1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
118 #include <linux/uaccess.h>
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
137 #include <trace/events/sock.h>
140 #include <net/busy_poll.h>
142 #include <linux/ethtool.h>
144 static DEFINE_MUTEX(proto_list_mutex);
145 static LIST_HEAD(proto_list);
147 static void sock_inuse_add(struct net *net, int val);
150 * sk_ns_capable - General socket capability test
151 * @sk: Socket to use a capability on or through
152 * @user_ns: The user namespace of the capability to use
153 * @cap: The capability to use
155 * Test to see if the opener of the socket had when the socket was
156 * created and the current process has the capability @cap in the user
157 * namespace @user_ns.
159 bool sk_ns_capable(const struct sock *sk,
160 struct user_namespace *user_ns, int cap)
162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 ns_capable(user_ns, cap);
165 EXPORT_SYMBOL(sk_ns_capable);
168 * sk_capable - Socket global capability test
169 * @sk: Socket to use a capability on or through
170 * @cap: The global capability to use
172 * Test to see if the opener of the socket had when the socket was
173 * created and the current process has the capability @cap in all user
176 bool sk_capable(const struct sock *sk, int cap)
178 return sk_ns_capable(sk, &init_user_ns, cap);
180 EXPORT_SYMBOL(sk_capable);
183 * sk_net_capable - Network namespace socket capability test
184 * @sk: Socket to use a capability on or through
185 * @cap: The capability to use
187 * Test to see if the opener of the socket had when the socket was created
188 * and the current process has the capability @cap over the network namespace
189 * the socket is a member of.
191 bool sk_net_capable(const struct sock *sk, int cap)
193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 EXPORT_SYMBOL(sk_net_capable);
198 * Each address family might have different locking rules, so we have
199 * one slock key per address family and separate keys for internal and
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_keys[AF_MAX];
204 static struct lock_class_key af_family_slock_keys[AF_MAX];
205 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
208 * Make lock validator output more readable. (we pre-construct these
209 * strings build-time, so that runtime initialization of socket
213 #define _sock_locks(x) \
214 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
215 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
216 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
217 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
218 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
219 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
220 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
221 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
222 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
223 x "27" , x "28" , x "AF_CAN" , \
224 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
225 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
226 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
227 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
228 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
232 static const char *const af_family_key_strings[AF_MAX+1] = {
233 _sock_locks("sk_lock-")
235 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
236 _sock_locks("slock-")
238 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
239 _sock_locks("clock-")
242 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
243 _sock_locks("k-sk_lock-")
245 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
246 _sock_locks("k-slock-")
248 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
249 _sock_locks("k-clock-")
251 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
252 _sock_locks("rlock-")
254 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
255 _sock_locks("wlock-")
257 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
258 _sock_locks("elock-")
262 * sk_callback_lock and sk queues locking rules are per-address-family,
263 * so split the lock classes by using a per-AF key:
265 static struct lock_class_key af_callback_keys[AF_MAX];
266 static struct lock_class_key af_rlock_keys[AF_MAX];
267 static struct lock_class_key af_wlock_keys[AF_MAX];
268 static struct lock_class_key af_elock_keys[AF_MAX];
269 static struct lock_class_key af_kern_callback_keys[AF_MAX];
271 /* Run time adjustable parameters. */
272 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
273 EXPORT_SYMBOL(sysctl_wmem_max);
274 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
275 EXPORT_SYMBOL(sysctl_rmem_max);
276 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
277 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
279 /* Maximal space eaten by iovec or ancillary data plus some space */
280 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
281 EXPORT_SYMBOL(sysctl_optmem_max);
283 int sysctl_tstamp_allow_data __read_mostly = 1;
285 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
286 EXPORT_SYMBOL_GPL(memalloc_socks_key);
289 * sk_set_memalloc - sets %SOCK_MEMALLOC
290 * @sk: socket to set it on
292 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
293 * It's the responsibility of the admin to adjust min_free_kbytes
294 * to meet the requirements
296 void sk_set_memalloc(struct sock *sk)
298 sock_set_flag(sk, SOCK_MEMALLOC);
299 sk->sk_allocation |= __GFP_MEMALLOC;
300 static_branch_inc(&memalloc_socks_key);
302 EXPORT_SYMBOL_GPL(sk_set_memalloc);
304 void sk_clear_memalloc(struct sock *sk)
306 sock_reset_flag(sk, SOCK_MEMALLOC);
307 sk->sk_allocation &= ~__GFP_MEMALLOC;
308 static_branch_dec(&memalloc_socks_key);
311 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
312 * progress of swapping. SOCK_MEMALLOC may be cleared while
313 * it has rmem allocations due to the last swapfile being deactivated
314 * but there is a risk that the socket is unusable due to exceeding
315 * the rmem limits. Reclaim the reserves and obey rmem limits again.
319 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
321 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
324 unsigned int noreclaim_flag;
326 /* these should have been dropped before queueing */
327 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
329 noreclaim_flag = memalloc_noreclaim_save();
330 ret = sk->sk_backlog_rcv(sk, skb);
331 memalloc_noreclaim_restore(noreclaim_flag);
335 EXPORT_SYMBOL(__sk_backlog_rcv);
337 void sk_error_report(struct sock *sk)
339 sk->sk_error_report(sk);
341 switch (sk->sk_family) {
345 trace_inet_sk_error_report(sk);
351 EXPORT_SYMBOL(sk_error_report);
353 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
355 struct __kernel_sock_timeval tv;
357 if (timeo == MAX_SCHEDULE_TIMEOUT) {
361 tv.tv_sec = timeo / HZ;
362 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
365 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
366 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
367 *(struct old_timeval32 *)optval = tv32;
372 struct __kernel_old_timeval old_tv;
373 old_tv.tv_sec = tv.tv_sec;
374 old_tv.tv_usec = tv.tv_usec;
375 *(struct __kernel_old_timeval *)optval = old_tv;
376 return sizeof(old_tv);
379 *(struct __kernel_sock_timeval *)optval = tv;
383 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
386 struct __kernel_sock_timeval tv;
388 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
389 struct old_timeval32 tv32;
391 if (optlen < sizeof(tv32))
394 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
396 tv.tv_sec = tv32.tv_sec;
397 tv.tv_usec = tv32.tv_usec;
398 } else if (old_timeval) {
399 struct __kernel_old_timeval old_tv;
401 if (optlen < sizeof(old_tv))
403 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
405 tv.tv_sec = old_tv.tv_sec;
406 tv.tv_usec = old_tv.tv_usec;
408 if (optlen < sizeof(tv))
410 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
413 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
417 static int warned __read_mostly;
420 if (warned < 10 && net_ratelimit()) {
422 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
423 __func__, current->comm, task_pid_nr(current));
427 *timeo_p = MAX_SCHEDULE_TIMEOUT;
428 if (tv.tv_sec == 0 && tv.tv_usec == 0)
430 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
431 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
435 static bool sock_needs_netstamp(const struct sock *sk)
437 switch (sk->sk_family) {
446 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
448 if (sk->sk_flags & flags) {
449 sk->sk_flags &= ~flags;
450 if (sock_needs_netstamp(sk) &&
451 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
452 net_disable_timestamp();
457 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
460 struct sk_buff_head *list = &sk->sk_receive_queue;
462 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
463 atomic_inc(&sk->sk_drops);
464 trace_sock_rcvqueue_full(sk, skb);
468 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
469 atomic_inc(&sk->sk_drops);
474 skb_set_owner_r(skb, sk);
476 /* we escape from rcu protected region, make sure we dont leak
481 spin_lock_irqsave(&list->lock, flags);
482 sock_skb_set_dropcount(sk, skb);
