2 * drm_irq.c IRQ and vblank support
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
27 #include <linux/export.h>
28 #include <linux/kthread.h>
29 #include <linux/moduleparam.h>
31 #include <drm/drm_crtc.h>
32 #include <drm/drm_drv.h>
33 #include <drm/drm_framebuffer.h>
34 #include <drm/drm_managed.h>
35 #include <drm/drm_modeset_helper_vtables.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_vblank.h>
39 #include "drm_internal.h"
40 #include "drm_trace.h"
43 * DOC: vblank handling
45 * From the computer's perspective, every time the monitor displays
46 * a new frame the scanout engine has "scanned out" the display image
47 * from top to bottom, one row of pixels at a time. The current row
48 * of pixels is referred to as the current scanline.
50 * In addition to the display's visible area, there's usually a couple of
51 * extra scanlines which aren't actually displayed on the screen.
52 * These extra scanlines don't contain image data and are occasionally used
53 * for features like audio and infoframes. The region made up of these
54 * scanlines is referred to as the vertical blanking region, or vblank for
57 * For historical reference, the vertical blanking period was designed to
58 * give the electron gun (on CRTs) enough time to move back to the top of
59 * the screen to start scanning out the next frame. Similar for horizontal
60 * blanking periods. They were designed to give the electron gun enough
61 * time to move back to the other side of the screen to start scanning the
67 * physical → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
72 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
73 * |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
74 * |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓| updates the
84 * vertical |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
85 * blanking ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
86 * region → ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
87 * ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
88 * start of → ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
91 * "Physical top of display" is the reference point for the high-precision/
92 * corrected timestamp.
94 * On a lot of display hardware, programming needs to take effect during the
95 * vertical blanking period so that settings like gamma, the image buffer
96 * buffer to be scanned out, etc. can safely be changed without showing
97 * any visual artifacts on the screen. In some unforgiving hardware, some of
98 * this programming has to both start and end in the same vblank. To help
99 * with the timing of the hardware programming, an interrupt is usually
100 * available to notify the driver when it can start the updating of registers.
101 * The interrupt is in this context named the vblank interrupt.
103 * The vblank interrupt may be fired at different points depending on the
104 * hardware. Some hardware implementations will fire the interrupt when the
105 * new frame start, other implementations will fire the interrupt at different
108 * Vertical blanking plays a major role in graphics rendering. To achieve
109 * tear-free display, users must synchronize page flips and/or rendering to
110 * vertical blanking. The DRM API offers ioctls to perform page flips
111 * synchronized to vertical blanking and wait for vertical blanking.
113 * The DRM core handles most of the vertical blanking management logic, which
114 * involves filtering out spurious interrupts, keeping race-free blanking
115 * counters, coping with counter wrap-around and resets and keeping use counts.
116 * It relies on the driver to generate vertical blanking interrupts and
117 * optionally provide a hardware vertical blanking counter.
119 * Drivers must initialize the vertical blanking handling core with a call to
120 * drm_vblank_init(). Minimally, a driver needs to implement
121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
126 * themselves (for instance to handle page flipping operations). The DRM core
127 * maintains a vertical blanking use count to ensure that the interrupts are not
128 * disabled while a user still needs them. To increment the use count, drivers
129 * call drm_crtc_vblank_get() and release the vblank reference again with
130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
131 * guaranteed to be enabled.
133 * On many hardware disabling the vblank interrupt cannot be done in a race-free
134 * manner, see &drm_driver.vblank_disable_immediate and
135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
136 * vblanks after a timer has expired, which can be configured through the
137 * ``vblankoffdelay`` module parameter.
139 * Drivers for hardware without support for vertical-blanking interrupts
140 * must not call drm_vblank_init(). For such drivers, atomic helpers will
141 * automatically generate fake vblank events as part of the display update.
142 * This functionality also can be controlled by the driver by enabling and
143 * disabling struct drm_crtc_state.no_vblank.
146 /* Retry timestamp calculation up to 3 times to satisfy
147 * drm_timestamp_precision before giving up.
149 #define DRM_TIMESTAMP_MAXRETRIES 3
151 /* Threshold in nanoseconds for detection of redundant
152 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
154 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
157 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
158 ktime_t *tvblank, bool in_vblank_irq);
160 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
162 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
164 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
165 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
166 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
167 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
169 static void store_vblank(struct drm_device *dev, unsigned int pipe,
170 u32 vblank_count_inc,
171 ktime_t t_vblank, u32 last)
173 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
175 assert_spin_locked(&dev->vblank_time_lock);
179 write_seqlock(&vblank->seqlock);
180 vblank->time = t_vblank;
181 atomic64_add(vblank_count_inc, &vblank->count);
182 write_sequnlock(&vblank->seqlock);
185 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
187 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
189 return vblank->max_vblank_count ?: dev->max_vblank_count;
193 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
194 * if there is no usable hardware frame counter available.
196 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
198 drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
202 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
204 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
205 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
207 if (drm_WARN_ON(dev, !crtc))
210 if (crtc->funcs->get_vblank_counter)
211 return crtc->funcs->get_vblank_counter(crtc);
214 return drm_vblank_no_hw_counter(dev, pipe);
218 * Reset the stored timestamp for the current vblank count to correspond
219 * to the last vblank occurred.
221 * Only to be called from drm_crtc_vblank_on().
223 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
224 * device vblank fields.
226 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
231 int count = DRM_TIMESTAMP_MAXRETRIES;
233 spin_lock(&dev->vblank_time_lock);
236 * sample the current counter to avoid random jumps
237 * when drm_vblank_enable() applies the diff
240 cur_vblank = __get_vblank_counter(dev, pipe);
241 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
242 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
245 * Only reinitialize corresponding vblank timestamp if high-precision query
246 * available and didn't fail. Otherwise reinitialize delayed at next vblank
247 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
253 * +1 to make sure user will never see the same
254 * vblank counter value before and after a modeset
256 store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
258 spin_unlock(&dev->vblank_time_lock);
262 * Call back into the driver to update the appropriate vblank counter
263 * (specified by @pipe). Deal with wraparound, if it occurred, and
264 * update the last read value so we can deal with wraparound on the next
267 * Only necessary when going from off->on, to account for frames we
268 * didn't get an interrupt for.
270 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
271 * device vblank fields.
