1344 mutex_lock(&ce->timeline->mutex);
1345 spin_lock_irq(&engine->sched_engine->lock);
1347 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1349 spin_unlock_irq(&engine->sched_engine->lock);
1350 mutex_unlock(&ce->timeline->mutex);
1352 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1358 struct intel_context *
1359 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1360 struct i915_address_space *vm,
1361 unsigned int ring_size,
1363 struct lock_class_key *key,
1366 struct intel_context *ce;
1369 ce = intel_context_create(engine);
1373 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1374 ce->timeline = page_pack_bits(NULL, hwsp);
1376 ce->ring_size = ring_size;
1378 i915_vm_put(ce->vm);
1379 ce->vm = i915_vm_get(vm);
1381 err = intel_context_pin(ce); /* perma-pin so it is always available */
1383 intel_context_put(ce);
1384 return ERR_PTR(err);
1387 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1390 * Give our perma-pinned kernel timelines a separate lockdep class,
1391 * so that we can use them from within the normal user timelines
1392 * should we need to inject GPU operations during their request
1395 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1400 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1402 struct intel_engine_cs *engine = ce->engine;
1403 struct i915_vma *hwsp = engine->status_page.vma;
1405 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1407 mutex_lock(&hwsp->vm->mutex);
1408 list_del(&ce->timeline->engine_link);
1409 mutex_unlock(&hwsp->vm->mutex);
1411 list_del(&ce->pinned_contexts_link);
1412 intel_context_unpin(ce);
1413 intel_context_put(ce);
1416 static struct intel_context *
1417 create_ggtt_bind_context(struct intel_engine_cs *engine)
1419 static struct lock_class_key kernel;
1422 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1423 * bind requets at a time so get a bigger ring.
1425 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1426 I915_GEM_HWS_GGTT_BIND_ADDR,
1427 &kernel, "ggtt_bind_context");
1430 static struct intel_context *
1431 create_kernel_context(struct intel_engine_cs *engine)
1433 static struct lock_class_key kernel;
1435 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1436 I915_GEM_HWS_SEQNO_ADDR,
1437 &kernel, "kernel_context");
1441 * engine_init_common - initialize engine state which might require hw access
1442 * @engine: Engine to initialize.
1444 * Initializes @engine@ structure members shared between legacy and execlists
1445 * submission modes which do require hardware access.
1447 * Typcally done at later stages of submission mode specific engine setup.
1449 * Returns zero on success or an error code on failure.
1451 static int engine_init_common(struct intel_engine_cs *engine)
1453 struct intel_context *ce, *bce = NULL;
1456 engine->set_default_submission(engine);
1459 * We may need to do things with the shrinker which
1460 * require us to immediately switch back to the default
1461 * context. This can cause a problem as pinning the
1462 * default context also requires GTT space which may not
1463 * be available. To avoid this we always pin the default
1466 ce = create_kernel_context(engine);
1470 * Create a separate pinned context for GGTT update with blitter engine
1471 * if a platform require such service. MI_UPDATE_GTT works on other
1472 * engines as well but BCS should be less busy engine so pick that for
1475 if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1476 bce = create_ggtt_bind_context(engine);
1479 goto err_ce_context;
1483 ret = measure_breadcrumb_dw(ce);
1485 goto err_bce_context;
1487 engine->emit_fini_breadcrumb_dw = ret;
1488 engine->kernel_context = ce;
1489 engine->bind_context = bce;
1495 intel_engine_destroy_pinned_context(bce);
1497 intel_engine_destroy_pinned_context(ce);
1501 int intel_engines_init(struct intel_gt *gt)
1503 int (*setup)(struct intel_engine_cs *engine);
1504 struct intel_engine_cs *engine;
1505 enum intel_engine_id id;
1508 if (intel_uc_uses_guc_submission(>->uc)) {
1509 gt->submission_method = INTEL_SUBMISSION_GUC;
1510 setup = intel_guc_submission_setup;
1511 } else if (HAS_EXECLISTS(gt->i915)) {
1512 gt->submission_method = INTEL_SUBMISSION_ELSP;
1513 setup = intel_execlists_submission_setup;
1515 gt->submission_method = INTEL_SUBMISSION_RING;
1516 setup = intel_ring_submission_setup;
1519 for_each_engine(engine, gt, id) {
1520 err = engine_setup_common(engine);
1524 err = setup(engine);
1526 intel_engine_cleanup_common(engine);
1530 /* The backend should now be responsible for cleanup */
1531 GEM_BUG_ON(engine->release == NULL);
1533 err = engine_init_common(engine);
1537 intel_engine_add_user(engine);
1544 * intel_engine_cleanup_common - cleans up the engine state created by
1545 * the common initiailizers.