483 __skb_queue_tail(list, skb);
484 spin_unlock_irqrestore(&list->lock, flags);
486 if (!sock_flag(sk, SOCK_DEAD))
487 sk->sk_data_ready(sk);
490 EXPORT_SYMBOL(__sock_queue_rcv_skb);
492 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
496 err = sk_filter(sk, skb);
500 return __sock_queue_rcv_skb(sk, skb);
502 EXPORT_SYMBOL(sock_queue_rcv_skb);
504 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
505 const int nested, unsigned int trim_cap, bool refcounted)
507 int rc = NET_RX_SUCCESS;
509 if (sk_filter_trim_cap(sk, skb, trim_cap))
510 goto discard_and_relse;
514 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
515 atomic_inc(&sk->sk_drops);
516 goto discard_and_relse;
519 bh_lock_sock_nested(sk);
522 if (!sock_owned_by_user(sk)) {
524 * trylock + unlock semantics:
526 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
528 rc = sk_backlog_rcv(sk, skb);
530 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
531 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
533 atomic_inc(&sk->sk_drops);
534 goto discard_and_relse;
546 EXPORT_SYMBOL(__sk_receive_skb);
548 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
550 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
552 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
554 struct dst_entry *dst = __sk_dst_get(sk);
556 if (dst && dst->obsolete &&
557 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
558 dst, cookie) == NULL) {
559 sk_tx_queue_clear(sk);
560 sk->sk_dst_pending_confirm = 0;
561 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
568 EXPORT_SYMBOL(__sk_dst_check);
570 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
572 struct dst_entry *dst = sk_dst_get(sk);
574 if (dst && dst->obsolete &&
575 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
576 dst, cookie) == NULL) {
584 EXPORT_SYMBOL(sk_dst_check);
586 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
588 int ret = -ENOPROTOOPT;
589 #ifdef CONFIG_NETDEVICES
590 struct net *net = sock_net(sk);
594 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
601 sk->sk_bound_dev_if = ifindex;
602 if (sk->sk_prot->rehash)
603 sk->sk_prot->rehash(sk);
614 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
620 ret = sock_bindtoindex_locked(sk, ifindex);
626 EXPORT_SYMBOL(sock_bindtoindex);
628 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
630 int ret = -ENOPROTOOPT;
631 #ifdef CONFIG_NETDEVICES
632 struct net *net = sock_net(sk);
633 char devname[IFNAMSIZ];
640 /* Bind this socket to a particular device like "eth0",
641 * as specified in the passed interface name. If the
642 * name is "" or the option length is zero the socket
645 if (optlen > IFNAMSIZ - 1)
646 optlen = IFNAMSIZ - 1;
647 memset(devname, 0, sizeof(devname));
650 if (copy_from_sockptr(devname, optval, optlen))
654 if (devname[0] != '\0') {
655 struct net_device *dev;
658 dev = dev_get_by_name_rcu(net, devname);
660 index = dev->ifindex;
667 return sock_bindtoindex(sk, index, true);
674 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
675 int __user *optlen, int len)
677 int ret = -ENOPROTOOPT;
678 #ifdef CONFIG_NETDEVICES
679 struct net *net = sock_net(sk);
680 char devname[IFNAMSIZ];
682 if (sk->sk_bound_dev_if == 0) {
691 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
695 len = strlen(devname) + 1;
698 if (copy_to_user(optval, devname, len))
703 if (put_user(len, optlen))
714 bool sk_mc_loop(struct sock *sk)
716 if (dev_recursion_level())
720 switch (sk->sk_family) {
722 return inet_sk(sk)->mc_loop;
723 #if IS_ENABLED(CONFIG_IPV6)
725 return inet6_sk(sk)->mc_loop;
731 EXPORT_SYMBOL(sk_mc_loop);
733 void sock_set_reuseaddr(struct sock *sk)
736 sk->sk_reuse = SK_CAN_REUSE;
739 EXPORT_SYMBOL(sock_set_reuseaddr);
741 void sock_set_reuseport(struct sock *sk)
744 sk->sk_reuseport = true;
747 EXPORT_SYMBOL(sock_set_reuseport);
749 void sock_no_linger(struct sock *sk)
752 sk->sk_lingertime = 0;
753 sock_set_flag(sk, SOCK_LINGER);
756 EXPORT_SYMBOL(sock_no_linger);
758 void sock_set_priority(struct sock *sk, u32 priority)
761 sk->sk_priority = priority;
764 EXPORT_SYMBOL(sock_set_priority);
766 void sock_set_sndtimeo(struct sock *sk, s64 secs)
769 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
770 sk->sk_sndtimeo = secs * HZ;
772 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
775 EXPORT_SYMBOL(sock_set_sndtimeo);
777 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
780 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
781 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
782 sock_set_flag(sk, SOCK_RCVTSTAMP);
783 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
785 sock_reset_flag(sk, SOCK_RCVTSTAMP);
786 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
790 void sock_enable_timestamps(struct sock *sk)
793 __sock_set_timestamps(sk, true, false, true);
796 EXPORT_SYMBOL(sock_enable_timestamps);
798 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
801 case SO_TIMESTAMP_OLD:
802 __sock_set_timestamps(sk, valbool, false, false);
804 case SO_TIMESTAMP_NEW:
805 __sock_set_timestamps(sk, valbool, true, false);
807 case SO_TIMESTAMPNS_OLD:
808 __sock_set_timestamps(sk, valbool, false, true);
810 case SO_TIMESTAMPNS_NEW:
811 __sock_set_timestamps(sk, valbool, true, true);
816 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
818 struct net *net = sock_net(sk);
819 struct net_device *dev = NULL;
824 if (sk->sk_bound_dev_if)
825 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
828 pr_err("%s: sock not bind to device\n", __func__);
832 num = ethtool_get_phc_vclocks(dev, &vclock_index);
833 for (i = 0; i < num; i++) {
834 if (*(vclock_index + i) == phc_index) {
846 sk->sk_bind_phc = phc_index;
851 int sock_set_timestamping(struct sock *sk, int optname,
852 struct so_timestamping timestamping)
854 int val = timestamping.flags;
857 if (val & ~SOF_TIMESTAMPING_MASK)
860 if (val & SOF_TIMESTAMPING_OPT_ID &&
861 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
862 if (sk->sk_protocol == IPPROTO_TCP &&
863 sk->sk_type == SOCK_STREAM) {
864 if ((1 << sk->sk_state) &
865 (TCPF_CLOSE | TCPF_LISTEN))
867 sk->sk_tskey = tcp_sk(sk)->snd_una;
873 if (val & SOF_TIMESTAMPING_OPT_STATS &&
874 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
877 if (val & SOF_TIMESTAMPING_BIND_PHC) {
878 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
883 sk->sk_tsflags = val;
884 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
886 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
887 sock_enable_timestamp(sk,
888 SOCK_TIMESTAMPING_RX_SOFTWARE);
890 sock_disable_timestamp(sk,
891 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
895 void sock_set_keepalive(struct sock *sk)
898 if (sk->sk_prot->keepalive)
899 sk->sk_prot->keepalive(sk, true);
900 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
903 EXPORT_SYMBOL(sock_set_keepalive);
905 static void __sock_set_rcvbuf(struct sock *sk, int val)
907 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
908 * as a negative value.
910 val = min_t(int, val, INT_MAX / 2);
911 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
913 /* We double it on the way in to account for "struct sk_buff" etc.
914 * overhead. Applications assume that the SO_RCVBUF setting they make
915 * will allow that much actual data to be received on that socket.
917 * Applications are unaware that "struct sk_buff" and other overheads
918 * allocate from the receive buffer during socket buffer allocation.
920 * And after considering the possible alternatives, returning the value
921 * we actually used in getsockopt is the most desirable behavior.
923 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
926 void sock_set_rcvbuf(struct sock *sk, int val)
929 __sock_set_rcvbuf(sk, val);
932 EXPORT_SYMBOL(sock_set_rcvbuf);
934 static void __sock_set_mark(struct sock *sk, u32 val)
936 if (val != sk->sk_mark) {
942 void sock_set_mark(struct sock *sk, u32 val)
945 __sock_set_mark(sk, val);
948 EXPORT_SYMBOL(sock_set_mark);
951 * This is meant for all protocols to use and covers goings on
952 * at the socket level. Everything here is generic.
955 int sock_setsockopt(struct socket *sock, int level, int optname,
956 sockptr_t optval, unsigned int optlen)
958 struct so_timestamping timestamping;
959 struct sock_txtime sk_txtime;
960 struct sock *sk = sock->sk;
967 * Options without arguments
970 if (optname == SO_BINDTODEVICE)
971 return sock_setbindtodevice(sk, optval, optlen);
973 if (optlen < sizeof(int))
976 if (copy_from_sockptr(&val, optval, sizeof(val)))
979 valbool = val ? 1 : 0;
985 if (val && !capable(CAP_NET_ADMIN))
988 sock_valbool_flag(sk, SOCK_DBG, valbool);
991 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
994 sk->sk_reuseport = valbool;
1003 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1007 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1010 /* Don't error on this BSD doesn't and if you think
1011 * about it this is right. Otherwise apps have to
1012 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1013 * are treated in BSD as hints
1015 val = min_t(u32, val, sysctl_wmem_max);
1017 /* Ensure val * 2 fits into an int, to prevent max_t()
1018 * from treating it as a negative value.