273 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
276 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
277 u32 cur_vblank, diff;
280 int count = DRM_TIMESTAMP_MAXRETRIES;
281 int framedur_ns = vblank->framedur_ns;
282 u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
285 * Interrupts were disabled prior to this call, so deal with counter
287 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events
288 * here if the register is small or we had vblank interrupts off for
291 * We repeat the hardware vblank counter & timestamp query until
292 * we get consistent results. This to prevent races between gpu
293 * updating its hardware counter while we are retrieving the
294 * corresponding vblank timestamp.
297 cur_vblank = __get_vblank_counter(dev, pipe);
298 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
299 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
301 if (max_vblank_count) {
302 /* trust the hw counter when it's around */
303 diff = (cur_vblank - vblank->last) & max_vblank_count;
304 } else if (rc && framedur_ns) {
305 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
308 * Figure out how many vblanks we've missed based
309 * on the difference in the timestamps and the
310 * frame/field duration.
313 drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
314 " diff_ns = %lld, framedur_ns = %d)\n",
315 pipe, (long long)diff_ns, framedur_ns);
317 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
319 if (diff == 0 && in_vblank_irq)
320 drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
323 /* some kind of default for drivers w/o accurate vbl timestamping */
324 diff = in_vblank_irq ? 1 : 0;
328 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
329 * interval? If so then vblank irqs keep running and it will likely
330 * happen that the hardware vblank counter is not trustworthy as it
331 * might reset at some point in that interval and vblank timestamps
332 * are not trustworthy either in that interval. Iow. this can result
333 * in a bogus diff >> 1 which must be avoided as it would cause
334 * random large forward jumps of the software vblank counter.
336 if (diff > 1 && (vblank->inmodeset & 0x2)) {
338 "clamping vblank bump to 1 on crtc %u: diffr=%u"
339 " due to pre-modeset.\n", pipe, diff);
343 drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
344 " current=%llu, diff=%u, hw=%u hw_last=%u\n",
345 pipe, (unsigned long long)atomic64_read(&vblank->count),
346 diff, cur_vblank, vblank->last);
349 drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
354 * Only reinitialize corresponding vblank timestamp if high-precision query
355 * available and didn't fail, or we were called from the vblank interrupt.
356 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
357 * for now, to mark the vblanktimestamp as invalid.
359 if (!rc && !in_vblank_irq)
362 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
365 u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
367 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
370 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
373 count = atomic64_read(&vblank->count);
376 * This read barrier corresponds to the implicit write barrier of the
377 * write seqlock in store_vblank(). Note that this is the only place
378 * where we need an explicit barrier, since all other access goes
379 * through drm_vblank_count_and_time(), which already has the required
380 * read barrier curtesy of the read seqlock.
388 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
389 * @crtc: which counter to retrieve
391 * This function is similar to drm_crtc_vblank_count() but this function
392 * interpolates to handle a race with vblank interrupts using the high precision
393 * timestamping support.
395 * This is mostly useful for hardware that can obtain the scanout position, but
396 * doesn't have a hardware frame counter.
398 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
400 struct drm_device *dev = crtc->dev;
401 unsigned int pipe = drm_crtc_index(crtc);
405 drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
406 !crtc->funcs->get_vblank_timestamp,
407 "This function requires support for accurate vblank timestamps.");
409 spin_lock_irqsave(&dev->vblank_time_lock, flags);
411 drm_update_vblank_count(dev, pipe, false);
412 vblank = drm_vblank_count(dev, pipe);
414 spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
418 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
420 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
422 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
423 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
425 if (drm_WARN_ON(dev, !crtc))
428 if (crtc->funcs->disable_vblank)
429 crtc->funcs->disable_vblank(crtc);
434 * Disable vblank irq's on crtc, make sure that last vblank count
435 * of hardware and corresponding consistent software vblank counter
436 * are preserved, even if there are any spurious vblank irq's after
439 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
441 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
442 unsigned long irqflags;
444 assert_spin_locked(&dev->vbl_lock);
446 /* Prevent vblank irq processing while disabling vblank irqs,
447 * so no updates of timestamps or count can happen after we've
448 * disabled. Needed to prevent races in case of delayed irq's.
450 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
453 * Update vblank count and disable vblank interrupts only if the
454 * interrupts were enabled. This avoids calling the ->disable_vblank()
455 * operation in atomic context with the hardware potentially runtime
458 if (!vblank->enabled)
462 * Update the count and timestamp to maintain the
463 * appearance that the counter has been ticking all along until
464 * this time. This makes the count account for the entire time
465 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
467 drm_update_vblank_count(dev, pipe, false);
468 __disable_vblank(dev, pipe);
469 vblank->enabled = false;
472 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
475 static void vblank_disable_fn(struct timer_list *t)
477 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
478 struct drm_device *dev = vblank->dev;
479 unsigned int pipe = vblank->pipe;
480 unsigned long irqflags;
482 spin_lock_irqsave(&dev->vbl_lock, irqflags);
483 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
484 drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
485 drm_vblank_disable_and_save(dev, pipe);
487 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
490 static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
492 struct drm_vblank_crtc *vblank = ptr;
494 drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
495 drm_core_check_feature(dev, DRIVER_MODESET));
497 drm_vblank_destroy_worker(vblank);
498 del_timer_sync(&vblank->disable_timer);
502 * drm_vblank_init - initialize vblank support
504 * @num_crtcs: number of CRTCs supported by @dev
506 * This function initializes vblank support for @num_crtcs display pipelines.
507 * Cleanup is handled automatically through a cleanup function added with
508 * drmm_add_action_or_reset().
511 * Zero on success or a negative error code on failure.
513 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
518 spin_lock_init(&dev->vbl_lock);
519 spin_lock_init(&dev->vblank_time_lock);
521 dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
525 dev->num_crtcs = num_crtcs;
527 for (i = 0; i < num_crtcs; i++) {
528 struct drm_vblank_crtc *vblank = &dev->vblank[i];
532 init_waitqueue_head(&vblank->queue);
533 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
534 seqlock_init(&vblank->seqlock);
536 ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
541 ret = drm_vblank_worker_init(vblank);
548 EXPORT_SYMBOL(drm_vblank_init);
551 * drm_dev_has_vblank - test if vblanking has been initialized for
555 * Drivers may call this function to test if vblank support is
556 * initialized for a device. For most hardware this means that vblanking
557 * can also be enabled.