1546 * @engine: Engine to cleanup.
1548 * This cleans up everything created by the common helpers.
1550 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1552 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1554 i915_sched_engine_put(engine->sched_engine);
1555 intel_breadcrumbs_put(engine->breadcrumbs);
1557 intel_engine_fini_retire(engine);
1558 intel_engine_cleanup_cmd_parser(engine);
1560 if (engine->default_state)
1561 fput(engine->default_state);
1563 if (engine->kernel_context)
1564 intel_engine_destroy_pinned_context(engine->kernel_context);
1566 if (engine->bind_context)
1567 intel_engine_destroy_pinned_context(engine->bind_context);
1570 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1571 cleanup_status_page(engine);
1573 intel_wa_list_free(&engine->ctx_wa_list);
1574 intel_wa_list_free(&engine->wa_list);
1575 intel_wa_list_free(&engine->whitelist);
1579 * intel_engine_resume - re-initializes the HW state of the engine
1580 * @engine: Engine to resume.
1582 * Returns zero on success or an error code on failure.
1584 int intel_engine_resume(struct intel_engine_cs *engine)
1586 intel_engine_apply_workarounds(engine);
1587 intel_engine_apply_whitelist(engine);
1589 return engine->resume(engine);
1592 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1594 struct drm_i915_private *i915 = engine->i915;
1598 if (GRAPHICS_VER(i915) >= 8)
1599 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1600 else if (GRAPHICS_VER(i915) >= 4)
1601 acthd = ENGINE_READ(engine, RING_ACTHD);
1603 acthd = ENGINE_READ(engine, ACTHD);
1608 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1612 if (GRAPHICS_VER(engine->i915) >= 8)
1613 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1615 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1620 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1622 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1626 * If we are doing a normal GPU reset, we can take our time and allow
1627 * the engine to quiesce. We've stopped submission to the engine, and
1628 * if we wait long enough an innocent context should complete and
1629 * leave the engine idle. So they should not be caught unaware by
1630 * the forthcoming GPU reset (which usually follows the stop_cs)!
1632 return READ_ONCE(engine->props.stop_timeout_ms);
1635 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1636 int fast_timeout_us,
1637 int slow_timeout_ms)
1639 struct intel_uncore *uncore = engine->uncore;
1640 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1643 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1646 * Wa_22011802037: Prior to doing a reset, ensure CS is
1647 * stopped, set ring stop bit and prefetch disable bit to halt CS
1649 if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1650 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1651 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1653 err = __intel_wait_for_register_fw(engine->uncore, mode,
1654 MODE_IDLE, MODE_IDLE,
1659 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1660 intel_uncore_posting_read_fw(uncore, mode);
1664 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1668 if (GRAPHICS_VER(engine->i915) < 3)
1671 ENGINE_TRACE(engine, "\n");
1673 * TODO: Find out why occasionally stopping the CS times out. Seen
1674 * especially with gem_eio tests.
1676 * Occasionally trying to stop the cs times out, but does not adversely
1677 * affect functionality. The timeout is set as a config parameter that
1678 * defaults to 100ms. In most cases the follow up operation is to wait
1679 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1680 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1681 * caused, the caller must check and handle the return from this
1684 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1685 ENGINE_TRACE(engine,
1686 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1687 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1688 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1691 * Sometimes we observe that the idle flag is not
1692 * set even though the ring is empty. So double
1693 * check before giving up.