1020 val = min_t(int, val, INT_MAX / 2);
1021 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1022 WRITE_ONCE(sk->sk_sndbuf,
1023 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1024 /* Wake up sending tasks if we upped the value. */
1025 sk->sk_write_space(sk);
1028 case SO_SNDBUFFORCE:
1029 if (!capable(CAP_NET_ADMIN)) {
1034 /* No negative values (to prevent underflow, as val will be
1042 /* Don't error on this BSD doesn't and if you think
1043 * about it this is right. Otherwise apps have to
1044 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1045 * are treated in BSD as hints
1047 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
1050 case SO_RCVBUFFORCE:
1051 if (!capable(CAP_NET_ADMIN)) {
1056 /* No negative values (to prevent underflow, as val will be
1059 __sock_set_rcvbuf(sk, max(val, 0));
1063 if (sk->sk_prot->keepalive)
1064 sk->sk_prot->keepalive(sk, valbool);
1065 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1069 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1073 sk->sk_no_check_tx = valbool;
1077 if ((val >= 0 && val <= 6) ||
1078 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1079 sk->sk_priority = val;
1085 if (optlen < sizeof(ling)) {
1086 ret = -EINVAL; /* 1003.1g */
1089 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1094 sock_reset_flag(sk, SOCK_LINGER);
1096 #if (BITS_PER_LONG == 32)
1097 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1098 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1101 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1102 sock_set_flag(sk, SOCK_LINGER);
1111 set_bit(SOCK_PASSCRED, &sock->flags);
1113 clear_bit(SOCK_PASSCRED, &sock->flags);
1116 case SO_TIMESTAMP_OLD:
1117 case SO_TIMESTAMP_NEW:
1118 case SO_TIMESTAMPNS_OLD:
1119 case SO_TIMESTAMPNS_NEW:
1120 sock_set_timestamp(sk, optname, valbool);
1123 case SO_TIMESTAMPING_NEW:
1124 case SO_TIMESTAMPING_OLD:
1125 if (optlen == sizeof(timestamping)) {
1126 if (copy_from_sockptr(×tamping, optval,
1127 sizeof(timestamping))) {
1132 memset(×tamping, 0, sizeof(timestamping));
1133 timestamping.flags = val;
1135 ret = sock_set_timestamping(sk, optname, timestamping);
1141 if (sock->ops->set_rcvlowat)
1142 ret = sock->ops->set_rcvlowat(sk, val);
1144 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1147 case SO_RCVTIMEO_OLD:
1148 case SO_RCVTIMEO_NEW:
1149 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1150 optlen, optname == SO_RCVTIMEO_OLD);
1153 case SO_SNDTIMEO_OLD:
1154 case SO_SNDTIMEO_NEW:
1155 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1156 optlen, optname == SO_SNDTIMEO_OLD);
1159 case SO_ATTACH_FILTER: {
1160 struct sock_fprog fprog;
1162 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1164 ret = sk_attach_filter(&fprog, sk);
1169 if (optlen == sizeof(u32)) {
1173 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1176 ret = sk_attach_bpf(ufd, sk);
1180 case SO_ATTACH_REUSEPORT_CBPF: {
1181 struct sock_fprog fprog;
1183 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1185 ret = sk_reuseport_attach_filter(&fprog, sk);
1188 case SO_ATTACH_REUSEPORT_EBPF:
1190 if (optlen == sizeof(u32)) {
1194 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1197 ret = sk_reuseport_attach_bpf(ufd, sk);
1201 case SO_DETACH_REUSEPORT_BPF:
1202 ret = reuseport_detach_prog(sk);
1205 case SO_DETACH_FILTER:
1206 ret = sk_detach_filter(sk);
1209 case SO_LOCK_FILTER:
1210 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1213 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1218 set_bit(SOCK_PASSSEC, &sock->flags);
1220 clear_bit(SOCK_PASSSEC, &sock->flags);
1223 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1228 __sock_set_mark(sk, val);
1232 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1235 case SO_WIFI_STATUS:
1236 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1240 if (sock->ops->set_peek_off)
1241 ret = sock->ops->set_peek_off(sk, val);
1247 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1250 case SO_SELECT_ERR_QUEUE:
1251 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1254 #ifdef CONFIG_NET_RX_BUSY_POLL
1256 /* allow unprivileged users to decrease the value */
1257 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1263 WRITE_ONCE(sk->sk_ll_usec, val);
1266 case SO_PREFER_BUSY_POLL:
1267 if (valbool && !capable(CAP_NET_ADMIN))
1270 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1272 case SO_BUSY_POLL_BUDGET:
1273 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1276 if (val < 0 || val > U16_MAX)
1279 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1284 case SO_MAX_PACING_RATE:
1286 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1288 if (sizeof(ulval) != sizeof(val) &&
1289 optlen >= sizeof(ulval) &&
1290 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1295 cmpxchg(&sk->sk_pacing_status,
1298 sk->sk_max_pacing_rate = ulval;
1299 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1302 case SO_INCOMING_CPU:
1303 WRITE_ONCE(sk->sk_incoming_cpu, val);
1308 dst_negative_advice(sk);
1312 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1313 if (!((sk->sk_type == SOCK_STREAM &&
1314 sk->sk_protocol == IPPROTO_TCP) ||
1315 (sk->sk_type == SOCK_DGRAM &&
1316 sk->sk_protocol == IPPROTO_UDP)))
1318 } else if (sk->sk_family != PF_RDS) {
1322 if (val < 0 || val > 1)
1325 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1330 if (optlen != sizeof(struct sock_txtime)) {
1333 } else if (copy_from_sockptr(&sk_txtime, optval,
1334 sizeof(struct sock_txtime))) {
1337 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1341 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1342 * scheduler has enough safe guards.
1344 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1345 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1349 sock_valbool_flag(sk, SOCK_TXTIME, true);
1350 sk->sk_clockid = sk_txtime.clockid;
1351 sk->sk_txtime_deadline_mode =
1352 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1353 sk->sk_txtime_report_errors =
1354 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1357 case SO_BINDTOIFINDEX:
1358 ret = sock_bindtoindex_locked(sk, val);
1362 if (val & ~SOCK_BUF_LOCK_MASK) {
1366 sk->sk_userlocks = val | (sk->sk_userlocks &
1367 ~SOCK_BUF_LOCK_MASK);
1377 EXPORT_SYMBOL(sock_setsockopt);
1379 static const struct cred *sk_get_peer_cred(struct sock *sk)
1381 const struct cred *cred;
1383 spin_lock(&sk->sk_peer_lock);
1384 cred = get_cred(sk->sk_peer_cred);
1385 spin_unlock(&sk->sk_peer_lock);
1390 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1391 struct ucred *ucred)
1393 ucred->pid = pid_vnr(pid);
1394 ucred->uid = ucred->gid = -1;
1396 struct user_namespace *current_ns = current_user_ns();
1398 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1399 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1403 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1405 struct user_namespace *user_ns = current_user_ns();
1408 for (i = 0; i < src->ngroups; i++)
1409 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1415 int sock_getsockopt(struct socket *sock, int level, int optname,
1416 char __user *optval, int __user *optlen)
1418 struct sock *sk = sock->sk;
1423 unsigned long ulval;
1425 struct old_timeval32 tm32;
1426 struct __kernel_old_timeval tm;
1427 struct __kernel_sock_timeval stm;
1428 struct sock_txtime txtime;
1429 struct so_timestamping timestamping;
1432 int lv = sizeof(int);
1435 if (get_user(len, optlen))
1440 memset(&v, 0, sizeof(v));
1444 v.val = sock_flag(sk, SOCK_DBG);
1448 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1452 v.val = sock_flag(sk, SOCK_BROADCAST);
1456 v.val = sk->sk_sndbuf;
1460 v.val = sk->sk_rcvbuf;
1464 v.val = sk->sk_reuse;
1468 v.val = sk->sk_reuseport;
1472 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1476 v.val = sk->sk_type;
1480 v.val = sk->sk_protocol;
1484 v.val = sk->sk_family;
1488 v.val = -sock_error(sk);
1490 v.val = xchg(&sk->sk_err_soft, 0);
1494 v.val = sock_flag(sk, SOCK_URGINLINE);
1498 v.val = sk->sk_no_check_tx;
1502 v.val = sk->sk_priority;
1506 lv = sizeof(v.ling);
1507 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1508 v.ling.l_linger = sk->sk_lingertime / HZ;
1514 case SO_TIMESTAMP_OLD:
1515 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1516 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1517 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1520 case SO_TIMESTAMPNS_OLD:
1521 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1524 case SO_TIMESTAMP_NEW:
1525 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1528 case SO_TIMESTAMPNS_NEW:
1529 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1532 case SO_TIMESTAMPING_OLD:
1533 lv = sizeof(v.timestamping);
1534 v.timestamping.flags = sk->sk_tsflags;
1535 v.timestamping.bind_phc = sk->sk_bind_phc;
1538 case SO_RCVTIMEO_OLD:
1539 case SO_RCVTIMEO_NEW:
1540 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1543 case SO_SNDTIMEO_OLD:
1544 case SO_SNDTIMEO_NEW:
1545 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1549 v.val = sk->sk_rcvlowat;
1557 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1562 struct ucred peercred;
1563 if (len > sizeof(peercred))
1564 len = sizeof(peercred);
1566 spin_lock(&sk->sk_peer_lock);
1567 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1568 spin_unlock(&sk->sk_peer_lock);
1570 if (copy_to_user(optval, &peercred, len))
1577 const struct cred *cred;
1580 cred = sk_get_peer_cred(sk);
1584 n = cred->group_info->ngroups;
1585 if (len < n * sizeof(gid_t)) {
1586 len = n * sizeof(gid_t);
1588 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1590 len = n * sizeof(gid_t);
1592 ret = groups_to_user((gid_t __user *)optval, cred->group_info);
1603 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1608 if (copy_to_user(optval, address, len))
1613 /* Dubious BSD thing... Probably nobody even uses it, but
1614 * the UNIX standard wants it for whatever reason... -DaveM
1617 v.val = sk->sk_state == TCP_LISTEN;
1621 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1625 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1628 v.val = sk->sk_mark;
1632 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1635 case SO_WIFI_STATUS:
1636 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1640 if (!sock->ops->set_peek_off)
1643 v.val = sk->sk_peek_off;
1646 v.val = sock_flag(sk, SOCK_NOFCS);
1649 case SO_BINDTODEVICE:
1650 return sock_getbindtodevice(sk, optval, optlen, len);
1653 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1659 case SO_LOCK_FILTER:
1660 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1663 case SO_BPF_EXTENSIONS:
1664 v.val = bpf_tell_extensions();
1667 case SO_SELECT_ERR_QUEUE:
1668 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1671 #ifdef CONFIG_NET_RX_BUSY_POLL
1673 v.val = sk->sk_ll_usec;
1675 case SO_PREFER_BUSY_POLL:
1676 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1680 case SO_MAX_PACING_RATE:
1681 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1682 lv = sizeof(v.ulval);
1683 v.ulval = sk->sk_max_pacing_rate;
1686 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1690 case SO_INCOMING_CPU:
1691 v.val = READ_ONCE(sk->sk_incoming_cpu);
1696 u32 meminfo[SK_MEMINFO_VARS];
1698 sk_get_meminfo(sk, meminfo);
1700 len = min_t(unsigned int, len, sizeof(meminfo));
1701 if (copy_to_user(optval, &meminfo, len))
1707 #ifdef CONFIG_NET_RX_BUSY_POLL
1708 case SO_INCOMING_NAPI_ID:
1709 v.val = READ_ONCE(sk->sk_napi_id);
1711 /* aggregate non-NAPI IDs down to 0 */
1712 if (v.val < MIN_NAPI_ID)
1722 v.val64 = sock_gen_cookie(sk);
1726 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1730 lv = sizeof(v.txtime);
1731 v.txtime.clockid = sk->sk_clockid;
1732 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1733 SOF_TXTIME_DEADLINE_MODE : 0;
1734 v.txtime.flags |= sk->sk_txtime_report_errors ?