559 * Atomic helpers use this function to initialize
560 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
563 * True if vblanking has been initialized for the given device, false
566 bool drm_dev_has_vblank(const struct drm_device *dev)
568 return dev->num_crtcs != 0;
570 EXPORT_SYMBOL(drm_dev_has_vblank);
573 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
574 * @crtc: which CRTC's vblank waitqueue to retrieve
576 * This function returns a pointer to the vblank waitqueue for the CRTC.
577 * Drivers can use this to implement vblank waits using wait_event() and related
580 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
582 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
584 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
588 * drm_calc_timestamping_constants - calculate vblank timestamp constants
589 * @crtc: drm_crtc whose timestamp constants should be updated.
590 * @mode: display mode containing the scanout timings
592 * Calculate and store various constants which are later needed by vblank and
593 * swap-completion timestamping, e.g, by
594 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
595 * CRTC's true scanout timing, so they take things like panel scaling or
596 * other adjustments into account.
598 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
599 const struct drm_display_mode *mode)
601 struct drm_device *dev = crtc->dev;
602 unsigned int pipe = drm_crtc_index(crtc);
603 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
604 int linedur_ns = 0, framedur_ns = 0;
605 int dotclock = mode->crtc_clock;
607 if (!drm_dev_has_vblank(dev))
610 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
613 /* Valid dotclock? */
615 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
618 * Convert scanline length in pixels and video
619 * dot clock to line duration and frame duration
622 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
623 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
626 * Fields of interlaced scanout modes are only half a frame duration.
628 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
631 drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
635 vblank->linedur_ns = linedur_ns;
636 vblank->framedur_ns = framedur_ns;
637 drm_mode_copy(&vblank->hwmode, mode);
640 "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
641 crtc->base.id, mode->crtc_htotal,
642 mode->crtc_vtotal, mode->crtc_vdisplay);
643 drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
644 crtc->base.id, dotclock, framedur_ns, linedur_ns);
646 EXPORT_SYMBOL(drm_calc_timestamping_constants);
649 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
651 * @crtc: CRTC whose vblank timestamp to retrieve
652 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
653 * On return contains true maximum error of timestamp
654 * @vblank_time: Pointer to time which should receive the timestamp
656 * True when called from drm_crtc_handle_vblank(). Some drivers
657 * need to apply some workarounds for gpu-specific vblank irq quirks
659 * @get_scanout_position:
660 * Callback function to retrieve the scanout position. See
661 * @struct drm_crtc_helper_funcs.get_scanout_position.
663 * Implements calculation of exact vblank timestamps from given drm_display_mode
664 * timings and current video scanout position of a CRTC.
666 * The current implementation only handles standard video modes. For double scan
667 * and interlaced modes the driver is supposed to adjust the hardware mode
668 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
669 * match the scanout position reported.
671 * Note that atomic drivers must call drm_calc_timestamping_constants() before
672 * enabling a CRTC. The atomic helpers already take care of that in
673 * drm_atomic_helper_calc_timestamping_constants().
677 * Returns true on success, and false on failure, i.e. when no accurate
678 * timestamp could be acquired.
681 drm_crtc_vblank_helper_get_vblank_timestamp_internal(
682 struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
684 drm_vblank_get_scanout_position_func get_scanout_position)
686 struct drm_device *dev = crtc->dev;
687 unsigned int pipe = crtc->index;
688 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
689 struct timespec64 ts_etime, ts_vblank_time;
690 ktime_t stime, etime;
692 const struct drm_display_mode *mode;
694 int delta_ns, duration_ns;
696 if (pipe >= dev->num_crtcs) {
697 drm_err(dev, "Invalid crtc %u\n", pipe);
701 /* Scanout position query not supported? Should not happen. */
702 if (!get_scanout_position) {
703 drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
707 if (drm_drv_uses_atomic_modeset(dev))
708 mode = &vblank->hwmode;
710 mode = &crtc->hwmode;
712 /* If mode timing undefined, just return as no-op:
713 * Happens during initial modesetting of a crtc.
715 if (mode->crtc_clock == 0) {
716 drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
718 drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
722 /* Get current scanout position with system timestamp.
723 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
724 * if single query takes longer than max_error nanoseconds.
726 * This guarantees a tight bound on maximum error if
727 * code gets preempted or delayed for some reason.
729 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
731 * Get vertical and horizontal scanout position vpos, hpos,
732 * and bounding timestamps stime, etime, pre/post query.
734 vbl_status = get_scanout_position(crtc, in_vblank_irq,
739 /* Return as no-op if scanout query unsupported or failed. */
742 "crtc %u : scanoutpos query failed.\n",
747 /* Compute uncertainty in timestamp of scanout position query. */
748 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
750 /* Accept result with < max_error nsecs timing uncertainty. */
751 if (duration_ns <= *max_error)
755 /* Noisy system timing? */
756 if (i == DRM_TIMESTAMP_MAXRETRIES) {
758 "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
759 pipe, duration_ns / 1000, *max_error / 1000, i);
762 /* Return upper bound of timestamp precision error. */
763 *max_error = duration_ns;
765 /* Convert scanout position into elapsed time at raw_time query
766 * since start of scanout at first display scanline. delta_ns
767 * can be negative if start of scanout hasn't happened yet.
769 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
772 /* Subtract time delta from raw timestamp to get final
773 * vblank_time timestamp for end of vblank.
775 *vblank_time = ktime_sub_ns(etime, delta_ns);
777 if (!drm_debug_enabled(DRM_UT_VBL))
780 ts_etime = ktime_to_timespec64(etime);
781 ts_vblank_time = ktime_to_timespec64(*vblank_time);
784 "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
786 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
787 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
788 duration_ns / 1000, i);
792 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
795 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
797 * @crtc: CRTC whose vblank timestamp to retrieve
798 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
799 * On return contains true maximum error of timestamp
800 * @vblank_time: Pointer to time which should receive the timestamp
802 * True when called from drm_crtc_handle_vblank(). Some drivers
803 * need to apply some workarounds for gpu-specific vblank irq quirks
806 * Implements calculation of exact vblank timestamps from given drm_display_mode
807 * timings and current video scanout position of a CRTC. This can be directly
808 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
809 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
811 * The current implementation only handles standard video modes. For double scan
812 * and interlaced modes the driver is supposed to adjust the hardware mode
813 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
814 * match the scanout position reported.