1695 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1696 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1703 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1705 ENGINE_TRACE(engine, "\n");
1707 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1710 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1712 static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1713 [RCS0] = MSG_IDLE_CS,
1714 [BCS0] = MSG_IDLE_BCS,
1715 [VCS0] = MSG_IDLE_VCS0,
1716 [VCS1] = MSG_IDLE_VCS1,
1717 [VCS2] = MSG_IDLE_VCS2,
1718 [VCS3] = MSG_IDLE_VCS3,
1719 [VCS4] = MSG_IDLE_VCS4,
1720 [VCS5] = MSG_IDLE_VCS5,
1721 [VCS6] = MSG_IDLE_VCS6,
1722 [VCS7] = MSG_IDLE_VCS7,
1723 [VECS0] = MSG_IDLE_VECS0,
1724 [VECS1] = MSG_IDLE_VECS1,
1725 [VECS2] = MSG_IDLE_VECS2,
1726 [VECS3] = MSG_IDLE_VECS3,
1727 [CCS0] = MSG_IDLE_CS,
1728 [CCS1] = MSG_IDLE_CS,
1729 [CCS2] = MSG_IDLE_CS,
1730 [CCS3] = MSG_IDLE_CS,
1734 if (!_reg[engine->id].reg)
1737 val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1739 /* bits[29:25] & bits[13:9] >> shift */
1740 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1743 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1747 /* Ensure GPM receives fw up/down after CS is stopped */
1750 /* Wait for forcewake request to complete in GPM */
1751 ret = __intel_wait_for_register_fw(gt->uncore,
1752 GEN9_PWRGT_DOMAIN_STATUS,
1753 fw_mask, fw_mask, 5000, 0, NULL);
1755 /* Ensure CS receives fw ack from GPM */
1759 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1763 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1764 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1765 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1766 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1767 * are concerned only with the gt reset here, we use a logical OR of pending
1768 * forcewakeups from all reset domains and then wait for them to complete by
1769 * querying PWRGT_DOMAIN_STATUS.
1771 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1773 u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1776 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1779 /* NB: please notice the memset */
1780 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1781 struct intel_instdone *instdone)
1783 struct drm_i915_private *i915 = engine->i915;
1784 struct intel_uncore *uncore = engine->uncore;
1785 u32 mmio_base = engine->mmio_base;
1790 memset(instdone, 0, sizeof(*instdone));
1792 if (GRAPHICS_VER(i915) >= 8) {
1793 instdone->instdone =
1794 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1796 if (engine->id != RCS0)
1799 instdone->slice_common =
1800 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1801 if (GRAPHICS_VER(i915) >= 12) {
1802 instdone->slice_common_extra[0] =
1803 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1804 instdone->slice_common_extra[1] =
1805 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1808 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1809 instdone->sampler[slice][subslice] =
1810 intel_gt_mcr_read(engine->gt,
1811 GEN8_SAMPLER_INSTDONE,
1813 instdone->row[slice][subslice] =
1814 intel_gt_mcr_read(engine->gt,
1819 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1820 for_each_ss_steering(iter, engine->gt, slice, subslice)
1821 instdone->geom_svg[slice][subslice] =
1822 intel_gt_mcr_read(engine->gt,
1823 XEHPG_INSTDONE_GEOM_SVG,
1826 } else if (GRAPHICS_VER(i915) >= 7) {
1827 instdone->instdone =
1828 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1830 if (engine->id != RCS0)
1833 instdone->slice_common =
1834 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1835 instdone->sampler[0][0] =
1836 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1837 instdone->row[0][0] =
1838 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1839 } else if (GRAPHICS_VER(i915) >= 4) {
1840 instdone->instdone =
1841 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1842 if (engine->id == RCS0)
1843 /* HACK: Using the wrong struct member */
1844 instdone->slice_common =
1845 intel_uncore_read(uncore, GEN4_INSTDONE1);
1847 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1851 static bool ring_is_idle(struct intel_engine_cs *engine)
1855 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1858 if (!intel_engine_pm_get_if_awake(engine))
1861 /* First check that no commands are left in the ring */
1862 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1863 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1866 /* No bit for gen2, so assume the CS parser is idle */
1867 if (GRAPHICS_VER(engine->i915) > 2 &&
1868 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1871 intel_engine_pm_put(engine);
1876 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1878 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1884 if (tasklet_trylock(t)) {
1885 /* Must wait for any GPU reset in progress. */
1886 if (__tasklet_is_enabled(t))
1892 /* Synchronise and wait for the tasklet on another CPU */
1894 tasklet_unlock_wait(t);
1898 * intel_engine_is_idle() - Report if the engine has finished process all work
1899 * @engine: the intel_engine_cs
1901 * Return true if there are no requests pending, nothing left to be submitted
1902 * to hardware, and that the engine is idle.