1735 SOF_TXTIME_REPORT_ERRORS : 0;
1738 case SO_BINDTOIFINDEX:
1739 v.val = sk->sk_bound_dev_if;
1742 case SO_NETNS_COOKIE:
1746 v.val64 = sock_net(sk)->net_cookie;
1750 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1754 /* We implement the SO_SNDLOWAT etc to not be settable
1757 return -ENOPROTOOPT;
1762 if (copy_to_user(optval, &v, len))
1765 if (put_user(len, optlen))
1771 * Initialize an sk_lock.
1773 * (We also register the sk_lock with the lock validator.)
1775 static inline void sock_lock_init(struct sock *sk)
1777 if (sk->sk_kern_sock)
1778 sock_lock_init_class_and_name(
1780 af_family_kern_slock_key_strings[sk->sk_family],
1781 af_family_kern_slock_keys + sk->sk_family,
1782 af_family_kern_key_strings[sk->sk_family],
1783 af_family_kern_keys + sk->sk_family);
1785 sock_lock_init_class_and_name(
1787 af_family_slock_key_strings[sk->sk_family],
1788 af_family_slock_keys + sk->sk_family,
1789 af_family_key_strings[sk->sk_family],
1790 af_family_keys + sk->sk_family);
1794 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1795 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1796 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1798 static void sock_copy(struct sock *nsk, const struct sock *osk)
1800 const struct proto *prot = READ_ONCE(osk->sk_prot);
1801 #ifdef CONFIG_SECURITY_NETWORK
1802 void *sptr = nsk->sk_security;
1805 /* If we move sk_tx_queue_mapping out of the private section,
1806 * we must check if sk_tx_queue_clear() is called after
1807 * sock_copy() in sk_clone_lock().
1809 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1810 offsetof(struct sock, sk_dontcopy_begin) ||
1811 offsetof(struct sock, sk_tx_queue_mapping) >=
1812 offsetof(struct sock, sk_dontcopy_end));
1814 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1816 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1817 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1819 #ifdef CONFIG_SECURITY_NETWORK
1820 nsk->sk_security = sptr;
1821 security_sk_clone(osk, nsk);
1825 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1829 struct kmem_cache *slab;
1833 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1836 if (want_init_on_alloc(priority))
1837 sk_prot_clear_nulls(sk, prot->obj_size);
1839 sk = kmalloc(prot->obj_size, priority);
1842 if (security_sk_alloc(sk, family, priority))
1845 if (!try_module_get(prot->owner))
1852 security_sk_free(sk);
1855 kmem_cache_free(slab, sk);
1861 static void sk_prot_free(struct proto *prot, struct sock *sk)
1863 struct kmem_cache *slab;
1864 struct module *owner;
1866 owner = prot->owner;
1869 cgroup_sk_free(&sk->sk_cgrp_data);
1870 mem_cgroup_sk_free(sk);
1871 security_sk_free(sk);
1873 kmem_cache_free(slab, sk);
1880 * sk_alloc - All socket objects are allocated here
1881 * @net: the applicable net namespace
1882 * @family: protocol family
1883 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1884 * @prot: struct proto associated with this new sock instance
1885 * @kern: is this to be a kernel socket?
1887 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1888 struct proto *prot, int kern)
1892 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1894 sk->sk_family = family;
1896 * See comment in struct sock definition to understand
1897 * why we need sk_prot_creator -acme
1899 sk->sk_prot = sk->sk_prot_creator = prot;
1900 sk->sk_kern_sock = kern;
1902 sk->sk_net_refcnt = kern ? 0 : 1;
1903 if (likely(sk->sk_net_refcnt)) {
1905 sock_inuse_add(net, 1);
1908 sock_net_set(sk, net);
1909 refcount_set(&sk->sk_wmem_alloc, 1);
1911 mem_cgroup_sk_alloc(sk);
1912 cgroup_sk_alloc(&sk->sk_cgrp_data);
1913 sock_update_classid(&sk->sk_cgrp_data);
1914 sock_update_netprioidx(&sk->sk_cgrp_data);
1915 sk_tx_queue_clear(sk);
1920 EXPORT_SYMBOL(sk_alloc);
1922 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1923 * grace period. This is the case for UDP sockets and TCP listeners.
1925 static void __sk_destruct(struct rcu_head *head)
1927 struct sock *sk = container_of(head, struct sock, sk_rcu);
1928 struct sk_filter *filter;
1930 if (sk->sk_destruct)
1931 sk->sk_destruct(sk);
1933 filter = rcu_dereference_check(sk->sk_filter,
1934 refcount_read(&sk->sk_wmem_alloc) == 0);
1936 sk_filter_uncharge(sk, filter);
1937 RCU_INIT_POINTER(sk->sk_filter, NULL);
1940 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1942 #ifdef CONFIG_BPF_SYSCALL
1943 bpf_sk_storage_free(sk);
1946 if (atomic_read(&sk->sk_omem_alloc))
1947 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1948 __func__, atomic_read(&sk->sk_omem_alloc));
1950 if (sk->sk_frag.page) {
1951 put_page(sk->sk_frag.page);
1952 sk->sk_frag.page = NULL;
1955 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1956 put_cred(sk->sk_peer_cred);
1957 put_pid(sk->sk_peer_pid);
1959 if (likely(sk->sk_net_refcnt))
1960 put_net(sock_net(sk));
1961 sk_prot_free(sk->sk_prot_creator, sk);
1964 void sk_destruct(struct sock *sk)
1966 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1968 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1969 reuseport_detach_sock(sk);
1970 use_call_rcu = true;
1974 call_rcu(&sk->sk_rcu, __sk_destruct);
1976 __sk_destruct(&sk->sk_rcu);
1979 static void __sk_free(struct sock *sk)
1981 if (likely(sk->sk_net_refcnt))
1982 sock_inuse_add(sock_net(sk), -1);
1984 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1985 sock_diag_broadcast_destroy(sk);
1990 void sk_free(struct sock *sk)
1993 * We subtract one from sk_wmem_alloc and can know if
1994 * some packets are still in some tx queue.
1995 * If not null, sock_wfree() will call __sk_free(sk) later
1997 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2000 EXPORT_SYMBOL(sk_free);
2002 static void sk_init_common(struct sock *sk)
2004 skb_queue_head_init(&sk->sk_receive_queue);
2005 skb_queue_head_init(&sk->sk_write_queue);
2006 skb_queue_head_init(&sk->sk_error_queue);
2008 rwlock_init(&sk->sk_callback_lock);
2009 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2010 af_rlock_keys + sk->sk_family,
2011 af_family_rlock_key_strings[sk->sk_family]);
2012 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2013 af_wlock_keys + sk->sk_family,
2014 af_family_wlock_key_strings[sk->sk_family]);
2015 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2016 af_elock_keys + sk->sk_family,
2017 af_family_elock_key_strings[sk->sk_family]);
2018 lockdep_set_class_and_name(&sk->sk_callback_lock,
2019 af_callback_keys + sk->sk_family,
2020 af_family_clock_key_strings[sk->sk_family]);
2024 * sk_clone_lock - clone a socket, and lock its clone
2025 * @sk: the socket to clone
2026 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2028 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2030 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2032 struct proto *prot = READ_ONCE(sk->sk_prot);
2033 struct sk_filter *filter;
2034 bool is_charged = true;
2037 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2041 sock_copy(newsk, sk);
2043 newsk->sk_prot_creator = prot;
2046 if (likely(newsk->sk_net_refcnt))
2047 get_net(sock_net(newsk));
2048 sk_node_init(&newsk->sk_node);
2049 sock_lock_init(newsk);
2050 bh_lock_sock(newsk);
2051 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2052 newsk->sk_backlog.len = 0;
2054 atomic_set(&newsk->sk_rmem_alloc, 0);
2056 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2057 refcount_set(&newsk->sk_wmem_alloc, 1);
2059 atomic_set(&newsk->sk_omem_alloc, 0);
2060 sk_init_common(newsk);
2062 newsk->sk_dst_cache = NULL;
2063 newsk->sk_dst_pending_confirm = 0;
2064 newsk->sk_wmem_queued = 0;
2065 newsk->sk_forward_alloc = 0;
2066 atomic_set(&newsk->sk_drops, 0);
2067 newsk->sk_send_head = NULL;
2068 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2069 atomic_set(&newsk->sk_zckey, 0);
2071 sock_reset_flag(newsk, SOCK_DONE);
2073 /* sk->sk_memcg will be populated at accept() time */
2074 newsk->sk_memcg = NULL;
2076 cgroup_sk_clone(&newsk->sk_cgrp_data);
2079 filter = rcu_dereference(sk->sk_filter);
2081 /* though it's an empty new sock, the charging may fail
2082 * if sysctl_optmem_max was changed between creation of
2083 * original socket and cloning
2085 is_charged = sk_filter_charge(newsk, filter);
2086 RCU_INIT_POINTER(newsk->sk_filter, filter);
2089 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2090 /* We need to make sure that we don't uncharge the new
2091 * socket if we couldn't charge it in the first place
2092 * as otherwise we uncharge the parent's filter.