816 * Note that atomic drivers must call drm_calc_timestamping_constants() before
817 * enabling a CRTC. The atomic helpers already take care of that in
818 * drm_atomic_helper_calc_timestamping_constants().
822 * Returns true on success, and false on failure, i.e. when no accurate
823 * timestamp could be acquired.
825 bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
827 ktime_t *vblank_time,
830 return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
831 crtc, max_error, vblank_time, in_vblank_irq,
832 crtc->helper_private->get_scanout_position);
834 EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
837 * drm_crtc_get_last_vbltimestamp - retrieve raw timestamp for the most
838 * recent vblank interval
839 * @crtc: CRTC whose vblank timestamp to retrieve
840 * @tvblank: Pointer to target time which should receive the timestamp
842 * True when called from drm_crtc_handle_vblank(). Some drivers
843 * need to apply some workarounds for gpu-specific vblank irq quirks
846 * Fetches the system timestamp corresponding to the time of the most recent
847 * vblank interval on specified CRTC. May call into kms-driver to
848 * compute the timestamp with a high-precision GPU specific method.
850 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
851 * call, i.e., it isn't very precisely locked to the true vblank.
854 * True if timestamp is considered to be very precise, false otherwise.
857 drm_crtc_get_last_vbltimestamp(struct drm_crtc *crtc, ktime_t *tvblank,
862 /* Define requested maximum error on timestamps (nanoseconds). */
863 int max_error = (int) drm_timestamp_precision * 1000;
865 /* Query driver if possible and precision timestamping enabled. */
866 if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
867 ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
868 tvblank, in_vblank_irq);
871 /* GPU high precision timestamp query unsupported or failed.
872 * Return current monotonic/gettimeofday timestamp as best estimate.
875 *tvblank = ktime_get();
881 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
882 ktime_t *tvblank, bool in_vblank_irq)
884 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
886 return drm_crtc_get_last_vbltimestamp(crtc, tvblank, in_vblank_irq);
890 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
891 * @crtc: which counter to retrieve
893 * Fetches the "cooked" vblank count value that represents the number of
894 * vblank events since the system was booted, including lost events due to
895 * modesetting activity. Note that this timer isn't correct against a racing
896 * vblank interrupt (since it only reports the software vblank counter), see
897 * drm_crtc_accurate_vblank_count() for such use-cases.
899 * Note that for a given vblank counter value drm_crtc_handle_vblank()
900 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
901 * provide a barrier: Any writes done before calling
902 * drm_crtc_handle_vblank() will be visible to callers of the later
903 * functions, if the vblank count is the same or a later one.
905 * See also &drm_vblank_crtc.count.
908 * The software vblank counter.
910 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
912 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
914 EXPORT_SYMBOL(drm_crtc_vblank_count);
917 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
918 * system timestamp corresponding to that vblank counter value.
920 * @pipe: index of CRTC whose counter to retrieve
921 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
923 * Fetches the "cooked" vblank count value that represents the number of
924 * vblank events since the system was booted, including lost events due to
925 * modesetting activity. Returns corresponding system timestamp of the time
926 * of the vblank interval that corresponds to the current vblank counter value.
928 * This is the legacy version of drm_crtc_vblank_count_and_time().
930 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
933 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
937 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
943 seq = read_seqbegin(&vblank->seqlock);
944 vblank_count = atomic64_read(&vblank->count);
945 *vblanktime = vblank->time;
946 } while (read_seqretry(&vblank->seqlock, seq));
952 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
953 * and the system timestamp corresponding to that vblank counter value
954 * @crtc: which counter to retrieve
955 * @vblanktime: Pointer to time to receive the vblank timestamp.
957 * Fetches the "cooked" vblank count value that represents the number of
958 * vblank events since the system was booted, including lost events due to
959 * modesetting activity. Returns corresponding system timestamp of the time
960 * of the vblank interval that corresponds to the current vblank counter value.
962 * Note that for a given vblank counter value drm_crtc_handle_vblank()
963 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
964 * provide a barrier: Any writes done before calling
965 * drm_crtc_handle_vblank() will be visible to callers of the later
966 * functions, if the vblank count is the same or a later one.
968 * See also &drm_vblank_crtc.count.
970 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
973 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
976 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
979 * drm_crtc_next_vblank_start - calculate the time of the next vblank
980 * @crtc: the crtc for which to calculate next vblank time
981 * @vblanktime: pointer to time to receive the next vblank timestamp.
983 * Calculate the expected time of the start of the next vblank period,
984 * based on time of previous vblank and frame duration
986 int drm_crtc_next_vblank_start(struct drm_crtc *crtc, ktime_t *vblanktime)
988 unsigned int pipe = drm_crtc_index(crtc);
989 struct drm_vblank_crtc *vblank;
990 struct drm_display_mode *mode;
993 if (!drm_dev_has_vblank(crtc->dev))
996 vblank = &crtc->dev->vblank[pipe];
997 mode = &vblank->hwmode;
999 if (!vblank->framedur_ns || !vblank->linedur_ns)
1002 if (!drm_crtc_get_last_vbltimestamp(crtc, vblanktime, false))
1005 vblank_start = DIV_ROUND_DOWN_ULL(
1006 (u64)vblank->framedur_ns * mode->crtc_vblank_start,
1008 *vblanktime = ktime_add(*vblanktime, ns_to_ktime(vblank_start));
1012 EXPORT_SYMBOL(drm_crtc_next_vblank_start);
1014 static void send_vblank_event(struct drm_device *dev,
1015 struct drm_pending_vblank_event *e,
1016 u64 seq, ktime_t now)
1018 struct timespec64 tv;
1020 switch (e->event.base.type) {
1021 case DRM_EVENT_VBLANK:
1022 case DRM_EVENT_FLIP_COMPLETE:
1023 tv = ktime_to_timespec64(now);
1024 e->event.vbl.sequence = seq;
1026 * e->event is a user space structure, with hardcoded unsigned
1027 * 32-bit seconds/microseconds. This is safe as we always use
1028 * monotonic timestamps since linux-4.15
1030 e->event.vbl.tv_sec = tv.tv_sec;
1031 e->event.vbl.tv_usec = tv.tv_nsec / 1000;
1033 case DRM_EVENT_CRTC_SEQUENCE:
1035 e->event.seq.sequence = seq;
1036 e->event.seq.time_ns = ktime_to_ns(now);
1039 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
1041 * Use the same timestamp for any associated fence signal to avoid
1042 * mismatch in timestamps for vsync & fence events triggered by the
1043 * same HW event. Frameworks like SurfaceFlinger in Android expects the
1044 * retire-fence timestamp to match exactly with HW vsync as it uses it
1045 * for its software vsync modeling.