1904 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1906 /* More white lies, if wedged, hw state is inconsistent */
1907 if (intel_gt_is_wedged(engine->gt))
1910 if (!intel_engine_pm_is_awake(engine))
1913 /* Waiting to drain ELSP? */
1914 intel_synchronize_hardirq(engine->i915);
1915 intel_engine_flush_submission(engine);
1917 /* ELSP is empty, but there are ready requests? E.g. after reset */
1918 if (!i915_sched_engine_is_empty(engine->sched_engine))
1922 return ring_is_idle(engine);
1925 bool intel_engines_are_idle(struct intel_gt *gt)
1927 struct intel_engine_cs *engine;
1928 enum intel_engine_id id;
1931 * If the driver is wedged, HW state may be very inconsistent and
1932 * report that it is still busy, even though we have stopped using it.
1934 if (intel_gt_is_wedged(gt))
1937 /* Already parked (and passed an idleness test); must still be idle */
1938 if (!READ_ONCE(gt->awake))
1941 for_each_engine(engine, gt, id) {
1942 if (!intel_engine_is_idle(engine))
1949 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1951 if (!engine->irq_enable)
1954 /* Caller disables interrupts */
1955 spin_lock(engine->gt->irq_lock);
1956 engine->irq_enable(engine);
1957 spin_unlock(engine->gt->irq_lock);
1962 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1964 if (!engine->irq_disable)
1967 /* Caller disables interrupts */
1968 spin_lock(engine->gt->irq_lock);
1969 engine->irq_disable(engine);
1970 spin_unlock(engine->gt->irq_lock);
1973 void intel_engines_reset_default_submission(struct intel_gt *gt)
1975 struct intel_engine_cs *engine;
1976 enum intel_engine_id id;
1978 for_each_engine(engine, gt, id) {
1979 if (engine->sanitize)
1980 engine->sanitize(engine);
1982 engine->set_default_submission(engine);
1986 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1988 switch (GRAPHICS_VER(engine->i915)) {
1990 return false; /* uses physical not virtual addresses */
1992 /* maybe only uses physical not virtual addresses */
1993 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1995 return !IS_I965G(engine->i915); /* who knows! */
1997 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
2003 static struct intel_timeline *get_timeline(struct i915_request *rq)
2005 struct intel_timeline *tl;
2008 * Even though we are holding the engine->sched_engine->lock here, there
2009 * is no control over the submission queue per-se and we are
2010 * inspecting the active state at a random point in time, with an
2011 * unknown queue. Play safe and make sure the timeline remains valid.
2012 * (Only being used for pretty printing, one extra kref shouldn't
2013 * cause a camel stampede!)