2095 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2096 sk_free_unlock_clone(newsk);
2100 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2102 if (bpf_sk_storage_clone(sk, newsk)) {
2103 sk_free_unlock_clone(newsk);
2108 /* Clear sk_user_data if parent had the pointer tagged
2109 * as not suitable for copying when cloning.
2111 if (sk_user_data_is_nocopy(newsk))
2112 newsk->sk_user_data = NULL;
2115 newsk->sk_err_soft = 0;
2116 newsk->sk_priority = 0;
2117 newsk->sk_incoming_cpu = raw_smp_processor_id();
2118 if (likely(newsk->sk_net_refcnt))
2119 sock_inuse_add(sock_net(newsk), 1);
2121 /* Before updating sk_refcnt, we must commit prior changes to memory
2122 * (Documentation/RCU/rculist_nulls.rst for details)
2125 refcount_set(&newsk->sk_refcnt, 2);
2127 /* Increment the counter in the same struct proto as the master
2128 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2129 * is the same as sk->sk_prot->socks, as this field was copied
2132 * This _changes_ the previous behaviour, where
2133 * tcp_create_openreq_child always was incrementing the
2134 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2135 * to be taken into account in all callers. -acme
2137 sk_refcnt_debug_inc(newsk);
2138 sk_set_socket(newsk, NULL);
2139 sk_tx_queue_clear(newsk);
2140 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2142 if (newsk->sk_prot->sockets_allocated)
2143 sk_sockets_allocated_inc(newsk);
2145 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2146 net_enable_timestamp();
2150 EXPORT_SYMBOL_GPL(sk_clone_lock);
2152 void sk_free_unlock_clone(struct sock *sk)
2154 /* It is still raw copy of parent, so invalidate
2155 * destructor and make plain sk_free() */
2156 sk->sk_destruct = NULL;
2160 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2162 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2166 sk_dst_set(sk, dst);
2167 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2168 if (sk->sk_route_caps & NETIF_F_GSO)
2169 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2170 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2171 if (sk_can_gso(sk)) {
2172 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2173 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2175 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2176 sk->sk_gso_max_size = dst->dev->gso_max_size;
2177 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2180 sk->sk_gso_max_segs = max_segs;
2182 EXPORT_SYMBOL_GPL(sk_setup_caps);
2185 * Simple resource managers for sockets.
2190 * Write buffer destructor automatically called from kfree_skb.
2192 void sock_wfree(struct sk_buff *skb)
2194 struct sock *sk = skb->sk;
2195 unsigned int len = skb->truesize;
2197 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2199 * Keep a reference on sk_wmem_alloc, this will be released
2200 * after sk_write_space() call
2202 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2203 sk->sk_write_space(sk);
2207 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2208 * could not do because of in-flight packets
2210 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2213 EXPORT_SYMBOL(sock_wfree);
2215 /* This variant of sock_wfree() is used by TCP,
2216 * since it sets SOCK_USE_WRITE_QUEUE.
2218 void __sock_wfree(struct sk_buff *skb)
2220 struct sock *sk = skb->sk;
2222 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2226 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2231 if (unlikely(!sk_fullsock(sk))) {
2232 skb->destructor = sock_edemux;
2237 skb->destructor = sock_wfree;
2238 skb_set_hash_from_sk(skb, sk);
2240 * We used to take a refcount on sk, but following operation
2241 * is enough to guarantee sk_free() wont free this sock until
2242 * all in-flight packets are completed
2244 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2246 EXPORT_SYMBOL(skb_set_owner_w);
2248 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2250 #ifdef CONFIG_TLS_DEVICE
2251 /* Drivers depend on in-order delivery for crypto offload,
2252 * partial orphan breaks out-of-order-OK logic.
2257 return (skb->destructor == sock_wfree ||
2258 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2261 /* This helper is used by netem, as it can hold packets in its
2262 * delay queue. We want to allow the owner socket to send more
2263 * packets, as if they were already TX completed by a typical driver.
2264 * But we also want to keep skb->sk set because some packet schedulers
2265 * rely on it (sch_fq for example).
2267 void skb_orphan_partial(struct sk_buff *skb)
2269 if (skb_is_tcp_pure_ack(skb))
2272 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2277 EXPORT_SYMBOL(skb_orphan_partial);
2280 * Read buffer destructor automatically called from kfree_skb.
2282 void sock_rfree(struct sk_buff *skb)
2284 struct sock *sk = skb->sk;
2285 unsigned int len = skb->truesize;
2287 atomic_sub(len, &sk->sk_rmem_alloc);
2288 sk_mem_uncharge(sk, len);
2290 EXPORT_SYMBOL(sock_rfree);
2293 * Buffer destructor for skbs that are not used directly in read or write
2294 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2296 void sock_efree(struct sk_buff *skb)
2300 EXPORT_SYMBOL(sock_efree);
2302 /* Buffer destructor for prefetch/receive path where reference count may
2303 * not be held, e.g. for listen sockets.
2306 void sock_pfree(struct sk_buff *skb)
2308 if (sk_is_refcounted(skb->sk))
2309 sock_gen_put(skb->sk);
2311 EXPORT_SYMBOL(sock_pfree);
2312 #endif /* CONFIG_INET */
2314 kuid_t sock_i_uid(struct sock *sk)
2318 read_lock_bh(&sk->sk_callback_lock);
2319 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2320 read_unlock_bh(&sk->sk_callback_lock);
2323 EXPORT_SYMBOL(sock_i_uid);
2325 unsigned long sock_i_ino(struct sock *sk)
2329 read_lock_bh(&sk->sk_callback_lock);
2330 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2331 read_unlock_bh(&sk->sk_callback_lock);
2334 EXPORT_SYMBOL(sock_i_ino);
2337 * Allocate a skb from the socket's send buffer.
2339 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2343 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2344 struct sk_buff *skb = alloc_skb(size, priority);
2347 skb_set_owner_w(skb, sk);
2353 EXPORT_SYMBOL(sock_wmalloc);
2355 static void sock_ofree(struct sk_buff *skb)
2357 struct sock *sk = skb->sk;
2359 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2362 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2365 struct sk_buff *skb;
2367 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2368 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2372 skb = alloc_skb(size, priority);
2376 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2378 skb->destructor = sock_ofree;
2383 * Allocate a memory block from the socket's option memory buffer.
2385 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2387 if ((unsigned int)size <= sysctl_optmem_max &&
2388 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2390 /* First do the add, to avoid the race if kmalloc
2393 atomic_add(size, &sk->sk_omem_alloc);
2394 mem = kmalloc(size, priority);
2397 atomic_sub(size, &sk->sk_omem_alloc);
2401 EXPORT_SYMBOL(sock_kmalloc);
2403 /* Free an option memory block. Note, we actually want the inline
2404 * here as this allows gcc to detect the nullify and fold away the
2405 * condition entirely.
2407 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2410 if (WARN_ON_ONCE(!mem))
2413 kfree_sensitive(mem);
2416 atomic_sub(size, &sk->sk_omem_alloc);
2419 void sock_kfree_s(struct sock *sk, void *mem, int size)
2421 __sock_kfree_s(sk, mem, size, false);
2423 EXPORT_SYMBOL(sock_kfree_s);
2425 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2427 __sock_kfree_s(sk, mem, size, true);
2429 EXPORT_SYMBOL(sock_kzfree_s);
2431 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2432 I think, these locks should be removed for datagram sockets.
2434 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2438 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2442 if (signal_pending(current))
2444 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2445 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2446 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2448 if (sk->sk_shutdown & SEND_SHUTDOWN)
2452 timeo = schedule_timeout(timeo);
2454 finish_wait(sk_sleep(sk), &wait);
2460 * Generic send/receive buffer handlers
2463 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2464 unsigned long data_len, int noblock,
2465 int *errcode, int max_page_order)
2467 struct sk_buff *skb;
2471 timeo = sock_sndtimeo(sk, noblock);
2473 err = sock_error(sk);
2478 if (sk->sk_shutdown & SEND_SHUTDOWN)
2481 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2484 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2485 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2489 if (signal_pending(current))
2491 timeo = sock_wait_for_wmem(sk, timeo);
2493 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2494 errcode, sk->sk_allocation);
2496 skb_set_owner_w(skb, sk);
2500 err = sock_intr_errno(timeo);
2505 EXPORT_SYMBOL(sock_alloc_send_pskb);
2507 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2508 int noblock, int *errcode)
2510 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2512 EXPORT_SYMBOL(sock_alloc_send_skb);
2514 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2515 struct sockcm_cookie *sockc)
2519 switch (cmsg->cmsg_type) {
2521 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2523 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2525 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2527 case SO_TIMESTAMPING_OLD:
2528 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2531 tsflags = *(u32 *)CMSG_DATA(cmsg);
2532 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2535 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2536 sockc->tsflags |= tsflags;
2539 if (!sock_flag(sk, SOCK_TXTIME))
2541 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2543 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2545 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2547 case SCM_CREDENTIALS:
2554 EXPORT_SYMBOL(__sock_cmsg_send);
2556 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2557 struct sockcm_cookie *sockc)
2559 struct cmsghdr *cmsg;
2562 for_each_cmsghdr(cmsg, msg) {
2563 if (!CMSG_OK(msg, cmsg))
2565 if (cmsg->cmsg_level != SOL_SOCKET)
2567 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2573 EXPORT_SYMBOL(sock_cmsg_send);
2575 static void sk_enter_memory_pressure(struct sock *sk)
2577 if (!sk->sk_prot->enter_memory_pressure)
2580 sk->sk_prot->enter_memory_pressure(sk);
2583 static void sk_leave_memory_pressure(struct sock *sk)
2585 if (sk->sk_prot->leave_memory_pressure) {
2586 sk->sk_prot->leave_memory_pressure(sk);
2588 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2590 if (memory_pressure && READ_ONCE(*memory_pressure))
2591 WRITE_ONCE(*memory_pressure, 0);
2595 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2598 * skb_page_frag_refill - check that a page_frag contains enough room
2599 * @sz: minimum size of the fragment we want to get
2600 * @pfrag: pointer to page_frag
2601 * @gfp: priority for memory allocation
2603 * Note: While this allocator tries to use high order pages, there is
2604 * no guarantee that allocations succeed. Therefore, @sz MUST be
2605 * less or equal than PAGE_SIZE.