1047 drm_send_event_timestamp_locked(dev, &e->base, now);
1051 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
1052 * @crtc: the source CRTC of the vblank event
1053 * @e: the event to send
1055 * A lot of drivers need to generate vblank events for the very next vblank
1056 * interrupt. For example when the page flip interrupt happens when the page
1057 * flip gets armed, but not when it actually executes within the next vblank
1058 * period. This helper function implements exactly the required vblank arming
1061 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
1062 * atomic commit must ensure that the next vblank happens at exactly the same
1063 * time as the atomic commit is committed to the hardware. This function itself
1064 * does **not** protect against the next vblank interrupt racing with either this
1065 * function call or the atomic commit operation. A possible sequence could be:
1067 * 1. Driver commits new hardware state into vblank-synchronized registers.
1068 * 2. A vblank happens, committing the hardware state. Also the corresponding
1069 * vblank interrupt is fired off and fully processed by the interrupt
1071 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
1072 * 4. The event is only send out for the next vblank, which is wrong.
1074 * An equivalent race can happen when the driver calls
1075 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
1077 * The only way to make this work safely is to prevent the vblank from firing
1078 * (and the hardware from committing anything else) until the entire atomic
1079 * commit sequence has run to completion. If the hardware does not have such a
1080 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
1081 * Instead drivers need to manually send out the event from their interrupt
1082 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
1083 * possible race with the hardware committing the atomic update.
1085 * Caller must hold a vblank reference for the event @e acquired by a
1086 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
1088 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
1089 struct drm_pending_vblank_event *e)
1091 struct drm_device *dev = crtc->dev;
1092 unsigned int pipe = drm_crtc_index(crtc);
1094 assert_spin_locked(&dev->event_lock);
1097 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
1098 list_add_tail(&e->base.link, &dev->vblank_event_list);
1100 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
1103 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
1104 * @crtc: the source CRTC of the vblank event
1105 * @e: the event to send
1107 * Updates sequence # and timestamp on event for the most recently processed
1108 * vblank, and sends it to userspace. Caller must hold event lock.
1110 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
1111 * situation, especially to send out events for atomic commit operations.
1113 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
1114 struct drm_pending_vblank_event *e)
1116 struct drm_device *dev = crtc->dev;
1118 unsigned int pipe = drm_crtc_index(crtc);
1121 if (drm_dev_has_vblank(dev)) {
1122 seq = drm_vblank_count_and_time(dev, pipe, &now);
1129 send_vblank_event(dev, e, seq, now);
1131 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1133 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1135 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1136 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1138 if (drm_WARN_ON(dev, !crtc))
1141 if (crtc->funcs->enable_vblank)
1142 return crtc->funcs->enable_vblank(crtc);
1148 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1150 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1153 assert_spin_locked(&dev->vbl_lock);
1155 spin_lock(&dev->vblank_time_lock);
1157 if (!vblank->enabled) {
1159 * Enable vblank irqs under vblank_time_lock protection.
1160 * All vblank count & timestamp updates are held off
1161 * until we are done reinitializing master counter and
1162 * timestamps. Filtercode in drm_handle_vblank() will
1163 * prevent double-accounting of same vblank interval.
1165 ret = __enable_vblank(dev, pipe);
1166 drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
1169 atomic_dec(&vblank->refcount);
1171 drm_update_vblank_count(dev, pipe, 0);
1172 /* drm_update_vblank_count() includes a wmb so we just
1173 * need to ensure that the compiler emits the write
1174 * to mark the vblank as enabled after the call
1175 * to drm_update_vblank_count().
1177 WRITE_ONCE(vblank->enabled, true);
1181 spin_unlock(&dev->vblank_time_lock);
1186 int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1188 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1189 unsigned long irqflags;
1192 if (!drm_dev_has_vblank(dev))
1195 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1198 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1199 /* Going from 0->1 means we have to enable interrupts again */
1200 if (atomic_add_return(1, &vblank->refcount) == 1) {
1201 ret = drm_vblank_enable(dev, pipe);
1203 if (!vblank->enabled) {
1204 atomic_dec(&vblank->refcount);
1208 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1214 * drm_crtc_vblank_get - get a reference count on vblank events
1215 * @crtc: which CRTC to own
1217 * Acquire a reference count on vblank events to avoid having them disabled
1221 * Zero on success or a negative error code on failure.
1223 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1225 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1227 EXPORT_SYMBOL(drm_crtc_vblank_get);
1229 void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1231 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1233 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1236 if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
1239 /* Last user schedules interrupt disable */
1240 if (atomic_dec_and_test(&vblank->refcount)) {
1241 if (drm_vblank_offdelay == 0)
1243 else if (drm_vblank_offdelay < 0)
1244 vblank_disable_fn(&vblank->disable_timer);
1245 else if (!dev->vblank_disable_immediate)
1246 mod_timer(&vblank->disable_timer,
1247 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1252 * drm_crtc_vblank_put - give up ownership of vblank events
1253 * @crtc: which counter to give up
1255 * Release ownership of a given vblank counter, turning off interrupts
1256 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1258 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1260 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1262 EXPORT_SYMBOL(drm_crtc_vblank_put);
1265 * drm_wait_one_vblank - wait for one vblank
1269 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1270 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1271 * due to lack of driver support or because the crtc is off.
1273 * This is the legacy version of drm_crtc_wait_one_vblank().