2016 tl = rcu_dereference(rq->timeline);
2017 if (!kref_get_unless_zero(&tl->kref))
2024 static int print_ring(char *buf, int sz, struct i915_request *rq)
2028 if (!i915_request_signaled(rq)) {
2029 struct intel_timeline *tl = get_timeline(rq);
2031 len = scnprintf(buf, sz,
2032 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2033 i915_ggtt_offset(rq->ring->vma),
2034 tl ? tl->hwsp_offset : 0,
2036 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2040 intel_timeline_put(tl);
2046 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2048 const size_t rowsize = 8 * sizeof(u32);
2049 const void *prev = NULL;
2053 for (pos = 0; pos < len; pos += rowsize) {
2056 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2058 drm_printf(m, "*\n");
2064 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2065 rowsize, sizeof(u32),
2067 false) >= sizeof(line));
2068 drm_printf(m, "[%04zx] %s\n", pos, line);
2075 static const char *repr_timer(const struct timer_list *t)
2077 if (!READ_ONCE(t->expires))
2080 if (timer_pending(t))
2086 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2087 struct drm_printer *m)
2089 struct drm_i915_private *i915 = engine->i915;
2090 struct intel_engine_execlists * const execlists = &engine->execlists;
2093 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2094 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2095 if (HAS_EXECLISTS(i915)) {
2096 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2097 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2098 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2099 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2101 drm_printf(m, "\tRING_START: 0x%08x\n",
2102 ENGINE_READ(engine, RING_START));
2103 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
2104 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2105 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
2106 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2107 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
2108 ENGINE_READ(engine, RING_CTL),
2109 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2110 if (GRAPHICS_VER(engine->i915) > 2) {
2111 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
2112 ENGINE_READ(engine, RING_MI_MODE),
2113 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2116 if (GRAPHICS_VER(i915) >= 6) {
2117 drm_printf(m, "\tRING_IMR: 0x%08x\n",
2118 ENGINE_READ(engine, RING_IMR));
2119 drm_printf(m, "\tRING_ESR: 0x%08x\n",
2120 ENGINE_READ(engine, RING_ESR));
2121 drm_printf(m, "\tRING_EMR: 0x%08x\n",
2122 ENGINE_READ(engine, RING_EMR));
2123 drm_printf(m, "\tRING_EIR: 0x%08x\n",
2124 ENGINE_READ(engine, RING_EIR));
2127 addr = intel_engine_get_active_head(engine);
2128 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
2129 upper_32_bits(addr), lower_32_bits(addr));
2130 addr = intel_engine_get_last_batch_head(engine);
2131 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2132 upper_32_bits(addr), lower_32_bits(addr));
2133 if (GRAPHICS_VER(i915) >= 8)
2134 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2135 else if (GRAPHICS_VER(i915) >= 4)
2136 addr = ENGINE_READ(engine, RING_DMA_FADD);
2138 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2139 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2140 upper_32_bits(addr), lower_32_bits(addr));
2141 if (GRAPHICS_VER(i915) >= 4) {
2142 drm_printf(m, "\tIPEIR: 0x%08x\n",
2143 ENGINE_READ(engine, RING_IPEIR));
2144 drm_printf(m, "\tIPEHR: 0x%08x\n",
2145 ENGINE_READ(engine, RING_IPEHR));
2147 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2148 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2151 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2152 struct i915_request * const *port, *rq;
2154 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2155 const u8 num_entries = execlists->csb_size;
2159 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2160 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2161 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2162 repr_timer(&engine->execlists.preempt),
2163 repr_timer(&engine->execlists.timer));
2165 read = execlists->csb_head;
2166 write = READ_ONCE(*execlists->csb_write);
2168 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2169 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2170 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2171 read, write, num_entries);
2173 if (read >= num_entries)
2175 if (write >= num_entries)
2178 write += num_entries;
2179 while (read < write) {
2180 idx = ++read % num_entries;
2181 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2182 idx, hws[idx * 2], hws[idx * 2 + 1]);
2185 i915_sched_engine_active_lock_bh(engine->sched_engine);
2187 for (port = execlists->active; (rq = *port); port++) {
2191 len = scnprintf(hdr, sizeof(hdr),