2607 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2610 if (page_ref_count(pfrag->page) == 1) {
2614 if (pfrag->offset + sz <= pfrag->size)
2616 put_page(pfrag->page);
2620 if (SKB_FRAG_PAGE_ORDER &&
2621 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2622 /* Avoid direct reclaim but allow kswapd to wake */
2623 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2624 __GFP_COMP | __GFP_NOWARN |
2626 SKB_FRAG_PAGE_ORDER);
2627 if (likely(pfrag->page)) {
2628 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2632 pfrag->page = alloc_page(gfp);
2633 if (likely(pfrag->page)) {
2634 pfrag->size = PAGE_SIZE;
2639 EXPORT_SYMBOL(skb_page_frag_refill);
2641 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2643 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2646 sk_enter_memory_pressure(sk);
2647 sk_stream_moderate_sndbuf(sk);
2650 EXPORT_SYMBOL(sk_page_frag_refill);
2652 void __lock_sock(struct sock *sk)
2653 __releases(&sk->sk_lock.slock)
2654 __acquires(&sk->sk_lock.slock)
2659 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2660 TASK_UNINTERRUPTIBLE);
2661 spin_unlock_bh(&sk->sk_lock.slock);
2663 spin_lock_bh(&sk->sk_lock.slock);
2664 if (!sock_owned_by_user(sk))
2667 finish_wait(&sk->sk_lock.wq, &wait);
2670 void __release_sock(struct sock *sk)
2671 __releases(&sk->sk_lock.slock)
2672 __acquires(&sk->sk_lock.slock)
2674 struct sk_buff *skb, *next;
2676 while ((skb = sk->sk_backlog.head) != NULL) {
2677 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2679 spin_unlock_bh(&sk->sk_lock.slock);
2684 WARN_ON_ONCE(skb_dst_is_noref(skb));
2685 skb_mark_not_on_list(skb);
2686 sk_backlog_rcv(sk, skb);
2691 } while (skb != NULL);
2693 spin_lock_bh(&sk->sk_lock.slock);
2697 * Doing the zeroing here guarantee we can not loop forever
2698 * while a wild producer attempts to flood us.
2700 sk->sk_backlog.len = 0;
2703 void __sk_flush_backlog(struct sock *sk)
2705 spin_lock_bh(&sk->sk_lock.slock);
2707 spin_unlock_bh(&sk->sk_lock.slock);
2711 * sk_wait_data - wait for data to arrive at sk_receive_queue
2712 * @sk: sock to wait on
2713 * @timeo: for how long
2714 * @skb: last skb seen on sk_receive_queue
2716 * Now socket state including sk->sk_err is changed only under lock,
2717 * hence we may omit checks after joining wait queue.
2718 * We check receive queue before schedule() only as optimization;
2719 * it is very likely that release_sock() added new data.
2721 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2723 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2726 add_wait_queue(sk_sleep(sk), &wait);
2727 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2728 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2729 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2730 remove_wait_queue(sk_sleep(sk), &wait);
2733 EXPORT_SYMBOL(sk_wait_data);
2736 * __sk_mem_raise_allocated - increase memory_allocated
2738 * @size: memory size to allocate
2739 * @amt: pages to allocate
2740 * @kind: allocation type
2742 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2744 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2746 struct proto *prot = sk->sk_prot;
2747 long allocated = sk_memory_allocated_add(sk, amt);
2748 bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
2749 bool charged = true;
2752 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
2753 gfp_memcg_charge())))
2754 goto suppress_allocation;
2757 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2758 sk_leave_memory_pressure(sk);
2762 /* Under pressure. */
2763 if (allocated > sk_prot_mem_limits(sk, 1))
2764 sk_enter_memory_pressure(sk);
2766 /* Over hard limit. */
2767 if (allocated > sk_prot_mem_limits(sk, 2))
2768 goto suppress_allocation;
2770 /* guarantee minimum buffer size under pressure */
2771 if (kind == SK_MEM_RECV) {
2772 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2775 } else { /* SK_MEM_SEND */
2776 int wmem0 = sk_get_wmem0(sk, prot);
2778 if (sk->sk_type == SOCK_STREAM) {
2779 if (sk->sk_wmem_queued < wmem0)
2781 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2786 if (sk_has_memory_pressure(sk)) {
2789 if (!sk_under_memory_pressure(sk))
2791 alloc = sk_sockets_allocated_read_positive(sk);
2792 if (sk_prot_mem_limits(sk, 2) > alloc *
2793 sk_mem_pages(sk->sk_wmem_queued +
2794 atomic_read(&sk->sk_rmem_alloc) +
2795 sk->sk_forward_alloc))
2799 suppress_allocation:
2801 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2802 sk_stream_moderate_sndbuf(sk);
2804 /* Fail only if socket is _under_ its sndbuf.
2805 * In this case we cannot block, so that we have to fail.
2807 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
2808 /* Force charge with __GFP_NOFAIL */
2809 if (memcg_charge && !charged) {
2810 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
2811 gfp_memcg_charge() | __GFP_NOFAIL);
2817 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2818 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2820 sk_memory_allocated_sub(sk, amt);
2822 if (memcg_charge && charged)
2823 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2827 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2830 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2832 * @size: memory size to allocate
2833 * @kind: allocation type
2835 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2836 * rmem allocation. This function assumes that protocols which have
2837 * memory_pressure use sk_wmem_queued as write buffer accounting.
2839 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2841 int ret, amt = sk_mem_pages(size);
2843 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2844 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2846 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2849 EXPORT_SYMBOL(__sk_mem_schedule);
2852 * __sk_mem_reduce_allocated - reclaim memory_allocated
2854 * @amount: number of quanta
2856 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2858 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2860 sk_memory_allocated_sub(sk, amount);
2862 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2863 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2865 if (sk_under_memory_pressure(sk) &&
2866 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2867 sk_leave_memory_pressure(sk);
2869 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2872 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2874 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2876 void __sk_mem_reclaim(struct sock *sk, int amount)
2878 amount >>= SK_MEM_QUANTUM_SHIFT;
2879 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2880 __sk_mem_reduce_allocated(sk, amount);
2882 EXPORT_SYMBOL(__sk_mem_reclaim);
2884 int sk_set_peek_off(struct sock *sk, int val)
2886 sk->sk_peek_off = val;
2889 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2892 * Set of default routines for initialising struct proto_ops when
2893 * the protocol does not support a particular function. In certain
2894 * cases where it makes no sense for a protocol to have a "do nothing"
2895 * function, some default processing is provided.
2898 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2902 EXPORT_SYMBOL(sock_no_bind);
2904 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2909 EXPORT_SYMBOL(sock_no_connect);
2911 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2915 EXPORT_SYMBOL(sock_no_socketpair);
2917 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2922 EXPORT_SYMBOL(sock_no_accept);
2924 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2929 EXPORT_SYMBOL(sock_no_getname);
2931 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2935 EXPORT_SYMBOL(sock_no_ioctl);
2937 int sock_no_listen(struct socket *sock, int backlog)
2941 EXPORT_SYMBOL(sock_no_listen);
2943 int sock_no_shutdown(struct socket *sock, int how)
2947 EXPORT_SYMBOL(sock_no_shutdown);
2949 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2953 EXPORT_SYMBOL(sock_no_sendmsg);
2955 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2959 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2961 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2966 EXPORT_SYMBOL(sock_no_recvmsg);
2968 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2970 /* Mirror missing mmap method error code */
2973 EXPORT_SYMBOL(sock_no_mmap);
2976 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2977 * various sock-based usage counts.