1275 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1277 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1281 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1284 ret = drm_vblank_get(dev, pipe);
1285 if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
1289 last = drm_vblank_count(dev, pipe);
1291 ret = wait_event_timeout(vblank->queue,
1292 last != drm_vblank_count(dev, pipe),
1293 msecs_to_jiffies(100));
1295 drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1297 drm_vblank_put(dev, pipe);
1299 EXPORT_SYMBOL(drm_wait_one_vblank);
1302 * drm_crtc_wait_one_vblank - wait for one vblank
1305 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1306 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1307 * due to lack of driver support or because the crtc is off.
1309 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1311 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1313 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1316 * drm_crtc_vblank_off - disable vblank events on a CRTC
1317 * @crtc: CRTC in question
1319 * Drivers can use this function to shut down the vblank interrupt handling when
1320 * disabling a crtc. This function ensures that the latest vblank frame count is
1321 * stored so that drm_vblank_on can restore it again.
1323 * Drivers must use this function when the hardware vblank counter can get
1324 * reset, e.g. when suspending or disabling the @crtc in general.
1326 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1328 struct drm_device *dev = crtc->dev;
1329 unsigned int pipe = drm_crtc_index(crtc);
1330 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1331 struct drm_pending_vblank_event *e, *t;
1335 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1339 * Grab event_lock early to prevent vblank work from being scheduled
1340 * while we're in the middle of shutting down vblank interrupts
1342 spin_lock_irq(&dev->event_lock);
1344 spin_lock(&dev->vbl_lock);
1345 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1346 pipe, vblank->enabled, vblank->inmodeset);
1348 /* Avoid redundant vblank disables without previous
1349 * drm_crtc_vblank_on(). */
1350 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1351 drm_vblank_disable_and_save(dev, pipe);
1353 wake_up(&vblank->queue);
1356 * Prevent subsequent drm_vblank_get() from re-enabling
1357 * the vblank interrupt by bumping the refcount.
1359 if (!vblank->inmodeset) {
1360 atomic_inc(&vblank->refcount);
1361 vblank->inmodeset = 1;
1363 spin_unlock(&dev->vbl_lock);
1365 /* Send any queued vblank events, lest the natives grow disquiet */
1366 seq = drm_vblank_count_and_time(dev, pipe, &now);
1368 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1369 if (e->pipe != pipe)
1371 drm_dbg_core(dev, "Sending premature vblank event on disable: "
1372 "wanted %llu, current %llu\n",
1374 list_del(&e->base.link);
1375 drm_vblank_put(dev, pipe);
1376 send_vblank_event(dev, e, seq, now);
1379 /* Cancel any leftover pending vblank work */
1380 drm_vblank_cancel_pending_works(vblank);
1382 spin_unlock_irq(&dev->event_lock);
1384 /* Will be reset by the modeset helpers when re-enabling the crtc by
1385 * calling drm_calc_timestamping_constants(). */
1386 vblank->hwmode.crtc_clock = 0;
1388 /* Wait for any vblank work that's still executing to finish */
1389 drm_vblank_flush_worker(vblank);
1391 EXPORT_SYMBOL(drm_crtc_vblank_off);
1394 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1395 * @crtc: CRTC in question
1397 * Drivers can use this function to reset the vblank state to off at load time.
1398 * Drivers should use this together with the drm_crtc_vblank_off() and
1399 * drm_crtc_vblank_on() functions. The difference compared to
1400 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1401 * and hence doesn't need to call any driver hooks.
1403 * This is useful for recovering driver state e.g. on driver load, or on resume.
1405 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1407 struct drm_device *dev = crtc->dev;
1408 unsigned int pipe = drm_crtc_index(crtc);
1409 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1411 spin_lock_irq(&dev->vbl_lock);
1413 * Prevent subsequent drm_vblank_get() from enabling the vblank
1414 * interrupt by bumping the refcount.
1416 if (!vblank->inmodeset) {
1417 atomic_inc(&vblank->refcount);
1418 vblank->inmodeset = 1;
1420 spin_unlock_irq(&dev->vbl_lock);
1422 drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
1423 drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
1425 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1428 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1429 * @crtc: CRTC in question
1430 * @max_vblank_count: max hardware vblank counter value
1432 * Update the maximum hardware vblank counter value for @crtc
1433 * at runtime. Useful for hardware where the operation of the
1434 * hardware vblank counter depends on the currently active
1435 * display configuration.
1437 * For example, if the hardware vblank counter does not work
1438 * when a specific connector is active the maximum can be set
1439 * to zero. And when that specific connector isn't active the
1440 * maximum can again be set to the appropriate non-zero value.
1442 * If used, must be called before drm_vblank_on().
1444 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1445 u32 max_vblank_count)
1447 struct drm_device *dev = crtc->dev;
1448 unsigned int pipe = drm_crtc_index(crtc);
1449 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1451 drm_WARN_ON(dev, dev->max_vblank_count);
1452 drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
1454 vblank->max_vblank_count = max_vblank_count;
1456 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1459 * drm_crtc_vblank_on - enable vblank events on a CRTC
1460 * @crtc: CRTC in question
1462 * This functions restores the vblank interrupt state captured with
1463 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1464 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1465 * unbalanced and so can also be unconditionally called in driver load code to
1466 * reflect the current hardware state of the crtc.
1468 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1470 struct drm_device *dev = crtc->dev;
1471 unsigned int pipe = drm_crtc_index(crtc);
1472 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1474 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1477 spin_lock_irq(&dev->vbl_lock);
1478 drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
1479 pipe, vblank->enabled, vblank->inmodeset);
1481 /* Drop our private "prevent drm_vblank_get" refcount */
1482 if (vblank->inmodeset) {
1483 atomic_dec(&vblank->refcount);
1484 vblank->inmodeset = 0;
1487 drm_reset_vblank_timestamp(dev, pipe);
1490 * re-enable interrupts if there are users left, or the
1491 * user wishes vblank interrupts to be enabled all the time.