2192 "\t\tActive[%d]: ccid:%08x%s%s, ",
2193 (int)(port - execlists->active),
2194 rq->context->lrc.ccid,
2195 intel_context_is_closed(rq->context) ? "!" : "",
2196 intel_context_is_banned(rq->context) ? "*" : "");
2197 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2198 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2199 i915_request_show(m, rq, hdr, 0);
2201 for (port = execlists->pending; (rq = *port); port++) {
2205 len = scnprintf(hdr, sizeof(hdr),
2206 "\t\tPending[%d]: ccid:%08x%s%s, ",
2207 (int)(port - execlists->pending),
2208 rq->context->lrc.ccid,
2209 intel_context_is_closed(rq->context) ? "!" : "",
2210 intel_context_is_banned(rq->context) ? "*" : "");
2211 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2212 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2213 i915_request_show(m, rq, hdr, 0);
2216 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2217 } else if (GRAPHICS_VER(i915) > 6) {
2218 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2219 ENGINE_READ(engine, RING_PP_DIR_BASE));
2220 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2221 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2222 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2223 ENGINE_READ(engine, RING_PP_DIR_DCLV));
2227 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2229 struct i915_vma_resource *vma_res = rq->batch_res;
2234 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2235 rq->head, rq->postfix, rq->tail,
2236 vma_res ? upper_32_bits(vma_res->start) : ~0u,
2237 vma_res ? lower_32_bits(vma_res->start) : ~0u);
2239 size = rq->tail - rq->head;
2240 if (rq->tail < rq->head)
2241 size += rq->ring->size;
2243 ring = kmalloc(size, GFP_ATOMIC);
2245 const void *vaddr = rq->ring->vaddr;
2246 unsigned int head = rq->head;
2247 unsigned int len = 0;
2249 if (rq->tail < head) {
2250 len = rq->ring->size - head;
2251 memcpy(ring, vaddr + head, len);
2254 memcpy(ring + len, vaddr + head, size - len);
2256 hexdump(m, ring, size);
2261 static unsigned long read_ul(void *p, size_t x)
2263 return *(unsigned long *)(p + x);
2266 static void print_properties(struct intel_engine_cs *engine,
2267 struct drm_printer *m)
2269 static const struct pmap {
2274 .offset = offsetof(typeof(engine->props), x), \
2277 P(heartbeat_interval_ms),
2278 P(max_busywait_duration_ns),
2279 P(preempt_timeout_ms),
2281 P(timeslice_duration_ms),
2286 const struct pmap *p;
2288 drm_printf(m, "\tProperties:\n");
2289 for (p = props; p->name; p++)
2290 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2292 read_ul(&engine->props, p->offset),
2293 read_ul(&engine->defaults, p->offset));
2296 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2298 struct intel_timeline *tl = get_timeline(rq);
2300 i915_request_show(m, rq, msg, 0);
2302 drm_printf(m, "\t\tring->start: 0x%08x\n",
2303 i915_ggtt_offset(rq->ring->vma));
2304 drm_printf(m, "\t\tring->head: 0x%08x\n",
2306 drm_printf(m, "\t\tring->tail: 0x%08x\n",
2308 drm_printf(m, "\t\tring->emit: 0x%08x\n",
2310 drm_printf(m, "\t\tring->space: 0x%08x\n",
2314 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
2316 intel_timeline_put(tl);
2319 print_request_ring(m, rq);
2321 if (rq->context->lrc_reg_state) {
2322 drm_printf(m, "Logical Ring Context:\n");
2323 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2327 void intel_engine_dump_active_requests(struct list_head *requests,
2328 struct i915_request *hung_rq,
2329 struct drm_printer *m)
2331 struct i915_request *rq;
2333 enum i915_request_state state;
2335 list_for_each_entry(rq, requests, sched.link) {
2339 state = i915_test_request_state(rq);
2340 if (state < I915_REQUEST_QUEUED)
2343 if (state == I915_REQUEST_ACTIVE)
2344 msg = "\t\tactive on engine";
2346 msg = "\t\tactive in queue";
2348 engine_dump_request(rq, m, msg);
2352 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2353 struct drm_printer *m)
2355 struct intel_context *hung_ce = NULL;
2356 struct i915_request *hung_rq = NULL;
2359 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2360 * The GPU is still running so requests are still executing and any
2361 * hardware reads will be out of date by the time they are reported.
2362 * But the intention here is just to report an instantaneous snapshot
2365 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2367 drm_printf(m, "\tRequests:\n");
2370 engine_dump_request(hung_rq, m, "\t\thung");
2372 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2374 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2375 intel_guc_dump_active_requests(engine, hung_rq, m);
2377 intel_execlists_dump_active_requests(engine, hung_rq, m);
2380 i915_request_put(hung_rq);
2383 void intel_engine_dump(struct intel_engine_cs *engine,
2384 struct drm_printer *m,
2385 const char *header, ...)