2979 void __receive_sock(struct file *file)
2981 struct socket *sock;
2983 sock = sock_from_file(file);
2985 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2986 sock_update_classid(&sock->sk->sk_cgrp_data);
2990 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2993 struct msghdr msg = {.msg_flags = flags};
2995 char *kaddr = kmap(page);
2996 iov.iov_base = kaddr + offset;
2998 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
3002 EXPORT_SYMBOL(sock_no_sendpage);
3004 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
3005 int offset, size_t size, int flags)
3008 struct msghdr msg = {.msg_flags = flags};
3010 char *kaddr = kmap(page);
3012 iov.iov_base = kaddr + offset;
3014 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
3018 EXPORT_SYMBOL(sock_no_sendpage_locked);
3021 * Default Socket Callbacks
3024 static void sock_def_wakeup(struct sock *sk)
3026 struct socket_wq *wq;
3029 wq = rcu_dereference(sk->sk_wq);
3030 if (skwq_has_sleeper(wq))
3031 wake_up_interruptible_all(&wq->wait);
3035 static void sock_def_error_report(struct sock *sk)
3037 struct socket_wq *wq;
3040 wq = rcu_dereference(sk->sk_wq);
3041 if (skwq_has_sleeper(wq))
3042 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3043 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3047 void sock_def_readable(struct sock *sk)
3049 struct socket_wq *wq;
3052 wq = rcu_dereference(sk->sk_wq);
3053 if (skwq_has_sleeper(wq))
3054 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3055 EPOLLRDNORM | EPOLLRDBAND);
3056 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3060 static void sock_def_write_space(struct sock *sk)
3062 struct socket_wq *wq;
3066 /* Do not wake up a writer until he can make "significant"
3069 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3070 wq = rcu_dereference(sk->sk_wq);
3071 if (skwq_has_sleeper(wq))
3072 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3073 EPOLLWRNORM | EPOLLWRBAND);
3075 /* Should agree with poll, otherwise some programs break */
3076 if (sock_writeable(sk))
3077 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3083 static void sock_def_destruct(struct sock *sk)
3087 void sk_send_sigurg(struct sock *sk)
3089 if (sk->sk_socket && sk->sk_socket->file)
3090 if (send_sigurg(&sk->sk_socket->file->f_owner))
3091 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3093 EXPORT_SYMBOL(sk_send_sigurg);
3095 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3096 unsigned long expires)
3098 if (!mod_timer(timer, expires))
3101 EXPORT_SYMBOL(sk_reset_timer);
3103 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3105 if (del_timer(timer))
3108 EXPORT_SYMBOL(sk_stop_timer);
3110 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3112 if (del_timer_sync(timer))
3115 EXPORT_SYMBOL(sk_stop_timer_sync);
3117 void sock_init_data(struct socket *sock, struct sock *sk)
3120 sk->sk_send_head = NULL;
3122 timer_setup(&sk->sk_timer, NULL, 0);
3124 sk->sk_allocation = GFP_KERNEL;
3125 sk->sk_rcvbuf = sysctl_rmem_default;
3126 sk->sk_sndbuf = sysctl_wmem_default;
3127 sk->sk_state = TCP_CLOSE;
3128 sk_set_socket(sk, sock);
3130 sock_set_flag(sk, SOCK_ZAPPED);
3133 sk->sk_type = sock->type;
3134 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3136 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3138 RCU_INIT_POINTER(sk->sk_wq, NULL);
3139 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3142 rwlock_init(&sk->sk_callback_lock);
3143 if (sk->sk_kern_sock)
3144 lockdep_set_class_and_name(
3145 &sk->sk_callback_lock,
3146 af_kern_callback_keys + sk->sk_family,
3147 af_family_kern_clock_key_strings[sk->sk_family]);
3149 lockdep_set_class_and_name(
3150 &sk->sk_callback_lock,
3151 af_callback_keys + sk->sk_family,
3152 af_family_clock_key_strings[sk->sk_family]);
3154 sk->sk_state_change = sock_def_wakeup;
3155 sk->sk_data_ready = sock_def_readable;
3156 sk->sk_write_space = sock_def_write_space;
3157 sk->sk_error_report = sock_def_error_report;
3158 sk->sk_destruct = sock_def_destruct;
3160 sk->sk_frag.page = NULL;
3161 sk->sk_frag.offset = 0;
3162 sk->sk_peek_off = -1;
3164 sk->sk_peer_pid = NULL;
3165 sk->sk_peer_cred = NULL;
3166 spin_lock_init(&sk->sk_peer_lock);
3168 sk->sk_write_pending = 0;
3169 sk->sk_rcvlowat = 1;
3170 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3171 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3173 sk->sk_stamp = SK_DEFAULT_STAMP;
3174 #if BITS_PER_LONG==32
3175 seqlock_init(&sk->sk_stamp_seq);
3177 atomic_set(&sk->sk_zckey, 0);
3179 #ifdef CONFIG_NET_RX_BUSY_POLL
3181 sk->sk_ll_usec = sysctl_net_busy_read;
3184 sk->sk_max_pacing_rate = ~0UL;
3185 sk->sk_pacing_rate = ~0UL;
3186 WRITE_ONCE(sk->sk_pacing_shift, 10);
3187 sk->sk_incoming_cpu = -1;
3189 sk_rx_queue_clear(sk);
3191 * Before updating sk_refcnt, we must commit prior changes to memory
3192 * (Documentation/RCU/rculist_nulls.rst for details)
3195 refcount_set(&sk->sk_refcnt, 1);
3196 atomic_set(&sk->sk_drops, 0);
3198 EXPORT_SYMBOL(sock_init_data);
3200 void lock_sock_nested(struct sock *sk, int subclass)
3202 /* The sk_lock has mutex_lock() semantics here. */
3203 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3206 spin_lock_bh(&sk->sk_lock.slock);
3207 if (sk->sk_lock.owned)
3209 sk->sk_lock.owned = 1;
3210 spin_unlock_bh(&sk->sk_lock.slock);
3212 EXPORT_SYMBOL(lock_sock_nested);
3214 void release_sock(struct sock *sk)
3216 spin_lock_bh(&sk->sk_lock.slock);
3217 if (sk->sk_backlog.tail)
3220 /* Warning : release_cb() might need to release sk ownership,
3221 * ie call sock_release_ownership(sk) before us.
3223 if (sk->sk_prot->release_cb)
3224 sk->sk_prot->release_cb(sk);
3226 sock_release_ownership(sk);
3227 if (waitqueue_active(&sk->sk_lock.wq))
3228 wake_up(&sk->sk_lock.wq);
3229 spin_unlock_bh(&sk->sk_lock.slock);
3231 EXPORT_SYMBOL(release_sock);
3233 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3236 spin_lock_bh(&sk->sk_lock.slock);
3238 if (!sk->sk_lock.owned) {
3240 * Fast path return with bottom halves disabled and
3241 * sock::sk_lock.slock held.
3243 * The 'mutex' is not contended and holding
3244 * sock::sk_lock.slock prevents all other lockers to
3245 * proceed so the corresponding unlock_sock_fast() can
3246 * avoid the slow path of release_sock() completely and
3247 * just release slock.
3249 * From a semantical POV this is equivalent to 'acquiring'
3250 * the 'mutex', hence the corresponding lockdep
3251 * mutex_release() has to happen in the fast path of
3252 * unlock_sock_fast().
3258 sk->sk_lock.owned = 1;
3259 __acquire(&sk->sk_lock.slock);
3260 spin_unlock_bh(&sk->sk_lock.slock);
3263 EXPORT_SYMBOL(__lock_sock_fast);
3265 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3266 bool timeval, bool time32)
3268 struct sock *sk = sock->sk;
3269 struct timespec64 ts;
3271 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3272 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3273 if (ts.tv_sec == -1)
3275 if (ts.tv_sec == 0) {
3276 ktime_t kt = ktime_get_real();
3277 sock_write_timestamp(sk, kt);
3278 ts = ktime_to_timespec64(kt);
3284 #ifdef CONFIG_COMPAT_32BIT_TIME
3286 return put_old_timespec32(&ts, userstamp);
3288 #ifdef CONFIG_SPARC64
3289 /* beware of padding in sparc64 timeval */
3290 if (timeval && !in_compat_syscall()) {
3291 struct __kernel_old_timeval __user tv = {
3292 .tv_sec = ts.tv_sec,
3293 .tv_usec = ts.tv_nsec,
3295 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3300 return put_timespec64(&ts, userstamp);
3302 EXPORT_SYMBOL(sock_gettstamp);
3304 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3306 if (!sock_flag(sk, flag)) {
3307 unsigned long previous_flags = sk->sk_flags;
3309 sock_set_flag(sk, flag);
3311 * we just set one of the two flags which require net
3312 * time stamping, but time stamping might have been on
3313 * already because of the other one
3315 if (sock_needs_netstamp(sk) &&
3316 !(previous_flags & SK_FLAGS_TIMESTAMP))
3317 net_enable_timestamp();
3321 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3322 int level, int type)
3324 struct sock_exterr_skb *serr;
3325 struct sk_buff *skb;
3329 skb = sock_dequeue_err_skb(sk);
3335 msg->msg_flags |= MSG_TRUNC;
3338 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3342 sock_recv_timestamp(msg, sk, skb);
3344 serr = SKB_EXT_ERR(skb);
3345 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3347 msg->msg_flags |= MSG_ERRQUEUE;
3355 EXPORT_SYMBOL(sock_recv_errqueue);
3358 * Get a socket option on an socket.
3360 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3361 * asynchronous errors should be reported by getsockopt. We assume
3362 * this means if you specify SO_ERROR (otherwise whats the point of it).
3364 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3365 char __user *optval, int __user *optlen)
3367 struct sock *sk = sock->sk;
3369 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3371 EXPORT_SYMBOL(sock_common_getsockopt);
3373 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3376 struct sock *sk = sock->sk;
3380 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3381 flags & ~MSG_DONTWAIT, &addr_len);
3383 msg->msg_namelen = addr_len;
3386 EXPORT_SYMBOL(sock_common_recvmsg);
3389 * Set socket options on an inet socket.
3391 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3392 sockptr_t optval, unsigned int optlen)
3394 struct sock *sk = sock->sk;
3396 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3398 EXPORT_SYMBOL(sock_common_setsockopt);
3400 void sk_common_release(struct sock *sk)
3402 if (sk->sk_prot->destroy)
3403 sk->sk_prot->destroy(sk);
3406 * Observation: when sk_common_release is called, processes have
3407 * no access to socket. But net still has.
3408 * Step one, detach it from networking:
3410 * A. Remove from hash tables.