1493 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1494 drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
1495 spin_unlock_irq(&dev->vbl_lock);
1497 EXPORT_SYMBOL(drm_crtc_vblank_on);
1499 static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1502 struct drm_vblank_crtc *vblank;
1505 u32 cur_vblank, diff = 1;
1506 int count = DRM_TIMESTAMP_MAXRETRIES;
1507 u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
1509 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1512 assert_spin_locked(&dev->vbl_lock);
1513 assert_spin_locked(&dev->vblank_time_lock);
1515 vblank = &dev->vblank[pipe];
1517 drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1518 "Cannot compute missed vblanks without frame duration\n");
1519 framedur_ns = vblank->framedur_ns;
1522 cur_vblank = __get_vblank_counter(dev, pipe);
1523 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1524 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1526 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1528 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1532 "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
1533 diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1534 vblank->last = (cur_vblank - diff) & max_vblank_count;
1538 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1539 * @crtc: CRTC in question
1541 * Power manamement features can cause frame counter resets between vblank
1542 * disable and enable. Drivers can use this function in their
1543 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1544 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1547 * Note that drivers must have race-free high-precision timestamping support,
1548 * i.e. &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
1549 * &drm_driver.vblank_disable_immediate must be set to indicate the
1550 * time-stamping functions are race-free against vblank hardware counter
1553 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1555 WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp);
1556 WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate);
1558 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1560 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1562 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1564 union drm_wait_vblank *vblwait,
1565 struct drm_file *file_priv)
1567 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1568 struct drm_pending_vblank_event *e;
1573 e = kzalloc(sizeof(*e), GFP_KERNEL);
1580 e->event.base.type = DRM_EVENT_VBLANK;
1581 e->event.base.length = sizeof(e->event.vbl);
1582 e->event.vbl.user_data = vblwait->request.signal;
1583 e->event.vbl.crtc_id = 0;
1584 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1585 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1588 e->event.vbl.crtc_id = crtc->base.id;
1591 spin_lock_irq(&dev->event_lock);
1594 * drm_crtc_vblank_off() might have been called after we called
1595 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1596 * vblank disable, so no need for further locking. The reference from
1597 * drm_vblank_get() protects against vblank disable from another source.
1599 if (!READ_ONCE(vblank->enabled)) {
1604 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1610 seq = drm_vblank_count_and_time(dev, pipe, &now);
1612 drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
1613 req_seq, seq, pipe);
1615 trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1617 e->sequence = req_seq;
1618 if (drm_vblank_passed(seq, req_seq)) {
1619 drm_vblank_put(dev, pipe);
1620 send_vblank_event(dev, e, seq, now);
1621 vblwait->reply.sequence = seq;
1623 /* drm_handle_vblank_events will call drm_vblank_put */
1624 list_add_tail(&e->base.link, &dev->vblank_event_list);
1625 vblwait->reply.sequence = req_seq;
1628 spin_unlock_irq(&dev->event_lock);
1633 spin_unlock_irq(&dev->event_lock);
1636 drm_vblank_put(dev, pipe);
1640 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1642 if (vblwait->request.sequence)
1645 return _DRM_VBLANK_RELATIVE ==
1646 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1648 _DRM_VBLANK_NEXTONMISS));
1652 * Widen a 32-bit param to 64-bits.
1654 * \param narrow 32-bit value (missing upper 32 bits)
1655 * \param near 64-bit value that should be 'close' to near
1657 * This function returns a 64-bit value using the lower 32-bits from
1658 * 'narrow' and constructing the upper 32-bits so that the result is
1659 * as close as possible to 'near'.
1662 static u64 widen_32_to_64(u32 narrow, u64 near)
1664 return near + (s32) (narrow - near);
1667 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1668 struct drm_wait_vblank_reply *reply)
1671 struct timespec64 ts;
1674 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1675 * to store the seconds. This is safe as we always use monotonic
1676 * timestamps since linux-4.15.
1678 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1679 ts = ktime_to_timespec64(now);
1680 reply->tval_sec = (u32)ts.tv_sec;
1681 reply->tval_usec = ts.tv_nsec / 1000;
1684 static bool drm_wait_vblank_supported(struct drm_device *dev)
1686 return drm_dev_has_vblank(dev);
1689 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1690 struct drm_file *file_priv)
1692 struct drm_crtc *crtc;
1693 struct drm_vblank_crtc *vblank;
1694 union drm_wait_vblank *vblwait = data;
1697 unsigned int pipe_index;
1698 unsigned int flags, pipe, high_pipe;
1700 if (!drm_wait_vblank_supported(dev))
1703 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1706 if (vblwait->request.type &
1707 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1708 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1710 "Unsupported type value 0x%x, supported mask 0x%x\n",
1711 vblwait->request.type,
1712 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1713 _DRM_VBLANK_HIGH_CRTC_MASK));
1717 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1718 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1720 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1722 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1724 /* Convert lease-relative crtc index into global crtc index */
1725 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1727 drm_for_each_crtc(crtc, dev) {
1728 if (drm_lease_held(file_priv, crtc->base.id)) {
1729 if (pipe_index == 0)
1739 if (pipe >= dev->num_crtcs)
1742 vblank = &dev->vblank[pipe];
1744 /* If the counter is currently enabled and accurate, short-circuit
1745 * queries to return the cached timestamp of the last vblank.
1747 if (dev->vblank_disable_immediate &&
1748 drm_wait_vblank_is_query(vblwait) &&
1749 READ_ONCE(vblank->enabled)) {
1750 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1754 ret = drm_vblank_get(dev, pipe);
1757 "crtc %d failed to acquire vblank counter, %d\n",
1761 seq = drm_vblank_count(dev, pipe);
1763 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1764 case _DRM_VBLANK_RELATIVE:
1765 req_seq = seq + vblwait->request.sequence;
1766 vblwait->request.sequence = req_seq;
1767 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1769 case _DRM_VBLANK_ABSOLUTE:
1770 req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1777 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1778 drm_vblank_passed(seq, req_seq)) {
1780 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1781 vblwait->request.sequence = req_seq;
1784 if (flags & _DRM_VBLANK_EVENT) {
1785 /* must hold on to the vblank ref until the event fires
1786 * drm_vblank_put will be called asynchronously
1788 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1791 if (req_seq != seq) {
1794 drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
1796 wait = wait_event_interruptible_timeout(vblank->queue,
1797 drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1798 !READ_ONCE(vblank->enabled),
1799 msecs_to_jiffies(3000));
1807 /* interrupted by signal */
1816 if (ret != -EINTR) {
1817 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1819 drm_dbg_core(dev, "crtc %d returning %u to client\n",
1820 pipe, vblwait->reply.sequence);
1822 drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
1827 drm_vblank_put(dev, pipe);
1831 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1833 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1834 bool high_prec = false;
1835 struct drm_pending_vblank_event *e, *t;
1839 assert_spin_locked(&dev->event_lock);
1841 seq = drm_vblank_count_and_time(dev, pipe, &now);
1843 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1844 if (e->pipe != pipe)
1846 if (!drm_vblank_passed(seq, e->sequence))
1849 drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
1852 list_del(&e->base.link);
1853 drm_vblank_put(dev, pipe);
1854 send_vblank_event(dev, e, seq, now);
1857 if (crtc && crtc->funcs->get_vblank_timestamp)
1860 trace_drm_vblank_event(pipe, seq, now, high_prec);
1864 * drm_handle_vblank - handle a vblank event
1866 * @pipe: index of CRTC where this event occurred
1868 * Drivers should call this routine in their vblank interrupt handlers to
1869 * update the vblank counter and send any signals that may be pending.