2387 struct i915_gpu_error * const error = &engine->i915->gpu_error;
2388 struct i915_request *rq;
2389 intel_wakeref_t wakeref;
2395 va_start(ap, header);
2396 drm_vprintf(m, header, &ap);
2400 if (intel_gt_is_wedged(engine->gt))
2401 drm_printf(m, "*** WEDGED ***\n");
2403 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2404 drm_printf(m, "\tBarriers?: %s\n",
2405 str_yes_no(!llist_empty(&engine->barrier_tasks)));
2406 drm_printf(m, "\tLatency: %luus\n",
2407 ewma__engine_latency_read(&engine->latency));
2408 if (intel_engine_supports_stats(engine))
2409 drm_printf(m, "\tRuntime: %llums\n",
2410 ktime_to_ms(intel_engine_get_busy_time(engine,
2412 drm_printf(m, "\tForcewake: %x domains, %d active\n",
2413 engine->fw_domain, READ_ONCE(engine->fw_active));
2416 rq = READ_ONCE(engine->heartbeat.systole);
2418 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2419 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2421 drm_printf(m, "\tReset count: %d (global %d)\n",
2422 i915_reset_engine_count(error, engine),
2423 i915_reset_count(error));
2424 print_properties(engine, m);
2426 engine_dump_active_requests(engine, m);
2428 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
2429 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2431 intel_engine_print_registers(engine, m);
2432 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2434 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2437 intel_execlists_show_requests(engine, m, i915_request_show, 8);
2439 drm_printf(m, "HWSP:\n");
2440 hexdump(m, engine->status_page.addr, PAGE_SIZE);
2442 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2444 intel_engine_print_breadcrumbs(engine, m);
2448 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2449 * @engine: engine to report on
2450 * @now: monotonic timestamp of sampling
2452 * Returns accumulated time @engine was busy since engine stats were enabled.
2454 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2456 return engine->busyness(engine, now);
2459 struct intel_context *
2460 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2461 unsigned int count, unsigned long flags)
2464 return ERR_PTR(-EINVAL);
2466 if (count == 1 && !(flags & FORCE_VIRTUAL))
2467 return intel_context_create(siblings[0]);
2469 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2470 return siblings[0]->cops->create_virtual(siblings, count, flags);
2473 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2475 struct i915_request *request, *active = NULL;
2478 * This search does not work in GuC submission mode. However, the GuC
2479 * will report the hanging context directly to the driver itself. So
2480 * the driver should never get here when in GuC mode.
2482 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2485 * We are called by the error capture, reset and to dump engine
2486 * state at random points in time. In particular, note that neither is
2487 * crucially ordered with an interrupt. After a hang, the GPU is dead
2488 * and we assume that no more writes can happen (we waited long enough
2489 * for all writes that were in transaction to be flushed) - adding an
2490 * extra delay for a recent interrupt is pointless. Hence, we do
2491 * not need an engine->irq_seqno_barrier() before the seqno reads.
2492 * At all other times, we must assume the GPU is still running, but
2493 * we only care about the snapshot of this moment.
2495 lockdep_assert_held(&engine->sched_engine->lock);
2498 request = execlists_active(&engine->execlists);
2500 struct intel_timeline *tl = request->context->timeline;
2502 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2503 if (__i915_request_is_complete(request))
2513 list_for_each_entry(request, &engine->sched_engine->requests,
2515 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2525 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2526 struct intel_context **ce, struct i915_request **rq)
2528 unsigned long flags;
2530 *ce = intel_engine_get_hung_context(engine);
2532 intel_engine_clear_hung_context(engine);
2534 *rq = intel_context_get_active_request(*ce);
2539 * Getting here with GuC enabled means it is a forced error capture
2540 * with no actual hang. So, no need to attempt the execlist search.
2542 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2545 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2546 *rq = engine_execlist_find_hung_request(engine);
2548 *rq = i915_request_get_rcu(*rq);
2549 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2552 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2555 * If there are any non-fused-off CCS engines, we need to enable CCS
2556 * support in the RCU_MODE register. This only needs to be done once,
2557 * so for simplicity we'll take care of this in the RCS engine's
2558 * resume handler; since the RCS and all CCS engines belong to the
2559 * same reset domain and are reset together, this will also take care
2560 * of re-applying the setting after i915-triggered resets.
2562 if (!CCS_MASK(engine->gt))
2565 intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2566 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2569 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2570 #include "mock_engine.c"
2571 #include "selftest_engine.c"
2572 #include "selftest_engine_cs.c"