3413 sk->sk_prot->unhash(sk);
3416 * In this point socket cannot receive new packets, but it is possible
3417 * that some packets are in flight because some CPU runs receiver and
3418 * did hash table lookup before we unhashed socket. They will achieve
3419 * receive queue and will be purged by socket destructor.
3421 * Also we still have packets pending on receive queue and probably,
3422 * our own packets waiting in device queues. sock_destroy will drain
3423 * receive queue, but transmitted packets will delay socket destruction
3424 * until the last reference will be released.
3429 xfrm_sk_free_policy(sk);
3431 sk_refcnt_debug_release(sk);
3435 EXPORT_SYMBOL(sk_common_release);
3437 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3439 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3441 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3442 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3443 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3444 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3445 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3446 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3447 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3448 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3449 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3452 #ifdef CONFIG_PROC_FS
3453 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3455 int val[PROTO_INUSE_NR];
3458 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3460 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3462 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3464 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3466 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3468 int cpu, idx = prot->inuse_idx;
3471 for_each_possible_cpu(cpu)
3472 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3474 return res >= 0 ? res : 0;
3476 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3478 static void sock_inuse_add(struct net *net, int val)
3480 this_cpu_add(*net->core.sock_inuse, val);
3483 int sock_inuse_get(struct net *net)
3487 for_each_possible_cpu(cpu)
3488 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3493 EXPORT_SYMBOL_GPL(sock_inuse_get);
3495 static int __net_init sock_inuse_init_net(struct net *net)
3497 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3498 if (net->core.prot_inuse == NULL)
3501 net->core.sock_inuse = alloc_percpu(int);
3502 if (net->core.sock_inuse == NULL)
3508 free_percpu(net->core.prot_inuse);
3512 static void __net_exit sock_inuse_exit_net(struct net *net)
3514 free_percpu(net->core.prot_inuse);
3515 free_percpu(net->core.sock_inuse);
3518 static struct pernet_operations net_inuse_ops = {
3519 .init = sock_inuse_init_net,
3520 .exit = sock_inuse_exit_net,
3523 static __init int net_inuse_init(void)
3525 if (register_pernet_subsys(&net_inuse_ops))
3526 panic("Cannot initialize net inuse counters");
3531 core_initcall(net_inuse_init);
3533 static int assign_proto_idx(struct proto *prot)
3535 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3537 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3538 pr_err("PROTO_INUSE_NR exhausted\n");
3542 set_bit(prot->inuse_idx, proto_inuse_idx);
3546 static void release_proto_idx(struct proto *prot)
3548 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3549 clear_bit(prot->inuse_idx, proto_inuse_idx);
3552 static inline int assign_proto_idx(struct proto *prot)
3557 static inline void release_proto_idx(struct proto *prot)
3561 static void sock_inuse_add(struct net *net, int val)
3566 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3570 kfree(twsk_prot->twsk_slab_name);
3571 twsk_prot->twsk_slab_name = NULL;
3572 kmem_cache_destroy(twsk_prot->twsk_slab);
3573 twsk_prot->twsk_slab = NULL;
3576 static int tw_prot_init(const struct proto *prot)
3578 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3583 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3585 if (!twsk_prot->twsk_slab_name)
3588 twsk_prot->twsk_slab =
3589 kmem_cache_create(twsk_prot->twsk_slab_name,
3590 twsk_prot->twsk_obj_size, 0,
3591 SLAB_ACCOUNT | prot->slab_flags,
3593 if (!twsk_prot->twsk_slab) {
3594 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3602 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3606 kfree(rsk_prot->slab_name);
3607 rsk_prot->slab_name = NULL;
3608 kmem_cache_destroy(rsk_prot->slab);
3609 rsk_prot->slab = NULL;
3612 static int req_prot_init(const struct proto *prot)
3614 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3619 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3621 if (!rsk_prot->slab_name)
3624 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3625 rsk_prot->obj_size, 0,
3626 SLAB_ACCOUNT | prot->slab_flags,
3629 if (!rsk_prot->slab) {
3630 pr_crit("%s: Can't create request sock SLAB cache!\n",
3637 int proto_register(struct proto *prot, int alloc_slab)
3642 prot->slab = kmem_cache_create_usercopy(prot->name,
3644 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3646 prot->useroffset, prot->usersize,
3649 if (prot->slab == NULL) {
3650 pr_crit("%s: Can't create sock SLAB cache!\n",
3655 if (req_prot_init(prot))
3656 goto out_free_request_sock_slab;
3658 if (tw_prot_init(prot))
3659 goto out_free_timewait_sock_slab;
3662 mutex_lock(&proto_list_mutex);
3663 ret = assign_proto_idx(prot);
3665 mutex_unlock(&proto_list_mutex);
3666 goto out_free_timewait_sock_slab;
3668 list_add(&prot->node, &proto_list);
3669 mutex_unlock(&proto_list_mutex);
3672 out_free_timewait_sock_slab:
3674 tw_prot_cleanup(prot->twsk_prot);
3675 out_free_request_sock_slab:
3677 req_prot_cleanup(prot->rsk_prot);
3679 kmem_cache_destroy(prot->slab);
3685 EXPORT_SYMBOL(proto_register);
3687 void proto_unregister(struct proto *prot)
3689 mutex_lock(&proto_list_mutex);
3690 release_proto_idx(prot);
3691 list_del(&prot->node);
3692 mutex_unlock(&proto_list_mutex);
3694 kmem_cache_destroy(prot->slab);
3697 req_prot_cleanup(prot->rsk_prot);
3698 tw_prot_cleanup(prot->twsk_prot);
3700 EXPORT_SYMBOL(proto_unregister);
3702 int sock_load_diag_module(int family, int protocol)
3705 if (!sock_is_registered(family))
3708 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3709 NETLINK_SOCK_DIAG, family);
3713 if (family == AF_INET &&
3714 protocol != IPPROTO_RAW &&
3715 protocol < MAX_INET_PROTOS &&
3716 !rcu_access_pointer(inet_protos[protocol]))
3720 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3721 NETLINK_SOCK_DIAG, family, protocol);
3723 EXPORT_SYMBOL(sock_load_diag_module);
3725 #ifdef CONFIG_PROC_FS
3726 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3727 __acquires(proto_list_mutex)
3729 mutex_lock(&proto_list_mutex);
3730 return seq_list_start_head(&proto_list, *pos);
3733 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3735 return seq_list_next(v, &proto_list, pos);
3738 static void proto_seq_stop(struct seq_file *seq, void *v)
3739 __releases(proto_list_mutex)
3741 mutex_unlock(&proto_list_mutex);
3744 static char proto_method_implemented(const void *method)
3746 return method == NULL ? 'n' : 'y';
3748 static long sock_prot_memory_allocated(struct proto *proto)
3750 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3753 static const char *sock_prot_memory_pressure(struct proto *proto)
3755 return proto->memory_pressure != NULL ?
3756 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3759 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3762 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3763 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3766 sock_prot_inuse_get(seq_file_net(seq), proto),
3767 sock_prot_memory_allocated(proto),
3768 sock_prot_memory_pressure(proto),
3770 proto->slab == NULL ? "no" : "yes",
3771 module_name(proto->owner),
3772 proto_method_implemented(proto->close),
3773 proto_method_implemented(proto->connect),
3774 proto_method_implemented(proto->disconnect),
3775 proto_method_implemented(proto->accept),
3776 proto_method_implemented(proto->ioctl),
3777 proto_method_implemented(proto->init),
3778 proto_method_implemented(proto->destroy),
3779 proto_method_implemented(proto->shutdown),
3780 proto_method_implemented(proto->setsockopt),
3781 proto_method_implemented(proto->getsockopt),
3782 proto_method_implemented(proto->sendmsg),
3783 proto_method_implemented(proto->recvmsg),
3784 proto_method_implemented(proto->sendpage),
3785 proto_method_implemented(proto->bind),
3786 proto_method_implemented(proto->backlog_rcv),
3787 proto_method_implemented(proto->hash),
3788 proto_method_implemented(proto->unhash),
3789 proto_method_implemented(proto->get_port),
3790 proto_method_implemented(proto->enter_memory_pressure));
3793 static int proto_seq_show(struct seq_file *seq, void *v)
3795 if (v == &proto_list)
3796 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3805 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3807 proto_seq_printf(seq, list_entry(v, struct proto, node));
3811 static const struct seq_operations proto_seq_ops = {
3812 .start = proto_seq_start,
3813 .next = proto_seq_next,
3814 .stop = proto_seq_stop,
3815 .show = proto_seq_show,
3818 static __net_init int proto_init_net(struct net *net)
3820 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3821 sizeof(struct seq_net_private)))
3827 static __net_exit void proto_exit_net(struct net *net)
3829 remove_proc_entry("protocols", net->proc_net);
3833 static __net_initdata struct pernet_operations proto_net_ops = {
3834 .init = proto_init_net,
3835 .exit = proto_exit_net,
3838 static int __init proto_init(void)
3840 return register_pernet_subsys(&proto_net_ops);
3843 subsys_initcall(proto_init);
3845 #endif /* PROC_FS */
3847 #ifdef CONFIG_NET_RX_BUSY_POLL
3848 bool sk_busy_loop_end(void *p, unsigned long start_time)
3850 struct sock *sk = p;
3852 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3853 sk_busy_loop_timeout(sk, start_time);
3855 EXPORT_SYMBOL(sk_busy_loop_end);
3856 #endif /* CONFIG_NET_RX_BUSY_POLL */
3858 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3860 if (!sk->sk_prot->bind_add)
3862 return sk->sk_prot->bind_add(sk, addr, addr_len);
3864 EXPORT_SYMBOL(sock_bind_add);