1871 * This is the legacy version of drm_crtc_handle_vblank().
1873 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1875 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1876 unsigned long irqflags;
1879 if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
1882 if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
1885 spin_lock_irqsave(&dev->event_lock, irqflags);
1887 /* Need timestamp lock to prevent concurrent execution with
1888 * vblank enable/disable, as this would cause inconsistent
1889 * or corrupted timestamps and vblank counts.
1891 spin_lock(&dev->vblank_time_lock);
1893 /* Vblank irq handling disabled. Nothing to do. */
1894 if (!vblank->enabled) {
1895 spin_unlock(&dev->vblank_time_lock);
1896 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1900 drm_update_vblank_count(dev, pipe, true);
1902 spin_unlock(&dev->vblank_time_lock);
1904 wake_up(&vblank->queue);
1906 /* With instant-off, we defer disabling the interrupt until after
1907 * we finish processing the following vblank after all events have
1908 * been signaled. The disable has to be last (after
1909 * drm_handle_vblank_events) so that the timestamp is always accurate.
1911 disable_irq = (dev->vblank_disable_immediate &&
1912 drm_vblank_offdelay > 0 &&
1913 !atomic_read(&vblank->refcount));
1915 drm_handle_vblank_events(dev, pipe);
1916 drm_handle_vblank_works(vblank);
1918 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1921 vblank_disable_fn(&vblank->disable_timer);
1925 EXPORT_SYMBOL(drm_handle_vblank);
1928 * drm_crtc_handle_vblank - handle a vblank event
1929 * @crtc: where this event occurred
1931 * Drivers should call this routine in their vblank interrupt handlers to
1932 * update the vblank counter and send any signals that may be pending.
1934 * This is the native KMS version of drm_handle_vblank().
1936 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1937 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1938 * provide a barrier: Any writes done before calling
1939 * drm_crtc_handle_vblank() will be visible to callers of the later
1940 * functions, if the vblank count is the same or a later one.
1942 * See also &drm_vblank_crtc.count.
1945 * True if the event was successfully handled, false on failure.
1947 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1949 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1951 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1954 * Get crtc VBLANK count.
1956 * \param dev DRM device
1957 * \param data user argument, pointing to a drm_crtc_get_sequence structure.
1958 * \param file_priv drm file private for the user's open file descriptor
1961 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1962 struct drm_file *file_priv)
1964 struct drm_crtc *crtc;
1965 struct drm_vblank_crtc *vblank;
1967 struct drm_crtc_get_sequence *get_seq = data;
1969 bool vblank_enabled;
1972 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1975 if (!drm_dev_has_vblank(dev))
1978 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1982 pipe = drm_crtc_index(crtc);
1984 vblank = &dev->vblank[pipe];
1985 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1987 if (!vblank_enabled) {
1988 ret = drm_crtc_vblank_get(crtc);
1991 "crtc %d failed to acquire vblank counter, %d\n",
1996 drm_modeset_lock(&crtc->mutex, NULL);
1998 get_seq->active = crtc->state->enable;
2000 get_seq->active = crtc->enabled;
2001 drm_modeset_unlock(&crtc->mutex);
2002 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2003 get_seq->sequence_ns = ktime_to_ns(now);
2004 if (!vblank_enabled)
2005 drm_crtc_vblank_put(crtc);
2010 * Queue a event for VBLANK sequence
2012 * \param dev DRM device
2013 * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
2014 * \param file_priv drm file private for the user's open file descriptor
2017 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2018 struct drm_file *file_priv)
2020 struct drm_crtc *crtc;
2021 struct drm_vblank_crtc *vblank;
2023 struct drm_crtc_queue_sequence *queue_seq = data;
2025 struct drm_pending_vblank_event *e;
2031 if (!drm_core_check_feature(dev, DRIVER_MODESET))
2034 if (!drm_dev_has_vblank(dev))
2037 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2041 flags = queue_seq->flags;
2042 /* Check valid flag bits */
2043 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2044 DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2047 pipe = drm_crtc_index(crtc);
2049 vblank = &dev->vblank[pipe];
2051 e = kzalloc(sizeof(*e), GFP_KERNEL);
2055 ret = drm_crtc_vblank_get(crtc);
2058 "crtc %d failed to acquire vblank counter, %d\n",
2063 seq = drm_vblank_count_and_time(dev, pipe, &now);
2064 req_seq = queue_seq->sequence;
2066 if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2069 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
2073 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2074 e->event.base.length = sizeof(e->event.seq);
2075 e->event.seq.user_data = queue_seq->user_data;
2077 spin_lock_irq(&dev->event_lock);
2080 * drm_crtc_vblank_off() might have been called after we called
2081 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2082 * vblank disable, so no need for further locking. The reference from
2083 * drm_crtc_vblank_get() protects against vblank disable from another source.
2085 if (!READ_ONCE(vblank->enabled)) {
2090 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2096 e->sequence = req_seq;
2098 if (drm_vblank_passed(seq, req_seq)) {
2099 drm_crtc_vblank_put(crtc);
2100 send_vblank_event(dev, e, seq, now);
2101 queue_seq->sequence = seq;
2103 /* drm_handle_vblank_events will call drm_vblank_put */
2104 list_add_tail(&e->base.link, &dev->vblank_event_list);
2105 queue_seq->sequence = req_seq;
2108 spin_unlock_irq(&dev->event_lock);
2112 spin_unlock_irq(&dev->event_lock);
2113 drm_crtc_vblank_put(crtc);